1
|
Dong F, Fu C, Meng Z, Lin Q, Li J, Zeng T, Wang D, Tang J, Song S. A two-stage Fe(VI) oxidation process enhances the removal of bisphenol A for potential application. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167879. [PMID: 37865242 DOI: 10.1016/j.scitotenv.2023.167879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/09/2023] [Accepted: 10/14/2023] [Indexed: 10/23/2023]
Abstract
Ferrate (Fe(VI)) has been extensively studied as a green oxidant to treat wastewater. But Fe(VI) oxidation still faces several challenges for application, such as the sensitivity of Fe(VI) to pH and the restrictions on the Fe(VI) utilization efficiency for pollutant elimination at low concentration levels. This study proposed a two-stage Fe(VI) oxidation process to enhance the bisphenol A (BPA) removal for potential applicability, consisting of the adsorption by CNTs of stage I and the degradation by Fe(VI) of stage II. The Fe(VI) utilization efficiency in the two-stage process (0.848) was higher than that in one-stage processes (0.727) and Fe(VI) alone system (0.504) at pH 9. In stage I, the adsorption process had good compliance with the Langmuir isotherm model and pseudo-second-order kinetic model. In stage II, the effective utilization of low-concentration Fe(VI) was 2.45 times more than Fe(VI) alone, and the reduction of reaction volume was beneficial to further enhance utilization. The probe experiments (sulfoxide) and the degradation experiments of other electron-donating/withdrawing pollutants (e.g., atrazine, benzoic acid) demonstrated that Fe(IV) and Fe(V) were major oxidizing species in the two-stage process. The regeneration experiments showed that CNTs still had acceptable adsorption and catalytic capabilities after five cycles. Finally, the intermediate products in the two-stage process were detected and four possible degradation pathways of BPA were proposed. These findings were meaningful for the practical application of Fe(VI) oxidation to overcome the conditional limitation and improve the utilization.
Collapse
Affiliation(s)
- Feilong Dong
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China; Shaoxing Research Institute, Zhejiang University of Technology, Shaoxing 312085, China
| | - Chuyun Fu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Zhu Meng
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Qiufeng Lin
- Department of Earth and Environmental Studies, Montclair State University, Montclair, NJ 07043, United States
| | - Jinzhe Li
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Tao Zeng
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Da Wang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Juntao Tang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Shuang Song
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
2
|
Grace Pavithra K, Sundar Rajan P, Arun J, Brindhadevi K, Hoang Le Q, Pugazhendhi A. A review on recent advancements in extraction, removal and recovery of phenols from phenolic wastewater: Challenges and future outlook. ENVIRONMENTAL RESEARCH 2023; 237:117005. [PMID: 37669733 DOI: 10.1016/j.envres.2023.117005] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/07/2023]
Abstract
Water pollution is the major problem seen in today's scenario and even pollutants at low concentration harms our environment. In industrial sector usage of phenol is seen even at low concentrations. The interaction of phenol in the environment provides adverse effects to living beings. This review focuses on the toxicity of phenol and its impact towards environment and human health. The treatment techniques such as distillation, extraction, wet air oxidation, membrane process, electrochemical oxidation, biological treatment and finally adsorption techniques were discussed. Among many treatment techniques so far utilized in the treatment of phenol, adsorption was considered as one of the best technique due to its advantages such as reusability, ease in operation, large availability etc., This review also highlights the adsorption technique for the cleaner removal of phenol from aqueous solution with novel as well as low-cost adsorbents in the removal of phenolic compounds. This review also discusses about the drawbacks and issues related with adsorption of phenolic compounds.
Collapse
Affiliation(s)
| | - Panneerselvam Sundar Rajan
- Department of Chemical Engineering, Saveetha Engineering College, Thandalam, Chennai, Tamil Nadu, 602105, India
| | - Jayaseelan Arun
- Centre for Waste Management - 'International Research Centre', Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Chennai - 600119, Tamil Nadu, India
| | - Kathirvel Brindhadevi
- School of Engineering, Lebanese American University, Byblos, Lebanon; University Centre for Research & Development, Department of Civil Engineering, Chandigarh University, Mohali-140103, India
| | - Quynh Hoang Le
- School of Medicine and Pharmacy, Duy Tan University, Da Nang, Viet Nam; Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam
| | - Arivalagan Pugazhendhi
- School of Medicine and Pharmacy, Duy Tan University, Da Nang, Viet Nam; Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam.
| |
Collapse
|
3
|
Tian B, Wu N, Liu M, Wang Z, Qu R. Promoting Effect of Silver Oxide Nanoparticles on the Oxidation of Bisphenol B by Ferrate(VI). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15715-15724. [PMID: 37807513 DOI: 10.1021/acs.est.3c03653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Bisphenol B (BPB, 2,2-bis(4-hydroxyphenyl) butane), as a substitute for bisphenol A, has been widely detected in the environment and become a potential threat to environmental health. This work found that silver oxide nanoparticles (Ag2O) could greatly promote the removal of BPB by ferrate (Fe(VI)). With the presence of 463 mg/L Ag2O, the amount of Fe(VI) required for the complete removal of 10 μM BPB will be reduced by 70%. Meanwhile, the recyclability and stability of Ag2O have been verified by recycling experiments. The characterization results and in situ electrochemical analyses showed that Ag(II) was produced from Ag(I) in the Fe(VI)-Ag2O system, which has a higher electrode potential to oxidize BPB to enhance its removal. A total of 13 intermediates were identified by high-resolution mass spectrometry, and three main reaction pathways were proposed, including oxygen transfer, bond breaking, and polymerization. Based on the toxicity assessment through the ECOSAR program, it is considered that the presence of Ag2O reduced the toxicity of BPB oxidation intermediates to aquatic organisms. These results would deepen our understanding of the interaction between Fe(VI) and Ag2O, which may provide an efficient and environmentally friendly method for water and wastewater treatment.
Collapse
Affiliation(s)
- Bingru Tian
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Nannan Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products & Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, P. R. China
| | - Mingzhu Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Zunyao Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Ruijuan Qu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| |
Collapse
|
4
|
Pan B, Liao M, Zhao Y, Lv Y, Qin J, Sharma VK, Wang C. Visible light activation of ferrate(VI) by oxygen doped ZnIn 2S 4/black phosphorus nanolayered heterostructure: Accelerated oxidation of trimethoprim. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132413. [PMID: 37666167 DOI: 10.1016/j.jhazmat.2023.132413] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/06/2023]
Abstract
The increasing consumption of antibiotics and their subsequent release to wastewater or groundwater and ultimately to the water supply (or drinking water) has great concerns. This paper presents a visible light (VL) activated ferrate(VI) (FeVIO42-, Fe(VI)) system to degrade the selected antibiotic, trimethoprim (TMP), efficiently. An oxygen doped ZnIn2S4 nanosheet (O-ZIS) coupled with a black phosphorus (BP) heterostructure (O-ZIS/BP), is fabricated by a simple electrostatic self-assembly method. The O-ZIS/BP photocatalyst is comprehensively characterized by surface and analytical techniques, which show superior separation efficiency of the photoinduced charge carriers in the heterostructure. A VL-O-ZIS/BP-Fe(VI) system achieves more than 80% removal in 1.0 min and complete removal of TMP in 3.0 min. Comparatively, only ⁓7% and ⁓24% of TMP are degraded by O-ZIS/BP and Fe(VI) in 1.0 min, respectively. The degradation experiments using probe molecules of reactive species and electron paramagnetic resonance (EPR) measurements reveal involvement of superoxide (O2-•), hydroxyl radical (•OH), and iron(V)/iron (IV) (FeV/FeIV) species in the mechanism of TMP degradation. Oxidized products of TMP are identified and reaction pathways are given. Theoretical calculations predict the initial attack on the TMP molecule by the reactive species in the VL-O-ZIS/BP-Fe(VI) system. The activation of Fe(VI) by VL-heterostructure photocatalysts accelerates the degradation of antibiotics, demonstrating its potential for water depollution.
Collapse
Affiliation(s)
- Bao Pan
- Key Laboratory of Chemical Additives for China National Light Industry, School of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China.
| | - Miao Liao
- Key Laboratory of Chemical Additives for China National Light Industry, School of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Yanli Zhao
- Key Laboratory of Chemical Additives for China National Light Industry, School of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Yuzhu Lv
- Key Laboratory of Chemical Additives for China National Light Industry, School of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Jiani Qin
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Virender K Sharma
- Program for the Environment and Sustainability, Department of Environment and Occupational Health, School of Public Health, Texas A&M University, 212 Adriance Lab Rd., College Station, TX 77843, USA.
| | - Chuanyi Wang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China.
| |
Collapse
|
5
|
Liu X, Wu F, Zhang M, Wan C. Role of potassium ferrate in anaerobic digestion of waste activated sludge: Phenotypes and genotypes. BIORESOURCE TECHNOLOGY 2023; 383:129247. [PMID: 37247789 DOI: 10.1016/j.biortech.2023.129247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 05/31/2023]
Abstract
The specific effects of potassium ferrate (PF) on acid and methane production in anaerobic digestion need further exploration. This study comprehensively investigated the role of PF in organic matter conversion in waste activated sludge (WAS) digestion. Due to the high pH produced by PF self-decomposition, the hydrolysis of organic matter was promoted, whereas the methanogenesis was inhibited. PF could further directly oxidize protein and polysaccharides released by hydrolysis to produce volatile fatty acids (VFAs) and involve in the transformation of ammonia nitrogen. PF could induce the enrichment of functional genes related to fermentation pathways and lessen those related to methanogenesis, and the phylum resistant to PF oxidation and the strains capable of producing VFAs were enriched, resulting in VFAs accumulation. This study analyzed the participation way of PF in anaerobic digestion and provided a theoretical basis for the application of PF in promoting VFAs recovery from sludge digestion.
Collapse
Affiliation(s)
- Xiang Liu
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Fengjie Wu
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Min Zhang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Chunli Wan
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China.
| |
Collapse
|
6
|
He H, Wang L, Liu Y, Qiu W, Liu Z, Ma J. Improvement of Fe(VI) oxidation by NaClO on degrading phenolic substances and reducing DBPs formation potential. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:161080. [PMID: 36574852 DOI: 10.1016/j.scitotenv.2022.161080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/16/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Ferrate(VI) is a green oxidant and can effectively oxidize micropollutants. However, the instability of Fe(VI), i.e., self-decomposition, in the aqueous solution limited its application. Herein, it was found that the degradation of phenolic substances had been substantially improved through the combination of Fe(VI) with NaClO. At the condition of pH 8.0, 50 μM of Fe(VI) degraded 18.66 % of BPA (bisphenol A) at 0.5 min or 21.67 % of phenol at 2 min. By contrast, Fe(VI)/NaClO (50/10 μM) oxidized 38.21 % of BPA at 0.5 min or 38.08 % of phenol at 2 min with a synergistic effect. At the end of the reaction, the concentration of Fe(VI) in Fe(VI)/NaClO (50/10 μM) was 28.97 μM for BPA degradation, higher than the 25.62 μM of Fe(VI) group. By active species analysis, intermediate iron species [i.e., Fe(V) and Fe(IV)] played a vital role in the synergistic effect in Fe(VI)/NaClO system, which would react with the applied NaClO to regenerate Fe(VI). In natural water, the Fe(VI)/NaClO could also degrade phenolic substances of natural organic matter (NOM). Although the NaClO reagent was applied, disinfection by-products (DBPs) formation potential decreased by 22.75 % of the raw sample after Fe(VI)/NaClO treatment. Significantly, THMs, mainly caused by phenolic substances of NOM, even declined by 29.18 % of raw sample. Based on that, this study explored a novel ferrate(VI) oxidation system using the cheap NaClO reagent, which would present a new insight on ferrate(VI) application.
Collapse
Affiliation(s)
- Haiyang He
- State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China
| | - Lu Wang
- State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China
| | - Yulei Liu
- State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China
| | - Wei Qiu
- State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China.
| | - Zhicen Liu
- School of Geosciences, The University of Edinburgh, Edinburgh EH8 9JU, United Kingdom of Great Britain and Northern Ireland
| | - Jun Ma
- State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China
| |
Collapse
|
7
|
Critical analysis of the role of various iron-based heterogeneous catalysts for advanced oxidation processes: A state of the art review. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
8
|
He H, Liu Y, Wang L, Qiu W, Liu Z, Ma J. Novel activated system of ferrate oxidation on organic substances degradation: Fe(VI) regeneration or Fe(VI) reduction. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
9
|
Das S, Manoli K, Sharma VK, Dagnew M, Ray MB. Effect of ferrate pretreatment on anaerobic digestibility of primary sludge spiked with resin acids. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:91201-91211. [PMID: 35879637 DOI: 10.1007/s11356-022-21599-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Resin acids are mixtures of high molecular weight carboxylic acids found in tree resins. Due to higher hydrophobicity and low solubility, they tend to adsorb on the suspended solids in pulp and paper (P&P) mill wastewater and accumulate in primary sludge through settling. Anaerobic digestion (AD) is a common practice stabilizing sludge; however, high concentration of resin acids affects the AD process. The aim of this research was mainly to determine the impact of ferrate (Fe (VI)) oxidation on selected resin acids and anaerobic digestibility of ferrate-treated primary sludge (PS) spiked with the resin acids. First, batch control oxidation of model resin acids with Fe (VI) was conducted to identify an optimum dosage, pH and contact time using a Box-Behnken design approach. Thereafter, anaerobic treatability studies of primary sludge spiked with resin acids both under control condition and optimum ferrate pretreatment were conducted. Up to 97% oxidation of resin acids occurred in pure water, while only 44%-62% oxidation of resin acids occurred in PS with an increasing Fe (VI) dosage from 0.034 to 0.137 mg Fe (VI)/mg tCODfed. The pretreatment did not affect the anaerobic biodegradability of resin acids; however, it lowered their negative influences on the PS digestibility. About 0.076 mg Fe (VI) dosage/mg tCODfed solubilized the sludge increasing the methane production by 40% compared to the untreated digester. The potential benefits of ferrate pretreatment of P&P primary sludge include resin acids oxidation and subsequent toxicity reduction, higher sludge solubilization enhancing methane production and enabling anaerobic digestion at higher COD loading.
Collapse
Affiliation(s)
- Sreejon Das
- Department of Chemical and Biochemical Engineering, Western University, London, ON, N6A5B9, Canada
| | - Kyriakos Manoli
- Program for the Environment and Sustainability, Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, College Station, TX, 77843, USA
| | - Virender K Sharma
- Program for the Environment and Sustainability, Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, College Station, TX, 77843, USA
| | - Martha Dagnew
- Department of Civil and Environmental Engineering, Western University, London, ON, N6A5B9, Canada.
| | - Madhumita B Ray
- Department of Chemical and Biochemical Engineering, Western University, London, ON, N6A5B9, Canada
| |
Collapse
|
10
|
Thomas M, Drzewicz P, Więckol-Ryk A, Panneerselvam B. Effectiveness of potassium ferrate (VI) as a green agent in the treatment and disinfection of carwash wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:8514-8524. [PMID: 34490571 DOI: 10.1007/s11356-021-16278-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/27/2021] [Indexed: 06/13/2023]
Abstract
Carwash wastewater treatment with potassium ferrate (VI) (K2FeO4) was optimized by response surface methodology. The optimum conditions for chemical oxygen demand removal were established a pH 3.5, 0.328 g/L dose of K2FeO4, and with a process duration of 48 min. At these conditions, chemical oxygen demand, total organic carbon, total nitrogen, and total phosphorus decreased by 70.3, 58.9, 73.3, 82.0%, respectively; and the putrid odor was reduced. Simultaneously, the total viable count, total coli count, most probable number of fecal enterococci, and the total proteolytic bacteria count decreased by 89.5, 93.1, 92.9, and 95.0 %, respectively. Comparatively, an application of 0.450 g/L FeCl3·6H2O corresponding to the iron content in 0.328 g/L of K2FeO4 resulted in a decrease of total viable count, total coli count, most probable number of fecal enterococci and the total proteolytic bacteria count only by 38.1, 31.2, 42.9, and 58.0%, respectively. Therefore, flocculation with polyacrylamide anionic flocculant combined with potassium ferrate (VI) oxidation is a more effective alternative to coagulation with FeCl3 and the same flocculant. The use of potassium ferrate (VI) is a viable option for the treatment of carwash wastewater.
Collapse
Affiliation(s)
- Maciej Thomas
- Chemiqua Water & Wastewater Company, 31-066, Kraków, Poland.
| | - Przemysław Drzewicz
- Polish Geological Institute National Research Institute, 00-975, Warszawa, Poland
| | - Angelika Więckol-Ryk
- Department of Risk Assessment and Industrial Safety, Central Mining Institute, 40-166, Katowice, Poland
| | - Balamurugan Panneerselvam
- Department of Civil Engineering, M. Kumarasamy College of Engineering, Karur, Tamil Nadu, 639113, India
| |
Collapse
|
11
|
Sharma VK, Feng M, Dionysiou DD, Zhou HC, Jinadatha C, Manoli K, Smith MF, Luque R, Ma X, Huang CH. Reactive High-Valent Iron Intermediates in Enhancing Treatment of Water by Ferrate. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:30-47. [PMID: 34918915 DOI: 10.1021/acs.est.1c04616] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Efforts are being made to tune the reactivity of the tetraoxy anion of iron in the +6 oxidation state (FeVIO42-), commonly called ferrate, to further enhance its applications in various environmental fields. This review critically examines the strategies to generate highly reactive high-valent iron intermediates, FeVO43- (FeV) and FeIVO44- or FeIVO32- (FeIV) species, from FeVIO42-, for the treatment of polluted water with greater efficiency. Approaches to produce FeV and FeIV species from FeVIO42- include additions of acid (e.g., HCl), metal ions (e.g., Fe(III)), and reductants (R). Details on applying various inorganic reductants (R) to generate FeV and FeIV from FeVIO42- via initial single electron-transfer (SET) and oxygen-atom transfer (OAT) to oxidize recalcitrant pollutants are presented. The common constituents of urine (e.g., carbonate, ammonia, and creatinine) and different solids (e.g., silica and hydrochar) were found to accelerate the oxidation of pharmaceuticals by FeVIO42-, with potential mechanisms provided. The challenges of providing direct evidence of the formation of FeV/FeIV species are discussed. Kinetic modeling and density functional theory (DFT) calculations provide opportunities to distinguish between the two intermediates (i.e., FeIV and FeV) in order to enhance oxidation reactions utilizing FeVIO42-. Further mechanistic elucidation of activated ferrate systems is vital to achieve high efficiency in oxidizing emerging pollutants in various aqueous streams.
Collapse
Affiliation(s)
- Virender K Sharma
- Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, College Station, Texas 77843, United States
| | - Mingbao Feng
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Dionysios D Dionysiou
- Environmental Engineering and Science Program, Department of Chemical and Environmental Engineering (DChEE), 705 Engineering Research Center, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Hong-Cai Zhou
- Department of Chemistry, Texas A&M University, College Station, Texas 77842-3012, United States
| | - Chetan Jinadatha
- Central Texas Veterans Health Care System, Temple, Texas 76504-7451, United States
- College of Medicine, Texas A&M University, College Station, Texas 77842-3012, United States
| | - Kyriakos Manoli
- Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, College Station, Texas 77843, United States
| | - Mallory F Smith
- Department of Chemistry, Texas A&M University, College Station, Texas 77842-3012, United States
| | - Rafael Luque
- Departamento de Quimica Organica, Facultad de Ciencias, Universidad de Cordoba, Campus de Rabanales, Edificio Marie Curie (C_3), Ctra Nnal IV-A, Km 396, E14014 Cordoba, Spain
- Peoples Friendship University of Russia (RUDN University), 6 Miklukho Maklaya str., 117198 Moscow, Russian Federation
| | - Xingmao Ma
- Zachery Department of Civil and Environmental Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Ching-Hua Huang
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
12
|
Yu Y, Qi Y, Li C, Cao W, Chen J, Qu R, Zhou D, Wang Z. Ferrate (VI)-mediated transformation of diethyl phthalate (DEP) in soil: Kinetics, degradation mechanisms and theoretical calculation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 290:118053. [PMID: 34455297 DOI: 10.1016/j.envpol.2021.118053] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/26/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
Diethyl phthalate (DEP), as a kind of universally used plasticizer, has aroused considerable public concern owing to its wide detection, environmental stability, and potential health risks. In this work, the highly efficient removal of DEP by ferrate (VI) (Fe(VI)) was systematically explored in soil environment. The effects of the oxidant dosages, soil types, as well as the presence of coexisting cations and anions in tested soil on DEP removal were evaluated. When the dosage of Fe(VI) was 20 mM, complete removal of DEP (50 μg/g) was achieved in the tested soil after 2 min of reaction. Furthermore, the removal rate of DEP was closely related to the soil types, and the degradation rates were decreased obviously in red soil (RS), black soil (BS) and paddy soil (PS), probably due to the acidic condition and high content of organic matters. Moreover, the presence of Ca2+, Mg2+ and Al3+ in soil can inhibit the removal of DEP by Fe(VI), while SO42- has an slightly promotion effect. Six oxidation intermediates were detected in the reaction process of DEP, product analysis revealed that the transformation of DEP was mainly through two pathways, including hydrolysis and hydroxylation reactions, which were probably mediated by oxygen atom transfer process of Fe(VI). Based on the frontier electron density theory calculation, two ester groups of DEP were prone to be attacked by Fe(VI), and the hydroxyl addition tended to occur at the para-position of one of the ester groups on the benzene ring. This study provides a novel approach for phthalate esters removal from soil using Fe(VI) oxidation and shows new insights into the oxidation mechanisms.
Collapse
Affiliation(s)
- Yao Yu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu Nanjing, 210023, PR China
| | - Yumeng Qi
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu Nanjing, 210023, PR China
| | - Chenguang Li
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu Nanjing, 210023, PR China
| | - Wanming Cao
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu Nanjing, 210023, PR China
| | - Jing Chen
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu Nanjing, 210023, PR China
| | - Ruijuan Qu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu Nanjing, 210023, PR China
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu Nanjing, 210023, PR China
| | - Zunyao Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu Nanjing, 210023, PR China.
| |
Collapse
|
13
|
Li Y, Jiang L, Wang R, Wu P, Liu J, Yang S, Liang J, Lu G, Zhu N. Kinetics and mechanisms of phenolic compounds by Ferrate(VI) assisted with density functional theory. JOURNAL OF HAZARDOUS MATERIALS 2021; 415:125563. [PMID: 33721780 DOI: 10.1016/j.jhazmat.2021.125563] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/23/2021] [Accepted: 02/26/2021] [Indexed: 06/12/2023]
Abstract
In this paper, Phenol, 4-Chlorophenol (4-CP), 2,4-Dichlorophenol (2,4-DCP) and 2,4,6-Trichlorophenol (2,4,6-TCP) were selected as model pollutants to explore the oxidant mechanism by ferrate (Fe(VI)). The reactions between ferrate (1000 μM) and four phenolic compounds (100 μM) were conformed to the second-order reaction kinetics at pH 9.2, and the order of kobs followed as: k4-CP (129 M-1 s-1) > k2,4-DCP (96 M-1 s-1) > k2,4,6-TCP (44 M-1 s-1) > kPhenol (12 M-1 s-1). Meanwhile, the degradation rates of all four compounds by Fe(VI) increased with increased pH (3.1-9.2). A total of 14 degradation products were identified by Liquid chromatography-Time-of-Flight-Mass Spectrometry (LC-TOF-MS), and two pathways including hydroxylation of benzene ring and substitution of chlorine atom were proposed. Hydroxyl radicals, played a vital role during the degradation of phenolic compounds. Moreover, density functional theory calculations were used to explore the degradation mechanisms. The results showed that the hydroxyl radical was more favorable to substitute chlorine atom than hydrogen atom, and the substitution on ortho-position was more favorable than para-position for all four compounds. The findings of this study could greatly improve our understanding on the degradation mechanism of chlorophenol-like compounds by Fe(VI) for environmental remediation.
Collapse
Affiliation(s)
- Yihao Li
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Lu Jiang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Rui Wang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; South China Institute of Environmental Sciences, Ministry of Environmental Protection (MEP), Guangzhou 510655, China
| | - Pingxiao Wu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou 510006, PR China; Guangdong Engineering and Technology Research Center for Environmental Nanomaterials, Guangzhou 510006, PR China; Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, Guangzhou 510006, PR China.
| | - Juan Liu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Shanshan Yang
- School of Earth and Space Sciences, Peking University, Beijing 100871, PR China
| | - Jiahao Liang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Guining Lu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Nengwu Zhu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, PR China
| |
Collapse
|
14
|
Li M, Zhang TY, Xu B, Hu CY, Dong ZY, Wang Z, Tang YL, Yu SL, Pan Y, Xian Q. Iodinated trihalomethanes formation in iopamidol-contained water during ferrate/chlor(am)ination treatment. CHEMOSPHERE 2021; 272:129568. [PMID: 33476791 DOI: 10.1016/j.chemosphere.2021.129568] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 12/17/2020] [Accepted: 01/03/2021] [Indexed: 06/12/2023]
Abstract
Iopamidol is a commonly used iodinated X-ray contrast media in medical field, and its residue in water can react with disinfectants to form highly toxic iodinated disinfection by-products (I-DBPs). This study investigated the degradation of iopamidol and formation of DBPs, especially iodinated trihalomethanes (I-THMs), during ferrate (Fe(VI)) pre-oxidation and subsequent chlor(am)ination under raw water background. It was found that iopamidol degradation efficiency in raw water by Fe(VI) at pH 9 could reach about 80%, which was much higher than that at pH 5 and pH 7 (both about 25%). With Fe(VI) dose increasing, iopamidol removal efficiency increased obviously. During the iopamidol degradation by Fe(VI), IO3- was the dominant product among all the iodine species. After pre-treated by Fe(VI), yields of THM4 and I-THMs can be reduced in subsequent chlor(am)ination. Besides, pH was a crucial factor for Fe(VI) pre-oxidition controlling DBPs. With the pH increasing from 5 to 9, the yield of THM4 kept increasing in subsequent chlorination but showed the highest amount at pH 6 in subsequent chloramination. The yield of I-THMs increased first and then decreased with the increase of pH in both subsequent chlorination and chloramination. I-THM concentrations in chlorinated samples were lower than chloraminated ones under acidic conditions but became higher under neutral and alkaline conditions. The total CTI of THMs during Fe(VI)-chloramination was higher than that during Fe(VI)-chlorination under neutral condition, but sharply decreased under alkaline conditions. In summary, Fe(VI)-chloramination subsequent treatment under alkaline conditions should be an effective method for iopamidol removal and DBP control.
Collapse
Affiliation(s)
- Mian Li
- State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; College of Biological and Environmental Engineering, Guiyang University, Guiyang, 550005, PR China
| | - Tian-Yang Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| | - Bin Xu
- State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Chen-Yan Hu
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, PR China
| | - Zheng-Yu Dong
- State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Zhen Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Yu-Lin Tang
- State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Shui-Li Yu
- State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Yang Pan
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Qiming Xian
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| |
Collapse
|
15
|
Active Treatment of Contaminants of Emerging Concern in Cold Mine Water Using Advanced Oxidation and Membrane-Related Processes: A Review. MINERALS 2021. [DOI: 10.3390/min11030259] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Responsible use and effective treatment of mine water are prerequisites of sustainable mining. The behavior of contaminants in mine water evolves in relation to the metastable characteristics of some species, changes related to the mine life cycle, and mixing processes at various scales. In cold climates, water treatment requires adaptation to site-specific conditions, including high flow rates, salinity, low temperatures, remoteness, and sensitivity of receiving waterbodies. Contaminants of emerging concern (CECs) represent a newer issue in mine water treatment. This paper reviews recent research on the challenges and opportunities related to CECs in mine water treatment, with a focus on advanced oxidation and membrane-based processes on mine sites operating in cold climates. Finally, the paper identifies research needs in mine water treatment.
Collapse
|
16
|
Towards in situ electro-generation of ferrate for drinking water treatment: A comparison of three low-cost sacrificial iron electrodes. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2020.114897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
17
|
Munyengabe A, Zvinowanda C, Zvimba JN, Ramontja J. Characterization and reusability suggestions of the sludge generated from a synthetic acid mine drainage treatment using sodium ferrate (VI). Heliyon 2020; 6:e05244. [PMID: 33088977 PMCID: PMC7566106 DOI: 10.1016/j.heliyon.2020.e05244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/04/2020] [Accepted: 10/08/2020] [Indexed: 12/07/2022] Open
Abstract
Mining activities are the main cause of generation of the voluminous sludge waste, loaded with metals precipitated from the treatment of acid mine drainage (AMD) and this is always disposed to the landfill. This study aimed at characterizing and suggesting the reusability potential of AMD sludge to reduce the environmental problem caused by its accumulation so that it could become a valuable material. The sludge was obtained after treating a synthetic AMD with a green oxidant sodium ferrate (VI) (Na2FeO4) that was prepared by a wet oxidation method. Chemical and physical characterization of a dried sludge generated after treatment was then performed using the Fourier Transform-Infrared and X-Ray powder Diffraction spectroscopy. Scanning Electron Microscopy-Energy Dispersive X-ray Spectroscopy also served to identify the surface morphology of the sludge. The sludge presented a high weight percentage of Fe and O and lower concentrations of other metals such as Al, Mn, Si, and Na. Nitrogen adsorption/desorption isotherms or Brunauer-Emmett-Teller (BET) was used to assess the surface area, pore volume and diameter of the sludge. The BET results showed that the surface area of the sludge obtained after treating the synthetic AMD using Na2FeO4 was 31.50 ± 0.03 m2/g with pore diameter and volume of 52.50 nm and 0.41 cm3/g, respectively. However, the produced sludge could serve as an adsorbent to remove pollutants from water or to synthesize different magnetic nanocomposites due to its high surface area (>natural zeolite) and high composition of Fe and O.
Collapse
Affiliation(s)
- Alexis Munyengabe
- Department of Chemical Sciences, Faculty of Science, Doornfontein Campus, University of Johannesburg, Corner Beit and Nind Streets, P.O. Box: 17011, Johannesburg, 2028, South Africa
| | - Caliphs Zvinowanda
- Department of Chemical Sciences, Faculty of Science, Doornfontein Campus, University of Johannesburg, Corner Beit and Nind Streets, P.O. Box: 17011, Johannesburg, 2028, South Africa
| | - John Ngoni Zvimba
- Water Use and Waste Management, Water Research Commission, Bloukrans Building, Lynnwood Bridge Office Park, 4 Daventry Street, Lynnwood Manor, South Africa
| | - James Ramontja
- Department of Chemical Sciences, Faculty of Science, Doornfontein Campus, University of Johannesburg, Corner Beit and Nind Streets, P.O. Box: 17011, Johannesburg, 2028, South Africa
| |
Collapse
|
18
|
Water Treatment Plant Prototype with pH Control Modeled on Fuzzy Logic for Removing Arsenic Using Fe(VI) and Fe(III). WATER 2020. [DOI: 10.3390/w12102834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This study proposes a fuzzy control strategy embedded in a Siemens IoT2040 gateway developed for removing inorganic arsenic from synthetic underground water in a treatment plant prototype. The prototype is used to dose a constant flow of Fe(VI) to maintain an oxide-reduction potential to guarantee the oxidation of arsenite into arsenate, while the fuzzy logic embedded in the IoT control manages the addition of Fe(III) to achieve a proper pH adjustment and efficient arsenate removal. The tests used synthetic Bangladesh groundwater enriched with 200 µg/L of arsenite and 200 µg/L of arsenate. The results revealed that the plant prototype yielded an effective treatment of the water. Arsenate was decreased to an average value of 6.66 µg/L and, the arsenite concentration decreased to 1.01 µg/L or less. These values were lower than the limit of 10 µg/L deemed by the World Health Organization as safe for human consumption.
Collapse
|
19
|
Direct and indirect electrochemical oxidation of ethanethiol on grey cast iron anode in alkaline solution. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136706] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
20
|
Coudert L, Bondu R, Rakotonimaro TV, Rosa E, Guittonny M, Neculita CM. Treatment of As-rich mine effluents and produced residues stability: Current knowledge and research priorities for gold mining. JOURNAL OF HAZARDOUS MATERIALS 2020; 386:121920. [PMID: 31884367 DOI: 10.1016/j.jhazmat.2019.121920] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 06/10/2023]
Abstract
Refractory ores, in which gold is often embedded within As-bearing and acid-generating sulfide minerals, are becoming the main gold source worldwide. These ores require an oxidizing pre-treatment, prior to cyanidation, to efficiently breakdown the sulfides and enhance gold liberation. As a result, large volumes of As-rich effluents (> 500 mg/L) are produced through the pre-oxidation of refractory gold ores and/or the exposure of As-bearing tailings upon exposure to air and water. Limited information is available on performant treatment of these effluents, especially of pre-oxidation effluents characterized by a complex chemistry, extremely acidic or alkaline pH and high concentrations of arsenic. The treatment of As-rich effluents is mainly based on precipitation (using Al or Fe salts and/or Ca-based compounds) and (electro)-chemical or biological oxidation processes. A performant treatment process must maximize As removal from contaminated mine water and allow for the production of residues that are geochemically stable over the long term. An extensive literature review showed that Fe(III)-As(V) precipitates, especially bioscorodite and (nano)scorodite, appear to be the most appropriate forms to immobilize As due to their low solubility and high stability, especially when encapsulated within an inert material such as hydroxyl gels. Research is still required to assess the long-term stability of these As-bearing residues under mine-site conditions for the sustainable exploitation of refractory gold deposits.
Collapse
Affiliation(s)
- L Coudert
- Research Institute on Mines and Environment (RIME), Université du Québec en Abitibi-Témiscamingue (UQAT), 445 Blvd. Université, Rouyn-Noranda, QC, J9X 5E4, Canada.
| | - R Bondu
- Groundwater Research Group (GRES - Groupe de Recherche sur l'Eau Souterraine)-RIME, UQAT, 341 Principale Nord, Suite 5004, Amos, QC, J9T 2L8, Canada.
| | - T V Rakotonimaro
- RIME, UQAT, 445 Blvd. Université, Rouyn-Noranda, QC, J9X 5E4, Canada.
| | - E Rosa
- GRES-RIME, UQAT, 341 Principale Nord, Suite 5004, Amos, QC, J9T 2L8, Canada.
| | - Marie Guittonny
- RIME, UQAT, 445 Blvd. Université, Rouyn-Noranda, QC, J9X 5E4, Canada.
| | - C M Neculita
- RIME, UQAT, 445 Blvd. Université, Rouyn-Noranda, QC, J9X 5E4, Canada.
| |
Collapse
|
21
|
Yang J, Liu X, Liu X, Xu Q, Wang W, Wang D, Yang G, Fu Q, Kang Z, Yang Q, Liu Y, Wang Q, Ni BJ. Enhanced dark fermentative hydrogen production from waste activated sludge by combining potassium ferrate with alkaline pretreatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 707:136105. [PMID: 31874393 DOI: 10.1016/j.scitotenv.2019.136105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 05/16/2023]
Abstract
Alkaline pretreatment was demonstrated to be effective in the enhancement of hydrogen production. However, the sludge solubilization rate of alkaline pretreatment is still limited. This study reports a new strategy of K2FeO4 + pH 9.5 for sludge mesophilic anaerobic fermentation. Experimental results showed that the combination of K2FeO4/pH 9.5 pretreatment had a greater hydrogen yield than the individual K2FeO4 and pH 9.5. The maximum hydrogen yield was 19.2 mL per gram volatile suspended solids (VSS) under the optimal condition (0.02 g per gram total suspended solids K2FeO4 + pH 9.5). Kinetic analysis showed that the highest hydrogen production potential of 19.9 mL/g VSS was obtained in the combined reactor, which well fitted the first-order kinetic model (R2 = 0.9925). Besides, the fermentation type was mainly acetic and butyric in the combined reactor, which contributed to hydrogen production. Further analyses showed that the combined pretreatment reduced hydrogen sulfide yield, providing an environmentally friendly method to sludge treatment.
Collapse
Affiliation(s)
- Jingnan Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Xinyu Liu
- Changde City Management Center, Changde 415000, PR China
| | - Xuran Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Qiuxiang Xu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Wenjun Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Guojing Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, PR China
| | - Qizi Fu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Zhenyu Kang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Qi Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yiwen Liu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Qilin Wang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Bing-Jie Ni
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| |
Collapse
|
22
|
Drzewicz P, Drobniewska A, Sikorska K, Nałęcz-Jawecki G. Analytical and ecotoxicological studies on degradation of fluoxetine and fluvoxamine by potassium ferrate. ENVIRONMENTAL TECHNOLOGY 2019; 40:3265-3275. [PMID: 29756529 DOI: 10.1080/09593330.2018.1468488] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 04/18/2018] [Indexed: 06/08/2023]
Abstract
A large amount of pharmaceuticals are flushed to environment via sewage system. The compounds are persistent in environment and are very difficult to remove in drinking water treatment processes. Degradation of fluoxetine (FLU) and fluvoxamine (FLX) by ferrate(VI) were investigated. For the 10 mg/L of FLU and FLX, 35% and 50% of the compounds were degraded in the presence of 50 mg/L FeO42- within 10 minutes, respectively. After 10 minutes of the reaction, degradation of FLU and FLX is affected by formation of by-products which were likely more reactive with ferrate and competed in the reaction with FeO42-. In the case of FLU, the identified degradation by-products were hydrofluoxetine, N-methyl-3-phenyl-2-propen-1-amine, 4-(trifluoromethyl)phenol and 1-{[(1R,S)-1-Phenyl-2-propen-1-yl]oxy}-4-(trifluoromethyl)benzene. In the case of FLX, the degradation by-products were fluvoxamine acid and 5-methoxy-1-[4-(trifluoromethyl)phenyl]pent-2-en-1-imine. The results of the ecotoxicological study based on protozoa Spirostomum ambiguum have shown that 50 mg/L FeO42- reduced toxicity of 10 mg/L of FLU and FLX by around 50%. However, in the case of FLX, the results of the ecotoxicological study suggested formation of slightly more toxic compound(s) than FLX during reaction with FeO42-. Application of ferrate(VI) is a viable option for drinking water treatment process; however, caution is needed due to formation of by-products with unknown human health risk.
Collapse
Affiliation(s)
- Przemysław Drzewicz
- Polish Geological Institute - National Research Institute , Warszawa , Poland
| | - Agata Drobniewska
- Department of Environmental Health Sciences, Faculty of Pharmacy, Medical University of Warsaw , Warszawa , Poland
| | - Katarzyna Sikorska
- Department of Environmental Health Sciences, Faculty of Pharmacy, Medical University of Warsaw , Warszawa , Poland
- Department of Drug Chemistry, Faculty of Pharmacy, Medical University of Warsaw , Warszawa , Poland
| | - Grzegorz Nałęcz-Jawecki
- Department of Environmental Health Sciences, Faculty of Pharmacy, Medical University of Warsaw , Warszawa , Poland
| |
Collapse
|
23
|
Dong S, Mu Y, Sun X. Removal of toxic metals using ferrate(VI): a review. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2019; 80:1213-1225. [PMID: 31850873 DOI: 10.2166/wst.2019.376] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Heavy metal contamination of water resources is a critical issue which adversely affects humans. Ferrate(VI) (FeVIO4 2-, Fe(VI)), as a new type of green multifunctional water treatment agent, has shown promising potential for environmental decontamination. A complete understanding of the interactions between ferrate(VI) and toxic metals can be conducive to the further development of ferrate(VI) technology for application to wastewater treatment. This review first introduces the purification of ferrate(VI) technology for toxic metals including free heavy metals and metal complexes briefly. The effective parameters are then analyzed and discussed in detail. Subsequently, the reactivity and mechanisms of ferrate(VI) with toxic metals are emphatically described. Finally, possible research challenges and directions for ferrate(VI) technology applied to wastewater treatment in the future are summarized.
Collapse
Affiliation(s)
- Shuyu Dong
- School of Chemical Engineering, Northeast Electric Power University, Jilin City, 132012, China E-mail:
| | - Yao Mu
- School of Chemical Engineering, Northeast Electric Power University, Jilin City, 132012, China E-mail:
| | - Xuhui Sun
- School of Chemical Engineering, Northeast Electric Power University, Jilin City, 132012, China E-mail:
| |
Collapse
|
24
|
Goodwill JE, LaBar J, Slovikosky D, Strosnider WHJ. Preliminary Assessment of Ferrate Treatment of Metals in Acid Mine Drainage. JOURNAL OF ENVIRONMENTAL QUALITY 2019; 48:1549-1556. [PMID: 31589739 DOI: 10.2134/jeq2019.02.0079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We report a preliminary assessment of ferrate [Fe(VI)] for the treatment of acid mine drainage (AMD), focused on precipitation of metals (i.e., iron [Fe] and manganese [Mn]) and subsequent removal. Two dosing approaches were studied to simulate the two commercially viable forms of Fe(VI) production: Fe(VI) only, and Fe(VI) with sodium hydroxide (NaOH). Subsequent metal speciation was assessed via filter fractionation. When only Fe(VI) was added, the pH remained <3.6, and the precipitation of Mn and Fe was <30 and <70%, respectively, at the highest, stoichiometrically excessive Fe(VI) dose. When NaOH and Fe(VI) were added simultaneously, precipitation of Mn was much more complete, at doses near the predicted oxidation stoichiometric requirement. The optimal dosage of Fe(VI) for Mn treatment was 25 μM. The formation of Mn(VII) was noted at Fe(VI) dosages above the stoichiometric requirement, which would be problematic in full-scale AMD treatment systems. Precipitation of Fe was >99% when only NaOH was added, indicating that oxidation by Fe(VI) did not play a significant role when added. The Fe(III) and Al(III) particles were relatively large, suggesting probable success in subsequent removal through sedimentation. Resultant Mn-oxide particles were relatively small, indicating that additional particle destabilization may be required to meet Mn effluent goals. Ferrate seems viable for the treatment of AMD, especially when sourced through onsite generation due to the coexistence of NaOH in the product stream. More research on the use of Fe(VI) for AMD treatment is required to answer extant questions.
Collapse
|
25
|
Kanari N, Ostrosi E, Diliberto C, Filippova I, Shallari S, Allain E, Diot F, Patisson F, Yvon J. Green Process for Industrial Waste Transformation into Super-Oxidizing Materials Named Alkali Metal Ferrates (VI). MATERIALS 2019; 12:ma12121977. [PMID: 31248153 PMCID: PMC6630659 DOI: 10.3390/ma12121977] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/12/2019] [Accepted: 06/17/2019] [Indexed: 11/16/2022]
Abstract
The investigation presented here features the design of a cleaner and greener chemical process for the conversion of industrial wastes into super-oxidizing materials. The waste of interest is the iron sulfate heptahydrate (FeSO4·7H2O) mainly generated through the sulfate route used for titanium dioxide industrial production. The products of this transformation process are alkali ferrates (A2FeO4, A = Na, K) containing iron in its hexavalent state and considered as powerful oxidants characterized by properties useful for cleaning waters, wastewaters, and industrial effluents. The proposed process includes two steps: (i) The first step consisting of the pre-mixing of two solids (AOH with FeSO4·xH2O) in a rotary reactor allowing the coating of iron sulfate in the alkali hydroxides through solid–solid reactions; and (ii) the second step involves the synthesis of alkali ferrates in a fluidized bed by oxidation of the single solid obtained in the first step in diluted chlorine. The chemical synthesis of alkali ferrates can be carried out within a timeframe of a few minutes. The usage of a fluidized bed enhanced the energy and mass transfer allowing a quasi-complete control of the ferrate synthesis process. The alkali ferrate synthesis process described here possesses many characteristics aligned with the principles of the “green chemistry”.
Collapse
Affiliation(s)
- Ndue Kanari
- GeoRessources Laboratory, UMR 7359 CNRS, CREGU, Université de Lorraine, 2, rue du doyen Roubault, BP 10162, 54505 Vandoeuvre-lès-Nancy, France.
| | - Etleva Ostrosi
- Ville de Montréal, Direction de l'environnement, Division de la Planification et du Suivi Environnemental, 801, rue Brennan, Montréal, QC H3C 0G4, Canada.
| | - Cécile Diliberto
- Institut Jean Lamour, UMR 7198 CNRS, Université de Lorraine, Equipe 'Matériaux pour le Génie Civil', IUTNB, BP 90137, 54600 Villers-lès-Nancy, France.
| | - Inna Filippova
- GeoRessources Laboratory, UMR 7359 CNRS, CREGU, Université de Lorraine, 2, rue du doyen Roubault, BP 10162, 54505 Vandoeuvre-lès-Nancy, France.
| | - Seit Shallari
- Agricultural University of Tirana, Faculty of Agriculture and Environment, 1029 Tirana, Albania.
| | - Eric Allain
- GeoRessources Laboratory, UMR 7359 CNRS, CREGU, Université de Lorraine, 2, rue du doyen Roubault, BP 10162, 54505 Vandoeuvre-lès-Nancy, France.
| | - Frederic Diot
- GeoRessources Laboratory, UMR 7359 CNRS, CREGU, Université de Lorraine, 2, rue du doyen Roubault, BP 10162, 54505 Vandoeuvre-lès-Nancy, France.
| | - Fabrice Patisson
- Institut Jean Lamour, UMR 7198 CNRS, Labex DAMAS, Université de Lorraine, Campus Artem, 2 allée André Guinier, BP 50840, 54011 Nancy, France.
| | - Jacques Yvon
- GeoRessources Laboratory, UMR 7359 CNRS, CREGU, Université de Lorraine, 2, rue du doyen Roubault, BP 10162, 54505 Vandoeuvre-lès-Nancy, France.
| |
Collapse
|
26
|
Jiang Y, Goodwill JE, Tobiason JE, Reckhow DA. Comparison of ferrate and ozone pre-oxidation on disinfection byproduct formation from chlorination and chloramination. WATER RESEARCH 2019; 156:110-124. [PMID: 30909124 DOI: 10.1016/j.watres.2019.02.051] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 02/18/2019] [Accepted: 02/24/2019] [Indexed: 06/09/2023]
Abstract
This study investigated the effects of ferrate and ozone pre-oxidation on disinfection byproduct (DBP) formation from subsequent chlorination or chloramination. Two natural waters were treated at bench-scale under various scenarios (chlorine, chloramine, each with ferrate pre-oxidation, and each with pre-ozonation). The formation of brominated and iodinated DBPs in fortified natural waters was assessed. Results indicated ferrate and ozone pre-oxidation were comparable at molar equivalent doses for most DBPs. A net decrease in trihalomethanes (including iodinated forms), haloacetic acids (HAAs), dihaloacetonitrile, total organic chlorine, and total organic iodine was found with both pre-oxidants as compared to chlorination only. An increase in chloropicrin and minor changes in total organic bromine yield were caused by both pre-oxidants compared to chlorination only. However, ozone led to higher haloketone and chloropicrin formation potentials than ferrate. The relative performance of ferrate versus ozone for DBP precursor removal was affected by water quality (e.g., nature of organic matter and bromide concentration) and oxidant dose, and varied by DBP species. Ferrate and ozone pre-oxidation also decreased DBP formation from chloramination under most conditions. However, some increases in THM and dihaloacetonitrile formation potentials were observed at elevated bromide levels.
Collapse
Affiliation(s)
- Yanjun Jiang
- Department of Civil and Environmental Engineering, University of Massachusetts, Amherst, MA, 01003, United States
| | - Joseph E Goodwill
- Department of Civil and Environmental Engineering, University of Rhode Island, Kingston, RI, 02889, United States.
| | - John E Tobiason
- Department of Civil and Environmental Engineering, University of Massachusetts, Amherst, MA, 01003, United States
| | - David A Reckhow
- Department of Civil and Environmental Engineering, University of Massachusetts, Amherst, MA, 01003, United States
| |
Collapse
|
27
|
Cataldo-Hernández MA, Bonakdarpour A, English JT, Mohseni M, Wilkinson DP. A membrane-based electrochemical flow reactor for generation of ferrates at near neutral pH conditions. REACT CHEM ENG 2019. [DOI: 10.1039/c8re00306h] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the electrosynthesis of Fe(vi) in a flow reactor operating in batch recirculation mode at neutral conditions using boron doped diamond (BDD) and Fe(iii).
Collapse
Affiliation(s)
- Macarena A. Cataldo-Hernández
- Department of Chemical and Biological Engineering and the Clean Energy Research Center
- University of British Columbia
- Vancouver
- Canada
| | - Arman Bonakdarpour
- Department of Chemical and Biological Engineering and the Clean Energy Research Center
- University of British Columbia
- Vancouver
- Canada
| | - Joseph T. English
- Department of Chemical and Biological Engineering and the Clean Energy Research Center
- University of British Columbia
- Vancouver
- Canada
| | - Madjid Mohseni
- Department of Chemical and Biological Engineering and the Clean Energy Research Center
- University of British Columbia
- Vancouver
- Canada
| | - David P. Wilkinson
- Department of Chemical and Biological Engineering and the Clean Energy Research Center
- University of British Columbia
- Vancouver
- Canada
| |
Collapse
|
28
|
Zhang T, Dong F, Luo F, Li C. Degradation of sulfonamides and formation of trihalomethanes by chlorination after pre-oxidation with Fe(VI). J Environ Sci (China) 2018; 73:89-95. [PMID: 30290875 DOI: 10.1016/j.jes.2018.01.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/16/2018] [Accepted: 01/17/2018] [Indexed: 06/08/2023]
Abstract
Sulfonamides are used in human therapy, animal husbandry and agriculture but are not easily biodegradable, and are often detected in surface water. Sulfamethazine (SMZ) and sulfadiazine (SDZ) are two widely used sulfonamide antibiotics that are used heavily in agriculture. In this study, they were degraded in an aqueous system by chlorination after pre-oxidation with ferrate(VI) (FeVIO42-, Fe(VI)), an environmentally friendly oxidation technique that has been shown to be effective in degrading various organics. The kinetics of the degradation were determined as a function of Fe(VI) (0-1.5mg/L), free chlorine (0-1.8mg/L) and temperature (15-35°C). According to the experimental results, SMZ chlorination followed second-order kinetics with increasing Fe(VI) dosage, and the effect of the initial free chlorine concentration on the reaction kinetics with pre-oxidation by Fe(VI) fitted a pseudo-first order model. The rate constants of SDZ and SMZ chlorination at different temperatures were related to the Arrhenius equation. Fe(VI) could reduce the levels of THMs formed and the toxicity of the sulfonamide degradation systems with Fe(VI) doses of 0.5-1.5mg/L, which provides a reference for ensuring water quality in drinking water systems.
Collapse
Affiliation(s)
- Tuqiao Zhang
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310027, China.
| | - Feilong Dong
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310027, China
| | - Feng Luo
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310027, China
| | - Cong Li
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
29
|
Dubrawski KL, Cataldo M, Dubrawski Z, Mazumder A, Wilkinson DP, Mohseni M. In-situ electrochemical Fe(VI) for removal of microcystin-LR from drinking water: comparing dosing of the ferrate ion by electrochemical and chemical means. JOURNAL OF WATER AND HEALTH 2018; 16:414-424. [PMID: 29952330 DOI: 10.2166/wh.2018.187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Harmful algal blooms (HAB) release microtoxins that contaminate drinking water supplies and risk the health of millions annually. Crystalline ferrate(VI) is a powerful oxidant capable of removing algal microtoxins. We investigate in-situ electrochemically produced ferrate from common carbon steel as an on-demand alternative to crystalline ferrate for the removal of microcystin-LR (MC-LR) and compare the removal efficacy for both electrochemical (EC) and chemical dosing methodologies. We report that a very low dose of EC-ferrate in deionized water (0.5 mg FeO42- L-1) oxidizes MC-LR (MC-LR0 = 10 μg L-1) to below the guideline limit (1.0 μg L-1) within 10 minutes' contact time. With bicarbonate or natural organic matter (NOM), doses of 2.0-5.0 mg FeO42- L-1 are required, with lower efficacy of EC-ferrate than crystalline ferrate due to loss of EC-ferrate by water oxidation. To evaluate the EC-ferrate process to concurrently oxidize micropollutants, coagulate NOM, and disinfect drinking water, we spiked NOM-containing real water with MC-LR and Escherichia coli, finding that EC-ferrate is effective at 10.0 mg FeO42- L-1 under normal operation or 2.0 mg FeO42- L-1 if the test water has initial pH optimized. We suggest in-situ EC-ferrate may be appropriate for sporadic HAB events in small water systems as a primary or back-up technology.
Collapse
Affiliation(s)
- K L Dubrawski
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, BC V6T 1Z3, Canada E-mail:
| | - M Cataldo
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, BC V6T 1Z3, Canada E-mail:
| | - Z Dubrawski
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, BC V6T 1Z3, Canada E-mail:
| | - A Mazumder
- Water and Aquatic Sciences Research Program, Department of Biology, University of Victoria, Victoria, BC, Canada
| | - D P Wilkinson
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, BC V6T 1Z3, Canada E-mail:
| | - M Mohseni
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, BC V6T 1Z3, Canada E-mail:
| |
Collapse
|
30
|
Schmidbaur H. The History and the Current Revival of the Oxo Chemistry of Iron in its Highest Oxidation States: FeVI
- FeVIII. Z Anorg Allg Chem 2018. [DOI: 10.1002/zaac.201800036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hubert Schmidbaur
- Department Chemie; Technische Universität München; 85747 Garching Germany
| |
Collapse
|
31
|
Sun X, Zu K, Liang H, Sun L, Zhang L, Wang C, Sharma VK. Electrochemical synthesis of ferrate(VI) using sponge iron anode and oxidative transformations of antibiotic and pesticide. JOURNAL OF HAZARDOUS MATERIALS 2018; 344:1155-1164. [PMID: 28919429 DOI: 10.1016/j.jhazmat.2017.08.081] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 08/31/2017] [Accepted: 08/31/2017] [Indexed: 06/07/2023]
Abstract
Passivation of anode is a main challenge in the electrochemical synthesis of ferrate(VI) (FeVIO42-, Fe(VI)). A series of electrochemical approaches were employed including polarization curve, cyclic voltammetry, and electrochemical impedance spectroscopy (EIS) to analyze the physicochemical processes involved in electrochemical synthesis of Fe(VI) using sponge iron and cast iron anodes. The results demonstrate that the sponge iron anode achieved higher yield of Fe(VI) compared to grey cast iron anode. The optimum condition to generate Fe(VI) using sponge iron was 35-50°C and 30mA/cm2. Significantly, the sponge iron anode could generate Fe(VI) for a long duration (>10h) under these conditions; possibly suitable for large scale synthesis of Fe(VI). The prepared Fe(VI) solution was used to treat antibiotic (sulfamethoxazole (SMX)) and pesticide (atrazine (ATZ)) in water. At a molar ratio of Fe(VI) to SMX as 20:1 in the pH range from 5.0 to 9.0, almost complete oxidative transformation of SMX could be obtained. Comparatively, oxidative transformation of ATZ was incomplete (∼70%) even when [Fe(VI)]:[ATZ]=87 at pH 5.0-9.0. Fluorescence spectra and cytotoxicity studies suggest that the oxidative transformation products of both SMX and ATZ possess lower toxicity than the parent antibiotic and pesticide, respectively.
Collapse
Affiliation(s)
- Xuhui Sun
- Chemical Engineering College, Northeast Electrical Power University, Jilin City, 132012, PR China
| | - Kexin Zu
- Chemical Engineering College, Northeast Electrical Power University, Jilin City, 132012, PR China
| | - He Liang
- Chemical Engineering College, Northeast Electrical Power University, Jilin City, 132012, PR China
| | - Lin Sun
- Chemistry College, Jilin University, Changchun City, 131001, PR China
| | - Lingyun Zhang
- Chemical Engineering College, Northeast Electrical Power University, Jilin City, 132012, PR China
| | - Chuanyi Wang
- Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011, PR China
| | - Virender K Sharma
- Program for the Environment and Sustainability, Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, 1266 TAMU, College Station, TX 77843, USA.
| |
Collapse
|
32
|
Rai PK, Lee J, Kailasa SK, Kwon EE, Tsang YF, Ok YS, Kim KH. A critical review of ferrate(VI)-based remediation of soil and groundwater. ENVIRONMENTAL RESEARCH 2018; 160:420-448. [PMID: 29073572 DOI: 10.1016/j.envres.2017.10.016] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/15/2017] [Accepted: 10/09/2017] [Indexed: 05/04/2023]
Abstract
Over the past few decades, diverse chemicals and materials such as mono- and bimetallic nanoparticles, metal oxides, and zeolites have been used for soil and groundwater remediation. Ferrate (FeVIO42-) has been widely employed due to its high-valent iron (VI) oxo compound with high oxidation/reduction potentials. Ferrate has received attention for wide environmental applications including water purification and sewage sludge treatment. Ferrate provides great potential for diverse environmental applications without any environmental problems. Therefore, this paper provides comprehensive information on the recent progress on the use of (FeVIO42-) as a green material for use in sustainable treatment processes, especially for soil and water remediation. We reviewed diverse synthesis recipes for ferrates (FeVIO42-) and their associated physicochemical properties as oxidants, coagulants, and disinfectants for the elimination of a diverse range of chemical and biological species from water/wastewater samples. A summary of the eco-sustainable performance of ferrate(VI) in water remediation is also provided and the future of ferrate(VI) is discussed in this review.
Collapse
Affiliation(s)
- Prabhat Kumar Rai
- Department of Environmental Science, Mizoram University, Aizawl 796004, India
| | - Jechan Lee
- Department of Environment and Energy, Sejong University, Seoul 05006, Republic of Korea
| | - Suresh Kumar Kailasa
- Department of Applied Chemistry, S.V. National Institute of Technology, Surat 395007, Gujarat, India
| | - Eilhann E Kwon
- Department of Environment and Energy, Sejong University, Seoul 05006, Republic of Korea.
| | - Yiu Fai Tsang
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong
| | - Yong Sik Ok
- Korea Biochar Research Center, O-Jeong Eco-Resilience Institute (OJERI) & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea.
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea.
| |
Collapse
|
33
|
|
34
|
Gan W, Sharma VK, Zhang X, Yang L, Yang X. Investigation of disinfection byproducts formation in ferrate(VI) pre-oxidation of NOM and its model compounds followed by chlorination. JOURNAL OF HAZARDOUS MATERIALS 2015; 292:197-204. [PMID: 25814185 DOI: 10.1016/j.jhazmat.2015.02.037] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Revised: 02/09/2015] [Accepted: 02/13/2015] [Indexed: 05/09/2023]
Abstract
This study investigated the effect of disinfection by-products (DBPs) formation in pre-oxidation with ferrate(VI) (Fe(VI)O4(2-), Fe(VI)) and relationship between subsequent chlorination of Suwannee river natural organic matter (SRNOM) and eight model compounds containing moieties of alcohol, aldehyde, amines, amino acids, and phenol. The DBPs studied were trihalomethanes (THMs), chloral hydrate (CH), haloacetonitriles (HANs), and trichloronitromethane (TCNM). When the interaction of Fe(VI) and SRNOM was independently examined at pH 7.0, a decrease was seen in dissolved organic carbon and in the hydrophobic and hydrophilic fractions of NOM. With the model compounds, the results showed that Fe(VI) pre-oxidation and subsequent chlorination decreased the formation of THMs with most of the compounds except amines and glycine. The effect of Fe(VI) preoxidation on CH and HANs formation from model compounds varied and was dependent on ferrate doses. Fe(VI) pre-oxidation significantly enhanced TCNM formation, compared to without pre-oxidation, from subsequent chlorination of methylamine, dimethylamine and glycine and the formation increased with increasing doses of ferrate. Correlations of DBPs formation between SRNOM and model compounds were sought to identify the moieties involved in influencing the formation of DBPs. The generation of DBPs is described using the parent molecules and the kinetics and reaction products of Fe(VI)/chlorine oxidation.
Collapse
Affiliation(s)
- Wenhui Gan
- SYSU-HKUST Research Center for Innovative Environmental Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Virender K Sharma
- Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, 1266 TAMU, College Station, TX 77843, USA
| | - Xing Zhang
- SYSU-HKUST Research Center for Innovative Environmental Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - La Yang
- SYSU-HKUST Research Center for Innovative Environmental Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Xin Yang
- SYSU-HKUST Research Center for Innovative Environmental Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; Research Institute of Sun Yat-sen University in Shenzhen, Shenzhen, China.
| |
Collapse
|
35
|
Sharma VK, Zboril R, Varma RS. Ferrates: greener oxidants with multimodal action in water treatment technologies. Acc Chem Res 2015; 48:182-91. [PMID: 25668700 DOI: 10.1021/ar5004219] [Citation(s) in RCA: 214] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
CONSPECTUS: One of the biggest challenges for humanity in the 21st century is easy access to purified and potable water. The presence of pathogens and toxins in water causes more than two million deaths annually, mostly among children under the age of five. Identifying and deploying effective and sustainable water treatment technologies is critical to meet the urgent need for clean water globally. Among the various agents used in the purification and treatment of water, iron-based materials have garnered particular attention in view of their special attributes such as their earth-abundant and environmentally friendly nature. In recent years, higher-valent tetraoxy iron(VI) (Fe(VI)O4(2-), Fe(VI)), commonly termed, ferrate, is being explored for a broad portfolio of applications, including a greener oxidant in synthetic organic transformations, a water oxidation catalyst, and an efficient agent for abatement of pollutants in water. The use of Fe(VI) as an oxidant/disinfectant and further utilization of the ensuing iron(III) oxides/hydroxide as coagulants are other additional attributes of ferrate for water treatment. This multimodal action and environmentally benign character of Fe(VI) are key advantages over other commonly used oxidants (e.g., chlorine, chlorine dioxide, permanganate, hydrogen peroxide, and ozone). This Account discusses current state-of-the-art applications of Fe(VI) and the associated unique chemistry of these high-valence states of iron. The main focus centers around the description and salient properties of ferrate species involving various electron transfer and oxygen-atom transfer pathways in terms of presently accepted mechanisms. The mechanisms derive the number of electron equivalents per Fe(VI) (i.e., oxidation capacity) in treating various contaminants. The role of pH in the kinetics of the reactions and in determining the removal efficiency of pollutants is highlighted; the rates of competing reactions of Fe(VI) with itself, water, and the contaminants, which are highly pH dependent, determine the optimum pH range of maximum efficacy. The main emphasis of this account is placed on cases where various modes of ferrate action are utilized, including the treatment of nitrogen- and sulfur-containing waste products, antibiotics, viruses, bacteria, arsenic, and heavy metals. For example, the oxidative degradation of N- and S-bearing contaminants by Fe(VI) yields either Fe(II) or Fe(III) via the intermediacy of Fe(IV) and Fe(V) species, respectively (e.g., Fe(VI) → Fe(IV) → Fe(II) and Fe(VI) → Fe(V) → Fe(III)). Oxidative transformations of antibiotics such as trimethoprim by Fe(VI) generate products with no residual antibiotic activity. Disinfection and inactivation of bacteria and viruses can easily be achieved by Fe(VI). Advanced applications involve the use of ferrate for the degradation of cyanobacteria and microcystin originating from algal blooms and for covalently embedding arsenic and heavy metals into the structure of formed magnetic iron(III) oxides, therefore preventing their leaching. Applications of state-of-the-art analytical techniques, namely, in situ Mössbauer spectroscopy, rapid-freeze electron paramagnetic resonance, nuclear forward scattering of synchrotron radiation, and mass spectrometry will enhance the mechanistic understanding of ferrate species. This will make it possible to unlock the true potential of ferrates for degrading emerging toxins and pollutants, and in the sustainable production and use of nanomaterials in an energy-conserving environment.
Collapse
Affiliation(s)
- Virender K. Sharma
- Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, College Station, Texas 77843, United States
| | - Radek Zboril
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacky University in Olomouc, 771 46 Olomouc, Czech Republic
| | - Rajender S. Varma
- Sustainable
Technology Division, National Risk Management Research Laboratory, U.S. Environmental Protection Agency, Cincinnati, Ohio 45268, United States
| |
Collapse
|
36
|
Lacina P, Goold S. Use of the ferrates (FeIV-VI) in combination with hydrogen peroxide for rapid and effective remediation of water--laboratory and pilot study. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2015; 72:1869-1878. [PMID: 26540550 DOI: 10.2166/wst.2015.414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In recent years, particles of iron in higher oxidation states (Fe(IV-VI)), commonly called ferrates, have been presented theoretically as very effective oxidants. They can potentially be used for elimination of a wide range of organic and inorganic contaminants. However, so far the majority of applications have been carried out only as laboratory tests using model samples in many cases. The application of ferrates in remediation programs has so far proved to be more complicated with results failing to meet expectations. Therefore there is a necessity to consider the suitability of their use or consider their possible combination with other agents in order to reach required removal efficiencies in remediation. This study is focused on laboratory experiments using industrial groundwater leading to the proposal of a pilot field application realized as an ex-situ remediation. The combination of ferrates with hydrogen peroxide was used in this study in order to enhance the removal efficiency during pilot remediation of groundwater strongly contaminated by a wide range of organic contaminants. This combination has been shown to be very effective. During the 24-hour reaction time the majority of detected contaminants were removed by approximately 60-80%. Moreover, the unpleasant odor of the water was suppressed and suspended particles were removed by the flocculation effect of ferric sludge.
Collapse
Affiliation(s)
- Petr Lacina
- GEOtest, a.s., Smahova 1244/112, 627 00 Brno, Czech Republic E-mail:
| | - Scott Goold
- GEOtest, a.s., Smahova 1244/112, 627 00 Brno, Czech Republic E-mail:
| |
Collapse
|