1
|
Petrie MA, Suneja M, Shields RK. Distinct Genomic Expression Signatures after Low-Force Electrically Induced Exercises in Persons with Spinal Cord Injury. Int J Mol Sci 2024; 25:10189. [PMID: 39337673 PMCID: PMC11432617 DOI: 10.3390/ijms251810189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/12/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
People with a spinal cord injury are at an increased risk of metabolic dysfunction due to skeletal muscle atrophy and the transition of paralyzed muscle to a glycolytic, insulin-resistant phenotype. Providing doses of exercise through electrical muscle stimulation may provide a therapeutic intervention to help restore metabolic function for people with a spinal cord injury, but high-frequency and high-force electrically induced muscle contractions increase fracture risk for the underlying osteoporotic skeletal system. Therefore, we investigated the acute molecular responses after a session of either a 3 Hz or 1 Hz electrically induced exercise program. Ten people with a complete spinal cord injury completed a 1 h (3 Hz) or 3 h (1 Hz) unilateral electrically induced exercise session prior to a skeletal muscle biopsy of the vastus lateralis. The number of pulses was held constant. Tissue samples were analyzed for genomic and epigenomic expression profiles. There was a strong acute response after the 3 Hz exercise leading to the upregulation of early response genes (NR4A3, PGC-1α, ABRA, IRS2, EGR1, ANKRD1, and MYC), which have prominent roles in regulating molecular pathways that control mitochondrial biogenesis, contractile protein synthesis, and metabolism. Additionally, these genes, and others, contributed to the enrichment of pathways associated with signal transduction, cellular response to stimuli, gene expression, and metabolism. While there were similar trends observed after the 1 Hz exercise, the magnitude of gene expression changes did not reach our significance thresholds, despite a constant number of stimuli delivered. There were also no robust acute changes in muscle methylation after either form of exercise. Taken together, this study supports that a dose of low-force electrically induced exercise for 1 h using a 3 Hz stimulation frequency is suitable to trigger an acute genomic response in people with chronic paralysis, consistent with an expression signature thought to improve the metabolic and contractile phenotype of paralyzed muscle, if performed on a regular basis.
Collapse
Affiliation(s)
- Michael A. Petrie
- Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA;
| | - Manish Suneja
- Department of Internal Medicine, Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA;
| | - Richard K. Shields
- Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA;
| |
Collapse
|
2
|
Li G, Liu D, Yang D, He L. The Impact of Different Muscle Relaxation Techniques on the Upper Trapezius and Its Relationship with the Middle Trapezius. JOURNAL OF PHYSIOLOGICAL INVESTIGATION 2024; 67:225-232. [PMID: 39206782 DOI: 10.4103/ejpi.ejpi-d-24-00041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/13/2024] [Indexed: 09/04/2024]
Abstract
ABSTRACT The relaxation of trapezius muscles is widely believed to alleviate fatigue or injury of the trapezius muscles and reduce the risk of shoulder and neck pain. This study aims to examine the effects of different muscle relaxation techniques on the physical properties of the trapezius muscle and to explore how changes in the physical properties of the upper trapezius muscle affect those of the middle trapezius muscle. Twenty-four healthy males (mean age: 23.08 ± 0.97 years; height: 172.42 ± 4.61 cm; weight: 66.38 ± 6.68 kg; and body mass index: 22.30 ± 1.81 kg/m2), randomly divided into four groups: stretching relaxation group (ST, n = 6), mechanical vibration massage (MV, n = 6), pulse massage (PU, n = 6), and control (CO, n = 6). Measurements using the Myoton digital muscle assessment system were conducted daily over 2 weeks. The experimental groups demonstrated a notable decrease in tension and stiffness, accompanied by heightened elasticity in the upper trapezius muscles. Conversely, the control group exhibited contrasting trends. Although no significant variances were detected among the relaxation techniques, all proved efficacious compared to the control group (P < 0.05). Moreover, relaxation of the upper trapezius muscles significantly influenced the middle trapezius muscles (P < 0.05). Various relaxation methods positively influenced trapezius muscle attributes over 2 weeks, with inter-regional effects noted.
Collapse
Affiliation(s)
- Gao Li
- Key Laboratory of Advanced Manufacturing Technology, Ministry of Education, Guizhou University, Guiyang, Guizhou, China
| | - Dan Liu
- Key Laboratory of Advanced Manufacturing Technology, Ministry of Education, Guizhou University, Guiyang, Guizhou, China
| | - Di Yang
- The First Affiliated Hospital of Guizhou University of Chinese Medicine, Guiyang, Guizhou, China
| | - Ling He
- Key Laboratory of Advanced Manufacturing Technology, Ministry of Education, Guizhou University, Guiyang, Guizhou, China
| |
Collapse
|
3
|
Gorgey AS, Goldsmith JA, Khalil RE, Liu XH, Pan J, Cardozo C, Adler RA. Predictors of muscle hypertrophy responsiveness to electrically evoked resistance training after spinal cord injury. Eur J Appl Physiol 2023; 123:479-493. [PMID: 36305973 DOI: 10.1007/s00421-022-05069-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 10/08/2022] [Indexed: 11/03/2022]
Abstract
The purpose of the study was to identify potential predictors of muscle hypertrophy responsiveness following neuromuscular electrical stimulation resistance training (NMES-RT) in persons with chronic spinal cord injury (SCI). Data for twenty individuals with motor complete SCI who completed twice weekly NMES-RT lasting 12-16 weeks as part of their participation in one of two separate clinical trials were pooled and retrospectively analyzed. Magnetic resonance imaging (MRI) was used to measure muscle cross-sectional area (CSA) of the whole thigh and knee extensor muscle before and after NMES-RT. Muscle biopsies and fasting biomarkers were also measured. Following the completion of the respective NMES-RT trials, participants were classified into either high-responders (n = 8; muscle CSA > 20%) or low-responders (n = 12; muscle CSA < 20%) based on whole thigh muscle CSA hypertrophy. Whole thigh muscle and knee extensors CSAs were significantly greater (P < 0.0001) in high-responders (29 ± 7% and 47 ± 15%, respectively) compared to low-responders (12 ± 3% and 19 ± 6%, respectively). There were no differences in total caloric intake or macronutrient intake between groups. Extensor spasticity was lower in the high-responders compared to the low-responders as was the dosage of baclofen. Prior to the intervention, the high-responders had greater body mass compared to the low-responders with SCI (87.8 ± 13.7 vs. 70.4 ± 15.8 kg; P = 0.012), body mass index (BMI: 27.6 ± 2.7 vs. 22.9 ± 6.0 kg/m2; P = 0.04), as well as greater percentage in whole body and regional fat mass (P < 0.05). Furthermore, high-responders had a 69% greater increase (P = 0.086) in total Akt protein expression than low-responders. High-responders also exhibited reduced circulating IGF-1 with a concomitant increase in IGFBP-3. Exploratory analyses revealed upregulation of mRNAs for muscle hypertrophy markers [IRS-1, Akt, mTOR] and downregulation of protein degradation markers [myostatin, MurF-1, and PDK4] in the high-responders compared to low-responders. The findings indicate that body composition, spasticity, baclofen usage, and multiple signaling pathways (anabolic and catabolic) are involved in the differential muscle hypertrophy response to NMES-RT in persons with chronic SCI.
Collapse
Affiliation(s)
- Ashraf S Gorgey
- Spinal Cord Injury and Disorders Service, Central Virginia VA Health Care System, Hunter Holmes McGuire VA Medical Center, Richmond, VA, USA.
- Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, VA, USA.
| | - Jacob A Goldsmith
- Spinal Cord Injury and Disorders Service, Central Virginia VA Health Care System, Hunter Holmes McGuire VA Medical Center, Richmond, VA, USA
| | - Refka E Khalil
- Spinal Cord Injury and Disorders Service, Central Virginia VA Health Care System, Hunter Holmes McGuire VA Medical Center, Richmond, VA, USA
| | - Xin-Hua Liu
- National Center for the Medical Consequences of Spinal Cord Injury and Medical and Surgical Service, James J Peters VA Medical Center, Bronx, NY, USA
- Department of Medicine, Icahn School of Medicine, New York, NY, USA
| | - Jiangping Pan
- National Center for the Medical Consequences of Spinal Cord Injury and Medical and Surgical Service, James J Peters VA Medical Center, Bronx, NY, USA
- Department of Medicine, Icahn School of Medicine, New York, NY, USA
| | - Christopher Cardozo
- National Center for the Medical Consequences of Spinal Cord Injury and Medical and Surgical Service, James J Peters VA Medical Center, Bronx, NY, USA
- Department of Medicine, Icahn School of Medicine, New York, NY, USA
| | - Robert A Adler
- Endocrinology Service, Hunter Holmes McGuire VA Medical Center, Richmond, VA, USA
- Endocrine Division, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| |
Collapse
|
4
|
Rappelt L, Held S, Donath L. Handcycling with concurrent lower body low-frequency electromyostimulation significantly increases acute oxygen uptake: implications for rehabilitation and prevention. PeerJ 2022; 10:e13333. [PMID: 35607449 PMCID: PMC9123886 DOI: 10.7717/peerj.13333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 04/04/2022] [Indexed: 01/13/2023] Open
Abstract
Background Acute increases in exercise-induced oxygen uptake (V̇O2) is crucial for aerobic training adaptations and depends on how much muscle mass is involved during exercising. Thus, handcycling is per se limited for higher maximal oxygen uptakes (V̇O2max) due to restricted muscle involvement. Handcycling with additional and simultaneous application of low-frequency electromyostimulation (EMS) to the lower extremities might be a promising stimulus to improve aerobic capacity in disabled and rehabilitative populations. Method Twenty-six healthy young adults (13 female, age: 23.4 ± 4.5 years, height: 1.77 ± 0.09 m, mass: 71.7 ± 16.7 kg) completed 4 ×10 minutes of sitting (SIT), sitting with concurrent EMS (EMS_SIT), handcycling (60 rpm, 1/2 bodyweight as resistance in watts) (HANDCYCLE) and handcycling with concurrent EMS of the lower extremities (EMS_HANDCYCLE). During EMS_SIT and EMS_HANDCYCLE, low frequency EMS (impulse frequency: 4Hz, impulse width: 350 µs, continuous stimulation) was applied to gluteal, quadriceps and calf muscles. The stimulation intensity was selected so that the perceived pain could be sustained for a duration of 10 minutes (gluteus: 80.0 ± 22.7 mA, quadriceps: 94.5 ± 20.5 mA, calves: 77.5 ± 19.1 mA). Results Significant mode-dependent changes of V̇O2 were found (p < 0.001, η p 2 = 0.852). Subsequent post-hoc testing indicated significant difference between SIT vs. EMS_SIT (4.70 ± 0.75 vs. 10.61 ± 4.28 ml min-1 kg-1, p < 0.001), EMS_SIT vs. HANDCYCLE (10.61 ± 4.28 vs. 13.52 ± 1.40 ml min-1 kg-1, p = 0.005), and between HANDCYCLE vs. EMS_HANDCYCLE (13.52 ± 1.40 vs. 18.98 ± 4.89 ml min-1 kg-1, p = 0.001). Conclusion Handcycling with simultaneous lower body low-frequency EMS application elicits notably higher oxygen uptake during rest and moderately loaded handcycling and may serve as an additional cardiocirculatory training stimuli for improvements in aerobic capacity in wheelchair and rehabilitation settings.
Collapse
Affiliation(s)
- Ludwig Rappelt
- Department of Intervention Research in Exercise Training, German Sport University Cologne, Cologne, Germany
| | - Steffen Held
- Department of Intervention Research in Exercise Training, German Sport University Cologne, Cologne, Germany
| | - Lars Donath
- Department of Intervention Research in Exercise Training, German Sport University Cologne, Cologne, Germany
| |
Collapse
|
5
|
Fenton JM, King JA, Hoekstra SP, Valentino SE, Phillips SM, Goosey-Tolfrey VL. Protocols aiming to increase muscle mass in persons with motor complete spinal cord injury: a systematic review. Disabil Rehabil 2022; 45:1433-1443. [PMID: 35465798 DOI: 10.1080/09638288.2022.2063420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
PURPOSE The purpose of this review was to compare all intervention modalities aimed at increasing skeletal muscle mass (SMM) in the paralysed limbs of persons with chronic (>1-year post-injury), motor complete spinal cord injury (SCI). MATERIALS AND METHODS A systematic review of EMBASE, MEDLINE, Scopus, and SPORTDiscus databases was conducted from inception until December 2021. Published intervention studies aimed to increase SMM (measured by magnetic resonance imaging, computed tomography, ultrasound, muscle biopsy, or lean soft tissue mass by dual X-ray absorptiometry) in the paralysed limbs of adults (>18 years) with SCI were included. RESULTS Fifty articles were included that, overall, demonstrated a high risk of bias. Studies were categorised into six groups: neuromuscular electrical stimulation (NMES) with and without external resistance, functional electrical stimulation cycling, walking- and standing-based interventions, pharmacological treatments, and studies that compared or combined intervention modalities. Resistance training (RT) using NMES on the quadriceps produced the largest and most consistent increases in SMM of all intervention modalities. CONCLUSIONS Current evidence suggests that clinical practise aiming to increase SMM in the paralysed limbs of persons with motor complete SCI should perform NMES-RT. However, more high-quality randomised control trials are needed to determine how training variables, such as exercise volume and intensity, can be optimised for increasing SMM. Implications for rehabilitationPersons with spinal cord injury (SCI) experience severe reductions in skeletal muscle mass (SMM) post-injury, which may exacerbate their risk of obesity and metabolic disease.Out of all exercise and non-exercise-based interventions, this systematic review shows that neuromuscular electrical stimulation-based resistance training demonstrates the most robust and consistent evidence for increasing skeletal muscle mass in the paralysed limbs of adults with motor complete spinal cord injury.The findings from this review can be used to inform evidence-based practise for exercise practitioners, as well as direct future research focused on increasing muscle mass in this population.
Collapse
Affiliation(s)
- Jordan M. Fenton
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
- Peter Harrison Centre for Disability Sport, Loughborough University, Loughborough, UK
| | - James A. King
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
- National Institute for Health Research (NIHR) Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and University of Leicester, Leicester, UK
| | - Sven P. Hoekstra
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
- Peter Harrison Centre for Disability Sport, Loughborough University, Loughborough, UK
| | | | - Stuart M. Phillips
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Victoria L. Goosey-Tolfrey
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
- Peter Harrison Centre for Disability Sport, Loughborough University, Loughborough, UK
| |
Collapse
|
6
|
Coelho-Magalhães T, Fachin-Martins E, Silva A, Azevedo Coste C, Resende-Martins H. Development of a High-Power Capacity Open Source Electrical Stimulation System to Enhance Research into FES-Assisted Devices: Validation of FES Cycling. SENSORS 2022; 22:s22020531. [PMID: 35062492 PMCID: PMC8778229 DOI: 10.3390/s22020531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/06/2022] [Accepted: 01/09/2022] [Indexed: 02/04/2023]
Abstract
Since the first Cybathlon 2016, when twelve teams competed in the FES bike race, we have witnessed a global effort towards the development of stimulation and control strategies to improve FES-assisted devices, particularly for cycling, as a means to practice a recreational physical activity. As a result, a set of technical notes and research paved the way for many other studies and the potential behind FES-assisted cycling has been consolidated. However, engineering research needs instrumented devices to support novel developments and enable precise assessment. Therefore, some researchers struggle to develop their own FES-assisted devices or find it challenging to implement their instrumentation using commercial devices, which often limits the implementation of advanced control strategies and the possibility to connect different types of sensor. In this regard, we hypothesize that it would be advantageous for some researchers in our community to enjoy access to an entire open-source FES platform that allows different control strategies to be implemented, offers greater adaptability and power capacity than commercial devices, and can be used to assist different functional activities in addition to cycling. Hence, it appears to be of interest to make our proprietary electrical stimulation system an open-source device and to prove its capabilities by addressing all the aspects necessary to implement a FES cycling system. The high-power capacity stimulation device is based on a constant current topology that allows the creation of biphasic electrical pulses with amplitude, width, and frequency up to 150 mA, 1000 µs, and 100 Hz, respectively. A mobile application (Android) was developed to set and modify the stimulation parameters of up to eight stimulation channels. A proportional-integral controller was implemented for cadence tracking with the aim to improve the overall cycling performance. A volunteer with complete paraplegia participated in the functional testing of the system. He was able to cycle indoors for 45 min, accomplish distances of more than 5 km using a passive cycling trainer, and pedal 2400 m overground in 32 min. The results evidenced the capacity of our FES cycling system to be employed as a cycling tool for individuals with spinal cord injury. The methodological strategies used to improve FES efficiency suggest the possibility of maximizing pedaling duration through more advanced control techniques.
Collapse
Affiliation(s)
- Tiago Coelho-Magalhães
- Graduate Program in Electrical Engineering, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Belo Horizonte 31270-901, Brazil;
- Correspondence:
| | - Emerson Fachin-Martins
- Plataforma de Serviços Tecnológicos BEMTEVI, Parque Científico e Tecnológico, Universidade de Brasília, Brasília 70910-900, Brazil;
| | - Andressa Silva
- Centro de Treinamento Esportivo da Escola de Educação Física, Fisioterapia e Terapia Ocupacional, Universidade Federal de Minas Gerais, Belo Horizonte 31310-000, Brazil;
| | - Christine Azevedo Coste
- National Institute for Research in Computer Science and Automation (Inria), Camin Team, 34090 Montpellier, France;
| | - Henrique Resende-Martins
- Graduate Program in Electrical Engineering, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Belo Horizonte 31270-901, Brazil;
| |
Collapse
|
7
|
Atkins KD, Bickel CS. Effects of functional electrical stimulation on muscle health after spinal cord injury. Curr Opin Pharmacol 2021; 60:226-231. [PMID: 34464934 DOI: 10.1016/j.coph.2021.07.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/16/2021] [Accepted: 07/26/2021] [Indexed: 10/20/2022]
Abstract
Spinal cord injury is a devastating condition interrupting voluntary movement and motor control. In response to unloading, skeletal muscle undergoes numerous adaptations, including rapid and profound atrophy, intramuscular fat accumulation, impaired muscular glucose metabolism and decreased force generation and muscle performance. Functional electrical stimulation (FES) involves electrically stimulating affected muscles to contract in a coordinated manner to create a functional movement or task. Effects of FES-cycling, rowing and resistance training on muscle health are described here. Briefly, FES-cycling and resistance training may slow muscle atrophy or facilitate muscle hypertrophy, and all modalities benefit muscle composition and performance to some extent. These interventions show promise as future rehabilitative tools after spinal cord injury.
Collapse
Affiliation(s)
- Kelly D Atkins
- Department of Physical Therapy, Samford University, Birmingham, AL, USA
| | - C Scott Bickel
- Department of Physical Therapy, Samford University, Birmingham, AL, USA.
| |
Collapse
|
8
|
van der Scheer JW, Goosey-Tolfrey VL, Valentino SE, Davis GM, Ho CH. Functional electrical stimulation cycling exercise after spinal cord injury: a systematic review of health and fitness-related outcomes. J Neuroeng Rehabil 2021; 18:99. [PMID: 34118958 PMCID: PMC8196442 DOI: 10.1186/s12984-021-00882-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 05/19/2021] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVES The objective of this review was to summarize and appraise evidence on functional electrical stimulation (FES) cycling exercise after spinal cord injury (SCI), in order to inform the development of evidence-based clinical practice guidelines. METHODS PubMed, the Cochrane Central Register of Controlled Trials, EMBASE, SPORTDiscus, and CINAHL were searched up to April 2021 to identify FES cycling exercise intervention studies including adults with SCI. In order to capture the widest array of evidence available, any outcome measure employed in such studies was considered eligible. Two independent reviewers conducted study eligibility screening, data extraction, and quality appraisal using Cochranes' Risk of Bias or Downs and Black tools. Each study was designated as a Level 1, 2, 3 or 4 study, dependent on study design and quality appraisal scores. The certainty of the evidence for each outcome was assessed using GRADE ratings ('High', 'Moderate', 'Low', or 'Very low'). RESULTS Ninety-two studies met the eligibility criteria, comprising 999 adults with SCI representing all age, sex, time since injury, lesion level and lesion completeness strata. For muscle health (e.g., muscle mass, fiber type composition), significant improvements were found in 3 out of 4 Level 1-2 studies, and 27 out of 32 Level 3-4 studies (GRADE rating: 'High'). Although lacking Level 1-2 studies, significant improvements were also found in nearly all of 35 Level 3-4 studies on power output and aerobic fitness (e.g., peak power and oxygen uptake during an FES cycling test) (GRADE ratings: 'Low'). CONCLUSION Current evidence indicates that FES cycling exercise improves lower-body muscle health of adults with SCI, and may increase power output and aerobic fitness. The evidence summarized and appraised in this review can inform the development of the first international, evidence-based clinical practice guidelines for the use of FES cycling exercise in clinical and community settings of adults with SCI. Registration review protocol: CRD42018108940 (PROSPERO).
Collapse
Affiliation(s)
- Jan W van der Scheer
- Peter Harrison Centre for Disability Sport, School for Sport, Exercise and Health Sciences, Loughborough University, Epinal Way, Loughborough, LE11 3TU, UK
- The Healthcare Improvement Studies (THIS) Institute, Department of Public Health and Primary Care, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Clifford Allbutt Building, Cambridge, CB2 OAH, UK
| | - Victoria L Goosey-Tolfrey
- Peter Harrison Centre for Disability Sport, School for Sport, Exercise and Health Sciences, Loughborough University, Epinal Way, Loughborough, LE11 3TU, UK
| | - Sydney E Valentino
- Department of Kinesiology, McMaster University, Room IWC EG115, 1280 Main St. W., Hamilton, ON, L8S 4K1, Canada
| | - Glen M Davis
- Discipline of Exercise and Sport Sciences, Faculty of Medicine and Health, Sydney School of Health Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Chester H Ho
- Division of Physical Medicine & Rehabilitation, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, T6G 2R3, Canada.
| |
Collapse
|
9
|
Furlan JC, Pakosh M, Craven BC, Popovic MR. Insights on the Potential Mechanisms of Action of Functional Electrical Stimulation Therapy in Combination With Task-Specific Training: A Scoping Review. Neuromodulation 2021; 25:1280-1288. [PMID: 34031937 DOI: 10.1111/ner.13403] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 03/12/2021] [Accepted: 03/30/2021] [Indexed: 12/01/2022]
Abstract
OBJECTIVES This scoping review was undertaken to synthetize and appraise the literature on the potential mechanisms of action of functional electrical stimulation therapy in combination with task-specific training (FEST + TST) in the rehabilitation following stroke, spinal cord injury, traumatic brain injury, or multiple sclerosis. MATERIALS AND METHODS The literature search was performed using multiple databases (including APA, PsycInfo, Medline, PubMed, EMBASE, CCRCT, and Cochrane Database of Systematic Reviews) from 1946 to June 2020. The literature search used the following terms: (spinal cord injury, paraplegia, tetraplegia, quadriplegia, stroke, multiple sclerosis, traumatic brain injury, or acquired brain injury) AND (functional electrical stimulation or FES). The search included clinical and preclinical studies without limits to language. RESULTS Of the 8209 titles retrieved from the primary search, 57 publications fulfilled the inclusion and exclusion criteria for this scoping review. While most publications were clinical studies (n = 50), there were only seven preclinical studies using animal models. The results of this review suggest that FEST + TST can result in multiple effects on different elements from the muscle to the cerebral cortex. However, most studies were focused on the muscle changes after FEST + TST. CONCLUSIONS The results of this scoping review suggest that FEST + TST can result in multiple effects on different elements of the neuromuscular system, while most research studies were focused on the muscle changes after FEST + TST. Despite the efficacy of the FEST + TST in the neurorehabilitation after CNS injury or disease, the results of this review underline an important knowledge gap with regards to the actual mechanism of action of FEST + TST.
Collapse
Affiliation(s)
- Julio Cesar Furlan
- Department of Medicine, Division of Physical Medicine and Rehabilitation, University of Toronto, Toronto, ON, Canada.,Lyndhurst Centre, Toronto Rehabilitation Institute, University Health Network, Toronto, ON, Canada.,KITE - Research Institute, University Health Network, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Rehabilitation Sciences Institute, University of Toronto, Toronto, ON, Canada.,Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, ON, Canada
| | - Maureen Pakosh
- Library & Information Services, Rumsey Cardiac Centre Library, University Health Network, Toronto Rehabilitation Institute, Toronto, ON, Canada
| | - Beverley Catharine Craven
- Department of Medicine, Division of Physical Medicine and Rehabilitation, University of Toronto, Toronto, ON, Canada.,Lyndhurst Centre, Toronto Rehabilitation Institute, University Health Network, Toronto, ON, Canada.,KITE - Research Institute, University Health Network, Toronto, ON, Canada
| | - Milos Radomir Popovic
- KITE - Research Institute, University Health Network, Toronto, ON, Canada.,Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
10
|
Gorgey AS, Lai RE, Khalil RE, Rivers J, Cardozo C, Chen Q, Lesnefsky EJ. Neuromuscular electrical stimulation resistance training enhances oxygen uptake and ventilatory efficiency independent of mitochondrial complexes after spinal cord injury: a randomized clinical trial. J Appl Physiol (1985) 2021; 131:265-276. [PMID: 33982590 DOI: 10.1152/japplphysiol.01029.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The purpose of the study was to determine whether neuromuscular electrical stimulation resistance training (NMES-RT)-evoked muscle hypertrophy is accompanied by increased V̇o2 peak, ventilatory efficiency, and mitochondrial respiration in individuals with chronic spinal cord injury (SCI). Thirty-three men and women with chronic, predominantly traumatic SCI were randomized to either NMES-RT (n = 20) or passive movement training (PMT; n = 13). Functional electrical stimulation-lower extremity cycling (FES-LEC) was used to test the leg V̇o2 peak, V̇E/V̇co2 ratio, and substrate utilization pre- and postintervention. Magnetic resonance imaging was used to measure muscle cross-sectional area (CSA). Finally, muscle biopsy was performed to measure mitochondrial complexes and respiration. The NMES-RT group showed a significant increase in postintervention V̇o2 peak compared with baseline (ΔV̇o2 = 14%, P < 0.01) with no changes in the PMT group (ΔV̇o2 = 1.6%, P = 0.47). Similarly, thigh (ΔCSAthigh = 19%) and knee extensor (ΔCSAknee = 30.4%, P < 0.01) CSAs increased following NMES-RT but not after PMT. The changes in thigh and knee extensor muscle CSAs were positively related with the change in V̇o2 peak. Neither NMES-RT nor PMT changed mitochondrial complex tissue levels; however, changes in peak V̇o2 were related to complex I. In conclusion, in persons with SCI, NMES-RT-induced skeletal muscle hypertrophy was accompanied by increased peak V̇o2 consumption which may partially be explained by enhanced activity of mitochondrial complex I.NEW & NOTEWORTHY Leg oxygen uptake (V̇o2) and ventilatory efficiency (V̇E/V̇co2 ratio) were measured during functional electrical stimulation cycling testing following 12-16 wk of either electrically evoked resistance training or passive movement training, and the respiration of mitochondrial complexes. Resistance training increased thigh muscle area and leg V̇o2 peak but decreased V̇E/V̇co2 ratio without changes in mitochondrial complex levels. Leg V̇o2 peak was associated with muscle hypertrophy and mitochondrial respiration of complex I following training.
Collapse
Affiliation(s)
- Ashraf S Gorgey
- Spinal Cord Injury and Disorders Hunter Holmes McGuire VA Medical Center, Richmond, Virginia.,Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, Virginia
| | - Raymond E Lai
- Spinal Cord Injury and Disorders Hunter Holmes McGuire VA Medical Center, Richmond, Virginia.,Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, Virginia
| | - Refka E Khalil
- Spinal Cord Injury and Disorders Hunter Holmes McGuire VA Medical Center, Richmond, Virginia
| | - Jeannie Rivers
- Surgical Service, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia
| | - Christopher Cardozo
- National Center for the Medical Consequences of Spinal Cord Injury and Medical and Surgical Service, James J Peters VA Medical Center, Bronx, New York.,Department of Medicine, Icahn School of Medicine, New York City, New York.,Department Rehabilitation Medicine, Icahn School of Medicine, New York City, New York
| | - Qun Chen
- Medical Service, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia.,Division of Cardiology, Pauley Heart Center, Department of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Edward J Lesnefsky
- Medical Service, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia.,Division of Cardiology, Pauley Heart Center, Department of Medicine, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
11
|
Farkas GJ, Swartz AM, Gorgey AS, Berg AS, Gater DR. Acute exercise improves glucose effectiveness but not insulin sensitivity in paraplegia. Disabil Rehabil 2021; 44:4656-4662. [PMID: 33905292 DOI: 10.1080/09638288.2021.1913517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
PURPOSE To determine the effect of a single session of arm crank ergometry (ACE) exercise on carbohydrate metabolism immediately and 24 h after the exercise bout in paraplegia and able-bodied controls (ABC). METHODS Paraplegia (n = 11; 91% male; age 34.8 ± 11.4 years) and ABC (n = 6; 67% male; age 28.7 ± 11.9 years) underwent 45 min of ACE exercise at 75% VO2Peak. Glucose effectiveness (Sg) and insulin sensitivity (Si) were assessed. Data were analyzed with two-way mixed analysis of variance and Wilcoxon rank-sum or signed-rank post hoc test. RESULTS VO2Peak was lower in paraplegia versus ABC (22.3 ± 3.99 vs. 30.8 ± 2.9 ml/kg/min, p = 0.003). Si was lower paraplegia vs. ABC immediately following exercise (3.28 ± 1.6 vs. 5.30 ± 1.2 min-1/[µU/mL-1]x10-4, p = 0.023). In paraplegia, Sg was higher immediately after exercise than baseline (B: 0.021 ± 0.01 vs. I: 0.026 ± 0.01 min-1, p = 0.037). Twenty-four hours after exercise, Sg was lower than immediately following exercise (I: 0.026 ± 0.01 vs. 24: 0.017 ± 0.01 min-1, p = 0.001), but not different than baseline in paraplegia (B: 0.021 ± 0.01 vs. 24: 0.017 ± 0.01 min-1, p = 0.216). In the ABC group, Sg was not different at all timepoints (p > 0.05). Si did not differ at all timepoints (p > 0.05). CONCLUSION A single bout of ACE at 75% VO2Peak helped to acutely control glucose metabolism in those with paraplegia by increasing Sg by nearly 27%; however, this was not sustained past 24-hours. These data provide support for regular exercise engagement.Implications for RehabilitationDisorders of glucose metabolism have been reported at a greater prevalence in persons with spinal cord injury.A single bout of arm crank ergometry exercise at 75% VO2Peak helped to acutely control glucose metabolism persons with paraplegia; however, this was not sustained past 24 h.These data provide support for regular exercise engagement in persons with paraplegia.
Collapse
Affiliation(s)
- Gary J Farkas
- Department of Physical Medicine and Rehabilitation, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Ann M Swartz
- Department of Kinesiology, University of Wisconsin Milwaukee, Milwaukee, WI, USA
| | - Ashraf S Gorgey
- Spinal Cord Injury and Disorders Center, Hunter Holmes McGuire VA Medical Center, Richmond, VA, USA
| | - Arthur S Berg
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA, USA
| | - David R Gater
- Department of Physical Medicine and Rehabilitation, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
12
|
Goldsmith JA, Ennasr AN, Farkas GJ, Gater DR, Gorgey AS. Role of exercise on visceral adiposity after spinal cord injury: a cardiometabolic risk factor. Eur J Appl Physiol 2021; 121:2143-2163. [PMID: 33891156 DOI: 10.1007/s00421-021-04688-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/10/2021] [Indexed: 12/30/2022]
Abstract
PURPOSE Visceral adipose tissue (VAT) is associated with cardiometabolic disease risk in able-bodied (AB) populations. However, the underlying mechanisms of VAT-induced disease risk are unknown in persons with spinal cord injury (SCI). Potential mechanisms of VAT-induced cardiometabolic dysfunction in persons with SCI include systemic inflammation, liver adiposity, mitochondrial dysfunction, and anabolic deficiency. Moreover, how exercise interventions impact these mechanisms associated with VAT-induced cardiometabolic dysfunction are still being explored. METHODS A search for relevant scientific literature about the effects of exercise on VAT and cardiometabolic health was conducted on the PubMed database. Literature from reference lists was also included when appropriate. RESULTS Both aerobic and resistance exercise training beneficially impact health and VAT mass via improving mitochondrial function, glucose effectiveness, and inflammatory signaling in SCI and AB populations. Specifically, aerobic exercise appears to also modulate cellular senescence in AB populations and animal models, while resistance exercise seems to augment anabolic signaling in persons with SCI. CONCLUSIONS The current evidence supports regular engagement in exercise to reduce VAT mass and the adverse effects on cardiometabolic health in persons with SCI. Future research is needed to further elucidate the precise mechanisms by which VAT negatively impacts health following SCI. This will likely facilitate the development of rehabilitation protocols that target VAT reduction in persons with SCI.
Collapse
Affiliation(s)
- Jacob A Goldsmith
- Spinal Cord Injury and Disorders Center, Central Virginia VA Health Care System, 1201 Broad Rock Boulevard, Richmond, VA, 23249, USA
| | - Areej N Ennasr
- Spinal Cord Injury and Disorders Center, Central Virginia VA Health Care System, 1201 Broad Rock Boulevard, Richmond, VA, 23249, USA
| | - Gary J Farkas
- Department of Physical Medicine and Rehabilitation, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - David R Gater
- Department of Physical Medicine and Rehabilitation, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Ashraf S Gorgey
- Spinal Cord Injury and Disorders Center, Central Virginia VA Health Care System, 1201 Broad Rock Boulevard, Richmond, VA, 23249, USA. .,Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, VA, 23298, USA.
| |
Collapse
|
13
|
Gordon PS, Farkas GJ, Gater DR. Neurogenic Obesity-Induced Insulin Resistance and Type 2 Diabetes Mellitus in Chronic Spinal Cord Injury. Top Spinal Cord Inj Rehabil 2021; 27:36-56. [PMID: 33814882 DOI: 10.46292/sci20-00063] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The population with SCI is at a significant risk for both insulin resistance and type 2 diabetes mellitus (T2DM) secondary to neurogenic obesity. The prevalence of insulin resistance and T2DM in persons with SCI suggests that disorders of carbohydrate metabolism are at epidemic proportions within the population. However, the true frequency of such disorders may be underestimated because biomarkers of insulin resistance and T2DM used from the population without SCI remain nonspecific and may in fact fail to identify true cases that would benefit from intervention. Furthermore, diet and exercise have been used to help mitigate neurogenic obesity, but results on disorders of carbohydrate metabolism remain inconsistent, likely because of the various ways carbohydrate metabolism is assessed. The objective of this article is to review current literature on the prevalence and likely mechanisms driving insulin resistance and T2DM in persons with SCI. This article also explores the various assessments and diagnostic criteria used for insulin resistance and T2DM and briefly discusses the effects of exercise and/or diet to mitigate disorders of carbohydrate metabolism brought on by neurogenic obesity.
Collapse
Affiliation(s)
- Phillip S Gordon
- Department of Physical Medicine and Rehabilitation, University of Miami Miller School of Medicine, Miami, Florida
| | - Gary J Farkas
- Department of Physical Medicine and Rehabilitation, University of Miami Miller School of Medicine, Miami, Florida
| | - David R Gater
- Department of Physical Medicine and Rehabilitation, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
14
|
Farkas GJ, Gorgey AS, Dolbow DR, Berg AS, Gater DR. Energy Expenditure, Cardiorespiratory Fitness, and Body Composition Following Arm Cycling or Functional Electrical Stimulation Exercises in Spinal Cord Injury: A 16-Week Randomized Controlled Trial. Top Spinal Cord Inj Rehabil 2021; 27:121-134. [PMID: 33814890 PMCID: PMC7983642 DOI: 10.46292/sci20-00065] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background: Physical deconditioning and inactivity following spinal cord injury (SCI) are associated with multiple cardiometabolic risks. To mitigate cardiometabolic risk, exercise is recommended, but it is poorly established whether arm cycling exercise (ACE) or functional electrical stimulation (FES) leg cycling yields superior benefits. Objectives: To determine the adaptations of 16 weeks of FES cycling and ACE on exercise energy expenditure (EEE), cardiorespiratory fitness (CRF), and obesity after SCI. Methods: Thirteen physically untrained individuals were randomly assigned to FES (n = 6) or ACE (n = 7) exercise 5 days/week for 16 weeks. Pre- and post-intervention EEE, peak oxygen consumption (absolute and relative VO2Peak), and work were assessed using indirect calorimetry, while body composition was measured by dual-energy x-ray absorptiometry. Results: Main effects were found for peak power (p < .001), absolute (p = .046) and relative (p = .042) VO2Peak, and peak work (p = .013). Compared to baseline, the ACE group increased in EEE (+85%, p = .002), peak power (+307%, p < .001), VO2Peak (absolute +21%, relative +22%, p ≤ .024), peak work (19% increase, p = .003), and total body fat decreased (-6%, p = .05). The FES group showed a decrease in percentage body fat mass (-5%, p = .008). The ACE group had higher EEE (p = .008), peak power (p < .001), and relative VO2Peak (p = .025) compared to postintervention values in the FES group. Conclusion: In the current study, ACE induced greater increases in EEE and CRF, whereas ACE and FES showed similar results on body fat. Exercise promotional efforts targeting persons with SCI should use both FES and ACE to reduce sedentary behavior and to optimize different health parameters after SCI.
Collapse
Affiliation(s)
- Gary J. Farkas
- Department of Physical Medicine and Rehabilitation, University of Miami Miller School of Medicine, Miami, Florida
| | - Ashraf S. Gorgey
- Spinal Cord Injury and Disorders Center, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia
| | - David R. Dolbow
- Department of Physical Therapy, William Carey University, Hattiesburg, Mississippi
| | - Arthur S. Berg
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, Pennsylvania
| | - David R. Gater
- Department of Physical Medicine and Rehabilitation, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
15
|
Farrow M, Nightingale TE, Maher J, McKay CD, Thompson D, Bilzon JL. Effect of Exercise on Cardiometabolic Risk Factors in Adults With Chronic Spinal Cord Injury: A Systematic Review. Arch Phys Med Rehabil 2020; 101:2177-2205. [DOI: 10.1016/j.apmr.2020.04.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 03/27/2020] [Accepted: 04/11/2020] [Indexed: 12/14/2022]
|
16
|
Gorgey AS, Graham ZA, Chen Q, Rivers J, Adler RA, Lesnefsky EJ, Cardozo CP. Sixteen weeks of testosterone with or without evoked resistance training on protein expression, fiber hypertrophy and mitochondrial health after spinal cord injury. J Appl Physiol (1985) 2020; 128:1487-1496. [PMID: 32352341 DOI: 10.1152/japplphysiol.00865.2019] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We investigated the effects of testosterone replacement therapy (TRT) with and without evoked resistance training (RT) on protein expression of key metabolic and hypertrophy regulators, muscle fiber cross-sectional area (CSA), and markers of mitochondrial health after spinal cord injury (SCI). Twenty-two men with chronic motor complete SCI were randomly assigned to either TRT + RT (n = 11) or TRT (n = 11) for 16 wk. TRT + RT men underwent twice weekly progressive RT using electrical stimulation with ankle weights. TRT was administered via testosterone patches (2-6 mg/day). Muscle biopsies were obtained before and after 16 wk from the right vastus lateralis. Expression of proteins associated with oxidative muscles and mechanical loading (PGC-1α and FAK), muscle hypertrophy (total and phosphorylated Akt, total and phosphorylated mTOR), and cellular metabolism (total and phosphorylated AMPK and GLUT4) were evaluated. Immunohistochemistry analysis was performed to measure fiber CSA and succinate dehydrogenase (SDH) activity as well as mitochondrial citrate synthase (CS) activity and complex III (CIII) activities. TRT + RT demonstrated a robust 27.5% increase in average fiber CSA compared with a -9% decrease following TRT only (P = 0.01). GLUT4 protein expression was elevated in the TRT + RT group compared with TRT only (P = 0.005). Total Akt (P = 0.06) and phosphorylated Akt Ser389 (P = 0.049) were also elevated in the TRT + RT group. Mitochondrial activity of SDH (P = 0.03) and CS (P = 0.006) increased in the TRT + RT group, with no changes in the TRT-only group. Sixteen weeks of TRT with RT resulted in fiber hypertrophy and beneficial changes in markers of skeletal muscle health and function.NEW & NOTEWORTHY Fiber cross-sectional area (CSA), protein expression, mitochondrial citrate synthase (CS), and succinate dehydrogenase (SDH) were measured following 16 wk of low-dose testosterone replacement therapy (TRT) with and without electrically evoked resistance training (RT) in men with spinal cord injury (SCI). Fiber CSA and protein expression of total GLUT4, total Akt, and phosphorylated Akt increased following TRT + RT but not in the TRT-only group. Mitochondrial CS and SDH increased after TRT + RT but not in TRT-only group.
Collapse
Affiliation(s)
- Ashraf S Gorgey
- Spinal Cord Injury and Disorders Center, Hunter Holmes McGuire Veterans Affairs Medical Center, Richmond, Virginia.,Virginia Commonwealth University, Department of Physical Medicine and Rehabilitation, Richmond, Virginia
| | - Zachary A Graham
- Birmingham Veterans Affairs Medical Center, Birmingham, Alabama.,Department of Cell, Developmental, and Integrative Biology, University of Alabama-Birmingham, Birmingham, Alabama
| | - Qun Chen
- Medical Service, Hunter Holmes McGuire Veterans Affairs Medical Center, Richmond, Virginia.,Division of Cardiology, Department of Internal Medicine, Pauley Heart Center Virginia Commonwealth University, Richmond, Virginia
| | - Jeannie Rivers
- Surgery Service, Hunter Holmes McGuire Veterans Affairs Medical Center, Richmond, Virginia
| | - Robert A Adler
- Endocrinology Service, Hunter Holmes McGuire Veterans Affairs Medical Center, Richmond, Virginia.,Endocrine Division, Virginia Commonwealth University School of Medicine¸ Richmond, Virginia
| | - Edward J Lesnefsky
- Medical Service, Hunter Holmes McGuire Veterans Affairs Medical Center, Richmond, Virginia.,Division of Cardiology, Department of Internal Medicine, Pauley Heart Center Virginia Commonwealth University, Richmond, Virginia
| | - Christopher P Cardozo
- Center for the Medical Consequences of Spinal Cord Injury, James J. Peters Veterans Affairs Medical Center, Bronx, New York.,Icahn School of Medicine at Mt. Sinai, New York, New York
| |
Collapse
|
17
|
A Review of Functional Electrical Stimulation Treatment in Spinal Cord Injury. Neuromolecular Med 2020; 22:447-463. [DOI: 10.1007/s12017-019-08589-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 12/28/2019] [Indexed: 12/11/2022]
|
18
|
Morse LR, Biering-Soerensen F, Carbone LD, Cervinka T, Cirnigliaro CM, Johnston TE, Liu N, Troy KL, Weaver FM, Shuhart C, Craven BC. Bone Mineral Density Testing in Spinal Cord Injury: 2019 ISCD Official Position. J Clin Densitom 2019; 22:554-566. [PMID: 31501005 DOI: 10.1016/j.jocd.2019.07.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 07/29/2019] [Indexed: 02/06/2023]
Abstract
Spinal cord injury (SCI) causes rapid osteoporosis that is most severe below the level of injury. More than half of those with motor complete SCI will experience an osteoporotic fracture at some point following their injury, with most fractures occurring at the distal femur and proximal tibia. These fractures have devastating consequences, including delayed union or nonunion, cellulitis, skin breakdown, lower extremity amputation, and premature death. Maintaining skeletal integrity and preventing fractures is imperative following SCI to fully benefit from future advances in paralysis cure research and robotic-exoskeletons, brain computer interfaces and other evolving technologies. Clinical care has been previously limited by the lack of consensus derived guidelines or standards regarding dual-energy X-ray absorptiometry-based diagnosis of osteoporosis, fracture risk prediction, or monitoring response to therapies. The International Society of Clinical Densitometry convened a task force to establish Official Positions for bone density assessment by dual-energy X-ray absorptiometry in individuals with SCI of traumatic or nontraumatic etiology. This task force conducted a series of systematic reviews to guide the development of evidence-based position statements that were reviewed by an expert panel at the 2019 Position Development Conference in Kuala Lumpur, Malaysia. The resulting the International Society of Clinical Densitometry Official Positions are intended to inform clinical care and guide the diagnosis of osteoporosis as well as fracture risk management of osteoporosis following SCI.
Collapse
Affiliation(s)
- Leslie R Morse
- Department of Rehabilitation Medicine, University of Minnesota School of Medicine, Minneapolis, MN, USA.
| | - Fin Biering-Soerensen
- Clinic for Spinal Cord Injuries, Neuroscience Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Laura D Carbone
- Charlie Norwood Veterans Affairs Medical Center, Augusta, GA, USA; Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Tomas Cervinka
- Department of Physiotherapy and Rehabilitation, Faculty of Health and Welfare, Satakunta University of Applied Sciences, Pori, Finland
| | - Christopher M Cirnigliaro
- Department of Veterans Affairs Rehabilitation Research & Development Service National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA
| | - Therese E Johnston
- Department of Physical Therapy, Jefferson College of Rehabilitation Sciences, Thomas Jefferson University, Philadelphia, PA
| | - Nan Liu
- Department of Rehabilitation Medicine and Osteoporosis and Metabolic Bone Disease Center, Peking University Third Hospital, Beijing, China
| | - Karen L Troy
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Frances M Weaver
- Center of Innovation for Complex Chronic Healthcare (CINCCH), Health Services Research & Development, Department of Veterans Affairs, Hines VA Hospital, Hines, IL, USA; Department of Public Health Sciences, Stritch School of Medicine, Loyola University, Maywood, IL, USA
| | - Christopher Shuhart
- Swedish Bone Health and Osteoporosis Center, Swedish Medical Group, Seattle WA, USA
| | - Beverley C Craven
- Neural Engineering and Therapeutics Team, KITE Research Institute - University Health Network, Department of Medicine, University of Toronto, Toronto, Ontario Canada
| |
Collapse
|
19
|
Gorgey AS, Khalil RE, Gill R, Gater DR, Lavis TD, Cardozo CP, Adler RA. Low-Dose Testosterone and Evoked Resistance Exercise after Spinal Cord Injury on Cardio-Metabolic Risk Factors: An Open-Label Randomized Clinical Trial. J Neurotrauma 2019; 36:2631-2645. [PMID: 30794084 DOI: 10.1089/neu.2018.6136] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The purpose of the work is to investigate the effects of low-dose testosterone replacement therapy (TRT) and evoked resistance training (RT) on body composition and metabolic variables after spinal cord injury (SCI). Twenty-two individuals with chronic motor complete SCI (ages 18-50 years) were randomly assigned to either TRT+RT (n = 11) or TRT (n = 11) for 16 weeks following a 4 -week delayed entry period. TRT+RT men underwent twice weekly progressive RT using electrical stimulation with ankle weights. TRT was administered via testosterone patches (2-6 mg/day). Body composition was tested using anthropometrics, dual energy x-ray absorptiometry, and magnetic resonance imaging. After an overnight fast, basal metabolic rate (BMR), lipid panel, serum testosterone, adiponectin, inflammatory and anabolic biomarkers (insulin-like growth factor-1 and insulin-like growth factor-binding protein 3 [IGFBP-3]), glucose effectiveness (Sg), and insulin sensitivity (Si) were measured. Total body lean mass (LM; 2.7 kg, p < 0.0001), whole muscle (p < 0.0001), and whole muscle knee extensor cross-sectional areas (CSAs; p < 0.0001) increased in the TRT+RT group, with no changes in the TRT group. Visceral adiposity decreased (p = 0.049) in the TRT group, with a trend in the TRT+RT (p = 0.07) group. There was a trend (p = 0.050) of a 14-17% increase in BMR following TRT+RT. Sg showed a trend (p = 0.07) to improvement by 28.5-31.5% following both interventions. IGFBP-3 increased (p = 0.0001) while IL-6 decreased (p = 0.039) following both interventions, and TRT+RT suppressed adiponectin (p = 0.024). TRT+RT resulted in an increase in LM and whole thigh and knee extensor muscle CSAs, with an increase in BMR and suppressed adiponectin. Low-dose TRT may mediate modest effects on visceral adipose tissue, Sg, IGFBP-3, and IL-6, independent of changes in LM.
Collapse
Affiliation(s)
- Ashraf S Gorgey
- Spinal Cord Injury and Disorders Center, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia
- Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, Virginia
| | - Refka E Khalil
- Spinal Cord Injury and Disorders Center, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia
| | - Ranjodh Gill
- Endocrinology Service, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia
- Endocrine Division, Virginia Commonwealth University, Richmond, Virginia
| | - David R Gater
- Department of Physical Medicine and Rehabilitation, Penn State Milton S. Hershey Medical Center, Hershey, Pennsylvania
| | - Timothy D Lavis
- Spinal Cord Injury and Disorders Center, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia
- Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, Virginia
| | - Christopher P Cardozo
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, New York
- Icahn School of Medicine at Mt. Sinai, New York, New York
| | - Robert A Adler
- Endocrinology Service, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia
- Endocrine Division, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
20
|
Savikj M, Ruby MA, Kostovski E, Iversen PO, Zierath JR, Krook A, Widegren U. Retained differentiation capacity of human skeletal muscle satellite cells from spinal cord-injured individuals. Physiol Rep 2019; 6:e13739. [PMID: 29906337 PMCID: PMC6003643 DOI: 10.14814/phy2.13739] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/16/2018] [Accepted: 05/18/2018] [Indexed: 02/07/2023] Open
Abstract
Despite the well‐known role of satellite cells in skeletal muscle plasticity, the effect of spinal cord injury on their function in humans remains unknown. We determined whether spinal cord injury affects the intrinsic ability of satellite cells to differentiate and produce metabolically healthy myotubes. We obtained vastus lateralis biopsies from eight spinal cord‐injured and six able‐bodied individuals. Satellite cells were isolated, grown and differentiated in vitro. Gene expression was measured by quantitative PCR. Abundance of differentiation markers and regulatory proteins was determined by Western blotting. Protein synthesis and fatty acid oxidation were measured by radioactive tracer‐based assays. Activated satellite cells (myoblasts) and differentiated myotubes derived from skeletal muscle of able‐bodied and spinal cord‐injured individuals expressed similar (P > 0.05) mRNA levels of myogenic regulatory factors. Myogenic differentiation factor 1 expression was higher in myoblasts from spinal cord‐injured individuals. Desmin and myogenin protein content was increased upon differentiation in both groups, while myotubes from spinal cord‐injured individuals contained more type I and II myosin heavy chain. Phosphorylated and total protein levels of Akt‐mechanistic target of rapamycin and forkhead box protein O signalling axes and protein synthesis rate in myotubes were similar (P > 0.05) between groups. Additionally, fatty acid oxidation of myotubes from spinal cord‐injured individuals was unchanged (P > 0.05) compared to able‐bodied controls. Our results indicate that the intrinsic differentiation capacity of satellite cells and metabolic characteristics of myotubes are preserved following spinal cord injury. This may inform potential interventions targeting satellite cell activation to alleviate skeletal muscle atrophy.
Collapse
Affiliation(s)
- Mladen Savikj
- Faculty of Medicine, University of Oslo, Oslo, Norway.,Science Department, Sunnaas Rehabilitation Hospital, Nesoddtangen, Norway.,Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Maxwell A Ruby
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Department of Nutrition and Preventive Medicine, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom
| | - Emil Kostovski
- Science Department, Sunnaas Rehabilitation Hospital, Nesoddtangen, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Per O Iversen
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.,Department of Haematology, Oslo University Hospital, Oslo, Norway
| | - Juleen R Zierath
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Anna Krook
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Ulrika Widegren
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
21
|
Gorgey AS, Khalil RE, Davis JC, Carter W, Gill R, Rivers J, Khan R, Goetz LL, Castillo T, Lavis T, Sima AP, Lesnefsky EJ, Cardozo CC, Adler RA. Skeletal muscle hypertrophy and attenuation of cardio-metabolic risk factors (SHARC) using functional electrical stimulation-lower extremity cycling in persons with spinal cord injury: study protocol for a randomized clinical trial. Trials 2019; 20:526. [PMID: 31443727 PMCID: PMC6708188 DOI: 10.1186/s13063-019-3560-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 07/06/2019] [Indexed: 12/16/2022] Open
Abstract
Background Persons with spinal cord injury (SCI) are at heightened risks of developing unfavorable cardiometabolic consequences due to physical inactivity. Functional electrical stimulation (FES) and surface neuromuscular electrical stimulation (NMES)-resistance training (RT) have emerged as effective rehabilitation methods that can exercise muscles below the level of injury and attenuate cardio-metabolic risk factors. Our aims are to determine the impact of 12 weeks of NMES + 12 weeks of FES-lower extremity cycling (LEC) compared to 12 weeks of passive movement + 12 weeks of FES-LEC on: (1) oxygen uptake (VO2), insulin sensitivity, and glucose disposal in adults with SCI; (2) skeletal muscle size, intramuscular fat (IMF), and visceral adipose tissue (VAT); and (3) protein expression of energy metabolism, protein molecules involved in insulin signaling, muscle hypertrophy, and oxygen uptake and electron transport chain (ETC) activities. Methods/Design Forty-eight persons aged 18–65 years with chronic (> 1 year) SCI/D (AIS A-C) at the C5-L2 levels, equally sub-grouped by cervical or sub-cervical injury levels and time since injury, will be randomized into either the NMES + FES group or Passive + FES (control group). The NMES + FES group will undergo 12 weeks of evoked RT using twice-weekly NMES and ankle weights followed by twice-weekly progressive FES-LEC for an additional 12 weeks. The control group will undergo 12 weeks of passive movement followed by 12 weeks of progressive FES-LEC. Measurements will be performed at baseline (B; week 0), post-intervention 1 (P1; week 13), and post-intervention 2 (P2; week 25), and will include: VO2 measurements, insulin sensitivity, and glucose effectiveness using intravenous glucose tolerance test; magnetic resonance imaging to measure muscle, IMF, and VAT areas; muscle biopsy to measure protein expression and intracellular signaling; and mitochondrial ETC function. Discussion Training through NMES + RT may evoke muscle hypertrophy and positively impact oxygen uptake, insulin sensitivity, and glucose effectiveness. This may result in beneficial outcomes on metabolic activity, body composition profile, mitochondrial ETC, and intracellular signaling related to insulin action and muscle hypertrophy. In the future, NMES-RT may be added to FES-LEC to improve the workloads achieved in the rehabilitation of persons with SCI and further decrease muscle wasting and cardio-metabolic risks. Trial registration ClinicalTrials.gov, NCT02660073. Registered on 21 Jan 2016.
Collapse
Affiliation(s)
- Ashraf S Gorgey
- Spinal Cord Injury & Disorders Service, Hunter Holmes McGuire VA Medical Center, Richmond, VA, USA. .,Department of Physical Medicine & Rehabilitation, Virginia Commonwealth University, Richmond, VA, USA.
| | - Refka E Khalil
- Spinal Cord Injury & Disorders Service, Hunter Holmes McGuire VA Medical Center, Richmond, VA, USA
| | - John C Davis
- Spinal Cord Injury & Disorders Service, Hunter Holmes McGuire VA Medical Center, Richmond, VA, USA
| | - William Carter
- Department of Physical Medicine & Rehabilitation, Virginia Commonwealth University, Richmond, VA, USA
| | - Ranjodh Gill
- Endocrinology Service, Hunter Holmes McGuire VA Medical Center, Richmond, VA, USA.,Endocrine Division, School of Medicine Virginia Commonwealth University, Richmond, VA, USA
| | - Jeannie Rivers
- Endocrine Division, School of Medicine Virginia Commonwealth University, Richmond, VA, USA
| | - Rehan Khan
- Radiology Service, Hunter Holmes McGuire VA Medical Center, Richmond, VA, USA
| | - Lance L Goetz
- Spinal Cord Injury & Disorders Service, Hunter Holmes McGuire VA Medical Center, Richmond, VA, USA.,Department of Physical Medicine & Rehabilitation, Virginia Commonwealth University, Richmond, VA, USA
| | - Teodoro Castillo
- Spinal Cord Injury & Disorders Service, Hunter Holmes McGuire VA Medical Center, Richmond, VA, USA.,Department of Physical Medicine & Rehabilitation, Virginia Commonwealth University, Richmond, VA, USA
| | - Timothy Lavis
- Spinal Cord Injury & Disorders Service, Hunter Holmes McGuire VA Medical Center, Richmond, VA, USA.,Department of Physical Medicine & Rehabilitation, Virginia Commonwealth University, Richmond, VA, USA
| | - Adam P Sima
- Department of Biostatistics, School of Medicine Virginia Commonwealth University, Richmond, VA, USA
| | - Edward J Lesnefsky
- Cardiology Service, Hunter Holmes McGuire VA Medical Center, Richmond, VA, USA.,Division of Cardiology, Department of Internal Medicine, Pauley Heart Center Virginia Commonwealth University, Richmond, VA, USA
| | - Christopher C Cardozo
- Center for the Medical Consequences of Spinal Cord Injury, James J Peters VA Medical Center, Bronx, NY, USA.,Departments of Medicine and Rehabilitation Medicine, Icahn School of Medicine, New York, NY, USA
| | - Robert A Adler
- Endocrinology Service, Hunter Holmes McGuire VA Medical Center, Richmond, VA, USA.,Endocrine Division, School of Medicine Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
22
|
Patel A, Vendrell-Gonzalez S, Haas G, Marcinczyk M, Ziemkiewicz N, Talovic M, Fisher JS, Garg K. Regulation of Myogenic Activity by Substrate and Electrical Stimulation In Vitro. Biores Open Access 2019; 8:129-138. [PMID: 31367477 PMCID: PMC6664826 DOI: 10.1089/biores.2019.0016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Skeletal muscle has a remarkable regenerative capacity in response to mild injury. However, when muscle is severely injured, muscle regeneration is impaired due to the loss of muscle-resident stem cells, known as satellite cells. Fibrotic tissue, primarily comprising collagen I (COL), is deposited with this critical loss of muscle. In recent studies, supplementation of laminin (LM)-111 has been shown to improve skeletal muscle regeneration in several models of disease and injury. Additionally, electrical stimulation (E-stim) has been investigated as a possible rehabilitation therapy to improve muscle's functional recovery. This study investigated the role of E-stim and substrate in regulating myogenic response. C2C12 myoblasts were allowed to differentiate into myotubes on COL- and LM-coated polydimethylsiloxane molds. The myotubes were subjected to E-stim and compared with nonstimulated controls. While E-stim resulted in increased myogenic activity, irrespective of substrate, LM supported increased proliferation and uniform distribution of C2C12 myoblasts. In addition, C2C12 myoblasts cultured on LM showed higher Sirtuin 1, mammalian target of rapamycin, desmin, nitric oxide, and vascular endothelial growth factor expression. Taken together, these results suggest that an LM substrate is more conducive to myoblast growth and differentiation in response to E-stim in vitro.
Collapse
Affiliation(s)
- Anjali Patel
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, St. Louis, Missouri
| | - Sara Vendrell-Gonzalez
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, St. Louis, Missouri
| | - Gabriel Haas
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, St. Louis, Missouri
| | - Madison Marcinczyk
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, St. Louis, Missouri
| | - Natalia Ziemkiewicz
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, St. Louis, Missouri
| | - Muhamed Talovic
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, St. Louis, Missouri
| | - Jonathan S Fisher
- Department of Biology, College of Arts and Sciences, Saint Louis University, St. Louis, Missouri
| | - Koyal Garg
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, St. Louis, Missouri
| |
Collapse
|
23
|
Gorman PH, Scott W, VanHiel L, Tansey KE, Sweatman WM, Geigle PR. Comparison of peak oxygen consumption response to aquatic and robotic therapy in individuals with chronic motor incomplete spinal cord injury: a randomized controlled trial. Spinal Cord 2019; 57:471-481. [DOI: 10.1038/s41393-019-0239-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 12/14/2018] [Accepted: 01/02/2019] [Indexed: 01/17/2023]
|
24
|
Gorgey AS, Witt O, O’Brien L, Cardozo C, Chen Q, Lesnefsky EJ, Graham ZA. Mitochondrial health and muscle plasticity after spinal cord injury. Eur J Appl Physiol 2018; 119:315-331. [DOI: 10.1007/s00421-018-4039-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 11/22/2018] [Indexed: 01/15/2023]
|
25
|
Lundell LS, Savikj M, Kostovski E, Iversen PO, Zierath JR, Krook A, Chibalin AV, Widegren U. Protein translation, proteolysis and autophagy in human skeletal muscle atrophy after spinal cord injury. Acta Physiol (Oxf) 2018; 223:e13051. [PMID: 29423932 DOI: 10.1111/apha.13051] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 01/17/2018] [Accepted: 01/21/2018] [Indexed: 12/14/2022]
Abstract
AIM Spinal cord injury-induced loss of skeletal muscle mass does not progress linearly. In humans, peak muscle loss occurs during the first 6 weeks postinjury, and gradually continues thereafter. The aim of this study was to delineate the regulatory events underlying skeletal muscle atrophy during the first year following spinal cord injury. METHODS Key translational, autophagic and proteolytic proteins were analysed by immunoblotting of human vastus lateralis muscle obtained 1, 3 and 12 months following spinal cord injury. Age-matched able-bodied control subjects were also studied. RESULTS Several downstream targets of Akt signalling decreased after spinal cord injury in skeletal muscle, without changes in resting Akt Ser473 and Akt Thr308 phosphorylation or total Akt protein. Abundance of mTOR protein and mTOR Ser2448 phosphorylation, as well as FOXO1 Ser256 phosphorylation and FOXO3 protein, decreased in response to spinal cord injury, coincident with attenuated protein abundance of E3 ubiquitin ligases, MuRF1 and MAFbx. S6 protein and Ser235/236 phosphorylation, as well as 4E-BP1 Thr37/46 phosphorylation, increased transiently after spinal cord injury, indicating higher levels of protein translation early after injury. Protein abundance of LC3-I and LC3-II decreased 3 months postinjury as compared with 1 month postinjury, but not compared to able-bodied control subjects, indicating lower levels of autophagy. Proteins regulating proteasomal degradation were stably increased in response to spinal cord injury. CONCLUSION Together, these data provide indirect evidence suggesting that protein translation and autophagy transiently increase, while whole proteolysis remains stably higher in skeletal muscle within the first year after spinal cord injury.
Collapse
Affiliation(s)
- L. S. Lundell
- Department of Physiology and Pharmacology; Section for Integrative Physiology; Karolinska Institutet; Stockholm Sweden
| | - M. Savikj
- Department of Physiology and Pharmacology; Section for Integrative Physiology; Karolinska Institutet; Stockholm Sweden
- Faculty of Medicine; University of Oslo; Oslo Norway
- Department of Research; Sunnaas Rehabilitation Hospital; Nesoddtangen Norway
| | - E. Kostovski
- Faculty of Medicine; University of Oslo; Oslo Norway
- Department of Research; Sunnaas Rehabilitation Hospital; Nesoddtangen Norway
| | - P. O. Iversen
- Department of Nutrition; Institute of Basic Medical Sciences; University of Oslo; Oslo Norway
- Department of Hematology; Oslo University Hospital; Oslo Norway
| | - J. R. Zierath
- Department of Physiology and Pharmacology; Section for Integrative Physiology; Karolinska Institutet; Stockholm Sweden
- Department of Molecular Medicine and Surgery; Section for Integrative Physiology; Karolinska Institutet; Stockholm Sweden
| | - A. Krook
- Department of Physiology and Pharmacology; Section for Integrative Physiology; Karolinska Institutet; Stockholm Sweden
| | - A. V. Chibalin
- Department of Molecular Medicine and Surgery; Section for Integrative Physiology; Karolinska Institutet; Stockholm Sweden
| | - U. Widegren
- Department of Molecular Medicine and Surgery; Section for Integrative Physiology; Karolinska Institutet; Stockholm Sweden
| |
Collapse
|
26
|
Otzel DM, Lee J, Ye F, Borst SE, Yarrow JF. Activity-Based Physical Rehabilitation with Adjuvant Testosterone to Promote Neuromuscular Recovery after Spinal Cord Injury. Int J Mol Sci 2018; 19:E1701. [PMID: 29880749 PMCID: PMC6032131 DOI: 10.3390/ijms19061701] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 05/31/2018] [Accepted: 06/01/2018] [Indexed: 12/22/2022] Open
Abstract
Neuromuscular impairment and reduced musculoskeletal integrity are hallmarks of spinal cord injury (SCI) that hinder locomotor recovery. These impairments are precipitated by the neurological insult and resulting disuse, which has stimulated interest in activity-based physical rehabilitation therapies (ABTs) that promote neuromuscular plasticity after SCI. However, ABT efficacy declines as SCI severity increases. Additionally, many men with SCI exhibit low testosterone, which may exacerbate neuromusculoskeletal impairment. Incorporating testosterone adjuvant to ABTs may improve musculoskeletal recovery and neuroplasticity because androgens attenuate muscle loss and the slow-to-fast muscle fiber-type transition after SCI, in a manner independent from mechanical strain, and promote motoneuron survival. These neuromusculoskeletal benefits are promising, although testosterone alone produces only limited functional improvement in rodent SCI models. In this review, we discuss the (1) molecular deficits underlying muscle loss after SCI; (2) independent influences of testosterone and locomotor training on neuromuscular function and musculoskeletal integrity post-SCI; (3) hormonal and molecular mechanisms underlying the therapeutic efficacy of these strategies; and (4) evidence supporting a multimodal strategy involving ABT with adjuvant testosterone, as a potential means to promote more comprehensive neuromusculoskeletal recovery than either strategy alone.
Collapse
Affiliation(s)
- Dana M Otzel
- Brain Rehabilitation Research Center, Malcom Randall Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL 32608, USA.
| | - Jimmy Lee
- Research Service, Malcom Randall Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL 32608, USA.
| | - Fan Ye
- Research Service, Malcom Randall Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL 32608, USA.
| | - Stephen E Borst
- Department of Applied Physiology, Kinesiology and University of Florida College of Health and Human Performance, Gainesville, FL 32603, USA.
| | - Joshua F Yarrow
- Research Service, Malcom Randall Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL 32608, USA.
- Division of Endocrinology, Diabetes and Metabolism, University of Florida College of Medicine, Gainesville, FL 32610, USA.
| |
Collapse
|
27
|
O'Brien LC, Graham ZA, Chen Q, Lesnefsky EJ, Cardozo C, Gorgey AS. Plasma adiponectin levels are correlated with body composition, metabolic profiles, and mitochondrial markers in individuals with chronic spinal cord injury. Spinal Cord 2018; 56:863-872. [PMID: 29559683 PMCID: PMC6129201 DOI: 10.1038/s41393-018-0089-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 02/20/2018] [Accepted: 02/23/2018] [Indexed: 12/15/2022]
Abstract
STUDY DESIGN Cross-sectional design. OBJECTIVES This study examined the relationships between circulating adiponectin levels, body composition, metabolic profile, and measures of skeletal muscle mitochondrial enzyme activity and biogenesis. SETTINGS Clinical Research in a Medical Center. METHODS Plasma adiponectin was quantified in 19 individuals with chronic spinal cord injury (SCI). Body composition was evaluated by dual x-ray absorptiometry and magnetic resonance imaging. Metabolic profile was assessed by basal metabolic rate (BMR), oxygen uptake (VO2), and intravenous glucose tolerance testing. Mitochondrial enzyme activity of skeletal muscle was obtained by spectrophotometric assays and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) and 5' AMP-activated protein kinase (AMPK) protein expression was assessed by Western blots. RESULTS Adiponectin was negatively related to both total and regional fat mass and positively related to lean mass and muscle mass. Furthermore, there were positive relationships between adiponectin and BMR (r = 0.52, P = 0.02) and VO2 (r = 0.73, P = 0.01). Furthermore, adiponectin was positively related to citrate synthase (r = 0.68, P = 0.002) and complex III activity (r = 0.57, P = 0.02). The relationships between adiponectin and body composition remained significant after accounting for age. The relationships between adiponectin, metabolic profile, and markers of mitochondria mass and activity were influenced by age. CONCLUSIONS The study demonstrated that adiponectin is closely related to body composition and metabolic profile in persons with SCI and further supports mechanistic studies suggesting that adiponectin may stimulate mitochondrial biogenesis.
Collapse
Affiliation(s)
- Laura C O'Brien
- Spinal Cord Injury and Disorders, Hunter Holmes McGuire VA Medical Center, Richmond, VA, USA.,Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA, USA
| | - Zachary A Graham
- Department of James J. Peters VA Medical Center, Bronx, NY, USA.,Department of Medicine, Icahn School of Medicine, New York, NY, USA
| | - Qun Chen
- Department of Medicine, Division of Cardiology, Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Edward J Lesnefsky
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA, USA.,Department of Medicine, Division of Cardiology, Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, USA.,Medical Services, Hunter Holmes McGuire VA Medical Center, Richmond, VA, USA.,Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA
| | - Christopher Cardozo
- Department of James J. Peters VA Medical Center, Bronx, NY, USA.,Department of Medicine, Icahn School of Medicine, New York, NY, USA.,Department of Rehabilitation Medicine, Icahn School of Medicine, New York, NY, USA.,Department of Pharmacologic Science, Icahn School of Medicine, New York, NY, USA
| | - Ashraf S Gorgey
- Spinal Cord Injury and Disorders, Hunter Holmes McGuire VA Medical Center, Richmond, VA, USA. .,Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
28
|
Nightingale TE, Walhin JP, Thompson D, Bilzon JLJ. Impact of Exercise on Cardiometabolic Component Risks in Spinal Cord-injured Humans. Med Sci Sports Exerc 2018; 49:2469-2477. [PMID: 28753161 PMCID: PMC5704648 DOI: 10.1249/mss.0000000000001390] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Purpose Spinal cord injury (SCI) creates a complex pathology, characterized by low levels of habitual physical activity and an increased risk of cardiometabolic disease. This study aimed to assess the effect of a moderate-intensity upper-body exercise training intervention on biomarkers of cardiometabolic component risks, adipose tissue metabolism, and cardiorespiratory fitness in persons with SCI. Methods Twenty-one inactive men and women with chronic (>1 yr) SCI (all paraplegic injuries) 47 ± 8 yr of age (mean ± SD) were randomly allocated to either a 6-wk prescribed home-based exercise intervention (INT; n = 13) or control group (CON; n = 8). Participants assigned to the exercise group completed 4 × 45-min moderate-intensity (60%–65% peak oxygen uptake (V˙O2peak)) arm-crank exercise sessions per week. At baseline and follow-up, fasted and postload blood samples (collected during oral glucose tolerance tests) were obtained to measure metabolic regulation and biomarkers of cardiovascular disease. Abdominal subcutaneous adipose tissue biopsies were also obtained, and cardiorespiratory fitness was assessed. Results Compared with CON, INT significantly decreased (P = 0.04) serum fasting insulin (Δ, 3.1 ± 10.7 pmol·L−1 for CON and −12.7 ± 18.7 pmol·L−1 for INT) and homeostasis model assessment of insulin resistance (HOMA2-IR; Δ, 0.06 ± 0.20 for CON and −0.23 ± 0.36 for INT). The exercise group also increased V˙O2peak (Δ, 3.4 mL·kg−1·min−1; P ≤ 0.001). Adipose tissue metabolism, composite insulin sensitivity index (C-ISIMatsuda), and other cardiovascular disease risk biomarkers were not different between groups. Conclusions Moderate-intensity upper-body exercise improved aspects of metabolic regulation and cardiorespiratory fitness. Changes in fasting insulin and HOMA2-IR, but not C-ISIMatsuda, suggest improved hepatic but not peripheral insulin sensitivity after 6 wk of exercise training in persons with chronic paraplegia.
Collapse
Affiliation(s)
- Tom E Nightingale
- Department for Health, University of Bath, Bath, Somerset, UNITED KINGDOM
| | | | | | | |
Collapse
|
29
|
Gorgey AS, Graham ZA, Bauman WA, Cardozo C, Gater DR. Abundance in proteins expressed after functional electrical stimulation cycling or arm cycling ergometry training in persons with chronic spinal cord injury. J Spinal Cord Med 2017; 40:439-448. [PMID: 27735783 PMCID: PMC5537961 DOI: 10.1080/10790268.2016.1229397] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
STUDY DESIGN Longitudinal design. OBJECTIVES The study determined the effects of two forms of exercise training on the abundance of two proteins, (glucose transporter-4 [GLUT-4], adenosine monophosphate kinase [AMPK]) involved in glucose utilization and the transcriptional coactivator that regulates the genes involved in energy metabolism and mitochondrial biogenesis (peroxisome proliferator-activated receptor (PPAR) coactivator 1 alpha [PGC-1α]), in muscles in men with chronic motor-complete spinal cord injury (SCI). SETTINGS Clinical trial at a Medical Center. METHODS Nine men with chronic motor-complete SCI participated in functional electrical stimulation lower extremity cycling (FES-LEC; n = 4) or arm cycling ergometer (arm-cycling ergometer [ACE]; n = 5) 5 days/week for 16 weeks. Whole body composition was measured by dual energy X-ray absorptiometry. An intravenous glucose tolerance test was performed to measure glucose effectiveness (Sg) and insulin sensitivity (Si). Muscle biopsies of the right vastus lateralis (VL) and triceps muscles were collected one week prior to and post the exercise training intervention. RESULTS Neither training intervention altered body composition or carbohydrate metabolism. GLUT-4 increased by 3.8 fold in the VL after FES training and increased 0.6 fold in the triceps after ACE training. PGC-1α increased by 2.3 fold in the VL after FES training and 3.8 fold in the triceps after ACE training. AMPK increased by 3.4 fold in the VL after FES training and in the triceps after ACE training. CONCLUSION FES-LEC and ACE training were associated with greater protein expressions in the trained muscles by effectively influencing the abundance of GLUT-4, AMPK and PGC-1α. Thus, FES-LEC training of paralyzed muscle can modulate protein expression similar to that of trained and innervated muscle.
Collapse
Affiliation(s)
- Ashraf S. Gorgey
- Spinal Cord Injury Service and Disorders; Hunter Holmes McGuire VA Medical Center, Richmond, VA, USA,Department of Physical Medicine and Rehabilitation; Virginia Commonwealth University, Richmond, VA, USA,Correspondence to: Ashraf S. Gorgey, Director of Spinal Cord Injury Research, Department of Veterans Affairs, Hunter Holmes McGuire Medical Center, Spinal Cord Injury & Disorders Service, 1201 Broad Rock Boulevard, Richmond, VA 23249.
| | - Zachary A. Graham
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, NY, USA,Icahn School of Medicine at Mt. Sinai, Medicine, New York City, NY, USA
| | - William A. Bauman
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, NY, USA,Icahn School of Medicine at Mt. Sinai, Medicine, New York City, NY, USA
| | - Christopher Cardozo
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, NY, USA,Icahn School of Medicine at Mt. Sinai, Medicine, New York City, NY, USA
| | - David R. Gater
- Department of Physical Medicine and Rehabilitation, Penn State Milton S. Hershey Medical Center, Hershey, PA, USA
| |
Collapse
|
30
|
Gorgey AS, Khalil RE, Gill R, O'Brien LC, Lavis T, Castillo T, Cifu DX, Savas J, Khan R, Cardozo C, Lesnefsky EJ, Gater DR, Adler RA. Effects of Testosterone and Evoked Resistance Exercise after Spinal Cord Injury (TEREX-SCI): study protocol for a randomised controlled trial. BMJ Open 2017; 7:e014125. [PMID: 28377392 PMCID: PMC5387951 DOI: 10.1136/bmjopen-2016-014125] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION Individuals with spinal cord injury (SCI) are at a lifelong risk of obesity and chronic metabolic disorders including insulin resistance and dyslipidemia. Within a few weeks of injury, there is a significant decline in whole body fat-free mass, particularly lower extremity skeletal muscle mass, and subsequent increase in fat mass (FM). This is accompanied by a decrease in anabolic hormones including testosterone. Testosterone replacement therapy (TRT) has been shown to increase skeletal muscle mass and improve metabolic profile. Additionally, resistance training (RT) has been shown to increase lean mass and reduce metabolic disturbances in SCI and other clinical populations. METHODS AND ANALYSIS 26 individuals with chronic, motor complete SCI between 18 and 50 years old were randomly assigned to a RT+TRT group (n=13) or a TRT group (n=13). 22 participants completed the initial 16-week training phase of the study and 4 participants withdrew. 12 participants of the 22 completed 16 weeks of detraining. The TRT was provided via transdermal testosterone patches (4-6 mg/day). The RT+TRT group had 16 weeks of supervised unilateral progressive RT using surface neuromuscular electrical stimulation with ankle weights. This study will investigate the effects of evoked RT+TRT or TRT alone on body composition (muscle cross-sectional area, visceral adipose tissue, %FM) and metabolic profile (glucose and lipid metabolism) in individuals with motor complete SCI. Findings from this study may help in designing exercise therapies to alleviate the deterioration in body composition after SCI and decrease the incidence of metabolic disorders in this clinical population. ETHICS AND DISSEMINATION The study is currently approved by the McGuire VA Medical Center and Virginia Commonwealth University. All participants read and signed approved consent forms. Results will be submitted to peer-reviewed journals and presented at national and international conferences. TRIAL REGISTRATION NUMBER Pre-result, NCT01652040.
Collapse
Affiliation(s)
- Ashraf S Gorgey
- Spinal Cord Injury and Disorders Center, Hunter Holmes McGuire VAMC, Richmond, Virginia, USA
- Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Refka E Khalil
- Spinal Cord Injury and Disorders Center, Hunter Holmes McGuire VAMC, Richmond, Virginia, USA
| | - Ranjodh Gill
- Endocrinology Service, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia, USA
- Endocrine Division, Virginia Commonwealth University School of Medicine¸ Richmond, Virginia,USA
| | - Laura C O'Brien
- Spinal Cord Injury and Disorders Center, Hunter Holmes McGuire VAMC, Richmond, Virginia, USA
| | - Timothy Lavis
- Spinal Cord Injury and Disorders Center, Hunter Holmes McGuire VAMC, Richmond, Virginia, USA
- Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Teodoro Castillo
- Spinal Cord Injury and Disorders Center, Hunter Holmes McGuire VAMC, Richmond, Virginia, USA
| | - David X Cifu
- Spinal Cord Injury and Disorders Center, Hunter Holmes McGuire VAMC, Richmond, Virginia, USA
- Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Jeannie Savas
- Surgical Service, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia, USA
| | - Rehan Khan
- Radiology Service, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia, USA
| | - Christopher Cardozo
- National Center for the Medical Consequences of Spinal Cord Injury, James J Peters VA Medical Center, Bronx, New York, USA
- Department of Medicine, Icahn School of Medicine at Mt. Sinai, New York City, New York, USA
| | - Edward J Lesnefsky
- Cardiology Service, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia, USA
- Division of Cardiology, Department of Medicine, Pauley Heart Center Virginia Commonwealth University, Richmond, Virginia, USA
| | - David R Gater
- Department of Physical Medicine and Rehabilitation, Penn State Milton S Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Robert A Adler
- Endocrinology Service, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia, USA
- Endocrine Division, Virginia Commonwealth University School of Medicine¸ Richmond, Virginia,USA
| |
Collapse
|