1
|
Alqithami SM, Machwe A, Orren DK. Cigarette Smoke-Induced Epithelial-to-Mesenchymal Transition: Insights into Cellular Mechanisms and Signaling Pathways. Cells 2024; 13:1453. [PMID: 39273025 PMCID: PMC11394110 DOI: 10.3390/cells13171453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
This review delves into the molecular complexities underpinning the epithelial-to-mesenchymal transition (EMT) induced by cigarette smoke (CS) in human bronchial epithelial cells (HBECs). The complex interplay of pathways, including those related to WNT//β-catenin, TGF-β/SMAD, hypoxia, oxidative stress, PI3K/Akt, and NF-κB, plays a central role in mediating this transition. While these findings significantly broaden our understanding of CS-induced EMT, the research reviewed herein leans heavily on 2D cell cultures, highlighting a research gap. Furthermore, the review identifies a stark omission of genetic and epigenetic factors in recent studies. Despite these shortcomings, the findings furnish a consolidated foundation not only for the academic community but also for the broader scientific and industrial sectors, including large tobacco companies and manufacturers of related products, both highlighting areas of current understanding and identifying areas for deeper exploration. The synthesis herein aims to propel further research, hoping to unravel the complexities of the EMT in the context of CS exposure. This review not only expands our understanding of CS-induced EMT but also reveals critical limitations in current methodologies, primarily the reliance on 2D cell cultures, which may not adequately simulate more complex biological interactions. Additionally, it highlights a significant gap in the literature concerning the genetic and epigenetic factors involved in CS-induced EMT, suggesting an urgent need for comprehensive studies that incorporate these types of experiments.
Collapse
Affiliation(s)
- Sarah Mohammed Alqithami
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | | | | |
Collapse
|
2
|
Shen YX, Lee PS, Wang CC, Teng MC, Huang JH, Fan HF. Exploring the Cellular Impact of Size-Segregated Cigarette Aerosols: Insights into Indoor Particulate Matter Toxicity and Potential Therapeutic Interventions. Chem Res Toxicol 2024; 37:1171-1186. [PMID: 38870402 PMCID: PMC11256904 DOI: 10.1021/acs.chemrestox.4c00114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/15/2024]
Abstract
Exposure to anthropogenic aerosols has been associated with a variety of adverse health effects, increased morbidity, and premature death. Although cigarette smoke poses one of the most significant public health threats, the cellular toxicity of particulate matter contained in cigarette smoke has not been systematically interrogated in a size-segregated manner. In this study, we employed a refined particle size classification to collect cigarette aerosols, enabling a comprehensive assessment and comparison of the impacts exerted by cigarette aerosol extract (CAE) on SH-SY5Y, HEK293T, and A549 cells. Exposure to CAE reduced cell viability in a dose-dependent manner, with organic components having a greater impact and SH-SY5Y cells displaying lower tolerance compared to HEK293T and A549 cells. Moreover, CAE was found to cause increased oxidative stress, mitochondrial dysfunction, and increased levels of apoptosis, pyroptosis, and autophagy, leading to increased cell death. Furthermore, we found that rutin, a phytocompound with antioxidant potential, could reduce intracellular reactive oxygen species and protect against CAE-triggered cell death. These findings underscore the therapeutic potential of antioxidant drugs in mitigating the adverse effects of cigarette aerosol exposure for better public health outcomes.
Collapse
Affiliation(s)
- Yu-Xin Shen
- Institute
of Medical Science and Technology, National
Sun Yat-sen University, Kaohsiung 804, Taiwan
- Department
of Chemistry, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Aerosol
Science Research Center, National Sun Yat-sen
University, Kaohsiung 804, Taiwan
| | - Pe-Shuen Lee
- Institute
of Medical Science and Technology, National
Sun Yat-sen University, Kaohsiung 804, Taiwan
- Department
of Chemistry, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Aerosol
Science Research Center, National Sun Yat-sen
University, Kaohsiung 804, Taiwan
| | - Chia C. Wang
- Department
of Chemistry, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Aerosol
Science Research Center, National Sun Yat-sen
University, Kaohsiung 804, Taiwan
| | - Ming-Chu Teng
- Institute
of Medical Science and Technology, National
Sun Yat-sen University, Kaohsiung 804, Taiwan
- Department
of Chemistry, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Aerosol
Science Research Center, National Sun Yat-sen
University, Kaohsiung 804, Taiwan
| | - Jhih-Hong Huang
- Department
of Chemistry, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Aerosol
Science Research Center, National Sun Yat-sen
University, Kaohsiung 804, Taiwan
| | - Hsiu-Fang Fan
- Institute
of Medical Science and Technology, National
Sun Yat-sen University, Kaohsiung 804, Taiwan
- Department
of Chemistry, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Aerosol
Science Research Center, National Sun Yat-sen
University, Kaohsiung 804, Taiwan
| |
Collapse
|
3
|
Makena P, Kikalova T, Prasad GL, Baxter SA. Oxidative Stress and Lung Fibrosis: Towards an Adverse Outcome Pathway. Int J Mol Sci 2023; 24:12490. [PMID: 37569865 PMCID: PMC10419527 DOI: 10.3390/ijms241512490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
Lung fibrosis is a progressive fatal disease in which deregulated wound healing of lung epithelial cells drives progressive fibrotic changes. Persistent lung injury due to oxidative stress and chronic inflammation are central features of lung fibrosis. Chronic cigarette smoking causes oxidative stress and is a major risk factor for lung fibrosis. The objective of this manuscript is to develop an adverse outcome pathway (AOP) that serves as a framework for investigation of the mechanisms of lung fibrosis due to lung injury caused by inhaled toxicants, including cigarette smoke. Based on the weight of evidence, oxidative stress is proposed as a molecular initiating event (MIE) which leads to increased secretion of proinflammatory and profibrotic mediators (key event 1 (KE1)). At the cellular level, these proinflammatory signals induce the recruitment of inflammatory cells (KE2), which in turn, increase fibroblast proliferation and myofibroblast differentiation (KE3). At the tissue level, an increase in extracellular matrix deposition (KE4) subsequently culminates in lung fibrosis, the adverse outcome. We have also defined a new KE relationship between the MIE and KE3. This AOP provides a mechanistic platform to understand and evaluate how persistent oxidative stress from lung injury may develop into lung fibrosis.
Collapse
Affiliation(s)
- Patrudu Makena
- RAI Services Company, P.O. Box 1487, Winston-Salem, NC 27102, USA;
| | - Tatiana Kikalova
- Clarivate Analytics, 1500 Spring Garden, Philadelphia, PA 19130, USA
| | - Gaddamanugu L. Prasad
- Former Employee of RAI Services Company, Winston-Salem, NC 27101, USA
- Prasad Scientific Consulting LLC, 490 Friendship Place Ct, Lewisville, NC 27023, USA
| | - Sarah A. Baxter
- RAI Services Company, P.O. Box 1487, Winston-Salem, NC 27102, USA;
| |
Collapse
|
4
|
Bateman G, Guo-Parke H, Rodgers AM, Linden D, Bailey M, Weldon S, Kidney JC, Taggart CC. Airway Epithelium Senescence as a Driving Mechanism in COPD Pathogenesis. Biomedicines 2023; 11:2072. [PMID: 37509711 PMCID: PMC10377597 DOI: 10.3390/biomedicines11072072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Cellular senescence is a state of permanent cell cycle arrest triggered by various intrinsic and extrinsic stressors. Cellular senescence results in impaired tissue repair and remodeling, loss of physiological integrity, organ dysfunction, and changes in the secretome. The systemic accumulation of senescence cells has been observed in many age-related diseases. Likewise, cellular senescence has been implicated as a risk factor and driving mechanism in chronic obstructive pulmonary disease (COPD) pathogenesis. Airway epithelium exhibits hallmark features of senescence in COPD including activation of the p53/p21WAF1/CIP1 and p16INK4A/RB pathways, leading to cell cycle arrest. Airway epithelial senescent cells secrete an array of inflammatory mediators, the so-called senescence-associated secretory phenotype (SASP), leading to a persistent low-grade chronic inflammation in COPD. SASP further promotes senescence in an autocrine and paracrine manner, potentially contributing to the onset and progression of COPD. In addition, cellular senescence in COPD airway epithelium is associated with telomere dysfunction, DNA damage, and oxidative stress. This review discusses the potential mechanisms of airway epithelial cell senescence in COPD, the impact of cellular senescence on the development and severity of the disease, and highlights potential targets for modulating cellular senescence in airway epithelium as a potential therapeutic approach in COPD.
Collapse
Affiliation(s)
- Georgia Bateman
- Airway Innate Immunity Research Group, Wellcome Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queens University Belfast, Belfast BT9 7AE, UK
| | - Hong Guo-Parke
- Airway Innate Immunity Research Group, Wellcome Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queens University Belfast, Belfast BT9 7AE, UK
| | - Aoife M Rodgers
- Airway Innate Immunity Research Group, Wellcome Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queens University Belfast, Belfast BT9 7AE, UK
| | - Dermot Linden
- Airway Innate Immunity Research Group, Wellcome Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queens University Belfast, Belfast BT9 7AE, UK
| | - Melanie Bailey
- Department of Respiratory Medicine, Mater Hospital Belfast, Belfast BT14 6AB, UK
| | - Sinéad Weldon
- Airway Innate Immunity Research Group, Wellcome Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queens University Belfast, Belfast BT9 7AE, UK
| | - Joseph C Kidney
- Department of Respiratory Medicine, Mater Hospital Belfast, Belfast BT14 6AB, UK
| | - Clifford C Taggart
- Airway Innate Immunity Research Group, Wellcome Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queens University Belfast, Belfast BT9 7AE, UK
| |
Collapse
|
5
|
Vlasceanu AM, Gradinaru D, Stan M, Nitescu VG, Baconi DL. Relationships between Serum Biomarkers of Oxidative Stress and Tobacco Smoke Exposure in Patients with Mental Disorders. Antioxidants (Basel) 2023; 12:1299. [PMID: 37372029 DOI: 10.3390/antiox12061299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/11/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023] Open
Abstract
The role of cigarette smoking as an aggravating factor of systemic oxidative stress in patients with mental disorders has not been extensively investigated, although significantly higher rates of smoking are recorded in these subjects in comparison with the general population. In the present study, we tested the hypothesis that smoking might be an exacerbator of systemic oxidative stress, being directly correlated with the degree of exposure to tobacco smoke. We analyzed, in 76 adult subjects from a public health care unit, the relationships between serum cotinine levels as a marker of tobacco smoke exposure, and three biomarkers of oxidative stress: the serum glutathione (GSH), the advanced oxidation protein products (AOPPs), and the total serum antioxidant status (FRAP). The results indicate that the degree of tobacco smoke exposure was inversely associated with GSH levels in both passive and active smokers, suggesting that smoke particulate components' toxicity is associated with a systemic GSH depletion. Paradoxically, the lowest AOPP levels which were positively associated with GSH, were recorded in active smoking patients whereas in passive smokers individual values of AOPPs decreased along with the increase in GSH levels. Our data suggest that an enhanced inhalation of particulate constituents of cigarette smoke could induce critical changes in systemic redox homeostasis and GSH can no longer exert its antioxidant role.
Collapse
Affiliation(s)
- Ana-Maria Vlasceanu
- Department of Toxicology, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 37 Dionisie Lupu Street, Sector 2, 20021 Bucharest, Romania
| | - Daniela Gradinaru
- Department of Biochemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 37 Dionisie Lupu Street, Sector 2, 20021 Bucharest, Romania
| | - Miriana Stan
- Department of Toxicology, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 37 Dionisie Lupu Street, Sector 2, 20021 Bucharest, Romania
| | - Viorela G Nitescu
- Emergency Clinical Hospital for Children Grigore Alexandrescu, Pediatric Clinic 2, Ward ATI -Toxicology, 30-32 Iancu de Hunedoara Street, 20021 Bucharest, Romania
| | - Daniela Luiza Baconi
- Department of Toxicology, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 37 Dionisie Lupu Street, Sector 2, 20021 Bucharest, Romania
| |
Collapse
|
6
|
Role of DAMPs and cell death in autoimmune diseases: the example of multiple sclerosis. Genes Immun 2023; 24:57-70. [PMID: 36750753 DOI: 10.1038/s41435-023-00198-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/06/2023] [Accepted: 01/23/2023] [Indexed: 02/09/2023]
Abstract
Multiple sclerosis is a chronic neuroinflammatory demyelinating disease of the central nervous system (CNS) of unknown etiology and still incompletely clarified pathogenesis. The disease is generally considered a disorder resulting from a complex interplay between environmental risk factors and predisposing causal genetic variants. To examine the etiopathogenesis of the disease, two complementary pre-clinical models are currently discussed: the "outside-in" model proposing a peripherally elicited inflammatory/autoimmune attack against degraded myelin as the cause of the disease, and the "inside-out" paradigm implying a primary cytodegenerative process of cells in the CNS that triggers secondary reactive inflammatory/autoimmune responses against myelin debris. In this review, the integrating pathogenetic role of damage-associated molecular patterns (DAMPs) in these two scenario models is examined by focusing on the origin and sources of these molecules, which are known to promote neuroinflammation and, via activation of pattern recognition receptor-bearing antigen-presenting cells, drive and shape autoimmune responses. In particular, environmental factors are discussed that are conceptually defined as agents which produce endogenous DAMPs via induction of regulated cell death (RCD) or act themselves as exogenous DAMPs. Indeed, in the field of autoimmune diseases, including multiple sclerosis, recent research has focused on environmental triggers that cause secondary events in terms of subroutines of RCD, which have been identified as prolific sources of DAMPs. Finally, a model of a DAMP-driven positive feed-forward loop of chronic inflammatory demyelinating processes is proposed, aimed at reconciling the competing "inside-out" and "outside-in" paradigms.
Collapse
|
7
|
Cigarette Smoke Impairs Airway Epithelial Wound Repair: Role of Modulation of Epithelial-Mesenchymal Transition Processes and Notch-1 Signaling. Antioxidants (Basel) 2022; 11:antiox11102018. [PMID: 36290742 PMCID: PMC9598207 DOI: 10.3390/antiox11102018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/03/2022] [Accepted: 10/08/2022] [Indexed: 11/17/2022] Open
Abstract
Cigarette smoke (CS) induces oxidative stress and chronic inflammation in airway epithelium. It is a major risk factor for respiratory diseases, characterized by epithelial injury. The impact of CS on airway epithelial repair, which involves epithelial-mesenchymal transition (EMT) and the Notch-1 pathway, is incompletely understood. In this study, we used primary bronchial epithelial cells (PBECs) to evaluate the effect of CS on epithelial repair and these mechanisms. The effect of CS and/or TGF-beta1 on wound repair, various EMT and Notch-1 pathway markers and epithelial cell markers (TP63, SCGB1A) was assessed in PBECs cultured submerged, at the air–liquid interface (ALI) alone and in co-culture with fibroblasts. TGF-beta1 increased epithelial wound repair, activated EMT (shown by decrease in E-cadherin, and increases in vimentin, SNAIL1/SNAIL2/ZEB1), and increased Notch-1 pathway markers (NOTCH1/JAGGED1/HES1), MMP9, TP63, SCGB1A1. In contrast, CS decreased wound repair and vimentin, NOTCH1/JAGGED1/HES1, MMP9, TP63, SCGB1A1, whereas it activated the initial steps of the EMT (decrease in E-cadherin and increases in SNAIL1/SNAIL2/ZEB1). Using combined exposures, we observed that CS counteracted the effects of TGF-beta1. Furthermore, Notch signaling inhibition decreased wound repair. These data suggest that CS inhibits the physiological epithelial wound repair by interfering with the normal EMT process and the Notch-1 pathway.
Collapse
|
8
|
Miazek K, Beton K, Śliwińska A, Brożek-Płuska B. The Effect of β-Carotene, Tocopherols and Ascorbic Acid as Anti-Oxidant Molecules on Human and Animal In Vitro/In Vivo Studies: A Review of Research Design and Analytical Techniques Used. Biomolecules 2022; 12:biom12081087. [PMID: 36008981 PMCID: PMC9406122 DOI: 10.3390/biom12081087] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/25/2022] [Accepted: 08/02/2022] [Indexed: 11/21/2022] Open
Abstract
Prolonged elevated oxidative stress (OS) possesses negative effect on cell structure and functioning, and is associated with the development of numerous disorders. Naturally occurred anti-oxidant compounds reduce the oxidative stress in living organisms. In this review, antioxidant properties of β-carotene, tocopherols and ascorbic acid are presented based on in vitro, in vivo and populational studies. Firstly, environmental factors contributing to the OS occurrence and intracellular sources of Reactive Oxygen Species (ROS) generation, as well as ROS-mediated cellular structure degradation, are introduced. Secondly, enzymatic and non-enzymatic mechanism of anti-oxidant defence against OS development, is presented. Furthermore, ROS-preventing mechanisms and effectiveness of β-carotene, tocopherols and ascorbic acid as anti-oxidants are summarized, based on studies where different ROS-generating (oxidizing) agents are used. Oxidative stress biomarkers, as indicators on OS level and prevention by anti-oxidant supplementation, are presented with a focus on the methods (spectrophotometric, fluorometric, chromatographic, immuno-enzymatic) of their detection. Finally, the application of Raman spectroscopy and imaging as a tool for monitoring the effect of anti-oxidant (β-carotene, ascorbic acid) on cell structure and metabolism, is proposed. Literature data gathered suggest that β-carotene, tocopherols and ascorbic acid possess potential to mitigate oxidative stress in various biological systems. Moreover, Raman spectroscopy and imaging can be a valuable technique to study the effect of oxidative stress and anti-oxidant molecules in cell studies.
Collapse
Affiliation(s)
- Krystian Miazek
- Laboratory of Laser Molecular Spectroscopy, Institute of Applied Radiation Chemistry, Lodz University of Technology, Wroblewskiego 15, 93-590 Lodz, Poland
- Correspondence:
| | - Karolina Beton
- Laboratory of Laser Molecular Spectroscopy, Institute of Applied Radiation Chemistry, Lodz University of Technology, Wroblewskiego 15, 93-590 Lodz, Poland
| | - Agnieszka Śliwińska
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, 251 Pomorska Str., 92-213 Lodz, Poland
| | - Beata Brożek-Płuska
- Laboratory of Laser Molecular Spectroscopy, Institute of Applied Radiation Chemistry, Lodz University of Technology, Wroblewskiego 15, 93-590 Lodz, Poland
| |
Collapse
|
9
|
Hesaruiyeh FA, Rajabi S, Motamed-Jahromi M, Sarhadi M, Bell ML, Khaksefidi R, Sarhadi S, Mohammadi L, Dua K, Mohammadpour A, Martelletti P. A Pilot Study on the Association of Lead, 8-Hydroxyguanine, and Malondialdehyde Levels in Opium Addicts' Blood Serum with Illicit Drug Use and Non-Addict Persons. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19159110. [PMID: 35897481 PMCID: PMC9368398 DOI: 10.3390/ijerph19159110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/11/2022] [Accepted: 07/20/2022] [Indexed: 02/01/2023]
Abstract
While a large body of literature has shown the health problems of illicit drug use, research is needed on how substance abuse impacts DNA damage and contaminants in blood, especially given Pb-contaminated opium. This pilot study aimed to evaluate the levels of lead (Pb), 8-hydroxy di-guanine (8-oxo-Gua), and malondialdehyde (MDA) in the blood serum of opium addicts and non-addict people. The current study is a case–control study with a cross-sectional design. A sample of 50 opium-addicted and non-addict adults were chosen for this study using convenience and random sampling methods. Participants were divided into two groups: addicts and non-addicts. The atomic absorption spectroscopy method was used to measure the quantity of Pb, and the Enzyme-Linked Immunosorbent Assay (ELISA) method was used to measure the amount of 8-oxo-Gua and MDA. The data were analyzed using an independent t-test. The results show that the amount of Pb in the blood serum of addicted women and men was higher than levels in non-addict men and women, for the study participants (p-value = 0.001). Blood levels were not significantly different between addicts and non-addicts for men or women for 8-oxo-Gua (p-value = 0.647 for women and p-value = 0.785 for men) and MDA (p-value = 0.867 for women and p-value = 0.995 for men). In general, addicts’ blood Pb levels were found to be substantially higher than those of normal non-addict persons in this pilot study. As a result, testing for blood Pb levels in addicts may be informative in instances when symptoms are inconclusive.
Collapse
Affiliation(s)
- Farzaneh Allahdinian Hesaruiyeh
- Department of Toxicology, Faculty of Pharmacy, Shahreza Branch, Islamic Azad University, Shahreza P.O. Box 311-86145, Iran;
- Clinical Core Laboratory, Ali ibn Abi Talib Hospital Complex, Zahedan University of Medical Sciences, Zahedan 98167-43463, Iran
| | - Saeed Rajabi
- Student Research Committee, School of Health, Shiraz University of Medical Sciences, Shiraz 71348-45794, Iran; (S.R.); (R.K.)
| | | | - Mohammad Sarhadi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan 98167-43463, Iran;
| | - Michelle L. Bell
- School of Forestry and Environmental Studies, Yale University, New Haven, CT 06520, USA;
| | - Razieh Khaksefidi
- Student Research Committee, School of Health, Shiraz University of Medical Sciences, Shiraz 71348-45794, Iran; (S.R.); (R.K.)
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan 98167-43463, Iran;
| | - Somayeh Sarhadi
- Department of Biology, Faculty of Sciences, Hamedan Branch, Islamic Azad University, Hamedan 15847-43311, Iran;
| | - Leili Mohammadi
- Environmental Health, Infectious Diseases and Tropical Medicine Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan 98167-43463, Iran;
| | - Kamal Dua
- Centre for Inflammation, Centenary Institute, Sydney, NSW 2050, Australia;
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI) & School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Amin Mohammadpour
- Student Research Committee, School of Health, Shiraz University of Medical Sciences, Shiraz 71348-45794, Iran; (S.R.); (R.K.)
- Correspondence: (A.M.); (P.M.)
| | - Paolo Martelletti
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy
- Correspondence: (A.M.); (P.M.)
| |
Collapse
|
10
|
Miglioranza Scavuzzi B, Holoshitz J. Endoplasmic Reticulum Stress, Oxidative Stress, and Rheumatic Diseases. Antioxidants (Basel) 2022; 11:1306. [PMID: 35883795 PMCID: PMC9312221 DOI: 10.3390/antiox11071306] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 06/27/2022] [Accepted: 06/27/2022] [Indexed: 12/10/2022] Open
Abstract
BACKGROUND The endoplasmic reticulum (ER) is a multi-functional organelle responsible for cellular homeostasis, protein synthesis, folding and secretion. It has been increasingly recognized that the loss of ER homeostasis plays a central role in the development of autoimmune inflammatory disorders, such as rheumatic diseases. Purpose/Main contents: Here, we review current knowledge of the contribution of ER stress to the pathogenesis of rheumatic diseases, with a focus on rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE). We also review the interplay between protein folding and formation of reactive oxygen species (ROS), where ER stress induces oxidative stress (OS), which further aggravates the accumulation of misfolded proteins and oxidation, in a vicious cycle. Intervention studies targeting ER stress and oxidative stress in the context of rheumatic diseases are also reviewed. CONCLUSIONS Loss of ER homeostasis is a significant factor in the pathogeneses of RA and SLE. Targeting ER stress, unfolded protein response (UPR) pathways and oxidative stress in these diseases both in vitro and in animal models have shown promising results and deserve further investigation.
Collapse
Affiliation(s)
| | - Joseph Holoshitz
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA;
| |
Collapse
|
11
|
Prieux R, Ferrara F, Cervellati F, Guiotto A, Benedusi M, Valacchi G. Inflammasome involvement in CS-induced damage in HaCaT keratinocytes. In Vitro Cell Dev Biol Anim 2022; 58:335-348. [PMID: 35428946 PMCID: PMC9076721 DOI: 10.1007/s11626-022-00658-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/20/2022] [Indexed: 12/14/2022]
Abstract
Cigarette smoke (CS) alters cutaneous biological processes such as redox homeostasis and inflammation response that might be involved in promoting skin inflammatory conditions. Exposure to CS has also been linked to a destabilization of the NLRP3 inflammasome in pollution target tissues such as the lung epithelium, resulting in a more vulnerable immunological response to several exogenous and endogenous stimuli related to oxidative stress. Thus, CS has an adverse effect on host defense, increasing the susceptibility to develop lung infections and pathologies. In the skin, another direct target of pollution, inflammasome disorders have been linked to an increasing number of diseases such as melanoma, psoriasis, vitiligo, atopic dermatitis, and acne, all conditions that have been connected directly or indirectly to pollution exposure. The inflammasome machinery is an important innate immune sensor in human keratinocytes. However, the role of CS in the NLRP1 and NLRP3 inflammasome in the cutaneous barrier has still not been investigated. In the present study, we were able to determine in keratinocytes exposed to CS an increased oxidative damage evaluated by 4-HNE protein adduct and carbonyl formation. Of note is that, while CS inhibited NLRP3 activation, it was able to activate NLRP1, leading to an increased secretion of the proinflammatory cytokines IL-1β and IL-18. This study highlights the importance of the inflammasome machinery in CS that more in general, in pollution, affects cutaneous tissues and the important cross-talk between different members of the NLRP inflammasome family.
Collapse
Affiliation(s)
- Roxane Prieux
- Department of Neurosciences and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Francesca Ferrara
- Department of Neurosciences and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Franco Cervellati
- Department of Neurosciences and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Anna Guiotto
- Department of Neurosciences and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Mascia Benedusi
- Department of Neurosciences and Rehabilitation, University of Ferrara, Ferrara, Italy.
| | - Giuseppe Valacchi
- Department of Environment and Prevention, University of Ferrara, Ferrara, Italy.
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, USA.
- Department of Food and Nutrition, Kyung Hee University, Seoul, 02447, South Korea.
| |
Collapse
|
12
|
Tellez CS, Juri DE, Phillips LM, Do K, Thomas CL, Willink R, Dye WW, Wu G, Zhou Y, Irshad H, Kishida S, Kiyono T, Belinsky SA. Comparative Genotoxicity and Mutagenicity of Cigarette, Cigarillo, and Shisha Tobacco Products in Epithelial and Cardiac Cells. Toxicol Sci 2021; 184:67-82. [PMID: 34390580 PMCID: PMC8557423 DOI: 10.1093/toxsci/kfab101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Epidemiology studies link cigarillos and shisha tobacco (delivered through a hookah waterpipe) to increased risk for cardiopulmonary diseases. Here we performed a comparative chemical constituent analysis between 3 cigarettes, 3 cigarillos, and 8 shisha tobacco products. The potency for genotoxicity and oxidative stress of each product's generated total particulate matter (TPM) was also assessed using immortalized oral, lung, and cardiac cell lines to represent target tissues. Levels of the carcinogenic carbonyl formaldehyde were 32- to 95-fold greater, while acrolein was similar across the shisha aerosols generated by charcoal heating compared to cigarettes and cigarillos. Electric-mediated aerosol generation dramatically increased acrolein to levels exceeding those in cigarettes and cigarillos by up to 43-fold. Equivalent cytotoxic-mediated cell death and dose response for genotoxicity through induction of mutagenicity and DNA strand breaks was seen between cigarettes and cigarillos, while minimal to no effect was observed with shisha tobacco products. In contrast, increased potency of TPM from cigarillos compared to cigarettes for inducing oxidative stress via reactive oxygen radicals and lipid peroxidation across cell lines was evident, while positivity was seen for shisha tobacco products albeit at much lower levels. Together, these studies provide new insight into the potential harmful effects of cigarillos for causing tobacco-associated diseases. The high level of carbonyls in shisha products, that in turn is impacted by the heating mechanism, reside largely in the gas phase which will distribute throughout the respiratory tract and systemic circulation to likely increase genotoxic stress.
Collapse
Affiliation(s)
- Carmen S Tellez
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| | - Daniel E Juri
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| | - Loryn M Phillips
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| | - Kieu Do
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| | - Cindy L Thomas
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| | - Randy Willink
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| | - Wendy W Dye
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| | - Guodong Wu
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| | - Yue Zhou
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| | - Hammad Irshad
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| | - Shosei Kishida
- Departments of Biochemistry and Genetics, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Tohru Kiyono
- Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Chiba, Japan
| | - Steven A Belinsky
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| |
Collapse
|
13
|
Kermani M, Rahmatinia T, Oskoei V, Norzaee S, Shahsavani A, Farzadkia M, Kazemi MH. Potential cytotoxicity of trace elements and polycyclic aromatic hydrocarbons bounded to particulate matter: a review on in vitro studies on human lung epithelial cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:55888-55904. [PMID: 34490568 DOI: 10.1007/s11356-021-16306-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 08/29/2021] [Indexed: 06/13/2023]
Abstract
A large number of studies have been conducted for clarifying toxicological mechanisms of particulate matter (PM) aimed to investigate the physicochemical properties of PM and providing biological endpoints such as inflammation, perturbation of cell cycle, oxidative stress, or DNA damage. However, although several studies have presented some effects, there is still no consensus on the determinants of biological responses. This review attempts to summarize all past research conducted in recent years on the physicochemical properties of environmental PM in different places and the relationship between different PM components and PM potential cytotoxicity on the human lung epithelial cells. Among 447 papers with our initial principles, a total of 50 articles were selected from 1986 to April 2020 based on the chosen criteria for review. According to the results of selected studies, it is obvious that cytotoxicity in human lung epithelial cells is created both directly or indirectly by transition metals (such as Cu, Cr, Fe, Zn), polycyclic aromatic hydrocarbons (PAH), and ions that formed on the surface of particles. In the selected studies, the findings of the correlation analysis indicate that there is a significant relationship between cell viability reduction and secretion of inflammatory mediators. As a result, it seems that the observed biological responses are related to the composition and the physicochemical properties of the PMs. Therefore, the physicochemical properties of PM should be considered when explaining PM cytotoxicity, and long-term research data will lead to improved strategies to reduce air pollution.
Collapse
Affiliation(s)
- Majid Kermani
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Tahere Rahmatinia
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Vahide Oskoei
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Samira Norzaee
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran.
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.
| | - Abbas Shahsavani
- Air Quality and Climate Change Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Farzadkia
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Kazemi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Easwaran M, Martinez JD, Ramirez DJ, Gall PA, Erickson-DiRenzo E. Short-term whole body cigarette smoke exposure induces regional differences in cellular response in the mouse larynx. Toxicol Rep 2021; 8:920-937. [PMID: 33996505 PMCID: PMC8099918 DOI: 10.1016/j.toxrep.2021.04.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/11/2021] [Accepted: 04/16/2021] [Indexed: 11/29/2022] Open
Abstract
The larynx is an essential organ in the respiratory tract and necessary for airway protection, respiration, and phonation. Cigarette smoking is a significant risk factor associated with benign and malignant laryngeal diseases. Despite this association, the underlying mechanisms by which cigarette smoke (CS) drives disease development are not well elucidated. In the current study, we developed a short-term murine whole body inhalation model to evaluate the first CS-induced cellular responses in the glottic [i.e. vocal fold (VF)] and subglottic regions of the larynx. Specifically, we investigated epithelial cell proliferation, cell death, surface topography, and mucus production, at various time points (1 day, 5 days, 10 days) after ∼ 2 h exposure to 3R4F cigarettes (Delivered dose: 5.6968 mg/kg per cigarette) and following cessation for 5 days after a 5 day CS exposure (CSE). CSE elevated levels of BrdU labeled proliferative cells and p63 labeled epithelial basal cells on day 1 in the VF. CSE increased proliferative cells in the subglottis at days 5, 10 and following cessation in the subglottis. Cleaved caspase-3 apoptotic activity was absent in VF at all time points and increased at day 1 in the subglottis. Evaluation of the VF surface by scanning electron microscopy (SEM) revealed significant epithelial microprojection damage at day 10 and early signs of necrosis at days 5 and 10 post-CSE. SEM visualizations additionally indicated the presence of deformed cilia at days 5 and 10 after CSE and post-cessation in the respiratory epithelium lined subglottis. In terms of mucin content, the impact of short-term CSE was observed only at day 10, with decreasing acidic mucin levels and increasing neutral mucin levels. Overall, these findings reveal regional differences in murine laryngeal cellular responses following short-term CSE and provide insight into potential mechanisms underlying CS-induced laryngeal disease development.
Collapse
Key Words
- AB/PAS, Alcian blue/Periodic acid Schiff
- BLOQ, below limits of quantitation
- BSA, bovine serum albumin
- BrdU, 5-bromo-2′-deoxyuridine
- CBF, ciliary beat frequency
- CC3, cleaved caspase-3
- CO, Carbon monoxide
- CS, cigarette smoke
- CSE, cigarette smoke exposure
- Cell death
- Cell proliferation
- Cigarette smoke
- DAB, 3,3′-diaminobenzidine
- FTC/ISO, Federal Trade Commission/International Standard Organization
- GSD, geometric standard deviation
- H&E, Hematoxylin and Eosin
- HIER, heat-induced antigen retrieval
- HPF, high power field
- MCC, mucociliary clearance
- MMAD, Mass median aerodynamic diameter
- Mucus production
- Murine larynx
- NMR, nicotine metabolite ratio
- OECD, organization for economic co-operation and development
- PAHs, polycyclic aromatic hydrocarbons
- RE, respiratory epithelium
- REV, reversibility
- ROS, reactive oxygen species
- SCIREQ, Scientific Respiratory Equipment Inc
- SEM, scanning electron microscopy
- SSE, stratified squamous epithelium
- SWGTOX, Scientific Working Group for Forensic Toxicology
- Surface topography
- TBST, tris-buffered saline-tween 20
- TPM, total particulate matter
- TSNA, tobacco-specific nitrosamines
- UPLC-MS/MS, ultra-performance liquid chromatography-tandem mass spectrometer
- VF, vocal fold
- VSC, veterinary service center
Collapse
Affiliation(s)
- Meena Easwaran
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Joshua D. Martinez
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Daniel J. Ramirez
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Phillip A. Gall
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Elizabeth Erickson-DiRenzo
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
15
|
Cigarette smoke extract reduces FOXO3a promoting tumor progression and cell migration in lung cancer. Toxicology 2021; 454:152751. [PMID: 33737139 DOI: 10.1016/j.tox.2021.152751] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/08/2021] [Accepted: 03/12/2021] [Indexed: 12/31/2022]
Abstract
Lung cancer is the leading cause of cancer death worldwide, and the carcinogens in tobacco smoke play a role in its progression and metastasis. The related molecular events are largely unknown. FOXO3a is a transcription factor considered a tumor suppressor. Its inhibition leads to cell transformation, tumor progression and metastasis. The aim of this study was to investigate, in different types of lung cancer cell lines (A549, COLO 699 N, SK-MES-1), the effects of cigarette smoke on mitochondrial status and cell metabolism and on key pathways involved in tumor progression and cell migration, looking at the role of FOXO3a in these mechanisms. The different lung cancer cells were exposed to cigarette smoke extract (CSE) and TGF-β1. Reactive oxygen species (ROS), mitochondrial superoxide, intracellular ATP, extracellular lactate, FOXO3a, p21, survivin, epithelial-to-mesenchymal transition (EMT) markers (E-cadherin, SNAIL1), MMP-9 and cellular migration were assessed by flow-cytometry, fluorimetry, western blot analysis, Real-Time PCR and scratch test. Our results showed that exposure to CSE: (i) increased ROS, mitochondrial superoxide, lactate release while reducing intracellular ATP; (ii) decreased FOXO3a and increased survivin and p21 in the cytoplasm; (iii) decreased E-cadherin, increased SNAIL1 and MMP-9 and promoted cell migration like TGF-β1 did. These effects could be partly explained by downregulation of FOXO3a, as demonstrated by silencing experiments. These data suggest that cigarette smoke induces oxidative stress and mitochondrial damage leading to metabolic reprogramming associated with increased glycolytic flux. This is accompanied with a downregulation of FOXO3a contributing to EMT processes and cell migration therefore promoting tumor progression.
Collapse
|
16
|
Abolfathi H, Sheikhpour M, Shahraeini SS, Khatami S, Nojoumi SA. Studies in lung cancer cytokine proteomics: a review. Expert Rev Proteomics 2021; 18:49-64. [PMID: 33612047 DOI: 10.1080/14789450.2021.1892491] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Proteins are molecules that have role in the progression of the diseases. Proteomics is a tool that can play an effective role in identifying diagnostic and therapeutic biomarkers for lung cancer. Cytokines are proteins that play a decisive role in activating body's immune system in lung cancer. They can increase the growth of the tumor (oncogenic cytokines) or limit tumor growth (anti-tumor cytokines) by regulating related signaling pathways such as proliferation, growth, metastasis, and apoptosis. AREAS COVERED In the present study, a total of 223 papers including 196 research papers and 27 review papers, extracted from PubMed and Scopus and published from 1997 to present, are reviewed. The most important involved-cytokines in lung cancer including TNF-α, IFN- γ, TGF-β, VEGF and interleukins such as IL-6, IL-17, IL-8, IL-10, IL-22, IL-1β and IL-18 are introduced. Also, the pathological and biological role of such cytokines in cancer signaling pathways is explained. EXPERT OPINION In lung cancer, the cytokine expression changes under the physiological conditions of the immune system, and inflammatory cytokines are associated with the progression of lung cancer. Therefore, the cytokine expression profile can be used in the diagnosis, prognosis, prediction of therapeutic responses, and survival of patients with lung cancer.
Collapse
Affiliation(s)
- Hanie Abolfathi
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.,Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran
| | - Mojgan Sheikhpour
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.,Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Sadegh Shahraeini
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.,Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Shohreh Khatami
- Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Ali Nojoumi
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.,Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
17
|
Hamza RZ, Al-Talhi T, Gobouri AA, Al-Yasi HMM, Diab AEAA, El-Megharbel SM. Resveratrol and nicotine toxicity. Toxicology 2021. [DOI: 10.1016/b978-0-12-819092-0.00049-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Okrit F, Chantranuwatana P, Werawatganon D, Chayanupatkul M, Sanguanrungsirikul S. Changes of vitamin D receptors (VDR) and MAPK activation in cytoplasmic and nuclear fractions following exposure to cigarette smoke with or without filter in rats. Heliyon 2021; 7:e05927. [PMID: 33553726 PMCID: PMC7851787 DOI: 10.1016/j.heliyon.2021.e05927] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 12/22/2019] [Accepted: 01/06/2021] [Indexed: 11/29/2022] Open
Abstract
Cigarette smoke (CS) is a major cause of obstructive lung disease which is associated with significant disability and mortality. Vitamin D receptor (VDR) together with, mitogen activated protein kinases (MAPKs; ERK, JNK and p38) are the cellular transmission signals that mechanistically respond to CS and are recently found to have a role in lung pathogenesis. There are a few in vitro studies on subcellular VDR distribution involved MAPK but in vivo effects of cigarette smoke exposure with and without filter on this complex remain unclear. This study investigated subcellular VDR distribution and MAPK expression at early stages of both types of cigarette smoke exposure (CSE) in a rat model. Male Wistar rats were randomly divided into no-filter, filter and control groups. After 7 and 14 days of CSE, lung tissues were obtained to determine histopathology and protein expression. Cytoplasmic and nuclear VDR distribution significantly decreased on both CSE groups and corresponded with immunohistochemistry detection. The ratio of phosphorylated ERK to total ERK significantly increased in cytoplasm of both CSE on day 7. In particular, nuclear ERK MAPK significantly escalated in the filter group on day 14. In consistent with changes in intracellular markers, histopathological examination in both CSE groups showed significant increases in tracheal and peribronchiolar epithelial proliferation, alveolar macrophages and an increased trend of parenchymal infiltration. In summary, the evidence of lung injuries along with VDR depletion and MAPK activation observed in both CSE types indicated that there was no benefit of using cigarette filter to prevent protein damage or protect cells against cigarette smoke exposure in this model.
Collapse
Affiliation(s)
- Fatist Okrit
- Department of Physiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | | | - Duangporn Werawatganon
- Department of Physiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Maneerat Chayanupatkul
- Department of Physiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | | |
Collapse
|
19
|
Zhu YM, Pan LC, Zhang LJ, Yin Y, Zhu ZY, Sun HQ, Liu CY. Chemical structure and antioxidant activity of a polysaccharide from Siraitia grosvenorii. Int J Biol Macromol 2020; 165:1900-1910. [PMID: 33096178 DOI: 10.1016/j.ijbiomac.2020.10.127] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 09/22/2020] [Accepted: 10/14/2020] [Indexed: 11/28/2022]
Abstract
A novel polysaccharide from Siraitia grosvenorii residues (SGP, molecular weight 1.93 × 103 KDa) was isolated and purified. SGP was composed of α-L-Arabinose, α-D-Mannose, α-d-Glucose, α-D-Galactose, Glucuronic acid, and Galacturonic acid with the ratio of 1: 1.92: 3.98: 7.63: 1.85: 7.34. The backbone of SGP was consist of galactoses and linked by α-(1,4)-glycosidic bond. The branch chains including α-1,6 linked glucose branch, α-1,6 linked mannose branch, α-1,3 linked galactose branch and arabinose branched (α-L-Ara(1→). The results of bioactivity experiments suggested that SGP had antioxidant in vitro, especially on scavenging DPPH radicals. Besides, SGP resulted in the decrease of ROS and the percentage of apoptotic and necrotic cells in a dose-dependent manner in H2O2 oxide injury PC12 cells. This research could help to develop the potential value and utilization of Siraitia grosvenorii.
Collapse
Affiliation(s)
- Yong-Ming Zhu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China; Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, PR China; College of Food Science and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Li-Chao Pan
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China; Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, PR China; College of Food Science and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Li-Juan Zhang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China; Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, PR China; College of Food Science and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Yue Yin
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China; Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, PR China; College of Food Science and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Zhen-Yuan Zhu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China; Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, PR China; College of Food Science and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| | - Hui-Qing Sun
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China; Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, PR China; College of Food Science and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Chun-Yu Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China; Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, PR China; College of Food Science and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| |
Collapse
|
20
|
The Protective Role of Bioactive Quinones in Stress-induced Senescence Phenotype of Endothelial Cells Exposed to Cigarette Smoke Extract. Antioxidants (Basel) 2020; 9:antiox9101008. [PMID: 33081423 PMCID: PMC7602940 DOI: 10.3390/antiox9101008] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 12/27/2022] Open
Abstract
Endothelial dysfunction represents the initial stage in atherosclerotic lesion development which occurs physiologically during aging, but external factors like diet, sedentary lifestyle, smoking accelerate it. Since cigarette smoking promotes oxidative stress and cell damage, we developed an in vitro model of endothelial dysfunction using vascular cells exposed to chemicals present in cigarette smoke, to help elucidate the protective effects of anti-inflammatory and antioxidant agents, such as ubiquinol and vitamin K, that play a fundamental role in vascular health. Treatment of both young and senescent Human Umbilical Vein Endothelial Cells (HUVECs) for 24 h with cigarette smoke extract (CSE) decreased cellular viability, induced apoptosis via reactive oxygen species (ROS) imbalance and mitochondrial dysfunction and promoted an inflammatory response. Moreover, the senescence marker SA-β-galactosidase was observed in both young CSE-exposed and in senescent HUVECs suggesting that CSE exposure accelerates aging in endothelial cells. Supplementation with 10 µM ubiquinol and menaquinone-7 (MK7) counteracted oxidative stress and inflammation, resulting in improved viability, decreased apoptosis and reduced SA-β-galactosidase, but were ineffective against CSE-induced mitochondrial permeability transition pore opening. Other K vitamins tested like menaquinone-4 (MK4) and menaquinone-1 (K1) were less protective. In conclusion, CSE exposure was able to promote a stress-induced senescent phenotype in young endothelial cells likely contributing to endothelial dysfunction in vivo. Furthermore, the molecular changes encountered could be offset by ubiquinol and menaquinone-7 supplementation, the latter resulting the most bioactive K vitamin in counteracting CSE-induced damage.
Collapse
|
21
|
Lakshmi SP, Reddy AT, Kodidhela LD, Varadacharyulu NC. Epigallocatechin gallate diminishes cigarette smoke-induced oxidative stress, lipid peroxidation, and inflammation in human bronchial epithelial cells. Life Sci 2020; 259:118260. [PMID: 32795541 DOI: 10.1016/j.lfs.2020.118260] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/28/2020] [Accepted: 08/09/2020] [Indexed: 02/07/2023]
Abstract
Cigarette smoke (CS), the major risk factor of chronic obstructive pulmonary disease (COPD), contains numerous free radicals that can cause oxidative stress and exaggerated inflammatory responses in the respiratory system. Lipid peroxidation which is oxidative degradation of polyunsaturated fatty acids and results in cell damage has also been associated with COPD pathogenesis. Increased levels of lipid peroxidation as well as its end product 4-hydroxynonenal have indeed been detected in COPD patients. Additionally, reactive oxygen species such as those contained in CS can activate nuclear factor-κB signaling pathway, initiating cascades of proinflammatory mediator expression. As emerging evidence attests to the antioxidative and anti-inflammatory properties of tea catechins, we sought to determine whether epigallocatechin gallate, the most abundant tea catechin, can provide protection against oxidative stress, lipid peroxidation, and inflammatory responses caused by CS. We found that EGCG treatment blocked cigarette smoke extract (CSE)-induced oxidative stress as indicated by decreased production and accumulation of reactive oxygen species in airway epithelial cells (AECs). Likewise, lipid peroxidation in CSE-stimulated AECs was suppressed by EGCG. Our findings further suggest that EGCG sequestered 4-hydroxynonenal and interfered with its protein adduct formation. Lastly, we show that EGCG inhibited nuclear factor-κB activation and the downstream expression of proinflammatory mediators. In summary, our study describing the antioxidative and anti-inflammatory effects of EGCG in CSE-exposed AECs provide valuable information about the therapeutic potential of this tea catechin for COPD.
Collapse
Affiliation(s)
- Sowmya P Lakshmi
- Department of Biochemistry, Sri Krishnadevaraya University, Anantapur, Andhra Pradesh, India.
| | - Aravind T Reddy
- Department of Biochemistry, Sri Krishnadevaraya University, Anantapur, Andhra Pradesh, India
| | - Lakshmi Devi Kodidhela
- Department of Biochemistry, Sri Krishnadevaraya University, Anantapur, Andhra Pradesh, India
| | - N Ch Varadacharyulu
- Department of Biochemistry, Sri Krishnadevaraya University, Anantapur, Andhra Pradesh, India
| |
Collapse
|
22
|
Genetic polymorphism of catechol-O-methyltransferase modulates the association of green tea consumption and lung cancer. Eur J Cancer Prev 2020; 28:316-322. [PMID: 30157136 DOI: 10.1097/cej.0000000000000464] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Tea polyphenols are strong antioxidants, which can be rapidly O-methylated by catechol-O-methyltransferase (COMT). Thus, it is possible that the genetic polymorphism of COMT can modulate the association of green tea consumption and lung cancer. Here, we designed a case-control study to evaluate the combined effect of green tea consumption and COMT genotypes on the risk of lung cancer. A total of 237 lung cancer patients and 474 healthy controls were recruited. Questionnaires were administered to obtain demographic data, smoking status, green tea consumption, fruits and vegetables intake, exposure to cooking fumes, and family history of lung cancer. Genotypes for COMT were identified by PCR. Smoking, green tea consumption, exposure to cooking fumes, and family history of lung cancer were associated with the development of lung cancer. When green tea drinkers carrying COMT HL/LL genotypes were selected as the reference group, drinkers carrying the COMT HH genotype had a higher risk for the development of lung cancer (odds ratio: 1.97, 95% confidence interval: 0.99-3.91). Among the current and ever smokers, the elevated risk for lung cancer was more apparent in green tea drinkers carrying the COMT HH genotype compared with green tea drinkers carrying COMT HL/LL genotypes (odds ratio: 5.84, 95% confidence interval: 1.75-19.45). Green tea drinkers with greater activity of the COMT genotype, whereby polyphenols are effectively excluded, will gain fewer protective benefits against lung cancer development.
Collapse
|
23
|
Kaur G, Batra S. Regulation of DNA methylation signatures on NF-κB and STAT3 pathway genes and TET activity in cigarette smoke extract-challenged cells/COPD exacerbation model in vitro. Cell Biol Toxicol 2020; 36:459-480. [PMID: 32342329 DOI: 10.1007/s10565-020-09522-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 03/19/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is a global health problem. Currently, there is a lack of knowledge about the pathobiology of this disease and available therapies are ineffective. Cigarette smoking is the leading cause of COPD; however, not all smokers develop COPD. Exacerbations of COPD caused by microbes are common and detrimental. Approximately 20-50% of patient exacerbations are caused by bacterial colonization in the lower airways. It is generally accepted that epigenetic mechanisms, especially DNA methylation, play an important role during progression of COPD. Thus, we hypothesized that DNA methylation patterns vary significantly following smoke exposure and during exacerbations caused by bacterial infections. To test our hypothesis, we used an in vitro study model that mimics COPD exacerbations and performed extensive studies to understand the role of CpG promoter methylation of NF-κB and STAT3-mediated pathway genes. Both NF-κB and STAT3 transcription factors play critical roles in orchestrating inflammatory responses during cigarette smoke exposure. In brief, human lung adenocarcinoma cells with type II alveolar epithelium characteristics (A549) were challenged with cigarette smoke extract (CSE) or DMSO (control) followed by a 3-h challenge with bacterial lipopolysaccharide (LPS; from Pseudomonas aeruginosa) prior to the termination of CSE exposure (COPD exacerbation group). The production of cytokines/chemokines, regulation of transcription factors, and DNA methylation of specific genes were then assessed. We also studied changes in the expression and activity of ten-eleven translocases (TETs), the enzymes responsible for DNA demethylation, and assessed their role in regulating DNA methylation in the CSE-challenged group. RESULTS There was a significant increase in the release of cytokines/chemokines (IL-8, MCP-1, IL-6 and CCL5) in the COPD exacerbation group as compared to the control group. Hypomethylation of NF-κB-mediated pathway genes correlated with their induction in our COPD exacerbation study model. Further, we observed an important role of TET1/2 in regulating the DNA methylation of NF-κB, STAT3, IKK, and NIK genes and cytokine/chemokine production by A549 cells during CSE challenge. CONCLUSIONS Studies to further define the role of TETs in CSE-mediated epigenetic regulation may lead to the development of better and more effective therapeutic intervention strategies for COPD.
Collapse
Affiliation(s)
- Gagandeep Kaur
- Laboratory of Pulmonary Immunotoxicology, Department of Environmental Toxicology, Southern University and A&M College, Baton Rouge, LA, 70813, USA
| | - Sanjay Batra
- Laboratory of Pulmonary Immunotoxicology, Department of Environmental Toxicology, Southern University and A&M College, Baton Rouge, LA, 70813, USA.
| |
Collapse
|
24
|
Liu S, Yang T, Ming TW, Gaun TKW, Zhou T, Wang S, Ye B. Isosteroid alkaloids from Fritillaria cirrhosa bulbus as inhibitors of cigarette smoke-induced oxidative stress. Fitoterapia 2019; 140:104434. [PMID: 31760067 DOI: 10.1016/j.fitote.2019.104434] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 11/20/2019] [Accepted: 11/20/2019] [Indexed: 12/13/2022]
Abstract
Fritillaria cirrhosa bulbus is a Chinese folk herb famous for its antitussive, expectorant, anti-asthma and anti-inflammatory properties, and is widely used to treat respiratory diseases. However, the impacts of F. cirrhosa bulbus on oxidative stress are still unkown. In the present study, we investigated the potential effect and mechanism of six isosteroid alkaloids with different chemical structures from F. cirrhosa bulbus on protection against cigarette smoke-induced oxidative stress in RAW264.7 macrophages. The results showed that six isosteroid alkaloids reduced reactive oxygen species (ROS) production, elevated glutathione (GSH) level and promoted heme oxygenase (HO-1) expression, which is in association with induction of NF-E2-related factor 2 (Nrf2) nuclear translocation and up-regulation of Nrf2 expression. Among these alkaloids, verticinone, verticine, imperialine-3-β-D-glucoside, delavine and peimisine exhibited more potent effect against CSE-induced oxidative stress than that of imperialine. These findings for the first time demonstrated that F. cirrhosa bulbus may play a protective role in cellular oxidative stress by activating Nrf2-mediated antioxidant pathway. Furthermore, the differences in antioxidant effects of these alkaloids were compared, as well as the corresponding structure-activity relationships were preliminarily elucidated. This suggested that F. cirrhosa bulbus might be a promising therapeutic treatment for the prevent of oxidative stress-related diseases.
Collapse
Affiliation(s)
- Simei Liu
- Key Laboratory of Drug-Targeting, Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Tiechui Yang
- Nin Jiom Medicine Manufactory (H.K.) Limited, Hongkong, China
| | - Tse Wai Ming
- Nin Jiom Medicine Manufactory (H.K.) Limited, Hongkong, China
| | | | - Ting Zhou
- Key Laboratory of Drug-Targeting, Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Shu Wang
- Key Laboratory of Drug-Targeting, Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Bengui Ye
- Key Laboratory of Drug-Targeting, Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
25
|
Sayyed K, Aljebeai AK, Al-Nachar M, Chamieh H, Taha S, Abdel-Razzak Z. Interaction of cigarette smoke condensate and some of its components with chlorpromazine toxicity on Saccharomyces cerevisiae. Drug Chem Toxicol 2019; 45:77-87. [PMID: 31514548 DOI: 10.1080/01480545.2019.1659809] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Chlorpromazine (CPZ) is an antipsychotic phenothiazine which is still commonly prescribed though it causes idiosyncratic toxicity such as cholestasis. CPZ toxicity mechanisms involve oxidative stress among others. Cigarette smoke (CS) causes deleterious effects through diverse mechanisms such as oxidative stress. CS alters drug metabolizing enzymes expression and drug transporters expression and activity in animal cell models as well as in Saccharomyces cerevisiae. CS therefore alters pharmacokinetic and pharmacodynamics of many drugs including CPZ and caffeine whose toxicity is promoted by CS condensate (CSC). CSC interaction with CPZ toxicity deserves investigation. In this study, CSC exerted mild toxicity on Saccharomyces cerevisiae which resisted to this chemical stress after several hours. CPZ toxicity on yeast was dose-dependent and the cells resisted to CPZ up to 40 µM after 24 h of treatment. Yeast cells treated simultaneously with CPZ and a nontoxic CSC dose were less sensitive to CPZ. CSC probably triggers cross-resistance to CPZ. Using Sod1 mutant strain, we showed that this gene is potentially involved in the potential cross-resistance. Other genes encoding stress-related transcription factors could be involved in this process. Nicotine and cadmium chloride, which caused a dose-dependent toxicity individually, acted with CPZ in an additive or synergistic manner in terms of toxicity. Although our results cannot be extrapolated to humans, they clearly show that CSC and its components interact with CPZ toxicity.
Collapse
Affiliation(s)
- Katia Sayyed
- EDST-AZM-center-LBA3B - Tripoli and Faculty of Sciences, Lebanese University , Beirut , Lebanon
| | - Abdel-Karim Aljebeai
- EDST-AZM-center-LBA3B - Tripoli and Faculty of Sciences, Lebanese University , Beirut , Lebanon
| | - Mariam Al-Nachar
- EDST-AZM-center-LBA3B - Tripoli and Faculty of Sciences, Lebanese University , Beirut , Lebanon
| | - Hala Chamieh
- EDST-AZM-center-LBA3B - Tripoli and Faculty of Sciences, Lebanese University , Beirut , Lebanon
| | - Samir Taha
- EDST-AZM-center-LBA3B - Tripoli and Faculty of Sciences, Lebanese University , Beirut , Lebanon
| | - Ziad Abdel-Razzak
- EDST-AZM-center-LBA3B - Tripoli and Faculty of Sciences, Lebanese University , Beirut , Lebanon
| |
Collapse
|
26
|
Hoeng J, Maeder S, Vanscheeuwijck P, Peitsch MC. Assessing the lung cancer risk reduction potential of candidate modified risk tobacco products. Intern Emerg Med 2019; 14:821-834. [PMID: 30767158 PMCID: PMC6722152 DOI: 10.1007/s11739-019-02045-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 01/30/2019] [Indexed: 12/19/2022]
Abstract
Smoking is the major cause of lung cancer. While the risk of lung cancer increases with the number of cigarettes smoked and the duration of smoking, it also decreases upon smoking cessation. The development of candidate modified risk tobacco products (cMRTP) is aimed at providing smokers who will not quit with alternatives to cigarettes that present less risk of harm and smoking-related disease. It is necessary to assess the risk reduction potential of cMRTPs, including their potential to reduce the risk of lung cancer. Assessing the lung cancer risk reduction potential of cMRTPs is hampered by (i) the absence of clinical risk markers that are predictive of future lung cancer development, (ii) the latency of lung cancer manifestation (decades of smoking), and (iii) the slow reduction in excess risk upon cessation and a fortiori upon switching to a cMRTP. It is, therefore, likely that only long-term epidemiology will provide definitive answers to this question and allow to first verify that a cMRTP reduces the risk of lung cancer and if it does, to quantify the reduction in excess lung cancer risk associated with a cMRTP. For this to be possible, the cMRTP would need to be available in the market and used exclusively by a large portion of current smokers. Here, we propose that a mechanism-based approach represents a solid alternative to show in a pre-market setting that switching to a cMRTP is likely to significantly reduce the risk of lung cancer. This approach is based on the causal chain of events that leads from smoking to disease and leverages both non-clinical and clinical studies as well as the principles of systems toxicology. We also discuss several important challenges inherent to the assessment of cMRTPs as well as key aspects regarding product use behavior.
Collapse
Affiliation(s)
- Julia Hoeng
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Serge Maeder
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | | | - Manuel C. Peitsch
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| |
Collapse
|
27
|
Ito S, Taylor M, Mori S, Thorne D, Nishino T, Breheny D, Gaça M, Yoshino K, Proctor C. An inter-laboratory in vitro assessment of cigarettes and next generation nicotine delivery products. Toxicol Lett 2019; 315:14-22. [PMID: 31400404 DOI: 10.1016/j.toxlet.2019.08.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 07/16/2019] [Accepted: 08/06/2019] [Indexed: 02/07/2023]
Abstract
In vitro testing can facilitate the rapid assessment of next generation nicotine delivery products (NGPs) with comparisons to combustible tobacco products. In vitro assays for cytotoxicity and oxidative stress were employed at BAT (UK) and JT (Japan) to test total particulate matter (TPM) of a scientific reference cigarette and aerosol collected mass (ACM) of a commercially available E-cigarette and two tobacco heating products (THP). 3R4F TPMs were generated using the Health Canada intense (HCI) regimen, a modified regime (mHCI) for the THP ACMs and the CORESTA recommended method no. 81 for the E-cigarette ACM. Human lung cells were exposed to the test product TPM/ACMs at concentrations between 0-200 μg/ml followed by the employment of commercially available assays for endpoint analysis that included reactive oxygen species (ROS) generation, the glutathione ratio (GSH:GSSG), activation of the antioxidant response elements (ARE) and cellular viability. TPM/ACM nicotine concentrations were quantified using a UPLC-PDA technique. At both laboratories the 3R4F TPM induced significant and dose-dependent responses in all in vitro assays, whereas no significant responses could be measured for the NGP ACMs. In conclusion, both laboratories obtained comparable results across all endpoints therefore demonstrating the utility of the in vitro techniques combined with standardised test products to support the assessment of NGPs.
Collapse
Affiliation(s)
| | - Mark Taylor
- British American Tobacco, R&D, Southampton, UK.
| | - Sakura Mori
- Japan Tobacco Inc., R&D Group, Yokohama, Japan
| | | | | | | | | | - Kei Yoshino
- Japan Tobacco Inc., R&D Group, Yokohama, Japan
| | | |
Collapse
|
28
|
Cigarette smoke exposure combined with lipopolysaccharides induced pulmonary fibrosis in mice. Respir Physiol Neurobiol 2019; 266:9-17. [DOI: 10.1016/j.resp.2019.04.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/31/2019] [Accepted: 04/21/2019] [Indexed: 12/14/2022]
|
29
|
Szoka P, Lachowicz J, Cwiklińska M, Lukaszewicz A, Rybak A, Baranowska U, Holownia A. Cigarette Smoke-Induced Oxidative Stress and Autophagy in Human Alveolar Epithelial Cell Line (A549 Cells). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1176:63-69. [PMID: 31016633 DOI: 10.1007/5584_2019_373] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Chronic exposure to cigarette smoke (CS) causes structural and functional changes in the respiratory tract. It is a major risk factor for cardiovascular and systemic pulmonary diseases. The aim of this study was to investigate the effect of acute CS exposure (2 h) on oxidative stress, heat shock protein 70 (HSP70) expression, autophagy (LC3 expression), and oxidative stress (DCF fluorescence) in human alveolar epithelial cell line A549. Cell culture medium was conditioned with CS using commercial cigarettes, and A549 cells were grown in modified media for 2 h. In some experiments, A549 cells were pretreated with 100 μM of L-buthionine-sulfoximine (BSO) for 24 h to induce glutathione (GSH) depletion. In the cells grown in CS-conditioned medium, GSH was depleted by more than 30%, and reactive oxygen species were increased. Moreover, there was a considerable overexpression of HSP70 and a substantial accumulation of LC3. Similar changes were found when the cells were pretreated with BSO. We conclude that the short-term exposure of epithelial cells to CS increases oxidative stress that entails enhanced autophagy activity.
Collapse
Affiliation(s)
- P Szoka
- Department of Pharmacology, Medical University, Bialystok, Poland.
| | - J Lachowicz
- Department of Pharmacology, Medical University, Bialystok, Poland
| | - M Cwiklińska
- Department of Pharmacology, Medical University, Bialystok, Poland
| | - A Lukaszewicz
- Department of Pharmacology, Medical University, Bialystok, Poland
| | - A Rybak
- Department of Pharmacology, Medical University, Bialystok, Poland
| | - U Baranowska
- Department of Pharmacology, Medical University, Bialystok, Poland
| | - A Holownia
- Department of Pharmacology, Medical University, Bialystok, Poland
| |
Collapse
|
30
|
The cigarette smoke components induced the cell proliferation and epithelial to mesenchymal transition via production of reactive oxygen species in endometrial adenocarcinoma cells. Food Chem Toxicol 2018; 121:657-665. [PMID: 30236600 DOI: 10.1016/j.fct.2018.09.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 09/11/2018] [Accepted: 09/15/2018] [Indexed: 12/27/2022]
Abstract
Cigarette smoke (CS) causes about 480,000 deaths each year worldwide and is well-known to have harmful effects on the human body, leading to heart disease, stroke, lung cancer, and cardiovascular problems. In the present study, the effects of acrylonitrile (AN), benzo(a)pyrene (B(a)P), formaldehyde (FOR), isoprene (ISO), nicotine-derived nitrosamine ketone (NNK), which are the main components of CS, on the proliferation, invasion, and the epithelial-mesenchymal transition (EMT) process of human Ishikawa endometrial adenocarcinoma cells were investigated. Treating Ishikawa cells with CS components resulted in increased cell growth and altered expression of cell cycle-related genes: the protein expression of cyclin D & E increased, while the levels of p21 & p27 were reduced following treatment of these five CS components. In addition, CS components increased the invasion capacity of Ishikawa cells. The expression of the epithelial markers, E-cadherin and occludin, were significantly decreased, while the expression of the mesenchymal marker, N-cadherin, was significantly increased by CS components. In dichloro-dihydro-fluorescein diacetate (H2DCF-DA) assay, ROS production increased by treatment of CS components. The CS components activated the ROS-p38 MAPK-EMT pathway by increasing the level of phosphorylated p38 MAPK and p44/42 (ERK1/2), and by up-regulating Snail and Slug, the transcription factors for EMT. Taken together, these results indicate that CS components can promote progression of endometrial adenocarcinoma via increasing cell proliferation and the ROS-mediated EMT process.
Collapse
|
31
|
Darbandi M, Darbandi S, Agarwal A, Sengupta P, Durairajanayagam D, Henkel R, Sadeghi MR. Reactive oxygen species and male reproductive hormones. Reprod Biol Endocrinol 2018; 16:87. [PMID: 30205828 PMCID: PMC6134507 DOI: 10.1186/s12958-018-0406-2] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 08/30/2018] [Indexed: 12/12/2022] Open
Abstract
Reports of the increasing incidence of male infertility paired with decreasing semen quality have triggered studies on the effects of lifestyle and environmental factors on the male reproductive potential. There are numerous exogenous and endogenous factors that are able to induce excessive production of reactive oxygen species (ROS) beyond that of cellular antioxidant capacity, thus causing oxidative stress. In turn, oxidative stress negatively affects male reproductive functions and may induce infertility either directly or indirectly by affecting the hypothalamus-pituitary-gonadal (HPG) axis and/or disrupting its crosstalk with other hormonal axes. This review discusses the important exogenous and endogenous factors leading to the generation of ROS in different parts of the male reproductive tract. It also highlights the negative impact of oxidative stress on the regulation and cross-talk between the reproductive hormones. It further describes the mechanism of ROS-induced derangement of male reproductive hormonal profiles that could ultimately lead to male infertility. An understanding of the disruptive effects of ROS on male reproductive hormones would encourage further investigations directed towards the prevention of ROS-mediated hormonal imbalances, which in turn could help in the management of male infertility.
Collapse
Affiliation(s)
- Mahsa Darbandi
- Reproductive Biotechnology Research Center, Avicenna Research Institute, Academic Center for Education, Culture and Research, Tehran, Iran
| | - Sara Darbandi
- Reproductive Biotechnology Research Center, Avicenna Research Institute, Academic Center for Education, Culture and Research, Tehran, Iran
| | - Ashok Agarwal
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, Ohio 44195 USA
| | - Pallav Sengupta
- Department of Physiology, Faculty of Medicine, MAHSA University, Jalan SP2, Bandar Saujana Putra, 42610 Jenjarom, Selangor Malaysia
| | - Damayanthi Durairajanayagam
- Department of Physiology, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Jalan Hospital, 47000 Sungai Buloh, Selangor Malaysia
| | - Ralf Henkel
- Department of Medical Biosciences, University of the Western Cape, Bellville, Cape Town, 7535 South Africa
| | - Mohammad Reza Sadeghi
- Reproductive Immunology Research Center, Avicenna Research Institute, Academic Center for Education, Culture and Research, Tehran, Iran
| |
Collapse
|
32
|
Mishra M, Jiang H, Chawsheen HA, Gerard M, Toledano MB, Wei Q. Nrf2-activated expression of sulfiredoxin contributes to urethane-induced lung tumorigenesis. Cancer Lett 2018; 432:216-226. [PMID: 29906488 DOI: 10.1016/j.canlet.2018.06.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 06/05/2018] [Accepted: 06/07/2018] [Indexed: 12/15/2022]
Abstract
Lung cancer is the leading cause of cancer death worldwide. Cigarette smoking and exposure to chemical carcinogens are among the risk factors of lung tumorigenesis. In this study, we found that cigarette smoke condensate and urethane significantly stimulated the expression of sulfiredoxin (Srx) at the transcript and protein levels in cultured normal lung epithelial cells, and such stimulation was mediated through the activation of nuclear related factor 2 (Nrf2). To study the role of Srx in lung cancer development in vivo, mice with Srx wildtype, heterozygous or knockout genotype were subjected to the same protocol of urethane treatment to induce lung tumors. By comparing tumor multiplicity and volume between groups of mice with different genotype, we found that Srx knockout mice had a significantly lower number and smaller size of lung tumors. Mechanistically, we demonstrated that loss of Srx led to a decrease of tumor cell proliferation as well as an increase of tumor cell apoptosis. These data suggest that Srx may have an oncogenic role that contributes to the development of lung cancer in smokers or urethane-exposed human subjects.
Collapse
Affiliation(s)
- Murli Mishra
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, 40536, USA
| | - Hong Jiang
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, 40536, USA; Markey Cancer Center, University of Kentucky, Lexington, KY, 40536, USA
| | - Hedy A Chawsheen
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, 40536, USA
| | - Matthieu Gerard
- Epigenetic Regulation and Cancer Group, Institut de Biologie et de Technologies de Saclay (iBiTecS), CEA-Saclay, 91191, Gif-sur-Yvette, France
| | - Michel B Toledano
- Oxidative Stress and Cancer Group (LSOC), Institut de Biologie et de Technologies de Saclay (iBiTecS), CEA-Saclay, 91191, Gif-sur-Yvette, France
| | - Qiou Wei
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, 40536, USA; Markey Cancer Center, University of Kentucky, Lexington, KY, 40536, USA.
| |
Collapse
|
33
|
McAdam K, Murphy J, Eldridge A, Meredith C, Proctor C. Integrating chemical, toxicological and clinical research to assess the potential of reducing health risks associated with cigarette smoking through reducing toxicant emissions. Regul Toxicol Pharmacol 2018; 95:102-114. [PMID: 29526814 DOI: 10.1016/j.yrtph.2018.03.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 02/05/2018] [Accepted: 03/08/2018] [Indexed: 11/28/2022]
Abstract
The concept of a risk continuum for tobacco and nicotine products has been proposed, which differentiates products according to their propensity to reduce toxicant exposure and risk. Cigarettes are deemed the most risky and medicinal nicotine the least. We assessed whether a Reduced-Toxicant Prototype (RTP) cigarette could sufficiently reduce exposure to toxicants versus conventional cigarettes to be considered a distinct category in the risk continuum. We present findings from both pre-clinical and clinical studies in order to examine the potential for reduced smoke toxicant emissions to lower health risks associated with cigarette smoking. We conclude that current toxicant reducing technologies are unable to reduce toxicant emissions sufficiently to manifest beneficial disease-relevant changes in smokers. These findings point to a minimum toxicant exposure standard that future potentially reduced risk products would need to meet to be considered for full biological assessment. The RTP met WHO TobReg proposed limits on cigarette toxicant emissions, however the absence of beneficial disease relevant changes in smokers after six months reduced toxicant cigarette use, does not provide evidence that these regulatory proposals will positively impact risks of smoking related diseases. Greater toxicant reductions, such as those that can be achieved in next generation products e.g. tobacco heating products and electronic cigarettes are likely to be necessary to clearly reduce risks compared with conventional cigarettes.
Collapse
Affiliation(s)
- Kevin McAdam
- Research and Development, British American Tobacco, Regents Park Road, Southampton, UK.
| | - James Murphy
- Research and Development, British American Tobacco, Regents Park Road, Southampton, UK.
| | - Alison Eldridge
- Research and Development, British American Tobacco, Regents Park Road, Southampton, UK.
| | - Clive Meredith
- Research and Development, British American Tobacco, Regents Park Road, Southampton, UK.
| | - Christopher Proctor
- Research and Development, British American Tobacco, Regents Park Road, Southampton, UK.
| |
Collapse
|
34
|
Bitzer ZT, Goel R, Reilly SM, Elias RJ, Silakov A, Foulds J, Muscat J, Richie JP. Effect of flavoring chemicals on free radical formation in electronic cigarette aerosols. Free Radic Biol Med 2018; 120:72-79. [PMID: 29548792 PMCID: PMC5940571 DOI: 10.1016/j.freeradbiomed.2018.03.020] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/09/2018] [Accepted: 03/12/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND Flavoring chemicals, or flavorants, have been used in electronic cigarettes (e-cigarettes) since their inception; however, little is known about their toxicological effects. Free radicals present in e-cigarette aerosols have been shown to induce oxidative stress resulting in damage to proliferation, survival, and inflammation pathways in the cell. Aerosols generated from e-liquid solvents alone contain high levels of free radicals but few studies have looked at how these toxins are modulated by flavorants. OBJECTIVES We investigated the effects of different flavorants on free radical production in e-cigarette aerosols. METHODS Free radicals generated from 49 commercially available e-liquid flavors were captured and analyzed using electron paramagnetic resonance (EPR). The flavorant composition of each e-liquid was analyzed by gas chromatography mass spectroscopy (GCMS). Radical production was correlated with flavorant abundance. Ten compounds were identified and analyzed for their impact on free radical generation. RESULTS Nearly half of the flavors modulated free radical generation. Flavorants with strong correlations included β-damascone, δ-tetradecalactone, γ-decalactone, citral, dipentene, ethyl maltol, ethyl vanillin, ethyl vanillin PG acetal, linalool, and piperonal. Dipentene, ethyl maltol, citral, linalool, and piperonal promoted radical formation in a concentration-dependent manner. Ethyl vanillin inhibited the radical formation in a concentration dependent manner. Free radical production was closely linked with the capacity to oxidize biologically-relevant lipids. CONCLUSIONS Our results suggest that flavoring agents play an important role in either enhancing or inhibiting the production of free radicals in flavored e-cigarette aerosols. This information is important for developing regulatory strategies aimed at reducing potential harm from e-cigarettes.
Collapse
Affiliation(s)
- Zachary T Bitzer
- Department of Food Science, Pennsylvania State University, College of Agricultural Sciences, University Park, PA, USA
| | - Reema Goel
- Department of Public Health Sciences, Pennsylvania State University Tobacco Center of Regulatory Science (TCORS), Pennsylvania State University College of Medicine, 500 University Dr., Mail Code: CH69, Hershey, PA 17033, USA
| | - Samantha M Reilly
- Department of Public Health Sciences, Pennsylvania State University Tobacco Center of Regulatory Science (TCORS), Pennsylvania State University College of Medicine, 500 University Dr., Mail Code: CH69, Hershey, PA 17033, USA
| | - Ryan J Elias
- Department of Food Science, Pennsylvania State University, College of Agricultural Sciences, University Park, PA, USA
| | - Alexey Silakov
- Department of Chemistry, Pennsylvania State University, Eberley College of Science, University Park, PA, USA
| | - Jonathan Foulds
- Department of Public Health Sciences, Pennsylvania State University Tobacco Center of Regulatory Science (TCORS), Pennsylvania State University College of Medicine, 500 University Dr., Mail Code: CH69, Hershey, PA 17033, USA
| | - Joshua Muscat
- Department of Public Health Sciences, Pennsylvania State University Tobacco Center of Regulatory Science (TCORS), Pennsylvania State University College of Medicine, 500 University Dr., Mail Code: CH69, Hershey, PA 17033, USA
| | - John P Richie
- Department of Public Health Sciences, Pennsylvania State University Tobacco Center of Regulatory Science (TCORS), Pennsylvania State University College of Medicine, 500 University Dr., Mail Code: CH69, Hershey, PA 17033, USA.
| |
Collapse
|
35
|
Pehlivan S, Uysal MA, Aydin N, Nursal AF, Pehlivan M, Yavuzlar H, Sever U, Kurnaz S, Yavuz FK, Uysal S, Aydin PC. XRCC4 rs6869366 polymorphism is associated with susceptibility to both nicotine dependence and/or schizophrenia. ARCH CLIN PSYCHIAT 2018. [DOI: 10.1590/0101-60830000000157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
| | - Mehmet Atilla Uysal
- Yedikule Hospital for Chest Diseases and Thoracic Surgery Training and Research Hospital, Turkey
| | - Nazan Aydin
- Yedikule Hospital for Chest Diseases and Thoracic Surgery Training and Research Hospital, Turkey
| | | | | | - Hazal Yavuzlar
- Bakirkoy Research and Training Hospital for Psychiatry, Neurology and Neurosurgery, Turkey
| | | | | | - Fatih Kasım Yavuz
- Yedikule Hospital for Chest Diseases and Thoracic Surgery Training and Research Hospital, Turkey
| | - Suna Uysal
- Yedikule Hospital for Chest Diseases and Thoracic Surgery Training and Research Hospital, Turkey
| | - Pinar Cetinay Aydin
- Bakirkoy Research and Training Hospital for Psychiatry, Neurology and Neurosurgery, Turkey
| |
Collapse
|
36
|
Zhao J, Zhang Y, Sisler JD, Shaffer J, Leonard SS, Morris AM, Qian Y, Bello D, Demokritou P. Assessment of reactive oxygen species generated by electronic cigarettes using acellular and cellular approaches. JOURNAL OF HAZARDOUS MATERIALS 2018; 344:549-557. [PMID: 29102637 PMCID: PMC5848214 DOI: 10.1016/j.jhazmat.2017.10.057] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 10/11/2017] [Accepted: 10/27/2017] [Indexed: 05/11/2023]
Abstract
Electronic cigarettes (e-cigs) have fast increased in popularity but the physico-chemical properties and toxicity of the generated emission remain unclear. Reactive oxygen species (ROS) are likely present in e-cig emission and can play an important role in e-cig toxicity. However, e-cig ROS generation is poorly documented. Here, we generated e-cig exposures using a recently developed versatile exposure platform and performed systematic ROS characterization on e-cig emissions using complementary acellular and cellular techniques: 1) a novel acellular Trolox-based mass spectrometry method for total ROS and hydrogen peroxide (H2O2) detection, 2) electron spin resonance (ESR) for hydroxyl radical detection in an acellular and cellular systems and 3) in vitro ROS detection in small airway epithelial cells (SAEC) using the dihydroethidium (DHE) assay. Findings confirm ROS generation in cellular and acellular systems and is highly dependent on the e-cig brand, flavor, puffing pattern and voltage. Trolox method detected a total of 1.2-8.9nmol H2O2eq./puff; H2O2 accounted for 12-68% of total ROS. SAEC cells exposed to e-cig emissions generated up to eight times more ROS compared to control. The dependency of e-cig emission profile on e-cig features and operational parameters should be taken into consideration in toxicological studies.
Collapse
Affiliation(s)
- Jiayuan Zhao
- Department of Environmental Health, Center for Nanotechnology and Nanotoxicology, Harvard School of Public Health, Boston, MA 02115, USA
| | - Yipei Zhang
- Department of Public Health, University of Massachusetts Lowell, MA 01854, USA
| | - Jennifer D Sisler
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health (NIOSH), Morgantown, WV 26505, USA
| | - Justine Shaffer
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health (NIOSH), Morgantown, WV 26505, USA
| | - Stephen S Leonard
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health (NIOSH), Morgantown, WV 26505, USA
| | - Anna M Morris
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health (NIOSH), Morgantown, WV 26505, USA
| | - Yong Qian
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health (NIOSH), Morgantown, WV 26505, USA
| | - Dhimiter Bello
- Department of Environmental Health, Center for Nanotechnology and Nanotoxicology, Harvard School of Public Health, Boston, MA 02115, USA; Department of Public Health, University of Massachusetts Lowell, MA 01854, USA.
| | - Philip Demokritou
- Department of Environmental Health, Center for Nanotechnology and Nanotoxicology, Harvard School of Public Health, Boston, MA 02115, USA.
| |
Collapse
|
37
|
Insights on Localized and Systemic Delivery of Redox-Based Therapeutics. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:2468457. [PMID: 29636836 PMCID: PMC5832094 DOI: 10.1155/2018/2468457] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 12/18/2017] [Indexed: 12/12/2022]
Abstract
Reactive oxygen and nitrogen species are indispensable in cellular physiology and signaling. Overproduction of these reactive species or failure to maintain their levels within the physiological range results in cellular redox dysfunction, often termed cellular oxidative stress. Redox dysfunction in turn is at the molecular basis of disease etiology and progression. Accordingly, antioxidant intervention to restore redox homeostasis has been pursued as a therapeutic strategy for cardiovascular disease, cancer, and neurodegenerative disorders among many others. Despite preliminary success in cellular and animal models, redox-based interventions have virtually been ineffective in clinical trials. We propose the fundamental reason for their failure is a flawed delivery approach. Namely, systemic delivery for a geographically local disease limits the effectiveness of the antioxidant. We take a critical look at the literature and evaluate successful and unsuccessful approaches to translation of redox intervention to the clinical arena, including dose, patient selection, and delivery approach. We argue that when interpreting a failed antioxidant-based clinical trial, it is crucial to take into account these variables and importantly, whether the drug had an effect on the redox status. Finally, we propose that local and targeted delivery hold promise to translate redox-based therapies from the bench to the bedside.
Collapse
|
38
|
Peck MJ, Sanders EB, Scherer G, Lüdicke F, Weitkunat R. Review of biomarkers to assess the effects of switching from cigarettes to modified risk tobacco products. Biomarkers 2018; 23:213-244. [PMID: 29297706 DOI: 10.1080/1354750x.2017.1419284] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Context: One approach to reducing the harm caused by cigarette smoking, at both individual and population level, is to develop, assess and commercialize modified risk alternatives that adult smokers can switch to. Studies to demonstrate the exposure and risk reduction potential of such products generally involve the measuring of biomarkers, of both exposure and effect, sampled in various biological matrices.Objective: In this review, we detail the pros and cons for using several biomarkers as indicators of effects of changing from conventional cigarettes to modified risk products.Materials and methods: English language publications between 2008 and 2017 were retrieved from PubMed using the same search criteria for each of the 25 assessed biomarkers. Nine exclusion criteria were applied to exclude non-relevant publications.Results: A total of 8876 articles were retrieved (of which 7476 were excluded according to the exclusion criteria). The literature indicates that not all assessed biomarkers return to baseline levels following smoking cessation during the study periods but that nine had potential for use in medium to long-term studies.Discussion and conclusion: In clinical studies, it is important to choose biomarkers that show the biological effect of cessation within the duration of the study.
Collapse
Affiliation(s)
| | | | | | - Frank Lüdicke
- Research & Development, Philip Morris International, Neuchâtel, Switzerland
| | - Rolf Weitkunat
- Research & Development, Philip Morris International, Neuchâtel, Switzerland
| |
Collapse
|
39
|
Wu D, Liu B, Yin J, Xu T, Zhao S, Xu Q, Chen X, Wang H. Detection of 8-hydroxydeoxyguanosine (8-OHdG) as a biomarker of oxidative damage in peripheral leukocyte DNA by UHPLC–MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1064:1-6. [DOI: 10.1016/j.jchromb.2017.08.033] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 07/28/2017] [Accepted: 08/23/2017] [Indexed: 10/19/2022]
|
40
|
Zhang S, Li X, Xie F, Liu K, Liu H, Xie J. Evaluation of whole cigarette smoke induced oxidative stress in A549 and BEAS-2B cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 54:40-47. [PMID: 28672163 DOI: 10.1016/j.etap.2017.06.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 06/23/2017] [Accepted: 06/24/2017] [Indexed: 06/07/2023]
Abstract
Cigarette smoke is a complex and oxidative aerosol. Previous researches on the hazards of cigarette smoke mainly focused on the adverse bioeffects induced by its condensates or gas vapor phase, which ignored the dynamic processes of smoking and the cigarette smoke aging. To overcome these disadvantages, we performed air-liquid interface exposure of whole smoke, which used native and unmodified smoke and ensured the exposure similar to physiological inhalation. Our results indicated that whole cigarette smoke induced lung epithelial cells (A549) and bronchial epithelial cells (BEAS-2B) damages in cytotoxicity assays (methyl thiazoly tetrazolium and neutral red uptake assays). In addition, A549 and BEAS-2B cells showed oxidative damages in whole smoke exposure, with concentration change of several biomarkers (reduced and oxidized glutathione, malondialdehyde, 4-hydroxyhydroxy-2-nonenal, extracellular superoxide dismutase, and 8-hydroxyl deoxyguanosine). These results indicate that whole smoke-induced oxidative stress occurs in two different kinds of cells at air-liquid interface.
Collapse
Affiliation(s)
- Shimin Zhang
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China; Technique Center of Tobacco Production, PingDingshanTobacco Company of Henan Tobacco Monopoly Bureau, PingDingshan 467000, China
| | - Xiang Li
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China.
| | - Fuwei Xie
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Kejian Liu
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Huimin Liu
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Jianping Xie
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China.
| |
Collapse
|
41
|
Taylor M, Jaunky T, Hewitt K, Breheny D, Lowe F, Fearon IM, Gaca M. A comparative assessment of e-cigarette aerosols and cigarette smoke on in vitro endothelial cell migration. Toxicol Lett 2017; 277:123-128. [PMID: 28658606 DOI: 10.1016/j.toxlet.2017.06.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 05/24/2017] [Accepted: 06/02/2017] [Indexed: 11/28/2022]
Abstract
Cigarette smoking is a risk factor for several diseases. There has been a steep increase in the use of e-cigarettes that may offer a safer alternative to cigarette smoking. In vitro models of smoking-related diseases may provide valuable insights into disease mechanisms associated with tobacco use and could be used to assess e-cigarettes. We previously reported the application of a 'scratch wound' assay, measuring endothelial cell migration rate following artificial wounding, in the presence or absence of cigarette smoke extracts. This study reports the comparative effects of two commercial e-cigarette products (Vype ePen and Vype eStick) and a scientific reference cigarette (3R4F) on endothelial migration in vitro. Puff-matched extracts were generated using the Health Canada Intense (HCI) regime for cigarettes and a modified HCI for e-cigarettes. Exposure to 3R4F extract (20h) induced concentration-dependent inhibition of endothelial cell migration, with complete inhibition at concentrations >20%. E-cigarette extracts did not inhibit migration, even at double the 3R4F extract nicotine concentration, allowing cells to migrate into the wounded area. Our data demonstrate that e-cigarettes do not induce the inhibition of endothelial cell migration in vitro when compared to 3R4F. The scratch wound assay enables the comparative assessment between tobacco and nicotine products in vitro.
Collapse
Affiliation(s)
- Mark Taylor
- British American Tobacco (Investments) Ltd, Southampton, UK.
| | - Tomasz Jaunky
- British American Tobacco (Investments) Ltd, Southampton, UK
| | | | - Damien Breheny
- British American Tobacco (Investments) Ltd, Southampton, UK
| | - Frazer Lowe
- British American Tobacco (Investments) Ltd, Southampton, UK
| | - Ian M Fearon
- British American Tobacco (Investments) Ltd, Southampton, UK
| | - Marianna Gaca
- British American Tobacco (Investments) Ltd, Southampton, UK
| |
Collapse
|
42
|
Oke O, Azzopardi D, Corke S, Hewitt K, Carr T, Cockcroft N, Foss-Smith G, Taylor M, Lowe F. Assessment of AcuteIn VitroHuman Cellular Responses to Smoke Extracts from a Reduced Toxicant Prototype Cigarette. ACTA ACUST UNITED AC 2017. [DOI: 10.1089/aivt.2016.0038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Oluwatobiloba Oke
- Research and Development, British American Tobacco, Southampton, United Kingdom
| | - David Azzopardi
- Research and Development, British American Tobacco, Southampton, United Kingdom
| | - Sarah Corke
- Research and Development, British American Tobacco, Southampton, United Kingdom
| | - Katherine Hewitt
- Research and Development, British American Tobacco, Southampton, United Kingdom
| | - Tony Carr
- Research and Development, British American Tobacco, Southampton, United Kingdom
| | - Natalia Cockcroft
- Research and Development, British American Tobacco, Southampton, United Kingdom
| | - Geoff Foss-Smith
- Research and Development, British American Tobacco, Southampton, United Kingdom
| | - Mark Taylor
- Research and Development, British American Tobacco, Southampton, United Kingdom
| | - Frazer Lowe
- Research and Development, British American Tobacco, Southampton, United Kingdom
| |
Collapse
|
43
|
Perry IA, Sexton KJ, Prytherch ZC, Blum JL, Zelikoff JT, BéruBé KA. An In Vitro Versus In Vivo Toxicogenomic Investigation of Prenatal Exposures to Tobacco Smoke. ACTA ACUST UNITED AC 2017; 4:379-388. [PMID: 30637297 DOI: 10.1089/aivt.2016.0041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Approximately 1 million women smoke during pregnancy despite evidence demonstrating serious juvenile and/or adult diseases being linked to early-life exposure to cigarette smoke. Susceptibility could be determined by factors in previous generations, that is, prenatal or "maternal" exposures to toxins. Prenatal exposure to airborne pollutants such as mainstream cigarette smoke has been shown to induce early-life insults (i.e., gene changes) in Offspring that serve as biomarkers for disease later in life. In this investigation, we have evaluated genome-wide changes in the lungs of mouse Dams and their juvenile Offspring exposed prenatally to mainstream cigarette smoke. An additional lung model was tested alongside the murine model, as a means to find an alternative in vitro, human tissue-based replacement for the use of animals in medical research. Our toxicogenomic and bio-informatic results indicated that in utero exposure altered the genetic patterns of the fetus, which could put them at greater risk for developing a range of chronic illnesses in later life. The genes altered in the in vitro, cell culture model were reflected in the murine model of prenatal exposure to mainstream cigarette smoke. The use of alternative in vitro models derived from human medical waste tissues could be viable options to achieve human endpoint data and conduct research that meets the remits for scientists to undertake the 3Rs practices.
Collapse
Affiliation(s)
- Iain A Perry
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, United Kingdom
| | - Keith J Sexton
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, United Kingdom
| | - Zoë C Prytherch
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, United Kingdom
| | - Jason L Blum
- Department of Environmental Medicine, NYU School of Medicine, NYU Langone Medical Centre, Tuxedo, New York
| | - Judith T Zelikoff
- Department of Environmental Medicine, NYU School of Medicine, NYU Langone Medical Centre, Tuxedo, New York
| | - Kelly A BéruBé
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, United Kingdom
| |
Collapse
|
44
|
Tae B, Oliveira KC, Conceição RRD, Valenti VE, de Souza JS, Laureano-Melo R, Sato MA, Maciel RMDB, Giannocco G. Evaluation of globins expression in brain, heart, and lung in rats exposed to side stream cigarette smoke. ENVIRONMENTAL TOXICOLOGY 2017; 32:1252-1261. [PMID: 27441981 DOI: 10.1002/tox.22321] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 07/01/2016] [Accepted: 07/04/2016] [Indexed: 06/06/2023]
Abstract
The side stream cigarette smoke (SSCS) is a contributing factor in the pathogenesis of cigarette smoking-induced toxicity. Hemoglobin (Hb), myoglobin (Mb), neuroglobin (Ngb), and cytoglobin (Cygb) are globins with different distributions and functions in the tissues and have similar actions by providing O2 (oxygen) for respiratory chain, detoxification of ROS and nitric oxide (NO), and protect tissues against irreversible lesions. We aimed to investigate the effects of SSCS exposure on gene and protein expression of Ngb, Cygb, and Mb in different tissue. The Ngb and Cygb gene and protein expression in the cerebral cortex increased after 1 week of rat exposure to SSCS. In hippocampus, the Ngb gene and protein expression increased after 1 week or more of exposure and no change was observed in Cygb gene and protein expression. In myocardium, Mb and Cygb gene expression increased at 1 and 4 weeks of exposure, while protein expression of both increased at 1, 2, 3, and 4 weeks. In lung, observed an increase in Cygb gene and protein expression after 2, 3, and 4 weeks of exposure. The findings suggest that SSCS modulates Ngb, Cygb, and Mb in central and peripheral tissue © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 1252-1261, 2017.
Collapse
Affiliation(s)
- Barbara Tae
- Departament of Morphology and Physiology, Faculdade de Medicina do ABC, Santo André, SP, Brazil
| | - Kelen Carneiro Oliveira
- Departament of Morphology and Physiology, Faculdade de Medicina do ABC, Santo André, SP, Brazil
- Departament of Medicine, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | | | | | | | | | - Monica Akemi Sato
- Departament of Morphology and Physiology, Faculdade de Medicina do ABC, Santo André, SP, Brazil
| | | | - Gisele Giannocco
- Departament of Morphology and Physiology, Faculdade de Medicina do ABC, Santo André, SP, Brazil
- Departament of Medicine, Universidade Federal de São Paulo, São Paulo, SP, Brazil
- Department of Biological Sciences, Universidade Federal de São Paulo, Diadema, SP, Brazil
| |
Collapse
|
45
|
Zhang Y, Zhang W, Hou J, Wang X, Zheng H, Xiong W, Yuan J. Combined effect of tris(2-chloroethyl)phosphate and benzo (a) pyrene on the release of IL-6 and IL-8 from HepG2 cells via the EGFR-ERK1/2 signaling pathway. RSC Adv 2017. [DOI: 10.1039/c7ra11273d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Tris(2-chloroethyl)phosphate plus benzo (a) pyrene induced inflammatory response in HepG2 cells through the activation of EGFR-ERK1/2 signaling pathway.
Collapse
Affiliation(s)
- Youjian Zhang
- Department of Occupational and Environmental Health
- Tongji Medical College
- Huazhong University of Science and Technology
- Wuhan 430030
- P. R. China
| | - Wenjuan Zhang
- Department of Occupational and Environmental Health
- Tongji Medical College
- Huazhong University of Science and Technology
- Wuhan 430030
- P. R. China
| | - Jian Hou
- Department of Occupational and Environmental Health
- Tongji Medical College
- Huazhong University of Science and Technology
- Wuhan 430030
- P. R. China
| | - Xian Wang
- Department of Occupational and Environmental Health
- Tongji Medical College
- Huazhong University of Science and Technology
- Wuhan 430030
- P. R. China
| | - Hongyan Zheng
- Department of Occupational and Environmental Health
- Tongji Medical College
- Huazhong University of Science and Technology
- Wuhan 430030
- P. R. China
| | - Wei Xiong
- Department of Occupational and Environmental Health
- Tongji Medical College
- Huazhong University of Science and Technology
- Wuhan 430030
- P. R. China
| | - Jing Yuan
- Department of Occupational and Environmental Health
- Tongji Medical College
- Huazhong University of Science and Technology
- Wuhan 430030
- P. R. China
| |
Collapse
|
46
|
Methionine sulfoxides in serum proteins as potential clinical biomarkers of oxidative stress. Sci Rep 2016; 6:38299. [PMID: 27929071 PMCID: PMC5144094 DOI: 10.1038/srep38299] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 11/07/2016] [Indexed: 02/02/2023] Open
Abstract
Oxidative stress contributes to the pathophysiology of a variety of diseases, and circulating biomarkers of its severity remains a topic of great interest for researchers. Our peptidomic strategy enables accurate and reproducible analysis of circulating proteins/peptides with or without post-translational modifications. Conventional wisdom holds that hydrophobic methionines exposed to an aqueous environment or experimental handling procedures are vulnerable to oxidation. However, we show that the mass spectra intensity ratio of oxidized to non-oxidized methionine residues in serum tryptic proteins can be accurately quantified using a single drop of human serum and give stable and reproducible results. Our data demonstrate that two methionine residues in serum albumin (Met-111 and Met-147) are highly oxidized to methionine sulfoxide in patients with diabetes and renal failure and in healthy smokers versus non-smoker controls. This label-free mass spectrometry approach to quantify redox changes in methionine residues should facilitate the identification of additional circulating biomarkers suitable for predicting the development or progression of human diseases.
Collapse
|
47
|
Urban fine particulate matter exposure causes male reproductive injury through destroying blood-testis barrier (BTB) integrity. Toxicol Lett 2016; 266:1-12. [PMID: 27939690 DOI: 10.1016/j.toxlet.2016.12.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 11/30/2016] [Accepted: 12/05/2016] [Indexed: 11/21/2022]
Abstract
Blood-testis barrier (BTB) provides a suitable microenvironment for germ cells that is required for spermatogenesis. Exposure to particulate matter (PM) is recognized to occasion male reproductive impairment, but the mechanism of which remains unclear. Male Sprague-Dawley (SD) rats were used to establish animal models with PM2.5 exposure concentration of 0, 10, and 20mg/kg.b.w. once a day for four weeks. Success rate of mating, sperm quality, epididymal morphology, expressions of spermatogenesis markers, superoxide dismutases (SOD) activity and expression in testicular tissues, and expressions of BTB junction proteins were detected. In addition, in vitro experiments were also performed. After PM2.5 treatment, reactive oxygen species (ROS) production and apoptosis of Sertoli cells were analyzed. Our results indicated that after PM2.5 exposure male rats presented inferior uberty and sperm quality, with decreased expressions of spermatogenesis markers, escalated SOD activity and expression levels, and reduced expressions of tight junction, adherens junction, and gap junction proteins in testicular tissues. Meantime, PM2.5-treated Sertoli cells displayed increased SOD production and apoptosis. PM2.5 exposure engenders male reproductive function injury through breaking BTB integrity.
Collapse
|
48
|
Cigarette smoke effects on TSPO and VDAC expression in a cellular lung cancer model. Eur J Cancer Prev 2016; 25:361-7. [DOI: 10.1097/cej.0000000000000197] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
49
|
Taylor M, Carr T, Oke O, Jaunky T, Breheny D, Lowe F, Gaça M. E-cigarette aerosols induce lower oxidative stress in vitro when compared to tobacco smoke. Toxicol Mech Methods 2016; 26:465-476. [PMID: 27690198 DOI: 10.1080/15376516.2016.1222473] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 08/05/2016] [Accepted: 08/05/2016] [Indexed: 01/07/2023]
Abstract
Tobacco smoking is a risk factor for various diseases. The underlying cellular mechanisms are not fully characterized, but include oxidative stress, apoptosis, and necrosis. Electronic-cigarettes (e-cigarettes) have emerged as an alternative to and a possible means to reduce harm from tobacco smoking. E-cigarette vapor contains significantly lower levels of toxicants than cigarette smoke, but standardized methods to assess cellular responses to exposure are not well established. We investigated whether an in vitro model of the airway epithelium (human bronchial epithelial cells) and commercially available assays could differentiate cellular stress responses to aqueous aerosol extracts (AqE) generated from cigarette smoke and e-cigarette aerosols. After exposure to AqE concentrations of 0.063-0.500 puffs/mL, we measured the intracellular glutathione ratio (GSH:GSSG), intracellular generation of oxidant species, and activation of the nuclear factor erythroid-related factor 2 (Nrf2)-controlled antioxidant response elements (ARE) to characterize oxidative stress. Apoptotic and necrotic responses were characterized by increases in caspase 3/7 activity and reductions in viable cell protease activities. Concentration-dependent responses indicative of oxidative stress were obtained for all endpoints following exposure to cigarette smoke AqE: intracellular generation of oxidant species increased by up to 83%, GSH:GSSG reduced by 98.6% and transcriptional activation of ARE increased by up to 335%. Caspase 3/7 activity was increased by up to 37% and the viable cell population declined by up to 76%. No cellular stress responses were detected following exposure to e-cigarette AqE. The methods used were suitably sensitive to be employed for comparative studies of tobacco and nicotine products.
Collapse
Affiliation(s)
- Mark Taylor
- a Research and Development Center, British American Tobacco Plc , Southampton , UK
| | - Tony Carr
- a Research and Development Center, British American Tobacco Plc , Southampton , UK
| | - Oluwatobiloba Oke
- a Research and Development Center, British American Tobacco Plc , Southampton , UK
| | - Tomasz Jaunky
- a Research and Development Center, British American Tobacco Plc , Southampton , UK
| | - Damien Breheny
- a Research and Development Center, British American Tobacco Plc , Southampton , UK
| | - Frazer Lowe
- a Research and Development Center, British American Tobacco Plc , Southampton , UK
| | - Marianna Gaça
- a Research and Development Center, British American Tobacco Plc , Southampton , UK
| |
Collapse
|
50
|
Sun W, Wang Z, Cao J, Cui H, Ma Z. Cold stress increases reactive oxygen species formation via TRPA1 activation in A549 cells. Cell Stress Chaperones 2016; 21:367-72. [PMID: 26634370 PMCID: PMC4786528 DOI: 10.1007/s12192-015-0663-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Revised: 11/22/2015] [Accepted: 11/24/2015] [Indexed: 01/28/2023] Open
Abstract
Reactive oxygen species (ROS) are responsible for lung damage during inhalation of cold air. However, the mechanism of the ROS production induced by cold stress in the lung is still unclear. In this work, we measured the changes of ROS and the cytosolic Ca(2+) concentration ([Ca(2+)]c) in A549 cell. We observed that cold stress (from 20 to 5 °C) exposure of A549 cell resulted in an increase of ROS and [Ca(2+)]c, which was completely attenuated by removing Ca(2+) from medium. Further experiments showed that cold-sensing transient receptor potential subfamily member 1 (TRPA1) agonist (allyl isothiocyanate, AITC) increased the production of ROS and the level of [Ca(2+)]c in A549 cell. Moreover, HC-030031, a TRPA1 selective antagonist, significantly inhibited the enhanced ROS and [Ca(2+)]c induced by AITC or cold stimulation, respectively. Taken together, these data demonstrated that TRPA1 activation played an important role in the enhanced production of ROS induced by cold stress in A549 cell.
Collapse
Affiliation(s)
- Wenwu Sun
- Department of Respiratory Medicine, General Hospital of Shenyang Military Area Command, No. 83, Wenhua Road, Shenhe District, Shenyang, 110840, China
| | - Zhonghua Wang
- Department of Respiratory Medicine, General Hospital of Shenyang Military Area Command, No. 83, Wenhua Road, Shenhe District, Shenyang, 110840, China
| | - Jianping Cao
- Department of Respiratory Medicine, General Hospital of Shenyang Military Area Command, No. 83, Wenhua Road, Shenhe District, Shenyang, 110840, China
| | - Haiyang Cui
- Department of Respiratory Medicine, General Hospital of Shenyang Military Area Command, No. 83, Wenhua Road, Shenhe District, Shenyang, 110840, China
| | - Zhuang Ma
- Department of Respiratory Medicine, General Hospital of Shenyang Military Area Command, No. 83, Wenhua Road, Shenhe District, Shenyang, 110840, China.
| |
Collapse
|