1
|
Stramarkou M, Tzegiannakis I, Christoforidi E, Krokida M. Use of Electrospinning for Sustainable Production of Nanofibers: A Comparative Assessment of Smart Textiles-Related Applications. Polymers (Basel) 2024; 16:514. [PMID: 38399892 PMCID: PMC10893451 DOI: 10.3390/polym16040514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Textile production is a major component of the global industry, with sales of over USD 450 billion and estimations of an 84% increase in their demand in the next 20 years. In recent decades, protective and smart textiles have played important roles in the social economy and attracted widespread popularity thanks to their wide spectrum of applications with properties, such as antimicrobial, water-repellent, UV, chemical, and thermal protection. Towards the sustainable manufacturing of smart textiles, biodegradable, recycled, and bio-based plastics are used as alternative raw materials for fabric and yarn production using a wide variety of techniques. While conventional techniques present several drawbacks, nanofibers produced through electrospinning have superior structural properties. Electrospinning is an innovative method for fiber production based on the use of electrostatic force to create charged threads of polymer solutions. Electrospinning shows great potential since it provides control of the size, porosity, and mechanical resistance of the fibers. This review summarizes the advances in the rapidly evolving field of the production of nanofibers for application in smart and protective textiles using electrospinning and environmentally friendly polymers as raw materials, and provides research directions for optimized smart fibers in the future.
Collapse
Affiliation(s)
- Marina Stramarkou
- Laboratory of Process Analysis and Design, School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechneiou St. Zografou Campus, 15780 Athens, Greece; (I.T.); (E.C.); (M.K.)
| | | | | | | |
Collapse
|
2
|
Lee SJ, Jang H, Lee DN. Inorganic Nanoflowers—Synthetic Strategies and Physicochemical Properties for Biomedical Applications: A Review. Pharmaceutics 2022; 14:pharmaceutics14091887. [PMID: 36145635 PMCID: PMC9505446 DOI: 10.3390/pharmaceutics14091887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/29/2022] Open
Abstract
Nanoflowers, which are flower-shaped nanomaterials, have attracted significant attention from scientists due to their unique morphologies, facile synthetic methods, and physicochemical properties such as a high surface-to-volume ratio, enhanced charge transfer and carrier immobility, and an increased surface reaction efficiency. Nanoflowers can be synthesized using inorganic or organic materials, or a combination of both (called a hybrid), and are mainly used for biomedical applications. Thus far, researchers have focused on hybrid nanoflowers and only a few studies on inorganic nanoflowers have been reported. For the first time in the literature, we have consolidated all the reports on the biomedical applications of inorganic nanoflowers in this review. Herein, we review some important inorganic nanoflowers, which have applications in antibacterial treatment, wound healing, combinatorial cancer therapy, drug delivery, and biosensors to detect diseased conditions such as diabetes, amyloidosis, and hydrogen peroxide poisoning. In addition, we discuss the recent advances in their biomedical applications and preparation methods. Finally, we provide a perspective on the current trends and potential future directions in nanoflower research. The development of inorganic nanoflowers for biomedical applications has been limited to date. Therefore, a diverse range of nanoflowers comprising inorganic elements and materials with composite structures must be synthesized using ecofriendly synthetic strategies.
Collapse
Affiliation(s)
- Su Jung Lee
- Ingenium College of Liberal Arts (Chemistry), Kwangwoon University, Seoul 01897, Korea
| | - Hongje Jang
- Department of Chemistry, Kwangwoon University, Seoul 01897, Korea
- Correspondence: (H.J.); (D.N.L.)
| | - Do Nam Lee
- Ingenium College of Liberal Arts (Chemistry), Kwangwoon University, Seoul 01897, Korea
- Correspondence: (H.J.); (D.N.L.)
| |
Collapse
|
3
|
Xu C, Hong Y. Rational design of biodegradable thermoplastic polyurethanes for tissue repair. Bioact Mater 2022; 15:250-271. [PMID: 35386346 PMCID: PMC8940769 DOI: 10.1016/j.bioactmat.2021.11.029] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 11/09/2021] [Accepted: 11/24/2021] [Indexed: 12/25/2022] Open
Abstract
As a type of elastomeric polymers, non-degradable polyurethanes (PUs) have a long history of being used in clinics, whereas biodegradable PUs have been developed in recent decades, primarily for tissue repair and regeneration. Biodegradable thermoplastic (linear) PUs are soft and elastic polymeric biomaterials with high mechanical strength, which mimics the mechanical properties of soft and elastic tissues. Therefore, biodegradable thermoplastic polyurethanes are promising scaffolding materials for soft and elastic tissue repair and regeneration. Generally, PUs are synthesized by linking three types of changeable blocks: diisocyanates, diols, and chain extenders. Alternating the combination of these three blocks can finely tailor the physio-chemical properties and generate new functional PUs. These PUs have excellent processing flexibilities and can be fabricated into three-dimensional (3D) constructs using conventional and/or advanced technologies, which is a great advantage compared with cross-linked thermoset elastomers. Additionally, they can be combined with biomolecules to incorporate desired bioactivities to broaden their biomedical applications. In this review, we comprehensively summarized the synthesis, structures, and properties of biodegradable thermoplastic PUs, and introduced their multiple applications in tissue repair and regeneration. A whole picture of their design and applications along with discussions and perspectives of future directions would provide theoretical and technical supports to inspire new PU development and novel applications.
Collapse
Affiliation(s)
- Cancan Xu
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Yi Hong
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, 76019, USA
| |
Collapse
|
4
|
Aras C, Tümay Özer E, Göktalay G, Saat G, Karaca E. Evaluation of Nigella sativa oil loaded electrospun polyurethane nanofibrous mat as wound dressing. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 32:1718-1735. [PMID: 34053403 DOI: 10.1080/09205063.2021.1937463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Electrospun nanofibers have a natural wound healing effect due to their similarity to the extracellular matrix (ECM). Nigella sativa oil, which has therapeutic properties, is used for a wide variety of applications in traditional medicine. The aim of this study was to investigate the release characteristic and wound healing performance of Nigella sativa oil (NSO) loaded polyurethane (PU) electrospun nanofibrous mats in wound dressing applications. In addition, the antibacterial activity and cytotoxicity of the electrospun mats were studied. Analyses using a scanning electron microscope (SEM) showed that PU/NSO nanofibrous mat with an average fiber diameter of 416 ± 66 nm were successfully fabricated. NSO was released at a maximum ratio of 30% from the electrospun mat, and the Korsmeyer-Peppas model was identified as best for determining the release mechanism. Significant antibacterial activity was observed against Staphylococcus aureus (90.26%) and Escherichia coli (95.75%). The developed PU/NSO nanofibrous mat increased the cell viability more than 100% in human umbilical vein endothelial cell line (HUVEC) cell line. The NSO loaded PU nanofibrous mat significantly promoted the wound healing process on a rat wound model, and its wound closure reached approximately 85% compared to the control groups on the 9th day (p < 0.01). The results indicated PU/NSO nanofibrous mat is a suitable candidate for a wound dressing.
Collapse
Affiliation(s)
- Cansu Aras
- Department Textile of Engineering, Faculty of Engineering, Bursa Uludag University, Gorukle, Bursa, Turkey
| | - Elif Tümay Özer
- Department of Chemistry, Faculty of Arts and Science, Bursa Uludag University, Gorukle, Bursa, Turkey
| | - Gökhan Göktalay
- Department of Pharmacology, Faculty of Medicine, Bursa Uludag University, Gorukle, Bursa, Turkey
| | - Gülbahar Saat
- Inovenso Technology Limited, IOSB, Basaksehir, Istanbul, Turkey
| | - Esra Karaca
- Department Textile of Engineering, Faculty of Engineering, Bursa Uludag University, Gorukle, Bursa, Turkey
| |
Collapse
|
5
|
Yang M, Zhou X, Ding X, Zhu Y, Jiang D, Ding L, Chu G, Cheng J, Lv G. Clinical Impact of eCASH Combined with Nano-Silver Dressings for the Treatment of II Burn Wounds. J BIOMATER TISS ENG 2021. [DOI: 10.1166/jbt.2021.2413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
92 cases of second degree burn wounds treated in our hospital from January 2019 to December 2019 were selected as the research objects, and the clinical effect of eCASH concept treatment combined with nano silver dressing on the second degree burn wounds was studied. The patients were
randomly divided into control group (n = 46) and observation group (n = 46). The control group was treated with conventional treatment combined with eCASH concept nursing, and the observation group was treated with eCASH concept combined with nano silver dressing. We found that
the effective rate of the observation group was 95.65% higher than that of the control group (76.09%); the wound healing time of the observation group was significantly lower than that of the control group; the average VAS pain score of the observation group during wound treatment was significantly
lower than that of the control group The total positive rate of bacterial detection in the observation group was 8.70%, which was lower than 28.26% in the control group; the incidence of complications in the observation group was 2.17% lower than that in the control group (17.39%); the differences
were statistically significant (all P < 0.05). These results indicate that eCASH concept combined with nano silver dressing in the treatment of second degree burn wounds has a significant effect, which can accelerate the recovery, reduce the pain, and effectively reduce the total
positive rate of bacterial detection and the incidence of complications.
Collapse
Affiliation(s)
- Minlie Yang
- Department of Burns and Plastic Surgery, Affiliated Hospital of Jiangnan University (Wuxi the Third People’s Hospital), Wuxi 214041, Jiangsu, PR China
| | - Xiaojin Zhou
- Dean’s Office, Affiliated Hospital of Jiangnan University (Wuxi the Third People’s Hospital), Wuxi 214041, Jiangsu, PR China
| | - Xian Ding
- Department of Anesthesiology, Affiliated Hospital of Jiangnan University (Wuxi the Third People’s Hospital), Wuxi 214041, Jiangsu, PR China
| | - Yugang Zhu
- Department of Burns and Plastic Surgery, Affiliated Hospital of Jiangnan University (Wuxi the Third People’s Hospital), Wuxi 214041, Jiangsu, PR China
| | - Donglin Jiang
- Dean’s Office, Affiliated Hospital of Jiangnan University (Wuxi the Third People’s Hospital), Wuxi 214041, Jiangsu, PR China
| | - Lingtao Ding
- Department of Burns and Plastic Surgery, Affiliated Hospital of Jiangnan University (Wuxi the Third People’s Hospital), Wuxi 214041, Jiangsu, PR China
| | - Guoping Chu
- Department of Burns and Plastic Surgery, Affiliated Hospital of Jiangnan University (Wuxi the Third People’s Hospital), Wuxi 214041, Jiangsu, PR China
| | - Jia Cheng
- Department of Burns and Plastic Surgery, Affiliated Hospital of Jiangnan University (Wuxi the Third People’s Hospital), Wuxi 214041, Jiangsu, PR China
| | - Guozhong Lv
- Department of Burns and Plastic Surgery, Affiliated Hospital of Jiangnan University (Wuxi the Third People’s Hospital), Wuxi 214041, Jiangsu, PR China
| |
Collapse
|
6
|
Valente KP, Brolo A, Suleman A. From Dermal Patch to Implants-Applications of Biocomposites in Living Tissues. Molecules 2020; 25:E507. [PMID: 31991641 PMCID: PMC7037691 DOI: 10.3390/molecules25030507] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 01/19/2020] [Accepted: 01/20/2020] [Indexed: 01/21/2023] Open
Abstract
Composites are composed of two or more materials, displaying enhanced performance and superior mechanical properties when compared to their individual components. The use of biocompatible materials has created a new category of biocomposites. Biocomposites can be applied to living tissues due to low toxicity, biodegradability and high biocompatibility. This review summarizes recent applications of biocomposite materials in the field of biomedical engineering, focusing on four areas-bone regeneration, orthopedic/dental implants, wound healing and tissue engineering.
Collapse
Affiliation(s)
| | - Alexandre Brolo
- Department of Chemistry, University of Victoria, Victoria, BC V8P 5C2, Canada;
| | - Afzal Suleman
- Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada;
| |
Collapse
|
7
|
Bootdee K, Nithitanakul M. Poly(d,l-lactide-co-glycolide) nanospheres within composite poly(vinyl alcohol)/aloe vera electrospun nanofiber as a novel wound dressing for controlled release of drug. INT J POLYM MATER PO 2019. [DOI: 10.1080/00914037.2019.1706512] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Kittima Bootdee
- The Petroleum and Petrochemical College, Chulalongkorn University, Pathumwan, Bangkok, Thailand
- Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University Research Building, Pathumwan, Bangkok, Thailand
| | - Manit Nithitanakul
- The Petroleum and Petrochemical College, Chulalongkorn University, Pathumwan, Bangkok, Thailand
- Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University Research Building, Pathumwan, Bangkok, Thailand
| |
Collapse
|
8
|
Jaganathan SK, Mani MP. Electrospinning synthesis and assessment of physicochemical properties and biocompatibility of cobalt nitrate fibers for wound healing applications. AN ACAD BRAS CIENC 2019; 91:e20180237. [PMID: 31365648 DOI: 10.1590/0001-3765201920180237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 09/10/2018] [Indexed: 01/14/2023] Open
Abstract
The aim of this study was to develop polyurethane (PU) wound dressing incorporated with cobalt nitrate using electrospinning technique. The morphology analysis revealed that the developed composites exhibited reduced fiber and pore diameter than the pristine PU. The electrospun membranes exhibited average porosity in the range of 67% - 71%. Energy-dispersive X-ray spectra (EDS) showed the presence of cobalt in the PU matrix. The interaction of cobalt nitrate with PU matrix was evident in Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). The contact angle results indicated the improved wettability of the prepared PU/cobalt nitrate composites (82° ± 2) than the pure PU (100° ± 1). The incorporation of cobalt nitrate into the PU matrix enhanced the surface roughness and mechanical strength as evident in the atomic force microscopy (AFM) and tensile test analysis. The blood compatibility assays revealed the anticoagulant nature of the prepared composites by displaying prolonged blood clotting time than the PU control. Further, the developed composite exhibited less toxicity nature as revealed in the hemolysis and cytotoxicity studies. It was observed that the PU wound dressing added with cobalt nitrate fibers exhibited enhanced physicochemical, better blood compatibility parameters and enhanced fibroblast proliferation rates which may serve as a potential candidate for wound dressings.
Collapse
Affiliation(s)
- Saravana Kumar Jaganathan
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam.,Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam.,IJNUTM Cardiovascular Engineering Center, School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81310, Malaysia
| | - Mohan P Mani
- School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81310, Malaysia
| |
Collapse
|
9
|
Cho H, Blatchley MR, Duh EJ, Gerecht S. Acellular and cellular approaches to improve diabetic wound healing. Adv Drug Deliv Rev 2019; 146:267-288. [PMID: 30075168 DOI: 10.1016/j.addr.2018.07.019] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 07/23/2018] [Accepted: 07/30/2018] [Indexed: 02/06/2023]
Abstract
Chronic diabetic wounds represent a huge socioeconomic burden for both affected individuals and the entire healthcare system. Although the number of available treatment options as well as our understanding of wound healing mechanisms associated with diabetes has vastly improved over the past decades, there still remains a great need for additional therapeutic options. Tissue engineering and regenerative medicine approaches provide great advantages over conventional treatment options, which are mainly aimed at wound closure rather than addressing the underlying pathophysiology of diabetic wounds. Recent advances in biomaterials and stem cell research presented in this review provide novel ways to tackle different molecular and cellular culprits responsible for chronic and nonhealing wounds by delivering therapeutic agents in direct or indirect ways. Careful integration of different approaches presented in the current article could lead to the development of new therapeutic platforms that can address multiple pathophysiologic abnormalities and facilitate wound healing in patients with diabetes.
Collapse
Affiliation(s)
- Hongkwan Cho
- Wilmer Ophthalmologic Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael R Blatchley
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA; Department of Chemical and Biomolecular Engineering, Institute for NanoBioTechnology, Johns Hopkins University Baltimore, MD, USA
| | - Elia J Duh
- Wilmer Ophthalmologic Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sharon Gerecht
- Department of Chemical and Biomolecular Engineering, Institute for NanoBioTechnology, Johns Hopkins University Baltimore, MD, USA.
| |
Collapse
|
10
|
Aavani F, Khorshidi S, Karkhaneh A. A concise review on drug-loaded electrospun nanofibres as promising wound dressings. J Med Eng Technol 2019; 43:38-47. [DOI: 10.1080/03091902.2019.1606950] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Farzaneh Aavani
- Biomedical Engineering Faculty, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Sajedeh Khorshidi
- Biomedical Engineering Faculty, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Akbar Karkhaneh
- Biomedical Engineering Faculty, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| |
Collapse
|
11
|
Govindarajan D, Lakra R, Korapatti PS, Ramasamy J, Kiran MS. Nanoscaled Biodegradable Metal-Polymeric Three-Dimensional Framework for Endothelial Cell Patterning and Sustained Angiogenesis. ACS Biomater Sci Eng 2019; 5:2519-2531. [PMID: 33405758 DOI: 10.1021/acsbiomaterials.9b00267] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The current work describes the development of a nanoscaled biodegradable metal polymeric three-dimensional framework with controlled nanotherapeutic release for endothelial cell patterning and sustained angiogenesis for biomedical applications. Biocompatible polymers gelatin and PLGA were used as polymeric nanofibrous three-dimensional framework in a core-shell manner with the gelatin core containing a biodegradable and bioactive metal nanoframework of cobalt caged with PEGylated curcumin by coaxial electrospinning. FTIR results confirmed the presence of nanobioactives in the core region of a coaxial nanofiber. Scanning electron microscopic analysis of the coaxial nanofibrous system showed a three-dimensional architecture that favored endothelial cell adhesion, patterning, migration, and proliferation. The as-synthesized nanoscaled biodegradable metal polymeric three-dimensional core-shell nanofibers exhibited potent antibacterial efficacy. Further, it improved the endothelial cell patterning promoting angiogenesis. The high therapeutic potential of cobalt nanoframework in the nanofibers enhanced the production of vascular endothelial growth factor promoting angiogenesis that resulted in the earlier restoration of wounded tissue compared with untreated control in vivo animal models. The study opens up a new horizon in exploring biodegradable biosorbable metal nanoframework for biomaterial applications. Additionally, the present study opens up a new strategy in developing biodegradable biosorbable biomaterial with enhanced vascularization efficacy to the biomaterial, which is important for acceptance of these biomaterials into the host tissue.
Collapse
Affiliation(s)
- Dharunya Govindarajan
- Biological Materials Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai, Tamil Nadu 600020, India
| | - Rachita Lakra
- Biological Materials Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai, Tamil Nadu 600020, India
| | - Purna Sai Korapatti
- Biological Materials Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai, Tamil Nadu 600020, India.,Academy of Scientific and Innovative Research, CSIR-Central Leather Research Institute, Adyar, Chennai, Tamil Nadu 600020, India
| | - Jayavel Ramasamy
- Centre for Research, Anna University, Chennai, Tamil Nadu 600025, India
| | - Manikantan Syamala Kiran
- Biological Materials Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai, Tamil Nadu 600020, India.,Academy of Scientific and Innovative Research, CSIR-Central Leather Research Institute, Adyar, Chennai, Tamil Nadu 600020, India
| |
Collapse
|
12
|
Yin C, Rozet S, Okamoto R, Kondo M, Tamada Y, Tanaka T, Hattori H, Tanaka M, Sato H, Iino S. Physical Properties and In Vitro Biocompatible Evaluation of Silicone-Modified Polyurethane Nanofibers and Films. NANOMATERIALS 2019; 9:nano9030367. [PMID: 30841524 PMCID: PMC6474023 DOI: 10.3390/nano9030367] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/20/2019] [Accepted: 02/22/2019] [Indexed: 11/23/2022]
Abstract
In this study, the physical properties and the biocompatibility of electrospun silicone-modified polyurethane (PUSX) nanofibers were discussed and compared with PUSX films. To investigate the effects of different structures on the physical properties, tensile strength, elongation at break, Young’s modulus, water retention, water contact angle (WCA) and thermal conductivity measurements were performed. To prove the in vitro biocompatibility of the materials, cell adhesion, cell proliferation, and cytotoxicity were studied by NIH3T3 mouse embryonic fibroblasts cells following by lactate dehydrogenase (LDH) analysis. As a conclusion, the mechanical properties, water retention, and WCA were proven to be able to be controlled and improved by adjusting the structure of PUSX. A higher hydrophobicity and lower thermal conductivity were found in PUSX nanofibers compared with polyurethane (PU) nanofibers and films. An in vitro biocompatibility evaluation shows that the cell proliferation can be performed on both PUSX nanofibers and films. However, within a short period, cells prefer to attach and entangle on PUSX nanofibers rather than PUSX films. PUSX nanofibers were proven to be a nontoxic alternative for PU nano-membranes or films in the biomedical field, because of the controllable physical properties and the biocompatibility.
Collapse
Affiliation(s)
- Chuan Yin
- Interdisciplinary Graduate School of Science and Technology, Shinshu University, 3-15-1, Tokida, Ueda-shi, Nagano 386-8567, Japan.
| | - Sélène Rozet
- Interdisciplinary Graduate School of Science and Technology, Shinshu University, 3-15-1, Tokida, Ueda-shi, Nagano 386-8567, Japan.
| | - Rino Okamoto
- Interdisciplinary Graduate School of Science and Technology, Shinshu University, 3-15-1, Tokida, Ueda-shi, Nagano 386-8567, Japan.
| | - Mikihisa Kondo
- Interdisciplinary Graduate School of Science and Technology, Shinshu University, 3-15-1, Tokida, Ueda-shi, Nagano 386-8567, Japan.
| | - Yasushi Tamada
- Interdisciplinary Graduate School of Science and Technology, Shinshu University, 3-15-1, Tokida, Ueda-shi, Nagano 386-8567, Japan.
| | - Toshihisa Tanaka
- Interdisciplinary Graduate School of Science and Technology, Shinshu University, 3-15-1, Tokida, Ueda-shi, Nagano 386-8567, Japan.
| | - Hatsuhiko Hattori
- Silicone-Electronics Materials Research Center, Shin-Etsu Chemical Co., 1-10, Hitomi, Matsuida-Machi, Annaka-Shi, Gunma 379-0224, Japan.
| | - Masaki Tanaka
- Silicone-Electronics Materials Research Center, Shin-Etsu Chemical Co., 1-10, Hitomi, Matsuida-Machi, Annaka-Shi, Gunma 379-0224, Japan.
| | - Hiromasa Sato
- Dainichiseika Color & Chemicals Mfg. Co., 1-4-3, Ukima, Kita-ku, Tokyo 115-8622, Japan.
| | - Shota Iino
- Dainichiseika Color & Chemicals Mfg. Co., 1-4-3, Ukima, Kita-ku, Tokyo 115-8622, Japan.
| |
Collapse
|
13
|
Julien TC, Subramanyam MD, Katakam HC, Lee S, Thomas S, Harmon JP. Ultrasoft polycarbonate polyurethane nanofibers made by electrospinning: Fabrication and characterization. POLYM ENG SCI 2019. [DOI: 10.1002/pen.25021] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Tamalia C.M. Julien
- Department of ChemistryUniversity of South Florida Tampa Florida, 33620‐5250
| | | | - Hruday Chand Katakam
- Department of Electrical EngineeringUniversity of South Florida Tampa Florida, 33620‐5250
| | - Sanboh Lee
- Department of Materials Science and EngineeringNational Tsing Hua University Hsinchu, 30013 Taiwan
| | - Sylvia Thomas
- Department of Electrical EngineeringUniversity of South Florida Tampa Florida, 33620‐5250
| | - Julie P. Harmon
- Department of ChemistryUniversity of South Florida Tampa Florida, 33620‐5250
| |
Collapse
|
14
|
Electrospun Polycaprolactone Fibrous Membranes Containing Ag, TiO₂ and Na₂Ti₆O 13 Particles for Potential Use in Bone Regeneration. MEMBRANES 2019; 9:membranes9010012. [PMID: 30634630 PMCID: PMC6359384 DOI: 10.3390/membranes9010012] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 12/19/2018] [Accepted: 01/03/2019] [Indexed: 11/17/2022]
Abstract
Biocompatible and biodegradable membrane treatments for regeneration of bone are nowadays a promising solution in the medical field. Bioresorbable polymers are extensively used in membrane elaboration, where polycaprolactone (PCL) is used as base polymer. The goal of this work was to improve electrospun membranes’ biocompatibility and antibacterial properties by adding micro- and nanoparticles such as Ag, TiO2 and Na2Ti6O13. Micro/nanofiber morphologies of the obtained membranes were characterized by X-ray diffraction, Fourier-transform infrared spectroscopy, differential scanning calorimetry, scanning electron microscopy, energy-dispersive X-ray spectroscopy and a tensile test. Also, for this study optical microscopy was used to observe DAPI-stained cells. Membranes of the different systems were electrospun to an average diameter of 1.02–1.76 μm. To evaluate the biological properties, cell viability was studied by growing NIH/3T3 cells on the microfibers. PCL/TiO2 strength was enhanced from 0.6 MPa to 6.3 MPa in comparison with PCL without particles. Antibacterial activity was observed in PCL/TiO2 and PCL/Na2Ti6O13 electrospun membranes using Staphylococcus aureus bacteria. Bioactivity of the membranes was confirmed with simulated body fluid (SBF) treatment. From this study, the ceramic particles TiO2 and Na2Ti6O13, combined with a PCL matrix with micro/nanoparticles, enhanced cell proliferation, adhesion and antibacterial properties. The electrospun composite with Na2Ti6O13 can be considered viable for tissue regenerative processes.
Collapse
|
15
|
Jaganathan SK, Mani MP. Single-stage synthesis of electrospun polyurethane scaffold impregnated with zinc nitrate nanofibers for wound healing applications. J Appl Polym Sci 2018. [DOI: 10.1002/app.46942] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Saravana Kumar Jaganathan
- Department for Management of Science and Technology Development; Ton Duc Thang University; Ho Chi Minh City Vietnam
- Faculty of Applied Sciences; Ton Duc Thang University; Ho Chi Minh City Vietnam
- IJN-UTM Cardiovascular Engineering Centre, Department of Clinical Sciences, Faculty of Biosciences and Medical Engineering; Universiti Teknologi Malaysia; Skuda 81300 Johor Malaysia
| | - Mohan Prasath Mani
- Faculty of Biosciences and Medical Engineering; Universiti Teknologi Malaysia; Skuda 81300 Johor Malaysia
| |
Collapse
|
16
|
Jaganathan SK, Mani MP. Electrospun polyurethane nanofibrous composite impregnated with metallic copper for wound-healing application. 3 Biotech 2018; 8:327. [PMID: 30073112 DOI: 10.1007/s13205-018-1356-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 07/14/2018] [Indexed: 01/19/2023] Open
Abstract
In this study, a wound dressing based on polyurethane (PU) blended with copper sulphate nanofibers was developed using an electrospinning technique. The prepared PU and PU nanocomposites showed smooth fibers without any bead defects. The prepared nanocomposites showed smaller fiber (663 ± 156.30 nm) and pore (888 ± 70.93 nm) diameter compared to the pristine PU (fiber diameter 1159 ± 147.48 nm and pore diameter 1087 ± 62.51 nm). The interaction of PU with copper sulphate was evident in the infrared spectrum through hydrogen-bond formation. Thermal analysis displayed enhanced weight residue at higher temperature suggesting interaction of PU with copper sulphate. The contact angle measurements revealed the hydrophilic nature of the prepared nanocomposites (71° ± 2.309°) compared with pure PU (100° ± 0.5774°). The addition of copper sulphate into the PU matrix increased the surface roughness, as revealed in the atomic force microscopy (AFM) analysis. Mechanical testing demonstrated the enhanced tensile strength behavior of the fabricated nanocomposites (18.58 MPa) compared with the pristine PU (7.12 MPa). The coagulation assays indicated the enhanced blood compatibility of the developed nanocomposites [activated partial thromboplastin time (APTT)-179 ± 3.606 s and partial thromboplastin time (PT)-105 ± 2.646 s] by showing a prolonged blood clotting time compared with the pristine PU (APTT-147.7 ± 3.512 s and PT-84.67 ± 2.517 s). Furthermore, the hemolysis and cytotoxicity studies suggested a less toxicity nature of prepared nanocomposites by displaying low hemolytic index and enhanced cell viability rates compared with the PU membrane. It was observed that the fabricated novel wound dressing possesses better physicochemical and enhanced blood compatibility properties, and may be utilized for wound-healing applications.
Collapse
|
17
|
Kurtz IS, Schiffman JD. Current and Emerging Approaches to Engineer Antibacterial and Antifouling Electrospun Nanofibers. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E1059. [PMID: 29932127 PMCID: PMC6073658 DOI: 10.3390/ma11071059] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 06/18/2018] [Accepted: 06/19/2018] [Indexed: 11/16/2022]
Abstract
From ship hulls to bandages, biological fouling is a ubiquitous problem that impacts a wide range of industries and requires complex engineered solutions. Eliciting materials to have antibacterial or antifouling properties describes two main approaches to delay biofouling by killing or repelling bacteria, respectively. In this review article, we discuss how electrospun nanofiber mats are blank canvases that can be tailored to have controlled interactions with biologics, which would improve the design of intelligent conformal coatings or freestanding meshes that deliver targeted antimicrobials or cause bacteria to slip off surfaces. Firstly, we will briefly discuss the established and emerging technologies for addressing biofouling through antibacterial and antifouling surface engineering, and then highlight the recent advances in incorporating these strategies into electrospun nanofibers. These strategies highlight the potential for engineering electrospun nanofibers to solicit specific microbial responses for human health and environmental applications.
Collapse
Affiliation(s)
- Irene S Kurtz
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA 01003-9303, USA.
| | - Jessica D Schiffman
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA 01003-9303, USA.
| |
Collapse
|
18
|
Liu X, Nielsen LH, Kłodzińska SN, Nielsen HM, Qu H, Christensen LP, Rantanen J, Yang M. Ciprofloxacin-loaded sodium alginate/poly (lactic-co-glycolic acid) electrospun fibrous mats for wound healing. Eur J Pharm Biopharm 2018; 123:42-49. [DOI: 10.1016/j.ejpb.2017.11.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 10/30/2017] [Accepted: 11/06/2017] [Indexed: 02/02/2023]
|
19
|
Kamble P, Sadarani B, Majumdar A, Bhullar S. Nanofiber based drug delivery systems for skin: A promising therapeutic approach. J Drug Deliv Sci Technol 2017. [DOI: 10.1016/j.jddst.2017.07.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
20
|
Zhang Z, Wu Y, Wang Z, Zhang X, Zhao Y, Sun L. Electrospinning of Ag Nanowires/polyvinyl alcohol hybrid nanofibers for their antibacterial properties. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 78:706-714. [DOI: 10.1016/j.msec.2017.04.138] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 04/07/2017] [Indexed: 10/19/2022]
|
21
|
Bajpai SK, Ahuja S, Daheriya P, Bajpai M. A green approach to prepare Ag NPs loaded IC/PVA polymeric film for antimicrobial applications. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2017. [DOI: 10.1080/10601325.2017.1337470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- S. K. Bajpai
- Polymer Research Laboratory, Department of Chemistry, Govt. Model Science College, Jabalpur (M.P), India
| | - S. Ahuja
- Polymer Research Laboratory, Department of Chemistry, Govt. Model Science College, Jabalpur (M.P), India
| | - P. Daheriya
- Polymer Research Laboratory, Department of Chemistry, Govt. Model Science College, Jabalpur (M.P), India
| | - M. Bajpai
- Polymer Research Laboratory, Department of Chemistry, Govt. Model Science College, Jabalpur (M.P), India
| |
Collapse
|
22
|
Functional electrospun fibers for the treatment of human skin wounds. Eur J Pharm Biopharm 2017; 119:283-299. [PMID: 28690200 DOI: 10.1016/j.ejpb.2017.07.001] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 07/03/2017] [Accepted: 07/04/2017] [Indexed: 12/11/2022]
Abstract
Wounds are trauma induced defects of the human skin involving a multitude of endogenous biochemical events and cellular reactions of the immune system. The healing process is extremely complex and affected by the patient's physiological conditions, potential implications like infectious pathogens and inflammation as well as external factors. Due to increasing incidence of chronic wounds and proceeding resistance of infection pathogens, there is a strong need for effective therapeutic wound care. In this context, electrospun fibers with diameters in the nano- to micrometer range gain increasing interest. While resembling the structure of the native human extracellular matrix, such fiber mats provide physical and mechanical protection (including protection against bacterial invasion). At the same time, the fibers allow for gas exchange and prevent occlusion of the wound bed, thus facilitating wound healing. In addition, drugs can be incorporated within such fiber mats and their release can be adjusted by the material and dimensions of the individual fibers. The review gives a comprehensive overview about the current state of electrospun fibers for therapeutic application on skin wounds. Different materials as well as fabrication techniques are introduced including approaches for incorporation of drugs into or drug attachment onto the fiber surface. Against the background of wound pathophysiology and established therapy approaches, the therapeutic potential of electrospun fiber systems is discussed. A specific focus is set on interactions of fibers with skin cells/tissues as well as wound pathogens and strategies to modify and control them as key aspects for developing effective wound therapeutics. Further, advantages and limitations of controlled drug delivery from fiber mats to skin wounds are discussed and a future perspective is provided.
Collapse
|
23
|
Song EH, Jeong SH, Park JU, Kim S, Kim HE, Song J. Polyurethane-silica hybrid foams from a one-step foaming reaction, coupled with a sol-gel process, for enhanced wound healing. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017. [PMID: 28629091 DOI: 10.1016/j.msec.2017.05.041] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Polyurethane (PU)-based dressing foams have been widely used due to their excellent water absorption capability, optimal mechanical properties, and unequaled economic advantage. However, the low bioactivity and poor healing capability of PU limit the applications of PU dressings in complex wound healing cases. To resolve this problem, this study was carried out the hybridization of bioactive silica nanoparticles with PU through a one-step foaming reaction that is coupled with the sol-gel process. The hybridization with silica did not affect the intrinsically porous microstructure of PU foams with silica contents of up to 10wt% and where 5-60nm silica nanoparticles were well dispersed in the PU matrix, despite slight agglomerations. The incorporated silica enhanced the mechanical performance of PU by proffering better flexibility and durability as well as maintaining good water absorption capabilities and the WVTR characteristics of pure PU foam. The silica of PU-10wt% Si foams was gradually dissolved and released under physiological conditions during a 14-day immersion period. The in vitro cell attachment and proliferation tests showed significant improvements in terms of the biocompatibility of PU-Si hybrid foams and demonstrated the effects of silica on cell growth. More significantly, the superior healing capability of PU-Si as a wound dressing in comparison to PU-treated wounds was verified through in vivo animal tests. Full-thickness wounds treated with PU-Si foams exhibited faster wound closure rates as well as accelerated collagen and elastin fiber regeneration in newly formed dermis, which was ultimately completely covered by a new epithelial layer. It is clear that PU-Si hybrid foams have considerable potential as a wound dressing material geared for accelerated, superior wound healing.
Collapse
Affiliation(s)
- Eun-Ho Song
- Department of Materials Science and Engineering, Seoul National University, Seoul 151-742, Republic of Korea
| | - Seol-Ha Jeong
- Department of Materials Science and Engineering, Seoul National University, Seoul 151-742, Republic of Korea
| | - Ji-Ung Park
- Department of Plastic and Reconstructive Surgery, Seoul National University Boramae Hospital, 5 Gil 20, Boramae-ro, Dongjak-Gu, Seoul 156-707, Republic of Korea
| | - Sukwha Kim
- Department of Plastic and Reconstructive Surgery, Institute of Human-Environment Interface Biology, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-Gu, Seoul 110-744, Republic of Korea
| | - Hyoun-Ee Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul 151-742, Republic of Korea; Advanced Institutes of Convergence Technology, Seoul National University, Gwanggyo, Yeongtong-gu, Suwon-si, Gyeonggi-do 443-270, Republic of Korea.
| | - Juha Song
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, 637457, Singapore.
| |
Collapse
|
24
|
Felgueiras HP, Amorim MTP. Functionalization of electrospun polymeric wound dressings with antimicrobial peptides. Colloids Surf B Biointerfaces 2017; 156:133-148. [PMID: 28527357 DOI: 10.1016/j.colsurfb.2017.05.001] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 04/28/2017] [Accepted: 05/01/2017] [Indexed: 12/31/2022]
Abstract
Wound dressings have evolved considerably since ancient times. Modern dressings are now important systems that combine the physical and biochemical properties of natural and synthetic polymers with active compounds that are beneficial to wound healing. Antimicrobial peptides (AMPs) are the most recent addition to these systems. These aim to control the microbial proliferation and colonization of pathogens and to modulate the host's immune response. In the last decade, electrospun wound dressings have been extensively studied and the electrospinning technique recognized as an efficient approach for the production of nanoscale fibrous mats. The control of the electrospinning processing parameters, the selection of the polymer and AMPs, and the definition of the most appropriate AMPs' functionalization method contribute to the successful treatment of acute and chronic wounds. Although the use of electrospinning in wound dressings' production has been previously reviewed, the increased development of AMPs and the establishment of functionalization methods for wound dressings over recent years has increased the need for such research. In the present review, we approach all these subjects and reveal the promising therapeutic potential of wound dressings functionalized with AMPs.
Collapse
Affiliation(s)
- Helena P Felgueiras
- 2C2T, Centre for Science and Textile Technology, Department of Textile Engineering, University of Minho, Campus of Azurém, 4800-058 Guimarães, Portugal.
| | - M Teresa P Amorim
- 2C2T, Centre for Science and Textile Technology, Department of Textile Engineering, University of Minho, Campus of Azurém, 4800-058 Guimarães, Portugal
| |
Collapse
|
25
|
Hassiba AJ, El Zowalaty ME, Nasrallah GK, Webster TJ, Luyt AS, Abdullah AM, Elzatahry AA. Review of recent research on biomedical applications of electrospun polymer nanofibers for improved wound healing. Nanomedicine (Lond) 2016; 11:715-37. [DOI: 10.2217/nnm.15.211] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Wound dressings play an important role in a patient's recovery from health problems, as unattended wounds could lead to serious complications such as infections or, ultimately, even death. Therefore, wound dressings since ancient times have been continuously developed, starting from simple dressings from natural materials for covering wounds to modern dressings with functionalized materials to aid in the wound healing process and enhance tissue repair. However, understanding the nature of a wound and the subsequent healing process is vital information upon which dressings can be tailored to ensure a patient's recovery. To date, much progress has been made through the use of nanomedicine in wound healing due to the ability of such materials to mimic the natural dimensions of tissue. This review provides an overview of recent studies on the physiology of wound healing and various wound dressing materials made of nanofibers fabricated using the electrospinning technique.
Collapse
Affiliation(s)
- Alaa J Hassiba
- Materials Science & Technology Program, College of Arts & Sciences, Qatar University, Doha 2713, Qatar
| | | | - Gheyath K Nasrallah
- Biomedical Research Center, Qatar University, Doha 2713, Qatar
- Department of Health Sciences, College of Arts & Sciences, Qatar University, Doha 2713, Qatar
| | - Thomas J Webster
- Department of Chemical Engineering & Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
- Center of Excellence for Advanced Material Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Adriaan S Luyt
- Center for Advanced Materials, Qatar University, Doha 2713, Qatar
| | | | - Ahmed A Elzatahry
- Materials Science & Technology Program, College of Arts & Sciences, Qatar University, Doha 2713, Qatar
| |
Collapse
|
26
|
Frost SJ, Mawad D, Hook J, Lauto A. Micro- and Nanostructured Biomaterials for Sutureless Tissue Repair. Adv Healthc Mater 2016; 5:401-14. [PMID: 26725593 DOI: 10.1002/adhm.201500589] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 09/23/2015] [Indexed: 01/01/2023]
Abstract
Sutureless procedures for wound repair and closure have recently integrated nanostructured devices to improve their effectiveness and clinical outcome. This review highlights the major advances in gecko-inspired bioadhesives that relies mostly on van der Waals bonding forces. These are challenged by the moist environment of surgical settings that weaken adherence to tissue. The incorporation of nanoparticles in biomatrices and their role in tissue repair and drug delivery is also reviewed with an emphasis on procedures involving adhesives that are laser-activated. Nanostructured adhesive devices have the advantage of being minimally invasive to tissue, can seal wounds, and deliver drugs in situ. All these tasks are very difficult to accomplish by sutures or staples that are invasive to host organs and often cause scarring.
Collapse
Affiliation(s)
- Samuel J. Frost
- School of Science and Health; University of Western Sydney; Penrith NSW 2751 Australia
| | - D. Mawad
- Department of Materials; Imperial College London; SW7 2AZ UK
- School of Materials Science and Engineering; University of New South Wales; Sydney 2052 Australia
| | - J. Hook
- School of Chemistry; University of New South Wales; Sydney 2052 Australia
| | - Antonio Lauto
- School of Science and Health; University of Western Sydney; Penrith NSW 2751 Australia
- The Biomedical Engineering and Neuroscience (BENS) Research Group; The MARCS Institute; Penrith NSW 2751 Australia
| |
Collapse
|
27
|
Dolina J, Dvořák L, Lederer T, Vacková T, Mikmeková Š, Šlouf M, Černík M. Characterisation of morphological, antimicrobial and leaching properties of in situ prepared polyurethane nanofibres doped with silver behenate. RSC Adv 2016. [DOI: 10.1039/c6ra03614g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
PU nanofibersin situdoped with silver nanoparticles were prepared using free-surface electrospinning and no post-treatment. Nanofibres with silver behenate exhibited homogenous morphology, strong antimicrobial properties and low silver leaching.
Collapse
Affiliation(s)
- Jan Dolina
- Centre for Nanomaterials
- Advanced Technologies and Innovation
- Technical University of Liberec
- Liberec
- Czech Republic
| | - Lukáš Dvořák
- Centre for Nanomaterials
- Advanced Technologies and Innovation
- Technical University of Liberec
- Liberec
- Czech Republic
| | - Tomáš Lederer
- Centre for Nanomaterials
- Advanced Technologies and Innovation
- Technical University of Liberec
- Liberec
- Czech Republic
| | - Taťana Vacková
- Institute of Macromolecular Chemistry
- Academy of Sciences of the Czech Republic
- Prague 6
- Czech Republic
| | - Šárka Mikmeková
- Institute of Scientific Instruments of the Academy of Sciences of the Czech Republic
- Brno
- Czech Republic
| | - Miroslav Šlouf
- Institute of Macromolecular Chemistry
- Academy of Sciences of the Czech Republic
- Prague 6
- Czech Republic
| | - Miroslav Černík
- Centre for Nanomaterials
- Advanced Technologies and Innovation
- Technical University of Liberec
- Liberec
- Czech Republic
| |
Collapse
|
28
|
Wang Y, Li P, Xiang P, Lu J, Yuan J, Shen J. Electrospun polyurethane/keratin/AgNP biocomposite mats for biocompatible and antibacterial wound dressings. J Mater Chem B 2016; 4:635-648. [DOI: 10.1039/c5tb02358k] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Keratin based biomaterials have emerged as potential candidates for various biomedical and biotechnological applications due to their intrinsic biocompatibility, biodegradability, mechanical durability, and natural abundance.
Collapse
Affiliation(s)
- Yanfang Wang
- Jiangsu Key Laboratory of Biofunctional Materials
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials
- National and Local Joint Engineering Research Center of Biomedical Functional Materials
- College of Chemistry and Materials Science
- Nanjing Normal University
| | - Pengfei Li
- Jiangsu Key Laboratory of Biofunctional Materials
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials
- National and Local Joint Engineering Research Center of Biomedical Functional Materials
- College of Chemistry and Materials Science
- Nanjing Normal University
| | - Ping Xiang
- State Key Laboratory of Pollution Control and Resource Reuse
- School of the Environment
- Nanjing University
- Nanjing 210023
- P. R. China
| | - Jueting Lu
- Jiangsu Key Laboratory of Biofunctional Materials
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials
- National and Local Joint Engineering Research Center of Biomedical Functional Materials
- College of Chemistry and Materials Science
- Nanjing Normal University
| | - Jiang Yuan
- Jiangsu Key Laboratory of Biofunctional Materials
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials
- National and Local Joint Engineering Research Center of Biomedical Functional Materials
- College of Chemistry and Materials Science
- Nanjing Normal University
| | - Jian Shen
- Jiangsu Key Laboratory of Biofunctional Materials
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials
- National and Local Joint Engineering Research Center of Biomedical Functional Materials
- College of Chemistry and Materials Science
- Nanjing Normal University
| |
Collapse
|
29
|
Dashdorj U, Reyes MK, Unnithan AR, Tiwari AP, Tumurbaatar B, Park CH, Kim CS. Fabrication and characterization of electrospun zein/Ag nanocomposite mats for wound dressing applications. Int J Biol Macromol 2015; 80:1-7. [PMID: 26093320 DOI: 10.1016/j.ijbiomac.2015.06.026] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 05/14/2015] [Accepted: 06/12/2015] [Indexed: 12/01/2022]
Abstract
Wound dressing is a very important factor in the process of wound healing as proper wound care can accelerate the recovery of the wound. In this study, zein nanofibrous mats with fiber diameters around 350-500 nm were prepared by electrospinning and silver (Ag) nanoparticles around 20 nm were concurrently synthesized in situ into the mats. The electrospun nanofibers were characterized by Field Emission-Scanning Electron Microscopy (FE-SEM), Transmission Electron Microscopy (TEM), Fourier Transform Infrared Spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) analysis. Cell viability and activity of fibroblasts cells in zein/Ag mats were also evaluated and results demonstrated good cytocompatibility and attachment of cells on the composite nanofibers. Also, the bactericidal activity of the fabricated mats against gram-positive Staphylococcus aureus (S. aureus) and gram-negative Escherichia coli (E. coli) was investigated via zone of inhibition test and results showed high anti-bacterial performance.
Collapse
Affiliation(s)
- Uyanga Dashdorj
- Department of Bionanosystem Engineering, Graduate School, Chonbuk National University, Jeonju, Jeonbuk 561-756, Republic of Korea
| | - Mark Kenneth Reyes
- Department of Bionanosystem Engineering, Graduate School, Chonbuk National University, Jeonju, Jeonbuk 561-756, Republic of Korea
| | - Afeesh Rajan Unnithan
- Department of Bionanosystem Engineering, Graduate School, Chonbuk National University, Jeonju, Jeonbuk 561-756, Republic of Korea
| | - Arjun Prasad Tiwari
- Department of Bionanosystem Engineering, Graduate School, Chonbuk National University, Jeonju, Jeonbuk 561-756, Republic of Korea
| | - Batgerel Tumurbaatar
- Department of Bionanosystem Engineering, Graduate School, Chonbuk National University, Jeonju, Jeonbuk 561-756, Republic of Korea; Power Engineering School, Mongolian University of Science and Technology, Ulaanbaatar, Mongolia
| | - Chan Hee Park
- Department of Bionanosystem Engineering, Graduate School, Chonbuk National University, Jeonju, Jeonbuk 561-756, Republic of Korea; Division of Mechanical Design Engineering, Chonbuk National University, Jeonju, Jeonbuk 561-756, Republic of Korea.
| | - Cheol Sang Kim
- Department of Bionanosystem Engineering, Graduate School, Chonbuk National University, Jeonju, Jeonbuk 561-756, Republic of Korea; Division of Mechanical Design Engineering, Chonbuk National University, Jeonju, Jeonbuk 561-756, Republic of Korea.
| |
Collapse
|
30
|
Norouzi M, Boroujeni SM, Omidvarkordshouli N, Soleimani M. Advances in skin regeneration: application of electrospun scaffolds. Adv Healthc Mater 2015; 4:1114-33. [PMID: 25721694 DOI: 10.1002/adhm.201500001] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Indexed: 12/28/2022]
Abstract
The paucity of cellular and molecular signals essential for normal wound healing makes severe dermatological ulcers stubborn to heal. The novel strategies of skin regenerative treatments are focused on the development of biologically responsive scaffolds accompanied by cells and multiple biomolecules resembling structural and biochemical cues of the natural extracellular matrix (ECM). Electrospun nanofibrous scaffolds provide similar architecture to the ECM leading to enhancement of cell adhesion, proliferation, migration and neo tissue formation. This Review surveys the application of biocompatible natural, synthetic and composite polymers to fabricate electrospun scaffolds as skin substitutes and wound dressings. Furthermore, the application of biomolecules and therapeutic agents in the nanofibrous scaffolds viz growth factors, genes, antibiotics, silver nanoparticles, and natural medicines with the aim of ameliorating cellular behavior, wound healing, and skin regeneration are discussed.
Collapse
Affiliation(s)
- Mohammad Norouzi
- Department of Nanotechnology and Tissue Engineering; Stem Cell Technology Research Center; Tehran Iran
| | | | | | - Masoud Soleimani
- Department of Hematology; Faculty of Medical Sciences; Tarbiat Modares University; Tehran Iran
| |
Collapse
|
31
|
|
32
|
An in vitro method for the determination of microbial barrier property (MBP) of porous polymeric membranes for skin substitute and wound dressing applications. Tissue Eng Regen Med 2014. [DOI: 10.1007/s13770-014-0032-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
33
|
Preparation and characterization of new biologically active polyurethane foams. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 45:127-35. [DOI: 10.1016/j.msec.2014.08.068] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 08/28/2014] [Accepted: 08/30/2014] [Indexed: 01/25/2023]
|
34
|
Annabi N, Tamayol A, Shin SR, Ghaemmaghami AM, Peppas NA, Khademhosseini A. Surgical Materials: Current Challenges and Nano-enabled Solutions. NANO TODAY 2014; 9:574-589. [PMID: 25530795 PMCID: PMC4266934 DOI: 10.1016/j.nantod.2014.09.006] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Surgical adhesive biomaterials have emerged as substitutes to sutures and staples in many clinical applications. Nano-enabled materials containing nanoparticles or having a distinct nanotopography have been utilized for generation of a new class of surgical materials with enhanced functionality. In this review, the state of the art in the development of conventional surgical adhesive biomaterials is critically reviewed and their shortcomings are outlined. Recent advancements in generation of nano-enabled surgical materials with their potential future applications are discussed. This review will open new avenues for the innovative development of the next generation of tissue adhesives, hemostats, and sealants with enhanced functionality for various surgical applications.
Collapse
Affiliation(s)
- Nasim Annabi
- Center for Biomaterials Innovation, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA ; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA ; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Ali Tamayol
- Center for Biomaterials Innovation, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA ; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Su Ryon Shin
- Center for Biomaterials Innovation, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA ; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA ; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Amir M Ghaemmaghami
- Division of Immunology, School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, United Kingdom
| | - Nicholas A Peppas
- Department of Biomedical Engineering, Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Ali Khademhosseini
- Center for Biomaterials Innovation, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA ; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA ; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA ; Department of Biomedical Engineering, Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA ; Department of Maxillofacial Biomedical Engineering and Institute of Oral Biology, School of Dentistry, Kyung Hee University, Seoul 130-701, Republic of Korea ; Department of Physics, King Abdulaziz University, Jeddah 21569, Saudi Arabia
| |
Collapse
|
35
|
Das B, Chattopadhyay P, Upadhyay A, Gupta K, Mandal M, Karak N. Biophysico-chemical interfacial attributes of Fe3O4decorated MWCNT nanohybrid/bio-based hyperbranched polyurethane nanocomposite: an antibacterial wound healing material with controlled drug release potential. NEW J CHEM 2014. [DOI: 10.1039/c4nj00732h] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
36
|
Abbasi A, Nasef MM, Takeshi M, Faridi-Majidi R. Electrospinning of nylon-6,6 solutions into nanofibers: Rheology and morphology relationships. CHINESE JOURNAL OF POLYMER SCIENCE 2014. [DOI: 10.1007/s10118-014-1451-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
37
|
Kai D, Liow SS, Loh XJ. Biodegradable polymers for electrospinning: towards biomedical applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 45:659-70. [PMID: 25491875 DOI: 10.1016/j.msec.2014.04.051] [Citation(s) in RCA: 225] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 04/02/2014] [Accepted: 04/21/2014] [Indexed: 10/25/2022]
Abstract
Electrospinning has received much attention recently due to the growing interest in nano-technologies and the unique material properties. This review focuses on recent progress in applying electrospinning technique in production of biodegradable nanofibers to the emerging field of biomedical. It first introduces the basic theory and parameters of nanofibers fabrication, with focus on factors affecting the morphology and fiber diameter of biodegradable nanofibers. Next, commonly electrospun biodegradable nanofibers are discussed, and the comparison of the degradation rate of nanoscale materials with macroscale materials are highlighted. The article also assesses the recent advancement of biodegradable nanofibers in different biomedical applications, including tissue engineering, drug delivery, biosensor and immunoassay. Future perspectives of biodegradable nanofibers are discussed in the last section, which emphasizes on the innovation and development in electrospinning of hydrogels nanofibers, pore size control and scale-up productions.
Collapse
Affiliation(s)
- Dan Kai
- Institute of Materials Research and Engineering (IMRE) Agency for Science, Technology and Research (A*STAR), 3 Research Link, Singapore 117602, Singapore
| | - Sing Shy Liow
- Institute of Materials Research and Engineering (IMRE) Agency for Science, Technology and Research (A*STAR), 3 Research Link, Singapore 117602, Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE) Agency for Science, Technology and Research (A*STAR), 3 Research Link, Singapore 117602, Singapore; Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore; Singapore Eye Research Institute, 11 Third Hospital Avenue, Singapore 168751, Singapore.
| |
Collapse
|
38
|
Tolstov AL. Production and Physicochemical Characteristics of Silver-Containing Polyurethane Systems. THEOR EXP CHEM+ 2014. [DOI: 10.1007/s11237-014-9336-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
39
|
Hacker C, Karahaliloglu Z, Seide G, Denkbas EB, Gries T. Functionally modified, melt-electrospun thermoplastic polyurethane mats for wound-dressing applications. J Appl Polym Sci 2013. [DOI: 10.1002/app.40132] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Christoph Hacker
- Institut fuer Textiltechnik; Rheinisch-Westfaelische Technische Hochschule; Aachen 52074 Germany
| | - Zeynep Karahaliloglu
- Nanotechnology and Nanomedicine Division; Hacettepe University; Beytepe 06800 Ankara Turkey
| | - Gunnar Seide
- Institut fuer Textiltechnik; Rheinisch-Westfaelische Technische Hochschule; Aachen 52074 Germany
| | - Emir Baki Denkbas
- Nanotechnology and Nanomedicine Division; Hacettepe University; Beytepe 06800 Ankara Turkey
- Biochemistry Division; Department of Chemistry; Hacettepe University; Beytepe 06800 Ankara Turkey
| | - Thomas Gries
- Institut fuer Textiltechnik; Rheinisch-Westfaelische Technische Hochschule; Aachen 52074 Germany
| |
Collapse
|
40
|
Unnithan AR, Gnanasekaran G, Sathishkumar Y, Lee YS, Kim CS. Electrospun antibacterial polyurethane-cellulose acetate-zein composite mats for wound dressing. Carbohydr Polym 2013; 102:884-92. [PMID: 24507360 DOI: 10.1016/j.carbpol.2013.10.070] [Citation(s) in RCA: 190] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 10/16/2013] [Accepted: 10/21/2013] [Indexed: 11/24/2022]
Abstract
In this study, an antibacterial electrospun nanofibrous scaffolds with diameters around 400-700 nm were prepared by physically blending polyurethane (PU) with two biopolymers such as cellulose acetate (CA) and zein. Here, PU was used as the foundation polymer, was blended with CA and zein to achieve desirable properties such as better hydrophilicity, excellent cell attachment, proliferation and blood clotting ability. To prevent common clinical infections, an antimicrobial agent, streptomycin sulfate was incorporated into the electrospun fibers and its antimicrobial ability against the gram negative and gram positive bacteria were examined. The interaction between fibroblasts and the PU-CA and PU-CA-zein-drug scaffolds such as viability, proliferation, and attachment were characterized. PU-CA-zein-drug composite nanoscaffold showed enhanced blood clotting ability in comparison with pristine PU nanofibers. The presence of CA and zein in the nanofiber membrane improved its hydrophilicity, bioactivity and created a moist environment for the wound, which can accelerate wound recovery.
Collapse
Affiliation(s)
- Afeesh Rajan Unnithan
- Bionano Systems Engineering Department, Chonbuk National University, Jeonju 561-756, Republic of Korea.
| | - Gopalsamy Gnanasekaran
- Department of Molecular Medicine Clinical Vaccine R&D Center, Chonnam National University, Hwasun, South Korea
| | - Yesupatham Sathishkumar
- College of Agriculture and Life Sciences, Chonbuk National University, Jeonju 561-756, Republic of Korea
| | - Yang Soo Lee
- College of Agriculture and Life Sciences, Chonbuk National University, Jeonju 561-756, Republic of Korea
| | - Cheol Sang Kim
- Bionano Systems Engineering Department, Chonbuk National University, Jeonju 561-756, Republic of Korea.
| |
Collapse
|
41
|
Fu SZ, Meng XH, Fan J, Yang LL, Wen QL, Ye SJ, Lin S, Wang BQ, Chen LL, Wu JB, Chen Y, Fan JM, Li Z. Acceleration of dermal wound healing by using electrospun curcumin-loaded poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) fibrous mats. J Biomed Mater Res B Appl Biomater 2013; 102:533-42. [PMID: 24115465 DOI: 10.1002/jbm.b.33032] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 08/12/2013] [Accepted: 08/18/2013] [Indexed: 12/16/2022]
Abstract
This study prepared a composite scaffold composed of curcumin and poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) (PCL-PEG-PCL, PCEC) copolymer using coelectrospinning technology. Incorporation of curcumin into the polymeric matrix had an obvious effect on the morphology and dimension of PCEC/curcumin fibers. The results of in vitro anti-oxidant tests and of the cytotoxicity assay demonstrated that the curcumin-loaded PCEC fibrous mats had significant anti-oxidant efficacy and low cytotoxicity. Curcumin could be sustainably released from the fibrous scaffolds. More importantly, in vivo efficacy in enhancing wound repair was also investigated based on a full-thickness dermal defect model for Wistar rats. The results indicated that the PCEC/curcumin fibrous mats had a significant advantage in promoting wound healing. At 21 days post-operation, the dermal defect was basically recovered to its normal condition. A percentage of wound closure reached up to 93.3 ± 5.6% compared with 76.9 ± 4.9% of the untreated control (p < 0.05). Therefore, the as-prepared PCEC/curcumin composite mats are a promising candidate for use as wound dressing.
Collapse
Affiliation(s)
- Shao-Zhi Fu
- Department of Oncology, the Affiliated Hospital of Luzhou Medical College, Luzhou, 646000, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Rieger KA, Birch NP, Schiffman JD. Designing electrospun nanofiber mats to promote wound healing – a review. J Mater Chem B 2013; 1:4531-4541. [DOI: 10.1039/c3tb20795a] [Citation(s) in RCA: 345] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
43
|
Sridhar R, Sundarrajan S, Venugopal JR, Ravichandran R, Ramakrishna S. Electrospun inorganic and polymer composite nanofibers for biomedical applications. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 24:365-85. [DOI: 10.1080/09205063.2012.690711] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Radhakrishnan Sridhar
- a Faculty of Engineering, National University of Singapore, Nanoscience and Nanotechnology Initiative , Block E3, #05-12, 2 Engineering Drive 3, Singapore , 117576 , Singapore
| | - Subramanian Sundarrajan
- a Faculty of Engineering, National University of Singapore, Nanoscience and Nanotechnology Initiative , Block E3, #05-12, 2 Engineering Drive 3, Singapore , 117576 , Singapore
| | - Jayarama Reddy Venugopal
- a Faculty of Engineering, National University of Singapore, Nanoscience and Nanotechnology Initiative , Block E3, #05-12, 2 Engineering Drive 3, Singapore , 117576 , Singapore
| | - Rajeswari Ravichandran
- a Faculty of Engineering, National University of Singapore, Nanoscience and Nanotechnology Initiative , Block E3, #05-12, 2 Engineering Drive 3, Singapore , 117576 , Singapore
| | - Seeram Ramakrishna
- a Faculty of Engineering, National University of Singapore, Nanoscience and Nanotechnology Initiative , Block E3, #05-12, 2 Engineering Drive 3, Singapore , 117576 , Singapore
- b King Saud University , Riyadh , 11451 , Kingdom of Saudi Arabia
| |
Collapse
|
44
|
Wound-dressing materials with antibacterial activity from electrospun polyurethane-dextran nanofiber mats containing ciprofloxacin HCl. Carbohydr Polym 2012; 90:1786-93. [PMID: 22944448 DOI: 10.1016/j.carbpol.2012.07.071] [Citation(s) in RCA: 268] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 05/17/2012] [Accepted: 07/27/2012] [Indexed: 11/24/2022]
Abstract
Dextran is a versatile biomacromolecule for preparing electrospun nanofibrous membranes by blending with either water-soluble bioactive agents or hydrophobic biodegradable polymers for biomedical applications. In this study, an antibacterial electrospun scaffold was prepared by electrospinning of a solution composed of dextran, polyurethane (PU) and ciprofloxacin HCl (CipHCl) drug. The obtained nanofiber mats have good morphology. The mats were characterized by various analytical techniques. The interaction parameters between fibroblasts and the PU-dextran and PU-dextran-drug scaffolds such as viability, proliferation, and attachment were investigated. The results indicated that the cells interacted favorably with the scaffolds especially the drug-containing one. Moreover, the composite mat showed good bactericidal activity against both of Gram-positive and Gram-negative bacteria. Overall, our results conclude that the introduced scaffold might be an ideal biomaterial for wound dressing applications.
Collapse
|
45
|
Enhanced mechanical properties and pre-tension effects of polyurethane (PU) nanofiber filaments prepared by electrospinning and dry twisting. JOURNAL OF POLYMER RESEARCH 2012. [DOI: 10.1007/s10965-011-9774-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
46
|
Sumitha MS, Shalumon KT, Sreeja VN, Jayakumar R, Nair SV, Menon D. Biocompatible and Antibacterial Nanofibrous Poly(ϵ-caprolactone)-Nanosilver Composite Scaffolds for Tissue Engineering Applications. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2012. [DOI: 10.1080/10601325.2012.642208] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
47
|
Sahay R, Kumar PS, Sridhar R, Sundaramurthy J, Venugopal J, Mhaisalkar SG, Ramakrishna S. Electrospun composite nanofibers and their multifaceted applications. ACTA ACUST UNITED AC 2012. [DOI: 10.1039/c2jm30966a] [Citation(s) in RCA: 234] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
48
|
Shalumon KT, Anulekha KH, Nair SV, Nair SV, Chennazhi KP, Jayakumar R. Sodium alginate/poly(vinyl alcohol)/nano ZnO composite nanofibers for antibacterial wound dressings. Int J Biol Macromol 2011; 49:247-54. [PMID: 21635916 DOI: 10.1016/j.ijbiomac.2011.04.005] [Citation(s) in RCA: 296] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 04/06/2011] [Indexed: 11/25/2022]
Abstract
Sodium alginate (SA)/poly (vinyl alcohol) (PVA) fibrous mats were prepared by electrospinning technique. ZnO nanoparticles of size ∼160nm was synthesized and characterized by UV spectroscopy, dynamic light scattering (DLS), XRD and infrared spectroscopy (IR). SA/PVA electrospinning was further carried out with ZnO with different concentrations (0.5, 1, 2 and 5%) to get SA/PVA/ZnO composite nanofibers. The prepared composite nanofibers were characterized using FT-IR, XRD, TGA and SEM studies. Cytotoxicity studies performed to examine the cytocompatibility of bare and composite SA/PVA fibers indicate that those with 0.5 and 1% ZnO concentrations are less toxic where as those with higher concentrations of ZnO is toxic in nature. Cell adhesion potential of this mats were further proved by studying with L929 cells for different time intervals. Antibacterial activity of SA/PVA/ZnO mats were examined with two different bacteria strains; Staphylococcus aureus and Escherichia coli, and found that SA/PVA/ZnO mats shows antibacterial activity due to the presence of ZnO. Our results suggest that this could be an ideal biomaterial for wound dressing applications once the optimal concentration of ZnO which will give least toxicity while providing maximum antibacterial activity is identified.f.
Collapse
Affiliation(s)
- K T Shalumon
- Amrita Center for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham University, Kochi 682 041, India
| | | | | | | | | | | |
Collapse
|