1
|
Borchert GA, Kiire CA, Stone NM, Akil H, Gkika T, Fischer MD, Xue K, Cehajic-Kapetanovic J, MacLaren RE, Charbel Issa P, Downes SM, De Silva SR. Real-world six-month outcomes in patients switched to faricimab following partial response to anti-VEGF therapy for neovascular age-related macular degeneration and diabetic macular oedema. Eye (Lond) 2024:10.1038/s41433-024-03364-y. [PMID: 39394370 DOI: 10.1038/s41433-024-03364-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 09/04/2024] [Accepted: 09/19/2024] [Indexed: 10/13/2024] Open
Abstract
BACKGROUND Landmark studies reported on faricimab efficacy and safety predominantly in treatment naïve patients, but outcomes following switch from other anti-VEGF therapies are lacking. We evaluated patients switched to faricimab who had previously shown a partial response to other anti-VEGF injections for neovascular age-related macular degeneration (nAMD) and diabetic macular oedema (DMO). METHODS Retrospective study at the Oxford Eye Hospital. Patients switched to faricimab from January to April 2023 with six months follow-up were identified via electronic medical records. RESULTS A total of 116 patients (151 eyes) were included. In 88 patients with nAMD (107 eyes), mean visual acuity remained stable: 62±17 ETDRS letters at baseline; 62±18 at six months (p > 0.05). Central subfield thickness (CST) reduced from 294 ± 73 μm to 270 ± 53 μm (p < 0.05) at six months. Subretinal or intraretinal fluid was present in 102 eyes (95%) at baseline and 75 eyes (70%) at follow-up (p < 0.05). Pigment epithelial detachment height decreased from 233 ± 134 μm to 188 ± 147 μm (p < 0.05). Mean treatment interval increased by 1.7 weeks (p < 0.05) and was extended in 61 eyes (57%) at six months. In 28 patients with DMO (44 eyes), visual acuity remained stable: 69 ± 15 letters at baseline; 70±15 at six months (p > 0.05). CST reduced from 355 ± 87 μm to 317 ± 82 μm (p < 0.05). Mean treatment interval increased by 1.4 weeks (p < 0.05) and was extended in 21 eyes (46%) by six months. CONCLUSIONS Switching to faricimab in treatment resistant eyes led to improved anatomical response and extended treatment interval in a significant proportion of patients. Ongoing review of real-world data will inform longer-term outcomes of safety and effectiveness.
Collapse
Affiliation(s)
- Grace A Borchert
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Oxford Eye Hospital, Oxford University NHS Foundation Trust, Oxford, UK
| | - Christine A Kiire
- Oxford Eye Hospital, Oxford University NHS Foundation Trust, Oxford, UK
| | - Niamh M Stone
- Oxford Eye Hospital, Oxford University NHS Foundation Trust, Oxford, UK
| | - Handan Akil
- Oxford Eye Hospital, Oxford University NHS Foundation Trust, Oxford, UK
| | - Theodora Gkika
- Oxford Eye Hospital, Oxford University NHS Foundation Trust, Oxford, UK
| | - M Dominik Fischer
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Oxford Eye Hospital, Oxford University NHS Foundation Trust, Oxford, UK
| | - Kanmin Xue
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Oxford Eye Hospital, Oxford University NHS Foundation Trust, Oxford, UK
| | - Jasmina Cehajic-Kapetanovic
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Oxford Eye Hospital, Oxford University NHS Foundation Trust, Oxford, UK
| | - Robert E MacLaren
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Oxford Eye Hospital, Oxford University NHS Foundation Trust, Oxford, UK
| | - Peter Charbel Issa
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Oxford Eye Hospital, Oxford University NHS Foundation Trust, Oxford, UK
- Department of Ophthalmology, Technical University Munich, Munich, Germany
| | - Susan M Downes
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Oxford Eye Hospital, Oxford University NHS Foundation Trust, Oxford, UK
| | - Samantha R De Silva
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
- Oxford Eye Hospital, Oxford University NHS Foundation Trust, Oxford, UK.
| |
Collapse
|
2
|
Sha L, Zhao Y, Li S, Wei D, Tao Y, Wang Y. Insights to Ang/Tie signaling pathway: another rosy dawn for treating retinal and choroidal vascular diseases. J Transl Med 2024; 22:898. [PMID: 39367441 PMCID: PMC11451039 DOI: 10.1186/s12967-024-05441-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 06/27/2024] [Indexed: 10/06/2024] Open
Abstract
Retinal neurovascular unit (NVU) is a multi-cellular structure that consists of the functional coupling between neural tissue and vascular system. Disrupted NVU will result in the occurrence of retinal and choroidal vascular diseases, which are characterized by the development of neovascularization, increased vascular permeability, and inflammation. This pathological entity mainly includes neovascular age-related macular degeneration (neovascular-AMD), diabetic retinopathy (DR) retinal vein occlusion (RVO), and retinopathy of prematurity (ROP). Emerging evidences suggest that the angopoietin/tyrosine kinase with immunoglobulin and epidermal growth factor homology domains (Ang/Tie) signaling pathway is essential for the development of retinal and choroidal vascular. Tie receptors and their downstream pathways play a key role in modulating the vascular development, vascular stability, remodeling and angiogenesis. Angiopoietin 1 (Ang1) is a natural agonist of Tie2 receptor, which can promote vascular stability. On the other hand, angiopoietin 2 (Ang2) is an antagonist of Tie2 receptor that causes vascular instability. Currently, agents targeting the Ang/Tie signaling pathway have been used to inhibit neovascularization and vascular leakage in neovascular-AMD and DR animal models. Particularly, the AKB-9778 and Faricimab have shown promising efficacy in improving visual acuity in patients with neovascular-AMD and DR. These experimental and clinical evidences suggest that activation of Ang/Tie signaling pathway can inhibit the vascular permeability, neovascularization, thereby maintaining the normal function and structure of NVU. This review seeks to introduce the versatile functions and elucidate the modulatory mechanisms of Ang/Tie signaling pathway. Recent pharmacologic therapies targeting this pathway are also elaborated and summarized. Further translation of these findings may afford a new therapeutic strategy from bench to bedside.
Collapse
Affiliation(s)
- Lulu Sha
- Department of Ophthalmology, Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Yameng Zhao
- Department of Ophthalmology, Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Siyu Li
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Dong Wei
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Ye Tao
- Department of Ophthalmology, Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China.
| | - Yange Wang
- Department of Ophthalmology, Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China.
| |
Collapse
|
3
|
Veritti D, Sarao V, Gonfiantini M, Rubinato L, Lanzetta P. Faricimab in Neovascular AMD Complicated by Pigment Epithelium Detachment: An AI-Assisted Evaluation of Early Morphological Changes. Ophthalmol Ther 2024; 13:2813-2824. [PMID: 39122857 PMCID: PMC11408430 DOI: 10.1007/s40123-024-01005-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 07/17/2024] [Indexed: 08/12/2024] Open
Abstract
INTRODUCTION This study investigates the early temporal changes in pigment epithelial detachment (PED) morphology following treatment with faricimab in patients with neovascular age-related macular degeneration (nAMD). Utilizing an artificial intelligence (AI)-assisted approach, we provide a detailed quantification and characterization of the dynamics of these morphological changes. METHODS A prospective observational study was conducted on 22 eyes from 22 treatment-naïve patients with nAMD-associated PED (presenting either type 1 or type 3 macular neovascularization). Participants were administered intravitreal faricimab (6 mg) at baseline and at days 30, 60, and 90. Comprehensive ophthalmic evaluations and spectral-domain optical coherence tomography (SD-OCT) imaging were conducted at baseline and at seven additional follow-up visits on days 1, 7, 14, 30, 60, 90, and 120. An AI-based automated segmentation algorithm was utilized to precisely quantify changes in PED volume, alongside intraretinal (IRF) and subretinal fluid (SRF) volumes, at each time point. RESULTS Treatment with faricimab resulted in a significant reduction in mean PED volume, with an average decrease of 12% at day 1, 29% at day 7, 51% at day 14, 68% at day 30, 72% at day 60, 79% at day 90, and 84% at day 120 (p < 0.0001 for all time points). Similarly rapid and marked reductions were noted in both mean IRF (23.5% at day 1, 90.7% at day 14) and SRF (14.4% at day 1, 91.2% at day 14) volumes. The study also showed a statistically significant improvement in best-corrected visual acuity (BCVA) over the follow-up period, correlating with the reduction in PED volume. CONCLUSION Faricimab demonstrates early and significant efficacy in improving PED architecture in patients with nAMD. The rapid morphological improvements observed in this study suggest faricimab may represent a valid therapeutic option for PEDs associated with nAMD.
Collapse
Affiliation(s)
- Daniele Veritti
- Department of Medicine-Ophthalmology, University of Udine, Udine, Italy
| | - Valentina Sarao
- Department of Medicine-Ophthalmology, University of Udine, Udine, Italy
- Istituto Europeo di Microchirurgia Oculare-IEMO, Udine and Milan, Italy
| | - Marco Gonfiantini
- Department of Medicine-Ophthalmology, University of Udine, Udine, Italy
| | - Leopoldo Rubinato
- Department of Medicine-Ophthalmology, University of Udine, Udine, Italy
| | - Paolo Lanzetta
- Department of Medicine-Ophthalmology, University of Udine, Udine, Italy.
- Istituto Europeo di Microchirurgia Oculare-IEMO, Udine and Milan, Italy.
| |
Collapse
|
4
|
Rowe LW, Ciulla TA. Long-acting delivery and therapies for neovascular age-related macular degeneration. Expert Opin Biol Ther 2024; 24:799-814. [PMID: 38953649 DOI: 10.1080/14712598.2024.2374869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 06/27/2024] [Indexed: 07/04/2024]
Abstract
INTRODUCTION Neovascular age-related macular degeneration (nAMD) represents a leading cause of severe visual impairment in individuals over 50 years of age in developed nations. Intravitreal anti-vascular endothelial growth factor (VEGF) injections have become the standard of care for treating nAMD; however, monthly or bimonthly dosing represents significant time and cost burden due to the disease's chronic nature and limited medication half-life. AREAS COVERED This review summarizes innovative therapeutics and delivery methods for nAMD. Emerging methods for extended drug delivery include high molar concentration anti-VEGF drugs, intravitreal sustained-release polymers and devices, reservoirs for intravitreal delivery, suprachoroidal delivery of small molecular suspensions and gene therapy biofactories. In addition to VEGF-A, therapies targeting inhibition of VEGF-C and D, the angiopoetin-2 (Ang-2)/Tie-2 pathway, tyrosine kinases, and integrins are reviewed. EXPERT OPINION The evolving therapeutic landscape of nAMD is rapidly expanding our toolkit for effective and durable treatment. Recent FDA approvals of faricimab (Vabysmo) and high-dose aflibercept (Eylea HD) for nAMD with potential extension of injection intervals up to four months have been promising developments for patients and providers alike. Further research and innovation, including novel delivery techniques and pharmacologic targets, is necessary to validate the efficacy of developing therapeutics and characterize real-world outcomes, demonstrating promise in expanding treatment durability.
Collapse
Affiliation(s)
- Lucas W Rowe
- Department of Ophthalmology, Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Thomas A Ciulla
- Department of Ophthalmology, Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Retina Service, Midwest Eye Institute, Indianapolis, IN, USA
| |
Collapse
|
5
|
Al-Ostoot FH, Salah S, Khanum SA. An Overview of Cancer Biology, Pathophysiological Development and It's Treatment Modalities: Current Challenges of Cancer anti-Angiogenic Therapy. Cancer Invest 2024; 42:559-604. [PMID: 38874308 DOI: 10.1080/07357907.2024.2361295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 11/22/2021] [Accepted: 05/25/2024] [Indexed: 06/15/2024]
Abstract
A number of conditions and factors can cause the transformation of normal cells in the body into malignant tissue by changing the normal functions of a wide range of regulatory, apoptotic, and signal transduction pathways. Despite the current deficiency in fully understanding the mechanism of cancer action accurately and clearly, numerous genes and proteins that are causally involved in the initiation, progression, and metastasis of cancer have been identified. But due to the lack of space and the abundance of details on this complex topic, we have emphasized here more recent advances in our understanding of the principles implied tumor cell transformation, development, invasion, angiogenesis, and metastasis. Inhibition of angiogenesis is a significant strategy for the treatment of various solid tumors, that essentially depend on cutting or at least limiting the supply of blood to micro-regions of tumors, leading to pan-hypoxia and pan-necrosis inside solid tumor tissues. Researchers have continued to enhance the efficiency of anti-angiogenic drugs over the past two decades, to identify their potential in the drug interaction, and to discover reasonable interpretations for possible resistance to treatment. In this review, we have discussed an overview of cancer history and recent methods use in cancer therapy, focusing on anti-angiogenic inhibitors targeting angiogenesis formation. Further, this review has explained the molecular mechanism of action of these anti-angiogenic inhibitors in various tumor types and their limitations use. In addition, we described the synergistic mechanisms of immunotherapy and anti-angiogenic therapy and summarizes current clinical trials of these combinations. Many phase III trials found that combining immunotherapy and anti-angiogenic therapy improved survival. Therefore, targeting the source supply of cancer cells to grow and spread with new anti-angiogenic agents in combination with different conventional therapy is a novel method to reduce cancer progression. The aim of this paper is to overview the varying concepts of cancer focusing on mechanisms involved in tumor angiogenesis and provide an overview of the recent trends in anti-angiogenic strategies for cancer therapy.
Collapse
Affiliation(s)
- Fares Hezam Al-Ostoot
- Department of Chemistry, Yuvaraja's College, University of Mysore, Mysuru, India
- Department of Biochemistry, Faculty of Education & Science, Albaydha University, Al-Baydha, Yemen
| | - Salma Salah
- Faculty of Medicine and Health Sciences, Thamar University, Dhamar, Yemen
| | - Shaukath Ara Khanum
- Department of Chemistry, Yuvaraja's College, University of Mysore, Mysuru, India
| |
Collapse
|
6
|
Cheng S, Zhang S, Huang M, Liu Y, Zou X, Chen X, Zhang Z. Treatment of neovascular age-related macular degeneration with anti-vascular endothelial growth factor drugs: progress from mechanisms to clinical applications. Front Med (Lausanne) 2024; 11:1411278. [PMID: 39099595 PMCID: PMC11294244 DOI: 10.3389/fmed.2024.1411278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/08/2024] [Indexed: 08/06/2024] Open
Abstract
Neovascular age-related macular degeneration (nARMD) is an important cause of visual impairment and blindness in the elderly, with choroidal neovascularization in the macula as the main pathological feature. The onset of nARMD is closely related to factors including age, oxidative stress, and lipid metabolism. Vascular endothelial growth factor (VEGF) is an important factor contributing to nARMD as well as choroidal neovascularization and retinal leakage formation. At present, anti-VEGF therapy is the only treatment that improves vision and halts disease progression in most patients, making anti-VEGF drugs a landmark development for nARMD treatment. Although intravitreal injection of anti-VEGF drugs has become the first-line treatment for nARMD, this treatment has many shortcomings including repeated injections, poor or no response in some patients, and complications such as retinal fibrosis. As a result, several new anti-VEGF drugs are being developed. This review provides a discussion of these new anti-VEGF drugs for the treatment of nARMD.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiaoming Chen
- Department of Ophthalmology, The First Affiliated Hospital of Yangtze University, Jingzhou, China
| | - Zuhai Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Yangtze University, Jingzhou, China
| |
Collapse
|
7
|
Chen X, Wang X, Li X. Intra-Ocular Inflammation and Occlusive Retinal Vasculitis Following Intravitreal Injections of Faricimab: A Case Report. Ocul Immunol Inflamm 2024:1-4. [PMID: 38856728 DOI: 10.1080/09273948.2024.2361834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/27/2024] [Indexed: 06/11/2024]
Abstract
PURPOSE Faricimab is a bispecific antibody that inhibits angiopoietin-2 and vascular endothelial growth factor-A action and has been approved for the treatment of neovascular age-related macular degeneration and diabetic macular edema. Clinical trials have demonstrated its favorable safety profile. This report presents a case of intra-ocular inflammation and occlusive retinal vasculitis following a second intravitreal injection of faricimab. METHODS A single case report was obtained from a tertiary referral center. RESULTS A 73-year-old Asian man diagnosed with polypoidal choroidal vasculopathy presented with decreased vision in the left eye (OS) 2 weeks after the second faricimab administration. In the fourth week after the second faricimab injection, swept-source optical coherence tomography (OCT) revealed hyperreflective dots in the vitreous cavity, indicating vitreous cells. Color fundus photography showed new-onset perivenular hemorrhages and pallor of the inferonasal retina OS, of which OCT revealed retinal inner layer thickening, suggestive of retinal arteriolar occlusions. Retinal fluorescein angiography revealed delayed filling of the inferior temporal vein. The patient was diagnosed with intraocular inflammation and occlusive retinal vasculitis OS associated with repeated intravitreal faricimab administrations. Intravitreal dexamethasone implant was used instead of faricimab at this visit. CONCLUSIONS The findings of this case hint towards the potential risk of retinal occlusive events associated with intravitreal faricimab injections.
Collapse
Affiliation(s)
- Xiuju Chen
- Retina Department, Xiamen Eye Center, Xiamen University, Xiamen, China
| | - Xiaobo Wang
- Retina Department, Xiamen Eye Center, Xiamen University, Xiamen, China
| | - Xiaoxin Li
- Retina Department, Xiamen Eye Center, Xiamen University, Xiamen, China
| |
Collapse
|
8
|
Wu J, Wang H, Wang N, Wang Z, Zhu Q. TIE2 expression in hypertensive ICH and its therapeutic modulation with AKB-9778: Implications for brain vascular health. Exp Neurol 2024; 374:114685. [PMID: 38195021 DOI: 10.1016/j.expneurol.2024.114685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/27/2023] [Accepted: 01/05/2024] [Indexed: 01/11/2024]
Abstract
Hypertensive intracerebral hemorrhage (ICH) is a devastating condition, the molecular underpinnings of which remain not fully understood. By leveraging high-throughput transcriptome sequencing and network pharmacology analysis, this study unveils the significant role of the tyrosine kinase with immunoglobulin-like and EGF-like domains 2 (TIE2) in ICH pathogenesis. Compared to controls, a conspicuous downregulation of TIE2 was observed in the cerebral blood vessels of hypertensive ICH mice. In vitro assays with human brain microvascular endothelial cells (HBMEC), HBEC-5i revealed that modulation of TIE2 expression significantly influences cellular proliferation, migration, and angiogenesis, mediated via the Rap1/MEK/ERK signaling pathway. Notably, the small molecule AKB-9778 was identified to target and activate TIE2, affecting the functional attributes of HBEC-5i. In vivo experiments further demonstrated that combining AKB-9778 with antihypertensive drugs could mitigate the incidence and volume of bleeding in hypertensive ICH mouse models, suggesting potential therapeutic implications.
Collapse
Affiliation(s)
- Jingkun Wu
- Department of Neurosurgery, Affiliated Hospital of Hebei Engineering University, Handan 056002, PR China
| | - Hongbin Wang
- Department of Neurosurgery, Affiliated Hospital of Hebei Engineering University, Handan 056002, PR China
| | - Naizhu Wang
- Department of Neurosurgery, Affiliated Hospital of Hebei Engineering University, Handan 056002, PR China
| | - Zai Wang
- Science and Education Division, Affiliated Hospital of Hebei Engineering University, Handan 056002, PR China
| | - Qinghua Zhu
- Department of Neurosurgery, Affiliated Hospital of Hebei Engineering University, Handan 056002, PR China.
| |
Collapse
|
9
|
Aljundi W, Daas L, Suffo S, Seitz B, Abdin AD. First-Year Real-Life Experience with Intravitreal Faricimab for Refractory Neovascular Age-Related Macular Degeneration. Pharmaceutics 2024; 16:470. [PMID: 38675131 PMCID: PMC11053849 DOI: 10.3390/pharmaceutics16040470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Background: To evaluate the outcomes of intravitreal faricimab (IVF) for refractory neovascular age-related macular degeneration (nAMD) and investigate the impact of baseline optical coherence tomography, biomarkers for total IVF injections are needed. Methods: A retrospective analysis of 33 eyes of patients who completed one year (52 W) of treatment with IVF. The eyes received four IVF injections (6 mg/0.05 mL) as the upload phase. Thereafter, the treatment interval was extended to 8 or 12 weeks if disease activity was not recorded. The outcome measures included best-corrected visual acuity (BCVA), central macular thickness (CMT), subfoveal choroidal thickness (SFCT), and retinal fluid distribution. Results: A total of 33 eyes were included. CMT decreased significantly at 52 W (p < 0.01). BCVA and SFCT did not change significantly at 52 W (p > 0.05). The number of eyes with subretinal fluid decreased significantly at 52 W (p < 0.01). Complete fluid resolution was achieved in 20 eyes (60%). The total number of injections was significantly negatively correlated with the presence of hyperreflective dots at baseline (HRDs, p < 0.01) and SFCT at baseline (p < 0.01). Conclusions: IVF led to a significant reduction in CMT with stabilization of BCVA. The total number of injections was lower in eyes with HRDs and increased SFCT at baseline. This might provide clues regarding response to IVF for future studies.
Collapse
Affiliation(s)
- Wissam Aljundi
- Department of Ophthalmology, Saarland University Medical Center UKS, 66421 Homburg/Saar, Germany; (L.D.); (S.S.); (B.S.); (A.D.A.)
| | | | | | | | | |
Collapse
|
10
|
Zhang Y, Xu M, He H, Ren S, Chen X, Zhang Y, An J, Ren X, Zhang X, Zhang M, Liu Z, Li X. Proteomic analysis of aqueous humor reveals novel regulators of diabetic macular edema. Exp Eye Res 2024; 239:109724. [PMID: 37981180 DOI: 10.1016/j.exer.2023.109724] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/19/2023] [Accepted: 11/07/2023] [Indexed: 11/21/2023]
Abstract
Diabetic macular edema (DME) is the most common cause of blindness in patients with diabetic retinopathy. To investigate the proteomic profiles of the aqueous humor (AH) of individuals with diabetic macular edema (DME), AH samples were collected from patients with non-diabetes mellitus (NDM), DM, nonproliferative diabetic retinopathy (NPDR), and DME. We performed comparative proteomic analyses using liquid chromatography-tandem mass spectrometry (LC-MS/MS) and bioinformatics analyses. We identified 425 proteins in these AH samples, of which 113 showed changes in expression in DME compared with NDM, 95 showed changes in expression in DME vs. DM, and 84 showed changes in expression in DME compared with NPDR. The bioinformatics analysis suggested that DME is closely associated with platelet degranulation, oxidative stress-related pathway, and vascular-related pathways. Upregulation of haptoglobin (HP) and downregulation of fibrillin 1 (FBN1) were validated by ELISA. Receiver operating characteristic (ROC) analysis showed that HP and FBN1 could distinguish DME from NPDR with areas under the curve of 0.987 (p = 0.00608) and 0.791 (p = 0.00629), respectively. The findings provide potential clues for further analysis of the molecular mechanisms and the development of new treatments for DME. HP and FBN1 may be potential key proteins and therapeutic targets in human DME. The proteomics dataset generated has been deposited to the ProteomeXchange/iProX Consortium with Identifier: PXD033404/IPX0004353001.
Collapse
Affiliation(s)
- Yue Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China; Hebei Provincial Key Laboratory of Ophthalmology, Hebei Provincial Eye Institute, Hebei Provincial Eye Hospital, Xiangtai, Hebei, China
| | - Manhong Xu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Hongbo He
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Shaojie Ren
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Xin Chen
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Yan Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Jinying An
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Xinjun Ren
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Xiaomin Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Minglian Zhang
- Hebei Provincial Key Laboratory of Ophthalmology, Hebei Provincial Eye Institute, Hebei Provincial Eye Hospital, Xiangtai, Hebei, China
| | - Zhiqiang Liu
- Hebei Provincial Key Laboratory of Ophthalmology, Hebei Provincial Eye Institute, Hebei Provincial Eye Hospital, Xiangtai, Hebei, China.
| | - Xiaorong Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China.
| |
Collapse
|
11
|
Yang P, Yang Q, Yang Y, Tian Q, Zheng Z. miR-221-3p targets Ang-2 to inhibit the transformation of HCMECs to tip cells. J Cell Mol Med 2023; 27:3247-3258. [PMID: 37525394 PMCID: PMC10623524 DOI: 10.1111/jcmm.17892] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 07/20/2023] [Accepted: 07/22/2023] [Indexed: 08/02/2023] Open
Abstract
Postembryonic angiogenesis is mainly induced by various proangiogenic factors derived from the original vascular network. Previous studies have shown that the role of Ang-2 in angiogenesis is controversial. Tip cells play a vanguard role in angiogenesis and exhibit a transdifferentiated phenotype under the action of angiogenic factors. However, whether Ang-2 promotes the transformation of endothelial cells to tip cells remains unknown. Our study found that miR-221-3p was highly expressed in HCMECs cultured for 4 h under hypoxic conditions (1% O2 ). Moreover, miR-221-3p overexpression inhibited HCMECs proliferation and tube formation, which may play an important role in hypoxia-induced angiogenesis. By target gene prediction, we further demonstrated that Ang-2 was a downstream target of miR-221-3p and miR-221-3p overexpression inhibited Ang-2 expression in HCMECs under hypoxic conditions. Subsequently, qRT-PCR and western blotting methods were performed to analyse the role of miR-221-3p and Ang-2 on the regulation of tip cell marker genes. MiR-221-3p overexpression inhibited CD34, IGF1R, IGF-2 and VEGFR2 proteins expression while Ang-2 overexpression induced CD34, IGF1R, IGF-2 and VEGFR2 expression in HCMECs under hypoxic conditions. In addition, we further confirmed that Ang-2 played a dominant role in miR-221-3p inhibitors promoting the transformation of HCMECs to tip cells by using Ang-2 shRNA to interfere with miR-221-3p inhibitor-treated HCMECs under hypoxic conditions. Finally, we found that miR-221-3p expression was significantly elevated in both serum and myocardial tissue of AMI rats. Hence, our data showed that miR-221-3p may inhibit angiogenesis after acute myocardial infarction by targeting Ang-2 to inhibit the transformation of HCMECs to tip cells.
Collapse
Affiliation(s)
- Peng Yang
- Department of CardiologyThe First Affiliated Hospital of Nanchang UniversityNanchangChina
- Department of CardiologyGaoxin Branch of The First Affiliated Hospital of Nanchang universityNanchangChina
| | - Qing Yang
- Department of CardiologyThe First Affiliated Hospital of Nanchang UniversityNanchangChina
- Department of CardiologyGaoxin Branch of The First Affiliated Hospital of Nanchang universityNanchangChina
| | - Yiheng Yang
- Department of CardiologyThe First Affiliated Hospital of Nanchang UniversityNanchangChina
- Department of CardiologyGaoxin Branch of The First Affiliated Hospital of Nanchang universityNanchangChina
| | - Qingshan Tian
- Department of CardiologyThe First Affiliated Hospital of Nanchang UniversityNanchangChina
- Department of CardiologyGaoxin Branch of The First Affiliated Hospital of Nanchang universityNanchangChina
| | - Zhenzhong Zheng
- Department of CardiologyThe First Affiliated Hospital of Nanchang UniversityNanchangChina
- Department of CardiologyGaoxin Branch of The First Affiliated Hospital of Nanchang universityNanchangChina
- Jiangxi Hypertension Research InstituteNanchangChina
| |
Collapse
|
12
|
Yu P, Wang Y, Yuan D, Sun Y, Qin S, Li T. Vascular normalization: reshaping the tumor microenvironment and augmenting antitumor immunity for ovarian cancer. Front Immunol 2023; 14:1276694. [PMID: 37936692 PMCID: PMC10626545 DOI: 10.3389/fimmu.2023.1276694] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/09/2023] [Indexed: 11/09/2023] Open
Abstract
Ovarian cancer remains a challenging disease with limited treatment options and poor prognosis. The tumor microenvironment (TME) plays a crucial role in tumor growth, progression, and therapy response. One characteristic feature of the TME is the abnormal tumor vasculature, which is associated with inadequate blood perfusion, hypoxia, and immune evasion. Vascular normalization, a therapeutic strategy aiming to rectify the abnormal tumor vasculature, has emerged as a promising approach to reshape the TME, enhance antitumor immunity, and synergize with immunotherapy in ovarian cancer. This review paper provides a comprehensive overview of vascular normalization and its potential implications in ovarian cancer. In this review, we summarize the intricate interplay between anti-angiogenesis and immune modulation, as well as ICI combined with anti-angiogenesis therapy in ovarian cancer. The compelling evidence discussed in this review contributes to the growing body of knowledge supporting the utilization of combination therapy as a promising treatment paradigm for ovarian cancer, paving the way for further clinical development and optimization of this therapeutic approach.
Collapse
Affiliation(s)
- Ping Yu
- Sanquan College of Xinxiang Medical University, Xinxiang, China
| | - Yaru Wang
- Sanquan College of Xinxiang Medical University, Xinxiang, China
| | - Dahai Yuan
- Sanquan College of Xinxiang Medical University, Xinxiang, China
| | - Yunqin Sun
- Sanquan College of Xinxiang Medical University, Xinxiang, China
| | - Shuang Qin
- Department of Radiation Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tianye Li
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
13
|
Boddu SH, Acharya D, Hala V, Jani H, Pande S, Patel C, Shahwan M, Jwala R, Ranch KM. An Update on Strategies to Deliver Protein and Peptide Drugs to the Eye. ACS OMEGA 2023; 8:35470-35498. [PMID: 37810716 PMCID: PMC10552503 DOI: 10.1021/acsomega.3c02897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 09/08/2023] [Indexed: 10/10/2023]
Abstract
In the past few decades, advancements in protein engineering, biotechnology, and structural biochemistry have resulted in the discovery of various techniques that enhanced the production yield of proteins, targetability, circulating half-life, product purity, and functionality of proteins and peptides. As a result, the utilization of proteins and peptides has increased in the treatment of many conditions, including ocular diseases. Ocular delivery of large molecules poses several challenges due to their high molecular weight, hydrophilicity, unstable nature, and poor permeation through cellular and enzymatic barriers. The use of novel strategies for delivering protein and peptides such as glycoengineering, PEGylation, Fc-fusion, chitosan nanoparticles, and liposomes have improved the efficacy, safety, and stability, which consequently expanded the therapeutic potential of proteins. This review article highlights various proteins and peptides that are useful in ocular disorders, challenges in their delivery to the eye, and strategies to enhance ocular bioavailability using novel delivery approaches. In addition, a few futuristic approaches that will assist in the ocular delivery of proteins and peptides were also discussed.
Collapse
Affiliation(s)
- Sai H.
S. Boddu
- College
of Pharmacy and Health Sciences, Ajman University, Ajman P.O. Box 346, United Arab Emirates
- Center
of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Devarshi Acharya
- Department
of Pharmaceutics, L. M. College of Pharmacy, Ahmedabad, Gujarat 380009, India
| | - Vivek Hala
- Department
of Pharmaceutics, L. M. College of Pharmacy, Ahmedabad, Gujarat 380009, India
| | - Harshil Jani
- Department
of Pharmaceutics, L. M. College of Pharmacy, Ahmedabad, Gujarat 380009, India
- Gujarat
Technological University, Ahmedabad, Gujarat 382424, India
| | - Sonal Pande
- Gujarat
Technological University, Ahmedabad, Gujarat 382424, India
- Department
of Pharmacology, L. M. College of Pharmacy, Ahmedabad, Gujarat 380009, India
| | - Chirag Patel
- Department
of Pharmacology, L. M. College of Pharmacy, Ahmedabad, Gujarat 380009, India
| | - Moyad Shahwan
- College
of Pharmacy and Health Sciences, Ajman University, Ajman P.O. Box 346, United Arab Emirates
- Center
of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Renukuntla Jwala
- School
of
Pharmacy, The University of Texas at El
Paso, 1101 N Campbell
St., El Paso, Texas 79902, United States
- Department
of Basic Pharmaceutical Sciences, Fred Wilson School of Pharmacy, High Point University, High Point, North Carolina, 27240, United States
| | - Ketan M. Ranch
- Department
of Pharmaceutics, L. M. College of Pharmacy, Ahmedabad, Gujarat 380009, India
| |
Collapse
|
14
|
Stanga PE, Valentín-Bravo FJ, Stanga SEF, Reinstein UI, Pastor-Idoate S, Downes SM. Faricimab in neovascular AMD: first report of real-world outcomes in an independent retina clinic. Eye (Lond) 2023; 37:3282-3289. [PMID: 36959312 PMCID: PMC10564726 DOI: 10.1038/s41433-023-02505-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/28/2023] [Accepted: 03/08/2023] [Indexed: 03/25/2023] Open
Abstract
PURPOSE Assess short-term real-world outcomes in neovascular aged-related macular degeneration (nAMD) treated with novel faricimab. METHODS Retrospective case series of nine patients with nAMD (11 eyes) treated with faricimab between May and November 2022. Treatment-naïve patients and non-naïve patients underwent logMAR best corrected visual acuity (BCVA), optical coherence tomography (OCT) DRI OCT-1 Triton (Topcon Corp, Tokyo, Japan), ultra-widefield (UWF) and fundus autofluorescence (FAF) (California Optomap, Optos plc, Dunfermline, Scotland, UK). Previous treatment intervals, number of intravitreal injections, sub/intra retinal fluid (SRF/IRF), central retinal thickness (CRT) and presence/changes in pigment epithelial detachments (PEDs) were recorded. RESULTS Mean baseline BCVA and CRT values of patients who switched from other agents were 0.612 ± 0.75 logMAR and 256.16 ± 12.98 µm respectively, with a mean 36-day previous treatment interval. The median number of other previous anti-VEGF intravitreal injections was 8. Mean BCVA at one month significantly improved to 0.387 ± 0.54 logMAR, as well as CRT values which decreased to 245.43 ± 15.34 µm. In the 3 naïve patients, mean baseline BVCA and CRT values were 0.33 ± 0.29 and 874.67 ± 510.86 µm, respectively. At one month follow-up, mean BCVA improved to 0.30 ± 0.29 logMAR and mean CRT was 536.04 ± 36.15 µm. Overall, a significant improvement in BCVA of 0.21 ± 41 logMAR and 238.44 ± 114.9 µm was achieved at one month after the first faricimab intravitreal injection. In addition, a complete resolution of SRF was observed in 6 out of 8 eyes (75%) and of IRF in 2 out of 3 eyes (66.67%), respectively. Drusenoid PED morphology changes were observed in all patients and no drug-related adverse events were observed. CONCLUSION Real-world outcomes showed improvement in BCVA and anatomic parameters at an early timepoint, demonstrating the efficacy and durability of faricimab in nAMD patients. Larger numbers of patients and longer follow-up are needed to determine whether the loading dose is required in all, what percentage of patients experience an improvement, and whether improvement it is maintained.
Collapse
Affiliation(s)
- Paulo Eduardo Stanga
- The Retina Clinic London, 140 Harley Street, London, W1G 7LB, UK.
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL, UK.
| | | | | | | | | | - Susan M Downes
- The Retina Clinic London, 140 Harley Street, London, W1G 7LB, UK
| |
Collapse
|
15
|
Muns SM, Villegas VM, Flynn HW, Schwartz SG. Update on current pharmacologic therapies for diabetic retinopathy. Expert Opin Pharmacother 2023; 24:1577-1593. [PMID: 37431888 DOI: 10.1080/14656566.2023.2230139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/16/2023] [Accepted: 06/23/2023] [Indexed: 07/12/2023]
Abstract
INTRODUCTION Diabetic retinopathy is a major cause of visual loss worldwide. The most important clinical findings include diabetic macular edema (DME) and proliferative diabetic retinopathy (PDR). AREAS COVERED PubMed was used for our literature review. Articles from 1995 to 2023 were included. Pharmacologic treatment of diabetic retinopathy generally involves the use of intravitreal anti-vascular endothelial growth factor (VEGF) therapy for DME and PDR. Corticosteroids remain important second-line therapies for patients with DME. Most emerging therapies focus on newly identified inflammatory mediators and biochemical signaling pathways involved in disease pathogenesis. EXPERT OPINION Emerging anti-VEGF modalities, integrin antagonists, and anti-inflammatory agents have the potential to improve outcomes with reduced treatment burdens.
Collapse
Affiliation(s)
- Sofía M Muns
- Department of Ophthalmology, University of Puerto Rico, San Juan, Puerto Rico
| | - Victor M Villegas
- Department of Ophthalmology, University of Puerto Rico, San Juan, Puerto Rico
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Harry W Flynn
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Stephen G Schwartz
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
16
|
Rush RB. One Year Results of Faricimab for Aflibercept-Resistant Diabetic Macular Edema. Clin Ophthalmol 2023; 17:2397-2403. [PMID: 37605765 PMCID: PMC10440101 DOI: 10.2147/opth.s424314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 08/09/2023] [Indexed: 08/23/2023] Open
Abstract
Purpose To assess the 12 month outcomes of intravitreal faricimab (IVF) in treatment-resistant diabetic macular edema (DME) recalcitrant to intravitreal aflibercept (IVA). Methods This study was undertaken as a retrospective interventional case series of DME subjects receiving care at a single private practice facility. Subjects at baseline had undergone ≥8 IVA injections over the previous 12 months, ≥4 IVA injections over the previous 6 months, had an optical coherence tomography (OCT)-measured central macular thickness (CMT) of ≥320 microns, and had observable edema on OCT. The baseline visit for this study's purpose was considered the examination in which the subject was changed from IVA to IVF. Subjects were managed with a treat-and-extend (TAE) protocol and followed over 12 months from baseline. Results A total of 51 eyes of 51 subjects were analyzed. There were 39.2% (20/51) of patients who reached a treatment interval of ≥8 weeks and had a fluid-free macula on OCT at 12 months. The CMT on OCT of the patient population reduced from 400.2 (385.3-415.3) microns at baseline to 340.6 (324.3-356.9) microns at 12 months (p<0.01). There were 21.6% (11/51) of patients who improved ≥3 lines of Snellen visual acuity at 12 months. The visual acuity of the overall study population improved from 0.60 (0.54-0.66) logMAR (Snellen 20/80) at baseline to 0.47 (0.41-0.53) logMAR (Snellen 20/59) at 12 months (p<0.01). Conclusion A longer treatment interval and improved functional and anatomical outcomes at 12 months may be attained in a clinically significant minority of aflibercept-resistant DME patients after changing to IVF when a TAE protocol is employed. Specialists may consider IVF whenever resistance to IVA is experienced in this patient population.
Collapse
Affiliation(s)
- Ryan B Rush
- Panhandle Eye Group, Amarillo, TX, USA
- Southwest Retina Specialists, Amarillo, TX, USA
- Department of Surgery, Texas Tech University Health Science Center, Amarillo, TX, USA
| |
Collapse
|
17
|
Yao H, Xu H, Wu M, Lei W, Li L, Liu D, Wang Z, Ran H, Ma H, Zhou X. Targeted long-term noninvasive treatment of choroidal neovascularization by biodegradable nanoparticles. Acta Biomater 2023; 166:536-551. [PMID: 37196903 DOI: 10.1016/j.actbio.2023.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 04/24/2023] [Accepted: 05/10/2023] [Indexed: 05/19/2023]
Abstract
Choroidal neovascularization (CNV) is the main cause of vision loss in patients with wet age-related macular degeneration (AMD). Currently, treatment of these conditions requires repeated intravitreal injections, which may lead to complications such as infection and hemorrhage. So, we have developed a noninvasive method for treating CNV with nanoparticles, namely, Angiopoietin1-anti CD105-PLGA nanoparticles (AAP NPs), which targets the CNV to enhance drug accumulation at the site. These nanoparticles, with PLGA as a carrier, can slowly release encapsulated Angiopoietin 1 (Ang 1) and target the choroidal neovascularization marker CD105 to enhance drug accumulation, increases vascular endothelial cadherin (VE-cadherin) expression between vascular endothelial cells, effectively reduce neovascularization leakage and inhibit Angiopoietin 2(Ang 2) secretion by endothelial cells. In a rat model of laser-induced CNV, intravenous injection of AAP NPs exerted a good therapeutic effect in reducing CNV leakage and area. In short, these synthetic AAP NPs provide an effective alternative treatment for AMD and meet the urgent need for noninvasive treatment in neovascular ophthalmopathy. STATEMENT OF SIGNIFICANCE: This work describes the synthesis, injection-mediated delivery, in vitro and in vivo efficacy of targeted nanoparticles with encapsulated Ang1; via these nanoparticles, the drug can be targeted to choroidal neovascularization lesions for continuous treatment. The release of Ang1 can effectively reduce neovascularization leakage, maintain vascular stability, and inhibit Ang2 secretion and inflammation. This study provides a new approach for the treatment of wet age-related macular degeneration.
Collapse
Affiliation(s)
- Hao Yao
- Department of Ophthalmology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400012, China; Chongqing Key Laboratory of Ophthalmology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Huan Xu
- Chongqing Key Laboratory of Ophthalmology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Mingxing Wu
- Department of Ophthalmology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400012, China
| | - Wulong Lei
- Chongqing Key Laboratory of Ophthalmology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Lanjiao Li
- Department of Ophthalmology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400012, China; Chongqing Key Laboratory of Ophthalmology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Danning Liu
- Department of Ophthalmology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400012, China
| | - Zhigang Wang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Haitao Ran
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Huafeng Ma
- Department of Ophthalmology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400012, China.
| | - Xiyuan Zhou
- Department of Ophthalmology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400012, China; Chongqing Key Laboratory of Ophthalmology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China.
| |
Collapse
|
18
|
Veritti D, Sarao V, Di Bin F, Lanzetta P. Pharmacokinetic and Pharmacodynamic Rationale for Extending VEGF Inhibition Increasing Intravitreal Aflibercept Dose. Pharmaceutics 2023; 15:pharmaceutics15051416. [PMID: 37242658 DOI: 10.3390/pharmaceutics15051416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/01/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND The effects of various dosages and treatment regimens on intravitreal aflibercept concentrations and the proportion of free vascular endothelial growth factor (VEGF) to total VEGF were evaluated using a drug and disease assessment model. The 8 mg dosage received specific attention. METHODS A time-dependent mathematical model was developed and implemented using Wolfram Mathematica software v12.0. This model was used to obtain drug concentrations after multiple doses of different aflibercept dosages (0.5 mg, 2 mg, and 8 mg) and to estimate the time-dependent intravitreal free VEGF percentage levels. A series of fixed treatment regimens were modeled and evaluated as potential clinical applications. RESULTS The simulation results indicate that 8 mg aflibercept administered at a range of treatment intervals (between 12 and 15 weeks) would allow for the proportion of free VEGF to remain below threshold levels. Our analysis indicates that these protocols maintain the ratio of free VEGF below 0.001%. CONCLUSIONS Fixed q12-q15 (every 12-15 weeks) 8 mg aflibercept regimens can produce adequate intravitreal VEGF inhibition.
Collapse
Affiliation(s)
- Daniele Veritti
- Department of Medicine-Ophthalmology, University of Udine, 33100 Udine, Italy
| | - Valentina Sarao
- Department of Medicine-Ophthalmology, University of Udine, 33100 Udine, Italy
- Istituto Europeo di Microchirurgia Oculare (IEMO), 33100 Udine, Italy
| | - Francesco Di Bin
- Department of Medicine-Ophthalmology, University of Udine, 33100 Udine, Italy
| | - Paolo Lanzetta
- Department of Medicine-Ophthalmology, University of Udine, 33100 Udine, Italy
- Istituto Europeo di Microchirurgia Oculare (IEMO), 33100 Udine, Italy
| |
Collapse
|
19
|
Li M, Popovic Z, Chu C, Reichetzeder C, Pommer W, Krämer BK, Hocher B. Impact of Angiopoietin-2 on Kidney Diseases. KIDNEY DISEASES (BASEL, SWITZERLAND) 2023; 9:0. [PMID: 38306230 PMCID: PMC10826602 DOI: 10.1159/000529774] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 02/14/2023] [Indexed: 02/04/2024]
Abstract
Background Angiopoietins (Ang) are essential angiogenic factors involved in angiogenesis, vascular maturation, and inflammation. The most studied angiopoietins, angiopoietin-1 (Ang-1) and angiopoietin-2 (Ang-2), behave antagonistically to each other in vivo to sustain vascular endothelium homeostasis. While Ang-1 typically acts as the endothelium-protective mediator, its context-dependent antagonist Ang-2 can promote endothelium permeability and vascular destabilization, hence contributing to a poor outcome in vascular diseases via endothelial injury, vascular dysfunction, and microinflammation. The pathogenesis of kidney diseases is associated with endothelial dysfunction and chronic inflammation in renal diseases. Summary Several preclinical studies report overexpression of Ang-2 in renal tissues of certain kidney disease models; additionally, clinical studies show increased levels of circulating Ang-2 in the course of chronic kidney disease, implying that Ang-2 may serve as a useful biomarker in these patients. However, the exact mechanisms of Ang-2 action in renal diseases remain unclear. Key Messages We summarized the recent findings on Ang-2 in kidney diseases, including preclinical studies and clinical studies, aiming to provide a systematic understanding of the role of Ang-2 in these diseases.
Collapse
Affiliation(s)
- Mei Li
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Zoran Popovic
- Institute of Pathology, University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Chang Chu
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany
- Department of Nephrology, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | | | - Wolfgang Pommer
- Charité University Hospital Department of Nephrology and Internal Intensive Care Medicine, Berlin, Germany
| | - Bernhard K. Krämer
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany
- European Center for Angioscience, Medical Faculty Mannheim of the University of Heidelberg, Mannheim, Germany
- Center for Innate Immunoscience, Medical Faculty Mannheim of the University of Heidelberg, Mannheim, Germany
| | - Berthold Hocher
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
- Institute of Medical Diagnostics, IMD Berlin, Berlin, Germany
| |
Collapse
|
20
|
McCann M, Li Y, Baccouche B, Kazlauskas A. VEGF Induces Expression of Genes That Either Promote or Limit Relaxation of the Retinal Endothelial Barrier. Int J Mol Sci 2023; 24:6402. [PMID: 37047375 PMCID: PMC10094353 DOI: 10.3390/ijms24076402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/21/2023] [Accepted: 03/26/2023] [Indexed: 03/31/2023] Open
Abstract
The purpose of this study was to identify genes that mediate VEGF-induced permeability. We performed RNA-Seq analysis on primary human retinal endothelial cells (HRECs) cultured in normal (5 mM) and high glucose (30 mM) conditions that were treated with vehicle, VEGF, or VEGF then anti-VEGF. We filtered our RNA-Seq dataset to identify genes with the following four characteristics: (1) regulated by VEGF, (2) VEGF regulation reversed by anti-VEGF, (3) regulated by VEGF in both normal and high glucose conditions, and (4) known contribution to vascular homeostasis. Of the resultant 18 genes, members of the Notch signaling pathway and ANGPT2 (Ang2) were selected for further study. Permeability assays revealed that while the Notch pathway was dispensable for relaxing the barrier, it contributed to maintaining an open barrier. In contrast, Ang2 limited the extent of barrier relaxation in response to VEGF. These findings indicate that VEGF engages distinct sets of genes to induce and sustain barrier relaxation. Furthermore, VEGF induces expression of genes that limit the extent of barrier relaxation. Together, these observations begin to elucidate the elegance of VEGF-mediated transcriptional regulation of permeability.
Collapse
Affiliation(s)
- Maximilian McCann
- Department of Ophthalmology & Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Yueru Li
- Department of Ophthalmology & Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Basma Baccouche
- Department of Ophthalmology & Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Andrius Kazlauskas
- Department of Ophthalmology & Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Physiology & Biophysics, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
21
|
Zhang C, Shang X, Yuan Y, Li Y. Platelet‑related parameters as potential biomarkers for the prognosis of sepsis. Exp Ther Med 2023; 25:133. [PMID: 36845958 PMCID: PMC9947577 DOI: 10.3892/etm.2023.11832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 01/11/2023] [Indexed: 02/12/2023] Open
Abstract
Early diagnosis and accurate prognosis are key for reducing the fatality rate and medical expenses associated with sepsis. Platelets are involved in the delayed tissue injury that occurs during sepsis. Therefore, the aim of the present study was to investigate the usefulness of platelets and associated parameters as prognostic markers of sepsis. The present study collected patient samples based on The Third International Consensus Definitions for Sepsis and Septic Shock criteria. Platelet-associated parameters were detected by flow cytometry and their correlation with clinical scores and prognoses was analyzed. Considering the association between endothelial cells and platelet activation, levels of plasma tumor necrosis factor-like weak inducer of apoptosis (TWEAK) and angiopoietin-2 (Ang-2) were analyzed by ELISA. The results showed significant differences in platelet P-selectin expression and phosphatidylserine exposure, mitochondrial membrane potential (Mmp)-Index values and plasma levels of TWEAK and Ang-2 between patients and healthy controls (P<0.05). Except for P-selectin and TWEAK levels, all parameters were correlated with clinical scores (acute physiology and chronic health evaluation II and sequential/sepsis-related organ failure assessment). Additionally, platelet Mmp-Index between admission and the end of therapy was only different in non-survivors (P<0.001) and platelet phosphatidylserine exposure was significantly lower in survivors (P=0.006). Therefore, of the parameters tested, the dynamic monitoring of phosphatidylserine exposure, platelet Mmp-Index values and plasma Ang-2 levels had the most potential for the assessment of disease severity and clinical outcomes.
Collapse
Affiliation(s)
- Chao Zhang
- Hebei Key Laboratory of Nerve Injury and Repair, Institute of Basic Medicine, Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Xueyi Shang
- Department of Critical Care Medicine, The Fifth Medical Center, Chinese People's Liberation Army General Hospital, Beijing 100071, P.R. China
| | - Yuan Yuan
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, P.R. China,Correspondence to: Dr Yuan Yuan, State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, 20 Dongdajie Street, Fengtai, Beijing 100071, P.R. China
| | - Yan Li
- Department of Critical Care Medicine, The Fifth Medical Center, Chinese People's Liberation Army General Hospital, Beijing 100071, P.R. China,Respiratory Department, Hebei Hua'Ao Hospital, Zhangjiakou, Hebei 075000, P.R. China,Correspondence to: Dr Yuan Yuan, State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, 20 Dongdajie Street, Fengtai, Beijing 100071, P.R. China
| |
Collapse
|
22
|
Wang L, Chen Q, Pang J. The effects and mechanisms of ghrelin upon angiogenesis in human coronary artery endothelial cells under hypoxia. Peptides 2023; 160:170921. [PMID: 36496009 DOI: 10.1016/j.peptides.2022.170921] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 12/01/2022] [Accepted: 12/06/2022] [Indexed: 12/12/2022]
Abstract
Ghrelin, an endogenous ligand of the growth hormone secretagogue receptor (GHSR), has been found to stimulate angiogenesis both in vivo and in vitro. However, the effect of ghrelin upon angiogenesis, and the corresponding mechanisms of ghrelin therein, in human coronary artery endothelial cells (HCAECs) under hypoxia is still unknown. Our study found that ghrelin significantly increased HCAECs proliferation, migration, in vitro angiogenesis, and microvessel sprouting from the aortic ring under hypoxic conditions. The ghrelin-induced angiogenic process was accompanied by vascular endothelial growth factor (VEGF), angiopoietin-1 (Ang-1), angiopoietin-2 (Ang-2) and endothelial-specific receptor tyrosine kinase (Tie2) expressions. In addition, this angiogenic effect was almost completely inhibited by Ang-2 RNAi and Tie2 RNAi. Pretreatment with the GHSR1a blocker [D-Lys3]-GHRP-6 abolished ghrelin-induced VEGF, Ang-1, Ang-2 and Tie2 expressions and in vitro angiogenesis. In conclusion, this is the first demonstration that ghrelin stimulates HCAECs in vitro angiogenesis through GHSR1a-mediated VEGF, Ang-1, Ang-2 and Tie2 pathways under hypoxic conditions. It indicated that ghrelin might play an important role in myocardial angiogenesis after ischemic injury.
Collapse
Affiliation(s)
- Li Wang
- Department of Geriatrics, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.
| | - Qingwei Chen
- Department of Geriatrics, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Jun Pang
- Department of Geriatrics, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| |
Collapse
|
23
|
Ricci A, Gallorini M, Feghali N, Sampò S, Cataldi A, Zara S. Snail Slime Extracted by a Cruelty Free Method Preserves Viability and Controls Inflammation Occurrence: A Focus on Fibroblasts. Molecules 2023; 28:molecules28031222. [PMID: 36770889 PMCID: PMC9920497 DOI: 10.3390/molecules28031222] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/18/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023] Open
Abstract
Snail slime (SS) is a viscous secretion obtained from different snail species. SS composition is variable according to factors such as the extraction method. Even if several papers have been published regarding this topic, the molecular mechanisms at the base of SS biological effects remain unexplored. Thus, the aim of this study is to evaluate the capability of SS, extracted with the cruelty-free Muller method, to promote viability and angiogenesis processes and, in parallel, to counteract inflammation occurrence on skin cell populations. SS was administered to keratinocytes, macrophages and fibroblasts, then cell viability, through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test, cytotoxicity by lactate dehydrogenase (LDH) assay, morphology by haematoxylin-eosin staining, gene and protein expression through real-time polymerase chain reaction (PCR) and Western blot, cell cycle phases by flow cytometry, and collagen secretion using an enzyme-linked immunosorbent assay (ELISA) test, were measured. Our results evidence SS capability to promote fibroblast viability and to trigger recovery mechanisms by activating the Erk protein. Moreover, an appreciable anti-inflammatory effect due to the significant reduction in cyclooxygenase-2 expression, and a positive modulation of new blood vessel formation demonstrated by increased Angiopoietin 1 gene expression and a higher matrix deposition (evidenced by the augmented amount of released collagen I) can be identified. This evidence led us to assume that the Muller method extracted-SS represents a valuable and promising natural product suitable for cosmetic and skin care formulations.
Collapse
Affiliation(s)
- Alessia Ricci
- Department of Pharmacy, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Marialucia Gallorini
- Department of Pharmacy, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Nadine Feghali
- International Institution of Heliciculture of Cherasco-Lumacheria Italiana s.r.l., 12062 Cherasco, Italy
| | - Simone Sampò
- International Institution of Heliciculture of Cherasco-Lumacheria Italiana s.r.l., 12062 Cherasco, Italy
| | - Amelia Cataldi
- Department of Pharmacy, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Susi Zara
- Department of Pharmacy, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
- Correspondence: ; Tel.: +39-0871-3554507
| |
Collapse
|
24
|
Targeting protein phosphatases in cancer immunotherapy and autoimmune disorders. Nat Rev Drug Discov 2023; 22:273-294. [PMID: 36693907 PMCID: PMC9872771 DOI: 10.1038/s41573-022-00618-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2022] [Indexed: 01/25/2023]
Abstract
Protein phosphatases act as key regulators of multiple important cellular processes and are attractive therapeutic targets for various diseases. Although extensive effort has been dedicated to phosphatase-targeted drug discovery, early expeditions for competitive phosphatase inhibitors were plagued by druggability issues, leading to the stigmatization of phosphatases as difficult targets. Despite challenges, persistent efforts have led to the identification of several drug-like, non-competitive modulators of some of these enzymes - including SH2 domain-containing protein tyrosine phosphatase 2, protein tyrosine phosphatase 1B, vascular endothelial protein tyrosine phosphatase and protein phosphatase 1 - reigniting interest in therapeutic targeting of phosphatases. Here, we discuss recent progress in phosphatase drug discovery, with emphasis on the development of selective modulators that exhibit biological activity. The roles and regulation of protein phosphatases in immune cells and their potential as powerful targets for immuno-oncology and autoimmunity indications are assessed.
Collapse
|
25
|
Rush RB, Rush SW. Intravitreal Faricimab for Aflibercept-Resistant Neovascular Age-Related Macular Degeneration. Clin Ophthalmol 2022; 16:4041-4046. [PMID: 36532820 PMCID: PMC9747838 DOI: 10.2147/opth.s395279] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/30/2022] [Indexed: 08/03/2023] Open
Abstract
PURPOSE To evaluate the short-term effects of intravitreal faricimab (IVF) in treatment-resistant neovascular age-related macular degeneration (nAMD) subjects previously treated with intravitreal aflibercept (IVA). METHODS A retrospective review was conducted on nAMD patients undergoing IVA therapy at a single private practice institution. Subjects were divided into Study and Control groups. Both Study and Control subjects had undergone ≥6 IVA treatments during the previous 12 months, ≥4 IVA treatments during the previous 6 months, had a central macular thickness (CMT) on optical coherence tomography (OCT) of ≥300 microns, and had observable intraretinal and/or subretinal fluid on OCT prior to group assignment. Study subjects were switched from IVA to IVF and received 3 treatments within 4 months. Control subjects remained on IVA during the same time period and received 3 treatments within 4 months. RESULTS There were a total of 55 subjects analyzed. There were 39.3% (11/28) in the Study Group and 7.4% (2/27) in the Control Group attaining a CMT of less than 300 microns without retinal fluid on OCT at the end of the 4-month study period (p = 0.004). There were 35.7% (10/28) in the Study Group and 7.4% (2/27) in the Control Group gaining 2 or more lines of visual acuity at the end of the 4-month study period (p = 0.008). CONCLUSION IVF can improve the visual and anatomic outcomes in a significant minority of treatment-resistant nAMD subjects previously managed with IVA. A greater follow-up period is needed to determine if such improvements can be maintained.
Collapse
Affiliation(s)
- Ryan B Rush
- Panhandle Eye Group, Amarillo, TX, USA
- Department of Surgery, Texas Tech University Health Science Center, Amarillo, TX, USA
- Southwest Retina Specialists, Amarillo, TX, USA
| | - Sloan W Rush
- Panhandle Eye Group, Amarillo, TX, USA
- Department of Surgery, Texas Tech University Health Science Center, Amarillo, TX, USA
| |
Collapse
|
26
|
Collazos-Alemán JD, Gnecco-González S, Jaramillo-Zarama B, Jiménez-Mora MA, Mendivil CO. The Role of Angiopoietins in Neovascular Diabetes-Related Retinal Diseases. Diabetes Ther 2022; 13:1811-1821. [PMID: 36331711 PMCID: PMC9663771 DOI: 10.1007/s13300-022-01326-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022] Open
Abstract
Diabetic retinopathy is a devastating and frequent complication of poorly controlled diabetes, whose pathogenesis is still only partially understood. Advances in basic research over the last two decades have led to the discovery of angiopoietins, proteins that strongly influence the growth and integrity of blood vessels in many vascular beds, with particular importance in the retina. Angiopoietin 1 (Ang1), produced mostly by pericytes and platelets, and angiopoietin 2 (Ang2), produced mainly by endothelial cells, bind to the same receptor (Tie2), but exert opposing effects on target cells. Ang1 maintains the stability of the mature vasculature, while Ang2 promotes vessel wall destabilization and disruption of the connections between endothelial cells and pericytes. Human retinal endothelial cells exposed to Ang2 show reduced membrane expression of the adhesion molecule VE-cadherin, and patients with proliferative diabetic retinopathy or diabetic macular edema have markedly increased vitreal concentrations of Ang2. Faricimab, a bi-specific antibody simultaneously directed against Ang2 and VEGF, has shown promising results in clinical trials among patients with diabetic retinopathy, and other agents targeting the angiopoietin system are currently in development.
Collapse
Affiliation(s)
| | - Sofía Gnecco-González
- School of Medicine, Universidad de los Andes, Carrera 7 No 116-05, Of 413, Bogotá, Colombia
| | | | - Mario A Jiménez-Mora
- Department of Ophthalmology, Faculty of Medicine, National University of Colombia, Bogotá, Colombia
| | - Carlos O Mendivil
- School of Medicine, Universidad de los Andes, Carrera 7 No 116-05, Of 413, Bogotá, Colombia.
- Section of Endocrinology, Fundación Santa Fe de Bogotá, Bogotá, Colombia.
| |
Collapse
|
27
|
Kovacova A. Faricimab for treatment of diabetic macular oedema. PRACTICAL DIABETES 2022. [DOI: 10.1002/pdi.2423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Adriana Kovacova
- Dr Adriana Kovacova, Consultant Ophthalmologist, St Helens and Knowsley Teaching Hospitals NHS Trust, Liverpool, UK
| |
Collapse
|
28
|
Diabetic Macular Edema: Current Understanding, Molecular Mechanisms and Therapeutic Implications. Cells 2022; 11:cells11213362. [PMID: 36359761 PMCID: PMC9655436 DOI: 10.3390/cells11213362] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 11/24/2022] Open
Abstract
Diabetic retinopathy (DR), with increasing incidence, is the major cause of vision loss and blindness worldwide in working-age adults. Diabetic macular edema (DME) remains the main cause of vision impairment in diabetic patients, with its pathogenesis still not completely elucidated. Vascular endothelial growth factor (VEGF) plays a pivotal role in the pathogenesis of DR and DME. Currently, intravitreal injection of anti-VEGF agents remains as the first-line therapy in DME treatment due to the superior anatomic and functional outcomes. However, some patients do not respond satisfactorily to anti-VEGF injections. More than 30% patients still exist with persistent DME even after regular intravitreal injection for at least 4 injections within 24 weeks, suggesting other pathogenic factors, beyond VEGF, might contribute to the pathogenesis of DME. Recent advances showed nearly all the retinal cells are involved in DR and DME, including breakdown of blood-retinal barrier (BRB), drainage dysfunction of Müller glia and retinal pigment epithelium (RPE), involvement of inflammation, oxidative stress, and neurodegeneration, all complicating the pathogenesis of DME. The profound understanding of the changes in proteomics and metabolomics helps improve the elucidation of the pathogenesis of DR and DME and leads to the identification of novel targets, biomarkers and potential therapeutic strategies for DME treatment. The present review aimed to summarize the current understanding of DME, the involved molecular mechanisms, and the changes in proteomics and metabolomics, thus to propose the potential therapeutic recommendations for personalized treatment of DME.
Collapse
|
29
|
Kang J, Sun T, Zhang Y. Immunotherapeutic progress and application of bispecific antibody in cancer. Front Immunol 2022; 13:1020003. [PMID: 36341333 PMCID: PMC9630604 DOI: 10.3389/fimmu.2022.1020003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/05/2022] [Indexed: 08/19/2023] Open
Abstract
Bispecific antibodies (bsAbs) are artificial antibodies with two distinct antigen-binding sites that can bind to different antigens or different epitopes on the same antigen. Based on a variety of technology platforms currently developed, bsAbs can exhibit different formats and mechanisms of action. The upgrading of antibody technology has promoted the development of bsAbs, which has been effectively used in the treatment of tumors. So far, 7 bsAbs have been approved for marketing in the world, and more than 200 bsAbs are in clinical and preclinical research stages. Here, we summarize the development process of bsAbs, application in tumor treatment and look forward to the challenges in future development.
Collapse
Affiliation(s)
- Jingyue Kang
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Tonglin Sun
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Division of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yan Zhang
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Division of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
30
|
Nair AA, Finn AP, Sternberg Jr P. Spotlight on Faricimab in the Treatment of Wet Age-Related Macular Degeneration: Design, Development and Place in Therapy. Drug Des Devel Ther 2022; 16:3395-3400. [PMID: 36199631 PMCID: PMC9529225 DOI: 10.2147/dddt.s368963] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/15/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Archana A Nair
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Avni P Finn
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Paul Sternberg Jr
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, USA
- Correspondence: Paul Sternberg Jr, Chair and G. W. Hale Professor of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, 2311 Pierce Avenue, Nashville, TN, 37232, USA, Email
| |
Collapse
|
31
|
MYBL1 induces transcriptional activation of ANGPT2 to promote tumor angiogenesis and confer sorafenib resistance in human hepatocellular carcinoma. Cell Death Dis 2022; 13:727. [PMID: 35987690 PMCID: PMC9392790 DOI: 10.1038/s41419-022-05180-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 02/06/2023]
Abstract
Angiogenesis is considered as an important process in tumor growth, metastasis of hepatocellular carcinoma (HCC) and associated with cancer progression, suggesting that an important research and development field of clinical molecular targeted drugs for HCC. However, the molecular mechanisms underlying tumor angiogenesis in HCC remains elusive. In the current study, we demonstrate that upregulation of AMYB proto-oncogene-like 1 (MYBL1) was associated with high endothelial vessel (EV) density and contributed to poor prognosis of HCC patient. Functionally, MYBL1 overexpressing enhanced the capacity of HCC cells to induce tube formation, migration of HUVECs, neovascularization in CAMs, finally, enhanced HCC cells metastasis, while silencing MYBL1 had the converse effect. Furthermore, HCC cells with high MYBL1 expression were more resistance to sorafenib treatment. We observed that CD31 staining was significantly increased in tumors formed by MYBL1-overexpressing cells but decreased in MYBL1-silenced tumors. Mechanistically, MYBL1 binds to the ANGPT2 promoter and transcriptionally upregulate ANGPT2 mRNA expression. Strikingly, treatment with monoclonal antibody against ANGPT2 significantly inhibited the growth of MYBL1-overexpressing tumors and efficiently impaired angiogenesis. Furthermore, the histone post-translational factors: protein arginine methyltransferase 5 (PRMT5), MEP50, and WDR5 were required for MYBL1-mediated ANGPT2 upregulation. Importantly, we confirmed the correlation between MYBL1 and ANGPT2 expression in a large cohort of clinical HCC samples and several published datasets in pancreatic cancer, esophageal carcinoma, stomach adenocarcinoma, and colon cancer. Our results demonstrate that MYBL1 upregulated the ANGPT2 expression, then induced angiogenesis and confer sorafenib resistance to HCC cells, and MYBL1 may represent a novel prognostic biomarker and therapeutic target for patients with HCC.
Collapse
|
32
|
Liberski S, Wichrowska M, Kocięcki J. Aflibercept versus Faricimab in the Treatment of Neovascular Age-Related Macular Degeneration and Diabetic Macular Edema: A Review. Int J Mol Sci 2022; 23:9424. [PMID: 36012690 PMCID: PMC9409486 DOI: 10.3390/ijms23169424] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 12/02/2022] Open
Abstract
Diabetic macular edema (DME) and neovascular age-related macular degeneration (nAMD) are common retinal vascular diseases responsible for most blindness in the working-age and older population in developed countries. Currently, anti-VEGF agents that block VEGF family ligands, including ranibizumab, bevacizumab (off-label use), brolucizumab, and aflibercept, are the first-line treatment for nAMD and DME. However, due to the complex pathophysiological background of nAMD and DME, non-response, resistance during anti-VEGF therapy, and relapses of the disease are still observed. Moreover, frequent injections are a psychological and economic burden for patients, leading to inadequate adhesion to therapy and a higher risk of complications. Therefore, therapeutic methods are strongly needed to develop and improve, allowing for more satisfactory disease management and lower treatment burden. Currently, the Ang/Tie-2 pathway is a promising therapeutic target for retinal vascular diseases. Faricimab is the first bispecific monoclonal antibody for intravitreal use that can neutralize VEGF and Ang-2. Due to the prolonged activity, faricimab allows extending the interval between successive injections up to three or four months in nAMD and DME patients, which can be a significant benefit for patients and an alternative to implanted drug delivery systems.
Collapse
Affiliation(s)
- Sławomir Liberski
- Department of Ophthalmology, Poznan University of Medical Sciences, ul. Augustyna Szamarzewskiego 84, 61-848 Poznan, Poland
| | - Małgorzata Wichrowska
- Department of Ophthalmology, Poznan University of Medical Sciences, ul. Augustyna Szamarzewskiego 84, 61-848 Poznan, Poland
- Doctoral School, Poznan University of Medical Sciences, ul. Bukowska 70, 60-812 Poznan, Poland
| | - Jarosław Kocięcki
- Department of Ophthalmology, Poznan University of Medical Sciences, ul. Augustyna Szamarzewskiego 84, 61-848 Poznan, Poland
| |
Collapse
|
33
|
Rush RB, Rush SW. Faricimab for Treatment-Resistant Diabetic Macular Edema. Clin Ophthalmol 2022; 16:2797-2801. [PMID: 36042912 PMCID: PMC9420435 DOI: 10.2147/opth.s381503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/10/2022] [Indexed: 11/26/2022] Open
Abstract
Purpose To assess the short-term outcomes in treatment-resistant diabetic macular edema (DME) patients changed from intravitreal aflibercept (IVA) to intravitreal faricimab (IVF). Methods A retrospective review was undertaken on DME subjects receiving IVA therapy at a single private practice. Patients were separated into study and control cohorts. Both study and control patients had received more than or equal to six IVA injections during the preceding 12 months, more than or equal to four IVA injections during the preceding 6 months, had a central macular thickness (CMT) on optical coherence tomography (OCT) of ≥300 µm, and had retinal fluid on OCT before cohort assignment. Study patients were switched to IVF and underwent three injections within 4 months, whereas control patients stayed on IVA during the same period and received three injections within 4 months. Results There were 51 patients analyzed. There were 37.5% (9/24) in the study group and 3.7% (1/27) in the control group who achieved a CMT of less than 300 µm without retinal fluid on OCT at the end of the 4-month study (p=0.001). There were 41.7% (10/24) in the study group and 11.1% (3/27) in the control group who had gained two or more lines of visual acuity at the end of the 4-month study (p=0.01). Conclusion For a significant minority, IVF can improve the short-term visual and anatomic outcomes in treatment-resistant DME patients formerly managed with IVA. Longer follow-up is needed to determine if such improvements can be preserved.
Collapse
Affiliation(s)
- Ryan B Rush
- Panhandle Eye Group, Amarillo, TX, USA
- Department of Surgery, Texas Tech University Health Science Center, Amarillo, TX, USA
- Southwest Retina Specialists, Amarillo, TX, USA
- Correspondence: Ryan B Rush, Southwest Retina Specialists, 7411 Wallace Blvd, Amarillo, TX, 79106, USA, Tel +1 806 351-1870, Email
| | - Sloan W Rush
- Panhandle Eye Group, Amarillo, TX, USA
- Department of Surgery, Texas Tech University Health Science Center, Amarillo, TX, USA
| |
Collapse
|
34
|
Svikle Z, Peterfelde B, Sjakste N, Baumane K, Verkauskiene R, Jeng CJ, Sokolovska J. Ubiquitin-proteasome system in diabetic retinopathy. PeerJ 2022; 10:e13715. [PMID: 35873915 PMCID: PMC9306563 DOI: 10.7717/peerj.13715] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 06/21/2022] [Indexed: 01/22/2023] Open
Abstract
Diabetic retinopathy (DR) is the most common complication of diabetes, being the most prevalent reason for blindness among the working-age population in the developed world. Despite constant improvement of understanding of the pathogenesis of DR, identification of novel biomarkers of DR is needed for improvement of patient risk stratification and development of novel prevention and therapeutic approaches. The ubiquitin-proteasome system (UPS) is the primary protein quality control system responsible for recognizing and degrading of damaged proteins. This review aims to summarize literature data on modifications of UPS in diabetes and DR. First, we briefly review the structure and functions of UPS in physiological conditions. We then describe how UPS is involved in the development and progression of diabetes and touch upon the association of UPS genetic factors with diabetes and its complications. Further, we focused on the effect of diabetes-induced hyperglycemia, oxidative stress and hypoxia on UPS functioning, with examples of studies on DR. In other sections, we discussed the association of several other mechanisms of DR (endoplasmic reticulum stress, neurodegeneration etc) with UPS modifications. Finally, UPS-affecting drugs and remedies are reviewed. This review highlights UPS as a promising target for the development of therapies for DR prevention and treatment and identifies gaps in existing knowledge and possible future study directions.
Collapse
Affiliation(s)
- Zane Svikle
- Faculty of Medicine, University of Latvia, Riga, Latvia
| | - Beate Peterfelde
- Faculty of Medicine, University of Latvia, Riga, Latvia,Ophthalmology Department, Riga East University Hospital, Riga, Latvia
| | | | - Kristine Baumane
- Faculty of Medicine, University of Latvia, Riga, Latvia,Ophthalmology Department, Riga East University Hospital, Riga, Latvia
| | - Rasa Verkauskiene
- Institute of Endocrinology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Chi-Juei Jeng
- Ophthalmology Department, Taipei Medical University Shuang Ho Hospital, Ministry of Health and Welfare, Taipei, The Republic of China (Taiwan),College of Medicine, Graduate Institute of Clinical Medicine, National Taiwan University, Taipei, Taiwan
| | | |
Collapse
|
35
|
Wang R, Yang M, Jiang L, Huang M. Role of Angiopoietin-Tie axis in vascular and lymphatic systems and therapeutic interventions. Pharmacol Res 2022; 182:106331. [PMID: 35772646 DOI: 10.1016/j.phrs.2022.106331] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/11/2022] [Accepted: 06/24/2022] [Indexed: 12/29/2022]
Abstract
The Angiopoietin (Ang)-Tyrosine kinase with immunoglobulin-like and EGF-like domains (Tie) axis is an endothelial cell-specific ligand-receptor signaling pathway necessary for vascular and lymphatic development. The Ang-Tie axis is involved in regulating angiogenesis, vascular remodeling, vascular permeability, and inflammation to maintain vascular quiescence. Disruptions in the Ang-Tie axis are involved in many vascular and lymphatic system diseases and play an important role in physiological and pathological vascular conditions. Given recent advances in the Ang-Tie axis in the vascular and lymphatic systems, this review focuses on the multiple functions of the Ang-Tie axis in inflammation-induced vascular permeability, vascular remodeling, atherosclerosis, ocular angiogenesis, tumor angiogenesis, and metastasis. A summary of relevant therapeutic approaches to the Ang-Tie axis, including therapeutic antibodies, recombinant proteins and small molecule drugs are also discussed. The purpose of this review is to provide new hypotheses and identify potential therapeutic strategies based on the Ang-Tie signaling axis for the treatment of vascular and lymphatic-related diseases.
Collapse
Affiliation(s)
- Rui Wang
- College of Chemistry, Fuzhou University, Fuzhou 350116, Fujian, China
| | - Moua Yang
- Division of Hemostasis & Thrombosis, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston MA02215, United States
| | - Longguang Jiang
- College of Chemistry, Fuzhou University, Fuzhou 350116, Fujian, China.
| | - Mingdong Huang
- College of Chemistry, Fuzhou University, Fuzhou 350116, Fujian, China.
| |
Collapse
|
36
|
Yang J, Liu Z. Mechanistic Pathogenesis of Endothelial Dysfunction in Diabetic Nephropathy and Retinopathy. Front Endocrinol (Lausanne) 2022; 13:816400. [PMID: 35692405 PMCID: PMC9174994 DOI: 10.3389/fendo.2022.816400] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/28/2022] [Indexed: 12/15/2022] Open
Abstract
Diabetic nephropathy (DN) and diabetic retinopathy (DR) are microvascular complications of diabetes. Microvascular endothelial cells are thought to be the major targets of hyperglycemic injury. In diabetic microvasculature, the intracellular hyperglycemia causes damages to the vascular endothelium, via multiple pathophysiological process consist of inflammation, endothelial cell crosstalk with podocytes/pericytes and exosomes. In addition, DN and DR diseases development are involved in several critical regulators including the cell adhesion molecules (CAMs), the vascular endothelial growth factor (VEGF) family and the Notch signal. The present review attempts to gain a deeper understanding of the pathogenesis complexities underlying the endothelial dysfunction in diabetes diabetic and retinopathy, contributing to the development of new mechanistic therapeutic strategies against diabetes-induced microvascular endothelial dysfunction.
Collapse
Affiliation(s)
- Jing Yang
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center For Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Zhangsuo Liu
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center For Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
37
|
Fursova AZ, Derbeneva AS, Vasilyeva MS, Niculich IF, Tarasov MS, Gamza YA, Chubar NV, Gusarevich OG, Dmitrieva EI, Kozhevnikova OS, Kolosova NG, Elizarova AA. [New findings on pathogenetic mechanisms in the development of age-related macular degeneration]. Vestn Oftalmol 2022; 138:120-130. [PMID: 35488571 DOI: 10.17116/oftalma2022138021120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Age-related macular degeneration (AMD) is a complex multifactorial disease that occurs due to disfunction and degeneration of retinal pigment epithelium (RPE) and choriocapillaris, as well as death of photoreceptors. The exact pathogenetic mechanism remains uncertain. The aging process is the main and the clearest risk factor of AMD. In the development of this condition, a special role belongs to the secretory phenotype of aging spreading from one cell to another and mediated by the secretion and release of growth factors, cytokines, chemokines, proteases, and other molecules. Another major contributor is oxidative stress caused by violations in the recirculation of vitamin A in the vision cycle and accompanied by accumulation of lipofuscin, which mediates the formation of iron-based oxidants that are toxic for mitochondria. Furthermore, prolonged oxidative stress and constant light exposure induce the development of inflammation in the retina. Accumulation of metabolic products and cellular defects with age can induce an inflammatory reaction that amplifies the damage. The inflammatory processes including innate immune response, activation of microglia and parainflammation that occur locally in the vascular membrane, pigment epithelium and neuroretina are very significant contributors to the age-related changes, their progression, and the development of advanced stages of AMD. Various growth factors play a special role in the development of choroidal neovascularization (CNV). Vascular endothelial growth factor A (VEGF-A) has traditionally been considered the main factor of neoangiogenesis and, consequently, the main therapeutic target, but in recent years various studies have determined the role of other factors - VEGF-B, C, D, PGF, Gal-1, angiopoietins. This article describes the main underlying mechanisms in the development of choroidal neovascularization including retinal aging, impaired metabolic activity, mitochondrial dysfunction, inflammatory reactions and genetic variations, as well as the role of various growth factors.
Collapse
Affiliation(s)
- A Zh Fursova
- Novosibirsk State Medical University, Novosibirsk, Russia.,Novosibirsk State Regional Clinical Hospital, Novosibirsk, Russia.,Federal Research Center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - A S Derbeneva
- Novosibirsk State Medical University, Novosibirsk, Russia.,Novosibirsk State Regional Clinical Hospital, Novosibirsk, Russia.,Federal Research Center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - M S Vasilyeva
- Novosibirsk State Regional Clinical Hospital, Novosibirsk, Russia
| | - I F Niculich
- Novosibirsk State Medical University, Novosibirsk, Russia.,Novosibirsk State Regional Clinical Hospital, Novosibirsk, Russia
| | - M S Tarasov
- Novosibirsk State Medical University, Novosibirsk, Russia.,Novosibirsk State Regional Clinical Hospital, Novosibirsk, Russia.,Federal Research Center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Yu A Gamza
- Novosibirsk State Medical University, Novosibirsk, Russia.,Novosibirsk State Regional Clinical Hospital, Novosibirsk, Russia
| | - N V Chubar
- Novosibirsk State Medical University, Novosibirsk, Russia.,Novosibirsk State Regional Clinical Hospital, Novosibirsk, Russia
| | - O G Gusarevich
- Novosibirsk State Medical University, Novosibirsk, Russia
| | - E I Dmitrieva
- Novosibirsk State Medical University, Novosibirsk, Russia
| | - O S Kozhevnikova
- Federal Research Center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - N G Kolosova
- Federal Research Center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - A A Elizarova
- Novosibirsk State Medical University, Novosibirsk, Russia
| |
Collapse
|
38
|
Stern HD, Hussain RM. KSI-301: an investigational anti-VEGF biopolymer conjugate for retinal diseases. Expert Opin Investig Drugs 2022; 31:443-449. [PMID: 35285359 DOI: 10.1080/13543784.2022.2052042] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION KSI-301 is an intravitreal anti-vascular endothelial growth factor (VEGF) agent in clinical trials for the treatment of neovascular age-related macular degeneration (nAMD), diabetic retinopathy, diabetic macular edema (DME), and retinal vein occlusion (RVO). Its antibody-biopolymer conjugate structure is designed to decrease clearance from the eye and increase the duration of the effect. AREAS COVERED This article briefly discusses the impact and mechanisms of nAMD, DME, and RVO and evaluates currently approved anti-VEGF therapies. It progresses to examine a new agent, KSI-301 and the results from numerous clinical trials in these disease areas. EXPERT OPINION Despite varied results in the phase 2b/3 study for nAMD, there is potential for KSI-301 to serve as a durable therapy for VEGF-mediated retinal disorders. Ongoing phase 3 trials for nAMD, DME, and RVO will provide additional evidence on its efficacy, duration, and safety profiles.
Collapse
Affiliation(s)
- Hudson D Stern
- Retina Associates Ltd, IL, Elmhurst, USA.,Division of Ophthalmology, Chicago, Cook County Health, IL, United States
| | | |
Collapse
|
39
|
Zaytseva OV, Neroeva NV, Okhotsimskaya TD, Bobykin EV. [Current view on the issue of insufficient effectiveness of anti-VEGF therapy for age-related macular degeneration]. Vestn Oftalmol 2022; 138:90-99. [PMID: 35234427 DOI: 10.17116/oftalma202213801190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Due to the significant medical and social importance of neovascular (wet) age-related macular degeneration (wAMD), increasing the effectiveness of anti-VEGF therapy used to treat this disease is one of the high-priority problems in modern retinology. This article focuses on pathobiological aspects and clinical manifestations of incomplete responses to anti-VEGF therapy of wAMD, considers the proposed ways to improve the terminology and classification of responses to therapy, as well as the assessment of its correctness and effectiveness of the treatment. It also discusses the available ways to optimize anti-VEGF therapy and define the criteria of its termination in cases when the treatment proves to be futile.
Collapse
Affiliation(s)
- O V Zaytseva
- Helmholtz National Medical Research Center of Eye Diseases, Moscow, Russia.,A.I. Evdokimov Moscow State University of Medicine and Dentistry, Moscow, Russia
| | - N V Neroeva
- Helmholtz National Medical Research Center of Eye Diseases, Moscow, Russia
| | - T D Okhotsimskaya
- Helmholtz National Medical Research Center of Eye Diseases, Moscow, Russia
| | - E V Bobykin
- Ural State Medical University, Yekaterinburg, Russia
| |
Collapse
|
40
|
Ferro Desideri L, Traverso CE, Nicolò M. The emerging role of the angiopoietin-Tie pathway as therapeutic target for treating retinal diseases. Expert Opin Ther Targets 2022; 26:145-154. [DOI: 10.1080/14728222.2022.2036121] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | - Carlo Enrico Traverso
- University Eye Clinic of Genoa, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Italy
| | - Massimo Nicolò
- University Eye Clinic of Genoa, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Italy
- Macula Onlus Foundation, Genoa, Italy
| |
Collapse
|
41
|
Sultan H, Rajagopal R, Rao PK, Piggott KD, Paley MA, Hassman LM, Li AS, Marshall B, Apte RS. Vitreous microparticles contain apoptotic signals suggesting a diabetic vitreopathy. Int J Ophthalmol 2022; 15:89-97. [PMID: 35047362 DOI: 10.18240/ijo.2022.01.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 09/03/2021] [Indexed: 11/23/2022] Open
Abstract
AIM To evaluate differences in microparticle profiles in vitreous samples between diabetic and non-diabetic eyes undergoing vitrectomy. METHODS Un-masked cross-sectional series of 34 eyes undergoing vitrectomy. Vitreous specimens were collected and processed to evaluate for membrane integrity (DAPI), apoptosis (Annexin-V), and endothelial-cell origin (V-Cadherin). A BD LSR II flow cytometer was used for analysis and standardized sub-micron-sized beads were used for size comparison. RESULTS Thirty-four specimens underwent analysis. Greater levels of Annexin-V were found on microparticles from specimens in which blood had entered the vitreous (n=12) compared to those without blood (n=22; 52.3%±30.7% vs 19.6%±27.2%, P=0.002). Patients with diabetes having surgery with hemorrhage (n=7) had greater expression of Annexin-V than those without hemorrhage (n=8; 62.1%±31.7% vs 18.9%±20.9%, P=0.009). However, in patients with non-diabetic vitreous hemorrhage, the level of Annexin-V expression was not significantly different compared to other disease processes (38.6%±25.7%, n=5 vs 20.0%±30.9%, n=14, P=0.087). CONCLUSION Increased expression of the apoptotic marker, Annexin-V is detected on vitreous microparticles in diabetes-related vitreous hemorrhage. When evaluating vitreous hemorrhage in patients without diabetes, the apoptotic signal is not significantly different. Vitrectomy in patients with diabetes, and improvement in visual outcomes, may be related to the removal of a serum-derived, pro-apoptotic vitreous. Further investigation is warranted in order to identify the molecular characteristics of microparticles that regulate disease.
Collapse
Affiliation(s)
- Harris Sultan
- John Hardesty Department of Ophthalmology, Washington University, St. Louis, MO 63110, USA
| | - Rithwick Rajagopal
- John Hardesty Department of Ophthalmology, Washington University, St. Louis, MO 63110, USA
| | - Prabakar Kumar Rao
- John Hardesty Department of Ophthalmology, Washington University, St. Louis, MO 63110, USA
| | - Kisha Deslee Piggott
- John Hardesty Department of Ophthalmology, Washington University, St. Louis, MO 63110, USA
| | - Michael A Paley
- Department of Medicine, Division of Rheumatology, Washington University, St. Louis, MO 63110, USA
| | - Lynn Marisa Hassman
- John Hardesty Department of Ophthalmology, Washington University, St. Louis, MO 63110, USA
| | - Albert S Li
- Department of Ophthalmology and Visual Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Brigid Marshall
- John Hardesty Department of Ophthalmology, Washington University, St. Louis, MO 63110, USA
| | - Rajendra Shridhar Apte
- John Hardesty Department of Ophthalmology, Washington University, St. Louis, MO 63110, USA
| |
Collapse
|
42
|
Emerging Treatment Modalities for Neovascular Age-Related Macular Degeneration: A Systematic Overview. Adv Ther 2022; 39:5-32. [PMID: 34724151 DOI: 10.1007/s12325-021-01949-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/06/2021] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Neovascular age-related macular degeneration (nAMD) represents a leading cause of irreversible visual loss affecting the quality of life of millions of elderly patients worldwide. Although the introduction of intravitreal injections with anti-vascular endothelial growth factors (anti-VEGF) agents has revolutionized the management of nAMD, their effectiveness and ultimate success are limited by several therapeutic challenges. Consequently, real-world efficacy appears significantly inferior to that reported by randomized controlled trials. Therefore, further innovative, long-term treatment options are essential to improve the prognosis and outcome of nAMD therapy. METHODS Emerging pharmacological therapies for nAMD and those currently in clinical trials are reviewed and their mechanism of action, safety, and efficacy are discussed. The evidence presented herein has been collected from online databases PubMed, Cochrane library, and the ClinicalTrials.gov site. RESULTS A number of promising technologies and novel anti-VEGF therapies are currently being tested and some have already reached phase III trials. Anti-VEGF agents with enhanced durability and possibly efficacy, gene therapy, angiogenic targets, alternative drug delivery routes such as sustained delivery implants, drug carriers, and encapsulated cell technology are currently being explored. We briefly discuss the potential value of these options. CONCLUSION Several options may optimize future nAMD management. On the basis of current, albeit limited evidence, the most promising technology to reach clinical practice soon appears to be the sustained drug delivery options, which may improve visual outcome and reduce the socioeconomic burden of nAMD.
Collapse
|
43
|
Wolf AT, Harris A, Oddone F, Siesky B, Vercellin AV, Ciulla TA. Disease progression pathways of wet AMD: opportunities for new target discovery. Expert Opin Ther Targets 2022; 26:5-12. [PMID: 35060431 PMCID: PMC8915198 DOI: 10.1080/14728222.2022.2030706] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Age-related macular degeneration (AMD) is the leading cause of irreversible blindness among people age 60 years or older in developed countries. Current standard-of-care anti-vascular endothelial growth factor (VEGF) therapy, which inhibits angiogenesis and vascular permeability, has been shown to stabilize choroidal neovascularization and increase visual acuity in neovascular AMD. However, therapeutic limitations of anti-VEGF therapy include limited durability with consequent need for frequent intravitreal injections, and a ceiling of efficacy. Current strategies under investigation include targeting VEGF-C and VEGF-D, integrins, tyrosine kinase receptors, and the Tie2/angiopoietin-2 pathway. A literature search was conducted through November 30, 2021 on PubMed, Medline, Google Scholar, and associated digital platforms with the following keywords: wet macular degeneration, age-related macular degeneration, therapy, VEGF-A, VEGF-C, VEGF-D, integrins, Tie2/Ang2, and tyrosine kinase inhibitors. AREAS COVERED The authors provide a comprehensive review of AMD disease pathways and mechanisms involved in wet AMD as well as novel targets for future therapies. EXPERT OPINION With novel targets and advancements in drug delivery, there is potential to address treatment burden and to improve outcomes for patients afflicted with neovascular AMD.
Collapse
Affiliation(s)
- Amber T. Wolf
- Icahn School of Medicine at Mount Sinai Hospital, New York, NY, USA
| | - Alon Harris
- Icahn School of Medicine at Mount Sinai Hospital, New York, NY, USA
| | | | - Brent Siesky
- Icahn School of Medicine at Mount Sinai Hospital, New York, NY, USA
| | | | - Thomas A. Ciulla
- Vitreoretinal Medicine and Surgery, Midwest Eye Institute, Indianapolis, IN, USA
| |
Collapse
|
44
|
Chu C, Chen X, Hasan AA, Szakallova A, Krämer BK, Tepel M, Hocher B. Angiopoietin-2 predicts all-cause mortality in male but not female end-stage kidney disease patients on hemodialysis. Nephrol Dial Transplant 2021; 37:1348-1356. [PMID: 34792167 PMCID: PMC9217660 DOI: 10.1093/ndt/gfab332] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Indexed: 11/29/2022] Open
Abstract
Background Angiopoietin-2 (Ang-2) plays a pivotal role in pathological vascular remodeling and angiogenesis. Both vascular mechanisms are active in patients with end-stage renal disease (ESRD) and may contribute to the high mortality in these patients. The aim of this multicenter prospective cohort study was to investigate baseline serum Ang-2 concentrations in ESRD patients on hemodialysis (HD) for their ability to predict all-cause mortality. Methods We conducted a prospective cohort study in 340 stable HD patients from different chronic dialysis centers in Berlin, Germany. The primary endpoint was all-cause mortality during a 5-year follow-up period. Blood samples and clinical data were collected at baseline. Serum Ang-2 was measured with a validated enzyme-linked immunosorbent assay (Biomedica, Vienna, Austria). Results A total of 313 HD patients (206 men and 107 women) were finally included in the study. Receiver operating characteristic (ROC) analysis of Ang-2 concentrations yielded an area under the curve (AUC) of 0.65 (P < 0.0001) for predicting all-cause mortality in the entire study population and was used to determine the optimal cut-off (111.0 pmol/L) for all-cause mortality. Kaplan–Meier survival analysis indicated that male but not female end-stage kidney disease patients on HD with higher Ang-2 concentrations had a significantly lower survival (log-rank test, P < 0.0001 and P = 0.380 for male and female patients, respectively). Multivariable Cox regression analyses adjusted for age, comorbidity, smoking, dialysis vintage, serum creatinine, hemoglobin, C-reactive protein, serum albumin, intact parathyroid hormone (iPTH), low-density lipoprotein (LDL) and Kt/V likewise indicated that elevated Ang-2 concentrations are associated with all-cause mortality in male {hazard ratio [HR] 3.294 [95% confidence interval (CI) 1.768–6.138]; P = 0.0002} but not in female end-stage kidney disease patients on HD [HR 1.084 (95% CI 0.476–2.467); P = 0.847]. Conclusion Ang-2 at baseline is independently associated with all-cause mortality in male ESRD patients on HD.
Collapse
Affiliation(s)
- Chang Chu
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany.,Department of Nephrology, Charité - Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany
| | - Xin Chen
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany.,Department of Nephrology, Charité - Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany
| | - Ahmed A Hasan
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
| | | | - Bernhard K Krämer
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany.,European Center for Angioscience ECAS, Medical Faculty Mannheim of the University of Heidelberg, Mannheim, Germany
| | - Martin Tepel
- Department of Nephrology, Charité - Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany.,Department of Nephrology, Odense University Hospital, Odense, Denmark
| | - Berthold Hocher
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany.,Institute of Medical Diagnostics, IMD Berlin-Potsdam, Berlin, Germany.,Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China.,Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| |
Collapse
|
45
|
Akwii RG, Mikelis CM. Targeting the Angiopoietin/Tie Pathway: Prospects for Treatment of Retinal and Respiratory Disorders. Drugs 2021; 81:1731-1749. [PMID: 34586603 PMCID: PMC8479497 DOI: 10.1007/s40265-021-01605-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2021] [Indexed: 12/21/2022]
Abstract
Anti-angiogenic approaches have significantly advanced the treatment of vascular-related pathologies. The ephemeral outcome and known side effects of the current vascular endothelial growth factor (VEGF)-based anti-angiogenic treatments have intensified research on other growth factors. The angiopoietin/Tie (Ang/Tie) family has an established role in vascular physiology and regulates angiogenesis, vascular permeability, and inflammatory responses. The Ang/Tie family consists of angiopoietins 1-4, their receptors, tie1 and 2 and the vascular endothelial-protein tyrosine phosphatase (VE-PTP). Modulation of Tie2 activation has provided a promising outcome in preclinical models and has led to clinical trials of Ang/Tie-targeting drug candidates for retinal disorders. Although less is known about the role of Ang/Tie in pulmonary disorders, several studies have revealed great potential of the Ang/Tie family members as drug targets for pulmonary vascular disorders as well. In this review, we summarize the functions of the Ang/Tie pathway in retinal and pulmonary vascular physiology and relevant disorders and highlight promising drug candidates targeting this pathway currently being or expected to be under clinical evaluation for retinal and pulmonary vascular disorders.
Collapse
Affiliation(s)
- Racheal Grace Akwii
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, 1406 S. Coulter St., Amarillo, TX, 79106, USA
| | - Constantinos M Mikelis
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, 1406 S. Coulter St., Amarillo, TX, 79106, USA.
| |
Collapse
|
46
|
Liang P, Mao L, Ma Y, Ren W, Yang S. A systematic review on Zhilong Huoxue Tongyu capsule in treating cardiovascular and cerebrovascular diseases: Pharmacological actions, molecular mechanisms and clinical outcomes. JOURNAL OF ETHNOPHARMACOLOGY 2021; 277:114234. [PMID: 34044079 DOI: 10.1016/j.jep.2021.114234] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/29/2021] [Accepted: 05/20/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cardiovascular and cerebrovascular diseases have become a severe threat for human health worldwide, however, optimal therapeutic options are still developed. Zhilong Huoxue Tongyu capsule (ZL capsule) is mainly composed of Astragalus membranaceus, Leech, Earthworm, Cinnamomum cassia and Sargentodoxa cuneata, having functions of replenishing qi and activating blood, dispelling wind and reducing phlegm. It is an expanded application on the basis of traditional uses of above TCMs, acquiring a satisfactory curative effect on cardiovascular and cerebrovascular diseases over twenty years. AIM OF THE STUDY To comprehensively summarize the main components of ZL capsule, understand the mechanisms of ZL capsule, and conclude clinical regimens of ZL capsule for cardiovascular and cerebrovascular diseases. MATERIALS AND METHODS We selected network pharmacology technology to analyze main active compounds and predict underlying mechanism of ZL capsule against atherosclerosis. Molecular docking was performed to simulate the interaction pattern between the active components of ZL capsule and putative targets. Further, PubMed, Web of Science, China National Knowledge Infrastructure and Google Scholar were used to search literatures, with the key words of "Zhilong Huoxue Tongyu capsule", "cardiovascular and cerebrovascular diseases", "atherosclerosis", "clinical study" and their combinations, mainly from 2000 to 2020. RESULTS Both network pharmacology analysis, molecular docking and animal experiments studies confirmed that mechanisms of ZL capsule plays the role of anti-inflammatory, anti-apoptosis and promoting angiogenesis in treating cardiovascular and cerebrovascular diseases by multi-components acting on multi-targets via multi-pathways. Over 1000 clinical cases were benefited from the treatment of ZL capsule, suggesting a holistic concept of "the same therapy for different myocardial and cerebral diseases". CONCLUSIONS For the first time, this systematic review may supply meaningful information for further studies to explore material basis and pharmacodynamics of ZL capsule and also provide a basis for sharing the "Chinese patent medicine" for cardiovascular and cerebrovascular diseases.
Collapse
Affiliation(s)
- Pan Liang
- National Traditional Chinese Medicine Clinical Research Base, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China; Drug Research Center of Integrated Traditional Chinese and Western Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Linshen Mao
- National Traditional Chinese Medicine Clinical Research Base, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China; Drug Research Center of Integrated Traditional Chinese and Western Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Yue Ma
- National Traditional Chinese Medicine Clinical Research Base, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China; Drug Research Center of Integrated Traditional Chinese and Western Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Wei Ren
- National Traditional Chinese Medicine Clinical Research Base, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China; Drug Research Center of Integrated Traditional Chinese and Western Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China.
| | - Sijin Yang
- National Traditional Chinese Medicine Clinical Research Base, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China; Drug Research Center of Integrated Traditional Chinese and Western Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
47
|
Khanani AM, Russell MW, Aziz AA, Danzig CJ, Weng CY, Eichenbaum DA, Singh RP. Angiopoietins as Potential Targets in Management of Retinal Disease. Clin Ophthalmol 2021; 15:3747-3755. [PMID: 34511878 PMCID: PMC8427682 DOI: 10.2147/opth.s231801] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/12/2021] [Indexed: 12/13/2022] Open
Abstract
The Ang/Tie2 pathway complements VEGF-mediated activity in retinal vascular diseases such as DME, AMD, and RVO by decreasing vascular integrity, increasing neovascularization, and increasing inflammatory signaling. Faricimab is a bispecific antibody that has been developed as an inhibitor of both VEGF and Ang2 that has shown positive results in phase I, II and III trials. Recent Year 1 data from phase III clinical trials YOSEMITE, RHINE, TENAYA, and LUCERNE have confirmed the efficacy, safety, durability, and superiority of faricimab in patients with DME and nAMD. Faricimab, if approved, may significantly decrease treatment burden in patients with retinal vascular diseases to a greater extent than would current standard of care anti-VEGF injections.
Collapse
Affiliation(s)
- Arshad M Khanani
- Sierra Eye Associates, Reno, NV, USA
- The University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Matthew W Russell
- Center for Ophthalmic Bioinformatics, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Aamir A Aziz
- Sierra Eye Associates, Reno, NV, USA
- The University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Carl J Danzig
- Rand Eye Institute, Deerfield, FLA, USA
- Florida Atlantic University, Charles E. Schmidt College of Medicine, Boca Raton, FL, USA
| | | | - David A Eichenbaum
- Retina Vitreous Associates of Florida, St Petersburg, FLA, USA
- University of South Florida Morsani College of Medicine, Tampa, FLA, USA
| | - Rishi P Singh
- Center for Ophthalmic Bioinformatics, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
48
|
Lejoyeux R, Benillouche J, Ong J, Errera MH, Rossi EA, Singh SR, Dansingani KK, da Silva S, Sinha D, Sahel JA, Freund KB, Sadda SR, Lutty GA, Chhablani J. Choriocapillaris: Fundamentals and advancements. Prog Retin Eye Res 2021; 87:100997. [PMID: 34293477 DOI: 10.1016/j.preteyeres.2021.100997] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 07/02/2021] [Accepted: 07/13/2021] [Indexed: 12/19/2022]
Abstract
The choriocapillaris is the innermost structure of the choroid that directly nourishes the retinal pigment epithelium and photoreceptors. This article provides an overview of its hemovasculogenesis development to achieve its final architecture as a lobular vasculature, and also summarizes the current histological and molecular knowledge about choriocapillaris and its dysfunction. After describing the existing state-of-the-art tools to image the choriocapillaris, we report the findings in the choriocapillaris encountered in the most frequent retinochoroidal diseases including vascular diseases, inflammatory diseases, myopia, pachychoroid disease spectrum disorders, and glaucoma. The final section focuses on the development of imaging technology to optimize visualization of the choriocapillaris as well as current treatments of retinochoroidal disorders that specifically target the choriocapillaris. We conclude the article with pertinent unanswered questions and future directions in research for the choriocapillaris.
Collapse
Affiliation(s)
| | | | - Joshua Ong
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Marie-Hélène Errera
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Ethan A Rossi
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA 15213, USA
| | - Sumit R Singh
- Jacobs Retina Center, Shiley Eye Institute, University of California San Diego, San Diego, CA, USA
| | - Kunal K Dansingani
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Susana da Silva
- Department of Ophthalmology and Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Debasish Sinha
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Cell Biology and Center for Biologic Imaging, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - José-Alain Sahel
- Rothschild Foundation, 75019, Paris, France; Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France; CHNO des Quinze-Vingts, INSERM-DGOS CIC 1423, Paris, France
| | - K Bailey Freund
- LuEsther T. Mertz Retinal Research Center, Manhattan Eye, Ear, and Throat Hospital, New York, NY, USA; Vitreous Retina Macula Consultants of New York, New York, NY, USA; Department of Ophthalmology, New York University of Medicine, New York, NY, USA; Edward S. Harkness Eye Institute, Columbia University Medical Center, New York, NY, USA
| | - SriniVas R Sadda
- Doheny Image Reading Center, Doheny Eye Institute, Los Angeles, CA, 90033, USA; Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Gerard A Lutty
- Wilmer Ophthalmological Institute, Johns Hopkins Hospital, Baltimore, MD, 21287, USA
| | - Jay Chhablani
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| |
Collapse
|
49
|
An engineered tetra-valent antibody fully activates the Tie2 receptor with comparable potency to its natural ligand angiopoietin-1. Sci Rep 2021; 11:14021. [PMID: 34234265 PMCID: PMC8263585 DOI: 10.1038/s41598-021-93660-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/29/2021] [Indexed: 11/24/2022] Open
Abstract
Activation of the tyrosine kinase with Ig and epidermal growth factor homology domain 2 (Tie2) receptor by angiopoietin-1 (Ang1) is critical for vascular stabilization: it promotes survival signal transduction via auto-phosphorylation and reduces vascular permeability by strengthening tight junctions between endothelial cells. Thus, Tie2/Ang1 signaling is a promising therapeutic target for vascular diseases. However, in vivo use of existing Tie2 signaling modulators, such as recombinant Ang1, is restricted by limitations in manufacturability and stability. Here, we present a novel engineered tetra-valent agonistic antibody, ASP4021, which can specifically and fully activate the Tie2 receptor in an equivalent manner to Ang1. ASP4021 induced Tie2 self-phosphorylation and inhibited apoptosis in a human primary endothelial cell line. Additionally, single administration of ASP4021 significantly suppressed mustard-oil-induced vascular permeability in rats. ASP4021 may thus be a potential therapeutic candidate for diseases associated with vascular weakness such as diabetic retinopathy, diabetic macular edema and critical limb ischemia.
Collapse
|
50
|
Mateos-Olivares M, García-Onrubia L, Valentín-Bravo FJ, González-Sarmiento R, Lopez-Galvez M, Pastor JC, Usategui-Martín R, Pastor-Idoate S. Rho-Kinase Inhibitors for the Treatment of Refractory Diabetic Macular Oedema. Cells 2021; 10:cells10071683. [PMID: 34359853 PMCID: PMC8307715 DOI: 10.3390/cells10071683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/26/2021] [Accepted: 06/29/2021] [Indexed: 12/13/2022] Open
Abstract
Diabetic macular oedema (DMO) is one of the leading causes of vision loss associated with diabetic retinopathy (DR). New insights in managing this condition have changed the paradigm in its treatment, with intravitreal injections of antivascular endothelial growth factor (anti-VEGF) having become the standard therapy for DMO worldwide. However, there is no single standard therapy for all patients DMO refractory to anti-VEGF treatment; thus, further investigation is still needed. The key obstacles in developing suitable therapeutics for refractory DMO lie in its complex pathophysiology; therefore, there is an opportunity for further improvements in the progress and applications of new drugs. Previous studies have indicated that Rho-associated kinase (Rho-kinase/ROCK) is an essential molecule in the pathogenesis of DMO. This is why the Rho/ROCK signalling pathway has been proposed as a possible target for new treatments. The present review focuses on the recent progress on the possible role of ROCK and its therapeutic potential in DMO. A systematic literature search was performed, covering the years 1991 to 2021, using the following keywords: "rho-Associated Kinas-es", "Diabetic Retinopathy", "Macular Edema", "Ripasudil", "Fasudil" and "Netarsudil". Better insight into the pathological role of Rho-kinase/ROCK may lead to the development of new strategies for refractory DMO treatment and prevention.
Collapse
Affiliation(s)
- Milagros Mateos-Olivares
- Department of Ophthalmology, Hospital Clínico Universitario de Valladolid, 47003 Valladolid, Spain; (M.M.-O.); (L.G.-O.); (F.J.V.-B.); (M.L.-G.); (J.C.P.)
| | - Luis García-Onrubia
- Department of Ophthalmology, Hospital Clínico Universitario de Valladolid, 47003 Valladolid, Spain; (M.M.-O.); (L.G.-O.); (F.J.V.-B.); (M.L.-G.); (J.C.P.)
- Department of Ophthalmology, St Thomas’ Hospital, London SE1 7EH, UK
| | - Fco. Javier Valentín-Bravo
- Department of Ophthalmology, Hospital Clínico Universitario de Valladolid, 47003 Valladolid, Spain; (M.M.-O.); (L.G.-O.); (F.J.V.-B.); (M.L.-G.); (J.C.P.)
| | - Rogelio González-Sarmiento
- Area of Infectious, Inflammatory and Metabolic Disease, Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain;
- Institute of Molecular and Cellular Biology of Cancer (IBMCC), University of Salamanca-CSIC, 37007 Salamanca, Spain
| | - Maribel Lopez-Galvez
- Department of Ophthalmology, Hospital Clínico Universitario de Valladolid, 47003 Valladolid, Spain; (M.M.-O.); (L.G.-O.); (F.J.V.-B.); (M.L.-G.); (J.C.P.)
- Retina Group, IOBA (Institute of Applied Ophthalmobiology), University of Valladolid, 47002 Valladolid, Spain
- Cooperative Network for Research in Ophthalmology Oftared, National Institute of Health Carlos III, 28220 Madrid, Spain
| | - J. Carlos Pastor
- Department of Ophthalmology, Hospital Clínico Universitario de Valladolid, 47003 Valladolid, Spain; (M.M.-O.); (L.G.-O.); (F.J.V.-B.); (M.L.-G.); (J.C.P.)
- Retina Group, IOBA (Institute of Applied Ophthalmobiology), University of Valladolid, 47002 Valladolid, Spain
- Cooperative Network for Research in Ophthalmology Oftared, National Institute of Health Carlos III, 28220 Madrid, Spain
| | - Ricardo Usategui-Martín
- Institute of Molecular and Cellular Biology of Cancer (IBMCC), University of Salamanca-CSIC, 37007 Salamanca, Spain
- Retina Group, IOBA (Institute of Applied Ophthalmobiology), University of Valladolid, 47002 Valladolid, Spain
- Correspondence: (R.U.-M.); (S.P.-I.); Tel.: +34-983-423-559
| | - Salvador Pastor-Idoate
- Department of Ophthalmology, Hospital Clínico Universitario de Valladolid, 47003 Valladolid, Spain; (M.M.-O.); (L.G.-O.); (F.J.V.-B.); (M.L.-G.); (J.C.P.)
- Retina Group, IOBA (Institute of Applied Ophthalmobiology), University of Valladolid, 47002 Valladolid, Spain
- Cooperative Network for Research in Ophthalmology Oftared, National Institute of Health Carlos III, 28220 Madrid, Spain
- Correspondence: (R.U.-M.); (S.P.-I.); Tel.: +34-983-423-559
| |
Collapse
|