1
|
Chen H, Xue H, Zeng H, Dai M, Tang C, Liu L. 3D printed scaffolds based on hyaluronic acid bioinks for tissue engineering: a review. Biomater Res 2023; 27:137. [PMID: 38142273 DOI: 10.1186/s40824-023-00460-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/07/2023] [Indexed: 12/25/2023] Open
Abstract
Hyaluronic acid (HA) is widely distributed in human connective tissue, and its unique biological and physicochemical properties and ability to facilitate biological structure repair make it a promising candidate for three-dimensional (3D) bioprinting in the field of tissue regeneration and biomedical engineering. Moreover, HA is an ideal raw material for bioinks in tissue engineering because of its histocompatibility, non-immunogenicity, biodegradability, anti-inflammatory properties, anti-angiogenic properties, and modifiability. Tissue engineering is a multidisciplinary field focusing on in vitro reconstructions of mammalian tissues, such as cartilage tissue engineering, neural tissue engineering, skin tissue engineering, and other areas that require further clinical applications. In this review, we first describe the modification methods, cross-linking methods, and bioprinting strategies for HA and its derivatives as bioinks and then critically discuss the strengths, shortcomings, and feasibility of each method. Subsequently, we reviewed the practical clinical applications and outcomes of HA bioink in 3D bioprinting. Finally, we describe the challenges and opportunities in the development of HA bioink to provide further research references and insights.
Collapse
Affiliation(s)
- Han Chen
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
- Ningxia Medical University, Ningxia, 750004, China
- Xijing Hospital of Air Force Military Medical University, Xi'an, 710032, China
| | - Huaqian Xue
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
- Ningxia Medical University, Ningxia, 750004, China
| | - Huanxuan Zeng
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Minghai Dai
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Chengxuan Tang
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China.
| | - Liangle Liu
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China.
| |
Collapse
|
2
|
Abuelella KE, Abd-Allah H, Soliman SM, Abdel-Mottaleb MMA. Skin targeting by chitosan/hyaluronate hybrid nanoparticles for the management of irritant contact dermatitis: In vivo therapeutic efficiency in mouse-ear dermatitis model. Int J Biol Macromol 2023; 232:123458. [PMID: 36709804 DOI: 10.1016/j.ijbiomac.2023.123458] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/21/2023] [Accepted: 01/24/2023] [Indexed: 01/27/2023]
Abstract
Irritant contact dermatitis (ICD) is an inflammatory skin condition characterized by severe eczematous lesions. Nanoparticulate drug delivery is the most predominant way to improve dermal penetration and have gained remarkable recognition for targeted delivery of therapeutic payload and reduced off-target effects. Therefore, the current work aimed to fabricate polyelectrolyte complex nanoparticles (PENPs) containing two natural biodegradable polymers namely; chitosan (CS) and hyaluronic acid (HA) to deliver the non steroidal anti-inflammatory drug etoricoxib (ETX) to the deeper skin layers to alleviate any systemic toxicity and improve its therapeutic efficacy against ICD. ETX loaded-PENPs were prepared and optimized utilizing three independent variables; CS: HA mass ratio, chitosan solution pH and molecular weight of chitosan. Following the various physicochemical optimizations, the optimum ETX-loaded PENPs formulation (N1 0.15 %) exhibited spherical nature with an average diameter of 267.9 ± 9.4 nm, Polydispersity index of 0.366 ± 0.02, and positive zeta potential (+32.9 ± 0.47 mV). The drug was successfully entrapped and the entrapment efficiency reached 95 ± 0.2 %. N1 0.15 % formula showed efficient dermal targeting by significantly enhanced percentage of ETX permeated and retained in the various skin layers in comparison to ETX conventional gel during the ex-vivo skin permeation experiments. Furthermore, N1 0.15 % exhibited superior anti-inflammatory properties in vivo compared to ETX conventional gel in dithranol induced mice ear dermatitis. Conclusively, ETX-loaded PENPs could be a promising therapeutic approach for effecient management of ICD.
Collapse
Affiliation(s)
- Khaled E Abuelella
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October 6 University, 6th of October City, Giza 12585, Egypt
| | - Hend Abd-Allah
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| | - Sara M Soliman
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October 6 University, 6th of October City, Giza 12585, Egypt
| | - Mona M A Abdel-Mottaleb
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
3
|
Hussain Z, Thu HE, Rawas-Qalaji M, Naseem M, Khan S, Sohail M. Recent developments and advanced strategies for promoting burn wound healing. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
4
|
Lozano Chamizo L, Luengo Morato Y, Ovejero Paredes K, Contreras Caceres R, Filice M, Marciello M. Ionotropic Gelation-Based Synthesis of Chitosan-Metal Hybrid Nanoparticles Showing Combined Antimicrobial and Tissue Regenerative Activities. Polymers (Basel) 2021; 13:3910. [PMID: 34833209 PMCID: PMC8618652 DOI: 10.3390/polym13223910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/29/2021] [Accepted: 11/08/2021] [Indexed: 12/14/2022] Open
Abstract
The treatment of skin wounds poses significant clinical challenges, including the risk of bacterial infection. In particular due to its antimicrobial and tissue regeneration abilities chitosan (a polymeric biomaterial obtained by the deacetylation of chitin) has received extensive attention for its effectiveness in promoting skin wound repair. On the other hand, due to their intrinsic characteristics, metal nanoparticles (e.g., silver (Ag), gold (Au) or iron oxide (Fe3O4)) have demonstrated therapeutic properties potentially useful in the field of skin care. Therefore, the combination of these two promising materials (chitosan plus metal oxide NPs) could permit the achievement of a promising nanohybrid with enhanced properties that could be applied in advanced skin treatment. In this work, we have optimized the synthesis protocol of chitosan/metal hybrid nanoparticles by means of a straightforward synthetic method, ionotropic gelation, which presents a wide set of advantages. The synthesized hybrid NPs have undergone to a full physicochemical characterization. After that, the in vitro antibacterial and tissue regenerative activities of the achieved hybrids have been assessed in comparison to their individual constituent. As result, we have demonstrated the synergistic antibacterial plus the tissue regeneration enhancement of these nanohybrids as a consequence of the fusion between chitosan and metallic nanoparticles, especially in the case of chitosan/Fe3O4 hybrid nanoparticles.
Collapse
Affiliation(s)
- Laura Lozano Chamizo
- Nanobiotechnology for Life Sciences Laboratory, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (L.L.C.); (Y.L.M.); (K.O.P.)
- Microscopy and Dynamic Imaging Unit, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Calle Melchor Fernández Almagro 3, 28029 Madrid, Spain
- Atrys Health, 28001 Madrid, Spain
| | - Yurena Luengo Morato
- Nanobiotechnology for Life Sciences Laboratory, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (L.L.C.); (Y.L.M.); (K.O.P.)
| | - Karina Ovejero Paredes
- Nanobiotechnology for Life Sciences Laboratory, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (L.L.C.); (Y.L.M.); (K.O.P.)
- Microscopy and Dynamic Imaging Unit, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Calle Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Rafael Contreras Caceres
- Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, 28040 Madrid, Spain;
| | - Marco Filice
- Nanobiotechnology for Life Sciences Laboratory, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (L.L.C.); (Y.L.M.); (K.O.P.)
- Microscopy and Dynamic Imaging Unit, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Calle Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Marzia Marciello
- Nanobiotechnology for Life Sciences Laboratory, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (L.L.C.); (Y.L.M.); (K.O.P.)
| |
Collapse
|
5
|
Bonferoni MC, Caramella C, Catenacci L, Conti B, Dorati R, Ferrari F, Genta I, Modena T, Perteghella S, Rossi S, Sandri G, Sorrenti M, Torre ML, Tripodo G. Biomaterials for Soft Tissue Repair and Regeneration: A Focus on Italian Research in the Field. Pharmaceutics 2021; 13:pharmaceutics13091341. [PMID: 34575417 PMCID: PMC8471088 DOI: 10.3390/pharmaceutics13091341] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 12/22/2022] Open
Abstract
Tissue repair and regeneration is an interdisciplinary field focusing on developing bioactive substitutes aimed at restoring pristine functions of damaged, diseased tissues. Biomaterials, intended as those materials compatible with living tissues after in vivo administration, play a pivotal role in this area and they have been successfully studied and developed for several years. Namely, the researches focus on improving bio-inert biomaterials that well integrate in living tissues with no or minimal tissue response, or bioactive materials that influence biological response, stimulating new tissue re-growth. This review aims to gather and introduce, in the context of Italian scientific community, cutting-edge advancements in biomaterial science applied to tissue repair and regeneration. After introducing tissue repair and regeneration, the review focuses on biodegradable and biocompatible biomaterials such as collagen, polysaccharides, silk proteins, polyesters and their derivatives, characterized by the most promising outputs in biomedical science. Attention is pointed out also to those biomaterials exerting peculiar activities, e.g., antibacterial. The regulatory frame applied to pre-clinical and early clinical studies is also outlined by distinguishing between Advanced Therapy Medicinal Products and Medical Devices.
Collapse
Affiliation(s)
| | | | | | - Bice Conti
- Correspondence: (M.C.B.); (B.C.); (F.F.)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Chitosan-Coated Poly(lactic acid) Nanofibres Loaded with Essential Oils for Wound Healing. Polymers (Basel) 2021; 13:polym13162582. [PMID: 34451121 PMCID: PMC8398845 DOI: 10.3390/polym13162582] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/30/2021] [Accepted: 07/31/2021] [Indexed: 01/05/2023] Open
Abstract
Chronic skin wounds are characterised by a non-healing process that makes necessary the application of wound dressings on the damaged area to promote and facilitate the recovery of skin’s physiological integrity. The aim of the present work is to develop a bioactive dressing that, once applied on the injured tissue, would exert antibacterial activity and promote adhesion and proliferation of fibroblasts. Nanofibres consisting of poly(lactic acid) (PLA) and essential oils (EOs) were electrospun and coated with a medium molecular weight chitosan (CS). Black pepper essential oil (BP-EO) or limonene (L), well-known for their antibacterial properties, were added to the PLA/acetone solution before electrospinning; phase separation phenomena occurred due to the poor solubility of the EOs in the PLA solution and led to fibres having surface nano-pores. The porous electrospun fibres were coated with CS to produce hydrophilic membranes that were easy to handle, biocompatible, and suited to promote cellular proliferation. The fibrous scaffolds were tested in terms of mechanical resistance, wettability, antibacterial activity, in-vitro cytotoxicity, and ability to promote fibroblasts’ adhesion and proliferation. The results obtained proved that the CS coating improved the hydrophilicity of the fibrous mats, enhanced EO’s antibacterial potential, and promoted cell adhesion and proliferation.
Collapse
|
7
|
Functionalized Chitosan Nanomaterials: A Jammer for Quorum Sensing. Polymers (Basel) 2021; 13:polym13152533. [PMID: 34372136 PMCID: PMC8348235 DOI: 10.3390/polym13152533] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/23/2021] [Accepted: 07/25/2021] [Indexed: 12/02/2022] Open
Abstract
The biggest challenge in the present-day healthcare scenario is the rapid emergence and spread of antimicrobial resistance due to the rampant use of antibiotics in daily therapeutics. Such drug resistance is associated with the enhancement of microbial virulence and the acquisition of the ability to evade the host’s immune response under the shelter of a biofilm. Quorum sensing (QS) is the mechanism by which the microbial colonies in a biofilm modulate and intercept communication without direct interaction. Hence, the eradication of biofilms through hindering this communication will lead to the successful management of drug resistance and may be a novel target for antimicrobial chemotherapy. Chitosan shows microbicidal activities by acting electrostatically with its positively charged amino groups, which interact with anionic moieties on microbial species, causing enhanced membrane permeability and eventual cell death. Therefore, nanoparticles (NPs) prepared with chitosan possess a positive surface charge and mucoadhesive properties that can adhere to microbial mucus membranes and release their drug load in a constant release manner. As the success in therapeutics depends on the targeted delivery of drugs, chitosan nanomaterial, which displays low toxicity, can be safely used for eradicating a biofilm through attenuating the quorum sensing (QS). Since the anti-biofilm potential of chitosan and its nano-derivatives are reported for various microorganisms, these can be used as attractive tools for combating chronic infections and for the preparation of functionalized nanomaterials for different medical devices, such as orthodontic appliances. This mini-review focuses on the mechanism of the downregulation of quorum sensing using functionalized chitosan nanomaterials and the future prospects of its applications.
Collapse
|
8
|
Zarrintaj P, Khodadadi Yazdi M, Youssefi Azarfam M, Zare M, Ramsey JD, Seidi F, Reza Saeb M, Ramakrishna S, Mozafari M. Injectable Cell-Laden Hydrogels for Tissue Engineering: Recent Advances and Future Opportunities. Tissue Eng Part A 2021; 27:821-843. [PMID: 33779319 DOI: 10.1089/ten.tea.2020.0341] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Tissue engineering intends to create functionalized tissues/organs for regenerating the injured parts of the body using cells and scaffolds. A scaffold as a supporting substrate affects the cells' fate and behavior, including growth, proliferation, migration, and differentiation. Hydrogel as a biomimetic scaffold plays an important role in cellular behaviors and tissue repair, providing a microenvironment close to the extracellular matrix with adjustable mechanical and chemical features that can provide sufficient nutrients and oxygen. To enhance the hydrogel performance and compatibility with native niche, the cell-laden hydrogel is an attractive choice to mimic the function of the targeted tissue. Injectable hydrogels, due to the injectability, are ideal options for in vivo minimally invasive treatment. Cell-laden injectable hydrogels can be utilized for tissue regeneration in a noninvasive way. This article reviews the recent advances and future opportunities of cell-laden injectable hydrogels and their functions in tissue engineering. It is expected that this strategy allows medical scientists to develop a minimally invasive method for tissue regeneration in clinical settings. Impact statement Cell-laden hydrogels have been vastly utilized in biomedical application, especially tissue engineering. It is expected that this upcoming review article will be a motivation for the community. Although this strategy is still in its early stages, this concept is so alluring that it has attracted all scientists in the community and specialists at academic health centers. Certainly, this approach requires more development, and a bunch of crucial challenges have yet to be solved. In this review, we discuss this various aspects of this approach, the questions that must be answered, the expectations associated with it, and rational restrictions to develop injectable cell-laden hydrogels.
Collapse
Affiliation(s)
- Payam Zarrintaj
- School of Chemical Engineering, Oklahoma State University, Stillwater, Oklahoma, USA
| | | | | | - Mehrak Zare
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Joshua D Ramsey
- School of Chemical Engineering, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Farzad Seidi
- Provincial Key Lab of Pulp and Paper Science and Technology and Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, Nanjing, China
| | - Mohammad Reza Saeb
- Center of Excellence in Electrochemistry, University of Tehran, Tehran, Iran
| | - Seeram Ramakrishna
- Center for Nanofibers and Nanotechnology, Nanoscience and Nanotechnology Initiative, and Faculty of Engineering, National University of Singapore, Singapore, Singapore.,Department of Mechanical Engineering, Faculty of Engineering, National University of Singapore, Singapore, Singapore
| | - Masoud Mozafari
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
|
10
|
Self-Associating Polymers Chitosan and Hyaluronan for Constructing Composite Membranes as Skin-Wound Dressings Carrying Therapeutics. Molecules 2021; 26:molecules26092535. [PMID: 33926140 PMCID: PMC8123578 DOI: 10.3390/molecules26092535] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/14/2021] [Accepted: 04/20/2021] [Indexed: 12/23/2022] Open
Abstract
Chitosan, industrially acquired by the alkaline N-deacetylation of chitin, belongs to β-N-acetyl-glucosamine polymers. Another β-polymer is hyaluronan. Chitosan, a biodegradable, non-toxic, bacteriostatic, and fungistatic biopolymer, has numerous applications in medicine. Hyaluronan, one of the major structural components of the extracellular matrix in vertebrate tissues, is broadly exploited in medicine as well. This review summarizes that these two biopolymers have a mutual impact on skin wound healing as skin wound dressings and carriers of remedies.
Collapse
|
11
|
Catanzano O, Gomez d'Ayala G, D'Agostino A, Di Lorenzo F, Schiraldi C, Malinconico M, Lanzetta R, Bonina F, Laurienzo P. PEG-crosslinked-chitosan hydrogel films for in situ delivery of Opuntia ficus-indica extract. Carbohydr Polym 2021; 264:117987. [PMID: 33910725 DOI: 10.1016/j.carbpol.2021.117987] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 01/29/2021] [Accepted: 03/23/2021] [Indexed: 12/12/2022]
Abstract
In the present study, chitosan-based wound dressings loaded with the extract of Opuntia ficus-indica (OPU) were prepared. OPU is known for its capability to accelerate skin injury repair. Chitosan (Ch) was crosslinked with a low molecular weight diepoxy-poly(ethylene glycol) (diePEG), and hydrogel films with different Ch/PEG composition and OPU content were prepared by casting. The occurrence of crosslinking reaction was confirmed by FTIR spectroscopy. FTIR and DSC analysis suggested that ionic interactions occur between chitosan and OPU. Tensile tests evidenced that the crosslinking caused a decrease of Young's modulus, which approaches the value of the human skin modulus. Swelling characteristics, water vapor transmission rate, and release kinetics demonstrated that these films are adequate for the proposed application. Finally, a scratch test on a keratinocytes monolayer showed that the rate of cell migration in the presence of OPU-loaded samples is about 3-fold higher compared to unloaded films, confirming the repairing activity of OPU.
Collapse
Affiliation(s)
- O Catanzano
- Institute for Polymers, Composites and Biomaterials (IPCB) - CNR, Via Campi Flegrei 34, Pozzuoli, Naples, Italy.
| | - G Gomez d'Ayala
- Institute for Polymers, Composites and Biomaterials (IPCB) - CNR, Via Campi Flegrei 34, Pozzuoli, Naples, Italy.
| | - A D'Agostino
- Department of Experimental Medicine, School of Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7, 80138 Naples, Italy.
| | - F Di Lorenzo
- Department of Chemical Sciences, University of Naples "Federico II", Complesso Universitario Monte S. Angelo, Via Cinthia 4, 80126 Naples, Italy.
| | - C Schiraldi
- Department of Experimental Medicine, School of Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7, 80138 Naples, Italy.
| | - M Malinconico
- Institute for Polymers, Composites and Biomaterials (IPCB) - CNR, Via Campi Flegrei 34, Pozzuoli, Naples, Italy.
| | - R Lanzetta
- Department of Chemical Sciences, University of Naples "Federico II", Complesso Universitario Monte S. Angelo, Via Cinthia 4, 80126 Naples, Italy.
| | - F Bonina
- Department of Drug Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy.
| | - P Laurienzo
- Institute for Polymers, Composites and Biomaterials (IPCB) - CNR, Via Campi Flegrei 34, Pozzuoli, Naples, Italy.
| |
Collapse
|
12
|
Versatile Use of Chitosan and Hyaluronan in Medicine. Molecules 2021; 26:molecules26041195. [PMID: 33672365 PMCID: PMC7926841 DOI: 10.3390/molecules26041195] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/17/2021] [Accepted: 02/20/2021] [Indexed: 12/22/2022] Open
Abstract
Chitosan is industrially acquired by the alkaline N-deacetylation of chitin. Chitin belongs to the β-N-acetyl-glucosamine polymers, providing structure, contrary to α-polymers, which provide food and energy. Another β-polymer providing structure is hyaluronan. A lot of studies have been performed on chitosan to explore its industrial use. Since chitosan is biodegradable, non-toxic, bacteriostatic, and fungistatic, it has numerous applications in medicine. Hyaluronan, one of the major structural components of the extracellular matrix in vertebrate tissues, is broadly exploited in medicine as well. This review summarizes the main areas where these two biopolymers have an impact. The reviewed areas mostly cover most medical applications, along with non-medical applications, such as cosmetics.
Collapse
|
13
|
Lencova S, Zdenkova K, Jencova V, Demnerova K, Zemanova K, Kolackova R, Hozdova K, Stiborova H. Benefits of Polyamide Nanofibrous Materials: Antibacterial Activity and Retention Ability for Staphylococcus Aureus. NANOMATERIALS 2021; 11:nano11020480. [PMID: 33668651 PMCID: PMC7918127 DOI: 10.3390/nano11020480] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 01/17/2023]
Abstract
Although nanomaterials are used in many fields, little is known about the fundamental interactions between nanomaterials and microorganisms. To test antimicrobial properties and retention ability, 13 electrospun polyamide (PA) nanomaterials with different morphology and functionalization with various concentrations of AgNO3 and chlorhexidine (CHX) were analyzed. Staphylococcus aureus CCM 4516 was used to verify the designed nanomaterials’ inhibition and permeability assays. All functionalized PAs suppressed bacterial growth, and the most effective antimicrobial nanomaterial was evaluated to be PA 12% with 4.0 wt% CHX (inhibition zones: 2.9 ± 0.2 mm; log10 suppression: 8.9 ± 0.0; inhibitory rate: 100.0%). Furthermore, the long-term stability of all functionalized PAs was tested. These nanomaterials can be stored at least nine months after their preparation without losing their antibacterial effect. A filtration apparatus was constructed for testing the retention of PAs. All of the PAs effectively retained the filtered bacteria with log10 removal of 3.3–6.8 and a retention rate of 96.7–100.0%. Surface density significantly influenced the retention efficiency of PAs (p ≤ 0.01), while the effect of fiber diameter was not confirmed (p ≥ 0.05). Due to their stability, retention, and antimicrobial properties, they can serve as a model for medical or filtration applications.
Collapse
Affiliation(s)
- Simona Lencova
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic; (K.Z.); (K.D.); (K.Z.); (R.K.)
- Correspondence: (S.L.); (H.S.); Tel.: +420-220-44-5196 (S.L.); +420-220-44-5204 (H.S.)
| | - Kamila Zdenkova
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic; (K.Z.); (K.D.); (K.Z.); (R.K.)
| | - Vera Jencova
- Faculty of Science, Humanities and Education, Technical University of Liberec, Studentska 1402/2, 461 17 Liberec 1, Czech Republic;
| | - Katerina Demnerova
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic; (K.Z.); (K.D.); (K.Z.); (R.K.)
| | - Klara Zemanova
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic; (K.Z.); (K.D.); (K.Z.); (R.K.)
| | - Radka Kolackova
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic; (K.Z.); (K.D.); (K.Z.); (R.K.)
| | | | - Hana Stiborova
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic; (K.Z.); (K.D.); (K.Z.); (R.K.)
- Correspondence: (S.L.); (H.S.); Tel.: +420-220-44-5196 (S.L.); +420-220-44-5204 (H.S.)
| |
Collapse
|
14
|
Hashemikia S, Farhangpazhouh F, Parsa M, Hasan M, Hassanzadeh A, Hamidi M. Fabrication of ciprofloxacin-loaded chitosan/polyethylene oxide/silica nanofibers for wound dressing application: In vitro and in vivo evaluations. Int J Pharm 2021; 597:120313. [PMID: 33540002 DOI: 10.1016/j.ijpharm.2021.120313] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 12/15/2022]
Abstract
Silica plays an effective role in collagen creation; hence, the degradation products of silica-based materials accelerate wound healing. In this regard, chitosan/polyethylene oxide/silica hybrid nanofibers were prepared by the combining the sol-gel method with electrospinning technique to accelerate the wound healing process. Ciprofloxacin, as an antibacterial drug, was then added to the electrospinning mixture. The nanofibers were characterized by SEM, EDX, X-ray mapping, TEM, TGA, FTIR, and XRD analysis. The degradation, swelling ratio, and release of ciprofloxacin were investigated in PBS. The prepared nanofiber could absorb water, maintain its morphological integrity during the degradation process, and gradually release ciprofloxacin. The nanofibers revealed an efficient antibacterial activity against Escherichia coli and Staphylococcus aureus. Cell viability assays showed that the nanofibers had no cytotoxicity against L929 mouse fibroblast and HFFF2 human foreskin fibroblast cell lines. The potential of the chitosan/polyethylene oxide/silica/ciprofloxacin nanofiber for healing full-thickness wound was assessed by applying the scaffold in the dorsal cutaneous wounds of the Balb/C mice. The white blood cell counts of the animals indicated the nanofiber-treated mice compared with the untreated ones had less infection and inflammation. According to the histopathologic data, the prepared nanofiber accelerated and enhanced tissue regeneration by increasing fibroblast cells and angiogenesis as well as decreasing the inflammation phase. The findings suggest that the prepared antibacterial scaffold with drug delivery properties could be an appropriate candidate for many medical and hygienic applications, especially as a bio-compatible and bio-degradable wound dressing.
Collapse
Affiliation(s)
- Samaneh Hashemikia
- Pharmaceutical Nanotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran; Department of Textile Engineering, Faculty of Environmental Sciences, Urmia University of Technology, Urmia, Iran.
| | - Farhad Farhangpazhouh
- Department of Pathobiology, Faculty of Veterinary Medicine, Shahid Chamran University, Ahwaz, Iran
| | - Maliheh Parsa
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran; Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Maryam Hasan
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Atiyeh Hassanzadeh
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran; Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mehrdad Hamidi
- Pharmaceutical Nanotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran; Department of Pharmaceutics, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran.
| |
Collapse
|
15
|
El-Aassar MR, Ibrahim OM, Fouda MMG, Fakhry H, Ajarem J, Maodaa SN, Allam AA, Hafez EE. Wound dressing of chitosan-based-crosslinked gelatin/ polyvinyl pyrrolidone embedded silver nanoparticles, for targeting multidrug resistance microbes. Carbohydr Polym 2020; 255:117484. [PMID: 33436244 DOI: 10.1016/j.carbpol.2020.117484] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/12/2020] [Accepted: 11/19/2020] [Indexed: 12/16/2022]
Abstract
Wound dressing composed of chitosan, based crosslinked gelatin/ polyvinyl pyrrolidone, embedded silver nanoparticles were fabricated using solution casting method. The membrane was characterized by FTIR, SEM and TGA. Glutaraldehyde (0.5 %) was used for the crosslinking of membrane components and associated with 7-folds boosted mechanical performance, 28 % more hydrolytic stability, 3-folds thickness reduction and morphological roughness. Silver nanoparticles were characterized by UV-vis, XRD and TEM for an average size of 9.9 nm. The membrane with higher concentration of silver nanoparticles showed maximum antibacterial activity against human pathogenic bacteria; and the measured inhibition zones ranged from 1.5 to 3 cm. The activity of the particles ranged from severe to complete reduction in Penicillin, Erythromycin and Macrolide family's resistance genes expression such as β-Lactamase, mecA and erm. This developed membrane can serve as promising and cost-effective system against severe diabetic and burn wound infections.
Collapse
Affiliation(s)
- M R El-Aassar
- Polymer Materials Research Department, Advanced Technology and New Material Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria 21934, Egypt.
| | - Omar M Ibrahim
- Polymer Materials Research Department, Advanced Technology and New Material Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria 21934, Egypt; Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO, United States
| | - Moustafa M G Fouda
- Pre-Treatment and Finishing of Cellulosic Fabric Department, Textile Industries Research Division, National Research Center, 33 El- Behooth St, Dokki, Giza, 12311, Egypt.
| | - Hala Fakhry
- Polymer Materials Research Department, Advanced Technology and New Material Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria 21934, Egypt
| | - Jamaan Ajarem
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Saleh N Maodaa
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Ahmed A Allam
- Department of Zoology, Faculty of Science, Beni-suef University, Beni-suef, 65211 Egypt
| | - Elsayed E Hafez
- Department of Plant Protection and Bimolecular Diagnosis, Arid Lands Cultivation Research Institute (ALCRI), City of Scientific Research and Technological Applications, New Borg El-Arab City, Universities and Research Institutes District, Alexandria 21934, Egypt
| |
Collapse
|
16
|
Bari E, Di Silvestre D, Mastracci L, Grillo F, Grisoli P, Marrubini G, Nardini M, Mastrogiacomo M, Sorlini M, Rossi R, Torre ML, Mauri P, Sesana G, Perteghella S. GMP-compliant sponge-like dressing containing MSC lyo-secretome: Proteomic network of healing in a murine wound model. Eur J Pharm Biopharm 2020; 155:37-48. [PMID: 32784044 DOI: 10.1016/j.ejpb.2020.08.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/19/2020] [Accepted: 08/05/2020] [Indexed: 12/22/2022]
Abstract
Chronic wounds account for 3% of total healthcare expenditure of developed countries; thus, innovative therapies, including Mesenchymal Stem Cells (MSCs) end their exosomes are increasingly considered, even if the activity depends on the whole secretome, made of both soluble proteins and extracellular vesicles. In this work, we prove for the first time the in vivo activity of the whole secretome formulated in a sponge-like alginate wound dressing to obtain the controlled release of bioactive substances. The product has been prepared in a public GMP-compliant facility by a scalable process; based on the murine model, treated wounds healed faster than controls without complications or infections. The treatment induced a higher acute inflammatory process in a short time and sustained the proliferative phase by accelerating fibroblast migration, granulation tissue formation, neovascularization and collagen deposition. The efficacy was substantially supported by the agreement between histological and proteomic findings. In addition to functional modules related to proteolysis, complement and coagulation cascades, protein folding and ECM remodeling, in treated skin, emerged the role of specific wound healing related proteins, including Tenascin (Tnc), Decorin (Dcn) and Epidermal growth factor receptor (EGFR). Of note, Decorin and Tenascin were also components of secretome, and network analysis suggests a potential role in regulating EGFR. Although further experiments will be necessary to characterize better the molecular keys induced by treatment, overall, our results confirm the whole secretome efficacy as novel "cell-free therapy". Also, sponge-like topical dressing containing the whole secretome, GMP- compliant and "ready-off-the-shelf", may represent a relevant point to facilitate its translation into the clinic.
Collapse
Affiliation(s)
- Elia Bari
- University of Pavia, Department of Drug Sciences, Pavia, Italy
| | - Dario Di Silvestre
- Institute for Biomedical Technologies, F.lli Cervi 93, Segrate, Milan, Italy
| | - Luca Mastracci
- University of Genoa, Department of Surgical Science and Integrated Diagnostics, Genoa, Italy; University of Genoa, Department of Experimental Medicine, Genoa, Italy
| | - Federica Grillo
- University of Genoa, Department of Surgical Science and Integrated Diagnostics, Genoa, Italy; University of Genoa, Department of Experimental Medicine, Genoa, Italy
| | - Pietro Grisoli
- University of Pavia, Department of Drug Sciences, Pavia, Italy
| | | | - Marta Nardini
- University of Genoa, Department of Internal Medicine, Genoa, Italy
| | | | - Marzio Sorlini
- PharmaExceed S.r.l., Pavia, Italy; University of Applied Sciences and Arts of Southern Switzerland, Manno, Switzerland
| | - Rossana Rossi
- Institute for Biomedical Technologies, F.lli Cervi 93, Segrate, Milan, Italy
| | - Maria Luisa Torre
- University of Pavia, Department of Drug Sciences, Pavia, Italy; PharmaExceed S.r.l., Pavia, Italy.
| | - Pierluigi Mauri
- Institute for Biomedical Technologies, F.lli Cervi 93, Segrate, Milan, Italy
| | - Giovanni Sesana
- Tissue Bank and Tissue Therapy Unit, Emergency and Acceptance Department, ASST Niguarda Hospital, Piazza Ospedale Maggiore 3, Milan, Italy
| | - Sara Perteghella
- University of Pavia, Department of Drug Sciences, Pavia, Italy; PharmaExceed S.r.l., Pavia, Italy
| |
Collapse
|
17
|
Faccendini A, Ruggeri M, Miele D, Rossi S, Bonferoni MC, Aguzzi C, Grisoli P, Viseras C, Vigani B, Sandri G, Ferrari F. Norfloxacin-Loaded Electrospun Scaffolds: Montmorillonite Nanocomposite vs. Free Drug. Pharmaceutics 2020; 12:pharmaceutics12040325. [PMID: 32260441 PMCID: PMC7238150 DOI: 10.3390/pharmaceutics12040325] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 12/11/2022] Open
Abstract
Infections in nonhealing wounds remain one of the major challenges. Recently, nanomedicine approach seems a valid option to overcome the antibiotic resistance mechanisms. The aim of this study was the development of three types of polysaccharide-based scaffolds (chitosan-based (CH), chitosan/chondroitin sulfate-based (CH/CS), chitosan/hyaluronic acid-based (CH/HA)), as dermal substitutes, to be loaded with norfloxacin, intended for the treatment of infected wounds. The scaffolds have been loaded with norfloxacin as a free drug (N scaffolds) or in montmorillonite nanocomposite (H—hybrid-scaffolds). Chitosan/glycosaminoglycan (chondroitin sulfate or hyaluronic acid) scaffolds were prepared by means of electrospinning with a simple, one-step process. The scaffolds were characterized by 500 nm diameter fibers with homogeneous structures when norfloxacin was loaded as a free drug. On the contrary, the presence of nanocomposite caused a certain degree of surface roughness, with fibers having 1000 nm diameters. The presence of norfloxacin–montmorillonite nanocomposite (1%) caused higher deformability (90–120%) and lower elasticity (5–10 mN/cm2), decreasing the mechanical resistance of the systems. All the scaffolds were proven to be degraded via lysozyme (this should ensure scaffold resorption) and this sustained the drug release (from 50% to 100% in 3 days, depending on system composition), especially when the drug was loaded in the scaffolds as a nanocomposite. Moreover, the scaffolds were able to decrease the bioburden at least 100-fold, proving that drug loading in the scaffolds did not impair the antimicrobial activity of norfloxacin. Chondroitin sulfate and montmorillonite in the scaffolds are proven to possess a synergic performance, enhancing the fibroblast proliferation without impairing norfloxacin’s antimicrobial properties. The scaffold based on chondroitin sulfate, containing 1% norfloxacin in the nanocomposite, demonstrated adequate stiffness to sustain fibroblast proliferation and the capability to sustain antimicrobial properties to prevent/treat nonhealing wound infection during the healing process.
Collapse
Affiliation(s)
- Angela Faccendini
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (A.F.); (M.R.); (D.M.); (S.R.); (M.C.B.); (P.G.); (B.V.); (F.F.)
| | - Marco Ruggeri
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (A.F.); (M.R.); (D.M.); (S.R.); (M.C.B.); (P.G.); (B.V.); (F.F.)
| | - Dalila Miele
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (A.F.); (M.R.); (D.M.); (S.R.); (M.C.B.); (P.G.); (B.V.); (F.F.)
| | - Silvia Rossi
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (A.F.); (M.R.); (D.M.); (S.R.); (M.C.B.); (P.G.); (B.V.); (F.F.)
| | - Maria Cristina Bonferoni
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (A.F.); (M.R.); (D.M.); (S.R.); (M.C.B.); (P.G.); (B.V.); (F.F.)
| | - Carola Aguzzi
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain; (C.A.); (C.V.)
| | - Pietro Grisoli
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (A.F.); (M.R.); (D.M.); (S.R.); (M.C.B.); (P.G.); (B.V.); (F.F.)
| | - Cesar Viseras
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain; (C.A.); (C.V.)
| | - Barbara Vigani
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (A.F.); (M.R.); (D.M.); (S.R.); (M.C.B.); (P.G.); (B.V.); (F.F.)
| | - Giuseppina Sandri
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (A.F.); (M.R.); (D.M.); (S.R.); (M.C.B.); (P.G.); (B.V.); (F.F.)
- Correspondence: ; Tel.: +0039-0382-987728
| | - Franca Ferrari
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (A.F.); (M.R.); (D.M.); (S.R.); (M.C.B.); (P.G.); (B.V.); (F.F.)
| |
Collapse
|
18
|
Djekic L, Martinović M, Ćirić A, Fraj J. Composite chitosan hydrogels as advanced wound dressings with sustained ibuprofen release and suitable application characteristics. Pharm Dev Technol 2019; 25:332-339. [DOI: 10.1080/10837450.2019.1701495] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Ljiljana Djekic
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Martina Martinović
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Ana Ćirić
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Jadranka Fraj
- Department of Biotechnology and Pharmaceutical Engineering, University of Novi Sad, Novi Sad, Serbia
| |
Collapse
|
19
|
Bari E, Ferrarotti I, Di Silvestre D, Grisoli P, Barzon V, Balderacchi A, Torre ML, Rossi R, Mauri P, Corsico AG, Perteghella S. Adipose Mesenchymal Extracellular Vesicles as Alpha-1-Antitrypsin Physiological Delivery Systems for Lung Regeneration. Cells 2019; 8:E965. [PMID: 31450843 PMCID: PMC6770759 DOI: 10.3390/cells8090965] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/14/2019] [Accepted: 08/23/2019] [Indexed: 12/15/2022] Open
Abstract
Accumulating evidence shows that Mesenchymal Stem/Stromal Cells (MSCs) exert their therapeutic effects by the release of secretome, made of both soluble proteins and nano/microstructured extracellular vesicles (EVs). In this work, for the first time, we proved by a proteomic investigation that adipose-derived (AD)-MSC-secretome contains alpha-1-antitrypsin (AAT), the main elastase inhibitor in the lung, 72 other proteins involved in protease/antiprotease balance, and 46 proteins involved in the response to bacteria. By secretome fractionation, we proved that AAT is present both in the soluble fraction of secretome and aggregated and/or adsorbed on the surface of EVs, that can act as natural carriers promoting AAT in vivo stability and activity. To modulate secretome composition, AD-MSCs were cultured in different stimulating conditions, such as serum starvation or chemicals (IL-1β and/or dexamethasone) and the expression of the gene encoding for AAT was increased. By testing in vitro the anti-elastase activity of MSC-secretome, a dose-dependent effect was observed; chemical stimulation of AD-MSCs did not increase their secretome anti-elastase activity. Finally, MSC-secretome showed anti-bacterial activity on Gram-negative bacteria, especially for Klebsiellapneumoniae. These preliminary results, in addition to the already demonstrated immunomodulation, pave the way for the use of MSC-secretome in the treatment of AAT-deficiency lung diseases.
Collapse
Affiliation(s)
- Elia Bari
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Ilaria Ferrarotti
- Center for Diagnosis of Inherited Alpha1-antitrypsin Deficiency, Department of Internal Medicine and Therapeutics, Pneumology Unit, IRCCS San Matteo Hospital Foundation, University of Pavia, 27100 Pavia, Italy
| | - Dario Di Silvestre
- Institute for Biomedical Technologies, F.lli Cervi 93, 20090 Segrate, Milan, Italy
| | - Pietro Grisoli
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Valentina Barzon
- Center for Diagnosis of Inherited Alpha1-antitrypsin Deficiency, Department of Internal Medicine and Therapeutics, Pneumology Unit, IRCCS San Matteo Hospital Foundation, University of Pavia, 27100 Pavia, Italy
| | - Alice Balderacchi
- Center for Diagnosis of Inherited Alpha1-antitrypsin Deficiency, Department of Internal Medicine and Therapeutics, Pneumology Unit, IRCCS San Matteo Hospital Foundation, University of Pavia, 27100 Pavia, Italy
| | - Maria Luisa Torre
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
- PharmaExceed S.r.l., Piazza Castello, 19, 27100 Pavia, Italy.
| | - Rossana Rossi
- Institute for Biomedical Technologies, F.lli Cervi 93, 20090 Segrate, Milan, Italy
| | - Pierluigi Mauri
- Institute for Biomedical Technologies, F.lli Cervi 93, 20090 Segrate, Milan, Italy
| | - Angelo Guido Corsico
- Center for Diagnosis of Inherited Alpha1-antitrypsin Deficiency, Department of Internal Medicine and Therapeutics, Pneumology Unit, IRCCS San Matteo Hospital Foundation, University of Pavia, 27100 Pavia, Italy
- PharmaExceed S.r.l., Piazza Castello, 19, 27100 Pavia, Italy
| | - Sara Perteghella
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
- PharmaExceed S.r.l., Piazza Castello, 19, 27100 Pavia, Italy
| |
Collapse
|
20
|
Chitosan/Glycosaminoglycan Scaffolds: The Role of Silver Nanoparticles to Control Microbial Infections in Wound Healing. Polymers (Basel) 2019; 11:polym11071207. [PMID: 31330974 PMCID: PMC6680995 DOI: 10.3390/polym11071207] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 07/09/2019] [Accepted: 07/16/2019] [Indexed: 01/30/2023] Open
Abstract
Cutaneous wounds represent a major issue in medical care, with approximately 300 million chronic and 100 million traumatic wound patients worldwide, and microbial infections slow the healing process. The aim of this work was to develop electrospun scaffolds loaded with silver nanoparticles (AgNPs) to enhance cutaneous healing, preventing wound infections. AgNPs were directly added to polymeric blends based on chitosan (CH) and pullulan (PUL) with hyaluronic acid (HA) or chondroitin sulfate (CS) to be electrospun obtaining nanofibrous scaffolds. Moreover, a scaffold based on CH and PUL and loaded with AgNPs was prepared as a comparison. The scaffolds were characterized by chemico-physical properties, enzymatic degradation, biocompatibility, and antimicrobial properties. All the scaffolds were based on nanofibers (diameters about 500 nm) and the presence of AgNPs was evidenced by TEM and did not modify their morphology. The scaffold degradation was proven by means of lysozyme. Moreover, the AgNPs loaded scaffolds were characterized by a good propensity to promote fibroblast proliferation, avoiding the toxic effect of silver. Furthermore, scaffolds preserved AgNP antimicrobial properties, although silver was entrapped into nanofibers. Chitosan/chondroitin sulfate scaffold loaded with AgNPs demonstrated promotion of fibroblast proliferation and to possess antimicrobial properties, thus representing an interesting tool for the treatment of chronic wounds.
Collapse
|
21
|
García-Villén F, Faccendini A, Aguzzi C, Cerezo P, Bonferoni MC, Rossi S, Grisoli P, Ruggeri M, Ferrari F, Sandri G, Viseras C. Montmorillonite-norfloxacin nanocomposite intended for healing of infected wounds. Int J Nanomedicine 2019; 14:5051-5060. [PMID: 31371946 PMCID: PMC6628958 DOI: 10.2147/ijn.s208713] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 05/24/2019] [Indexed: 12/22/2022] Open
Abstract
Background: Chronic cutaneous wounds represent a major issue in medical care and are often prone to infections. Purpose: The aim of this study was the design of a clay mineral-drug nanocomposite based on montmorillonite and norfloxacin (NF, antimicrobial drug) as a powder for cutaneous application, to enhance wound healing in infected skin lesions. Methods: The nanocomposite has been prepared by means of an intercalation solution procedure. Adsorption isotherm, solid-state characterization of the nanocomposite, drug loading capacity and its release have been performed. Moreover, cytocompatibility, in vitro fibroblast proliferation and antimicrobial activity against Pseudomonas aeruginosa and Staphylococcus aureus were assessed. Results: The clay drug adsorption isotherm demonstrates that the mechanism of NF intercalation into montmorillonite galleries is the adsorption as one single process, due to the charge-charge interaction between protonated NF and negatively charged montmorillonite edges in the interlayer space. Nanocomposite is biocompatible and it is characterized by antimicrobial activity greater than the free drug: this is due to its nanostructure and controlled drug release properties. Conclusion: Considering the results obtained, NF-montmorillonite nanocomposite seems a promising tool to treat infected skin lesions or skin wounds prone to infection, as chronic ulcers (diabetic foot, venous leg ulcers) and burns.
Collapse
Affiliation(s)
- Fatima García-Villén
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, Granada, Spain
| | - Angela Faccendini
- Department of Drug Sciences, Faculty of Pharmacy, University of Pavia, Pavia27100, Italy
| | - Carola Aguzzi
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, Granada, Spain
| | - Pilar Cerezo
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, Granada, Spain
| | | | - Silvia Rossi
- Department of Drug Sciences, Faculty of Pharmacy, University of Pavia, Pavia27100, Italy
| | - Pietro Grisoli
- Department of Drug Sciences, Faculty of Pharmacy, University of Pavia, Pavia27100, Italy
| | - Marco Ruggeri
- Department of Drug Sciences, Faculty of Pharmacy, University of Pavia, Pavia27100, Italy
| | - Franca Ferrari
- Department of Drug Sciences, Faculty of Pharmacy, University of Pavia, Pavia27100, Italy
| | - Giuseppina Sandri
- Department of Drug Sciences, Faculty of Pharmacy, University of Pavia, Pavia27100, Italy
| | - Cesar Viseras
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, Granada, Spain
| |
Collapse
|
22
|
Han GD, Kim JW, Noh SH, Kim SW, Jang EC, Nah JW, Lee YG, Kim MK, Ito Y, Son TI. Potent anti-adhesion agent using a drug-eluting visible-light curable hyaluronic acid derivative. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2018.10.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
23
|
Contardi M, Russo D, Suarato G, Heredia-Guerrero JA, Ceseracciu L, Penna I, Margaroli N, Summa M, Spanò R, Tassistro G, Vezzulli L, Bandiera T, Bertorelli R, Athanassiou A, Bayer IS. Polyvinylpyrrolidone/hyaluronic acid-based bilayer constructs for sequential delivery of cutaneous antiseptic and antibiotic. CHEMICAL ENGINEERING JOURNAL 2019; 358:912-923. [DOI: 10.1016/j.cej.2018.10.048] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
24
|
Thattaruparambil Raveendran N, Mohandas A, Ramachandran Menon R, Somasekharan Menon A, Biswas R, Jayakumar R. Ciprofloxacin- and Fluconazole-Containing Fibrin-Nanoparticle-Incorporated Chitosan Bandages for the Treatment of Polymicrobial Wound Infections. ACS APPLIED BIO MATERIALS 2018; 2:243-254. [DOI: 10.1021/acsabm.8b00585] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
25
|
Efficacy of a Chinese Herbal Medicine Compound Zhangpi Ointment against Hydroxyurea-Induced Leg Ulcers: A Prospective, Randomized, Open-Label, Controlled Clinical Trial. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:9329465. [PMID: 30643539 PMCID: PMC6311290 DOI: 10.1155/2018/9329465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 10/23/2018] [Indexed: 02/03/2023]
Abstract
Objective. The randomized controlled trial was to evaluate the efficacy of topical Chinese herbal Zhangpi Ointment for hydroxyurea-induced leg ulcers in patients with myeloproliferative neoplasms. Patients and Methods. This single-center, prospective, randomized, open-label, controlled clinical trial conducted at Shanghai Ninth People's Hospital enrolled 54 patients with hydroxyurea-induced leg ulcers. Patients were randomly assigned to the control group (n = 27) treated with chlorhexidine dressing or the intervention group (n = 27) treated with the Zhangpi Ointment. Finally, 26 patients in the control group and 23 patients in the intervention group completed 8 weeks of observation. Results. The rate of complete healing was 100% for the intervention group, which was significantly higher than that of the control group (96.15%) (P<0.05). Furthermore, the intervention group achieved a significantly higher rate of wound healing (95.56%) than the control group (69.02%) at week 4 (P<0.01). The intervention group took 34 ± 5 days to achieve complete healing while the control group took 41 ± 7 days (P < 0.01). Moreover, grade 3/4 side effects were observed in neither group. Conclusion. The Zhangpi Ointment is effective in promoting the healing of hydroxyurea-induced leg ulcers in patients with myeloproliferative neoplasms, providing a therapeutic option for a condition that is recalcitrant to conventional therapy.
Collapse
|
26
|
Srisang S, Nasongkla N. Spray coating of foley urinary catheter by chlorhexidine-loadedpoly(ε-caprolactone) nanospheres: effect of lyoprotectants, characteristics, and antibacterial activity evaluation. Pharm Dev Technol 2018; 24:402-409. [PMID: 30265590 DOI: 10.1080/10837450.2018.1502317] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In this study, chlorhexidine-loaded poly(ε-caprolactone) nanospheres (CHX-NS) were prepared and successfully coated on the urinary catheters. Properties of CHX-NS were evaluated including drug loading content and the nanosphere size. Effects of different lyoprotectants for long-term storage of CHX-NS were also investigated. In vitro release study and antibacterial activity were also conducted using 20 cycles coated-urinary catheters. Results showed that the high-pressure emulsification-solvent evaporation technique provided the drug loading content at 1.14 ± 0.16% and the size of nanospheres was 152 ± 37 nm. The suitable lyoprotectant for long-term storage of CHX-NS was sucrose which provided noticeably no aggregation at the degree of reconstitution at 89.95%. The amount of CHX loading on coated catheters was at 4.55 ± 0.31 mg. Drug release from the coated catheters in artificial urine could be prolonged up to 2 weeks and bacteria proliferation was inhibited up to 14 days. These results suggest that the antimicrobial activity of CHX-NS reduces the adherence of the uropathogens to the catheter surface. Chlorhexidine-loaded polymeric nanospheres were fabricated which can be successfully coated on urinary catheters. These systems have potential use for prolonged antimicrobial applications.
Collapse
Affiliation(s)
- Siriwan Srisang
- a Department of Biomedical Engineering, Faculty of Engineering , Mahidol University , Nakhon Pathom , Thailand.,b Department of Engineering , King Mongkut's Institute of Technology Ladkrabang , Chumphon , Thailand
| | - Norased Nasongkla
- a Department of Biomedical Engineering, Faculty of Engineering , Mahidol University , Nakhon Pathom , Thailand
| |
Collapse
|
27
|
Rossi S, Mori M, Vigani B, Bonferoni MC, Sandri G, Riva F, Caramella C, Ferrari F. A novel dressing for the combined delivery of platelet lysate and vancomycin hydrochloride to chronic skin ulcers: Hyaluronic acid particles in alginate matrices. Eur J Pharm Sci 2018; 118:87-95. [PMID: 29574078 DOI: 10.1016/j.ejps.2018.03.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 02/26/2018] [Accepted: 03/20/2018] [Indexed: 11/19/2022]
Abstract
The aim of the present work was to develop a medication allowing for the combined delivery of platelet lysate (PL) and an anti-infective model drug, vancomycin hydrochloride (VCM), to chronic skin ulcers. A simple method was set up for the preparation of hyaluronic acid (HA) core-shell particles, loaded with PL and coated with calcium alginate, embedded in a VCM containing alginate matrix. Two different CaCl2 concentrations were investigated to allow for HA/PL core-shell particle formation. The resulting dressings were characterized for mechanical and hydration properties and tested in vitro (on fibroblasts) and ex-vivo (on skin biopsies) for biological activity. They were found of sufficient mechanical strength to withstand packaging and handling stress and able to absorb a high amount of wound exudate and to form a protective gel on the lesion area. The CaCl2 concentration used for shell formation did not affect VCM release from the alginate matrix, but strongly modified the release of PGFAB (chosen as representative of growth factors present in PL) from HA particles. In vitro and ex vivo tests provided sufficient proof of concept of the ability of dressings to improve skin ulcers healing.
Collapse
Affiliation(s)
- S Rossi
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| | - M Mori
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - B Vigani
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - M C Bonferoni
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - G Sandri
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - F Riva
- Department of Public Health, Experimental and Forensic Medicine, Histology and Embryology Unit, University of Pavia 10, 27100 Pavia, Italy
| | - C Caramella
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - F Ferrari
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
28
|
Mir M, Ali MN, Barakullah A, Gulzar A, Arshad M, Fatima S, Asad M. Synthetic polymeric biomaterials for wound healing: a review. Prog Biomater 2018; 7:1-21. [PMID: 29446015 PMCID: PMC5823812 DOI: 10.1007/s40204-018-0083-4] [Citation(s) in RCA: 260] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 01/27/2018] [Indexed: 12/21/2022] Open
Abstract
Wounds are of a variety of types and each category has its own distinctive healing requirements. This realization has spurred the development of a myriad of wound dressings, each with specific characteristics. It is unrealistic to expect a singular dressing to embrace all characteristics that would fulfill generic needs for wound healing. However, each dressing may approach the ideal requirements by deviating from the 'one size fits all approach', if it conforms strictly to the specifications of the wound and the patient. Indeed, a functional wound dressing should achieve healing of the wound with minimal time and cost expenditures. This article offers an insight into several different types of polymeric materials clinically used in wound dressings and the events taking place at cellular level, which aid the process of healing, while the biomaterial dressing interacts with the body tissue. Hence, the significance of using synthetic polymer films, foam dressings, hydrocolloids, alginate dressings, and hydrogels has been reviewed, and the properties of these materials that conform to wound-healing requirements have been explored. A special section on bioactive dressings and bioengineered skin substitutes that play an active part in healing process has been re-examined in this work.
Collapse
Affiliation(s)
- Mariam Mir
- Biomedical Engineering and Sciences Department, School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology (NUST), Sector H-12, Islamabad, Pakistan
| | - Murtaza Najabat Ali
- Biomedical Engineering and Sciences Department, School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology (NUST), Sector H-12, Islamabad, Pakistan.
| | - Afifa Barakullah
- Biomedical Engineering and Sciences Department, School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology (NUST), Sector H-12, Islamabad, Pakistan
| | - Ayesha Gulzar
- Biomedical Engineering and Sciences Department, School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology (NUST), Sector H-12, Islamabad, Pakistan
| | - Munam Arshad
- Biomedical Engineering and Sciences Department, School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology (NUST), Sector H-12, Islamabad, Pakistan
| | - Shizza Fatima
- Biomedical Engineering and Sciences Department, School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology (NUST), Sector H-12, Islamabad, Pakistan
| | - Maliha Asad
- Biomedical Engineering and Sciences Department, School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology (NUST), Sector H-12, Islamabad, Pakistan
| |
Collapse
|
29
|
Chitosan–hyaluronic acid composite sponge scaffold enriched with Andrographolide-loaded lipid nanoparticles for enhanced wound healing. Carbohydr Polym 2017; 173:441-450. [DOI: 10.1016/j.carbpol.2017.05.098] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 04/25/2017] [Accepted: 05/31/2017] [Indexed: 12/16/2022]
|
30
|
Carvacrol/clay hybrids loaded into in situ gelling films. Int J Pharm 2017; 531:676-688. [DOI: 10.1016/j.ijpharm.2017.06.024] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 06/05/2017] [Accepted: 06/10/2017] [Indexed: 01/27/2023]
|
31
|
Lee EJ, Huh BK, Kim SN, Lee JY, Park CG, Mikos AG, Choy YB. Application of Materials as Medical Devices with Localized Drug Delivery Capabilities for Enhanced Wound Repair. PROGRESS IN MATERIALS SCIENCE 2017; 89:392-410. [PMID: 29129946 PMCID: PMC5679315 DOI: 10.1016/j.pmatsci.2017.06.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The plentiful assortment of natural and synthetic materials can be leveraged to accommodate diverse wound types, as well as different stages of the healing process. An ideal material is envisioned to promote tissue repair with minimal inconvenience for patients. Traditional materials employed in the clinical setting often invoke secondary complications, such as infection, pain, foreign body reaction, and chronic inflammation. This review surveys the repertoire of surgical sutures, wound dressings, surgical glues, orthopedic fixation devices and bone fillers with drug eluting capabilities. It highlights the various techniques developed to effectively incorporate drugs into the selected material or blend of materials for both soft and hard tissue repair. The mechanical and chemical attributes of the resultant materials are also discussed, along with their biological outcomes in vitro and/or in vivo. Perspectives and challenges regarding future research endeavors are also delineated for next-generation wound repair materials.
Collapse
Affiliation(s)
- Esther J. Lee
- Department of Bioengineering, Rice University, MS 142, P.O. Box 1892, Houston, Texas, 77251-1892, USA
| | - Beom Kang Huh
- Interdisciplinary Program for Bioengineering, Seoul National University College of Engineering, Seoul, Republic of Korea
| | - Se Na Kim
- Interdisciplinary Program for Bioengineering, Seoul National University College of Engineering, Seoul, Republic of Korea
| | - Jae Yeon Lee
- Interdisciplinary Program for Bioengineering, Seoul National University College of Engineering, Seoul, Republic of Korea
| | - Chun Gwon Park
- Institute of Medical & Biological Engineering, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Antonios G. Mikos
- Department of Bioengineering, Rice University, MS 142, P.O. Box 1892, Houston, Texas, 77251-1892, USA
- Department of Chemical and Biomolecular Engineering, Rice University, MS 362, P.O. Box 1892, Houston, Texas, 77251-1892, USA
| | - Young Bin Choy
- Interdisciplinary Program for Bioengineering, Seoul National University College of Engineering, Seoul, Republic of Korea
- Institute of Medical & Biological Engineering, Medical Research Center, Seoul National University, Seoul, Republic of Korea
- Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
32
|
Liu D, He C, Liu Z, Xu W. Gentamicin coating of nanotubular anodized titanium implant reduces implant-related osteomyelitis and enhances bone biocompatibility in rabbits. Int J Nanomedicine 2017; 12:5461-5471. [PMID: 28814863 PMCID: PMC5546782 DOI: 10.2147/ijn.s137137] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Titanium and titanium alloy are widely used as orthopedic implants for their favorable mechanical properties and satisfactory biocompatibility. The aim of the present study was to investigate the antibacterial effect and bone cell biocompatibility of a novel implant made with nanotubular anodized titanium coated with gentamicin (NTATi-G) through in vivo study in rabbits. The animals were divided into four groups, each receiving different kinds of implants, that is, NTATi-G, titanium coated with gentamicin (Ti-G), nanotubular anodized titanium uncoated with gentamicin (NTATi) and titanium uncoated with gentamicin (Ti). The results showed that NTATi-G implant prevented implant-related osteomyelitis and enhanced bone biocompatibility in vivo. Moreover, the body temperature of rabbits in NTATi-G and Ti-G groups was lower than those in Ti groups, while the weight of rabbits in NTATi-G and Ti-G groups was heavier than those in NTATi and Ti groups, respectively. White blood cell counts in NTATi-G group were lower than NTATi and Ti groups. Features of myelitis were observed by X-ray films in the NTATi and Ti groups, but not in the NTATi-G and Ti-G groups. The radiographic scores, which assessed pathology and histopathology in bone tissues, were significantly lower in the NTATi-G and Ti-G groups than those in the NTATi and Ti groups, respectively (P<0.05). Meanwhile, explants and bone tissue culture demonstrated significantly less bacterial growth in the NTATi-G and Ti-G groups than in the NTATi and Ti groups, respectively (P<0.01). The bone volume in NTATi-G group was greater than Ti-G group, and little bone formation was seen in NTATi and Ti groups.
Collapse
Affiliation(s)
- Denghui Liu
- Department of Orthopedics, the 113 Military Hospital, Ningbo
| | - Chongru He
- Department of Orthopedics, Changhai Hospital Affiliated to the Second Military Medical University, Shanghai, People's Republic of China
| | - Zhongtang Liu
- Department of Orthopedics, Changhai Hospital Affiliated to the Second Military Medical University, Shanghai, People's Republic of China
| | - Weidong Xu
- Department of Orthopedics, Changhai Hospital Affiliated to the Second Military Medical University, Shanghai, People's Republic of China
| |
Collapse
|
33
|
Ambrogi V, Pietrella D, Nocchetti M, Casagrande S, Moretti V, De Marco S, Ricci M. Montmorillonite–chitosan–chlorhexidine composite films with antibiofilm activity and improved cytotoxicity for wound dressing. J Colloid Interface Sci 2017; 491:265-272. [DOI: 10.1016/j.jcis.2016.12.058] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 12/20/2016] [Accepted: 12/22/2016] [Indexed: 02/05/2023]
|
34
|
Sandri G, Motta S, Bonferoni MC, Brocca P, Rossi S, Ferrari F, Rondelli V, Cantù L, Caramella C, Del Favero E. Chitosan-coupled solid lipid nanoparticles: Tuning nanostructure and mucoadhesion. Eur J Pharm Biopharm 2017; 110:13-18. [DOI: 10.1016/j.ejpb.2016.10.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 08/10/2016] [Accepted: 10/22/2016] [Indexed: 11/27/2022]
|
35
|
Particulate systems based on pectin/chitosan association for the delivery of manuka honey components and platelet lysate in chronic skin ulcers. Int J Pharm 2016; 509:59-70. [DOI: 10.1016/j.ijpharm.2016.05.035] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/19/2016] [Accepted: 05/20/2016] [Indexed: 11/23/2022]
|
36
|
|
37
|
Donnadio A, Ambrogi V, Pietrella D, Pica M, Sorrentino G, Casciola M. Carboxymethylcellulose films containing chlorhexidine–zirconium phosphate nanoparticles: antibiofilm activity and cytotoxicity. RSC Adv 2016. [DOI: 10.1039/c6ra04151e] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Hybrid composite films of carboxymethylcellulose and chlorhexidine intercalated nanosized zirconium phosphate result able to reduce the formation of biofilms on wound surface.
Collapse
Affiliation(s)
- Anna Donnadio
- Dipartimento di Scienze Farmaceutiche
- University of Perugia
- Perugia
- Italy
| | - Valeria Ambrogi
- Dipartimento di Scienze Farmaceutiche
- University of Perugia
- Perugia
- Italy
| | - Donatella Pietrella
- Dipartimento di Scienze Farmaceutiche
- Microbiology and Immunology Laboratory
- University of Perugia
- 06122 Perugia
- Italy
| | - Monica Pica
- Dipartimento di Scienze Farmaceutiche
- University of Perugia
- Perugia
- Italy
| | - Giulia Sorrentino
- Dipartimento di Scienze Farmaceutiche
- University of Perugia
- Perugia
- Italy
| | - Mario Casciola
- Dipartimento di Chimica, Biologia, Biotecnologia
- CEMIN, University of Perugia
- 06123 Perugia
- Italy
| |
Collapse
|
38
|
Muthu M, Somagoni J, Cheriyan VT, Munie S, Levi E, Ashour AE, Yassin AEB, Alafeefy AM, Sochacki P, Polin LA, Reddy KB, Larsen SD, Singh M, Rishi AK. Identification and Testing of Novel CARP-1 Functional Mimetic Compounds as Inhibitors of Non-Small Cell Lung and Triple Negative Breast Cancers. J Biomed Nanotechnol 2015; 11:1608-27. [PMID: 26485930 DOI: 10.1166/jbn.2015.2099] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The triple negative breast cancer (TNBCs) and non-small cell lung cancers (NSCLCs) often acquire mutations that contribute to failure of drugs in clinic and poor prognosis, thus presenting an urgent need to develop new and improved therapeutic modalities. Here we report that CARP-1 functional mimetic (CFMs) compounds 4 and 5, and 4.6, a structurally related analog of CFM-4, are potent inhibitors of TNBC and NSCLC cells in vitro. Cell growth suppression by CFM-4 and -4.6 involved interaction and elevated expression of CARP-1/CCAR1 and Death Effector Domain (DED) containing DNA binding (DEDD)2 proteins. Apoptosis by these compounds also involved activation of pro-apoptotic stress-activated kinases p38 and JNK1/2, cleavage of PARP and loss of mitotic cyclin B1. Both the CFMs inhibited abilities of NSCLC and TNBC cells to migrate, invade, and form colonies in suspension, while disrupting tubule formation by the human umbilical vein endothelial cells (HUVECs). Nano-lipid formulation of CFM-4 (CFM-4 NLF) enhanced its serum bioavailability when compared with the free CFM-4. Oral administration of CFM-4 NLF reduced weights and volume of the xenografted tumors derived from A549 NSCLC and MDA-MB-231 TNBC cells. Although no gross tissue or histological toxicities were noticed, the immuno-histochemical analysis revealed increased CARP-1 and DNA fragmentation in tumors of the CFM-4 NLF-treated animals. In conclusion, while stimulation of pro-apoptotic CARP-1 and DEDD2 expression and their binding underscore a novel mechanism of apoptosis transduction by CFM compounds, our proof-of-concept xenograft studies demonstrate therapeutic potential of CFM-4 for TNBC and NSCLC.
Collapse
|
39
|
Straccia MC, d’Ayala GG, Romano I, Laurienzo P. Novel zinc alginate hydrogels prepared by internal setting method with intrinsic antibacterial activity. Carbohydr Polym 2015; 125:103-12. [DOI: 10.1016/j.carbpol.2015.03.010] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 03/05/2015] [Accepted: 03/06/2015] [Indexed: 11/25/2022]
|
40
|
Straccia MC, d'Ayala GG, Romano I, Oliva A, Laurienzo P. Alginate hydrogels coated with chitosan for wound dressing. Mar Drugs 2015; 13:2890-908. [PMID: 25969981 PMCID: PMC4446611 DOI: 10.3390/md13052890] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 04/02/2015] [Accepted: 04/29/2015] [Indexed: 01/21/2023] Open
Abstract
In this work, a coating of chitosan onto alginate hydrogels was realized using the water-soluble hydrochloride form of chitosan (CH-Cl), with the dual purpose of imparting antibacterial activity and delaying the release of hydrophilic molecules from the alginate matrix. Alginate hydrogels with different calcium contents were prepared by the internal setting method and coated by immersion in a CH-Cl solution. Structural analysis by cryo-scanning electron microscopy was carried out to highlight morphological alterations due to the coating layer. Tests in vitro with human mesenchymal stromal cells (MSC) were assessed to check the absence of toxicity of CH-Cl. Swelling, stability in physiological solution and release characteristics using rhodamine B as the hydrophilic model drug were compared to those of relative uncoated hydrogels. Finally, antibacterial activity against Escherichia coli was tested. Results show that alginate hydrogels coated with chitosan hydrochloride described here can be proposed as a novel medicated dressing by associating intrinsic antimicrobial activity with improved sustained release characteristics.
Collapse
Affiliation(s)
- Maria Cristina Straccia
- Institute for Polymers, Composites and Biomaterials (IPCB), CNR, via Campi Flegrei 34, Pozzuoli 80078, Italy.
| | - Giovanna Gomez d'Ayala
- Institute for Polymers, Composites and Biomaterials (IPCB), CNR, via Campi Flegrei 34, Pozzuoli 80078, Italy.
| | - Ida Romano
- Institute of Biomolecular Chemistry, CNR, via Campi Flegrei 34, Pozzuoli 80078, Italy.
| | - Adriana Oliva
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, via L. De Crecchio 7, Naples 80138, Italy.
| | - Paola Laurienzo
- Institute for Polymers, Composites and Biomaterials (IPCB), CNR, via Campi Flegrei 34, Pozzuoli 80078, Italy.
| |
Collapse
|
41
|
Dumitriu RP, Profire L, Nita LE, Dragostin OM, Ghetu N, Pieptu D, Vasile C. Sulfadiazine-Chitosan Conjugates and Their Polyelectrolyte Complexes with Hyaluronate Destined to the Management of Burn Wounds. MATERIALS (BASEL, SWITZERLAND) 2015; 8:317-338. [PMID: 28787940 PMCID: PMC5455235 DOI: 10.3390/ma8010317] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 12/23/2014] [Indexed: 11/16/2022]
Abstract
In the present study polyelectrolyte complexes (PECs) based on new sulfadiazine-chitosan conjugates with sodium hyaluronate have been developed with potential use in treatment of burn wounds. The PECs were chemically characterized using Fourier Transform-Infrared Spectroscopy, Scanning Electon Microscopy and Near Infrared Chemical Imaging Technique. The swelling behavior and in vitro sulfadiazine release were also investigated. The antimicrobial activity was evaluated towards three bacterial strains: Escherichia coli, Listeria monocytogenes and Salmonella thyphymurium. The developed PECs demonstrated their antimicrobial efficiency against tested bacterial strains, the PECs containing sulfadiazine-modified chitosan being more active than PECs containing unmodified chitosan.
Collapse
Affiliation(s)
- Raluca Petronela Dumitriu
- Petru Poni" Institute of Macromolecular Chemistry, Department of Physical Chemistry of Polymers, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania.
| | - Lenuta Profire
- Grigore T. Popa" University of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, 16 University Street, 700115 Iasi, Romania.
| | - Loredana Elena Nita
- Petru Poni" Institute of Macromolecular Chemistry, Department of Physical Chemistry of Polymers, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania.
| | - Oana Maria Dragostin
- Grigore T. Popa" University of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, 16 University Street, 700115 Iasi, Romania.
| | - Nicolae Ghetu
- Grigore T. Popa" University of Medicine and Pharmacy, Faculty of Medicine, Department of Plastic and Reconstructive Surgery, 16 University Street, 700115 Iasi, Romania.
| | - Dragoș Pieptu
- Grigore T. Popa" University of Medicine and Pharmacy, Faculty of Medicine, Department of Plastic and Reconstructive Surgery, 16 University Street, 700115 Iasi, Romania.
| | - Cornelia Vasile
- Petru Poni" Institute of Macromolecular Chemistry, Department of Physical Chemistry of Polymers, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania.
| |
Collapse
|
42
|
Foldvari M, Rafiee A. Perspectives on Using Nanoscale Delivery Systems in Dermatological Treatment. CURRENT DERMATOLOGY REPORTS 2015. [DOI: 10.1007/s13671-014-0092-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
43
|
Catanzano O, Straccia M, Miro A, Ungaro F, Romano I, Mazzarella G, Santagata G, Quaglia F, Laurienzo P, Malinconico M. Spray-by-spray in situ cross-linking alginate hydrogels delivering a tea tree oil microemulsion. Eur J Pharm Sci 2015; 66:20-8. [DOI: 10.1016/j.ejps.2014.09.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 09/19/2014] [Accepted: 09/21/2014] [Indexed: 11/29/2022]
|
44
|
Moura LI, Dias AM, Leal EC, Carvalho L, de Sousa HC, Carvalho E. Chitosan-based dressings loaded with neurotensin--an efficient strategy to improve early diabetic wound healing. Acta Biomater 2014; 10:843-57. [PMID: 24121197 DOI: 10.1016/j.actbio.2013.09.040] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 09/20/2013] [Accepted: 09/30/2013] [Indexed: 01/17/2023]
Abstract
One important complication of diabetes mellitus is chronic, non-healing diabetic foot ulcers (DFUs). This study aims to develop and use dressings based on chitosan derivatives for the sustained delivery of neurotensin (NT), a neuropeptide that acts as an inflammatory modulator in wound healing. Three different derivatives, namely N-carboxymethyl chitosan, 5-methyl pyrrolidinone chitosan (MPC) and N-succinyl chitosan, are presented as potential biomaterials for wound healing applications. Our results show that MPC has the best fluid handling capacity and delivery profile, also being non-toxic to Raw 264.7 and HaCaT cells. NT-loaded and non-loaded MPC dressings were applied to control/diabetic wounds to evaluate their in vitro/in vivo performance. The results show that the former induced more rapid healing (50% wound area reduction) in the early phases of wound healing in diabetic mice. A NT-loaded MPC foam also reduced expression of the inflammatory cytokine TNF-α (P<0.001) and decreased the amount of inflammatory infiltrate on day 3. On day 10 MMP-9 was reduced in diabetic skin (P<0.001), significantly increasing fibroblast migration and collagen (COL1A1, COL1A2 and COL3A1) expression and deposition. These results suggest that MPC-based dressings may work as an effective support for sustained NT release to reduce DFUs.
Collapse
|
45
|
Popescu LM, Piticescu RM, Antonelli A, Rusti CF, Carboni E, Sfara C, Magnani M, Badilita V, Vasile E, Trusca R, Buruiana T. Recent advances in synthesis, characterization of hydroxyapatite/polyurethane composites and study of their biocompatible properties. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2013; 24:2491-2503. [PMID: 23877879 DOI: 10.1007/s10856-013-5005-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Accepted: 07/09/2013] [Indexed: 06/02/2023]
Abstract
The development of engineered biomaterials that mimic bone tissues is a promising research area that benefits from a growing interest. Polymers and polymer-ceramic composites are the principle materials investigated for the development of synthetic bone scaffolds thanks to their proven biocompatibility and biostability. Several polymers have been combined with calcium phosphates (mainly hydroxyapatite) to prepare nanocomposites with improved biocompatible and mechanical properties. Here, we report the hydrothermal synthesis in high pressure conditions of nanostructured composites based on hydroxyapatite and polyurethane functionalized with carboxyl and thiol groups. Cell-material interactions were investigated for potential applications of these new types of composites as coating for orthopedic implants. Physical-chemical and morphological characteristics of hydroxyapatite/polyurethane composites were evaluated for different compositions, showing their dependence on synthesis parameters (pressure, temperature). In vitro experiments, performed to verify if these composites are biocompatible cell culture substrates, showed that they are not toxic and do not affect cell viability.
Collapse
Affiliation(s)
- L M Popescu
- "Petru Poni" Institute of Macromolecular Chemistry, Iasi, Romania,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Rossi S, Ferrari F, Bonferoni MC, Sandri G, Faccendini A, Puccio A, Caramella C. Comparison of poloxamer- and chitosan-based thermally sensitive gels for the treatment of vaginal mucositis. Drug Dev Ind Pharm 2013; 40:352-60. [DOI: 10.3109/03639045.2012.762654] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
47
|
“Sponge-like” dressings based on biopolymers for the delivery of platelet lysate to skin chronic wounds. Int J Pharm 2013; 440:207-15. [DOI: 10.1016/j.ijpharm.2012.07.056] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 06/20/2012] [Accepted: 07/19/2012] [Indexed: 11/19/2022]
|
48
|
Agarwal A, Nelson TB, Kierski PR, Schurr MJ, Murphy CJ, Czuprynski CJ, McAnulty JF, Abbott NL. Polymeric multilayers that localize the release of chlorhexidine from biologic wound dressings. Biomaterials 2012; 33:6783-92. [PMID: 22784602 DOI: 10.1016/j.biomaterials.2012.05.068] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 05/29/2012] [Indexed: 11/18/2022]
Abstract
Biologic wound dressings contain animal-derived components and are susceptible to high infection rates. To address this issue, we report an approach that permits incorporation of non-toxic levels of the small molecule antiseptic 'chlorhexidine' into biologic dressings. The approach relies on the fabrication of polyelectrolyte multilayer (PEMs) films containing poly(allylaminehydrochloride) (PAH), poly(acrylicacid) (PAA), and chlorhexidine acetate (CX) on elastomeric poly(dimethylsiloxane) (PDMS) sheets. The PEMs (20-100 nm thick) are subsequently stamped onto the wound-contact surface of a synthetic biologic dressing, Biobrane, which contains collagen peptides. Chlorhexidine loading in the PEMs was tailored by tuning the number of (CX/PAA) bilayers deposited, providing burst release of up to 0.98 ± 0.06 μg/cm(2) of CX over 24 h, followed by zero-order release of 0.35 ± 0.04 μg/cm(2)/day for another week. Although the CX concentrations released were below the reported in vitro cytotoxicity limit (5 μg/mL over 24 h) for human dermal fibroblasts, they killed 4 log(10) counts of pathogenic bacteria Staphylococcus aureus in solution. The CX/PEMs could be stamped onto Biobrane with high efficiency to provide CX release kinetics and in vitro antibacterial activity similar to that on PDMS stamps. In a full-thickness 'splinted' dermal wound-model in normal wild-type mice, the CX-functionalized Biobrane showed no decrease in either its adherence to the wound-bed or wound closure rate over 14 days. The murine wounds topically inoculated with ∼10(5) CFU/cm(2) of S. aureus and treated with CX-functionalized Biobrane demonstrated a 3 log(10) decrease in the wound's bacterial burden within 3 days, compared to persistent bacterial colonization found in wounds treated with unmodified Biobrane (n = 10 mice, p < 0.005). Overall, this study presents a promising approach to prevent bacterial colonization in wounds under biologic dressings.
Collapse
Affiliation(s)
- Ankit Agarwal
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Dai T, Tanaka M, Huang YY, Hamblin MR. Chitosan preparations for wounds and burns: antimicrobial and wound-healing effects. Expert Rev Anti Infect Ther 2012; 9:857-79. [PMID: 21810057 DOI: 10.1586/eri.11.59] [Citation(s) in RCA: 533] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Since its discovery approximately 200 years ago, chitosan, as a cationic natural polymer, has been widely used as a topical dressing in wound management owing to its hemostatic, stimulation of healing, antimicrobial, nontoxic, biocompatible and biodegradable properties. This article covers the antimicrobial and wound-healing effects of chitosan, as well as its derivatives and complexes, and its use as a vehicle to deliver biopharmaceuticals, antimicrobials and growth factors into tissue. Studies covering applications of chitosan in wounds and burns can be classified into in vitro, animal and clinical studies. Chitosan preparations are classified into native chitosan, chitosan formulations, complexes and derivatives with other substances. Chitosan can be used to prevent or treat wound and burn infections not only because of its intrinsic antimicrobial properties, but also by virtue of its ability to deliver extrinsic antimicrobial agents to wounds and burns. It can also be used as a slow-release drug-delivery vehicle for growth factors to improve wound healing. The large number of publications in this area suggests that chitosan will continue to be an important agent in the management of wounds and burns.
Collapse
Affiliation(s)
- Tianhong Dai
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | | | |
Collapse
|
50
|
Desai P, Patlolla RR, Singh M. Interaction of nanoparticles and cell-penetrating peptides with skin for transdermal drug delivery. Mol Membr Biol 2011; 27:247-59. [PMID: 21028936 DOI: 10.3109/09687688.2010.522203] [Citation(s) in RCA: 249] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Topical or transdermal drug delivery is challenging because the skin acts as a natural and protective barrier. Therefore, several methods have been examined to increase the permeation of therapeutic molecules into and through the skin. One approach is to use the nanoparticulate delivery system. Starting with liposomes and other vesicular systems, several other types of nanosized drug carriers have been developed such as solid lipid nanoparticles, nanostructured lipid carriers, polymer-based nanoparticles and magnetic nanoparticles for dermatological applications. This review article discusses how different particulate systems can interact and penetrate into the skin barrier. In this review, the effectiveness of nanoparticles, as well as possible mode of actions of nanoparticles, is presented. In addition to nanoparticles, cell-penetrating peptide (CPP)-mediated drug delivery into the skin and the possible mechanism of CPP-derived delivery into the skin is discussed. Lastly, the effectiveness and possible mechanism of CPP-modified nanocarriers into the skin are addressed.
Collapse
Affiliation(s)
- Pinaki Desai
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, Florida 32307, USA
| | | | | |
Collapse
|