1
|
You LM, Zhang DC, Lin CS, Lan Q. Phthalate Metabolites Were Related to the Risk of High-Frequency Hearing Loss: A Cross-Sectional Study of National Health and Nutrition Examination Survey. J Multidiscip Healthc 2024; 17:5151-5161. [PMID: 39553265 PMCID: PMC11568771 DOI: 10.2147/jmdh.s481288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/23/2024] [Indexed: 11/19/2024] Open
Abstract
Background Phthalate metabolites are pervasive in the environment and linked to various health issues. This study aimed to investigate the relationship between phthalate metabolites and hearing loss. Methods We conducted a cross-sectional study with 1713 participants based on the National Health and Nutrition Examination Survey 2015-2018. Participants were defined as speech-frequency hearing loss (SFHL) or high-frequency hearing loss (HFHL). We analyzed the baseline characteristics of participants and assessed the detection rates of phthalate metabolites in samples. Phthalate metabolites with detection rates of >85% were enrolled. Then, restricted cubic spline and multivariable logistic regression analyses were conducted to explore the association of phthalate metabolites with hearing loss. Multi-model analysis was employed to select an optimal predictive model for HFHL based on phthalate metabolites and clinical factors. Results Among participants, 24.518% had SFHL and 41.998% had HFHL, associated with older age, higher BMI, male, non-Hispanic white, lower physical activity levels, higher exposure to work noise, hypertension, and diabetes. Monobenzyl phthalate (MBZP) showed a positive linear association with both SFHL and HFHL. Multivariable logistic regression revealed MBZP as a significant risk factor for HFHL (odds ratio=1.339, 95% confidence interval, 1.053-1.707). According to the area under curve (AUC) values, the logistic regression model had the best diagnostic performance of HFHL, with the highest AUC values of 0.865 in the test set. In the model, gender, diabetes, and MBZP were the top predictors of HFHL. Conclusion The study identified a significant association between MBZP exposure and HFHL, highlighting the need to reduce phthalate exposure.
Collapse
Affiliation(s)
- Li-Mei You
- Department of Otolaryngology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, Fujian, 364000, People’s Republic of China
| | - De-Chang Zhang
- Department of Otolaryngology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, Fujian, 364000, People’s Republic of China
| | - Chang-Shui Lin
- Department of Otolaryngology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, Fujian, 364000, People’s Republic of China
| | - Qiong Lan
- Department of Otolaryngology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, Fujian, 364000, People’s Republic of China
| |
Collapse
|
2
|
Liang R, Wang W, Gao W, Li S, Lu P, Chen J, Ding X, Ma P, Yuan H, Lun Y, Guo J, Wang Z, Mei H, Lu L. Calcitriol alleviates noise-induced hearing loss by regulating the ATF3/DUSP1 signalling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116906. [PMID: 39182283 DOI: 10.1016/j.ecoenv.2024.116906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/12/2024] [Accepted: 08/16/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND Calcitriol (Cal) is the most active metabolite of vitamin D and has antioxidant and anti-inflammatory properties. The aim of this study was to investigate the role of Cal in noise-induced hearing loss (NIHL) to further elucidate the mechanism of noise-induced oxidative stress in the mouse cochlea. METHODS C57BL/6 J mice were given six intraperitoneal injections of Cal (500 ng/kg/d). After 14 days of noise exposure, auditory brainstem response (ABR) thresholds, and the cochlear outer hair cell loss rate were analysed to evaluate auditory function. Real-time fluorescence quantitative PCR, immunofluorescence and western blotting were performed in vitro after the treatment of cochlear explants with 100 µM tert-butyl hydroperoxide (TBHP) for 2.5 h and HEI-OC1 cells with 250 µM TBHP for 1.5 h. RESULTS In vivo experiments confirmed that Cal pretreatment mitigated NIHL and outer hair cell death. The in vitro results demonstrated that Cal significantly reduced TBHP-induced cochlear auditory nerve fibre degradation and spiral ganglion neuron damage. Moreover, treatment with Cal inhibited the expression of oxidative stress-related factors (3-NT and 4-HNE) and DNA damage-related factors (γ-H2A.X) and attenuated TBHP-induced apoptosis in cochlear explants and HEI-OC1 cells. A total of 1479 upregulated genes and 1443 downregulated genes were screened in cochlear tissue 1 h after noise exposure. The level of transcription factor 3 (ATF3) was significantly elevated in HEI-OC1 cells after TBHP stimulation. Gene Transcription Regulation Database (GTRD)and Cistrome database analyses revealed that the downstream target gene of ATF3 is dual specificity phosphatase 1 (DUSP1). Cistrome DB Toolkit database results showed that the transcription factor of DUSP1 was ATF3. In addition, the ChIP-PCR results indicated that ATF3 might be a direct transcription factor of DUSP1. CONCLUSION The results of our study suggest that Cal attenuates NIHL and inhibits noise-induced apoptosis by regulating the ATF3/DUSP1 signalling pathway.
Collapse
Affiliation(s)
- Rui Liang
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Weilong Wang
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wei Gao
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Siyu Li
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Peiheng Lu
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jiawei Chen
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xuerui Ding
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Pengwei Ma
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Hao Yuan
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yuqiang Lun
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jianing Guo
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Zi Wang
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Hongkai Mei
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Lianjun Lu
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
3
|
Maniaci A, La Via L, Lechien JR, Sangiorgio G, Iannella G, Magliulo G, Pace A, Mat Q, Lavalle S, Lentini M. Hearing Loss and Oxidative Stress: A Comprehensive Review. Antioxidants (Basel) 2024; 13:842. [PMID: 39061910 PMCID: PMC11274311 DOI: 10.3390/antiox13070842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/05/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Hearing loss is a prevalent condition affecting millions of people worldwide. Hearing loss has been linked to oxidative stress as a major factor in its onset and progression. The goal of this thorough analysis is to investigate the connection between oxidative stress and hearing loss, with an emphasis on the underlying mechanisms and possible treatments. The review addressed the many forms of hearing loss, the role of reactive oxygen species (ROS) in causing damage to the cochlea, and the auditory system's antioxidant defensive mechanisms. The review also goes over the available data that support the use of antioxidants and other methods to lessen hearing loss brought on by oxidative stress. We found that oxidative stress is implicated in multiple types of hearing loss, including age-related, noise-induced, and ototoxic hearing impairment. The cochlea's unique anatomical and physiological characteristics, such as high metabolic activity and limited blood supply, make it particularly susceptible to oxidative damage. Antioxidant therapies have shown promising results in both animal models and clinical studies for preventing and mitigating hearing loss. Emerging therapeutic approaches, including targeted drug delivery systems and gene therapy, offer new possibilities for addressing oxidative stress in the auditory system. The significance of this review lies in its comprehensive analysis of the intricate relationship between oxidative stress and hearing loss. By synthesizing current knowledge and identifying gaps in understanding, this review provides valuable insights for both researchers and clinicians. It highlights the potential of antioxidant-based interventions and emphasizes the need for further research into personalized treatment strategies. Our findings on oxidative stress mechanisms may also affect clinical practice and future research directions. This review serves as a foundation for developing novel therapeutic approaches and may inform evidence-based strategies for the prevention and treatment of hearing loss, ultimately contributing to improved quality of life for millions affected by this condition worldwide.
Collapse
Affiliation(s)
- A. Maniaci
- Faculty of Medicine and Surgery, University of Enna Kore, 94100 Enna, Italy;
- ASP Ragusa-Hospital Giovanni Paolo II, 97100 Ragusa, Italy;
- Otology Study Group, Young Otolaryngologists-International Federation of Otorhinolaryngological Societies, 13005 Paris, France; (J.R.L.); (G.I.); (A.P.); (Q.M.)
| | - L. La Via
- Department of Anaesthesia and Intensive Care, University Hospital Policlinico-San Marco, 95125 Catania, Italy
| | - J. R. Lechien
- Otology Study Group, Young Otolaryngologists-International Federation of Otorhinolaryngological Societies, 13005 Paris, France; (J.R.L.); (G.I.); (A.P.); (Q.M.)
- Department of Human Anatomy and Experimental Oncology, Faculty of Medicine, UMONS Research Institute for Health Sciences and Technology, University of Mons (UMons), 7000 Mons, Belgium
- Department of Otolaryngology-Head & Neck Surgery, Foch Hospital, School of Medicine, UFR Simone Veil, Université Versailles Saint-Quentin-en-Yvelines (Paris Saclay University), 78180 Paris, France
- Department of Otolaryngology-Head & Neck Surgery, EpiCURA Hospital, 7301 Hornu, Belgium
| | - G. Sangiorgio
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy;
| | - G. Iannella
- Otology Study Group, Young Otolaryngologists-International Federation of Otorhinolaryngological Societies, 13005 Paris, France; (J.R.L.); (G.I.); (A.P.); (Q.M.)
- Department of ‘Organi di Senso’, University “Sapienza”, 00185 Rome, Italy;
| | - G. Magliulo
- Department of ‘Organi di Senso’, University “Sapienza”, 00185 Rome, Italy;
| | - A. Pace
- Otology Study Group, Young Otolaryngologists-International Federation of Otorhinolaryngological Societies, 13005 Paris, France; (J.R.L.); (G.I.); (A.P.); (Q.M.)
- Department of ‘Organi di Senso’, University “Sapienza”, 00185 Rome, Italy;
| | - Q. Mat
- Otology Study Group, Young Otolaryngologists-International Federation of Otorhinolaryngological Societies, 13005 Paris, France; (J.R.L.); (G.I.); (A.P.); (Q.M.)
- Department of Otorhinolaryngology, C.H.U. Charleroi, Chaussée de Bruxelles 140, 6042 Charleroi, Belgium
| | - S. Lavalle
- Faculty of Medicine and Surgery, University of Enna Kore, 94100 Enna, Italy;
| | - M. Lentini
- ASP Ragusa-Hospital Giovanni Paolo II, 97100 Ragusa, Italy;
| |
Collapse
|
4
|
Sibrecht G, Wróblewska-Seniuk K, Bruschettini M. Noise or sound management in the neonatal intensive care unit for preterm or very low birth weight infants. Cochrane Database Syst Rev 2024; 5:CD010333. [PMID: 38813836 PMCID: PMC11137833 DOI: 10.1002/14651858.cd010333.pub4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
BACKGROUND Infants in the neonatal intensive care unit (NICU) are subjected to different types of stress, including sounds of high intensity. The sound levels in NICUs often exceed the maximum acceptable level recommended by the American Academy of Pediatrics, which is 45 decibels (dB). Hearing impairment is diagnosed in 2% to 10% of preterm infants compared to only 0.1% of the general paediatric population. Bringing sound levels under 45 dB can be achieved by lowering the sound levels in an entire unit; by treating the infant in a section of a NICU, in a 'private' room, or in incubators in which the sound levels are controlled; or by reducing sound levels at the individual level using earmuffs or earplugs. By lowering sound levels, the resulting stress can be diminished, thereby promoting growth and reducing adverse neonatal outcomes. This review is an update of one originally published in 2015 and first updated in 2020. OBJECTIVES To determine the benefits and harms of sound reduction on the growth and long-term neurodevelopmental outcomes of neonates. SEARCH METHODS We used standard, extensive Cochrane search methods. On 21 and 22 August 2023, a Cochrane Information Specialist searched CENTRAL, PubMed, Embase, two other databases, two trials registers, and grey literature via Google Scholar and conference abstracts from Pediatric Academic Societies. SELECTION CRITERIA We included randomised controlled trials (RCTs) or quasi-RCTs in preterm infants (less than 32 weeks' postmenstrual age (PMA) or less than 1500 g birth weight) cared for in the resuscitation area, during transport, or once admitted to a NICU or stepdown unit. We specified three types of intervention: 1) intervention at the unit level (i.e. the entire neonatal department), 2) at the section or room level, or 3) at the individual level (e.g. hearing protection). DATA COLLECTION AND ANALYSIS We used the standardised review methods of Cochrane Neonatal to assess the risk of bias in the studies. We used the risk ratio (RR) and risk difference (RD), with their 95% confidence intervals (CIs), for dichotomous data. We used the mean difference (MD) for continuous data. Our primary outcome was major neurodevelopmental disability. We used GRADE to assess the certainty of the evidence. MAIN RESULTS We included one RCT, which enroled 34 newborn infants randomised to the use of silicone earplugs versus no earplugs for hearing protection. It was a single-centre study conducted at the University of Texas Medical School in Houston, Texas, USA. Earplugs were positioned at the time of randomisation and worn continuously until the infants were 35 weeks' postmenstrual age (PMA) or discharged (whichever came first). Newborns in the control group received standard care. The evidence is very uncertain about the effects of silicone earplugs on the following outcomes. • Cerebral palsy (RR 3.00, 95% CI 0.15 to 61.74)and Mental Developmental Index (MDI) (Bayley II) at 18 to 22 months' corrected age (MD 14.00, 95% CI 3.13 to 24.87); no other indicators of major neurodevelopmental disability were reported. • Normal auditory functioning at discharge (RR 1.65, 95% CI 0.93 to 2.94) • All-cause mortality during hospital stay (RR 2.07, 95% CI 0.64 to 6.70; RD 0.20, 95% CI -0.09 to 0.50) • Weight (kg) at 18 to 22 months' corrected age (MD 0.31, 95% CI -1.53 to 2.16) • Height (cm) at 18 to 22 months' corrected age (MD 2.70, 95% CI -3.13 to 8.53) • Days of assisted ventilation (MD -1.44, 95% CI -23.29 to 20.41) • Days of initial hospitalisation (MD 1.36, 95% CI -31.03 to 33.75) For all outcomes, we judged the certainty of evidence as very low. We identified one ongoing RCT that will compare the effects of reduced noise levels and cycled light on visual and neural development in preterm infants. AUTHORS' CONCLUSIONS No studies evaluated interventions to reduce sound levels below 45 dB across the whole neonatal unit or in a room within it. We found only one study that evaluated the benefits of sound reduction in the neonatal intensive care unit for hearing protection in preterm infants. The study compared the use of silicone earplugs versus no earplugs in newborns of very low birth weight (less than 1500 g). Considering the very small sample size, imprecise results, and high risk of attrition bias, the evidence based on this research is very uncertain and no conclusions can be drawn. As there is a lack of evidence to inform healthcare or policy decisions, large, well designed, well conducted, and fully reported RCTs that analyse different aspects of noise reduction in NICUs are needed. They should report both short- and long-term outcomes.
Collapse
Affiliation(s)
- Greta Sibrecht
- II Department of Neonatology, Poznan University of Medical Sciences, Poznan, Poland
| | | | - Matteo Bruschettini
- Paediatrics, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden, Lund, Sweden
- Cochrane Sweden, Department of Research and Education, Lund University, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
5
|
Feng B, Dong T, Song X, Zheng X, Jin C, Cheng Z, Liu Y, Zhang W, Wang X, Tao Y, Wu H. Personalized Porous Gelatin Methacryloyl Sustained-Release Nicotinamide Protects Against Noise-Induced Hearing Loss. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305682. [PMID: 38225752 DOI: 10.1002/advs.202305682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/11/2023] [Indexed: 01/17/2024]
Abstract
There are no Food and Drug Administration-approved drugs for treating noise-induced hearing loss (NIHL), reflecting the absence of clear specific therapeutic targets and effective delivery strategies. Noise trauma is demonstrated results in nicotinamide adenine dinucleotide (NAD+) downregulation and mitochondrial dysfunction in cochlear hair cells (HCs) and spiral ganglion neurons (SGNs) in mice, and NAD+ boosted by nicotinamide (NAM) supplementation maintains cochlear mitochondrial homeostasis and prevents neuroexcitatory toxic injury in vitro and ex vivo, also significantly ameliorated NIHL in vivo. To tackle the limited drug delivery efficiency due to sophisticated anatomical barriers and unique clearance pathway in ear, personalized NAM-encapsulated porous gelatin methacryloyl (PGMA@NAM) are developed based on anatomy topography of murine temporal bone by micro-computed tomography and reconstruction of round window (RW) niche, realizing hydrogel in situ implantation completely, NAM sustained-release and long-term auditory preservation in mice. This study strongly supports personalized PGMA@NAM as NIHL protection drug with effective inner ear delivery, providing new inspiration for drug-based treatment of NIHL.
Collapse
Affiliation(s)
- Baoyi Feng
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.639, Zhizaoju Road, Shanghai, 200011, P. R. China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, No.115, Jinzun Road, Shanghai, 200125, P. R. China
- Shanghai Key Laboratory of Translation Medicine on Ear and Nose Disease, No.115, Jinzun Road, Shanghai, 200125, P. R. China
| | - Tingting Dong
- Ear Institute, Shanghai Jiao Tong University School of Medicine, No.115, Jinzun Road, Shanghai, 200125, P. R. China
- Shanghai Key Laboratory of Translation Medicine on Ear and Nose Disease, No.115, Jinzun Road, Shanghai, 200125, P. R. China
- Biobank of Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.115, Jinzun Road, Shanghai, 200125, P. R. China
| | - Xinyu Song
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
| | - Xiaofei Zheng
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.639, Zhizaoju Road, Shanghai, 200011, P. R. China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, No.115, Jinzun Road, Shanghai, 200125, P. R. China
- Shanghai Key Laboratory of Translation Medicine on Ear and Nose Disease, No.115, Jinzun Road, Shanghai, 200125, P. R. China
| | - Chenxi Jin
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.639, Zhizaoju Road, Shanghai, 200011, P. R. China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, No.115, Jinzun Road, Shanghai, 200125, P. R. China
- Shanghai Key Laboratory of Translation Medicine on Ear and Nose Disease, No.115, Jinzun Road, Shanghai, 200125, P. R. China
| | - Zhenzhe Cheng
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.639, Zhizaoju Road, Shanghai, 200011, P. R. China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, No.115, Jinzun Road, Shanghai, 200125, P. R. China
- Shanghai Key Laboratory of Translation Medicine on Ear and Nose Disease, No.115, Jinzun Road, Shanghai, 200125, P. R. China
| | - Yiqing Liu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.639, Zhizaoju Road, Shanghai, 200011, P. R. China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, No.115, Jinzun Road, Shanghai, 200125, P. R. China
- Shanghai Key Laboratory of Translation Medicine on Ear and Nose Disease, No.115, Jinzun Road, Shanghai, 200125, P. R. China
| | - Wenjie Zhang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
| | - Xueling Wang
- Ear Institute, Shanghai Jiao Tong University School of Medicine, No.115, Jinzun Road, Shanghai, 200125, P. R. China
- Shanghai Key Laboratory of Translation Medicine on Ear and Nose Disease, No.115, Jinzun Road, Shanghai, 200125, P. R. China
- Biobank of Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.115, Jinzun Road, Shanghai, 200125, P. R. China
| | - Yong Tao
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.639, Zhizaoju Road, Shanghai, 200011, P. R. China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, No.115, Jinzun Road, Shanghai, 200125, P. R. China
- Shanghai Key Laboratory of Translation Medicine on Ear and Nose Disease, No.115, Jinzun Road, Shanghai, 200125, P. R. China
| | - Hao Wu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.639, Zhizaoju Road, Shanghai, 200011, P. R. China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, No.115, Jinzun Road, Shanghai, 200125, P. R. China
- Shanghai Key Laboratory of Translation Medicine on Ear and Nose Disease, No.115, Jinzun Road, Shanghai, 200125, P. R. China
| |
Collapse
|
6
|
Yu Q, Liu S, Guo R, Chen K, Li Y, Jiang D, Gong S, Yin L, Liu K. Complete Restoration of Hearing Loss and Cochlear Synaptopathy via Minimally Invasive, Single-Dose, and Controllable Middle Ear Delivery of Brain-Derived Neurotrophic Factor-Poly(dl-lactic acid- co-glycolic acid)-Loaded Hydrogel. ACS NANO 2024; 18:6298-6313. [PMID: 38345574 DOI: 10.1021/acsnano.3c11049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Noise-induced hearing loss (NIHL) often accompanies cochlear synaptopathy, which can be potentially reversed to restore hearing. However, there has been little success in achieving complete recovery of sensorineural deafness using nearly noninvasive middle ear drug delivery before. Here, we present a study demonstrating the efficacy of a middle ear delivery system employing brain-derived neurotrophic factor (BDNF)-poly-(dl-lactic acid-co-glycolic acid) (PLGA)-loaded hydrogel in reversing synaptopathy and restoring hearing function in a mouse model with NIHL. The mouse model achieved using the single noise exposure (NE, 115 dBL, 4 h) exhibited an average 20 dBL elevation of hearing thresholds with intact cochlear hair cells but a loss of ribbon synapses as the primary cause of hearing impairment. We developed a BDNF-PLGA-loaded thermosensitive hydrogel, which was administered via a single controllable injection into the tympanic cavity of noise-exposed mice, allowing its presence in the middle ear for a duration of 2 weeks. This intervention resulted in complete restoration of NIHL at frequencies of click, 4, 8, 16, and 32 kHz. Moreover, the cochlear ribbon synapses exhibited significant recovery, whereas other cochlear components (hair cells and auditory nerves) remained unchanged. Additionally, the cochlea of NE treated mice revealed activation of tropomyosin receptor kinase B (TRKB) signaling upon exposure to BDNF. These findings demonstrate a controllable and minimally invasive therapeutic approach that utilizes a BDNF-PLGA-loaded hydrogel to restore NIHL by specifically repairing cochlear synaptopathy. This tailored middle ear delivery system holds great promise for achieving ideal clinical outcomes in the treatment of NIHL and cochlear synaptopathy.
Collapse
Affiliation(s)
- Qianru Yu
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Shengnan Liu
- School of Materials Science and Engineering,Tsinghua University, Beijing 100084, China
| | - Rui Guo
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Kuntao Chen
- School of Materials Science and Engineering,Tsinghua University, Beijing 100084, China
| | - Yang Li
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Dan Jiang
- Hearing Implant Centre, Guy's and St. Thomas NHS Foundation Trust, London SE1 7EH, United Kingdom
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, United Kingdom
| | - Shusheng Gong
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
- Clinical Center for Hearing Loss, Capital Medical University, Beijing 100050, China
| | - Lan Yin
- School of Materials Science and Engineering,Tsinghua University, Beijing 100084, China
| | - Ke Liu
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
- Clinical Center for Hearing Loss, Capital Medical University, Beijing 100050, China
| |
Collapse
|
7
|
Wang Y, Liu H, Nie X, Lu N, Yan S, Wang X, Zhao Y. L-shaped association of triglyceride glucose index and sensorineural hearing loss: results from a cross-sectional study and Mendelian randomization analysis. Front Endocrinol (Lausanne) 2024; 15:1339731. [PMID: 38464969 PMCID: PMC10921358 DOI: 10.3389/fendo.2024.1339731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/05/2024] [Indexed: 03/12/2024] Open
Abstract
Background The association between the sensorineural hearing loss (SNHL) and triglyceride-glucose (TyG) index remains inadequately understood. This investigation seeks to elucidate the connection between the TyG index and SNHL. Methods In this cross-sectional study, we utilized datasets sourced from the National Health and Nutrition Examination Survey (NHANES). A comprehensive analysis was conducted on 1,851 participants aged 20 to 69, utilizing complete audiometry data from the NHANES database spanning from 2007 to 2018. All enrolled participants had accessible hearing data, and the average thresholds were measured and calculated as both low-frequency pure-tone average and high-frequency pure-tone average. Sensorineural hearing loss (SNHL) was defined as an average pure tone of 20 dB or higher in at least one better ear. Our analysis involved the application of multivariate linear regression models to examine the linear relationship between the TyG index and SNHL. To delineate any non-linear associations, we utilized fitted smoothing curves and conducted threshold effect analysis. Furthermore, we conducted a two-sample Mendelian randomization (MR) study, leveraging genetic data from genome-wide association studies (GWAS) on circulating lipids, blood glucose, and SNHL. The primary analytical method for the MR study was the application of the inverse-variance-weighted (IVW) approach. Results In our multivariate linear regression analysis, a substantial positive correlation emerged between the TyG index and SNHL [2.10 (1.80-2.44), p < 0.0001]. Furthermore, using a two-segment linear regression model, we found an L-shaped relationship between TyG index, fasting blood glucose and SNHL with an inflection point of 9.07 and 94 mg/dL, respectively. Specifically, TyG index [3.60, (1.42-9.14)] and blood glucose [1.01, (1.00-1.01)] concentration higher than the threshold values was positively associated with SNHL risk. Genetically determined triglyceride levels demonstrated a causal impact on SNHL (OR = 1.092, p = 8.006 × 10-4). In addition, blood glucose was found to have a protective effect on SNHL (OR = 0.886, p = 1.012 × 10-2). Conclusions An L-shaped association was identified among the TyG index, fasting blood glucose, and SNHL in the American population. TyG index of more than 9.07 and blood glucose of more than 94 mg/dL were significantly and positively associated with SNHL risk, respectively.
Collapse
Affiliation(s)
- Yixuan Wang
- Department of Otolaryngology Head and Neck Surgery, Shaanxi Provincial People’s Hospital, Xi’an, China
- Yan’an University, Yan’an, China
| | - Hui Liu
- Department of Otolaryngology Head and Neck Surgery, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Xinlin Nie
- Department of Orthopedic Center, the First Hospital of Jilin University, Changchun, China
| | - Na Lu
- Department of Otolaryngology Head and Neck Surgery, Shaanxi Provincial People’s Hospital, Xi’an, China
- Yan’an University, Yan’an, China
| | - Sheng Yan
- Department of Otolaryngology Head and Neck Surgery, Shaanxi Provincial People’s Hospital, Xi’an, China
- Yan’an University, Yan’an, China
| | - Xin Wang
- Department of Otolaryngology Head and Neck Surgery, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Yuxiang Zhao
- Department of Otolaryngology Head and Neck Surgery, Shaanxi Provincial People’s Hospital, Xi’an, China
| |
Collapse
|
8
|
Tian C, Yang Y, Wang R, Li Y, Sun F, Chen J, Zha D. Norepinephrine protects against cochlear outer hair cell damage and noise-induced hearing loss via α 2A-adrenergic receptor. BMC Neurosci 2024; 25:5. [PMID: 38291397 PMCID: PMC10829207 DOI: 10.1186/s12868-024-00845-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 01/16/2024] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND The cochlear sympathetic system plays a key role in auditory function and susceptibility to noise-induced hearing loss (NIHL). The formation of reactive oxygen species (ROS) is a well-documented process in NIHL. In this study, we aimed at investigating the effects of a superior cervical ganglionectomy (SCGx) on NIHL in Sprague-Dawley rats. METHODS We explored the effects of unilateral and bilateral Superior Cervical Ganglion (SCG) ablation in the eight-ten weeks old Sprague-Dawley rats of both sexes on NIHL. Auditory function was evaluated by auditory brainstem response (ABR) testing and Distortion product otoacoustic emissions (DPOAEs). Outer hair cells (OHCs) counts and the expression of α2A-adrenergic receptor (AR) in the rat cochlea using immunofluorescence analysis. Cells culture and treatment, CCK-8 assay, Flow cytometry staining and analysis, and western blotting were to explore the mechanisms of SCG fibers may have a protective role in NIHL. RESULTS We found that neither bilateral nor unilateral SCGx protected the cochlea against noise exposure. In HEI-OC1 cells, H2O2-induced oxidative damage and cell death were inhibited by the application of norepinephrine (NE). NE may prevent ROS-induced oxidative stress in OHCs and NIHL through the α2A-AR. CONCLUSION These results demonstrated that sympathetic innervation mildly affected cochlear susceptibility to acoustic trauma by reducing oxidative damage in OHCs through the α2A-AR. NE may be a potential therapeutic strategy for NIHL prevention.
Collapse
Affiliation(s)
- Chaoyong Tian
- Department of Otolaryngology Head and Neck Surgery, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, 710032, China
| | - Yang Yang
- Department of Otolaryngology Head and Neck Surgery, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, 710032, China
| | - Renfeng Wang
- Department of Otolaryngology Head and Neck Surgery, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, 710032, China
| | - Yao Li
- Department of Otolaryngology Head and Neck Surgery, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, 710032, China
| | - Fei Sun
- Department of Otolaryngology Head and Neck Surgery, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, 710032, China
| | - Jun Chen
- Department of Otolaryngology Head and Neck Surgery, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, 710032, China
| | - Dingjun Zha
- Department of Otolaryngology Head and Neck Surgery, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, 710032, China.
| |
Collapse
|
9
|
Wu F, Hu R, Huang X, Lou J, Cai Z, Chen G, Zhao W, Xiong H, Sha SH, Zheng Y. CFTR potentiator ivacaftor protects against noise-induced hair cell loss by increasing Nrf2 and reducing oxidative stress. Biomed Pharmacother 2023; 166:115399. [PMID: 37657258 PMCID: PMC10528730 DOI: 10.1016/j.biopha.2023.115399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/23/2023] [Accepted: 08/26/2023] [Indexed: 09/03/2023] Open
Abstract
Over-production of reactive oxygen species (ROS) in the inner ear can be triggered by a variety of pathological events identified in animal models after traumatic noise exposure. Our previous research found that inhibition of the AMP-activated protein kinase alpha subunit (AMPKα) protects against noise-induced cochlear hair cell loss and hearing loss by reducing ROS accumulation. However, the molecular pathway through which AMPKα exerts its antioxidative effect is still unclear. In this study, we have investigated a potential target of AMPKα and ROS, cystic fibrosis transmembrane conductance regulator (CFTR), and the protective effect against noise-induced hair cell loss of an FDA-approved CFTR potentiator, ivacaftor, in FVB/NJ mice, mouse explant cultures, and HEI-OC1 cells. We found that noise exposure increases phosphorylation of CFTR at serine 737 (p-CFTR, S737), which reduces wildtype CFTR function, resulting in oxidative stress in cochlear sensory hair cells. Pretreatment with a single dose of ivacaftor maintains CFTR function by preventing noise-increased p-CFTR (S737). Furthermore, ivacaftor treatment increases nuclear factor E2-related factor 2 (Nrf2) expression, diminishes ROS formation, and attenuates noise-induced hair cell loss and hearing loss. Additionally, inhibition of noise-induced AMPKα activation by compound C also diminishes p-CFTR (S737) expression. In line with these in-vivo results, administration of hydrogen peroxide to cochlear explants or HEI-OC1 cells increases p-CFTR (S737) expression and induces sensory hair cell or HEI-OC1 cell damage, while application of ivacaftor halts these effects. Although ivacaftor increases Nrf2 expression and reduces ROS accumulation, cotreatment with ML385, an Nrf2 inhibitor, abolishes the protective effects of ivacaftor against hydrogen-peroxide-induced HEI-OC1 cell death. Our results indicate that noise-induced sensory hair cell damage is associated with p-CFTR. Ivacaftor has potential for treatment of noise-induced hearing loss by maintaining CFTR function and increasing Nrf2 expression for support of redox homeostasis in sensory hair cells.
Collapse
Affiliation(s)
- Fan Wu
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou 510120, China; Department of Pathology and Laboratory Medicine, The Medical University of South Carolina, Charleston, SC, USA
| | - Rui Hu
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Shenshan Medical Center, Memorial Hospital of Sun Yat-sen University, Shanwei, Guangdong, China; Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou 510120, China
| | - Xueping Huang
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou 510120, China
| | - Jintao Lou
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou 510120, China
| | - Ziyi Cai
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou 510120, China
| | - Guisheng Chen
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou 510120, China
| | - Wenji Zhao
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou 510120, China
| | - Hao Xiong
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou 510120, China
| | - Su-Hua Sha
- Department of Pathology and Laboratory Medicine, The Medical University of South Carolina, Charleston, SC, USA.
| | - Yiqing Zheng
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Shenshan Medical Center, Memorial Hospital of Sun Yat-sen University, Shanwei, Guangdong, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou 510120, China.
| |
Collapse
|
10
|
Lun Y, Chen J, Lu P, Yuan H, Ma P, Wang W, Liang R, Li S, Gao W, Ding X, Wang Z, Guo J, Lu L. Predictive value of serum proteomic biomarkers for noise-induced hearing loss. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:96827-96839. [PMID: 37582891 DOI: 10.1007/s11356-023-29294-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 08/08/2023] [Indexed: 08/17/2023]
Abstract
Early detection of noise-induced hearing loss (NIHL) in patients with long-term noise exposure is vital for improving public health and reducing social burden. However, at present, the diagnosis of NIHL mainly depends on audiometric testing, and the primary test is pure-tone audiometry. Moreover, testing requires professional operators and complex equipment; thus, NIHL is often diagnosed at a later disease stage. Using a liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based proteomic approach, we identified 9 differentially expressed proteins (DEPs), namely, 6 upregulated serum proteins and 3 downregulated serum proteins, in samples from 50 ground crew personnel working at an air force station. Then, according to the results, we predicted that caldesmon (CALD1), myocilin (MYOC), zyxin (ZYX), creatine kinase M-type (CKM), insulin-like growth factor-binding protein 2 (IGFBP2), complement factor H-related protein 4 (CFHR4), prenylcysteine oxidase 1 (PCYOX1), heat shock cognate 71 kDa protein (HSPA8), and immunoglobulin lambda variable 3-21 (IGLV3-21) were associated with NIHL. We selected these DEPs as variables to perform logistic regression. Finally, a logistic regression model was constructed based on IGFBP2, ZYX, CKM, and CFHR4. The area under the curve was 0.894 (95% CI = 0.812 to 0.977). These findings suggested that IGFBP2, ZYX, CKM, and CFHR4 in serum are differentially expressed in NIHL patients and have the potential to be biomarkers for predicting the risk for NIHL. Further experiments in mice showed that ZYX and IGFBP2 in the cochlear were increased after noise exposure. ZYX and IGFBP2 may be involved in the occurrence and development of NIHL.
Collapse
Affiliation(s)
- Yuqiang Lun
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Jiawei Chen
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Peiheng Lu
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Hao Yuan
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Pengwei Ma
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Weilong Wang
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Rui Liang
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Siyu Li
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Wei Gao
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Xuerui Ding
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Zi Wang
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Jianing Guo
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Lianjun Lu
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
11
|
Lai R, Fang Q, Wu F, Pan S, Haque K, Sha SH. Prevention of noise-induced hearing loss by calpain inhibitor MDL-28170 is associated with upregulation of PI3K/Akt survival signaling pathway. Front Cell Neurosci 2023; 17:1199656. [PMID: 37484825 PMCID: PMC10359991 DOI: 10.3389/fncel.2023.1199656] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/14/2023] [Indexed: 07/25/2023] Open
Abstract
Introduction Noise-induced calcium overload in sensory hair cells has been well documented as an early step in the pathogenesis of noise-induced hearing loss (NIHL). Alterations in cellular calcium homeostasis mediate a series of cellular events, including activation of calcium-dependent protein kinases and phosphatases. Using cell-membrane- and blood-brain-barrier-permeable calpain-1 (μ-calpain) and calpain-2 (m-calpain) inhibitor MDL-28170, we tested the involvement of calpains, a family of calcium-dependent cysteine proteases, and the potential of MDL-28170 in preventing NIHL. Methods CBA/J mice at the age of 12 weeks were exposed to broadband noise with a frequency spectrum from 2-20 kHz for 2 h at 101 dB sound pressure level to induce permanent hearing loss as measured by auditory brainstem response and distortion product otoacoustic emissions. Morphological damage was assessed by quantification of remaining sensory hair cells and inner hair cell synapses 2 weeks after the exposure. Results MDL-28170 treatment by intraperitoneal injection significantly attenuated noise-induced functional deficits and cochlear pathologies. MDL-28170 treatment also prevented noise-induced cleavage of alpha-fodrin, a substrate for calpain-1. Furthermore, MDL-28170 treatment prevented reduction of PI3K/Akt signaling after exposure to noise and upregulated p85α and p-Akt (S473) in outer hair cells. Discussion These results indicate that noise-induced calpain activation negatively regulates PI3K/Akt downstream signaling, and that prevention of NIHL by treatment with MDL-28170 is associated with upregulation of PI3K/Akt survival signaling pathways.
Collapse
Affiliation(s)
- Ruosha Lai
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
- Department of Otolaryngology, Head and Neck Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Qiaojun Fang
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Fan Wu
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Song Pan
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Khujista Haque
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Su-Hua Sha
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
12
|
Le Prell CG. Preclinical prospects of investigational agents for hearing loss treatment. Expert Opin Investig Drugs 2023; 32:685-692. [PMID: 37695693 DOI: 10.1080/13543784.2023.2253141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/25/2023] [Indexed: 09/13/2023]
Abstract
INTRODUCTION : Hearing loss has a high prevalence, with aging, noise exposure, ototoxic drug therapies, and genetic mutations being some of the leading causes of hearing loss. Health conditions such as cardiovascular disease and diabetes are associated with hearing loss, perhaps due to shared vascular pathology in the ear and in other tissues. AREAS COVERED : Issues in the design of preclinical research preclude the ability to make comparisons regarding the relative efficacy of different drugs of interest for possible hearing loss prevention or hearing restoration. This has not slowed the advancement of candidate therapeutics into human clinical testing. There is a robust pipeline with drugs that have different mechanisms of action providing diverse candidate therapies and opportunities for combination therapies to be considered. EXPERT OPINION : Much of the preclinical research literature lacks standard study design elements such as dose response testing, and lack of standardization of test protocols significantly limits conclusions regarding relative efficacy. Nonetheless, the many positive results to date have supported translation of preclinical efforts into clinical trials assessing potential human benefits. Approval of the first hearing loss prevention therapeutic is a major success, providing a pathway for other drugs to follow.
Collapse
Affiliation(s)
- Colleen G Le Prell
- Department of Speech, Language, and Hearing, University of Texas at Dallas, Richardson, TX, USA
- Callier Center for Communication Disorders, University of Texas at Dallas, Dallas, TX, USA
| |
Collapse
|
13
|
Liu S, Zou H, Lei S, Xin J, Qian P, Liu Y, Chen Y, Yu K, Zhang M. The role of kurtosis and kurtosis-adjusted energy metric in occupational noise-induced hearing loss among metal manufacturing workers. Front Public Health 2023; 11:1159348. [PMID: 37457253 PMCID: PMC10344449 DOI: 10.3389/fpubh.2023.1159348] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 06/08/2023] [Indexed: 07/18/2023] Open
Abstract
Background Noise energy has been well-established to increase the risk of occupational noise-induced hearing loss (NIHL). However, the role of noise temporal structure (expressed by kurtosis) or its combination with energy metrics (e.g., kurtosis-adjusted cumulative noise exposure, adj-CNE) in occupational NIHL was still unclear. Methods A cross-sectional survey of 867 Chinese workers, including 678 metal manufacturing workers and 189 workers exposed to Gaussian noise, was conducted. Noise energy metrics, including LAeq,8h and CNE, kurtosis (β), and adj-CNE were used to quantify noise exposure levels. Noise-induced permanent threshold shift at frequencies 3, 4, and 6 kHz (NIPTS346) and the prevalence of high-frequency NIHL (HFNIHL%) were calculated for each participant. The dose-response relationship between kurtosis or adj-CNE and occupational NIHL was observed. Results Among 867 workers, different types of work had specific and independent noise energy and kurtosis values (p > 0.05). HFNIHL% increased with an increase in exposure duration (ED), LAeq,8h, CNE, or kurtosis (p < 0.01), and there were strong linear relationships between HFNIHL% and ED (coefficient of determination [R2] = 0.963), CNE (R2 = 0.976), or kurtosis (R2 = 0.938, when CNE < 100 dB(A)∙year). The "V" shape notching extent in NIPTS became deeper with increasing kurtosis when CNE < 100 dB(A)∙year and reached the notching bottom at the frequency of 4 or 6 kHz. The workers exposed to complex noise (β ≥ 10) had a higher risk of NIHL than those exposed to Gaussian noise (β < 10) at the frequencies of 3, 4, 6, and 8 kHz (OR > 2, p < 0.01). Moreover, HFNIHL% increased with adj-CNE (p < 0.001). There were strong linear relationships between NIHL and adj-CNE or CNE when β ≥ 10 (R2adj-CNE > R2CNE). After CNE was adjusted by kurtosis, average differences in NIPTS346 or HFNIHL% between the complex and Gaussian noise group were significantly reduced (p < 0.05). Conclusion Kurtosis was a key factor influencing occupational NIHL among metal manufacturing workers, and its combination with energy metrics could assess the risk of NIHL more effectively than CNE alone.
Collapse
Affiliation(s)
- Shuangyan Liu
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hua Zou
- Institute of Occupational Health and Radiation Protection, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Song Lei
- Ningbo Center for Disease Control and Prevention, Ningbo, Zhejiang, China
| | - Jiarui Xin
- Chinese Center for Disease Control and Prevention, Beijing, China
| | - Peiyi Qian
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Yun Liu
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Yingqi Chen
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Kuai Yu
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Meibian Zhang
- Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
14
|
Dehaghi BF, Mohammadi A, Amiri A. Investigation of the Relationship Between Noise-Induced Hearing Loss and Metabolic Syndrome in One of the Oil Industries in the South of Iran. Indian J Otolaryngol Head Neck Surg 2023; 75:43-49. [PMID: 37206808 PMCID: PMC10188736 DOI: 10.1007/s12070-022-03187-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 09/23/2022] [Indexed: 11/05/2022] Open
Abstract
Investigating the non-auditory effects of noise on humans has been of interest from different aspects. In this study, the relationship between noise-induced hearing loss (NIHL) and metabolic syndrome. This cross-sectional study was performed on 1380 male workers of one of the oil and gas companies in the south of Iran. The data was obtained via clinical examination and hearing status assessment to evaluate the metabolic syndrome and its components, intravenous blood samples were taken and tested according to NCEPATPIII criteria. For statistical analysis, the data were analyzed using SPSS software version 25 at a significant level of 0.05. The results showed that the body mass index variable increased the chance of developing metabolic syndrome by 11.4%. NIHL increases the chance of developing metabolic syndrome (OR = 1.291). Also, the same results were observed in hypertriglyceridemia OR = 1.255, waist circumference (OR = 1.163), fasting blood sugar (OR = 1.159), blood pressure (OR = 1.068) and HDL (OR = 1.051). Considering the effect of NIHL on metabolic syndrome, it is possible to help reducing the incidence of metabolic syndrome and any of its components by controlling noise exposure and accordingly reducing non-auditory injuries to individuals.
Collapse
Affiliation(s)
- Behzad Fouladi Dehaghi
- Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Occupational Health, School of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Abbas Mohammadi
- Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Occupational Health, School of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Arman Amiri
- Iran Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
15
|
Baek JI, Kim YR, Lee KY, Kim UK. Mitochondrial redox system: A key target of antioxidant therapy to prevent acquired sensorineural hearing loss. Front Pharmacol 2023; 14:1176881. [PMID: 37063286 PMCID: PMC10102650 DOI: 10.3389/fphar.2023.1176881] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 03/22/2023] [Indexed: 04/03/2023] Open
Abstract
Noise (noise-induced hearing loss), and ototoxic drugs (drug-induced ototoxicity), and aging (age-related hearing loss) are the major environmental factors that lead to acquired sensorineural hearing loss. So far, there have been numerous efforts to develop protective or therapeutic agents for acquired hearing loss by investigating the pathological mechanisms of each types of hearing loss, especially in cochlear hair cells and auditory nerves. Although there is still a lack of information on the underlying mechanisms of redox homeostasis and molecular redox networks in hair cells, an imbalance in mitochondrial reactive oxygen species (ROS) levels that enhance oxidative stress has been suggested as a key pathological factor eventually causing acquired sensorineural hearing loss. Thus, various types of antioxidants have been investigated for their abilities to support auditory cells in maintenance of the hearing function against ototoxic stimuli. In this review, we will discuss the scientific possibility of developing drugs that target particular key elements of the mitochondrial redox network in prevention or treatment of noise- and ototoxic drug-induced hearing loss.
Collapse
Affiliation(s)
- Jeong-In Baek
- Department of Companion Animal Health, College of Rehabilitation and Health, Daegu Haany University, Gyeongsan, Republic of Korea
| | - Ye-Ri Kim
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea
- Advanced Bio-Resource Research Center, Kyungpook National University, Daegu, Republic of Korea
| | - Kyu-Yup Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Un-Kyung Kim
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea
- School of Life Sciences, KNU Creative BioResearch Group (BK21 Plus Project), Kyungpook National University, Daegu, Republic of Korea
- *Correspondence: Un-Kyung Kim,
| |
Collapse
|
16
|
Future Pharmacotherapy for Sensorineural Hearing Loss by Protection and Regeneration of Auditory Hair Cells. Pharmaceutics 2023; 15:pharmaceutics15030777. [PMID: 36986638 PMCID: PMC10054686 DOI: 10.3390/pharmaceutics15030777] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/14/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023] Open
Abstract
Sensorineural hearing loss has been a global burden of diseases for decades. However, according to recent progress in experimental studies on hair cell regeneration and protection, clinical trials of pharmacotherapy for sensorineural hearing loss have rapidly progressed. In this review, we focus on recent clinical trials for hair cell protection and regeneration and outline mechanisms based on associated experimental studies. Outcomes of recent clinical trials provided valuable data regarding the safety and tolerability of intra-cochlear and intra-tympanic applications as drug delivery methods. Recent findings in molecular mechanisms of hair cell regeneration suggested the realization of regenerative medicine for sensorineural hearing loss in the near future.
Collapse
|
17
|
Malfeld K, Armbrecht N, Pich A, Volk HA, Lenarz T, Scheper V. Prevention of Noise-Induced Hearing Loss In Vivo: Continuous Application of Insulin-like Growth Factor 1 and Its Effect on Inner Ear Synapses, Auditory Function and Perilymph Proteins. Int J Mol Sci 2022; 24:ijms24010291. [PMID: 36613734 PMCID: PMC9820558 DOI: 10.3390/ijms24010291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022] Open
Abstract
As noise-induced hearing loss (NIHL) is a leading cause of occupational diseases, there is an urgent need for the development of preventive and therapeutic interventions. To avoid user-compliance-based problems occurring with conventional protection devices, the pharmacological prevention is currently in the focus of hearing research. Noise exposure leads to an increase in reactive oxygen species (ROS) in the cochlea. This way antioxidant agents are a promising option for pharmacological interventions. Previous animal studies reported preventive as well as therapeutic effects of Insulin-like growth factor 1 (IGF-1) in the context of NIHL. Unfortunately, in patients the time point of the noise trauma cannot always be predicted, and additive effects may occur. Therefore, continuous prevention seems to be beneficial. The present study aimed to investigate the preventive potential of continuous administration of low concentrations of IGF-1 to the inner ear in an animal model of NIHL. Guinea pigs were unilaterally implanted with an osmotic minipump. One week after surgery they received noise trauma, inducing a temporary threshold shift. Continuous IGF-1 delivery lasted for seven more days. It did not lead to significantly improved hearing thresholds compared to control animals. Quite the contrary, there is a hint for a higher noise susceptibility. Nevertheless, changes in the perilymph proteome indicate a reduced damage and better repair mechanisms through the IGF-1 treatment. Thus, future studies should investigate delivery methods enabling continuous prevention but reducing the risk of an overdosage.
Collapse
Affiliation(s)
- Kathrin Malfeld
- Department of Otolaryngology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
| | - Nina Armbrecht
- Department of Otolaryngology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Andreas Pich
- Core Facility Proteomics, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Holger A. Volk
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
| | - Thomas Lenarz
- Department of Otolaryngology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
- Cluster of Excellence “Hearing4all”, German Research Foundation (DFG; “Deutsche Forschungsgemeinschaft”), Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Verena Scheper
- Department of Otolaryngology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
- Cluster of Excellence “Hearing4all”, German Research Foundation (DFG; “Deutsche Forschungsgemeinschaft”), Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
- Correspondence:
| |
Collapse
|
18
|
Guerra J, Naidoo V, Cacabelos R. Potential effects of cannabinoids on audiovestibular function: A narrative review. Front Pharmacol 2022; 13:1010296. [PMID: 36605398 PMCID: PMC9807921 DOI: 10.3389/fphar.2022.1010296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/23/2022] [Indexed: 12/24/2022] Open
Abstract
The growing interest in the development of drugs that target the endocannabinoid system has extended to conditions that affect the audiovestibular pathway. The expression of cannabinoid (CB) receptors in that pathway has been widely demonstrated, indicating a therapeutic potential for drug development at this level. These medications may be beneficial for conditions such as noise-induced hearing loss, ototoxicity, or various forms of vertigo of central or peripheral origin. The therapeutic targets of interest include natural or synthetic compounds that act as CB1/CB2 receptor agonists/antagonists, and inhibitors of the endocannabinoid-degrading enzymes FAAH and MAGL. Furthermore, genetic variations implicated in the response to treatment and the development of related disorders such as epilepsy or migraine have been identified. Direct methods of administering these medications should be examined beyond the systemic strategy.
Collapse
Affiliation(s)
- Joaquin Guerra
- Neuro-Otolaryngology Unit, EuroEspes Biomedical Research Center, Institute of Medical Science and Genomic Medicine, Bergondo, Corunna, Spain,*Correspondence: Joaquin Guerra,
| | - Vinogran Naidoo
- Department of Neuroscience, International Center of Neuroscience and Genomic Medicine, EuroEspes Biomedical Research Center, Bergondo, Corunna, Spain
| | - Ramon Cacabelos
- Genomic Medicine, EuroEspes Biomedical Research Center, Institute of Medical Science and Genomic Medicine, Bergondo, Corunna, Spain
| |
Collapse
|
19
|
Ma PW, Wang WL, Chen JW, Yuan H, Lu PH, Gao W, Ding XR, Lun YQ, Liang R, He ZH, Yang Q, Lu LJ. Treatment with the Ferroptosis Inhibitor Ferrostatin-1 Attenuates Noise-Induced Hearing Loss by Suppressing Ferroptosis and Apoptosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3373828. [PMID: 36531206 PMCID: PMC9750774 DOI: 10.1155/2022/3373828] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/29/2022] [Accepted: 11/12/2022] [Indexed: 08/17/2023]
Abstract
Hair cell death induced by excessive reactive oxygen species (ROS) has been identified as the major pathogenesis of noise-induced hearing loss (NIHL). Recent studies have demonstrated that cisplatin- and neomycin-induced ototoxicity can be alleviated by ferroptosis inhibitors. However, whether ferroptosis inhibitors have a protective effect against NIHL remains unknown. We investigated the protective effect of the ferroptosis inhibitor ferrostatin-1 (Fer-1) on NIHL in vivo in CBA/J mice and investigated the protective effect of Fer-1 on tert-butyl hydroperoxide (TBHP)-induced hair cell damage in vitro in cochlear explants and HEI-OC1 cells. We observed ROS overload and lipid peroxidation, which led to outer hair cell (OHC) apoptosis and ferroptosis, in the mouse cochlea after noise exposure. The expression level of apoptosis-inducing factor mitochondria-associated 2 (AIFM2) was substantially increased following elevation of the expression of its upstream protein P53 after noise exposure. The ferroptosis inhibitor Fer-1was demonstrated to enter the inner ear after the systemic administration. Administration of Fer-1 significantly alleviated noise-induced auditory threshold elevation and reduced the loss of OHCs, inner hair cell (IHC) ribbon synapses, and auditory nerve fibers (ANFs) caused by noise. Mechanistically, Fer-1 significantly reduced noise- and TBHP-induced lipid peroxidation and iron accumulation in hair cells, alleviating ferroptosis in cochlear cells consequently. Furthermore, Fer-1 treatment decreased the levels of TfR1, P53, and AIFM2. These results suggest that Fer-1 exerted its protective effects by scavenging of ROS and inhibition of TfR1-mediated ferroptosis and P53-AIFM2 signaling pathway-mediated apoptosis. Our findings suggest that Fer-1 is a promising drug for treating NIHL because of its ability to inhibit noise-induced hair cell apoptosis and ferroptosis, opening new avenues for the treatment of NIHL.
Collapse
Affiliation(s)
- Peng-Wei Ma
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Wei-Long Wang
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Jia-Wei Chen
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Hao Yuan
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Pei-Heng Lu
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Wei Gao
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Xue-Rui Ding
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Yu-Qiang Lun
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Rui Liang
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Zu-Hong He
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qian Yang
- Department of Experimental Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Lian-Jun Lu
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, China
| |
Collapse
|
20
|
Wu F, Sambamurti K, Sha S. Current Advances in Adeno-Associated Virus-Mediated Gene Therapy to Prevent Acquired Hearing Loss. J Assoc Res Otolaryngol 2022; 23:569-578. [PMID: 36002664 PMCID: PMC9613825 DOI: 10.1007/s10162-022-00866-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 08/13/2022] [Indexed: 11/25/2022] Open
Abstract
Adeno-associated viruses (AAVs) are viral vectors that offer an excellent platform for gene therapy due to their safety profile, persistent gene expression in non-dividing cells, target cell specificity, lack of pathogenicity, and low immunogenicity. Recently, gene therapy for genetic hearing loss with AAV transduction has shown promise in animal models. However, AAV transduction for gene silencing or expression to prevent or manage acquired hearing loss is limited. This review provides an overview of AAV as a leading gene delivery vector for treating genetic hearing loss in animal models. We highlight the advantages and shortcomings of AAV for investigating the mechanisms and preventing acquired hearing loss. We predict that AAV-mediated gene manipulation will be able to prevent acquired hearing loss.
Collapse
Affiliation(s)
- Fan Wu
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Walton Research Building, Room 403-E, 39 Sabin Street, Charleston, SC, 29425, USA
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Kumar Sambamurti
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Suhua Sha
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Walton Research Building, Room 403-E, 39 Sabin Street, Charleston, SC, 29425, USA.
| |
Collapse
|
21
|
Liu C, Tang D, Zheng Z, Lu X, Li W, Zhao L, He Y, Li H. A PRMT5 inhibitor protects against noise-induced hearing loss by alleviating ROS accumulation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 243:113992. [PMID: 35994911 DOI: 10.1016/j.ecoenv.2022.113992] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 06/26/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
The aim of this study was to investigate the effect of LLY-283, a selective inhibitor of protein arginine methyltransferase 5 (PRMT5), on a noise-induced hearing loss (NIHL) mouse model and to identify a potential target for a therapeutic intervention against NIHL. Eight-week-old male C57BL/6 mice were used. The auditory brainstem response was measured 2 days after noise exposure. The apoptosis of hair cells (HCs) was detected by caspase-3/7 staining, whereas the accumulation of reactive oxygen species (ROS) was measured by 4-HNE staining. We demonstrated that the death of HCs and loss of cochlear synaptic ribbons induced by noise exposure could be significantly reduced by the presence of LLY-283. LLY-283 pretreatment before noise exposure notably decreased 4-HNE and caspase-3/7 levels in the cochlear HCs. We also noticed that the number of spiral ganglion neurons (SGNs) was notably increased after LLY-283 pretreatment. Furthermore, we showed that LLY-283 could increase the expression level of p-AKT in the SGNs. The underlying mechanism involves alleviation of ROS accumulation and activation of the PI3K/AKT pathway, indicating that LLY-283 might be a potential candidate for therapeutic intervention against NIHL.
Collapse
Affiliation(s)
- Chang Liu
- ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, PR China; NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai 200031, PR China
| | - Dongmei Tang
- ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, PR China; NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai 200031, PR China
| | - Zhiwei Zheng
- ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, PR China; NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai 200031, PR China
| | - Xiaoling Lu
- ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, PR China; NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai 200031, PR China
| | - Wen Li
- ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, PR China; NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai 200031, PR China
| | - Liping Zhao
- ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, PR China; NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai 200031, PR China
| | - Yingzi He
- ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, PR China; NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai 200031, PR China.
| | - Huawei Li
- ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, PR China; NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai 200031, PR China; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, PR China; The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, PR China.
| |
Collapse
|
22
|
Xu XM, Wang J, Salvi R, Liu LJ, Chen YC, Teng GJ. Altered resting-state functional connectivity of the anterior cingulate cortex in rats post noise exposure. CNS Neurosci Ther 2022; 28:1547-1556. [PMID: 35726754 PMCID: PMC9437238 DOI: 10.1111/cns.13896] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 04/29/2022] [Accepted: 06/04/2022] [Indexed: 11/30/2022] Open
Abstract
Aims We aimed to find where and how noise‐induced cochlear hearing loss affects the central nervous system during the early state and identify the neural substrate for aberrant patterns that mediating noise‐related anxiety−/depression‐ like behaviors. Methods Broad band noise with 122 dB for 2 hours was conducted to induce hearing loss. We defined 0 day (N0D) and 10 days (N10D) post noise as the acute and sub‐acute period. Behavioral tests (Open field test and light/dark test) and resting‐state fMRI were computed to evaluate emotional conditions and aberrant neural activity. Functional connectivity analysis using the anterior cingulate cortex as a seed was computed to reveal the spatial distribution beyond auditory network during both periods. Results Anxiety−/depression‐like behaviors were found in rats with noise exposure. Between‐group analysis revealed that N0D rats displayed widespread reductions in functional connectivity, spanning primary somatosensory cortex, medial geniculate body, inferior colliculus, cingulate cortex, cerebellar lobule comparing with N10D rats and a similar pattern was also occurred in comparison with the control group. Conclusion Taken together, an “acoustic‐causing” network accounting for distress and gating of noise exposure related anxiety/depression was proposed.
Collapse
Affiliation(s)
- Xiao-Min Xu
- Jiangsu Key Laboratory of Molecular Imaging and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China.,Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jian Wang
- School of Human Communication Disorders, Dalhousie University, Halifax, Canada
| | - Richard Salvi
- Center for Hearing and Deafness, University at Buffalo, Buffalo, New York, USA
| | - Li-Jie Liu
- Department of Physiology, Southeast University, Nanjing, China
| | - Yu-Chen Chen
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Gao-Jun Teng
- Jiangsu Key Laboratory of Molecular Imaging and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| |
Collapse
|
23
|
Le Prell CG. Prevention of Noise-Induced Hearing Loss Using Investigational Medicines for the Inner Ear: Previous Trial Outcomes Should Inform Future Trial Design. Antioxid Redox Signal 2022; 36:1171-1202. [PMID: 34346254 PMCID: PMC9221155 DOI: 10.1089/ars.2021.0166] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 07/25/2021] [Indexed: 11/13/2022]
Abstract
Significance: Noise-induced hearing loss (NIHL) is an important public health issue resulting in decreased quality of life for affected individuals, and significant costs to employers and governmental agencies. Recent Advances: Advances in the mechanistic understanding of NIHL have prompted a growing number of proposed, in-progress, and completed clinical trials for possible protections against NIHL via antioxidants and other drug agents. Thirty-one clinical trials evaluating prevention of either temporary or permanent NIHL were identified and are reviewed. Critical Issues: This review revealed little consistency in the noise-exposed populations in which drugs are evaluated or the primary outcomes used to measure NIHL prevention. Changes in pure-tone thresholds were the most common primary outcomes; specific threshold metrics included both average hearing loss and incidence of significant hearing loss. Changes in otoacoustic emission (OAE) amplitude were relatively common secondary outcomes. Extended high-frequency (EHF) hearing and speech-in-noise perception are commonly adversely affected by noise exposure but are not consistently included in clinical trials assessing prevention of NIHL. Future Directions: Multiple criteria are available for monitoring NIHL, but the specific criterion to be used to define clinically significant otoprotection remains a topic of discussion. Audiogram-based primary outcome measures can be combined with secondary outcomes, including OAE amplitude, EHF hearing, speech-in-noise testing, tinnitus surveys, and patient-reported outcomes. Standardization of test protocols for the above primary and secondary outcomes, and associated reporting criterion for each, would facilitate clinical trial design and comparison of results across investigational drug agents. Antioxid. Redox Signal. 36, 1171-1202.
Collapse
Affiliation(s)
- Colleen G. Le Prell
- Department of Speech, Language, and Hearing Science, University of Texas at Dallas, Richardson, Texas, USA
| |
Collapse
|
24
|
Manukyan AL. Noise as a cause of neurodegenerative disorders: molecular and cellular mechanisms. Neurol Sci 2022; 43:2983-2993. [PMID: 35166975 DOI: 10.1007/s10072-022-05948-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/08/2022] [Indexed: 12/21/2022]
Abstract
Noise as an environmental stressor becomes of increasing importance in our industrialized world, and especially traffic noise from the environment represents a potential novel neurodegenerative risk factor, as well as for hearing loss. A significant number of studies have been suggested that the overproduction of reactive oxygen species (ROS) has a complex role in stimulation of pathologic events. Experimental studies upon molecular pathways of traffic noise exposure proposed that it increased the level of stress hormones and mediated the inflammatory and oxidative stress (OS) pathways resulting in endothelial and neuronal dysfunction. Studies have shown that neurons are especially sensitive to OS due to high polyunsaturated fatty acids content in membranes, high oxygen uptake, and weak antioxidant defense. However, OS induces the necrotic and apoptotic cell deaths in the cochlea. Chronic noise is one of the many overall reasons of obtained sensorineural hearing loss which destroys cognitive functions in human and animals, as well as suppresses neurogenesis in the hippocampus. Nevertheless, behavioral disorders caused by noise are mainly accompanied with oxidative stress, but the clear molecular mechanism of neurodegeneration due to disruption of the pro- and antioxidant systems is still not fully understood. This paper aims to highlight the down-stream pathophysiology of noise-induced mental disorders, including hearing loss, annoyance, anxiety, depression, memory loss, and Alzheimer's disease, describing the underlying mechanisms of induction of inflammation and oxidative stress.
Collapse
Affiliation(s)
- Ashkhen L Manukyan
- Department of Medical Chemistry, Yerevan State Medical University after M. Heratsi, Koryun 2, 0025, Yerevan, Armenia.
| |
Collapse
|
25
|
Wu F, Hill K, Fang Q, He Z, Zheng H, Wang X, Xiong H, Sha SH. Traumatic-noise-induced hair cell death and hearing loss is mediated by activation of CaMKKβ. Cell Mol Life Sci 2022; 79:249. [PMID: 35438341 PMCID: PMC9844253 DOI: 10.1007/s00018-022-04268-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 03/14/2022] [Accepted: 03/20/2022] [Indexed: 01/19/2023]
Abstract
BACKGROUND The Ca2+/calmodulin-dependent protein kinase kinases (CaMKKs) are serine/threonine-directed protein kinases that are activated following increases in intracellular calcium, playing a critical role in neuronal signaling. Inner-ear-trauma-induced calcium overload in sensory hair cells has been well documented in the pathogenesis of traumatic noise-induced hair cell death and hearing loss, but there are no established pharmaceutical therapies available due to a lack of specific therapeutic targets. In this study, we investigated the activation of CaMKKβ in the inner ear after traumatic noise exposure and assessed the prevention of noise-induced hearing loss (NIHL) with RNA silencing. RESULTS Treatment with short hairpin RNA of CaMKKβ (shCaMKKβ) via adeno-associated virus transduction significantly knocked down CaMKKβ expression in the inner ear. Knockdown of CaMKKβ significantly attenuated noise-induced hair cell loss and hearing loss (NIHL). Additionally, pretreatment with naked CaMKKβ small interfering RNA (siCaMKKβ) attenuated noise-induced losses of inner hair cell synapses and OHCs and NIHL. Furthermore, traumatic noise exposure activates CaMKKβ in OHCs as demonstrated by immunolabeling for p-CaMKI. CaMKKβ mRNA assessed by fluorescence in-situ hybridization and immunolabeling for CaMKKβ in OHCs also increased after the exposure. Finally, pretreatment with siCaMKKβ diminished noise-induced activation of AMPKα in OHCs. CONCLUSIONS These findings demonstrate that traumatic-noise-induced OHC loss and hearing loss occur primarily via activation of CaMKKβ. Targeting CaMKKβ is a key strategy for prevention of noise-induced hearing loss. Furthermore, our data suggest that noise-induced activation of AMPKα in OHCs occurs via the CaMKKβ pathway.
Collapse
Affiliation(s)
- Fan Wu
- Department of Pathology and Laboratory Medicine, The Medical University of South Carolina, Walton Research Building, Room 403-E, 39 Sabin Street, Charleston, SC, 29425, USA
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Kayla Hill
- Department of Pathology and Laboratory Medicine, The Medical University of South Carolina, Walton Research Building, Room 403-E, 39 Sabin Street, Charleston, SC, 29425, USA
| | - Qiaojun Fang
- Department of Pathology and Laboratory Medicine, The Medical University of South Carolina, Walton Research Building, Room 403-E, 39 Sabin Street, Charleston, SC, 29425, USA
- School of Life Sciences and Technology, Southeast University, Nanjing, 210096, China
| | - Zuhong He
- Department of Pathology and Laboratory Medicine, The Medical University of South Carolina, Walton Research Building, Room 403-E, 39 Sabin Street, Charleston, SC, 29425, USA
| | - Hongwei Zheng
- Department of Pathology and Laboratory Medicine, The Medical University of South Carolina, Walton Research Building, Room 403-E, 39 Sabin Street, Charleston, SC, 29425, USA
| | - Xianren Wang
- Department of Pathology and Laboratory Medicine, The Medical University of South Carolina, Walton Research Building, Room 403-E, 39 Sabin Street, Charleston, SC, 29425, USA
| | - Hao Xiong
- Department of Pathology and Laboratory Medicine, The Medical University of South Carolina, Walton Research Building, Room 403-E, 39 Sabin Street, Charleston, SC, 29425, USA
| | - Su-Hua Sha
- Department of Pathology and Laboratory Medicine, The Medical University of South Carolina, Walton Research Building, Room 403-E, 39 Sabin Street, Charleston, SC, 29425, USA.
| |
Collapse
|
26
|
Physiopathological effects of noise: Recent approaches to the treatment of hearing loss. JOURNAL OF SURGERY AND MEDICINE 2022. [DOI: 10.28982/josam.906773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
27
|
Wang W, Chen E, Ding X, Lu P, Chen J, Ma P, Lu L. N-acetylcysteine protect inner hair cells from cisplatin by alleviated celluar oxidative stress and apoptosis. Toxicol In Vitro 2022; 81:105354. [PMID: 35346799 DOI: 10.1016/j.tiv.2022.105354] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 02/24/2022] [Accepted: 03/23/2022] [Indexed: 11/29/2022]
Abstract
Cisplatin is a well-known platinum-based chemotherapy drug widely used to treat a variety of malignant tumors. However, cisplatin has serious side-effects include nephrotoxicity and ototoxicity, Cisplatin chemotherapy causes permanent hearing loss at least 40% of treated patients. Our results showed that 20 mM N-acetylcysteine (NAC) can completely protect 50 μM cisplatin-induced hair cell loss in rat cochlear culture and protects against cisplatin-induced hair cell loss in zebrafish in vivo. The fluorescence intensity of mitochondrial ROS significantly increased after the cultures were treated with 15 μM cisplatin for 48 h and was decreased in the group treated with 15 μM cisplatin add 20 mM NAC. In addition, the number of TUNEL positive hair cells was increased after the cultures were treated with 15 μM cisplatin for 48 h and there are null in cisplatin and NAC co-treated group.
Collapse
Affiliation(s)
- Weilong Wang
- Department of Otolaryngology Head & Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China
| | - Erfang Chen
- Department of Otolaryngology Head & Neck Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Xuerui Ding
- Department of Otolaryngology Head & Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China
| | - Peiheng Lu
- Department of Otolaryngology Head & Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China
| | - Jiawei Chen
- Department of Otolaryngology Head & Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China
| | - Pengwei Ma
- Department of Otolaryngology Head & Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China
| | - Lianjun Lu
- Department of Otolaryngology Head & Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China.
| |
Collapse
|
28
|
Wang Y, Huang X, Zhang J, Huang S, Wang J, Feng Y, Jiang Z, Wang H, Yin S. Bottom-Up and Top-Down Attention Impairment Induced by Long-Term Exposure to Noise in the Absence of Threshold Shifts. Front Neurol 2022; 13:836683. [PMID: 35299612 PMCID: PMC8920971 DOI: 10.3389/fneur.2022.836683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Objective We aimed to assess the effect of noise exposure on bottom-up and top-down attention functions in industrial workers based on behavioral and brain responses recorded by the multichannel electroencephalogram (EEG). Method In this cross-sectional study, 563 shipyard noise-exposed workers with clinical normal hearing were recruited for cognitive testing. Personal cumulative noise exposure (CNE) was calculated with the long-term equivalent noise level and employment duration. The performance of cognitive tests was compared between the high CNE group (H-CNE, >92.2) and the low CNE group; additionally, brain responses were recorded with a 256-channel EEG from a subgroup of 20 noise-exposed (NG) workers, who were selected from the cohort with a pure tone threshold <25 dB HL from 0.25 to 16 kHz and 20 healthy controls matched for age, sex, and education. P300 and mismatch negativity (MMN) evoked by auditory stimuli were obtained to evaluate the top-down and bottom-up attention functions. The sources of P300 and MMN were investigated using GeoSource. Results The total score of the cognitive test (24.55 ± 3.71 vs. 25.32 ± 2.62, p < 0.01) and the subscale of attention score (5.43 ± 1.02 vs. 5.62 ± 0.67, p < 0.001) were significantly lower in the H-CNE group than in the L-CNE group. The attention score has the fastest decline of all the cognitive domain dimensions (slope = -0.03 in individuals under 40 years old, p < 0.001; slope = -0.06 in individuals older than 40 years old, p < 0.001). When NG was compared with controls, the P300 amplitude was significantly decreased in NG at Cz (3.9 ± 2.1 vs. 6.7 ± 2.3 μV, p < 0.001). In addition, the latency of P300 (390.7 ± 12.1 vs. 369.4 ± 7.5 ms, p < 0.001) and MMN (172.8 ± 15.5 vs. 157.8 ± 10.5 ms, p < 0.01) was significantly prolonged in NG compared with controls. The source for MMN for controls was in the left BA11, whereas the noise exposure group's source was lateralized to the BA20. Conclusion Long-term exposure to noise deteriorated the bottom-up and top-down attention functions even in the absence of threshold shifts, as evidenced by behavioral and brain responses.
Collapse
Affiliation(s)
- Ying Wang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Xuan Huang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Jiajia Zhang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Shujian Huang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Jiping Wang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Yanmei Feng
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Zhuang Jiang
- Department of Otolaryngology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Hui Wang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Shankai Yin
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| |
Collapse
|
29
|
Elgoyhen AB. The α9α10 nicotinic acetylcholine receptor: a compelling drug target for hearing loss? Expert Opin Ther Targets 2022; 26:291-302. [PMID: 35225139 PMCID: PMC9007918 DOI: 10.1080/14728222.2022.2047931] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Hearing loss is a major health problem, impacting education, communication, interpersonal relationships, and mental health. Drugs that prevent or restore hearing are lacking and hence novel drug targets are sought. There is the possibility of targeting the α9α10 nicotinic acetylcholine receptor (nAChR) in the prevention of noise-induced, hidden hearing loss and presbycusis. This receptor mediates synaptic transmission between medial olivocochlear efferent fibers and cochlear outer hair cells. This target is key since enhanced olivocochlear activity prevents noise-induced hearing loss and delays presbycusis. AREAS COVERED The work examines the α9α10 nicotinic acetylcholine receptor (nAChR), its role in noise-induced, hidden hearing loss and presbycusis and the possibility of targeting. Data has been searched in Pubmed, the World Report on Hearing from the World Health Organization and the Global Burden of Disease Study 2019. EXPERT OPINION The design of positive allosteric modulators of α9α10 nAChRs is proposed because of the advantage of reinforcing the medial olivocochlear (MOC)-hair cell endogenous neurotransmission without directly stimulating the target receptors, therefore avoiding receptor desensitization and reduced efficacy. The time is right for the discovery and development of α9α10 nAChRs targeting agents and high throughput screening assays will support this.
Collapse
Affiliation(s)
- Ana Belén Elgoyhen
- Laboratorio de Fisiología y Genética de la Audición, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
30
|
Chen JW, Ma PW, Yuan H, Wang WL, Lu PH, Ding XR, Lun YQ, Yang Q, Lu LJ. mito-TEMPO Attenuates Oxidative Stress and Mitochondrial Dysfunction in Noise-Induced Hearing Loss via Maintaining TFAM-mtDNA Interaction and Mitochondrial Biogenesis. Front Cell Neurosci 2022; 16:803718. [PMID: 35210991 PMCID: PMC8861273 DOI: 10.3389/fncel.2022.803718] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/14/2022] [Indexed: 12/25/2022] Open
Abstract
The excessive generation of reactive oxygen species (ROS) and mitochondrial damage have been widely reported in noise-induced hearing loss (NIHL). However, the specific mechanism of noise-induced mitochondrial damage remains largely unclear. In this study, we showed that acoustic trauma caused oxidative damage to mitochondrial DNA (mtDNA), leading to the reduction of mtDNA content, mitochondrial gene expression and ATP level in rat cochleae. The expression level and mtDNA-binding function of mitochondrial transcription factor A (TFAM) were impaired following acoustic trauma without affecting the upstream PGC-1α and NRF-1. The mitochondria-target antioxidant mito-TEMPO (MT) was demonstrated to enter the inner ear after the systemic administration. MT treatment significantly alleviated noise-induced auditory threshold shifts 3d and 14d after noise exposure. Furthermore, MT significantly reduced outer hair cell (OHC) loss, cochlear ribbon synapse loss, and auditory nerve fiber (ANF) degeneration after the noise exposure. In addition, we found that MT treatment effectively attenuated noise-induced cochlear oxidative stress and mtDNA damage, as indicated by DHE, 4-HNE, and 8-OHdG. MT treatment also improved mitochondrial biogenesis, ATP generation, and TFAM-mtDNA interaction in the cochlea. These findings suggest that MT has protective effects against NIHL via maintaining TFAM-mtDNA interaction and mitochondrial biogenesis based on its ROS scavenging capacity.
Collapse
Affiliation(s)
- Jia-Wei Chen
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Peng-Wei Ma
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Hao Yuan
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Wei-Long Wang
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Pei-Heng Lu
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Xue-Rui Ding
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Yu-Qiang Lun
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Qian Yang
- Department of Experimental Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Lian-Jun Lu
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
31
|
Yang H, Zhu Y, Ye Y, Guan J, Min X, Xiong H. Nitric oxide protects against cochlear hair cell damage and noise-induced hearing loss through glucose metabolic reprogramming. Free Radic Biol Med 2022; 179:229-241. [PMID: 34801666 DOI: 10.1016/j.freeradbiomed.2021.11.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 11/08/2021] [Accepted: 11/17/2021] [Indexed: 11/25/2022]
Abstract
Nitric oxide (NO) is critically involved in the regulation of a wide variety of physiological and pathophysiological processes. However, the role of NO in the pathogenesis of noise-induced hearing loss (NIHL) is complex and remains controversial. Here we reported that treatment of CBA/J mice with l-arginine, a physiological precursor of NO, significantly reduced noise-induced reactive oxygen species accumulation in outer hair cells (OHCs), attenuated noise-induced loss of OHCs and NIHL consequently. Conversely, pharmacological inhibition of endothelial nitric oxide synthase exacerbated noise-induced loss of OHCs and aggravated NIHL. In HEI-OC1 cells, NO also showed substantial protection against H2O2-induced oxidative stress and cytotoxicity. Mechanistically, NO increased S-nitrosylation of pyruvate kinase M2 (PKM2) and inhibited its activity, which thus diverted glucose metabolic flux from glycolysis into the pentose phosphate pathway to increase production of reducing equivalents (NADPH and GSH) and eventually prevented H2O2-induced oxidative damage. These findings open new avenues for protection of cochlear hair cells from oxidative stress and prevention of NIHL through NO modulation of PKM2 and glucose metabolism reprogramming.
Collapse
Affiliation(s)
- Haidi Yang
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, China
| | - Yafeng Zhu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yongyi Ye
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiao Guan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xin Min
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, China
| | - Hao Xiong
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
32
|
Li M, Mu Y, Cai H, Wu H, Ding Y. Application of New Materials in Auditory Disease Treatment. Front Cell Neurosci 2022; 15:831591. [PMID: 35173583 PMCID: PMC8841849 DOI: 10.3389/fncel.2021.831591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 12/22/2021] [Indexed: 11/16/2022] Open
Abstract
Auditory diseases are disabling public health problems that afflict a significant number of people worldwide, and they remain largely incurable until now. Driven by continuous innovation in the fields of chemistry, physics, and materials science, novel materials that can be applied to hearing diseases are constantly emerging. In contrast to conventional materials, new materials are easily accessible, inexpensive, non-invasive, with better acoustic therapy effects and weaker immune rejection after implantation. When new materials are used to treat auditory diseases, the wound healing, infection prevention, disease recurrence, hair cell regeneration, functional recovery, and other aspects have been significantly improved. Despite these advances, clinical success has been limited, largely due to issues regarding a lack of effectiveness and safety. With ever-developing scientific research, more novel materials will be facilitated into clinical use in the future.
Collapse
|
33
|
Liang S, Dong S, Liu W, Wang M, Tian S, Ai Y, Wang H. Accumulated ROS Activates HIF-1α-Induced Glycolysis and Exerts a Protective Effect on Sensory Hair Cells Against Noise-Induced Damage. Front Mol Biosci 2022; 8:806650. [PMID: 35096971 PMCID: PMC8790562 DOI: 10.3389/fmolb.2021.806650] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/14/2021] [Indexed: 12/19/2022] Open
Abstract
Noise exposure causes noise-induced hearing loss (NIHL). NIHL exhibits loss of inner ear sensory hair cells and is often irreparable. Although oxidative stress is involved in hearing loss, the complex mechanisms involved in NIHL are unclear. Hypoxia-inducible factor 1α (HIF-1α) has been suggested to be essential for protecting sensory hair cells. Additionally, it has been shown that ROS is involved in modulating the stability of HIF-1α. To investigate the NIHL pathogenesis, we established a tert-butyl hydroperoxide (t-BHP)-induced oxidative stress damage model in hair-like HEI-OC1 cells and an NIHL model in C57BL/6 mice. Protein and mRNA expression were determined, and biochemical parameters including reactive oxygen species (ROS) accumulation, glucose uptake, adenosine triphosphat (ATP) production, and mitochondrial content were evaluated. In HEI-OC1 cells, t-BHP induced ROS accumulation and reduced mitochondrial content and oxygen consumption, but the ATP level was unaffected. Additionally, there was increased glucose uptake and lactate release along with elevated expression of HIF-1α, glucose transporter 1, and several glycolytic enzymes. Consistently, noise trauma induced oxidative stress and the expression of HIF-1α and glycolytic enzymes in mice. Thus, we concluded that ROS induced HIF-1α expression, which promoted glycolysis, suggesting a metabolic shift maintained the ATP level to attenuate hair cell damage in NIHL.
Collapse
Affiliation(s)
- Shuo Liang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shuohui Dong
- Department of General Surgery, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wenwen Liu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Man Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shanshan Tian
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yu Ai
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Yu Ai, ; Haibo Wang,
| | - Haibo Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Yu Ai, ; Haibo Wang,
| |
Collapse
|
34
|
Le Prell CG. Investigational Medicinal Products for the Inner Ear: Review of Clinical Trial Characteristics in ClinicalTrials.gov. J Am Acad Audiol 2021; 32:670-694. [PMID: 35609594 PMCID: PMC9129919 DOI: 10.1055/s-0041-1735522] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 07/21/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND The previous 30 years have provided information on the mechanisms of cell death in the inner ear after noise exposure, ototoxic drug injury, and during aging, and clinical trials have emerged for all of these acquired forms of hearing loss. Sudden hearing loss is less well understood, but restoration of hearing after sudden hearing loss is also a long-standing drug target, typically using steroids as an intervention but with other agents of interest as well. PURPOSE The purpose of this review was to describe the state of the science regarding clinical testing of investigational medicinal products for the inner ear with respect to treatment or prevention of acquired hearing loss. DATA COLLECTION AND ANALYSIS Comprehensive search and summary of clinical trials listed in the National Library of Medicine (www. CLINICALTRIALS gov) database identified 61 clinical trials. RESULTS Study phase, status, intervention, and primary, secondary, and other outcomes are summarized for studies assessing prevention of noise-induced hearing loss, prevention of drug-induced hearing loss, treatment of stable sensorineural hearing loss, and treatment of sudden sensorineural hearing loss. CONCLUSION This review provides a comprehensive summary of the state of the science with respect to investigational medicinal products for the inner ear evaluated in human clinical trials, and the current challenges for the field.
Collapse
MESH Headings
- Cell Death/drug effects
- Cell Death/physiology
- Deafness/chemically induced
- Deafness/drug therapy
- Deafness/prevention & control
- Ear, Inner/pathology
- Hearing Loss, Noise-Induced/drug therapy
- Hearing Loss, Noise-Induced/pathology
- Hearing Loss, Noise-Induced/prevention & control
- Hearing Loss, Sensorineural/chemically induced
- Hearing Loss, Sensorineural/drug therapy
- Hearing Loss, Sensorineural/pathology
- Hearing Loss, Sensorineural/prevention & control
- Hearing Loss, Sudden/chemically induced
- Hearing Loss, Sudden/drug therapy
- Hearing Loss, Sudden/pathology
- Hearing Loss, Sudden/prevention & control
- Humans
- United States
Collapse
Affiliation(s)
- Colleen G. Le Prell
- Department of Speech, Language, and Hearing, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas
| |
Collapse
|
35
|
Rashnoudi P, Amiri A, Omidi M, Mohammadi A. The effects of dyslipidemia on noise-induced hearing loss in a petrochemical workers in the Southwest of Iran. Work 2021; 70:875-882. [PMID: 34719469 DOI: 10.3233/wor-213607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Research has shown that the decrease in the inner diameter of vessels caused by hyperlipidemia lowers the capacity for blood oxygen delivery to the cochlea. This leads to impaired cochlear metabolism and causes hearing problems. OBJECTIVE The effects of dyslipidemia on noise-induced hearing loss in workers were examined. METHODS This descriptive cross-sectional study was performed on 692 male employees in a petrochemical industry in the southwest of Iran exposed to 85 dB noise. Clinical audiometry and blood sample tests were used to evaluate the hearing and prevalence indices of dyslipidemia (cholesterol, triglyceride, HDL and LDL). The data were analyzed using SPSS software version 25 (p = 0.05). RESULTS The results showed that the prevalence of dyslipidemia was 24.5%with abnormal relative triglyceride frequency of 49.5%, HDL of 28%, LDL of 33%, and total blood cholesterol level of 37.8%. There was no significant relationship between NIHL and dyslipidemia (p > 0.09). However, the major NIHL drops at different frequencies were in the individuals with dyslipidemia. The parameters age and dyslipidemia increased NIHL odds ratio (95%C.I.). by 1.130 (1.160-1.100) and 1.618 (2.418-1.082) respectivelyCONCLUSION:The rate of hearing loss in individuals with dyslipidemia increases at different frequencies and it leads to an increase of the OR of NIHL in individuals with dyslipidemia. We can control dyslipidemia and its effective factors. The NIHL is more common in people exposed to noise.
Collapse
Affiliation(s)
- Payam Rashnoudi
- Occupational Health Engineering, Student ResearchCommittee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Arman Amiri
- Occupational Health Engineering, Student ResearchCommittee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Omidi
- Occupational Health Engineering, Student ResearchCommittee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Abbas Mohammadi
- Department of Occupational Safety and HealthEngineering, Faculty of Health, Ahvaz Jundishapur University ofMedical Sciences, Ahvaz, Iran.,EnvironmentalTechnologies Research Center, Ahvaz Jundishapur University ofMedical Sciences, Ahvaz, Iran
| |
Collapse
|
36
|
Hearing Loss and Cognitive Impairment: Epidemiology, Common Pathophysiological Findings, and Treatment Considerations. Life (Basel) 2021; 11:life11101102. [PMID: 34685474 PMCID: PMC8538578 DOI: 10.3390/life11101102] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/04/2021] [Accepted: 10/15/2021] [Indexed: 12/04/2022] Open
Abstract
In recent years, there has been increasing research interest in the correlation between hearing impairment and cognitive decline, two conditions that have demonstrated a strong association. Hearing loss appears as a risk factor for cognitive impairment, especially among certain populations, notably nursing home residents. Furthermore, hearing loss has been identified as a modifiable age-related condition linked to dementia, and it has been estimated that midlife hearing loss, if eliminated, might decrease the risk of dementia in the general population. Several mechanisms have been suggested to explain the pathologic connections between hearing loss and dementia; however, clear evidence is missing, and the common pathophysiological basis is still unclear. In this review, we discussed current knowledge about the relationship between hearing loss and dementia, and future perspectives in terms of the effects of hearing rehabilitation for early prevention of cognitive decline.
Collapse
|
37
|
Guthrie OW, Bhatt IS. Nondeterministic nature of sensorineural outcomes following noise trauma. Biol Open 2021; 10:272549. [PMID: 34668520 PMCID: PMC8543023 DOI: 10.1242/bio.058696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 09/08/2021] [Indexed: 11/20/2022] Open
Abstract
Over 1.1 billion individuals are at risk for noise induced hearing loss yet there is no accepted therapy. A long history of research has demonstrated that excessive noise exposure will kill outer hair cells (OHCs). Such observations have fueled the notion that dead OHCs underlie hearing loss. Therefore, previous and current therapeutic approaches are based on preventing the loss of OHCs. However, the relationship between OHC loss and hearing loss is at best a modest correlation. This suggests that in addition to the death of OHCs, other mechanisms may regulate the type and degree of hearing loss. In the current study, we tested the hypothesis that permanent noise-induced-hearing loss is consequent to additional mechanisms beyond the noise dose and the death of OHCs. Hooded male rats were randomly divided into noise and control groups. Morphological and physiological assessments were conducted on both groups. The combined results suggest that beyond OHC loss, the surviving cochlear elements shape sensorineural outcomes, which can be nondeterministic. These findings provide the basis for individualized ototherapeutics that manipulate surviving cellular elements in order to bias cochlear function towards normal hearing even in the presence of dead OHCs. Summary: The current findings provide the basis for individualized ototherapeutics that manipulate surviving cellular elements in order to bias cochlear function towards normal hearing even in the presence of dead cells.
Collapse
Affiliation(s)
- O'neil W Guthrie
- Department of Communication Sciences & Disorders, Northern Arizona University, Flagstaff, AZ 86011, USA.,Cell & Molecular Pathology Laboratory, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Ishan S Bhatt
- Audiogenomics Research Laboratory, Department of Communication Sciences and Disorders, The University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
38
|
Leso V, Fontana L, Finiello F, De Cicco L, Luigia Ercolano M, Iavicoli I. Noise induced epigenetic effects: A systematic review. Noise Health 2021; 22:77-89. [PMID: 33402608 PMCID: PMC8000140 DOI: 10.4103/nah.nah_17_20] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background: Noise-induced hearing loss (NIHL) is one of the leading causes of acquired sensorineural hearing loss. However, molecular mechanisms responsible for its pathogenesis remain to be elucidated. Epigenetic changes, i.e. DNA methylation, histone and microRNA expression modifications may function as a link between noise exposure and hearing loss. Therefore, the aim of the present review was to assess whether epigenetic alterations may serve as biomarkers of noise exposure or early effect. Materials and Methods: A systematic review of studies available in Pubmed, Scopus, and ISI Web of Science databases was performed. Results: Noise exposure was able to induce alterations in DNA methylation levels in workers and animal models, resulting in expression changes of genes related to hearing loss and also to extra-auditory effects. Differently expressed microRNAs were determined in NIHL workers compared to noise-exposed subjects with normal hearing, supporting their possible role as biomarkers of effect. Acoustic trauma affected histon acethylation and methylation levels in animals, suggesting their influence in the pathogenesis of acute noise-induced damage and their role as targets for potential therapeutic treatments. Conclusions: Although preliminary data suggest a relationship between noise and epigenetic effects, the limited number of studies, their different methodologies and the lack of adequate characterization of acoustic insults prevent definite conclusions. In this context, further research aimed to define the epigenetic impact of workplace noise exposure and the role of such alterations in predicting hearing loss may be important for the adoption of correct risk assessment and management strategies in occupational settings.
Collapse
Affiliation(s)
- Veruscka Leso
- Section of Occupational Medicine, Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Luca Fontana
- Section of Occupational Medicine, Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Ferdinando Finiello
- Section of Occupational Medicine, Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Luigi De Cicco
- Section of Occupational Medicine, Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Maria Luigia Ercolano
- Section of Occupational Medicine, Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Ivo Iavicoli
- Section of Occupational Medicine, Department of Public Health, University of Naples Federico II, Naples, Italy
| |
Collapse
|
39
|
Kador PF, Salvi R. Multifunctional Redox Modulators Protect Auditory, Visual, and Cognitive Function. Antioxid Redox Signal 2021; 36:1136-1157. [PMID: 34162214 PMCID: PMC9221172 DOI: 10.1089/ars.2021.0129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 12/26/2022]
Abstract
Significance: Oxidative stress contributes to vision, hearing and neurodegenerative disorders. Currently, no treatments prevent these disorders; therefore, there is an urgent need for redox modulators that can prevent these disorders. Recent Advances: Oxidative stress is associated with the generation of reactive oxygen species (ROS) and reactive nitrogen species, metal dyshomeostasis, and mitochondrial dysfunction. Here, we discuss the role that oxidative stress and metal dyshomeostasis play in hearing loss, visual impairments, and neurodegeneration and discuss the benefits of a new class of multifunctional redox modulators (MFRMs) that suppress sensory and neural degeneration. MFRMs not only reduce free radicals but also independently bind transition metals associated with the generation of hydroxyl radicals. The MFRMs redistribute zinc from neurotoxic amyloid beta zinc (Aβ:Zn) complexes to the cytoplasm, facilitating the degradation of Aβ plaques by matrix metalloprotease-2 (MMP-2). Although MFRMs bind copper (Cu1+, Cu2+), iron (Fe2+, Fe3+), zinc (Zn2+), and manganese (Mn2+), they do not deplete free cytoplasmic Zn+2 and they protect mitochondria from Mn+2-induced dysfunction. Oral administration of MFRMs reduce ROS-induced cataracts, protect the retina from light-induced degeneration, reduce neurotoxic Aβ:Zn plaque formation, and protect auditory hair cells from noise-induced hearing loss. Critical Issues: Regulation of redox balance is essential for clinical efficacy in maintaining sensory functions. Future Directions: Future use of these MFRMs requires additional pharmacokinetic, pharmacodynamics, and toxicological data to bring them into widespread clinical use. Additional animal studies are also needed to determine whether MFRMs can prevent neurodegeneration, dementia, and other forms of vision and hearing loss.
Collapse
Affiliation(s)
- Peter F. Kador
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Richard Salvi
- Center for Hearing and Deafness, University at Buffalo, Buffalo, New York, USA
| |
Collapse
|
40
|
Nogara PA, Omage FB, Bolzan GR, Delgado CP, Aschner M, Orian L, Teixeira Rocha JB. In silico Studies on the Interaction between Mpro and PLpro From SARS-CoV-2 and Ebselen, its Metabolites and Derivatives. Mol Inform 2021; 40:e2100028. [PMID: 34018687 PMCID: PMC8236915 DOI: 10.1002/minf.202100028] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 04/11/2021] [Indexed: 12/20/2022]
Abstract
The COVID-19 pandemic caused by the SARS-CoV-2 has mobilized scientific attention in search of a treatment. The cysteine-proteases, main protease (Mpro) and papain-like protease (PLpro) are important targets for antiviral drugs. In this work, we simulate the interactions between the Mpro and PLpro with Ebselen, its metabolites and derivatives with the aim of finding molecules that can potentially inhibit these enzymes. The docking data demonstrate that there are two main interactions between the thiol (-SH) group of Cys (from the protease active sites) and the electrophilic centers of the organoselenium molecules, i. e. the interaction with the carbonyl group (O=C… SH) and the interaction with the Se moiety (Se… SH). Both interactions may lead to an adduct formation and enzyme inhibition. Density Functional Theory (DFT) calculations with Ebselen indicate that the energetics of the thiol nucleophilic attack is more favorable on Se than on the carbonyl group, which is in accordance with experimental data (Jin et al. Nature, 2020, 582, 289-293). Therefore, organoselenium molecules should be further explored as inhibitors of the SARS-CoV-2 proteases. Furthermore, we suggest that some metabolites of Ebselen (e. g. Ebselen diselenide and methylebselenoxide) and derivatives ethaselen and ebsulfur should be tested in vitro as inhibitors of virus replication and its proteases.
Collapse
Affiliation(s)
- Pablo Andrei Nogara
- Departamento de Bioquímica e Biologia MolecularUniversidade Federal de Santa Maria (UFSM)Santa Maria97105-900RSBrazil
| | - Folorunsho Bright Omage
- Departamento de Bioquímica e Biologia MolecularUniversidade Federal de Santa Maria (UFSM)Santa Maria97105-900RSBrazil
| | - Gustavo Roni Bolzan
- Departamento de Bioquímica e Biologia MolecularUniversidade Federal de Santa Maria (UFSM)Santa Maria97105-900RSBrazil
| | - Cássia Pereira Delgado
- Departamento de Bioquímica e Biologia MolecularUniversidade Federal de Santa Maria (UFSM)Santa Maria97105-900RSBrazil
| | - Michael Aschner
- Department of Molecular PharmacologyAlbert Einstein College of Medicine1300 Morris Park Avenue, BronxNY10461USA
| | - Laura Orian
- Dipartimento di Scienze ChimicheUniversità degli Studi di PadovaVia Marzolo 135131PadovaItaly
| | - João Batista Teixeira Rocha
- Departamento de Bioquímica e Biologia MolecularUniversidade Federal de Santa Maria (UFSM)Santa Maria97105-900RSBrazil
| |
Collapse
|
41
|
Liu Z, Bai X, Wan P, Mo F, Chen G, Zhang J, Gao J. Targeted Deletion of Loxl3 by Col2a1-Cre Leads to Progressive Hearing Loss. Front Cell Dev Biol 2021; 9:683495. [PMID: 34150778 PMCID: PMC8212933 DOI: 10.3389/fcell.2021.683495] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 05/11/2021] [Indexed: 12/20/2022] Open
Abstract
Collagens are major constituents of the extracellular matrix (ECM) that play an essential role in the structure of the inner ear and provide elasticity and rigidity when the signals of sound are received and transformed into electrical signals. LOXL3 is a member of the lysyl oxidase (LOX) family that are copper-dependent amine oxidases, generating covalent cross-links to stabilize polymeric elastin and collagen fibers in the ECM. Biallelic missense variant of LOXL3 was found in Stickler syndrome with mild conductive hearing loss. However, available information regarding the specific roles of LOXL3 in auditory function is limited. In this study, we showed that the Col2a1-Cre-mediated ablation of Loxl3 in the inner ear can cause progressive hearing loss, degeneration of hair cells and secondary degeneration of spiral ganglion neurons. The abnormal distribution of type II collagen in the spiral ligament and increased inflammatory responses were also found in Col2a1–Loxl3–/– mice. Amino oxidase activity exerts an effect on collagen; thus, Loxl3 deficiency was expected to result in the instability of collagen in the spiral ligament and the basilar membrane, which may interfere with the mechanical properties of the organ of Corti and induce the inflammatory responses that are responsible for the hearing loss. Overall, our findings suggest that Loxl3 may play an essential role in maintaining hearing function.
Collapse
Affiliation(s)
- Ziyi Liu
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, China
| | - Xinfeng Bai
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, China
| | - Peifeng Wan
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, China
| | - Fan Mo
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, China
| | - Ge Chen
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, China
| | - Jian Zhang
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, China
| | - Jiangang Gao
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, China
| |
Collapse
|
42
|
Pienkowski M. Loud Music and Leisure Noise Is a Common Cause of Chronic Hearing Loss, Tinnitus and Hyperacusis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:4236. [PMID: 33923580 PMCID: PMC8073416 DOI: 10.3390/ijerph18084236] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 12/20/2022]
Abstract
High sound levels capable of permanently damaging the ear are experienced not only in factories and war zones but in concert halls, nightclubs, sports stadiums, and many other leisure environments. This review summarizes evidence that loud music and other forms of "leisure noise" are common causes of noise-induced hearing loss, tinnitus, and hyperacusis, even if audiometric thresholds initially remain within clinically normal limits. Given the huge global burden of preventable noise-induced hearing loss, noise limits should be adopted in a much broader range of settings, and education to promote hearing conservation should be a higher public health priority.
Collapse
Affiliation(s)
- Martin Pienkowski
- Osborne College of Audiology, Salus University, Elkins Park, PA 19027, USA
| |
Collapse
|
43
|
Sun F, Zhang J, Chen L, Yuan Y, Guo X, Dong L, Sun J. Epac1 Signaling Pathway Mediates the Damage and Apoptosis of Inner Ear Hair Cells after Noise Exposure in a Rat Model. Neuroscience 2021; 465:116-127. [PMID: 33838290 DOI: 10.1016/j.neuroscience.2021.03.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/12/2021] [Accepted: 03/26/2021] [Indexed: 01/21/2023]
Abstract
To investigate the role of the exchange protein directly activated by cAMP (Epac) signaling pathway in inner ear hair cell damage and apoptosis after noise exposure, we analyzed the expression level of Epac1 in a rat model of noise-induced hearing loss (NIHL), based on rat exposure to a 4-kHz and 106-dB sound pressure level (SPL) for 8 h. Loss of outer hair cells (OHCs), mitochondrial lesions, and hearing loss were examined after treatment with the Epac agonist, 8-CPT, or the Epac inhibitor, ESI-09. The effects of 8-CPT and ESI-09 on cell proliferation and apoptosis were examined by CCK-8 assays, holographic microscopy imaging, and Annexin-V FITC/PI staining in HEI-OC1 cells. The effects of 8-CPT and ESI-09 on Ca2+ entry were evaluated by confocal Ca2+ fluorescence measurement. We found that the expression level of Epac1 was significantly increased in the cochlear tissue after noise exposure. In NIHL rats, 8-CPT increased the loss of OHCs, mitochondrial lesions, and hearing loss compared to control rats, while ESI-09 produced the opposite effects. Oligomycin was used to induce HEI-OC1 cell damage in vitro. In HEI-OC1 cells treated with oligomycin, 8-CPT and ESI-09 increased and reduced cell apoptosis, respectively. Moreover, 8-CPT promoted Ca2+ uptake in HEI-OC1 cells, while ESI-09 inhibited this process. In conclusion, our data provide strong evidence that the Epac1 signaling pathway mediates early pathological damage in NIHL, and that Epac1 inhibition protects from NIHL, identifying Epac1 as a new potential therapeutic target for NIHL.
Collapse
Affiliation(s)
- Fanfan Sun
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of USTC, Hefei 230001, China; Department of Pharmacology, Key Laboratory of Anti-Inflammatory and Immunopharmacology of Ministry of Education, Key Laboratory of Chinese Medicine Research and Development of State Administration of Traditional Chinese Medicine, Anhui Medical University, Hefei 230032, China
| | - Junge Zhang
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of USTC, Hefei 230001, China
| | - Li Chen
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of USTC, Hefei 230001, China
| | - Yuhao Yuan
- Department of Pharmacology, Key Laboratory of Anti-Inflammatory and Immunopharmacology of Ministry of Education, Key Laboratory of Chinese Medicine Research and Development of State Administration of Traditional Chinese Medicine, Anhui Medical University, Hefei 230032, China
| | - Xiaotao Guo
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of USTC, Hefei 230001, China
| | - Liuyi Dong
- Department of Pharmacology, Key Laboratory of Anti-Inflammatory and Immunopharmacology of Ministry of Education, Key Laboratory of Chinese Medicine Research and Development of State Administration of Traditional Chinese Medicine, Anhui Medical University, Hefei 230032, China.
| | - Jiaqiang Sun
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of USTC, Hefei 230001, China.
| |
Collapse
|
44
|
Zheng Z, Zeng S, Liu C, Li W, Zhao L, Cai C, Nie G, He Y. The DNA methylation inhibitor RG108 protects against noise-induced hearing loss. Cell Biol Toxicol 2021; 37:751-771. [PMID: 33723744 PMCID: PMC8490244 DOI: 10.1007/s10565-021-09596-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 02/22/2021] [Indexed: 11/29/2022]
Abstract
Background Noise-induced hearing loss represents a commonly diagnosed type of hearing disability, severely impacting the quality of life of individuals. The current work is aimed at assessing the effects of DNA methylation on noise-induced hearing loss. Methods Blocking DNA methyltransferase 1 (DNMT1) activity with a selective inhibitor RG108 or silencing DNMT1 with siRNA was used in this study. Auditory brainstem responses were measured at baseline and 2 days after trauma in mice to assess auditory functions. Whole-mount immunofluorescent staining and confocal microcopy of mouse inner ear specimens were performed to analyze noise-induced damage in cochleae and the auditory nerve at 2 days after noise exposure. Results The results showed that noise exposure caused threshold elevation of auditory brainstem responses and cochlear hair cell loss. Whole-mount cochlea staining revealed a reduction in the density of auditory ribbon synapses between inner hair cells and spiral ganglion neurons. Inhibition of DNA methyltransferase activity via a non-nucleoside specific pharmacological inhibitor, RG108, or silencing of DNA methyltransferase-1 with siRNA significantly attenuated ABR threshold elevation, hair cell damage, and the loss of auditory synapses. Conclusions This study suggests that inhibition of DNMT1 ameliorates noise-induced hearing loss and indicates that DNMT1 may be a promising therapeutic target. Graphical abstract Graphical Headlights • RG108 protected against noise-induced hearing loss • RG108 administration protected against noise-induced hair cell loss and auditory neural damage. • RG108 administration attenuated oxidative stress-induced DNA damage and subsequent apoptosis-mediated cell loss in the cochlea after noise exposure. ![]()
Supplementary Information The online version contains supplementary material available at 10.1007/s10565-021-09596-y.
Collapse
Affiliation(s)
- Zhiwei Zheng
- ENT institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031, China
- NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031, China
| | - Shan Zeng
- ENT institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031, China
- NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031, China
| | - Chang Liu
- ENT institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031, China
- NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031, China
| | - Wen Li
- ENT institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031, China
- NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031, China
| | - Liping Zhao
- ENT institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031, China
- NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031, China
| | - Chengfu Cai
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, 361003, People's Republic of China
| | - Guohui Nie
- Department of Otolaryngology and Institute of Translational Medicine, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, China.
| | - Yingzi He
- ENT institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031, China.
- NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031, China.
| |
Collapse
|
45
|
He ZH, Pan S, Zheng HW, Fang QJ, Hill K, Sha SH. Treatment With Calcineurin Inhibitor FK506 Attenuates Noise-Induced Hearing Loss. Front Cell Dev Biol 2021; 9:648461. [PMID: 33777956 PMCID: PMC7994600 DOI: 10.3389/fcell.2021.648461] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 02/11/2021] [Indexed: 11/13/2022] Open
Abstract
Attenuation of noise-induced hair cell loss and noise-induced hearing loss (NIHL) by treatment with FK506 (tacrolimus), a calcineurin (CaN/PP2B) inhibitor used clinically as an immunosuppressant, has been previously reported, but the downstream mechanisms of FK506-attenuated NIHL remain unknown. Here we showed that CaN immunolabeling in outer hair cells (OHCs) and nuclear factor of activated T-cells isoform c4 (NFATc4/NFAT3) in OHC nuclei are significantly increased after moderate noise exposure in adult CBA/J mice. Consequently, treatment with FK506 significantly reduces moderate-noise-induced loss of OHCs and NIHL. Furthermore, induction of reactive oxygen species (ROS) by moderate noise was significantly diminished by treatment with FK506. In agreement with our previous finding that autophagy marker microtubule-associated protein light chain 3B (LC3B) does not change in OHCs under conditions of moderate-noise-induced permanent threshold shifts, treatment with FK506 increases LC3B immunolabeling in OHCs after exposure to moderate noise. Additionally, prevention of NIHL by treatment with FK506 was partially abolished by pretreatment with LC3B small interfering RNA. Taken together, these results indicate that attenuation of moderate-noise-induced OHC loss and hearing loss by FK506 treatment occurs not only via inhibition of CaN activity but also through inhibition of ROS and activation of autophagy.
Collapse
Affiliation(s)
| | | | | | | | | | - Su-Hua Sha
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
46
|
Development of ebselen for the treatment of sensorineural hearing loss and tinnitus. Hear Res 2021; 413:108209. [PMID: 33678494 DOI: 10.1016/j.heares.2021.108209] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 12/29/2020] [Accepted: 02/13/2021] [Indexed: 02/08/2023]
Abstract
The global impact of hearing loss and related auditory dysfunction including tinnitus and hyperacusis on human health is significant and growing. A substantial body of literature has found that these hearing diseases and disorders result from significant number of genetic variations and molecular mechanisms. Investigational new drugs have been tested and several approved drugs have been repurposed in clinical trials, but no therapeutics for any auditory related indication have been FDA approved. A unique investigational new drug called ebselen (SPI-1005), that is anti-inflammatory and neuroprotective, has been shown to reduce noise-induced and aminoglycoside-induced hearing loss in animals. Multiple phase 2 clinical trials have demonstrated the safety and efficacy of SPI-1005 treatment in Meniere's disease and acute noise-induced hearing loss. SPI-1005 is currently being tested to prevent and treat tobramycin-induced ototoxicity in cystic fibrosis patients with acute lung infections. This review summarizes the published and presented data involving SPI-1005 and other drugs being tested to prevent or treat sensorineural hearing loss. Additionally, recent clinical data showing the relationship between pure tone audiometry and words-in-noise test results in a Meniere's disease are presented, which may have larger implications for the field of hearing research.
Collapse
|
47
|
Xu K, Chen S, Xie L, Qiu Y, Bai X, Liu XZ, Zhang HM, Wang XH, Jin Y, Sun Y, Kong WJ. Local Macrophage-Related Immune Response Is Involved in Cochlear Epithelial Damage in Distinct Gjb2-Related Hereditary Deafness Models. Front Cell Dev Biol 2021; 8:597769. [PMID: 33505961 PMCID: PMC7829512 DOI: 10.3389/fcell.2020.597769] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 12/07/2020] [Indexed: 12/31/2022] Open
Abstract
The macrophage-related immune response is an important component of the cochlear response to different exogenous stresses, including noise, ototoxic antibiotics, toxins, or viral infection. However, the role of the immune response in hereditary deafness caused by genetic mutations is rarely explored. GJB2, encoding connexin 26 (Cx26), is the most common deafness gene of hereditary deafness. In this study, two distinct Cx26-null mouse models were established to investigate the types and underlying mechanisms of immune responses. In a systemic Cx26-null model, macrophage recruitment was observed, associated with extensive cell degeneration of the cochlear epithelium. In a targeted-cell Cx26-null model, knockout of Cx26 was restricted to specific supporting cells (SCs), which led to preferential loss of local outer hair cells (OHCs). This local OHC loss can also induce a macrophage-related immune response. Common inflammatory factors, including TNF-α, IL-1β, Icam-1, Mif, Cx3cr1, Tlr4, Ccl2, and Ccr2, did not change significantly, while mRNA of Cx3cl1 was upregulated. Quantitative immunofluorescence showed that the protein expression of CX3CL1 in Deiters cells, a type of SC coupled with OHCs, increased significantly after OHC death. OHC loss caused the secondary death of spiral ganglion neurons (SGNs), while the remaining SGNs expressed high levels of CX3CL1 with infiltrated macrophages. Taken together, our results indicate that CX3CL1 signaling regulates macrophage recruitment and that enhancement of macrophage antigen-presenting function is associated with cell degeneration in Cx26-null mice.
Collapse
Affiliation(s)
- Kai Xu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sen Chen
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Le Xie
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue Qiu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xue Bai
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-Zhou Liu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui-Min Zhang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-Hui Wang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Jin
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Sun
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei-Jia Kong
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Tongji Medical College, Institute of Otorhinolaryngology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
48
|
Xiong H, Lai L, Ye Y, Zheng Y. Glucose Protects Cochlear Hair Cells Against Oxidative Stress and Attenuates Noise-Induced Hearing Loss in Mice. Neurosci Bull 2021; 37:657-668. [PMID: 33415566 DOI: 10.1007/s12264-020-00624-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/17/2020] [Indexed: 12/17/2022] Open
Abstract
Oxidative stress is the key determinant in the pathogenesis of noise-induced hearing loss (NIHL). Given that cellular defense against oxidative stress is an energy-consuming process, the aim of the present study was to investigate whether increasing energy availability by glucose supplementation protects cochlear hair cells against oxidative stress and attenuates NIHL. Our results revealed that glucose supplementation reduced the noise-induced formation of reactive oxygen species (ROS) and consequently attenuated noise-induced loss of outer hair cells, inner hair cell synaptic ribbons, and NIHL in CBA/J mice. In cochlear explants, glucose supplementation increased the levels of ATP and NADPH, as well as attenuating H2O2-induced ROS production and cytotoxicity. Moreover, pharmacological inhibition of glucose transporter type 1 activity abolished the protective effects of glucose against oxidative stress in HEI-OC1 cells. These findings suggest that energy availability is crucial for oxidative stress resistance and glucose supplementation offers a simple and effective approach for the protection of cochlear hair cells against oxidative stress and NIHL.
Collapse
Affiliation(s)
- Hao Xiong
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.,Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, 510120, China
| | - Lan Lai
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.,Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, 510120, China
| | - Yongyi Ye
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.,Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, 510120, China
| | - Yiqing Zheng
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China. .,Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, 510120, China.
| |
Collapse
|
49
|
Gupta A, Koochakzadeh S, Nguyen SA, Brennan EA, Meyer TA, Lambert PR. Pharmacological Prevention of Noise-induced Hearing Loss: A Systematic Review. Otol Neurotol 2021; 42:2-9. [PMID: 33229875 PMCID: PMC8323150 DOI: 10.1097/mao.0000000000002858] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE This study aims to explore and determine the effectiveness of current pharmacologic agents for the prevention of noise-induced hearing loss (NIHL) via a systematic review. DATABASES REVIEWED The PubMed, Scopus, ClinicalTrials.gov, and Cochrane Library databases were searched from inception through February 6, 2020. METHODS Full-text, English-language articles detailing prospective randomized and nonrandomized clinical trials with pharmacological interventions administered to prevent NIHL were included in accordance with PRISMA guidelines. The detailed search terms are included in the Appendix, http://links.lww.com/MAO/B67. RESULTS Eleven articles were included in this review with 701 patients receiving a pharmacologic prevention for various noise exposures. Various regimens included administration of alpha-lipoic acid, ambient oxygen, beta-carotene, carbogen, ebselen, Mg-aspartate, N-acetylcysteine, and vitamins C, E, and B12. A number of studies demonstrated statistically significant amelioration of NIHL with pharmacologic intervention. Two studies demonstrated significantly better hearing outcomes for pharmacological prophylaxis with carbogen or ebselen as compared with placebo for the 4 kHz frequency, where the noise-notch is most likely to be encountered. Given the considerable heterogeneity in agents and methodologies, however, it was not possible to conduct a meta-analysis. CONCLUSIONS While several heterogenous articles demonstrated promising results for Mg-aspartate, carbogen, vitamin B12, and alpha-lipoic acid, the clinical significance of these pharmaceuticals remains unclear. Initial data from this study alongside future clinical trials might potentially contribute to the generation of clinical practice guidelines to prevent NIHL. LEVEL OF EVIDENCE 2.
Collapse
Affiliation(s)
- Avigeet Gupta
- Department of Otolaryngology – Head and Neck Surgery, Medical University of South Carolina, Charleston, SC, USA
- Department of Otolaryngology – Head and Neck Surgery, The University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Sina Koochakzadeh
- Department of Otolaryngology – Head and Neck Surgery, Medical University of South Carolina, Charleston, SC, USA
- Department of Otolaryngology-Head and Neck Surgery, University of Florida College of Medicine, Gainesville, FL
| | - Shaun A. Nguyen
- Department of Otolaryngology – Head and Neck Surgery, Medical University of South Carolina, Charleston, SC, USA
| | - Emily A. Brennan
- Department of Research & Education Services of Medical Library and Informatics, Medical University of South Carolina, Charleston, SC, USA
| | - Ted A. Meyer
- Department of Otolaryngology – Head and Neck Surgery, Medical University of South Carolina, Charleston, SC, USA
| | - Paul R. Lambert
- Department of Otolaryngology – Head and Neck Surgery, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
50
|
Filova I, Dvorakova M, Bohuslavova R, Pavlinek A, Elliott KL, Vochyanova S, Fritzsch B, Pavlinkova G. Combined Atoh1 and Neurod1 Deletion Reveals Autonomous Growth of Auditory Nerve Fibers. Mol Neurobiol 2020; 57:5307-5323. [PMID: 32880858 PMCID: PMC7547283 DOI: 10.1007/s12035-020-02092-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 08/24/2020] [Indexed: 12/24/2022]
Abstract
Ear development requires the transcription factors ATOH1 for hair cell differentiation and NEUROD1 for sensory neuron development. In addition, NEUROD1 negatively regulates Atoh1 gene expression. As we previously showed that deletion of the Neurod1 gene in the cochlea results in axon guidance defects and excessive peripheral innervation of the sensory epithelium, we hypothesized that some of the innervation defects may be a result of abnormalities in NEUROD1 and ATOH1 interactions. To characterize the interdependency of ATOH1 and NEUROD1 in inner ear development, we generated a new Atoh1/Neurod1 double null conditional deletion mutant. Through careful comparison of the effects of single Atoh1 or Neurod1 gene deletion with combined double Atoh1 and Neurod1 deletion, we demonstrate that NEUROD1-ATOH1 interactions are not important for the Neurod1 null innervation phenotype. We report that neurons lacking Neurod1 can innervate the flat epithelium without any sensory hair cells or supporting cells left after Atoh1 deletion, indicating that neurons with Neurod1 deletion do not require the presence of hair cells for axon growth. Moreover, transcriptome analysis identified genes encoding axon guidance and neurite growth molecules that are dysregulated in the Neurod1 deletion mutant. Taken together, we demonstrate that much of the projections of NEUROD1-deprived inner ear sensory neurons are regulated cell-autonomously.
Collapse
Affiliation(s)
- Iva Filova
- Institute of Biotechnology of the Czech Academy of Sciences, 25250, Vestec, Czechia
| | - Martina Dvorakova
- Institute of Biotechnology of the Czech Academy of Sciences, 25250, Vestec, Czechia
| | - Romana Bohuslavova
- Institute of Biotechnology of the Czech Academy of Sciences, 25250, Vestec, Czechia
| | - Adam Pavlinek
- Institute of Biotechnology of the Czech Academy of Sciences, 25250, Vestec, Czechia
| | - Karen L Elliott
- Department of Biology, University of Iowa, Iowa City, IA, 52242-1324, USA
| | - Simona Vochyanova
- Institute of Biotechnology of the Czech Academy of Sciences, 25250, Vestec, Czechia
| | - Bernd Fritzsch
- Department of Biology, University of Iowa, Iowa City, IA, 52242-1324, USA.
| | - Gabriela Pavlinkova
- Institute of Biotechnology of the Czech Academy of Sciences, 25250, Vestec, Czechia.
| |
Collapse
|