1
|
Murashiki TC, Mazhandu AJ, Zinyama-Gutsire RBL, Mutingwende I, Mazengera LR, Duri K. Association between anaemia and aflatoxin B 1 and fumonisin B 1 exposure in HIV-infected and HIV-uninfected pregnant women from Harare, Zimbabwe. Mycotoxin Res 2024:10.1007/s12550-024-00571-0. [PMID: 39549138 DOI: 10.1007/s12550-024-00571-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/03/2024] [Accepted: 10/28/2024] [Indexed: 11/18/2024]
Abstract
Aflatoxin B1 (AFB1) and fumonisin B1 (FB1) are poisons that contaminate poorly stored staple foods in resource-limited settings. Antenatal AFB1 and FB1 exposure may cause anaemia. We aimed to determine the associations of urinary aflatoxin M1 (AFM1) and FB1, biomarkers of AFB1 and FB1 exposure, respectively, with erythrocyte parameters and anaemia. A retrospective cross-sectional study was conducted in 68 HIV-infected and 61 HIV-uninfected pregnant women ≥ 20 weeks gestational age in Harare, Zimbabwe. AFM1 and FB1 were measured in urine via competitive ELISA, and levels were grouped into tertiles. The erythrocyte parameters assessed were haemoglobin (Hb), mean corpuscular volume, mean corpuscular haemoglobin, mean corpuscular haemoglobin concentration, red blood cell (RBC), haematocrit (HCT), and red blood cell distribution width. Associations of urinary AFM1 and FB1 with erythrocyte parameters, and anaemia were assessed in a multiple regression controlled for potential confounders. The presence of FB1 in urine decreased Hb levels in all women (β= -0.98, 95% CI: -1.94, 0.02) and HIV-uninfected (β= -1.99, 95% CI: -3.71, -0.26). FB1 tertile 3 decreased Hb levels (β= -0.88, 95% CI: -1.74, 0.01) and HCT levels (β= -2.65, 95% CI: -5.26, 0.03) in HIV-infected. AFM1 tertile 2 decreased RBC levels in HIV-infected (β= -0.34, 95% CI: -0.71, -0.03). The presence of FB1 in urine increased anaemia risk in HIV-uninfected (OR: 10.68 95% CI: 1.02, 112.34). AFM1 tertile 2 increased macrocytic anaemia risk in HIV-infected (OR: 13.72, 95% CI: 0.92, 203.55). There is need to ensure food safety through monitoring and nutritional interventions to improve maternal-infant health outcomes.
Collapse
Affiliation(s)
- Tatenda Clive Murashiki
- Immunology Unit, Department of Laboratory Diagnostic and Investigative Sciences, Faculty of Medicine and Health Sciences, University of Zimbabwe, Harare, Zimbabwe.
| | - Arthur John Mazhandu
- Immunology Unit, Department of Laboratory Diagnostic and Investigative Sciences, Faculty of Medicine and Health Sciences, University of Zimbabwe, Harare, Zimbabwe
| | - Rutendo B L Zinyama-Gutsire
- Immunology Unit, Department of Laboratory Diagnostic and Investigative Sciences, Faculty of Medicine and Health Sciences, University of Zimbabwe, Harare, Zimbabwe
| | - Isaac Mutingwende
- Department of Pharmacy and Pharmaceutical Sciences, Faculty of Medicine and Health Sciences, University of Zimbabwe, Harare, Zimbabwe
| | - Lovemore Ronald Mazengera
- Immunology Unit, Department of Laboratory Diagnostic and Investigative Sciences, Faculty of Medicine and Health Sciences, University of Zimbabwe, Harare, Zimbabwe
| | - Kerina Duri
- Immunology Unit, Department of Laboratory Diagnostic and Investigative Sciences, Faculty of Medicine and Health Sciences, University of Zimbabwe, Harare, Zimbabwe
| |
Collapse
|
2
|
Krishnaswamy K, Manasa V, Khan MT, Serva Peddha M. Apocynin exerts neuroprotective effects in fumonisin b1-induced neurotoxicity via attenuation of oxidative stress and apoptosis in an animal model. J Food Sci 2024; 89:1280-1293. [PMID: 38193205 DOI: 10.1111/1750-3841.16869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 11/09/2023] [Accepted: 11/20/2023] [Indexed: 01/10/2024]
Abstract
The Fusarium verticillioides produces a mycotoxin, that is, fumonisin b1 (Fb1), which commonly infects corn and agricultural commodities. The Fb1 showed hepatotoxicity, neurotoxicity, and carcinogenicity in animals. Hence, the present investigation aimed to evaluate the effect of apocynin (AP) on Fb1-induced neurotoxic effects and its mechanism in the mice model and cell line. The male Balb/c mice, with the 6.75 mg/kg bwt of Fb1 were injected subcutaneously for 5 days to induce neurotoxicity. A significant elevation of serotonin (5-HT) was observed in mice treated with Fb1 in the whole brain showing biogenic amines may reflect Fb1 neurotoxicity, but the negatively regulated mechanisms were attenuated by the pretreatment of AP. In addition, AP pretreatment normalized apoptotic changes in histology and immunohistochemistry studies. In Western blotting studies, apoptotic genes were upregulated and oxidative stress genes were downregulated due to Fb1 treatment; while treating with AP, these gene expressions were rectified. Further cell cytotoxicity was investigated by MTT and lactate dehydrogenase (LDH) assays in SH-SY5Y cell line. MTT and LDH assays indicated the IC50 value to be 150 µM of Fb1, which was protected by 100 µg of AP. The electron microscopy evaluated the Fb1-induced apoptotic conditions and its cell morphology recovery by AP. These results suggest that nicotinamide adenine dinucleotide phosphate hydrogen oxidase-mediated reactive oxygen species is the primary upstream signal leading to increased Fb1-mediated neurotoxicity in mice. The use of the antioxidant AP reversed the toxin-induced oxidative stress and apoptosis by its antioxidant potency.
Collapse
Affiliation(s)
- Krupashree Krishnaswamy
- Department of Biochemistry, Council of Scientific and Industrial Research, Central Food Technological Research Institute, Mysore, India
| | - Vallamkondu Manasa
- Department of Biochemistry, Council of Scientific and Industrial Research, Central Food Technological Research Institute, Mysore, India
| | - Mohammed Touseef Khan
- Department of Biochemistry, Council of Scientific and Industrial Research, Central Food Technological Research Institute, Mysore, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Muthukumar Serva Peddha
- Department of Biochemistry, Council of Scientific and Industrial Research, Central Food Technological Research Institute, Mysore, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
3
|
Zhang X, Ye Y, Sun J, Xu Y, Huang Y, Wang JS, Tang L, Ji J, Chen BY, Sun X. Polygonatum sibiricum polysaccharide extract relieves FB1-induced neurotoxicity by reducing oxidative stress and mitochondrial damage in Caenorhabditis elegans. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
4
|
Zhang X, Ye Y, Sun J, Wang JS, Tang L, Xu Y, Ji J, Sun X. Abnormal neurotransmission of GABA and serotonin in Caenorhabditis elegans induced by Fumonisin B1. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 304:119141. [PMID: 35301029 DOI: 10.1016/j.envpol.2022.119141] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/07/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
Fumonisin B1 (FB1) is a neurodegenerative mycotoxin synthesized by Fusarium spp., but the potential neurobehavioral toxicity effects in organisms have not been characterized clearly. Caenorhabditis elegans (C. elegans) has emerged as a promising model organism for neurotoxicological studies due to characteristics such as well-functioning nervous system and rich behavioral phenotypes. To investigate whether FB1 has neurobehavioral toxicity effects on C. elegans, the motor behavior, neuronal structure, neurotransmitter content, and gene expression related with neurotransmission of C. elegans were determined after exposed to 20-200 μg/mL FB1 for 24 h and 48 h, respectively. Results showed that FB1 caused behavioral defects, including body bends, head thrashes, crawling distance, mean speed, mean amplitude, mean wavelength, foraging behavior, and chemotaxis learning ability in a dose-, and time-dependent manner. In addition, when C. elegans was exposed to FB1 at a concentration of 200 μg/mL for 24 h and above 100 μg/mL for 48 h, the GABAergic and serotonergic neurons were damaged, but no effect on dopaminergic, glutamatergic, and cholinergic neurons. The relative content of GABA and serotonin decreased significantly. Furthermore, abnormal expression of mRNA levels associated with GABA and serotonin were found in nematodes treated with FB1, such as unc-30, unc-47, unc-49, exp-1, mod-5, cat-1, and tph-1. The neurobehavioral toxicity effect of FB1 may be mediated by abnormal neurotransmission of GABA and serotonin. This study provides useful information for understanding the neurotoxicity of FB1.
Collapse
Affiliation(s)
- Xiaojuan Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, PR China
| | - Yongli Ye
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, PR China
| | - Jiadi Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, PR China
| | - Jia-Sheng Wang
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, USA
| | - Lili Tang
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, USA
| | - Yida Xu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, PR China
| | - Jian Ji
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, PR China
| | - Xiulan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, PR China.
| |
Collapse
|
5
|
Chen X, Abdallah MF, Grootaert C, Rajkovic A. Bioenergetic Status of the Intestinal and Hepatic Cells after Short Term Exposure to Fumonisin B1 and Aflatoxin B1. Int J Mol Sci 2022; 23:ijms23136945. [PMID: 35805950 PMCID: PMC9267062 DOI: 10.3390/ijms23136945] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 12/12/2022] Open
Abstract
Fumonisin B1 (FB1) and aflatoxin B1 (AFB1) are frequent contaminants of staple foods such as maize. Oral exposure to these toxins poses health hazards by disrupting cellular signaling. However, little is known regarding the multifaced mitochondrial dysfunction-linked toxicity of FB1 and AFB1. Here, we show that after exposure to FB1 and AFB1, mitochondrial respiration significantly decreased by measuring the oxygen consumption rate (OCR), mitochondrial membrane potential (MMP) and reactive oxygen species (ROS). The current work shows that the integrity of mitochondria (MMP and ROS), that is the central component of cell apoptosis, is disrupted by FB1 and AFB1 in undifferentiated Caco-2 and HepG2 cells as in vitro models for human intestine and liver, respectively. It hypothesizes that FB1 and AFB1 could disrupt the mitochondrial electron transport chain (ETC) to induce mitochondrial dysfunction and break the balance of transferring H+ between the mitochondrial inner membrane and mitochondrial matrix, however, the proton leak is not increasing and, as a result, ATP synthesis is blocked. At the sub-toxic exposure of 1.0 µg/mL for 24 h, i.e., a viability of 95% in Caco-2 and HepG2 cells, the mitochondrial respiration was, however, stimulated. This suggests that the treated cells could reserve energy for mitochondrial respiration with the exposure of FB1 and AFB1, which could be a survival advantage.
Collapse
Affiliation(s)
- Xiangrong Chen
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (X.C.); (M.F.A.); (C.G.)
| | - Mohamed F. Abdallah
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (X.C.); (M.F.A.); (C.G.)
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Assiut University, Assiut 71515, Egypt
| | - Charlotte Grootaert
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (X.C.); (M.F.A.); (C.G.)
| | - Andreja Rajkovic
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (X.C.); (M.F.A.); (C.G.)
- Correspondence: ; Tel.: +32-09-264-99-04
| |
Collapse
|
6
|
Qu L, Wang L, Ji H, Fang Y, Lei P, Zhang X, Jin L, Sun D, Dong H. Toxic Mechanism and Biological Detoxification of Fumonisins. Toxins (Basel) 2022; 14:182. [PMID: 35324679 PMCID: PMC8954241 DOI: 10.3390/toxins14030182] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/14/2022] [Accepted: 02/26/2022] [Indexed: 11/16/2022] Open
Abstract
Food safety is related to the national economy and people's livelihood. Fumonisins are widely found in animal feed, feed raw materials, and human food. This can not only cause economic losses in animal husbandry but can also have carcinogenicity or teratogenicity and can be left in animal meat, eggs, and milk which may enter the human body and pose a serious threat to human health. Although there are many strategies to prevent fumonisins from entering the food chain, the traditional physical and chemical methods of mycotoxin removal have some disadvantages, such as an unstable effect, large nutrient loss, impact on the palatability of feed, and difficulty in mass production. As a safe, efficient, and environmentally friendly detoxification technology, biological detoxification attracts more and more attention from researchers and is gradually becoming an accepted technique. This work summarizes the toxic mechanism of fumonisins and highlights the advances of fumonisins in the detoxification of biological antioxidants, antagonistic microorganisms, and degradation mechanisms. Finally, the future challenges and focus of the biological control and degradation of fumonisins are discussed.
Collapse
Affiliation(s)
- Linkai Qu
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China;
- Biomedical Collaborative Innovation Center of Zhejiang Province, Institute of Life Sciences, Wenzhou University, Wenzhou 325035, China; (L.W.); (H.J.); (Y.F.); (P.L.); (L.J.)
| | - Lei Wang
- Biomedical Collaborative Innovation Center of Zhejiang Province, Institute of Life Sciences, Wenzhou University, Wenzhou 325035, China; (L.W.); (H.J.); (Y.F.); (P.L.); (L.J.)
| | - Hao Ji
- Biomedical Collaborative Innovation Center of Zhejiang Province, Institute of Life Sciences, Wenzhou University, Wenzhou 325035, China; (L.W.); (H.J.); (Y.F.); (P.L.); (L.J.)
| | - Yimeng Fang
- Biomedical Collaborative Innovation Center of Zhejiang Province, Institute of Life Sciences, Wenzhou University, Wenzhou 325035, China; (L.W.); (H.J.); (Y.F.); (P.L.); (L.J.)
| | - Pengyu Lei
- Biomedical Collaborative Innovation Center of Zhejiang Province, Institute of Life Sciences, Wenzhou University, Wenzhou 325035, China; (L.W.); (H.J.); (Y.F.); (P.L.); (L.J.)
| | - Xingxing Zhang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China;
| | - Libo Jin
- Biomedical Collaborative Innovation Center of Zhejiang Province, Institute of Life Sciences, Wenzhou University, Wenzhou 325035, China; (L.W.); (H.J.); (Y.F.); (P.L.); (L.J.)
| | - Da Sun
- Biomedical Collaborative Innovation Center of Zhejiang Province, Institute of Life Sciences, Wenzhou University, Wenzhou 325035, China; (L.W.); (H.J.); (Y.F.); (P.L.); (L.J.)
| | - Hao Dong
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China;
- Biomedical Collaborative Innovation Center of Zhejiang Province, Institute of Life Sciences, Wenzhou University, Wenzhou 325035, China; (L.W.); (H.J.); (Y.F.); (P.L.); (L.J.)
| |
Collapse
|
7
|
Li T, Huang S, Wang J, Yin P, Liu H, Sun C. Alginate oligosaccharides protect against fumonisin B1-induced intestinal damage via promoting gut microbiota homeostasis. Food Res Int 2022; 152:110927. [PMID: 35181098 DOI: 10.1016/j.foodres.2021.110927] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 12/10/2021] [Accepted: 12/20/2021] [Indexed: 11/26/2022]
Abstract
Fumonisin B1 (FB1), one of the most common mycotoxins contaminating feed and food, has been shown to induce intestinal barrier degradation. However, its role on gut microbiota in this process is still unclear. Alginate oligosaccharides (AOS) have been reported to exert their anti-inflammatory and anti-apoptotic function partially via modulation the gut microbiota. However, little is known about the beneficial effect of AOS on gut microbiota upon FB1 exposure. Results show that FB1 degraded intestinal epithelial barrier function as evidenced by increased pathological epithelial cell shedding, reduced the number of goblet cells, and promoted intestinal cell apoptosis. Markedly, FB1 disturbed the cecal and fecal microbiota composition. FB1 increased the level of Lactobacillus and decreased the relative abundance of beneficial microbes. FB1 largely inhibited the production of short chain fatty acids (SCFAs). AOS greatly ameliorated FB1-induced intestinal damage, inflammation, and oxidative stress (eg., T-SOD and MDA). AOS alleviated gut microbial dysbiosis by promoting the growth of beneficial microbes such as Roseburia, Bifidobacterium, and Akkermansia, and increasing SCFAs production upon FB1 exposure. Moreover, the correlation analysis showed that FB1- and AOS-treated gut microbiota alteration is closely associated with the change of intestinal phenotype. We have thus provided a novel insight into the protective role of AOS on FB1-induced gut microbial dysbiosis.
Collapse
Affiliation(s)
- Tiantian Li
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Shimeng Huang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jun Wang
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Peng Yin
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Hujun Liu
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Changpo Sun
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China; Standards and Quality Center of National Food and Strategic Reserves Administration, China.
| |
Collapse
|
8
|
Research Progress on Fumonisin B1 Contamination and Toxicity: A Review. Molecules 2021; 26:molecules26175238. [PMID: 34500671 PMCID: PMC8434385 DOI: 10.3390/molecules26175238] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/24/2021] [Accepted: 08/24/2021] [Indexed: 12/19/2022] Open
Abstract
Fumonisin B1 (FB1), belonging to the member of fumonisins, is one of the most toxic mycotoxins produced mainly by Fusarium proliferatum and Fusarium verticillioide. FB1 has caused extensive contamination worldwide, mainly in corn, rice, wheat, and their products, while it also poses a health risk and is toxic to animals and human. It has been shown to cause oxidative stress, endoplasmic reticulum stress, cellular autophagy, and apoptosis. This review focuses on the current stage of FB1 contamination, its toxic effects of acute toxicity, immunotoxicity, organ toxicity, and reproductive toxicity on animals and humans. The potential toxic mechanisms of FB1 are discussed. One of the main aims of the work is to provide a reliable reference strategy for understanding the occurrence and toxicity of FB1.
Collapse
|
9
|
Nguyen VTT, König S, Eggert S, Endres K, Kins S. The role of mycotoxins in neurodegenerative diseases: current state of the art and future perspectives of research. Biol Chem 2021; 403:3-26. [PMID: 34449171 DOI: 10.1515/hsz-2021-0214] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 08/16/2021] [Indexed: 01/02/2023]
Abstract
Mycotoxins are fungal metabolites that can cause various diseases in humans and animals. The adverse health effects of mycotoxins such as liver failure, immune deficiency, and cancer are well-described. However, growing evidence suggests an additional link between these fungal metabolites and neurodegenerative diseases. Despite the wealth of these initial reports, reliable conclusions are still constrained by limited access to human patients and availability of suitable cell or animal model systems. This review summarizes knowledge on mycotoxins associated with neurodegenerative diseases and the assumed underlying pathophysiological mechanisms. The limitations of the common in vivo and in vitro experiments to identify the role of mycotoxins in neurotoxicity and thereby in neurodegenerative diseases are elucidated and possible future perspectives to further evolve this research field are presented.
Collapse
Affiliation(s)
- Vu Thu Thuy Nguyen
- Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Untere Zahlbacher Str. 8, D-55131 Mainz, Germany
| | - Svenja König
- Department of Human Biology and Human Genetics, University of Kaiserslautern, Erwin-Schrödinger-Straße 13, D-67663 Kaiserslautern, Germany
| | - Simone Eggert
- Department of Human Biology and Human Genetics, University of Kaiserslautern, Erwin-Schrödinger-Straße 13, D-67663 Kaiserslautern, Germany
| | - Kristina Endres
- Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Untere Zahlbacher Str. 8, D-55131 Mainz, Germany
| | - Stefan Kins
- Department of Human Biology and Human Genetics, University of Kaiserslautern, Erwin-Schrödinger-Straße 13, D-67663 Kaiserslautern, Germany
| |
Collapse
|
10
|
Effects of Fusarium Mycotoxin Exposure on Lipid Peroxidation and Glutathione Redox System in the Liver of Laying Hens. Antioxidants (Basel) 2021; 10:antiox10081313. [PMID: 34439561 PMCID: PMC8389190 DOI: 10.3390/antiox10081313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 11/17/2022] Open
Abstract
It has been proven by several studies that Fusarium mycotoxins induce oxidative stress in animals, consequently inducing lipid peroxidation, which the glutathione system can neutralize. A short-term (3-day) in vivo feeding trial was performed with laying hens using a double dose of the EU recommendation for mycotoxin contamination (T-2 toxin 0.5 mg/kg feed; deoxynivalenol (DON) 10 mg/kg feed; fumonisin B1 (FB1) 40 mg/kg feed). Some lipid peroxidation and glutathione redox system parameters and gene expression levels were measured in the liver. The results show that FB1 significantly decreased the reduced glutathione (GSH) content and the activity of glutathione peroxidase (GPx) compared to the control and the two other mycotoxin-treated groups on day 3. Lipid peroxidation was affected by all three mycotoxins. Significantly lower values were observed in the case of conjugated dienes for all of the three mycotoxins and malondialdehyde concentration as an effect of DON on day 3. T-2 toxin and DON upregulated the expression of the GPX4 gene. The results show that Fusarium mycotoxins had different effects at the end of the trial. The FB1 exposure caused a decrease in the glutathione redox markers, while DON decreased the formation of malondialdehyde. The results suggest that the Fusarium mycotoxins investigated individually differently activated the antioxidant defense and caused low-level oxidative stress at the dose applied.
Collapse
|
11
|
Shahba S, Mehrzad J, Malvandi AM. Neuroimmune disruptions from naturally occurring levels of mycotoxins. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:10.1007/s11356-021-14146-4. [PMID: 33932215 DOI: 10.1007/s11356-021-14146-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
Substantial pieces of evidence support the potential of exogenous toxins in disrupting neuroimmune homeostasis. It appears that mycotoxins are one of the noticeable sources of naturally occurring substances dysregulating the immune system, which involves the physiology of many organs, such as the central nervous system (CNS). The induction of inflammatory responses in microglial cells and astrocytes, the CNS resident cells with immunological characteristics, could interrupt the hemostasis upon even with low-level exposure to mycotoxins. The inevitable widespread occurrence of a low level of mycotoxins in foods and feed is likely increasing worldwide, predisposing individuals to potential neuroimmunological dysregulations. This paper reviews the current understanding of mycotoxins' neuro-immunotoxic features under low-dose exposure and the possible ways for detoxification and clearance as a perspective.
Collapse
Affiliation(s)
- Sara Shahba
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Jalil Mehrzad
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Amir Mohammad Malvandi
- Science and Technology Pole, IRCCS Multimedica, Via Gaudenzio Fantoli, 16/15, 20138, Milan, Italy.
| |
Collapse
|
12
|
Szabó A, Nagy S, Ali O, Gerencsér Z, Mézes M, Balogh KM, Bartók T, Horváth L, Mouhanna A, Kovács M. A 65-Day Fumonisin B Exposure at High Dietary Levels Has Negligible Effects on the Testicular and Spermatological Parameters of Adult Rabbit Bucks. Toxins (Basel) 2021; 13:toxins13040237. [PMID: 33806221 PMCID: PMC8066801 DOI: 10.3390/toxins13040237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 01/06/2023] Open
Abstract
A 65-day study was undertaken to test the effects of two doses (10 and 20 mg/kg) of dietary fumonisin Bs (FB) on the rabbit male reproduction system. Body and testicular weight was not affected by the intoxication, neither the fatty acid composition of the testicular total phospholipids; the testis histological analysis failed to reveal any toxic effect. The FBs increased the testicular concentration and activity of reduced glutathione and glutathione peroxidase and decreased initial phase lipid peroxidation (conjugated dienes and trienes) in a dose dependent manner. Sperm morphology and chromatin condensation were monitored on Feulgen-stained smears. No significant differences were observed between the treatment groups and between sampling time points. The live cell ratio in the sperm (as assessed with flow cytometry) was not different among groups at any of the five sampling timepoints and was also identical within groups. Similarly, the spermatozoa membrane lipid profile was also identical in all three groups after the total intoxication period. In summary, it was demonstrated that FBs in an unrealistic and unjustified high dose still do not exert any drastic harmful effect on the leporine, male reproduction system, meanwhile slightly augmenting testicular antioxidant response.
Collapse
Affiliation(s)
- András Szabó
- MTA-KE-SZIE Mycotoxins in the Food Chain Research Group, Department of Physiology and Animal Health, Institute of Physiology and Nutrition, Kaposvár Campus, Hungarian University of Agriculture and Life Sciences, Guba S. u. 40., 7400 Kaposvár, Hungary;
- Department of Physiology and Animal Health, Institute of Physiology and Nutrition, Kaposvár Campus, Hungarian University of Agriculture and Life Sciences, Guba S. u. 40., 7400 Kaposvár, Hungary; (O.A.); (A.M.)
- Correspondence:
| | - Szabolcs Nagy
- Department of Precision Livestock Farming and Animal Biotechnics, Institute of Animal Sciences, Georgikon Campus, Hungarian University of Agriculture and Life Sciences, Deák F. u. 16., 8360 Keszthely, Hungary;
| | - Omeralfaroug Ali
- Department of Physiology and Animal Health, Institute of Physiology and Nutrition, Kaposvár Campus, Hungarian University of Agriculture and Life Sciences, Guba S. u. 40., 7400 Kaposvár, Hungary; (O.A.); (A.M.)
| | - Zsolt Gerencsér
- Department of Animal Breeding, Institute of Animal Sciences, Kaposvár Campus, Hungarian University of Agriculture and Life Sciences, Guba S. u. 40., 7400 Kaposvár, Hungary;
| | - Miklós Mézes
- Department of Feed Toxicology, Institute of Physiology and Nutrition, Gödöllő Campus, Hungarian University of Agriculture and Life Sciences, Páter K. u. 1., 2053 Gödöllő, Hungary; (M.M.); (K.M.B.)
| | - Krisztián Milán Balogh
- Department of Feed Toxicology, Institute of Physiology and Nutrition, Gödöllő Campus, Hungarian University of Agriculture and Life Sciences, Páter K. u. 1., 2053 Gödöllő, Hungary; (M.M.); (K.M.B.)
| | - Tibor Bartók
- Fumizol Ltd., Kisfaludy u. 6/b, 6725 Szeged, Hungary; (T.B.); (L.H.)
| | - Levente Horváth
- Fumizol Ltd., Kisfaludy u. 6/b, 6725 Szeged, Hungary; (T.B.); (L.H.)
| | - Aziz Mouhanna
- Department of Physiology and Animal Health, Institute of Physiology and Nutrition, Kaposvár Campus, Hungarian University of Agriculture and Life Sciences, Guba S. u. 40., 7400 Kaposvár, Hungary; (O.A.); (A.M.)
| | - Melinda Kovács
- MTA-KE-SZIE Mycotoxins in the Food Chain Research Group, Department of Physiology and Animal Health, Institute of Physiology and Nutrition, Kaposvár Campus, Hungarian University of Agriculture and Life Sciences, Guba S. u. 40., 7400 Kaposvár, Hungary;
- Department of Physiology and Animal Health, Institute of Physiology and Nutrition, Kaposvár Campus, Hungarian University of Agriculture and Life Sciences, Guba S. u. 40., 7400 Kaposvár, Hungary; (O.A.); (A.M.)
| |
Collapse
|
13
|
Arumugam T, Ghazi T, Chuturgoon AA. Molecular and epigenetic modes of Fumonisin B 1 mediated toxicity and carcinogenesis and detoxification strategies. Crit Rev Toxicol 2021; 51:76-94. [PMID: 33605189 DOI: 10.1080/10408444.2021.1881040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Fumonisin B1 (FB1) is a natural contaminant of agricultural commodities that has displayed a myriad of toxicities in animals. Moreover, it is known to be a hepatorenal carcinogen in rodents and may be associated with oesophageal and hepatocellular carcinomas in humans. The most well elucidated mode of FB1-mediated toxicity is its disruption of sphingolipid metabolism; however, enhanced oxidative stress, endoplasmic reticulum stress, autophagy, and alterations in immune response may also play a role in its toxicity and carcinogenicity. Alterations to the host epigenome may impact on the toxic and carcinogenic response to FB1. Seeing that the contamination of FB1 in food poses a considerable risk to human and animal health, a great deal of research has focused on new methods to prevent and attenuate FB1-induced toxic consequences. The focus of the present review is on the molecular and epigenetic interactions of FB1 as well as recent research involving FB1 detoxification.
Collapse
Affiliation(s)
- Thilona Arumugam
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Terisha Ghazi
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Anil A Chuturgoon
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
14
|
Wangia-Dixon RN, Nishimwe K. Molecular toxicology and carcinogenesis of fumonisins: a review. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, TOXICOLOGY AND CARCINOGENESIS 2021; 39:44-67. [PMID: 33554724 DOI: 10.1080/26896583.2020.1867449] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Fumonisins, discovered in 1988 are a group of naturally occurring toxins produced by fusarium pathogenic fungi. Besides their presence in animal feeds, contamination of human foods such as corn, millet, oats, rye, barley, wheat and their products are widespread. Exposure to fumonisins results in species and organ specific toxicities including neurological disorders among equids, pulmonary edema in swine, esophageal cancer in humans and both kidney and liver related toxicities in rodents. This review seeks to consolidate groundbreaking research on the science of fumonisins toxicity, highlight recent progress on fumonisins research, and provide an overview of plausible mechanistic biomarkers for fumonisins exposure assessment.
Collapse
Affiliation(s)
- Ruth Nabwire Wangia-Dixon
- Department of Environmental Health Science, University of Georgia, Athens, Georgia, USA
- KAVI Institute of Clinical Research, University of Nairobi, Nairobi, Kenya
| | - Kizito Nishimwe
- Department of Food Science and Human Nutrition, Iowa State University, Ames, Iowa, USA
- School of Agriculture and Food Science, University of Rwanda, Kigali, Rwanda
| |
Collapse
|
15
|
|
16
|
Wang J, Liu Z, Han Z, Wei Z, Zhang Y, Wang K, Yang Z. Fumonisin B1 triggers the formation of bovine neutrophil extracellular traps. Toxicol Lett 2020; 332:140-145. [DOI: 10.1016/j.toxlet.2020.07.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 05/25/2020] [Accepted: 07/05/2020] [Indexed: 12/12/2022]
|
17
|
Sheik Abdul N, Marnewick JL. Fumonisin B 1 -induced mitochondrial toxicity and hepatoprotective potential of rooibos: An update. J Appl Toxicol 2020; 40:1602-1613. [PMID: 32667064 DOI: 10.1002/jat.4036] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/27/2020] [Accepted: 06/23/2020] [Indexed: 12/18/2022]
Abstract
Fumonisins are a family of potentially carcinogenic mycotoxins produced by Fusarium verticillioides. Several fumonisins have been identified with fumonisin B1 (FB1 ) being the most toxic. The canonical mechanism of FB1 toxicity is centered on its structural resemblance with sphinganine and consequent competitive inhibition of ceramide synthase and disruption of lipidomic profiles. Recent and emerging evidence at the molecular level has identified the disruption of mitochondria and excessive generation of toxic reactive oxygen species (ROS) as alternative/additional mechanisms of toxicity. The understanding of how these pathways contribute to FB1 toxicity can lead to the identification of novel, effective approaches to protecting vulnerable populations. Natural compounds with antioxidant properties seem to protect against the induced toxic effects of FB1 . Rooibos (Aspalathus linearis), endemic to South Africa, has traditionally been used as a medicinal herbal tea with strong scientific evidence supporting its anecdotal claims. The unique composition of phytochemicals and combination of metabolic activators, adaptogens and antioxidants make rooibos an attractive yet underappreciated intervention for FB1 toxicoses. In the search for a means to address FB1 toxicoses as a food safety problem in developing countries, phytomedicine and traditional knowledge systems must play an integral part. This review aims to summarize the growing body of evidence succinctly, which highlights mitochondrial dysfunction as a secondary toxic effect responsible for the FB1 -induced generation of ROS. We further propose the potential of rooibos to combat this induced toxicity based on its integrated bioactive properties, as a socio-economically viable strategy to prevent and/or repair cellular damage caused by FB1 .
Collapse
Affiliation(s)
- Naeem Sheik Abdul
- Applied Microbial and Health Biotechnology Institute, Cape Peninsula University of Technology, Bellville, South Africa
| | - Jeanine L Marnewick
- Applied Microbial and Health Biotechnology Institute, Cape Peninsula University of Technology, Bellville, South Africa
| |
Collapse
|
18
|
Short-term neuronal effects of fumonisin B1 on neuronal activity in rodents. Neurotoxicology 2020; 80:41-51. [PMID: 32561249 DOI: 10.1016/j.neuro.2020.06.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 06/05/2020] [Accepted: 06/15/2020] [Indexed: 11/24/2022]
Abstract
Fumonisin B1 (FB1) is a mycotoxin produced by microscopic fungi (mostly Fusarium species), which may infect our major crops. The toxin inhibits the development of these plants and may also have harmful effects on animals and humans consuming the infected crops. FB1 inhibits sphingolipid biosynthesis which leads to altered membrane characteristics and consequently, altered cellular functions. There are some indications that the toxin has inhibitory effects on neuronal activity in case of repeated consumption, presumably due to sphingolipid depletion. However, according to new literature data, FB1 may have acute excitatory neural effects, too, via different mechanisms of action. Therefore, in the present study, we addressed the neuronal network effects of FB1 following acute treatment, using different electrophysiological techniques in vitro and in vivo. Acute treatments with FB1 (10-100 μM) were carried out on brain slices, tissue cultures and live animals. After direct treatment of samples, electrically evoked or spontaneous field potentials were examined in the hippocampus and the neocortex of rat brain slices and in hippocampal cell cultures. In the hippocampus, a short-term increase in the excitability of neuronal networks and individual cells was observed in response to FB1 treatment. In some cases, the initially enhanced excitation was reversed presumably due to overactivation of neuronal networks. Normal spontaneous activity was found to be stimulated in hippocampal cell cultures. Seizure susceptibility was not affected in the neocortex of brain slices. For the verification of the results caused by direct treatment, effects of systemic administration of FB1 (7.5 mg/kg, i.p.) were also examined. Evoked field potentials recorded in vivo from the somatosensory cortex and cell activation measured by the c-fos technique in hippocampus and somatosensory cortex were analyzed. However, the hippocampal and cortical stimulatory effect detected in vitro could not be demonstrated by these in vivo assays. Altogether, the toxin enhanced the basic excitability of neurons and neuronal networks after direct treatment but there were no effects on the given brain areas after systemic treatment in vivo. Based on the observed in vitro FB1 effects and the lack of data on the penetration of FB1 across the blood-brain barrier, we assume that in vivo consequences of FB1 administration can be more prominent in case of perturbed blood-brain barrier functions.
Collapse
|
19
|
Sousa MCS, Galli GM, Bottari NB, Alba DF, Leal KW, Lopes TF, Druzian L, Schetinger MRC, Gloria EM, Mendes RE, Stefani LM, Da Silva AS. Fumonisin-(Fusarium verticillioides)-contaminated feed causes hepatic oxidative stress and negatively affects broiler performance in the early stage: Does supplementation with açai flour residues (Euterpe oleracea) minimize these problems? Microb Pathog 2020; 146:104237. [PMID: 32387391 DOI: 10.1016/j.micpath.2020.104237] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/23/2020] [Accepted: 04/27/2020] [Indexed: 11/30/2022]
Abstract
Fusarium verticillioides is often responsible for contamination of poultry feed with the mycotoxin fumonisin. The aim of this study was to determine whether oxidative stress caused by intake of fumonisin-contaminated feed affects broiler performance at an early stage of development, as well as to test whether the addition of açai residue flour to contaminated feed would minimize these negative effects of redox metabolism. Birds were divided into four groups, with four repetitions of five animals each: control (TC) - birds that received basal feed; TCA treatment - basal feed supplemented with 2% açai flour; TF treatment - feed experimentally contaminated with fumonisin (10 ppm); TFA treatment - fumonisin-contaminated feed (10 ppm) and supplemented with açai fluor (2%). The experiment lasted 20 days, that is, the first 20 days of the chicks' lives. At the end of the experiment, the birds were weighed, and blood, intestine and liver samples were collected. The TCA and TFA had greater body weights and weight gain than did TF. Further, TCA and TFA had lower feed conversion than did TF. Açai flour intake (TCA and TFA) stimulated albumin synthesis and reduced serum AST activity. Nitrate/nitrite (NOx) levels were higher in serum of fumonisin-challenged (TF) birds than in groups; NOx levels were also higher in the livers of all test groups (TF, TCA and TFA) than in TC. Serum glutathione S-transferase (GST) activity was lower in fumonisin-consuming groups (TF and TFA); this was different from what occurred in the liver, that is, higher GST activity in TF and lower activity in TFA than in TC. Catalase activity (CAT) was also higher in the fumonisin-challenged groups (TF and TFA) and the groups supplemented with açai flour (TCA) than in TC. Serum reactive species (RS) and TBARS (lipid peroxidation) levels in the liver were lower in birds supplemented with açai flour and exposed to fumonisin. These data suggest that the addition of açai flour in the feed of early chickens improves animal performance and minimizes the effects of hepatic oxidative stress in birds fed fumonisin-contaminated feed.
Collapse
Affiliation(s)
- Marcela C S Sousa
- Graduate Program in Animal Science, Universidade do Estado de Santa Catarina (UDESC), Brazil
| | - Gabriela M Galli
- Graduate Program in Animal Science, Universidade do Estado de Santa Catarina (UDESC), Brazil
| | - Nathieli B Bottari
- Department of Biochemistry and Molecular Biology, Universidade Federal de Santa Maria (UFSM), Brazil
| | - Davi F Alba
- Graduate Program in Animal Science, Universidade do Estado de Santa Catarina (UDESC), Brazil
| | - Karoline W Leal
- Graduate Program in Animal Science, Universidade do Estado de Santa Catarina (UDESC), Brazil
| | - Thalison F Lopes
- Department of Biochemistry and Molecular Biology, Universidade Federal de Santa Maria (UFSM), Brazil
| | - Letícia Druzian
- Department of Biochemistry and Molecular Biology, Universidade Federal de Santa Maria (UFSM), Brazil
| | - Maria Rosa C Schetinger
- Department of Biochemistry and Molecular Biology, Universidade Federal de Santa Maria (UFSM), Brazil
| | | | - Ricardo E Mendes
- Laboratório de Patologia Veterinária, Instituto Federal Catarinense, Concórdia, Brazil
| | - Lenita M Stefani
- Graduate Program in Animal Science, Universidade do Estado de Santa Catarina (UDESC), Brazil
| | - Aleksandro S Da Silva
- Graduate Program in Animal Science, Universidade do Estado de Santa Catarina (UDESC), Brazil; Department of Animal Science, Universidade do Estado de Santa Catarina (UDESC), Brazil.
| |
Collapse
|
20
|
Baldissera MD, Souza CF, da Silva HNP, Zeppenfeld CC, Dornelles JL, Henn AS, Duarte FA, da Costa ST, Da Silva AS, Cunha MA, Baldisserotto B. Diphenyl diselenide dietary supplementation protects against fumonisin B 1-induced oxidative stress in brains of the silver catfish Rhamdia quelen. Comp Biochem Physiol C Toxicol Pharmacol 2020; 231:108738. [PMID: 32169414 DOI: 10.1016/j.cbpc.2020.108738] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/28/2020] [Accepted: 03/05/2020] [Indexed: 12/17/2022]
Abstract
The trend toward using plant-based ingredients in aquafeeds has raised important concerns for aquaculture owing to the negative impacts of mycotoxins on fish health; with emphasis for contamination by fumonisin B1 (FB1). The brain is an important target of FB1; however, study of the pathways linked to brain damage is limited to an analysis of histopathological alterations. Reports have demonstrated the protective effects of dietary supplementation with diphenyl diselenide (Ph2Se2) in the brains of fish subjected to several environmental insults; nevertheless, its neuroprotective effects in fish fed with diets contaminated with FB1 remain unknown. Therefore, the aim of this study was to evaluate whether oxidative damage may be a pathway associated with FB1-induced neurotoxicity, as well as to evaluate whether dietary supplementation with Ph2Se2 prevents or reduces FB1-mediated brain oxidative damage in silver catfish. Brain reactive oxygen species (ROS), lipid peroxidation (LOOH) and protein carbonylation increased on day 30 post-feeding in animals that received FB1-contaminated diets compared to the control group, while brain antioxidant capacity against peroxyl radicals (ACAP) levels and catalase (CAT), glutathione peroxidase (GPx) and glutathione S-transferase (GST) activities were lower. Diphenyl diselenide dietary supplementation avoid increases in brain ROS levels, as well minimizing the augmentation of LOOH levels. Furthermore, Ph2Se2 prevented impairment of brain ACAP levels, as well as GPx and GST activities elicited by FB1-contaminated diets. These data suggest that dietary supplementation with 3 mg/kg Ph2Se2 prevented FB1-induced brain damage in silver catfish, and this protective effect occurred through avoided of excessive ROS production, as well as via prevention of brain lipid damage. Furthermore, Ph2Se2 exerted its neuroprotective effects via ameliorative effects on the enzymatic and non-enzymatic antioxidant defense systems, and may be an approach to prevent FB1-induced brain oxidative stress; however, is not an alternative to prevent the impairment on performance caused by FB1.
Collapse
Affiliation(s)
- Matheus D Baldissera
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Carine F Souza
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Hugo Napoleão P da Silva
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Carla C Zeppenfeld
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Juan L Dornelles
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Alessandra S Henn
- Department of Chemistry, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Fábio Andrei Duarte
- Department of Chemistry, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Silvio T da Costa
- Department of Morphology, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Aleksandro S Da Silva
- Department of Animal Science, Universidade do Estado de Santa Catarina, Chapecó, SC, Brazil
| | - Mauro A Cunha
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Bernardo Baldisserotto
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|
21
|
Agahi F, Font G, Juan C, Juan-García A. Individual and Combined Effect of Zearalenone Derivates and Beauvericin Mycotoxins on SH-SY5Y Cells. Toxins (Basel) 2020; 12:E212. [PMID: 32230869 PMCID: PMC7232440 DOI: 10.3390/toxins12040212] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 02/06/2023] Open
Abstract
Beauvericin (BEA) and zearalenone derivatives, α-zearalenol (α-ZEL), and β-zearalenol (β-ZEL), are produced by several Fusarium species. Considering the impact of various mycotoxins on human's health, this study determined and evaluated the cytotoxic effect of individual, binary, and tertiary mycotoxin treatments consisting of α-ZEL, β-ZEL, and BEA at different concentrations over 24, 48, and 72 h on SH-SY5Y neuronal cells, by using the MTT assay (3-(4,5-dimethylthiazol-2-yl)-2,5diphenyltetrazoliumbromide). Subsequently, the isobologram method was applied to elucidate if the mixtures produced synergism, antagonism, or additive effects. Ultimately, we determined the amount of mycotoxin recovered from the media after treatment using liquid chromatography coupled with electrospray ionization-quadrupole time-of-flight mass spectrometry (LC-ESI-qTOF-MS). The IC50 values detected at all assayed times ranged from 95 to 0.2 μM for the individual treatments. The result indicated that β-ZEL was the most cytotoxic mycotoxin when tested individually. The major effect detected for all combinations assayed was synergism. Among the combinations assayed, α-ZEL + β-ZEL + BEA and α-ZEL + BEA presented the highest cytotoxic potential with respect to the IC value. At all assayed times, BEA was the mycotoxin recovered at the highest concentration in individual form, and β-ZEL + BEA was the combination recovered at the highest concentration.
Collapse
Affiliation(s)
| | | | - Cristina Juan
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, València, Spain; (F.A.); (G.F.); (A.J.-G.)
| | | |
Collapse
|
22
|
Liu X, Zhang E, Yin S, Zhao C, Fan L, Hu H. Activation of the IRE1α Arm, but not the PERK Arm, of the Unfolded Protein Response Contributes to Fumonisin B1-Induced Hepatotoxicity. Toxins (Basel) 2020; 12:toxins12010055. [PMID: 31963346 PMCID: PMC7020448 DOI: 10.3390/toxins12010055] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/07/2020] [Accepted: 01/14/2020] [Indexed: 01/09/2023] Open
Abstract
Previous studies by us or others have shown that endoplasmic reticulum (ER) stress was activated by fumonisin 1 (FB1) exposure, which is considered to be a critical event in the FB1-induced toxic effect. However, the detailed mechanisms underlying FB1-induced ER stress-mediated liver toxicity remain elusive. The objectives of the present study were designed to address the following issues: (1) the contribution of each arm of the unfolded protein response (UPR); (2) the downstream targets of ER stress that mediated FB1-induced liver toxicity; and (3) the relationship between ER stress and oxidative stress triggered by FB1. We also investigated whether the inhibition of ER stress by its inhibitor could offer protection against FB1-induced hepatotoxicity in vivo, which has not been critically addressed previously. The results showed that the activation of the IRE1α axis, but not of the PERK axis, of UPR contributed to FB1-induced ER stress-mediated hepatocyte toxicity; the activation of the Bax/Bak-mediated mitochondrial pathway lay downstream of IRE1α to trigger mitochondrial-dependent apoptosis in response to FB1; FB1-induced oxidative stress and ER stress augmented each other through a positive feedback mechanism; tauroursodeoxycholic acid (TUDCA)-mediated ER stress inactivation is an effective approach to counteract FB1-induced hepatotoxicity in vivo. The data of the present study allow us to better understand the mechanisms of FB1-induced hepatotoxicity.
Collapse
Affiliation(s)
- Xiaoyi Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, Beijing Key Laboratory for Food Non-thermal Processing, China Agricultural University, Beijing 100083, China; (X.L.); (E.Z.); (S.Y.); (C.Z.)
| | - Enxiang Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, Beijing Key Laboratory for Food Non-thermal Processing, China Agricultural University, Beijing 100083, China; (X.L.); (E.Z.); (S.Y.); (C.Z.)
| | - Shutao Yin
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, Beijing Key Laboratory for Food Non-thermal Processing, China Agricultural University, Beijing 100083, China; (X.L.); (E.Z.); (S.Y.); (C.Z.)
| | - Chong Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, Beijing Key Laboratory for Food Non-thermal Processing, China Agricultural University, Beijing 100083, China; (X.L.); (E.Z.); (S.Y.); (C.Z.)
| | - Lihong Fan
- College of Veterinary Medicine, China Agricultural University, No. 2 Yunamingyuan West Road, Haidian District, Beijing 100193, China;
| | - Hongbo Hu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, Beijing Key Laboratory for Food Non-thermal Processing, China Agricultural University, Beijing 100083, China; (X.L.); (E.Z.); (S.Y.); (C.Z.)
- Correspondence: ; Tel.: +86-10-62738653
| |
Collapse
|
23
|
Molecular mechanisms of fumonisin B1-induced toxicities and its applications in the mechanism-based interventions. Toxicon 2019; 167:1-5. [DOI: 10.1016/j.toxicon.2019.06.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/30/2019] [Accepted: 06/03/2019] [Indexed: 01/02/2023]
|
24
|
Arumugam T, Pillay Y, Ghazi T, Nagiah S, Abdul NS, Chuturgoon AA. Fumonisin B1-induced oxidative stress triggers Nrf2-mediated antioxidant response in human hepatocellular carcinoma (HepG2) cells. Mycotoxin Res 2018; 35:99-109. [DOI: 10.1007/s12550-018-0335-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 10/26/2018] [Accepted: 10/29/2018] [Indexed: 12/17/2022]
|
25
|
Toxicological effects of fumonisin B1 in combination with other Fusarium toxins. Food Chem Toxicol 2018; 121:483-494. [DOI: 10.1016/j.fct.2018.09.043] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/18/2018] [Accepted: 09/19/2018] [Indexed: 12/29/2022]
|
26
|
Chen C, Riley RT, Wu F. Dietary Fumonisin and Growth Impairment in Children and Animals: A Review. Compr Rev Food Sci Food Saf 2018; 17:1448-1464. [DOI: 10.1111/1541-4337.12392] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 07/24/2018] [Accepted: 08/01/2018] [Indexed: 11/30/2022]
Affiliation(s)
- Chen Chen
- Dept. of Food Science and Human Nutrition; Michigan State Univ.; East Lansing MI 48824 U.S.A
- Inst. of Quality Standards and Testing Technology for Agro-Products; Chinese Academy of Agricultural Sciences; Beijing 100081 China
| | - Ronald T. Riley
- Dept. of Environmental Health Science; Univ. of Georgia; Athens GA 30602 U.S.A
| | - Felicia Wu
- Dept. of Food Science and Human Nutrition; Michigan State Univ.; East Lansing MI 48824 U.S.A
| |
Collapse
|
27
|
Zhang W, Zhang S, Zhang M, Yang L, Cheng B, Li J, Shan A. Individual and combined effects of Fusarium toxins on apoptosis in PK15 cells and the protective role of N -acetylcysteine. Food Chem Toxicol 2018; 111:27-43. [DOI: 10.1016/j.fct.2017.10.057] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 10/19/2017] [Accepted: 10/30/2017] [Indexed: 11/27/2022]
|
28
|
Gu Y, Barzegar M, Chen X, Wu Y, Shang C, Mahdavian E, Salvatore BA, Jiang S, Huang S. Fusarochromanone-induced reactive oxygen species results in activation of JNK cascade and cell death by inhibiting protein phosphatases 2A and 5. Oncotarget 2016; 6:42322-33. [PMID: 26517353 PMCID: PMC4747228 DOI: 10.18632/oncotarget.5996] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 10/05/2015] [Indexed: 12/16/2022] Open
Abstract
Recent studies have shown that fusarochromanone (FC101), a mycotoxin, is cytotoxic in a variety of cell lines. However, the molecular mechanism underlying its cytotoxicity remains elusive. Here we found that FC101 induced cell death in COS7 and HEK293 cells in part by activating JNK pathway. This is evidenced by the findings that inhibition of JNK with SP600125 or expression of dominant negative c-Jun partially prevented FC101-induced cell death. Furthermore, we observed that FC101-activated JNK pathway was attributed to induction of reactive oxygen species (ROS). Pretreatment with N-acetyl-L-cysteine (NAC), a ROS scavenger and antioxidant, suppressed FC101-induced activation of JNK and cell death. Moreover, we noticed that FC101 inhibited the serine/threonine protein phosphatases 2A (PP2A) and 5 (PP5) in the cells, which was abrogated by NAC. Overexpression of PP2A or PP5 partially prevented FC101-induced activation of JNK and cell death. The results indicate that FC101-induced ROS inhibits PP2A and PP5, leading to activation of JNK pathway and consequently resulting in cell death.
Collapse
Affiliation(s)
- Ying Gu
- Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, P. R. China.,Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Mansoureh Barzegar
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Xin Chen
- Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, P. R. China.,Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Yang Wu
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Chaowei Shang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA, USA.,Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Elahe Mahdavian
- Department of Chemistry and Physics, Louisiana State University, Shreveport, LA, USA
| | - Brian A Salvatore
- Department of Chemistry and Physics, Louisiana State University, Shreveport, LA, USA
| | - Shanxiang Jiang
- Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, P. R. China
| | - Shile Huang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA, USA.,Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| |
Collapse
|
29
|
Abdellatef AA, Khalil AA. Ameliorated effects of Lactobacillus delbrueckii subsp. lactis DSM 20076 and Pediococcus acidilactici NNRL B-5627 on Fumonisin B1-induced Hepatotoxicity and Nephrotoxicity in rats. Asian J Pharm Sci 2016. [DOI: 10.1016/j.ajps.2016.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
30
|
Tsubone H, Hanafusa M. An overview of toxicity of trichothecene mycotoxins, T-2 toxin and deoxynivalenol: Involvements of their oxidative stress and apoptosis effects. ACTA ACUST UNITED AC 2016. [DOI: 10.2520/myco.66.129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Hirokazu Tsubone
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| | - Masakazu Hanafusa
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| |
Collapse
|
31
|
Wang X, Wu Q, Wan D, Liu Q, Chen D, Liu Z, Martínez-Larrañaga MR, Martínez MA, Anadón A, Yuan Z. Fumonisins: oxidative stress-mediated toxicity and metabolism in vivo and in vitro. Arch Toxicol 2015; 90:81-101. [PMID: 26419546 DOI: 10.1007/s00204-015-1604-8] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 08/11/2015] [Indexed: 10/23/2022]
Abstract
Fumonisins (FBs) are widespread Fusarium toxins commonly found as corn contaminants. FBs could cause a variety of diseases in animals and humans, such as hepatotoxic, nephrotoxic, hepatocarcinogenic and cytotoxic effects in mammals. To date, almost no review has addressed the toxicity of FBs in relation to oxidative stress and their metabolism. The focus of this article is primarily intended to summarize the progress in research associated with oxidative stress as a plausible mechanism for FB-induced toxicity as well as the metabolism. The present review showed that studies have been carried out over the last three decades to elucidate the production of reactive oxygen species (ROS) and oxidative stress as a result of FBs treatment and have correlated them with various types of FBs toxicity, indicating that oxidative stress plays critical roles in the toxicity of FBs. The major metabolic pathways of FBs are hydrolysis, acylation and transamination. Ceramide synthase, carboxylesterase FumD and aminotransferase FumI could degrade FB1 and FB2. The cecal microbiota of pigs and alkaline processing such as nixtamalization can also transform FB1 into metabolites. Most of the metabolites of FB1 were less toxic than FB1, except its partial (pHFB1) metabolites. Further understanding of the role of oxidative stress in FB-induced toxicity will throw new light on the use of antioxidants, scavengers of ROS, as well as on the blind spots of metabolism and the metabolizing enzymes of FBs. The present review might contribute to reveal the toxicity of FBs and help to protect against their oxidative damage.
Collapse
Affiliation(s)
- Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Departamento de Toxicología y Farmacología, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, China.,Center for Basic and Applied Research, Faculty of Informatics and Management, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Dan Wan
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Qianying Liu
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Dongmei Chen
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Zhenli Liu
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, Hubei, China
| | - María Rosa Martínez-Larrañaga
- Departamento de Toxicología y Farmacología, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - María Aránzazu Martínez
- Departamento de Toxicología y Farmacología, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Arturo Anadón
- Departamento de Toxicología y Farmacología, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040, Madrid, Spain.
| | - Zonghui Yuan
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, 430070, Hubei, China. .,MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, 430070, Hubei, China. .,Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, Hubei, China.
| |
Collapse
|
32
|
Sancak D, Ozden S. Global histone modifications in Fumonisin B1 exposure in rat kidney epithelial cells. Toxicol In Vitro 2015. [PMID: 26208285 DOI: 10.1016/j.tiv.2015.07.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Fumonisin B1 (FB1) is a Fusarium mycotoxin frequently occurring in maize-based food and feed. Although the effects of FB1 on sphingolipid metabolism are clear, little is known about early molecular changes associated with FB1 carcinogenicity. It has been shown that FB1 disrupts DNA methylation and chromatin modifications in HepG2 cells. We investigated dose- and time-dependent effects of FB1 in global histone modifications such as histone H3 lysine 9 di-, trimethylation (H3K9me2/me3), histone H3 lysine 4 trimethylation (H3K4me3), histone H4 lysine 20 trimethylation (H4K20me3), histone H3 lysine 9 acetylation (H3K9ac) and the enzymes involved in these mechanisms in rat kidney epithelial cells (NRK-52E). The increased levels of global H3K9me2/me3 were observed in FB1 treated cells, while the global levels of H4K20me3 and H3K9ac were decreased. FB1 caused some changes on the activities of H3K9 histone methyltransferase (HMT) and histone acetyltransferase (HAT) at high concentrations in NRK-52E cells. Further, the effects of trichostatin A (TSA), a histone deacetylase inhibitor, were investigated in NRK-52E cells. TSA was found to cause an increase on H3K9ac levels as expected. In this study we suggest that FB1 may disrupt epigenetic events by altering global histone modifications, introducing a novel aspect on the potential mechanism of FB1 carcinogenesis.
Collapse
Affiliation(s)
- Duygu Sancak
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, 34116 Beyazit, Istanbul, Turkey
| | - Sibel Ozden
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, 34116 Beyazit, Istanbul, Turkey.
| |
Collapse
|
33
|
Demirel G, Alpertunga B, Ozden S. Role of fumonisin B1 on DNA methylation changes in rat kidney and liver cells. PHARMACEUTICAL BIOLOGY 2015; 53:1302-1310. [PMID: 25858139 DOI: 10.3109/13880209.2014.976714] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
CONTEXT Fumonisin B1 (FB1) is a mycotoxin produced by Fusarium verticillioides (Sacc.) Nirenberg (Nectriaceae) mold that contaminates maize and other agricultural products. Although the effects of FB1 on sphingolipid metabolism are clear, little is known about early molecular changes associated with FB1 carcinogenicity. OBJECTIVE Alteration on DNA methylation, as an early event in non-genotoxic carcinogenesis, may play an important role in the mechanism of FB1 toxiciy. MATERIALS AND METHODS Dose-related effects of FB1 (1-50 µM for 24 h) on global DNA methylation by using high-performance liquid chromatography with UV-diode array detection (HPLC-UV/DAD) and CpG promoter methylation by methylation-specific PCR (MSP) were performed in rat liver (Clone 9) and rat kidney (NRK-52E) epithelial cells. RESULTS Cell viability reduction is 39% and 34% by the XTT test and LDH release in the growth medium is 32% and 26% at 200 µM of FB1 treatment in Clone 9 and NRK-52E cells, respectively. No significant dose-related effects of FB1 on global DNA methylation which ranged from 4 to 5% were observed in both cells compared with controls. Promoter regions of c-myc gene were methylated (>33%) at 10 and 50 µM of FB1 treatment in Clone 9 cells while it was unmethylated in NRK-52E cells. Promoter regions of p15 gene were unmethylated while VHL gene were found to be methylated (>33%) at 10, 25, and 50 µM and 10 and 50 µM of FB1 treatment in Clone 9 and NRK-52E cells, respectively. DISCUSSION AND CONCLUSION Alteration in DNA methylation might play an important role in the toxicity of FB1 in risk assessment process.
Collapse
Affiliation(s)
- Goksun Demirel
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University , Beyazit, Istanbul , Turkey
| | | | | |
Collapse
|
34
|
Involvement of oxidative stress in subacute toxicity induced by fumonisin B1 in broiler chicks. Vet Microbiol 2014; 174:180-5. [DOI: 10.1016/j.vetmic.2014.08.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 08/03/2014] [Accepted: 08/20/2014] [Indexed: 11/24/2022]
|
35
|
Sousa FC, Schamber CR, Amorin SSS, Natali MRM. Effect of fumonisin-containing diet on the myenteric plexus of the jejunum in rats. Auton Neurosci 2014; 185:93-9. [PMID: 25183308 DOI: 10.1016/j.autneu.2014.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 08/10/2014] [Accepted: 08/11/2014] [Indexed: 10/24/2022]
Abstract
Fumonisins are mycotoxins that naturally occur as contaminants in grains that are destined for animal and human consumption. These mycotoxins cause hepatotoxic, nephrotoxic, carcinogenic, teratogenic, immunotoxic, and neurotoxic effects in different intensities based on dose, time of exposure, and animal species. In the present study, male Wistar rats were fed between postnatal days 21 and 63 with diets that contained fumonisins B1+B2 at concentrations of 1 and 3mg/kg. The objective of the present study was to evaluate the effects of fumonisins on food intake, growth, weight gain, serum activity of the alanine aminotransferase and aspartate aminotransferase enzymes, and quantitative and morphometric parameters of myenteric neurons in the jejunum that are immunoreactive to HuC/D protein and neuronal nitric oxide synthase enzyme (nNOS). Diets that contained fumonisins did not significantly alter food intake or body and blood parameters. We did not observe significant differences in the neuronal density and proportion of nitrergic neurons but found a significant reduction of cell body areas in both neuronal populations. This study is the first to report the effects of fumonisins in the enteric nervous system. The possible mechanisms by which fumonisins impair neuronal development and the use of the enteric nervous system as a tool for the study of the neurotoxic effects of fumonisins are discussed. In conclusion, fumonisin-containing food negatively affected the growth of myenteric neurons.
Collapse
Affiliation(s)
- Fernando Carlos Sousa
- Coordenação de Ciências Biológicas, Universidade Tecnológica Federal do Paraná, Câmpus Dois Vizinhos, Brazil.
| | | | | | | |
Collapse
|
36
|
Mahdavian E, Marshall M, Martin PM, Cagle P, Salvatore BA, Quick QA. Caspase-dependent signaling underlies glioblastoma cell death in response to the fungal metabolite, fusarochromanone. Int J Mol Med 2014; 34:880-5. [PMID: 25016928 PMCID: PMC4121350 DOI: 10.3892/ijmm.2014.1842] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 06/05/2014] [Indexed: 11/30/2022] Open
Abstract
Fungal metabolites continue to show promise as a viable class of anticancer agents. In the present study, we investigated the efficacy of the fungal metabolite, fusarochromanone (FC101), for its antitumor activities in glioblastomas, which have a median survival of less than two years and a poor clinical response to surgical resection, radiation therapy and chemotherapy. Using clinically applicable doses, we demonstrated that FC101 induced glioblastoma apoptotic cell death via caspase dependent signaling, as indicated by the cleavage of poly(ADP-ribose) polymerase, glioblastoma (PARP). FC101 also induced differential reactive oxygen species (ROS) levels in glioblastoma cells, contrasting a defined role of oxidative stress in apoptotic cell death observed with other fungal metabolites. Furthermore, the antitumorigenic effects of FC101 on tumor cell migration were assessed. Cell migration assays revealed that FC101 significantly reduced the migratory capacity of glioblastomas, which are incredibly invasive tumors. Taken together, the present study establishes FC101 as a candidate anticancer agent for the cooperative treatment of glioblastomas.
Collapse
Affiliation(s)
- Elahe Mahdavian
- Department of Chemistry and Physics, LSU-Shreveport, Shreveport, LA 71115, USA
| | - Monique Marshall
- Department of Biological Sciences, Tennessee State University, Nashville, TN 37209, USA
| | - Patrick M Martin
- Department of Biology, North Carolina A&T State University, Greensboro, NC 27411, USA
| | - Patrice Cagle
- Department of Biology, North Carolina A&T State University, Greensboro, NC 27411, USA
| | - Brian A Salvatore
- Department of Chemistry and Physics, LSU-Shreveport, Shreveport, LA 71115, USA
| | - Quincy A Quick
- Department of Biological Sciences, Tennessee State University, Nashville, TN 37209, USA
| |
Collapse
|
37
|
Minervini F, Garbetta A, D'Antuono I, Cardinali A, Martino NA, Debellis L, Visconti A. Toxic mechanisms induced by fumonisin b1 mycotoxin on human intestinal cell line. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2014; 67:115-123. [PMID: 24549592 DOI: 10.1007/s00244-014-0004-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 01/31/2014] [Indexed: 06/03/2023]
Abstract
The gastrointestinal tract is the main target of exposure to mycotoxin fumonisin B1 (FB1), common natural contaminant in food. Previous studies reported that proliferating cells are more sensitive than confluent cells to the toxic effect of FB1. This study aims to investigate, by dose- and time-dependent experiments on human colon proliferating intestinal cell line (HT-29), the modifications induced by FB1 at concentrations ranging from 0.25 to 69 μM. The choice of highest FB1 concentration considered the low toxicity previously reported on intestinal cell lines, whereas the lowest one corresponded to the lower FBs levels permitted by European Commission Regulation. Different functional parameters were tested such as cell proliferation, oxidative status, immunomodulatory effect and changes in membrane microviscosity. In addition FB1-FITC localization in this cell line was assessed by using confocal laser scanning microscopy. Lipid peroxidation induction was the main and early (12 h) effect induced by FB1 at concentrations ranging from 0.5 to 69 μM, followed by inhibition of cell proliferation (up to 8.6 μM), the immunomodulatory effect (up to 17.2 μM), by assessing IL-8 secretion, and increase in membrane microviscosity (up to 34.5 μM). The toxic effects observed in different functional parameters were not dose-dependent and could be the consequence of the FB1 intracytoplasmatic localization as confirmed by confocal microscopy results. The different timescales and concentrations active of different functional parameters could suggest different cellular targets of FB1.
Collapse
Affiliation(s)
- Fiorenza Minervini
- Institute of Sciences of Food Production, National Research Council of Italy (CNR), Via Amendola 122/O, 70125, Bari, Italy,
| | | | | | | | | | | | | |
Collapse
|
38
|
Jiang S, Li Z, Wang G, Yang Z, Yang W, Zhang G, Wu Y. Effects of Fusarium mycotoxins with yeast cell wall absorbent on hematology, serum biochemistry, and oxidative stress in broiler chickens. J APPL POULTRY RES 2014. [DOI: 10.3382/japr.2013-00830] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
39
|
Müller S, Dekant W, Mally A. Fumonisin B1 and the kidney: Modes of action for renal tumor formation by fumonisin B1 in rodents. Food Chem Toxicol 2012; 50:3833-46. [DOI: 10.1016/j.fct.2012.06.053] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 06/28/2012] [Accepted: 06/29/2012] [Indexed: 11/26/2022]
|
40
|
Hsp70 expression as biomarkers of oxidative stress: Mycotoxins’ exploration. Toxicology 2011; 287:1-7. [DOI: 10.1016/j.tox.2011.06.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 05/04/2011] [Accepted: 06/05/2011] [Indexed: 12/12/2022]
|
41
|
Doi K, Uetsuka K. Mechanisms of mycotoxin-induced neurotoxicity through oxidative stress-associated pathways. Int J Mol Sci 2011; 12:5213-37. [PMID: 21954354 PMCID: PMC3179161 DOI: 10.3390/ijms12085213] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 07/21/2011] [Accepted: 08/04/2011] [Indexed: 01/08/2023] Open
Abstract
Among many mycotoxins, T-2 toxin, macrocyclic trichothecenes, fumonisin B(1) (FB(1)) and ochratochin A (OTA) are known to have the potential to induce neurotoxicity in rodent models. T-2 toxin induces neuronal cell apoptosis in the fetal and adult brain. Macrocyclic trichothecenes bring about neuronal cell apoptosis and inflammation in the olfactory epithelium and olfactory bulb. FB(1) induces neuronal degeneration in the cerebral cortex, concurrent with disruption of de novo ceramide synthesis. OTA causes acute depletion of striatal dopamine and its metabolites, accompanying evidence of neuronal cell apoptosis in the substantia nigra, striatum and hippocampus. This paper reviews the mechanisms of neurotoxicity induced by these mycotoxins especially from the viewpoint of oxidative stress-associated pathways.
Collapse
Affiliation(s)
- Kunio Doi
- Nippon Institute for Biological Science, 9-2221-1, Shin-Machi, Ome, Tokyo 198-0024, Japan
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo, Tokyo 113-8657, Japan
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +81-428-33-1086; Fax: +81-428-31-6166
| | - Koji Uetsuka
- Nippon Institute for Biological Science, 9-2221-1, Shin-Machi, Ome, Tokyo 198-0024, Japan
| |
Collapse
|
42
|
Fumonisin B1 inhibits mitochondrial respiration and deregulates calcium homeostasis—Implication to mechanism of cell toxicity. Int J Biochem Cell Biol 2011; 43:897-904. [DOI: 10.1016/j.biocel.2011.03.003] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 03/02/2011] [Accepted: 03/03/2011] [Indexed: 11/20/2022]
|
43
|
Bernabucci U, Colavecchia L, Danieli PP, Basiricò L, Lacetera N, Nardone A, Ronchi B. Aflatoxin B1 and fumonisin B1 affect the oxidative status of bovine peripheral blood mononuclear cells. Toxicol In Vitro 2011; 25:684-91. [DOI: 10.1016/j.tiv.2011.01.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 01/11/2011] [Accepted: 01/13/2011] [Indexed: 11/28/2022]
|
44
|
Isolation, purification, LC–MS/MS characterization and reactive oxygen species induced by fumonisin B1 in VERO cells. Food Chem Toxicol 2010; 48:2891-7. [DOI: 10.1016/j.fct.2010.07.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Revised: 07/15/2010] [Accepted: 07/16/2010] [Indexed: 11/17/2022]
|
45
|
Hassan AM, Mohamed SR, El-Nekeety AA, Hassan NS, Abdel-Wahhab MA. Aquilegia vulgaris L. extract counteracts oxidative stress and cytotoxicity of fumonisin in rats. Toxicon 2010; 56:8-18. [PMID: 20230848 DOI: 10.1016/j.toxicon.2010.03.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2009] [Revised: 03/04/2010] [Accepted: 03/04/2010] [Indexed: 11/30/2022]
|
46
|
Fallarero A, Ainasoja M, Sandberg M, Teeri TH, Vuorela PM. GT1-7 cell-based cytoxicity screening assay on 96-well microplates as a platform for the safety assessment of genetically modified Gerbera hybrida extracts. Drug Chem Toxicol 2010; 32:120-7. [PMID: 19514948 DOI: 10.1080/01480540802593857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
In this investigation, a GT1-7 cell-based cytotoxicity screening assay in 96-well microplates was set up. The assay, using propidium iodide fluorescence, was proven to be reliable, with good quality (Z' = 0.51) and low plate-to-plate and day-to-day variations. Further on, a library containing extracts from 227 genetic modification (GM) Gerbera hybrida and 42 Gerbera varieties was screened; however, no differences between them were found. Based on these findings, we propose the use of the current assay within the first-tier screening studies of large collections. Also, these results provide valuable information for GM Gerbera risk-assessment purposes and offer a model for the toxicity cell-based screening of GM crops.
Collapse
Affiliation(s)
- Adyary Fallarero
- Department of Biochemistry and Pharmacy, Faculty of Mathematics and Natural Sciences, Abo Akademi University, Abo, Finland
| | | | | | | | | |
Collapse
|
47
|
Dornetshuber R, Heffeter P, Lemmens-Gruber R, Elbling L, Marko D, Micksche M, Berger W. Oxidative stress and DNA interactions are not involved in Enniatin- and Beauvericin-mediated apoptosis induction. Mol Nutr Food Res 2009; 53:1112-22. [DOI: 10.1002/mnfr.200800571] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
48
|
Stockmann-Juvala H, Savolainen K. A review of the toxic effects and mechanisms of action of fumonisin B1. Hum Exp Toxicol 2009; 27:799-809. [PMID: 19244287 DOI: 10.1177/0960327108099525] [Citation(s) in RCA: 202] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Fumonisin B(1) (FB(1)) is a mycotoxin produced by the fungus Fusarium verticillioides, which commonly infects corn and other agricultural products. Fusarium species can also be found in moisture-damaged buildings, and, therefore, exposure of humans to Fusarium mycotoxins including FB(1) may take place. FB(1) bears a clear structural similarity to the cellular sphingolipids, and this similarity has been shown to disturb the metabolism of sphingolipids by inhibiting the enzyme ceramide synthase leading to accumulation of sphinganine in cells and tissues. FB(1) is neurotoxic, hepatotoxic, and nephrotoxic in animals, and it has been classified as a possible carcinogen to humans. The cellular mechanisms behind FB(1)-induced toxicity include the induction of oxidative stress, apoptosis, and cytotoxicity, as well as alterations in cytokine expression. The effects of FB(1) on different parameters vary markedly depending on what types of cells are studied or what species they originate from. These aspects are important to consider when evaluating the toxic potential of FB(1).
Collapse
Affiliation(s)
- H Stockmann-Juvala
- Unit of Excellence for Immunotoxicology, Finnish Institute of Occupational Health, Helsinki, Finland.
| | | |
Collapse
|
49
|
Marnewick JL, van der Westhuizen FH, Joubert E, Swanevelder S, Swart P, Gelderblom WCA. Chemoprotective properties of rooibos (Aspalathus linearis), honeybush (Cyclopia intermedia) herbal and green and black (Camellia sinensis) teas against cancer promotion induced by fumonisin B1 in rat liver. Food Chem Toxicol 2008; 47:220-9. [PMID: 19041360 DOI: 10.1016/j.fct.2008.11.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Revised: 09/05/2008] [Accepted: 11/02/2008] [Indexed: 01/26/2023]
Abstract
The chemoprotective properties of unfermented and fermented rooibos (Aspalathus linearis) and honeybush (Cyclopia intermedia) herbal teas, and green and black teas (Camellia sinensis) were investigated against fumonisin B1 (FB1) promotion in rat liver utilizing diethylnitrosamine (DEN) as cancer initiator. The various teas differently affected the clinical chemical parameters associated with liver and kidney damage associated with FB1 suggesting specific FB1/iron/polyphenolic interactions. Green tea enhanced (P<0.05) the FB1-induced reduction of the oxygen radical absorbance capacity, while fermented herbal teas and unfermented honeybush significantly (P<0.05) decreased FB1-induced lipid peroxidation in the liver. The teas exhibited varying effects on FB1-induced changes in the activities of catalase, glutathione peroxidase (GPx) glutathione reductase (GR) as well as the glutathione (GSH) status. Unfermented rooibos and honeybush significantly (P<0.05) to marginally (P<0.1) reduced the total number of foci (>10microm), respectively, while all the teas reduced the relative amount of the larger foci. Fermentation seems to reduce the protective effect of the herbal teas. Differences in the major polyphenolic components and certain FB1/polyphenolic/tissue interactions may explain the varying effects of the different teas on the oxidative parameters, hepatotoxic effects and cancer promotion in rat liver.
Collapse
Affiliation(s)
- Jeanine L Marnewick
- Oxidative Stress Research Centre, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, P.O. Box 652, Cape Town 8000, South Africa
| | | | | | | | | | | |
Collapse
|
50
|
Stockmann-Juvala H, Alenius H, Savolainen K. Effects of fumonisin B1 on the expression of cytokines and chemokines in human dendritic cells. Food Chem Toxicol 2008; 46:1444-51. [DOI: 10.1016/j.fct.2007.12.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2006] [Revised: 11/14/2007] [Accepted: 12/04/2007] [Indexed: 11/25/2022]
|