1
|
Hdoufane I, Oubahmane M, Habibi Y, Delaite C, Alanazi MM, Cherqaoui D. Identification of potent TMPRSS4 inhibitors through structural modeling and molecular dynamics simulations. Sci Rep 2025; 15:2748. [PMID: 39838126 PMCID: PMC11750979 DOI: 10.1038/s41598-025-86961-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/15/2025] [Indexed: 01/23/2025] Open
Abstract
TMPRSS4, a transmembrane serine protease type II, is associated with various pathological illnesses. It has been found to activate SARS-CoV-2, enhance viral infection of human small-intestinal enterocytes and is overexpressed in different types of cancers. Therefore, this study aims to disover potential TMPRSS4 inhibitors that have better binding affinity than the approved inhibitors: 2-hydroxydiarylamide and tyroserleutide. Since no 3D-structure is known for TMPRSS4, structural models for the TMPRSS4 serine protease domain were developed. The modeled structures were validated and subjected to molecular dynamics simulations. FDA-approved, clinical/preclinical drugs and natural products were docked to the pocket of TMPRSS4. Moreover, through a systematic analysis, MD simulations and MM-GBSA binding free energy calculations revealed that the best candidates Ergotamine, S55746, NPC478048, Lifirafenib, and NPC77101 are highly stable drug candidates in complex with TMPRSS4, displaying low RMSD and RMSF values with strong binding stability. Among these compounds, Ergotamine showed the most favorable binding energy (-33.73 kcal/mol). Overall, our in silico results revealed that these compounds could act as potent TMPRSS4 inhibitors and need to be validated by future experimental studies.
Collapse
Affiliation(s)
- Ismail Hdoufane
- Laboratory of Molecular Chemistry, Department of Chemistry, Faculty of Sciences Semlalia, Cadi Ayyad University, BP 2390, 40000, Marrakech, Morocco.
| | - Mehdi Oubahmane
- Laboratory of Molecular Chemistry, Department of Chemistry, Faculty of Sciences Semlalia, Cadi Ayyad University, BP 2390, 40000, Marrakech, Morocco
| | - Youssef Habibi
- Sustainable Materials Research Center (SUSMAT-RC), University Mohamed VI Polytechnic (UM6P), Hay Moulay Rachid, Benguerir, Morocco
| | - Christelle Delaite
- Laboratoire de Photochimie et d'Ingénierie Macromoléculaires (LPIM EA 4567), Université de Haute-Alsace, 68100, Mulhouse, France
| | - Mohammed M Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Driss Cherqaoui
- Laboratory of Molecular Chemistry, Department of Chemistry, Faculty of Sciences Semlalia, Cadi Ayyad University, BP 2390, 40000, Marrakech, Morocco
- Sustainable Materials Research Center (SUSMAT-RC), University Mohamed VI Polytechnic (UM6P), Hay Moulay Rachid, Benguerir, Morocco
| |
Collapse
|
2
|
Oliveira EH, Monteleone-Cassiano AC, Tavares L, Santos JC, Lima TM, Gomes GF, Tanaka PP, Monteiro CJ, Munuera M, Batah SS, Fabro AT, Faça VM, Masson AP, Donadi EA, Dametto M, Bonacin R, Martins RB, Neto EA, daSilva LLP, Cunha TM, Passos GA. A mimetic peptide of ACE2 protects against SARS-CoV-2 infection and decreases pulmonary inflammation related to COVID-19. Antiviral Res 2024; 229:105968. [PMID: 39004311 DOI: 10.1016/j.antiviral.2024.105968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/30/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024]
Abstract
Since human angiotensin-converting enzyme 2 (ACE2) serves as a primary receptor for SARS-CoV-2, characterizing ACE2 regions that allow SARS-CoV-2 to enter human cells is essential for designing peptide-based antiviral blockers and elucidating the pathogenesis of the virus. We identified and synthesized a 25-mer mimetic peptide (encompassing positions 22-46 of the ACE2 alpha-helix α1) implicated in the S1 receptor-binding domain (RBD)-ACE2 interface. The mimetic (wild-type, WT) ACE2 peptide significantly inhibited SARS-CoV-2 infection of human pulmonary Calu-3 cells in vitro. In silico protein modeling predicted that residues F28, K31, F32, F40, and Y41 of the ACE2 alpha-helix α1 are critical for the original, Delta, and Omicron strains of SARS-CoV-2 to establish the Spike RBD-ACE2 interface. Substituting these residues with alanine (A) or aspartic acid (D) abrogated the antiviral protective effect of the peptides, indicating that these positions are critical for viral entry into pulmonary cells. WT ACE2 peptide, but not the A or D mutated peptides, exhibited significant interaction with the SARS-CoV-2 S1 RBD, as shown through molecular dynamics simulations. Through identifying the critical amino acid residues of the ACE2 alpha-helix α1, which is necessary for the Spike RBD-ACE2 interface and mobilized during the in vitro viral infection of cells, we demonstrated that the WT ACE2 peptide protects susceptible K18-hACE2 mice against in vivo SARS-CoV-2 infection and is effective for the treatment of COVID-19.
Collapse
Affiliation(s)
- Ernna H Oliveira
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Ana C Monteleone-Cassiano
- Program in Basic and Applied Immunology, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Lucas Tavares
- Department of Cellular and Molecular Biology and Pathogenic Bioagents, Center for Virus Research, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Jadson C Santos
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Thais M Lima
- Department of Cellular and Molecular Biology and Pathogenic Bioagents, Center for Virus Research, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Giovanni F Gomes
- Center for Research in Inflammatory Diseases, Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Pedro P Tanaka
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Cintia J Monteiro
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Matheus Munuera
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Sabrina S Batah
- Department of Pathology and Legal Medicine, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Alexandre T Fabro
- Department of Pathology and Legal Medicine, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Vitor M Faça
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Ana P Masson
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Eduardo A Donadi
- Division of Clinical Immunology, Department of Medicine, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Mariangela Dametto
- Renato Archer Technology Information Center, Ministry of Science, Technology and Innovation, Campinas, SP, Brazil
| | - Rodrigo Bonacin
- Renato Archer Technology Information Center, Ministry of Science, Technology and Innovation, Campinas, SP, Brazil
| | - Ronaldo B Martins
- Department of Cellular and Molecular Biology and Pathogenic Bioagents, Center for Virus Research, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Eurico Arruda Neto
- Department of Cellular and Molecular Biology and Pathogenic Bioagents, Center for Virus Research, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Luis Lamberti P daSilva
- Department of Cellular and Molecular Biology and Pathogenic Bioagents, Center for Virus Research, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Thiago M Cunha
- Center for Research in Inflammatory Diseases, Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Geraldo A Passos
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil; Laboratory of Genetics and Molecular Biology, Department of Basic and Oral Biology, Ribeirão Preto School of Dentistry, University of São Paulo (USP), Ribeirão Preto, SP, Brazil.
| |
Collapse
|
3
|
Joushomme A, Désilets A, Champagne W, Hassanzadeh M, Lemieux G, Gravel-Trudeau A, Lepage M, Lafrenière S, Froehlich U, List K, Boudreault PL, Leduc R. Development of ketobenzothiazole-based peptidomimetic TMPRSS13 inhibitors with low nanomolar potency. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.28.609965. [PMID: 39257753 PMCID: PMC11383682 DOI: 10.1101/2024.08.28.609965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
TMPRSS13, a member of the Type II Transmembrane Serine Proteases (TTSP) family, is involved in cancer progression and in cell entry of respiratory viruses. To date, no inhibitors have been specifically developed toward this protease. In this study, a chemical library of 65 ketobenzothiazole-based peptidomimetic molecules was screened against a proteolytically active form of recombinant TMPRSS13 to identify novel inhibitors. Following an initial round of screening, subsequent synthesis of additional derivatives supported by molecular modelling, uncovered important molecular determinants involved in TMPRSS13 inhibition. One inhibitor, N-0430, achieved low nanomolar affinity towards TMPRSS13 activity in a cellular context. Using a SARS-CoV-2 pseudovirus cell entry model, we further show the ability of N-0430 to block TMPRSS13-dependent entry of the pseudovirus. The identified peptidomimetic inhibitors and the molecular insights of their potency gained from this study will aid in the development of specific TMPRSS13 inhibitors.
Collapse
Affiliation(s)
- Alexandre Joushomme
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Antoine Désilets
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - William Champagne
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Malihe Hassanzadeh
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Gabriel Lemieux
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Alice Gravel-Trudeau
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Matthieu Lepage
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Sabrina Lafrenière
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Ulrike Froehlich
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Karin List
- Department of Pharmacology, Wayne State University, Detroit, MI 48202, USA
| | - Pierre-Luc Boudreault
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Richard Leduc
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
4
|
Lubinski B, Whittaker GR. Host Cell Proteases Involved in Human Respiratory Viral Infections and Their Inhibitors: A Review. Viruses 2024; 16:984. [PMID: 38932275 PMCID: PMC11209347 DOI: 10.3390/v16060984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Viral tropism is most commonly linked to receptor use, but host cell protease use can be a notable factor in susceptibility to infection. Here we review the use of host cell proteases by human viruses, focusing on those with primarily respiratory tropism, particularly SARS-CoV-2. We first describe the various classes of proteases present in the respiratory tract, as well as elsewhere in the body, and incorporate the targeting of these proteases as therapeutic drugs for use in humans. Host cell proteases are also linked to the systemic spread of viruses and play important roles outside of the respiratory tract; therefore, we address how proteases affect viruses across the spectrum of infections that can occur in humans, intending to understand the extrapulmonary spread of SARS-CoV-2.
Collapse
Affiliation(s)
- Bailey Lubinski
- Department of Microbiology & Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14850, USA;
| | - Gary R. Whittaker
- Department of Microbiology & Immunology and Public & Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
5
|
Colombo É, Désilets A, Hassanzadeh M, Lemieux G, Marois I, Cliche D, Delbrouck JA, Murza A, Jean F, Marsault E, Richter MV, Leduc R, Boudreault PL. Optimization of Ketobenzothiazole-Based Type II Transmembrane Serine Protease Inhibitors to Block H1N1 Influenza Virus Replication. ChemMedChem 2024; 19:e202300458. [PMID: 37864572 DOI: 10.1002/cmdc.202300458] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/06/2023] [Accepted: 10/16/2023] [Indexed: 10/23/2023]
Abstract
Human influenza viruses cause acute respiratory symptoms that can lead to death. Due to the emergence of antiviral drug-resistant strains, there is an urgent requirement for novel antiviral agents and innovative therapeutic strategies. Using the peptidomimetic ketobenzothiazole protease inhibitor RQAR-Kbt (IN-1, aka N-0100) as a starting point, we report how substituting P2 and P4 positions with natural and unnatural amino acids can modulate the inhibition potency toward matriptase, a prototypical type II transmembrane serine protease (TTSP) that acts as a priming protease for influenza viruses. We also introduced modifications of the peptidomimetics N-terminal groups, leading to significant improvements (from μM to nM, 60 times more potent than IN-1) in their ability to inhibit the replication of influenza H1N1 virus in the Calu-3 cell line derived from human lungs. The selectivity towards other proteases has been evaluated and explained using molecular modeling with a crystal structure recently obtained by our group. By targeting host cell TTSPs as a therapeutic approach, it may be possible to overcome the high mutational rate of influenza viruses and consequently prevent potential drug resistance.
Collapse
Affiliation(s)
- Éloïc Colombo
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, and Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, J1H 5N4, Québec, Canada
| | - Antoine Désilets
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, and Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, J1H 5N4, Québec, Canada
| | - Malihe Hassanzadeh
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, and Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, J1H 5N4, Québec, Canada
| | - Gabriel Lemieux
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, and Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, J1H 5N4, Québec, Canada
| | - Isabelle Marois
- Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, J1H 5N4 Québec, Canada
- Current address: Department of Biology, Faculty of Sciences, Université de Sherbrooke, Sherbrooke, J1K 2R1 Québec, Canada
| | - Dominic Cliche
- Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, J1H 5N4 Québec, Canada
| | - Julien A Delbrouck
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, and Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, J1H 5N4, Québec, Canada
- Current address: Xenon Pharmaceuticals Inc., Burnaby, V5G 4W8, British Columbia, Canada
| | - Alexandre Murza
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, and Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, J1H 5N4, Québec, Canada
| | - François Jean
- Department of Microbiology and Immunology, Faculty of Science, Life Sciences Institute, University of British Columbia, V6T 1Z3, British Columbia, Canada
| | - Eric Marsault
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, and Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, J1H 5N4, Québec, Canada
| | - Martin V Richter
- Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, J1H 5N4 Québec, Canada
| | - Richard Leduc
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, and Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, J1H 5N4, Québec, Canada
| | - Pierre-Luc Boudreault
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, and Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, J1H 5N4, Québec, Canada
| |
Collapse
|
6
|
Li W, Wu H, Xu J. Construction of a genomic instability-derived predictive prognostic signature for non-small cell lung cancer patients. Cancer Genet 2023; 278-279:24-37. [PMID: 37579716 DOI: 10.1016/j.cancergen.2023.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/27/2023] [Accepted: 07/29/2023] [Indexed: 08/16/2023]
Abstract
BACKGROUND Genomic instability (GI) is an effective prognostic marker of cancer. Thus, in this work, we aimed to explore the impact of GI derived signature on prognosis in non-small cell lung cancer (NSCLC) patients using bioinformatics methods. METHODS The data of NSCLC patients were collected from The Cancer Genome Atlas. Totally 1794 immune related genes were downloaded from immport database. The optimal prognosis related genes were identified by univariate and LASSO Cox analyses. The risk score model was built to predict the NSCLC patients' prognosis. The immune cell infiltration was analyzed in CIBERSORT. RESULTS The 951 differentially expressed genes (DEGs) between the genomic stability (GS) and GI groups were enriched in 862 Gene ontology terms and 32 Kyoto Encyclopedia of Genes and Genomes pathways. Based on the 13 optimal genes, a prognostic risk score mode for NSCLC was established, and the high-risk patients exhibited worse overall survival. Moreover, the nomogram could reliably predict the clinical outcomes. The immune cell infiltration and checkpoints were significantly differential between the two groups (high-risk and low-risk). CONCLUSION The GI related 13-gene signature (TMPRSS11E, TNNC2, HLF, FOXM1, PKMYT1, TCN1, RGS20, SYT8, CD1B, LY6K, MFSD4A, KLRG2 APCDD1L) could reliably predict the prognosis of NSCLC patients.
Collapse
Affiliation(s)
- Wei Li
- Department of Pulmonary and Critical Care Medicine, The Yancheng Clinical College of Xuzhou Medical University, The First People's Hospital of Yancheng City, Yancheng, Jiangsu 224006, China
| | - Huaman Wu
- Department of Respiratory and Critical Care Medicine, Zigong First People's Hospital, Ziliujing District, Zigong, Sichuan 643000, China
| | - Juan Xu
- Department of Pulmonary and Critical Care Medicine, The Yancheng Clinical College of Xuzhou Medical University, The First People's Hospital of Yancheng City, Yancheng, Jiangsu 224006, China.
| |
Collapse
|
7
|
Wu Q, Li S, Zhang X, Dong N. Type II Transmembrane Serine Proteases as Modulators in Adipose Tissue Phenotype and Function. Biomedicines 2023; 11:1794. [PMID: 37509434 PMCID: PMC10376093 DOI: 10.3390/biomedicines11071794] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023] Open
Abstract
Adipose tissue is a crucial organ in energy metabolism and thermoregulation. Adipose tissue phenotype is controlled by various signaling mechanisms under pathophysiological conditions. Type II transmembrane serine proteases (TTSPs) are a group of trypsin-like enzymes anchoring on the cell surface. These proteases act in diverse tissues to regulate physiological processes, such as food digestion, salt-water balance, iron metabolism, epithelial integrity, and auditory nerve development. More recently, several members of the TTSP family, namely, hepsin, matriptase-2, and corin, have been shown to play a role in regulating lipid metabolism, adipose tissue phenotype, and thermogenesis, via direct growth factor activation or indirect hormonal mechanisms. In mice, hepsin deficiency increases adipose browning and protects from high-fat diet-induced hyperglycemia, hyperlipidemia, and obesity. Similarly, matriptase-2 deficiency increases fat lipolysis and reduces obesity and hepatic steatosis in high-fat diet-fed mice. In contrast, corin deficiency increases white adipose weights and cell sizes, suppresses adipocyte browning and thermogenic responses, and causes cold intolerance in mice. These findings highlight an important role of TTSPs in modifying cellular phenotype and function in adipose tissue. In this review, we provide a brief description about TTSPs and discuss recent findings regarding the role of hepsin, matriptase-2, and corin in regulating adipose tissue phenotype, energy metabolism, and thermogenic responses.
Collapse
Affiliation(s)
- Qingyu Wu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou 215123, China
| | - Shuo Li
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Xianrui Zhang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou 215123, China
| | - Ningzheng Dong
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou 215123, China
- NHC Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, Soochow University, Suzhou 215006, China
| |
Collapse
|
8
|
Halma MTJ, Plothe C, Marik P, Lawrie TA. Strategies for the Management of Spike Protein-Related Pathology. Microorganisms 2023; 11:1308. [PMID: 37317282 PMCID: PMC10222799 DOI: 10.3390/microorganisms11051308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/04/2023] [Accepted: 05/10/2023] [Indexed: 06/16/2023] Open
Abstract
In the wake of the COVID-19 crisis, a need has arisen to prevent and treat two related conditions, COVID-19 vaccine injury and long COVID-19, both of which can trace at least part of their aetiology to the spike protein, which can cause harm through several mechanisms. One significant mechanism of harm is vascular, and it is mediated by the spike protein, a common element of the COVID-19 illness, and it is related to receiving a COVID-19 vaccine. Given the significant number of people experiencing these two related conditions, it is imperative to develop treatment protocols, as well as to consider the diversity of people experiencing long COVID-19 and vaccine injury. This review summarizes the known treatment options for long COVID-19 and vaccine injury, their mechanisms, and their evidentiary basis.
Collapse
Affiliation(s)
| | - Christof Plothe
- Center for Biophysical Osteopathy, Am Wegweiser 27, 55232 Alzey, Germany
| | - Paul Marik
- Front Line COVID-19 Critical Care Alliance (FLCCC), 2001 L St. NW Suite 500, Washington, DC 20036, USA;
| | | |
Collapse
|
9
|
Kim S. TMPRSS4, a type II transmembrane serine protease, as a potential therapeutic target in cancer. Exp Mol Med 2023; 55:716-724. [PMID: 37009799 PMCID: PMC10167312 DOI: 10.1038/s12276-023-00975-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 01/12/2023] [Accepted: 01/24/2023] [Indexed: 04/04/2023] Open
Abstract
Proteases are involved in almost all biological processes, implying their importance for both health and pathological conditions. Dysregulation of proteases is a key event in cancer. Initially, research identified their role in invasion and metastasis, but more recent studies have shown that proteases are involved in all stages of cancer development and progression, both directly through proteolytic activity and indirectly via regulation of cellular signaling and functions. Over the past two decades, a novel subfamily of serine proteases called type II transmembrane serine proteases (TTSPs) has been identified. Many TTSPs are overexpressed by a variety of tumors and are potential novel markers of tumor development and progression; these TTSPs are possible molecular targets for anticancer therapeutics. The transmembrane protease serine 4 (TMPRSS4), a member of the TTSP family, is upregulated in pancreatic, colorectal, gastric, lung, thyroid, prostate, and several other cancers; indeed, elevated expression of TMPRSS4 often correlates with poor prognosis. Based on its broad expression profile in cancer, TMPRSS4 has been the focus of attention in anticancer research. This review summarizes up-to-date information regarding the expression, regulation, and clinical relevance of TMPRSS4, as well as its role in pathological contexts, particularly in cancer. It also provides a general overview of epithelial-mesenchymal transition and TTSPs.
Collapse
Affiliation(s)
- Semi Kim
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejon, 34141, Korea.
- Department of Functional Genomics, Korea University of Science and Technology, Daejon, 34113, Korea.
| |
Collapse
|
10
|
Li S, Chen Z, Zhang W, Wang T, Wang X, Wang C, Chao J, Liu L. Elevated expression of the membrane-anchored serine protease TMPRSS11E in NSCLC progression. Carcinogenesis 2022; 43:1092-1102. [PMID: 35951670 DOI: 10.1093/carcin/bgac069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/14/2022] [Accepted: 08/09/2022] [Indexed: 02/04/2023] Open
Abstract
TMPRSS11E was found to be upregulated in human nonsmall cell lung cancer samples (NSCLC) and cell lines, and high expression was associated with poor survival of NSCLC patients. The results of in vitro and in vivo experiments showed that overexpressing TMPRSS11E resulted in A549 cell proliferation and migration promotion, while the TMPRSS11E S372A mutant with the mutated catalytic domain lost the promoting function. In addition, in mouse xenograft models, silencing TMPRSS11E expression inhibited the growth of 95D cell-derived tumors. To explore the mechanism of marked upregulation of TMPRSS11E in NSCLC cells, promoter analysis, EMSA, and ChIP assays were performed. STAT3 was identified as the transcription factor responsible for TMPRSS11E transcription. Moreover, the purified recombinant TMPRSS11E catalytic domain exhibited enzymatic activity for the proteolytic cleavage of PAR2. Recombinant TMPRSS11E catalytic domain incubation further activated the PAR2-EGFR-STAT3 pathway. These findings established a mechanism of TMPRSS11E-PAR2-EGFR-STAT3 positive feedback, and the oncogenic role of TMPRSS11E as a PAR2 modulator in NSCLC was revealed.
Collapse
Affiliation(s)
- Shufeng Li
- Key Laboratory of Developmental Genes and Human Disease in Ministry of Education, Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Biochemistry and Molecular Biology, Medical School of Southeast University, Nanjing 210009, China
| | - Zhenfa Chen
- Key Laboratory of Developmental Genes and Human Disease in Ministry of Education, Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Biochemistry and Molecular Biology, Medical School of Southeast University, Nanjing 210009, China
| | - Wei Zhang
- Key Laboratory of Developmental Genes and Human Disease in Ministry of Education, Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Biochemistry and Molecular Biology, Medical School of Southeast University, Nanjing 210009, China
| | - Ting Wang
- Key Laboratory of Developmental Genes and Human Disease in Ministry of Education, Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Biochemistry and Molecular Biology, Medical School of Southeast University, Nanjing 210009, China
| | - Xihua Wang
- Department of Respiration, Zhongda Hospital, Nanjing 210009, China
| | - Chao Wang
- Key Laboratory of Developmental Genes and Human Disease in Ministry of Education, Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Biochemistry and Molecular Biology, Medical School of Southeast University, Nanjing 210009, China
| | - Jie Chao
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Physiology, Medical School of Southeast University, Nanjing 210009, China
| | - Ling Liu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, Medicine School of Southeast University, Nanjing 210009, China
| |
Collapse
|
11
|
Gheshlaghi SZ, Nakhaei E, Ebrahimi A, Jafari M, Shahraki A, Rezazadeh S, Saberinasab E, Nowroozi A, Hosseini SS. Analysis of medicinal and therapeutic potential of Withania somnifera derivatives against COVID-19. J Biomol Struct Dyn 2022:1-11. [PMID: 35993530 DOI: 10.1080/07391102.2022.2112977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Apart from chemical and allopathic drugs, several medicinal plants contain phytochemicals that are potentially useful to counter the COVID-19 pandemic. Withania somnifera (Ashwagandha), which has a good effect on some viral infections, can be considered as a candidate against the virus. In the present study, thirty-nine natural compounds of Ashwagandha were investigated in terms of their binding to the important drug targets to treat the COVID-19. Although the molecular docking calculations reveal the binding affinities of the compounds to Mpro, TMPRSS2, NSP15, PLpro, Spike RBD + ACE2, RdRp and NSP12 as targets in controlling the coronavirus enzymes, Withanoside II is expected to be the most effective compound due to the high affinity in binding with many of considered targets. Furthermore, the Withanoside III, IV, V, X, and XI have favorable binding affinities as ligands with respect to the MM/GBSA calculations. The molecular dynamics simulations MD explore a stable hydrogen bond network between ligands and the active sites residues. Also, the dynamic fluctuations of the binding site residues verify their tight binding to ligands. Moreover, the stability of ligand-protein complexes is approved by the RMSD ranges lower than 0.5 Å in equilibration zone for all mentioned complexes. The TMPRSS2-Withanolide Q and Mpro-Withanoside IV complexes are the most stable pairs using the MM/GBSA calculations and MD simulation.
Collapse
Affiliation(s)
- Saman Zare Gheshlaghi
- Department of Chemistry, Computational Quantum Chemistry Laboratory, University of Sistan and Baluchestan, Zahedan, Iran
| | - Ebrahim Nakhaei
- Department of Chemistry, Computational Quantum Chemistry Laboratory, University of Sistan and Baluchestan, Zahedan, Iran
| | - Ali Ebrahimi
- Department of Chemistry, Computational Quantum Chemistry Laboratory, University of Sistan and Baluchestan, Zahedan, Iran
| | - Majid Jafari
- Department of Plant Protection, Higher Education Complex of Saravan, College of Agriculture
| | - Asiyeh Shahraki
- Department of Chemistry, Computational Quantum Chemistry Laboratory, University of Sistan and Baluchestan, Zahedan, Iran
| | - Shiva Rezazadeh
- Department of Chemistry, Computational Quantum Chemistry Laboratory, University of Sistan and Baluchestan, Zahedan, Iran
| | - Erfan Saberinasab
- School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Nowroozi
- Department of Chemistry, Computational Quantum Chemistry Laboratory, University of Sistan and Baluchestan, Zahedan, Iran
| | | |
Collapse
|
12
|
Shapira T, Monreal IA, Dion SP, Buchholz DW, Imbiakha B, Olmstead AD, Jager M, Désilets A, Gao G, Martins M, Vandal T, Thompson CAH, Chin A, Rees WD, Steiner T, Nabi IR, Marsault E, Sahler J, Diel DG, Van de Walle GR, August A, Whittaker GR, Boudreault PL, Leduc R, Aguilar HC, Jean F. A TMPRSS2 inhibitor acts as a pan-SARS-CoV-2 prophylactic and therapeutic. Nature 2022; 605:340-348. [PMID: 35344983 PMCID: PMC9095466 DOI: 10.1038/s41586-022-04661-w] [Citation(s) in RCA: 131] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 03/18/2022] [Indexed: 11/30/2022]
Abstract
The COVID-19 pandemic caused by the SARS-CoV-2 virus remains a global public health crisis. Although widespread vaccination campaigns are underway, their efficacy is reduced owing to emerging variants of concern1,2. Development of host-directed therapeutics and prophylactics could limit such resistance and offer urgently needed protection against variants of concern3,4. Attractive pharmacological targets to impede viral entry include type-II transmembrane serine proteases (TTSPs) such as TMPRSS2; these proteases cleave the viral spike protein to expose the fusion peptide for cell entry, and thus have an essential role in the virus lifecycle5,6. Here we identify and characterize a small-molecule compound, N-0385, which exhibits low nanomolar potency and a selectivity index of higher than 106 in inhibiting SARS-CoV-2 infection in human lung cells and in donor-derived colonoids7. In Calu-3 cells it inhibits the entry of the SARS-CoV-2 variants of concern B.1.1.7 (Alpha), B.1.351 (Beta), P.1 (Gamma) and B.1.617.2 (Delta). Notably, in the K18-human ACE2 transgenic mouse model of severe COVID-19, we found that N-0385 affords a high level of prophylactic and therapeutic benefit after multiple administrations or even after a single administration. Together, our findings show that TTSP-mediated proteolytic maturation of the spike protein is critical for SARS-CoV-2 infection in vivo, and suggest that N-0385 provides an effective early treatment option against COVID-19 and emerging SARS-CoV-2 variants of concern.
Collapse
Affiliation(s)
- Tirosh Shapira
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - I Abrrey Monreal
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY, USA
| | - Sébastien P Dion
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - David W Buchholz
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY, USA
| | - Brian Imbiakha
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY, USA
| | - Andrea D Olmstead
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mason Jager
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY, USA
| | - Antoine Désilets
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Guang Gao
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mathias Martins
- Department of Population Medicine and Diagnostic Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY, USA
| | - Thierry Vandal
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Connor A H Thompson
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Aaleigha Chin
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - William D Rees
- Department of Medicine, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Theodore Steiner
- Department of Medicine, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ivan Robert Nabi
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Eric Marsault
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Julie Sahler
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY, USA
| | - Diego G Diel
- Department of Population Medicine and Diagnostic Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY, USA
| | - Gerlinde R Van de Walle
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY, USA
| | - Avery August
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY, USA
| | - Gary R Whittaker
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY, USA
| | - Pierre-Luc Boudreault
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Richard Leduc
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| | - Hector C Aguilar
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY, USA.
| | - François Jean
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
13
|
Trends in the development of remdesivir based inventions against COVID-19 and other disorders: A patent review. J Infect Public Health 2021; 14:1075-1086. [PMID: 34243049 PMCID: PMC8236076 DOI: 10.1016/j.jiph.2021.06.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 11/21/2022] Open
Abstract
The development of remdesivir has been a breakthrough for COVID-19 treatment. It has been approved in about 50 countries, including Saudi Arabia, since 2020. The generic structure of remdesivir was first disclosed in 2009. This patent review summarizes the remdesivir based inventions to treat/prevent COVID-19 and other disorders from 2009 to May 16, 2021, emphasizing the patents related to medical and pharmaceutical sciences. The primary patents/patent applications of remdesivir are related to its compositions, new combinations with other therapeutic agents, delivery systems, and new indications. The inventive combinations have displayed synergistic effects against COVID-19, whereas the delivery systems/compositions have improved patient compliance. The inventions related to new indications of remdesivir to treat Ebola, hepatitis, idiopathic pulmonary fibrosis, diabetic nephropathy, and cardiovascular complications enhance its therapeutic area. Many new innovative combinations and delivery systems of remdesivir are anticipated to provide better treatment for COVID-19.
Collapse
|
14
|
Seidah NG, Pasquato A, Andréo U. How Do Enveloped Viruses Exploit the Secretory Proprotein Convertases to Regulate Infectivity and Spread? Viruses 2021; 13:v13071229. [PMID: 34202098 PMCID: PMC8310232 DOI: 10.3390/v13071229] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/09/2021] [Accepted: 06/18/2021] [Indexed: 12/14/2022] Open
Abstract
Inhibition of the binding of enveloped viruses surface glycoproteins to host cell receptor(s) is a major target of vaccines and constitutes an efficient strategy to block viral entry and infection of various host cells and tissues. Cellular entry usually requires the fusion of the viral envelope with host plasma membranes. Such entry mechanism is often preceded by “priming” and/or “activation” steps requiring limited proteolysis of the viral surface glycoprotein to expose a fusogenic domain for efficient membrane juxtapositions. The 9-membered family of Proprotein Convertases related to Subtilisin/Kexin (PCSK) serine proteases (PC1, PC2, Furin, PC4, PC5, PACE4, PC7, SKI-1/S1P, and PCSK9) participate in post-translational cleavages and/or regulation of multiple secretory proteins. The type-I membrane-bound Furin and SKI-1/S1P are the major convertases responsible for the processing of surface glycoproteins of enveloped viruses. Stefan Kunz has considerably contributed to define the role of SKI-1/S1P in the activation of arenaviruses causing hemorrhagic fever. Furin was recently implicated in the activation of the spike S-protein of SARS-CoV-2 and Furin-inhibitors are being tested as antivirals in COVID-19. Other members of the PCSK-family are also implicated in some viral infections, such as PCSK9 in Dengue. Herein, we summarize the various functions of the PCSKs and present arguments whereby their inhibition could represent a powerful arsenal to limit viral infections causing the present and future pandemics.
Collapse
Affiliation(s)
- Nabil G. Seidah
- Laboratory of Biochemical Neuroendocrinology Montreal Clinical Research Institute, University of Montreal, Montreal, QC H2W1R7, Canada;
- Correspondence: ; Tel.: +1-514-987-5609
| | - Antonella Pasquato
- Antonella Pasquato, Department of Industrial Engineering, University of Padova, Via Marzolo 9, 35131 Padova, Italy;
| | - Ursula Andréo
- Laboratory of Biochemical Neuroendocrinology Montreal Clinical Research Institute, University of Montreal, Montreal, QC H2W1R7, Canada;
| |
Collapse
|
15
|
Shapira T, Monreal IA, Dion SP, Jager M, Désilets A, Olmstead AD, Vandal T, Buchholz DW, Imbiakha B, Gao G, Chin A, Rees WD, Steiner T, Nabi IR, Marsault E, Sahler J, August A, Van de Walle G, Whittaker GR, Boudreault PL, Aguilar HC, Leduc R, Jean F. A novel highly potent inhibitor of TMPRSS2-like proteases blocks SARS-CoV-2 variants of concern and is broadly protective against infection and mortality in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.05.03.442520. [PMID: 33972944 PMCID: PMC8109206 DOI: 10.1101/2021.05.03.442520] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/24/2023]
Abstract
The COVID-19 pandemic caused by the SARS-CoV-2 virus remains a global public health crisis. Although widespread vaccination campaigns are underway, their efficacy is reduced against emerging variants of concern (VOCs) 1,2 . Development of host-directed therapeutics and prophylactics could limit such resistance and offer urgently needed protection against VOCs 3,4 . Attractive pharmacological targets to impede viral entry include type-II transmembrane serine proteases (TTSPs), such as TMPRSS2, whose essential role in the virus lifecycle is responsible for the cleavage and priming of the viral spike protein 5-7 . Here, we identify and characterize a small-molecule compound, N-0385, as the most potent inhibitor of TMPRSS2 reported to date. N-0385 exhibited low nanomolar potency and a selectivity index of >10 6 at inhibiting SARS-CoV-2 infection in human lung cells and in donor-derived colonoids 8 . Importantly, N-0385 acted as a broad-spectrum coronavirus inhibitor of two SARS-CoV-2 VOCs, B.1.1.7 and B.1.351. Strikingly, single daily intranasal administration of N-0385 early in infection significantly improved weight loss and clinical outcomes, and yielded 100% survival in the severe K18-human ACE2 transgenic mouse model of SARS-CoV-2 disease. This demonstrates that TTSP-mediated proteolytic maturation of spike is critical for SARS-CoV-2 infection in vivo and suggests that N-0385 provides a novel effective early treatment option against COVID-19 and emerging SARS-CoV-2 VOCs.
Collapse
|
16
|
You J, Seok JH, Joo M, Bae JY, Kim JI, Park MS, Kim K. Multifactorial Traits of SARS-CoV-2 Cell Entry Related to Diverse Host Proteases and Proteins. Biomol Ther (Seoul) 2021; 29:249-262. [PMID: 33875625 PMCID: PMC8094071 DOI: 10.4062/biomolther.2021.048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 11/05/2022] Open
Abstract
The most effective way to control newly emerging infectious disease, such as the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, is to strengthen preventative or therapeutic public health strategies before the infection spreads worldwide. However, global health systems remain at the early stages in anticipating effective therapeutics or vaccines to combat the SARS-CoV-2 pandemic. While maintaining social distance is the most crucial metric to avoid spreading the virus, symptomatic therapy given to patients on the clinical manifestations helps save lives. The molecular properties of SARS-CoV-2 infection have been quickly elucidated, paving the way to therapeutics, vaccine development, and other medical interventions. Despite this progress, the detailed biomolecular mechanism of SARS-CoV-2 infection remains elusive. Given virus invasion of cells is a determining factor for virulence, understanding the viral entry process can be a mainstay in controlling newly emerged viruses. Since viral entry is mediated by selective cellular proteases or proteins associated with receptors, identification and functional analysis of these proteins could provide a way to disrupt virus propagation. This review comprehensively discusses cellular machinery necessary for SARS-CoV-2 infection. Understanding multifactorial traits of the virus entry will provide a substantial guide to facilitate antiviral drug development.
Collapse
Affiliation(s)
- Jaehwan You
- Department of Microbiology, Institute for Viral Diseases, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Jong Hyeon Seok
- Department of Microbiology, Institute for Viral Diseases, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Myungsoo Joo
- School of Korean Medicine, Pusan National University, Pusan 50612, Republic of Korea
| | - Joon-Yong Bae
- Department of Microbiology, Institute for Viral Diseases, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Jin Il Kim
- Department of Microbiology, Institute for Viral Diseases, Korea University College of Medicine, Seoul 02841, Republic of Korea
- Biosafety Center, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Man-Seong Park
- Department of Microbiology, Institute for Viral Diseases, Korea University College of Medicine, Seoul 02841, Republic of Korea
- Biosafety Center, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Kisoon Kim
- Department of Microbiology, Institute for Viral Diseases, Korea University College of Medicine, Seoul 02841, Republic of Korea
| |
Collapse
|
17
|
Sarret P. Éric Marsault (1971-2021): A Legacy through the Prism of Relationship Chemistry. J Med Chem 2021; 64:5221-5224. [PMID: 33760613 DOI: 10.1021/acs.jmedchem.1c00481] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Philippe Sarret
- Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| |
Collapse
|
18
|
Li S, Wang L, Sun S, Wu Q. Hepsin: a multifunctional transmembrane serine protease in pathobiology. FEBS J 2020; 288:5252-5264. [PMID: 33300264 DOI: 10.1111/febs.15663] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/30/2020] [Accepted: 12/07/2020] [Indexed: 12/14/2022]
Abstract
Cell membrane-bound serine proteases are important in the maintenance of physiological homeostasis. Hepsin is a type II transmembrane serine protease highly expressed in the liver. Recent studies indicate that hepsin activates prohepatocyte growth factor in the liver to enhance Met signaling, thereby regulating glucose, lipid, and protein metabolism. In addition, hepsin functions in nonhepatic tissues, including the adipose tissue, kidney, and inner ear, to regulate adipocyte differentiation, urinary protein processing, and auditory function, respectively. In mouse models, hepsin deficiency lowers blood glucose, lipid, and protein levels, impairs uromodulin assembly in renal epithelial cells, and causes hearing loss. Elevated hepsin expression has also been found in many cancers. As a type II transmembrane protease, cell surface expression and zymogen activation are essential for hepsin activity. In this review, we discuss the current knowledge regarding hepsin biosynthesis, activation, and functions in pathobiology.
Collapse
Affiliation(s)
- Shuo Li
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, OH, USA
| | - Lina Wang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Shijin Sun
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Qingyu Wu
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, OH, USA.,Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| |
Collapse
|