1
|
Kumari D, Nair N, Bedwal RS. Effects of Dietary Zinc Deficiency and Supplementation on Prepubertal Rat Testes: Sulfhydryl and Antioxidant Status. Indian J Clin Biochem 2024; 39:539-547. [PMID: 39346712 PMCID: PMC11436516 DOI: 10.1007/s12291-023-01167-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 11/18/2023] [Indexed: 10/01/2024]
Abstract
The study was designed to investigate the effects of dietary zinc deficiency and supplementation on antioxidant system viz. superoxide-dismutase, glutathione reductase, glutathione peroxidase, glutathione- S-transferase, catalase and sulfhydryls levels (GSH, TSH, NPSH and PBSH) in testes of Wistar rats. Pre-pubertal rats were divided into two groups with 6 sub-groups each viz. zinc control (ZC), pair fed (PF), zinc deficient (ZD), zinc control supplementation (ZCS), pair-fed supplementation (PFS) and zinc deficient supplementation (ZDS). Experiments were set for 2- and 4-weeks followed by 4 weeks of zinc supplementation. The zinc deficient group animals exhibited significant decrease in gonado-somatic index (2- and 4- weeks), sulfhydryls levels, GSH, GPx, GR (2 and 4-weeks) and GST concentration (2-weeks). However, after zinc supplementation significant improvement in gonadosomatic index, SH, GSH, antioxidant enzyme levels (GR, GPx, and GST) in deficient groups has been observed. Zinc deficiency during pre-pubertal period affected growth and caused dysregulation of the glutathione antioxidant system. The significant alterations in the levels of antioxidant enzymes and non-enzymatic antioxidant system (GSH and SH) in zinc deficient groups could be due to alleviated generation of free radicals, causative factor for increased oxidative stress which may lead to infertility as oxidative stress is a common pathology seen during infertility. Altered antioxidant system and sulfhydryls levels in testes due to dietary zinc deficiency reflect the significance of optimum zinc for maintaining homeostatic balance in gonadal physiology. Supplementing zinc for 4 weeks could reduce the redox imbalance which may help in alleviating oxidative stress induced alterations in testes.
Collapse
Affiliation(s)
- Deepa Kumari
- Cell and Molecular Biology Laboratory, Department of Zoology, Centre for Advanced Studies, University of Rajasthan, Jaipur, Rajasthan 302004 India
- Department of Zoology, SS Jain Subodh PG College, Jaipur, India
| | - Neena Nair
- Cell and Molecular Biology Laboratory, Department of Zoology, Centre for Advanced Studies, University of Rajasthan, Jaipur, Rajasthan 302004 India
| | - R. S. Bedwal
- Cell and Molecular Biology Laboratory, Department of Zoology, Centre for Advanced Studies, University of Rajasthan, Jaipur, Rajasthan 302004 India
| |
Collapse
|
2
|
Peña-García MV, Moyano-Gallego MJ, Gómez-Melero S, Molero-Payán R, Rodríguez-Cantalejo F, Caballero-Villarraso J. One-Year Impact of Occupational Exposure to Polycyclic Aromatic Hydrocarbons on Sperm Quality. Antioxidants (Basel) 2024; 13:1181. [PMID: 39456435 PMCID: PMC11504984 DOI: 10.3390/antiox13101181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Polycyclic aromatic hydrocarbons (PAHs) have toxic potential, especially as carcinogens, neurotoxins, and endocrine disruptors. The objective of this study is to know the impact of exposure to PAHs on the reproductive health of male workers who operate in solar thermal plants. METHODS Case-control study. A total of 61 men were included: 32 workers exposed to PAH at a solar thermal plant and 29 unexposed people. Seminal quality was studied both at the cellular level (quantity and quality of sperm) and at the biochemical level (magnitudes of oxidative stress in seminal plasma). RESULTS In exposure to PAHs, a significantly higher seminal leukocyte infiltration was observed, as well as lower activity in seminal plasma of superoxide dismutase (SOD) and a reduced glutathione/oxidised glutathione (GSH/GSSG) ratio. The oxidative stress parameters of seminal plasma did not show a relationship with sperm cellularity, neither in those exposed nor in those not exposed to PAH. CONCLUSION One year of exposure to PAH in a solar thermal plant does not have a negative impact on the sperm cellularity of the worker, either quantitatively (sperm count) or qualitatively (motility, vitality, morphology, or cellular DNA fragmentation). However, PAH exposure is associated with lower antioxidant capacity and higher leukocyte infiltration in seminal plasma.
Collapse
Affiliation(s)
- Mª Victoria Peña-García
- Clinical Analyses Service, Reina Sofía University Hospital, 14004 Córdoba, Spain; (M.V.P.-G.); (M.J.M.-G.); (F.R.-C.)
| | - Mª José Moyano-Gallego
- Clinical Analyses Service, Reina Sofía University Hospital, 14004 Córdoba, Spain; (M.V.P.-G.); (M.J.M.-G.); (F.R.-C.)
| | - Sara Gómez-Melero
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), 14004 Córdoba, Spain; (S.G.-M.); (R.M.-P.)
| | - Rafael Molero-Payán
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), 14004 Córdoba, Spain; (S.G.-M.); (R.M.-P.)
| | - Fernando Rodríguez-Cantalejo
- Clinical Analyses Service, Reina Sofía University Hospital, 14004 Córdoba, Spain; (M.V.P.-G.); (M.J.M.-G.); (F.R.-C.)
| | - Javier Caballero-Villarraso
- Clinical Analyses Service, Reina Sofía University Hospital, 14004 Córdoba, Spain; (M.V.P.-G.); (M.J.M.-G.); (F.R.-C.)
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), 14004 Córdoba, Spain; (S.G.-M.); (R.M.-P.)
- Department of Biochemistry and Molecular Biology, Universidad of Córdoba, 14071 Córdoba, Spain
| |
Collapse
|
3
|
Marín de Jesús S, Vigueras-Villaseñor RM, Cortés-Barberena E, Hernández-Rodriguez J, Montes S, Arrieta-Cruz I, Pérez-Aguirre SG, Bonilla-Jaime H, Limón-Morales O, Arteaga-Silva M. Zinc and Its Impact on the Function of the Testicle and Epididymis. Int J Mol Sci 2024; 25:8991. [PMID: 39201677 PMCID: PMC11354358 DOI: 10.3390/ijms25168991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/08/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
Zinc (Zn) is an essential trace element; it exhibits a plethora of physiological properties and biochemical functions. It plays a pivotal role in regulating the cell cycle, apoptosis, and DNA organization, as well as in protein, lipid, and carbohydrate metabolism. Among other important processes, Zn plays an essential role in reproductive health. The ZIP and ZnT proteins are responsible for the mobilization of Zn within the cell. Zn is an inert antioxidant through its interaction with a variety of proteins and enzymes to regulate the redox system, including metallothioneins (MTs), metalloenzymes, and gene regulatory proteins. The role of Zn in the reproductive system is of great importance; processes, such as spermatogenesis and sperm maturation that occur in the testicle and epididymis, respectively, depend on this element for their development and function. Zn modulates the synthesis of androgens, such as testosterone, for these reproductive processes, so Zn deficiency is related to alterations in sperm parameters that lead to male infertility.
Collapse
Affiliation(s)
- Sergio Marín de Jesús
- Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Ciudad de Mexico 09340, Mexico; (S.M.d.J.); (S.G.P.-A.)
| | | | - Edith Cortés-Barberena
- Departamento de Ciencias de la Salud, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Avenida San Rafael Atlixco 186, Ciudad de Mexico 09340, Mexico;
| | - Joel Hernández-Rodriguez
- Cuerpo Académico de Investigación en Quiropráctica, Universidad Estatal del Valle de Ecatepec, Av. Central s/n Valle de Anáhuac, Ecatepec de Morelos 55210, Mexico;
| | - Sergio Montes
- Unidad Académica Multidisciplinaria Reynosa-Aztlán, Universidad Autónoma de Tamaulipas, Calle 16 y Lago de Chapala, Aztlán, Reynosa 88740, Mexico;
| | - Isabel Arrieta-Cruz
- Departamento de Investigación Básica, Instituto Nacional de Geriatría, Secretaria de Salud, Ciudad de Mexico 10200, Mexico;
| | - Sonia Guadalupe Pérez-Aguirre
- Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Ciudad de Mexico 09340, Mexico; (S.M.d.J.); (S.G.P.-A.)
| | - Herlinda Bonilla-Jaime
- Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana-Iztapalapa, Avenida San Rafael Atlixco 186, Ciudad de Mexico 09340, Mexico; (H.B.-J.); (O.L.-M.)
| | - Ofelia Limón-Morales
- Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana-Iztapalapa, Avenida San Rafael Atlixco 186, Ciudad de Mexico 09340, Mexico; (H.B.-J.); (O.L.-M.)
| | - Marcela Arteaga-Silva
- Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana-Iztapalapa, Avenida San Rafael Atlixco 186, Ciudad de Mexico 09340, Mexico; (H.B.-J.); (O.L.-M.)
- Laboratorio de Neuroendocrinología Reproductiva, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, Ciudad de Mexico 09340, Mexico
| |
Collapse
|
4
|
Chemek M, Kadi A, Al-Mahdawi FKI, Potoroko I. Zinc as a Possible Critical Element to Prevent Harmful Effects of COVID-19 on Testicular Function: a Narrative Review. Reprod Sci 2024:10.1007/s43032-024-01638-0. [PMID: 38987405 DOI: 10.1007/s43032-024-01638-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/24/2024] [Indexed: 07/12/2024]
Abstract
Research into innovative non-pharmacological therapeutic routes via the utilization of natural elements like zinc (Zn) has been motivated by the discovery of new severe acute respiratory syndrome-related coronavirus 2 (SARS-COV2) variants and the ineffectiveness of certain vaccination treatments during COVID-19 pandemic. In addition, research on SARS-COV-2's viral cellular entry and infection mechanism has shown that it may seriously harm reproductive system cells and impair testicular function in young men and adolescents, which may lead to male infertility over time. In this context, we conducted a narrative review to give an overview of the data pertaining to Zn's critical role in testicular tissue, the therapeutic use of such micronutrients to enhance male fertility, as well as in the potential mitigation of COVID-19, with the ultimate goal of elucidating the hypothesis of the potential use of Zn supplements to prevent the possible harmful effects of SARS-COV2 infection on testis physiological function, and subsequently, on male fertility.
Collapse
Affiliation(s)
- Marouane Chemek
- Department of food and biotechnology, South Ural State University, Chelyabinsk, 454080, Russia.
| | - Ammar Kadi
- Department of food and biotechnology, South Ural State University, Chelyabinsk, 454080, Russia
| | | | - Irina Potoroko
- Department of food and biotechnology, South Ural State University, Chelyabinsk, 454080, Russia
| |
Collapse
|
5
|
Liu WJ, Li LS, Lan MF, Shang JZ, Zhang JX, Xiong WJ, Lai XL, Duan X. Zinc deficiency deteriorates ovarian follicle development and function by inhibiting mitochondrial function. J Ovarian Res 2024; 17:115. [PMID: 38807213 PMCID: PMC11134637 DOI: 10.1186/s13048-024-01442-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/21/2024] [Indexed: 05/30/2024] Open
Abstract
Zinc (Zn) is a crucial trace element essential for human growth and development, particularly for reproductive health. Previous research has shown a decrease in serum zinc concentration with age and individuals with conditions such as polycystic ovary syndrome (PCOS) and diabetes mellitus. However, the specific effects of zinc deficiency on the female reproductive system, especially ovarian function, are not fully understood. In our study, we observed a significant reduction in the total number of follicles and mature follicles in the zinc deficiency group. This reduction correlated with decreased level of anti-Mullerian hormone (AMH) and abnormal gene expression affecting hormone secretion regulation. Furthermore, we found that zinc deficiency disrupted mitochondrial dynamics, leading to oxidative stress in the ovaries, which further inhibited autophagy and increased ovarian apoptosis. These changes ultimately resulted in the failure of germinal vesicle breakdown (GVBD) and reduced oocyte quality. Meanwhile, administration of zinc glycine effectively alleviated the oocyte meiotic arrest caused by dietary zinc deficiency. In conclusion, our findings demonstrated that dietary zinc deficiency can affect hormone secretion and follicle maturation by impairing mitochondrial function and autophagy.
Collapse
Affiliation(s)
- Wen-Jiao Liu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Li-Shu Li
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Meng-Fan Lan
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Jian-Zhou Shang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Jin-Xin Zhang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Wen-Jie Xiong
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Xin-Le Lai
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Xing Duan
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China.
| |
Collapse
|
6
|
Liu J, Wang E, Xi Z, Dong J, Chen C, Xu P, Wang L. Zinc mitigates cadmium-induced sperm dysfunction through regulating Ca 2+ and metallothionein expression in the freshwater crab Sinopotamon henanense. Comp Biochem Physiol C Toxicol Pharmacol 2024; 279:109860. [PMID: 38387689 DOI: 10.1016/j.cbpc.2024.109860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/29/2024] [Accepted: 02/15/2024] [Indexed: 02/24/2024]
Abstract
Cadmium (Cd) is a highly toxic heavy metal element that might adversely affect sperm function such as the acrosome reaction (AR). Although it is widely recognized that zinc (Zn) plays a crucial role in sperm quality, the complete elucidation of how Zn ameliorates Cd-induced sperm dysfunction is still unclear. In this study, we aimed to explore the protective effects of Zn against the sperm dysfunction induced by Cd in the freshwater crab Sinopotamon henanense. The results demonstrated that Cd exposure not only impaired the sperm ultrastructure, but also caused sperm dysfunction by decreasing the AR induction rate, acrosome enzyme activity, and Ca2+ content in sperm while elevating the activity and transcription expression of key Ca2+ signaling pathway-related proteins Calmodulin (CAM) and Ca2+-ATPase. However, the administration of Zn was found to alleviate Cd-induced sperm morphological and functional disorders by increasing the activity and transcription levels of CaM and Ca2+-ATPase, thereby regulating intracellular Ca2+ homeostasis and reversing the decrease in Ca2+ contents caused by Cd. Furthermore, this study was the first to investigate the distribution of metallothionein (MT) in the AR of S. henanense, and it was found that Zn can reduce the elevated levels of MT in crabs caused by Cd, demonstrating the significance of Zn in inducing MT to participate in the AR process and in metal detoxification in S. henanense. These findings offer novel perspectives and substantiation regarding the utilization of Zn as a protective agent against Cd-induced toxicity and hold significant practical implications for mitigating Cd-induced sperm dysfunction.
Collapse
Affiliation(s)
- Jing Liu
- School of Life Science, Shanxi University, Taiyuan 030006, Shanxi, China
| | - Ermeng Wang
- School of Life Science, Shanxi University, Taiyuan 030006, Shanxi, China
| | - Zhipeng Xi
- School of Life Science, Shanxi University, Taiyuan 030006, Shanxi, China
| | - Jingwei Dong
- School of Life Science, Shanxi University, Taiyuan 030006, Shanxi, China
| | - Chienmin Chen
- Department of Environmental Resource Management, Chia Nan University of Pharmacy and Science, Tainan City 000700, Taiwan
| | - Peng Xu
- School of Life Science, Shanxi University, Taiyuan 030006, Shanxi, China
| | - Lan Wang
- School of Life Science, Shanxi University, Taiyuan 030006, Shanxi, China.
| |
Collapse
|
7
|
Zeng X, Wang Z, Yu L, Wang L, Liu Y, Chen Y, Wang C. Zinc Supplementation Reduces Testicular Cell Apoptosis in Mice and Improves Spermatogenic Dysfunction Caused by Marginal Zinc Deficiency. Biol Trace Elem Res 2024; 202:1656-1668. [PMID: 37515670 DOI: 10.1007/s12011-023-03789-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/18/2023] [Indexed: 07/31/2023]
Abstract
Zinc (Zn) is an important trace element in the human body and plays an important role in growth, development, and male reproductive functions. Marginal zinc deficiency (MZD) is common in the human population and can cause spermatogenic dysfunction in males. Therefore, the aim of this study was to investigate methods to improve spermatogenic dysfunction caused by MZD and to further explore its mechanism of action. A total of 75 4-week-old male SPF ICR mice were randomly divided into five groups (control, MZD, MZD + ZnY2, MZD + ZnY4, and MZD + ZnY8, 15 mice per group). The dietary Zn content was 30 mg/kg in the control group and 10 mg/kg in the other groups. From low to high, the Zn supplementation doses administered to the three groups were 2, 4, and 8 mg/kg·bw. After 35 days, the zinc content, sperm quality, activity of spermatogenic enzymes, oxidative stress level, and apoptosis level of the testes in mice were determined. The results showed that MZD decreased the level of Zn in the serum, sperm quality, and activity of spermatogenic enzymes in mice. After Zn supplementation, the Zn level in the serum increased, sperm quality was significantly improved, and spermatogenic enzyme activity was restored. In addition, MZD reduced the content of antioxidants (copper-zinc superoxide dismutase (Cu-Zn SOD), metallothionein (MT), and glutathione (GSH) and promoted malondialdehyde (MDA) production. The apoptosis index of the testis also increased significantly in the MZD group. After Zn supplementation, the level of oxidative stress decreased, and the apoptosis index in the testis was reduced. Furthermore, quantitative real-time polymerase chain reaction (qRT-PCR) showed that the expression of B-cell lymphoma-2 (Bcl-2) mRNA and Bcl-2/BCL2-associated X (Bax) in the control group decreased in testicular cells, and their expression was restored after Zn supplementation. The results of this study indicated that Zn supplementation can reduce the level of oxidative stress and increase the ability of testicular cells to resist apoptosis, thereby improving spermatogenic dysfunction caused by MZD in mice.
Collapse
Affiliation(s)
- Xiangchao Zeng
- Department of Toxicology, School of Public Health, Wuhan University, Wuhan, 430071, Hubei Province, People's Republic of China
| | - Ziqiong Wang
- Department of Toxicology, School of Public Health, Wuhan University, Wuhan, 430071, Hubei Province, People's Republic of China
| | - Lu Yu
- Department of Toxicology, School of Public Health, Wuhan University, Wuhan, 430071, Hubei Province, People's Republic of China
| | - Lei Wang
- Department of Toxicology, School of Public Health, Wuhan University, Wuhan, 430071, Hubei Province, People's Republic of China
| | - Yueling Liu
- Department of Toxicology, School of Public Health, Wuhan University, Wuhan, 430071, Hubei Province, People's Republic of China
| | - Yuxin Chen
- Department of Toxicology, School of Public Health, Wuhan University, Wuhan, 430071, Hubei Province, People's Republic of China
| | - Chunhong Wang
- Department of Toxicology, School of Public Health, Wuhan University, Wuhan, 430071, Hubei Province, People's Republic of China.
| |
Collapse
|
8
|
Osadchuk L, Kleshchev M, Osadchuk A. Effects of cigarette smoking on semen quality, reproductive hormone levels, metabolic profile, zinc and sperm DNA fragmentation in men: results from a population-based study. Front Endocrinol (Lausanne) 2023; 14:1255304. [PMID: 37920251 PMCID: PMC10619690 DOI: 10.3389/fendo.2023.1255304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 08/16/2023] [Indexed: 11/04/2023] Open
Abstract
Background Cigarette smoking seems to have a negative impact on men's reproductive health, but our knowledge of its effects on the reproductive function of Russian men is still very limited. The purpose of this study was to evaluate the effect of cigarette smoking on semen quality, including sperm DNA fragmentation, hormonal, zinc and metabolic status in young men from the general multi-ethnic Russian population (n=1,222, median age 23 years) and to find out the ethno-specific effects of smoking by comparing male groups of different ethnicity. Methods Each participant filled out a standardized questionnaire, provided one blood and semen sample. Semen parameters, serum reproductive hormones, lipids, glucose, uric acid and seminal zinc were analyzed. Participants were classified as smokers (n=450) and non-smokers (n=772), and smokers were stratified into moderate (≤10 cigarettes/day) and heavy (>10 cigarettes/day) smokers. Results In the entire study population, heavy smokers were characterized by a decrease in semen volume, total sperm count, sperm concentration and motility, and an increase in sperm DNA fragmentation and teratozoospermia compared with non-smokers (p<0.05). There was also a reduction in the serum and seminal zinc level as well as an impairment in metabolic health in smokers compared with non-smokers (p<0.05). No significant differences between smokers and non-smokers were found for serum levels of LH, FSH, inhibin B, testosterone and estradiol. In the second part of our study, the most numerous ethnic groups of Slavs (n=654), Buryats (n=191), and Yakuts (n=125) were selected from the entire study population. Among three ethnic groups, the smoking intensity was higher in Slavs than in Buryats or Yakuts suggesting a greater tobacco addiction in Slavs than in Asians. A decrease in semen parameters and seminal zinc levels, and an increase in sperm DNA fragmentation and teratozoospermia was observed only in smoking Slavs (p<0.05); moderate decrease in testosterone and increase in triglyceride levels were revealed in smoking Yakuts (p<0.05), but no significant changes were detected in smoking Buryats. Conclusion We concluded that cigarette smoking has an ethno-specific effect on male reproductive function, probably due to the different activity of the seminal antioxidant system, which is yet to be elucidated.
Collapse
Affiliation(s)
- Ludmila Osadchuk
- Department of Human Molecular Genetics, Federal Research Center 'Institute of Cytology and Genetics', the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Maxim Kleshchev
- Department of Human Molecular Genetics, Federal Research Center 'Institute of Cytology and Genetics', the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Alexander Osadchuk
- Department of Human Molecular Genetics, Federal Research Center 'Institute of Cytology and Genetics', the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
9
|
Romano M, Cirillo F, Spadaro D, Busnelli A, Castellano S, Albani E, Levi-Setti PE. High sperm DNA fragmentation: do we have robust evidence to support antioxidants and testicular sperm extraction to improve fertility outcomes? a narrative review. Front Endocrinol (Lausanne) 2023; 14:1150951. [PMID: 37867514 PMCID: PMC10585152 DOI: 10.3389/fendo.2023.1150951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 09/01/2023] [Indexed: 10/24/2023] Open
Abstract
To date, infertility affects 10% to 15% of couples worldwide. A male factor is estimated to account for up to 50% of cases. Oral supplementation with antioxidants could be helpful to improve sperm quality by reducing oxidative damage. At the same time, there is a growing interest in the literature on the use of testicular sperm in patients with high DNA fragmentation index (DFI). This narrative review aims to evaluate the effectiveness of supplementation of oral antioxidants in infertile men with high DFI compared to testicular sperm retrieval. The current evidence is non-conclusive because of serious risk of bias due to small sample sizes and statistical methods. Further large well-designed randomised placebo-controlled trials are still required to clarify the exact role of these to different therapeutic approaches.
Collapse
Affiliation(s)
- Massimo Romano
- Department of Gynecology, Division of Gynecology and Reproductive Medicine, Fertility Center, Humanitas Research Hospital, IRCCS, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Federico Cirillo
- Department of Gynecology, Division of Gynecology and Reproductive Medicine, Fertility Center, Humanitas Research Hospital, IRCCS, Milan, Italy
| | - Daria Spadaro
- Department of Gynecology, Division of Gynecology and Reproductive Medicine, Fertility Center, Humanitas Research Hospital, IRCCS, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Andrea Busnelli
- Department of Gynecology, Division of Gynecology and Reproductive Medicine, Fertility Center, Humanitas Research Hospital, IRCCS, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Stefano Castellano
- Department of Gynecology, Division of Gynecology and Reproductive Medicine, Fertility Center, Humanitas Research Hospital, IRCCS, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Elena Albani
- Department of Gynecology, Division of Gynecology and Reproductive Medicine, Fertility Center, Humanitas Research Hospital, IRCCS, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Paolo Emanuele Levi-Setti
- Department of Gynecology, Division of Gynecology and Reproductive Medicine, Fertility Center, Humanitas Research Hospital, IRCCS, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| |
Collapse
|
10
|
Li H, Li Y, Liu J, Liu X, Li Y, Wang S, Ma J. Knockdown of ZnT4 Induced Apoptosis, Inhibited Proliferation and testosterone synthesis of TM3 cells. In Vitro Cell Dev Biol Anim 2023; 59:565-574. [PMID: 37733161 DOI: 10.1007/s11626-023-00804-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/05/2023] [Indexed: 09/22/2023]
Abstract
Zinc deficiency has a huge impact on male reproduction. The zinc transporter (ZnT) family is involved in the maintenance of zinc homeostasis and testosterone synthesis. However, the underlying mechanisms remain to be investigated. Therefore, in this study, we aimed to determine the effect of zinc transporter 4 (ZnT4) on testosterone synthesis in male Kunming mice and mouse Leydig cells. The results of this study showed that compared with the zinc normal diet group (Con group), the zinc-deficient diet group (ZnD group) had decreased zinc content and increased ZnT4 expression in testicular tissues, and decreased serum testosterone levels, suggesting that ZnT4 may be involved in Leydig cell injury resulting from a zinc-deficient diet. Subsequently, mouse Leydig cell line TM3 cells were used to analyze the effect of ZnT4 downregulation on TM3 cell proliferation and apoptosis, on testosterone synthesis, and its underlying mechanisms. Here, we show that knockdown of ZnT4 can induce the accumulation of zinc, inhibit the viability, and induce apoptosis in TM3 cells. In addition, knockdown of ZnT4 downregulated testosterone concentration and expression of testosterone synthesis-related proteins steroidogenic acute regulatory protein (StAR) and 3β-hydroxysteroid dehydrogenase/D5-D4 isomerase (3β-HSD) in TM3 cells, while hCG could rescue their levels. We show that it is ZnT4 that plays a role in testosterone production through a mediated PI3K/Akt/mTOR autophagy pathway, whereas mTORC1 complex inhibitor (Rapa) blocks the decrease in testosterone levels caused by ZnT4 downregulation. In conclusion, the above results indicate that ZnT4 plays an important role in regulating testosterone synthesis.
Collapse
Affiliation(s)
- Huanhuan Li
- Hebei Key Laboratory of Reproductive Medicine, Hebei Reproductive Health Hospital, No. 480 Heping Street, Shijiazhuang, 050071, Xinhua District, Hebei, China
| | - Yuejia Li
- Graduate School of Hebei Medical University, Shijiazhuang, 050017, China
| | - Junsheng Liu
- Graduate School of Hebei Medical University, Shijiazhuang, 050017, China
| | - Xuan Liu
- Graduate School of Hebei Medical University, Shijiazhuang, 050017, China
| | - Yuanjing Li
- School of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Shusong Wang
- Hebei Key Laboratory of Reproductive Medicine, Hebei Reproductive Health Hospital, No. 480 Heping Street, Shijiazhuang, 050071, Xinhua District, Hebei, China.
- Graduate School of Hebei Medical University, Shijiazhuang, 050017, China.
- School of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, 050024, China.
| | - Jing Ma
- Hebei Key Laboratory of Reproductive Medicine, Hebei Reproductive Health Hospital, No. 480 Heping Street, Shijiazhuang, 050071, Xinhua District, Hebei, China.
| |
Collapse
|
11
|
Li X, Zeng YM, Luo YD, He J, Luo BW, Lu XC, Zhu LL. Effects of folic acid and folic acid plus zinc supplements on the sperm characteristics and pregnancy outcomes of infertile men: A systematic review and meta-analysis. Heliyon 2023; 9:e18224. [PMID: 37539255 PMCID: PMC10395467 DOI: 10.1016/j.heliyon.2023.e18224] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 06/14/2023] [Accepted: 07/12/2023] [Indexed: 08/05/2023] Open
Abstract
Background Folic acid and zinc supplements have been used to treat male infertility, but their efficacy is still debated. Objective To systematically evaluate the effects of folic acid and folic acid plus zinc supplements on sperm characteristics and pregnancy outcomes of infertile men. Methods An online systematic search was performed using PubMed, Cochrane Library, and EMBASE databases from inception to August 1, 2022. The goal was to identify randomized controlled trials (RCTs) that used folic acid or folic acid plus zinc to improve sperm characteristics of infertile men. Data were extracted by two investigators who independently screened the literature and assessed for quality according to the criteria. The meta-analysis was performed using RevMan 5.4 software. Results A total of 8 RCT studies involving 2168 patients were included. The results showed that compared with the controls, folic acid significantly increased sperm motility (MD, 3.63; 95% CI, -1.22 to 6.05; P = 0.003), but did not affect the sperm concentration (MD, 2.53; 95% CI, -1.68 to 6.73; P = 0.24) and sperm morphology (MD, -0.02; 95% CI, -0.29 to 0.24; P = 0.86) in infertile men. Folic acid plus zinc did not affect sperm concentration (MD, 1.87; 95% CI, -1.39 to 5.13; P = 0.26), motility (MD, 1.67; 95% CI, -1.29 to 4.63; P = 0.27), and morphology (MD, -0.05; 95% CI, -0.27 to 0.18; P = 0.69) in infertile men. Secondary results showed that compared with a placebo, folic acid alone had a higher rate of pregnancy in transferred embryos (35.6% vs. 20.4%, P = 0.082), but the difference was not significant. Folic acid plus zinc did not affect pregnancy outcomes. Conclusions Based on the meta-analysis, no significant improvements in sperm characteristics with folic acid plus zinc supplements were seen. However, folic acid alone has demonstrated the potential to improve sperm motility and in vitro fertilization-intracytoplasmic sperm injection (IVF-ICSI) outcomes. This indicates that folic acid supplements alone may be a viable treatment option for male infertility.
Collapse
|
12
|
Sun B, Ma J, Liu J, Li Y, Bi J, Te L, Zuo X, Wang S. Mechanisms of damage to sperm structure in mice on the zinc-deficient diet. J Trace Elem Med Biol 2023; 79:127251. [PMID: 37392679 DOI: 10.1016/j.jtemb.2023.127251] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 06/05/2023] [Accepted: 06/22/2023] [Indexed: 07/03/2023]
Abstract
BACKGROUND Zinc (Zn)is an essential trace element for spermatogenesis and its deficiency causes abnormal spermatogenesis. OBJECTIVE The present study was conducted to examine the mechanisms by which Zn-deficient diet impairs sperm morphology and its reversibility. METHODS 30 SPF grade male Kunming (KM) mice were randomly divided into three groups, 10 mice per group. Zn-normal diet group (ZN group) was given Zn-normal diet(Zn content= 30 mg/kg)for 8 weeks. Zn-deficienct diet group (ZD group) was given Zn-deficienct diet(Zn content< 1 mg/kg)for 8 weeks. Zn-deficient and Zn-normal diet group(ZDN group)was given 4 weeks Zn-deficienct diet followed by 4 weeks Zn-normal diet. After 8 weeks, the overnight fasted mice were sacrificed, and blood and organs were collected for further analysis. RESULTS The experimental results showed that Zn-deficienct diet leads to increased abnormal morphology sperm and testicular oxidative stress.The rate of abnormal morphology sperm, chromomycin A3(CMA3), DNA fragmentation index (DFI), malondialdehyde (MDA) were significantly increased, and a-kinase anchor protein 4(AKAP4), dynein axonemal heavy chain 1(DNAH1), sperm associated antigen 6(SPAG6), cilia and flagella associated protein 44(CFAP44), glutathione peroxidase (GSH-PX), superoxide dismutase (SOD), total antioxidant capacity (T-AOC), nuclear factor erythroid 2-related factor (NRF2), NAD(P)H:quinone oxidoreductase 1(NQO1)and heme oxygenase 1(HO1) were significantly decreased in the ZD group mice. While the changes in above indicators caused by Zn-deficient diet were significantly alleviated in the ZDN group. CONCLUSION It was concluded that Zn-deficient diet causes abnormal morphology sperm and testicular oxidative stress in male mice. Abnormal morphology sperm caused by Zn-deficient diet are reversible, and Zn-normal diet can alleviate them.
Collapse
Affiliation(s)
- Bo Sun
- Graduate School of Hebei Medical University, Shijiazhuang 050017, China
| | - Jing Ma
- Hebei Key Laboratory of Reproductive Medicine, Hebei Institute of Reproductive Health Science and Technology, Shijiazhuang 050071, China
| | - Junsheng Liu
- Graduate School of Hebei Medical University, Shijiazhuang 050017, China
| | - Yuejia Li
- Graduate School of Hebei Medical University, Shijiazhuang 050017, China
| | - Jiajie Bi
- Chengde Medical College, Chengde 067000, China
| | - Liger Te
- Graduate School of Hebei Medical University, Shijiazhuang 050017, China
| | - Xin Zuo
- School of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Shusong Wang
- Graduate School of Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Reproductive Medicine, Hebei Institute of Reproductive Health Science and Technology, Shijiazhuang 050071, China; Chengde Medical College, Chengde 067000, China; School of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, China.
| |
Collapse
|
13
|
Sun B, Ma J, Te L, Zuo X, Liu J, Li Y, Bi J, Wang S. Zinc-Deficient Diet Causes Imbalance in Zinc Homeostasis and Impaired Autophagy and Impairs Semen Quality in Mice. Biol Trace Elem Res 2023; 201:2396-2406. [PMID: 35713811 DOI: 10.1007/s12011-022-03324-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/09/2022] [Indexed: 11/02/2022]
Abstract
Zinc (Zn) is an essential trace element for human growth and its deficiency causes huge health impacts. The present study was conducted to examine the mechanisms by which Zn-deficient diet impairs reproductive function and its reversibility. Hence, SPF grade male Kunming (KM) mice were divided into three groups. Zn-normal diet group (ZN group) was provided with Zn-normal diet (Zn content = 30 mg/kg, DY19410Y) for 8 weeks. Zn-deficient diet group (ZD group) was provided with Zn-deficient diet (Zn content < 1 mg/kg, DY19401) for 8 weeks. Zn-deficient and Zn-normal diet group (ZDN group) was provided with 4 weeks Zn-deficient diet followed by 4 weeks Zn-normal diet. After 8 weeks, the overnight-fasted mice were sacrificed, and blood and organs were collected for further analysis. The results showed that Zn-deficient diet caused testicular structural disorders, decreased semen quality, imbalance in zinc homeostasis, and impaired autophagy. Semen quality, testosterone, serum Zn, testicular tissue Zn, testicular free Zn ions, alkaline phosphatase (ALP), zinc transporter 7(ZnT7), Beclin1, autophagy-related 5(ATG5), and the ratio of light chain 3(LC3) II/LC3I were significantly decreased, and ZnT4, Zrt-, Irt-like protein7 (ZIP7), and ZIP13 expression were significantly increased in ZD group mice, while the changes in above indicators caused by Zn-deficient diet were significantly alleviated in the ZDN group. It was concluded that Zn-deficient diet causes testicular structural disorders and decreased semen quality by causing imbalances in Zn homeostasis and impaired autophagy in male mice. Reproductive damages caused by Zn-deficient diet are reversible, and Zn-normal diet can alleviate them.
Collapse
Affiliation(s)
- Bo Sun
- Graduate School of Hebei Medical University, Shijiazhuang, 050017, China
| | - Jing Ma
- NHC Key Laboratory of Family Planning and Healthy, Hebei Key Laboratory of Reproductive Medicine, Hebei Institute of Reproductive Health Science and Technology, Shijiazhuang, 050071, China
| | - Liger Te
- Graduate School of Hebei Medical University, Shijiazhuang, 050017, China
| | - Xin Zuo
- School of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Junsheng Liu
- Graduate School of Hebei Medical University, Shijiazhuang, 050017, China
| | - Yuejia Li
- Graduate School of Hebei Medical University, Shijiazhuang, 050017, China
| | - Jiajie Bi
- Chengde Medical University, Chengde, 067000, China
| | - Shusong Wang
- Graduate School of Hebei Medical University, Shijiazhuang, 050017, China.
- NHC Key Laboratory of Family Planning and Healthy, Hebei Key Laboratory of Reproductive Medicine, Hebei Institute of Reproductive Health Science and Technology, Shijiazhuang, 050071, China.
- School of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, 050024, China.
- Chengde Medical University, Chengde, 067000, China.
| |
Collapse
|
14
|
Lai XL, Xiong WJ, Li LS, Lan MF, Zhang JX, Zhou YT, Niu D, Duan X. Zinc deficiency compromises the maturational competence of porcine oocyte by inducing mitophagy and apoptosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 252:114593. [PMID: 36724708 DOI: 10.1016/j.ecoenv.2023.114593] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/26/2023] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
Zinc, an essential trace mineral, plays a pivotal role in cell proliferation, maintenance of redox homeostasis, apoptosis, and aging. Serum zinc concentrations are reduced in patients with polycystic ovary syndrome (PCOS). However, the underlying mechanism of the effects of zinc deficiency on the female reproductive system, especially oocyte quality, has not been fully elucidated. Thus, we established an in vitro experimental model by adding N,N,N',N'-Tetrakis(2-pyridylmethyl) ethylenediamine (TPEN) into the culture medium, and to determine the potential regulatory function of zinc during porcine oocytes maturation. In the present study, we found that zinc deficiency caused aberrant meiotic progress, accompanied by the disrupted cytoskeleton structure in porcine oocytes. Zinc deficiency impaired mitochondrial function and dynamics, leading to the increase of reactive oxygen species (ROS) and acetylation level of the antioxidative enzyme superoxide dismutase 2 (SOD2), eventually induced the occurrence of oxidative stress and early apoptosis. Moreover, zinc deficiency perturbed cytosolic Ca2+ homeostasis, lipid droplets formation, demonstrating the aberrant mitochondrial function in porcine oocytes. Importantly, we found that zinc deficiency in porcine oocytes induced the occurrence of mitophagy by activating the PTEN-induced kinase 1/Parkin signaling pathway. Collectively, our findings demonstrated that zinc was a critical trace mineral for maintaining oocyte quality by regulating mitochondrial function and autophagy in porcine oocytes.
Collapse
Affiliation(s)
- Xin-Le Lai
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Wen-Jie Xiong
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Li-Shu Li
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Meng-Fan Lan
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Jin-Xin Zhang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Yu-Ting Zhou
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Dong Niu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Xing Duan
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China.
| |
Collapse
|
15
|
Te L, Liu J, Ma J, Wang S. Correlation between serum zinc and testosterone: A systematic review. J Trace Elem Med Biol 2023; 76:127124. [PMID: 36577241 DOI: 10.1016/j.jtemb.2022.127124] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 12/11/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Zinc is a vital trace element for normal function of the living system. In male, zinc is involved in various biological processes, an important function of which is as a balancer of hormones such as testosterone. For this purpose, studies related to the influence of zinc on serum testosterone were selected and summarized, including the effect of dietary zinc deficiency and zinc supplementation on testosterone concentrations. After preliminary searching of papers on databases, 38 papers including 8 clinical and 30 animal studies were included in this review. We concluded that zinc deficiency reduces testosterone levels and zinc supplementation improves testosterone levels. Furthermore, the effect degree of zinc on serum testosterone may vary depending on basal zinc and testosterone levels, zinc dosage form, elementary zinc dose, and duration. In conclusion, serum zinc was positively correlated with total testosterone, and moderate supplementation plays an important role in improving androgen.
Collapse
Affiliation(s)
- Liger Te
- Graduate School of Hebei Medical University, Shijiazhuang 050017, China
| | - Junsheng Liu
- Graduate School of Hebei Medical University, Shijiazhuang 050017, China
| | - Jing Ma
- Hebei Key Laboratory of Reproductive Medicine, Hebei Institute of Reproductive Health Science and Technology, Shijiazhuang 050071, China
| | - Shusong Wang
- Graduate School of Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Reproductive Medicine, Hebei Institute of Reproductive Health Science and Technology, Shijiazhuang 050071, China.
| |
Collapse
|
16
|
Harchegani AB, Rostami S, Mohsenifar Z, Dafchahi AB, Moghadam FM, Jaafarzadeh M, Saraabestan SS, Ranji N. Anti-apoptotic properties of N-Acetyl cysteine and its effects on of Liver X receptor and Sirtuin 1 expression in the liver of rats exposed to Lead. J Trace Elem Med Biol 2022; 74:127070. [PMID: 36155419 DOI: 10.1016/j.jtemb.2022.127070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 05/22/2022] [Accepted: 09/08/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND This study aimed to evaluate the expression of Liver X receptor (Lxr), Sirtuin 1 (Sirt1), apoptotic-related genes, and the protective role of N-acetylcysteine (NAC) in the liver of rats treated with Lead (Pb). METHODS Rats were randomly divided into 5 groups, including G1 (control), G2 (single dose of Pb), G3 (continuous dose of Pb), G4 (single dose of Pb + NAC), and G5 (continuous dose of Pb + NAC). Lipid profiles and liver specific enzymes were assessed. Expression of Lxr, Sirt1, Bax and Caspase-3 genes was considered using RT-PCR. RESULTS Exposure to Pb caused a significant accumulation of Pb in the blood and liver tissue, increase in serum AST, ALT and ALP enzymes, as well as lipid profiles. Chronic exposure to Pb caused a significant decrease in Lxr (3.15-fold; p < 0.001) and Sirt1 (2.78-fold; p = 0.009), but significant increase in expression of Bax (4.49-fold; p < 0.001) and Caspase-3 (4.10-fold; p < 0.001) genes when compared to the control. Combined therapy with Pb + NAC in rats caused a significant decrease in AST, ALT and ALP values (28.93%, 20.80% and 28.86%, respectively) in the blood as compared to rats treated with Pb alone. Co-treated with Pb + NAC significantly increased the expression of Lxr (1.72-fold; p = 0.043) and Sirt1 (2.45-fold; p = 0.008), but decreased the expression of Bax (1.96-fold; p = 0.03) and Caspase 3 (2.22-fold; p = 0.029) genes when compared to rats treated with Pb alone. CONCLUSION Chronic exposure to Pb is strongly associated with accumulation of Pb in the blood and liver, hepatic cells apoptosis, down-expression of Lxr and Sirt1 genes and consequently liver injury and abnormal lipid profiles. NAC reversed the Pb-induced toxicity on the liver tissue.
Collapse
Affiliation(s)
- Asghar Beigi Harchegani
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Sareh Rostami
- Department of Biology, Faculty of Sciences, Rasht Branch, Islamic Azad University, Rasht, Iran.
| | - Zhaleh Mohsenifar
- Ayatollah Taleghani Educational Hospital, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Alireza Beheshti Dafchahi
- Department of Environmental Science and Engineering, Faculty of Agriculture, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
| | | | - Mohammad Jaafarzadeh
- Department of Biology, Faculty of Sciences, Rasht Branch, Islamic Azad University, Rasht, Iran.
| | | | - Najmeh Ranji
- Department of Biology, Faculty of Sciences, Rasht Branch, Islamic Azad University, Rasht, Iran.
| |
Collapse
|
17
|
Liu H, Huang Z, Zheng H, Zhu Z, Yang H, Liu X, Pang T, He L, Lin H, Hu L, Zeng Q, Han L. Jiawei Runjing Decoction Improves Spermatogenesis of Cryptozoospermia With Varicocele by Regulating the Testicular Microenvironment: Two-Center Prospective Cohort Study. Front Pharmacol 2022; 13:945949. [PMID: 36016555 PMCID: PMC9395676 DOI: 10.3389/fphar.2022.945949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
Objective: The aim of the study was to explore the evidence of JWRJD in the treatment of cryptozoospermia. Methods: A total of 162 cryptozoospermia patients with varicocele who refused to undergo surgery were included from January 2021 to December 2021. They were divided into the Jiawei Runjing Decoction group (group A), tamoxifen group (group B), and no treatment group (group C), and after the follow-up for 3 months, therapeutic effectiveness was compared. Network pharmacology was used to analyze and validate the effects and mechanisms of JWRJD. Results: Fifty-eight patients were treated with JWRJD, 55 with tamoxifen, and 49 without any treatment. After treatment, five patients were lost: one in group A, one in group B, and three in group C. The sperm count and the decrease of FSH in group A were significantly higher, but the degree of decline in the testicular volume and the degree of vein expansion have decreased significantly, which were closely related to the testicular volume (TV) [especially changes in the left testicular volume (ΔL-TV)], citric acid (CC) and its changes (ΔCC), and the vein width (VW) [especially left spermatic vein width (L-VW) and mean vein width (M-VW) and their changes (ΔL-VW and ΔM-VW)], as well as the sperm count before the treatment (bSC), which were the significant indexes to predict the therapeutic effect, especially for patients >35 years old and with grade III varicoceles. Network pharmacological analysis verifies that it can be regulated by fluid shear stress and the atherosclerosis pathway to improve the testicular microenvironment for spermatogenesis. Conclusion: JWRJD may promote spermatogenesis in cryptozoospermia patients with varicocele, which may be closely related to improving the testicular microenvironment, especially for >35 year olds and grade III varicocele patients.
Collapse
Affiliation(s)
- Huang Liu
- The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- NHC Key Laboratory of Male Reproduction and Genetics, Department of Andrology, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Human Sperm Bank of Guangdong Province, Guangzhou, China
| | - Zhongwang Huang
- Department of Andrology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Houbin Zheng
- NHC Key Laboratory of Male Reproduction and Genetics, Department of Andrology, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Human Sperm Bank of Guangdong Province, Guangzhou, China
| | - Zhiyong Zhu
- NHC Key Laboratory of Male Reproduction and Genetics, Department of Andrology, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Human Sperm Bank of Guangdong Province, Guangzhou, China
| | - Hui Yang
- NHC Key Laboratory of Male Reproduction and Genetics, Department of Ultrasonography, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Human Sperm Bank of Guangdong Province, Guangzhou, China
| | - Xingzhang Liu
- NHC Key Laboratory of Male Reproduction and Genetics, Department of Andrology, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Human Sperm Bank of Guangdong Province, Guangzhou, China
| | - Tao Pang
- NHC Key Laboratory of Male Reproduction and Genetics, Department of Andrology, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Human Sperm Bank of Guangdong Province, Guangzhou, China
| | - Liping He
- NHC Key Laboratory of Male Reproduction and Genetics, Department of Clinical Laboratory, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Human Sperm Bank of Guangdong Province, Guangzhou, China
| | - Hai Lin
- NHC Key Laboratory of Male Reproduction and Genetics, Department of Andrology, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Human Sperm Bank of Guangdong Province, Guangzhou, China
| | - Lei Hu
- NHC Key Laboratory of Male Reproduction and Genetics, Department of Andrology, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Human Sperm Bank of Guangdong Province, Guangzhou, China
| | - Qingqi Zeng
- The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Integrated Chinese and Western Medicine, Jiangsu Health Vocational College, Nanjing, China
- *Correspondence: Qingqi Zeng, ; Lanying Han,
| | - Lanying Han
- NHC Key Laboratory of Male Reproduction and Genetics, Department of Traditional Chinese Medicine, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Human Sperm Bank of Guangdong Province, Guangzhou, China
- *Correspondence: Qingqi Zeng, ; Lanying Han,
| |
Collapse
|
18
|
Peng C, Cheng Q, Liu Y, Zhang Z, Wang Z, Ma H, Liu D, Wang L, Wang C. Marginal Zinc Deficiency in Mice Increased the Number of Abnormal Sperm and Altered the Expression Level of Spermatogenesis-Related Genes. Biol Trace Elem Res 2022; 200:3738-3749. [PMID: 34676520 DOI: 10.1007/s12011-021-02979-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/17/2021] [Indexed: 12/27/2022]
Abstract
Marginal zinc deficiency is more common than severe zinc deficiency, and the effect of marginal zinc deficiency on male reproduction is unknown. This study investigated the effect of marginal zinc deficiency on spermatogenesis and its mechanism. Male ICR mice were fed normal zinc (30 mg/kg) and marginal zinc deficiency (10 mg/kg) diets for 35 days. Zinc-dependent proteins and enzymes were measured as biomarkers of zinc levels in the body. Metallothionein and Cu-Zn SOD levels in the control group were higher than those in the marginal zinc deficiency group. Hematoxylin and eosin staining showed that the marginal zinc deficiency diet caused histopathological changes in the testis and destruction of the sperm head under scanning electron microscopy. Sperm parameters and sex hormone levels were also affected by marginal zinc deficiency. In addition, marginal zinc deficiency led to alter expression level of several important spermatogenesis-related genes in the epididymis and testes. These results indicate that although zinc intake in marginal zinc deficiency is close to the recommended reference value, low zinc intake interferes with the expression of genes related to spermatogenesis and may lead to sperm abnormalities in mice.
Collapse
Affiliation(s)
- Cheng Peng
- Department of Preventive Medicine, School of Health Sciences, Wuhan University, Wuhan, 430071, Hubei Province, People's Republic of China
| | - Qian Cheng
- Angel Nutritech Company Limited, Yichang, 443000, Hubei Province, People's Republic of China
| | - Youjiao Liu
- Angel Nutritech Company Limited, Yichang, 443000, Hubei Province, People's Republic of China
| | - Zhaoyu Zhang
- Department of Preventive Medicine, School of Health Sciences, Wuhan University, Wuhan, 430071, Hubei Province, People's Republic of China
| | - Ziqiong Wang
- Department of Preventive Medicine, School of Health Sciences, Wuhan University, Wuhan, 430071, Hubei Province, People's Republic of China
| | - Haitao Ma
- Department of Preventive Medicine, School of Health Sciences, Wuhan University, Wuhan, 430071, Hubei Province, People's Republic of China
| | - Duanya Liu
- Department of Preventive Medicine, School of Health Sciences, Wuhan University, Wuhan, 430071, Hubei Province, People's Republic of China
| | - Lei Wang
- Department of Preventive Medicine, School of Health Sciences, Wuhan University, Wuhan, 430071, Hubei Province, People's Republic of China
| | - Chunhong Wang
- Department of Preventive Medicine, School of Health Sciences, Wuhan University, Wuhan, 430071, Hubei Province, People's Republic of China.
| |
Collapse
|
19
|
Micronutrients and Renal Outcomes: A Prospective Cohort Study. Nutrients 2022; 14:nu14153063. [PMID: 35893916 PMCID: PMC9370256 DOI: 10.3390/nu14153063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/17/2022] [Accepted: 07/20/2022] [Indexed: 02/06/2023] Open
Abstract
Background: Micronutrients are essential in maintaining normal human physiology. Data regarding the association between micronutrients and renal outcomes in chronic kidney disease (CKD) are lacking. Methods: This prospective observational cohort study enrolled 261 patients with CKD stages 1−5 and 30 subjects with normal renal function. Baseline serum zinc (Zn), selenium (Se), chromium, manganese, and copper, and laboratory tests were performed at enrolment. The primary endpoint was the presence of end-stage renal disease (ESRD) requiring long-term renal replacement therapy. Results: The median follow-up periods of renal and non-renal survivals were 67.78 and 29.03 months, respectively. Multiple linear regression showed that Zn and Se (β ± SE: 24.298 ± 8.616, p = 0.005; 60.316 ± 21.875, p = 0.006, respectively) levels were positively correlated with renal function. Time to ESRD was significantly longer for those with Zn levels ≥1287.24 ng/g and Se levels ≥189.28 ng/g (both p < 0.001). Cox regression analysis identified a higher Zn level as an independently negative predictor of ESRD after adjusting for renal function (hazard ratio, 0.450, p = 0.019). Conclusion: Serum Se and Zn concentrations are positively associated with renal function and better renal outcomes. A higher Zn concentration could independently predict better renal survival.
Collapse
|
20
|
Lawlor M, Zigo M, Kerns K, Cho IK, Easley IV CA, Sutovsky P. Spermatozoan Metabolism as a Non-Traditional Model for the Study of Huntington’s Disease. Int J Mol Sci 2022; 23:ijms23137163. [PMID: 35806166 PMCID: PMC9266437 DOI: 10.3390/ijms23137163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 12/10/2022] Open
Abstract
Huntington’s Disease (HD) is a fatal autosomal dominant neurodegenerative disease manifested through motor dysfunction and cognitive deficits. Decreased fertility is also observed in HD animal models and HD male patients, due to altered spermatogenesis and sperm function, thus resulting in reduced fertilization potential. Although some pharmaceuticals are currently utilized to mitigate HD symptoms, an effective treatment that remedies the pathogenesis of the disease is yet to be approved by the FDA. Identification of genes and relevant diagnostic biomarkers and therapeutic target pathways including glycolysis and mitochondrial complex-I-dependent respiration may be advantageous for early diagnosis, management, and treatment of the disease. This review addresses the HD pathway in neuronal and sperm metabolism, including relevant gene and protein expression in both neurons and spermatozoa, indicated in the pathogenesis of HD. Furthermore, zinc-containing and zinc-interacting proteins regulate and/or are regulated by zinc ion homeostasis in both neurons and spermatozoa. Therefore, this review also aims to explore the comparative role of zinc in both neuronal and sperm function. Ongoing studies aim to characterize the products of genes implicated in HD pathogenesis that are expressed in both neurons and spermatozoa to facilitate studies of future treatment avenues in HD and HD-related male infertility. The emerging link between zinc homeostasis and the HD pathway could lead to new treatments and diagnostic methods linking genetic sperm defects with somatic comorbidities.
Collapse
Affiliation(s)
- Meghan Lawlor
- Division of Animal Science, University of Missouri, Columbia, MO 65211, USA; (M.L.); (M.Z.); (K.K.)
| | - Michal Zigo
- Division of Animal Science, University of Missouri, Columbia, MO 65211, USA; (M.L.); (M.Z.); (K.K.)
| | - Karl Kerns
- Division of Animal Science, University of Missouri, Columbia, MO 65211, USA; (M.L.); (M.Z.); (K.K.)
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - In Ki Cho
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA 30602, USA; (I.K.C.); (C.A.E.IV)
- Regenerative Bioscience Center, University of Georgia, Athens, GA 30602, USA
| | - Charles A. Easley IV
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA 30602, USA; (I.K.C.); (C.A.E.IV)
- Regenerative Bioscience Center, University of Georgia, Athens, GA 30602, USA
| | - Peter Sutovsky
- Division of Animal Science, University of Missouri, Columbia, MO 65211, USA; (M.L.); (M.Z.); (K.K.)
- Department of Obstetrics, Gynecology and Women’s Health, University of Missouri, Columbia, MO 65211, USA
- Correspondence: ; Tel.: +1-(573)-882-3329
| |
Collapse
|
21
|
Willekens J, Runnels LW. Impact of Zinc Transport Mechanisms on Embryonic and Brain Development. Nutrients 2022; 14:2526. [PMID: 35745255 PMCID: PMC9231024 DOI: 10.3390/nu14122526] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/09/2022] [Accepted: 06/09/2022] [Indexed: 12/04/2022] Open
Abstract
The trace element zinc (Zn) binds to over ten percent of proteins in eukaryotic cells. Zn flexible chemistry allows it to regulate the activity of hundreds of enzymes and influence scores of metabolic processes in cells throughout the body. Deficiency of Zn in humans has a profound effect on development and in adults later in life, particularly in the brain, where Zn deficiency is linked to several neurological disorders. In this review, we will summarize the importance of Zn during development through a description of the outcomes of both genetic and early dietary Zn deficiency, focusing on the pathological consequences on the whole body and brain. The epidemiology and the symptomology of Zn deficiency in humans will be described, including the most studied inherited Zn deficiency disease, Acrodermatitis enteropathica. In addition, we will give an overview of the different forms and animal models of Zn deficiency, as well as the 24 Zn transporters, distributed into two families: the ZIPs and the ZnTs, which control the balance of Zn throughout the body. Lastly, we will describe the TRPM7 ion channel, which was recently shown to contribute to intestinal Zn absorption and has its own significant impact on early embryonic development.
Collapse
Affiliation(s)
| | - Loren W. Runnels
- Department of Pharmacology, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA;
| |
Collapse
|
22
|
Age-Related Decline of Male Fertility: Mitochondrial Dysfunction and the Antioxidant Interventions. Pharmaceuticals (Basel) 2022; 15:ph15050519. [PMID: 35631346 PMCID: PMC9143644 DOI: 10.3390/ph15050519] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/08/2022] [Accepted: 04/18/2022] [Indexed: 12/13/2022] Open
Abstract
Mitochondria are structurally and functionally unique organelles in male gametes. Apparently, as the only organelles remaining in mature sperm, mitochondria not only produce adeno-sine triphosphate (ATP) through oxidative phosphorylation (OXPHOS) to support sperm mobility, but also play key roles in regulating reactive oxidation species (ROS) signaling, calcium homeostasis, steroid hormone biosynthesis, and apoptosis. Mitochondrial dysfunction is often associated with the aging process. Age-dependent alterations of the epididymis can cause alterations in sperm mitochondrial functioning. The resultant cellular defects in sperm have been implicated in male infertility. Among these, oxidative stress (OS) due to the overproduction of ROS in mitochondria may represent one of the major causes of these disorders. Excessive ROS can trigger DNA damage, disturb calcium homeostasis, impair OXPHOS, disrupt the integrity of the sperm lipid membrane, and induce apoptosis. Given these facts, scavenging ROS by antioxidants hold great potential in terms of finding promising therapeutic strategies to treat male infertility. Here, we summarize the progress made in understanding mitochondrial dysfunction, aging, and male infertility. The clinical potential of antioxidant interventions was also discussed.
Collapse
|
23
|
Amos A, Razzaque MS. Zinc and its role in vitamin D function. Curr Res Physiol 2022; 5:203-207. [PMID: 35570853 PMCID: PMC9095729 DOI: 10.1016/j.crphys.2022.04.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/01/2022] [Accepted: 04/26/2022] [Indexed: 02/06/2023] Open
Abstract
Zinc is an essential mineral with an important relationship with vitamin D. Studies have found that reduced blood zinc levels could predict vitamin D deficiency in adolescent girls, while zinc supplementation increased vitamin D levels in postmenopausal women. In vitro studies using human peritoneal macrophages have found that zinc induced the release of calcitriol (1,25-dihydroxycholecalciferol). Zinc also acts as a cofactor for vitamin D functions, as the transcriptional activity of vitamin D-dependent genes relies on zinc to exert pleiotropic functions, including mineral ion regulation. Vitamin D could also induce zinc transporters to regulate zinc homeostasis. Together, zinc and vitamin D in adequate concentrations help maintain a healthy musculoskeletal system and beyond; however, deficiency in either of these nutrients can result in various disorders affecting almost all body systems. This brief article will focus on the role of zinc in vitamin D functions.
Collapse
|
24
|
Di Renzo L, De Lorenzo A, Fontanari M, Gualtieri P, Monsignore D, Schifano G, Alfano V, Marchetti M. Immunonutrients involved in the regulation of the inflammatory and oxidative processes: implication for gamete competence. J Assist Reprod Genet 2022; 39:817-846. [PMID: 35353297 PMCID: PMC9050992 DOI: 10.1007/s10815-022-02472-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/16/2022] [Indexed: 11/30/2022] Open
Abstract
Purpose The purpose of this umbrella review is to bring together the most recent reviews concerning the role of immunonutrients for male and female infertility. Methods Regarding immunonutrients and fertility, the authors have analyzed reviews, systematic reviews, and meta-analyses published between 2011 and June 2021. All reviews on animal or in vitro studies were excluded. Relevant keywords to term micronutrients were analyzed alone or in association with other terms such as “gamete competence,” “male OR female fertility,” “male OR female infertility,” “fertile, “folliculogenesis,” “spermatogenesis,” “immunomodulation,” “immune system,” “oxidative stress.” Results The primary research has included 108 results, and after screening by title, abstract. and not topic-related, 41 studies have been included by full texts. The results show the molecular mechanisms and the immunonutrients related impact on gamete formation, development. and competence. In particular, this review focused on arginine, glutamine, vitamin C, vitamin D, vitamin E, omega-3, selenium, and zinc. Conclusions Inflammation and oxidative stress significantly impact human reproduction. For this reason, immunonutrients may play an important role in the treatment of infertile patients. However, due to the lack of consistent clinical trials, their application is limited. Therefore, the development of clinical trials is necessary to define the correct supplementation, in case of deficiency.
Collapse
Affiliation(s)
- Laura Di Renzo
- Section of Clinical Nutrition and Nutrigenomic, Department of Biomedicine and Prevention, University of Tor Vergata, Via Montpellier 1, 00133, Rome, Italy.,School of Specialization in Food Sciences, University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy.,Italian University Network for Sustainable Development (RUS), Food Working Group, University of Tor Vergata, Via Cracovia, 00133, Rome, Italy
| | - Antonino De Lorenzo
- Section of Clinical Nutrition and Nutrigenomic, Department of Biomedicine and Prevention, University of Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| | - Marco Fontanari
- School of Specialization in Food Sciences, University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| | - Paola Gualtieri
- Section of Clinical Nutrition and Nutrigenomic, Department of Biomedicine and Prevention, University of Tor Vergata, Via Montpellier 1, 00133, Rome, Italy.
| | - Diego Monsignore
- School of Specialization in Food Sciences, University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| | - Giulia Schifano
- School of Specialization in Food Sciences, University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| | - Valentina Alfano
- School of Specialization in Food Sciences, University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| | - Marco Marchetti
- PhD School of Applied Medical-Surgical Sciences, University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| | | |
Collapse
|
25
|
Aitken RJ. Role of sperm DNA damage in creating de novo mutations in human offspring: the ‘post-meiotic oocyte collusion’ hypothesis. Reprod Biomed Online 2022; 45:109-124. [DOI: 10.1016/j.rbmo.2022.03.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 11/24/2022]
|
26
|
Vaccines, Microbiota and Immunonutrition: Food for Thought. Vaccines (Basel) 2022; 10:vaccines10020294. [PMID: 35214752 PMCID: PMC8874781 DOI: 10.3390/vaccines10020294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/04/2022] [Accepted: 02/08/2022] [Indexed: 12/14/2022] Open
Abstract
Vaccines are among the most effective health measures and have contributed to eradicating some diseases. Despite being very effective, response rates are low in some individuals. Different factors have been proposed to explain why some people are not as responsive as others, but what appears to be of critical importance is the presence of a healthy functioning immune system. In this respect, a key factor in modulating the immune system, both in its adaptive and innate components, is the microbiota. While microbiota can be modulated in different ways (i.e., antibiotics, probiotics, prebiotics), an effective and somewhat obvious mechanism is via nutrition. The science of nutrients and their therapeutic application is called immunonutrition, and it is increasingly being considered in several conditions. Our review will focus on the importance of nutrition and microbiota modulation in promoting a healthy immune system while also discussing the overall impact on vaccination response.
Collapse
|
27
|
Aitken RJ, Drevet JR, Moazamian A, Gharagozloo P. Male Infertility and Oxidative Stress: A Focus on the Underlying Mechanisms. Antioxidants (Basel) 2022; 11:antiox11020306. [PMID: 35204189 PMCID: PMC8868102 DOI: 10.3390/antiox11020306] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/25/2022] [Accepted: 01/31/2022] [Indexed: 01/27/2023] Open
Abstract
Reactive oxygen species (ROS) play a critical role in defining the functional competence of human spermatozoa. When generated in moderate amounts, ROS promote sperm capacitation by facilitating cholesterol efflux from the plasma membrane, enhancing cAMP generation, inducing cytoplasmic alkalinization, increasing intracellular calcium levels, and stimulating the protein phosphorylation events that drive the attainment of a capacitated state. However, when ROS generation is excessive and/or the antioxidant defences of the reproductive system are compromised, a state of oxidative stress may be induced that disrupts the fertilizing capacity of the spermatozoa and the structural integrity of their DNA. This article focusses on the sources of ROS within this system and examines the circumstances under which the adequacy of antioxidant protection might become a limiting factor. Seminal leukocyte contamination can contribute to oxidative stress in the ejaculate while, in the germ line, the dysregulation of electron transport in the sperm mitochondria, elevated NADPH oxidase activity, or the excessive stimulation of amino acid oxidase action are all potential contributors to oxidative stress. A knowledge of the mechanisms responsible for creating such stress within the human ejaculate is essential in order to develop better antioxidant strategies that avoid the unintentional creation of its reductive counterpart.
Collapse
Affiliation(s)
- Robert John Aitken
- Priority Research Centre for Reproductive Science, Discipline of Biological Sciences, School of Environmental and Life Sciences, College of Engineering Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
- Correspondence: ; Tel.: +61-2-4921-6851
| | - Joël R. Drevet
- GReD Institute, INSERM U1103-CNRS UMR6293—Université Clermont Auvergne, Faculty of Medicine, CRBC Building, 28 Place Henri Dunant, 63001 Clermont-Ferrand, France; (J.R.D.); (A.M.)
| | - Aron Moazamian
- GReD Institute, INSERM U1103-CNRS UMR6293—Université Clermont Auvergne, Faculty of Medicine, CRBC Building, 28 Place Henri Dunant, 63001 Clermont-Ferrand, France; (J.R.D.); (A.M.)
- CellOxess LLC, Ewing, NJ 08628, USA;
| | | |
Collapse
|
28
|
Xiong Y, Li J, He S. Zinc Protects against Heat Stress-Induced Apoptosis via the Inhibition of Endoplasmic Reticulum Stress in TM3 Leydig Cells. Biol Trace Elem Res 2022; 200:728-739. [PMID: 33738683 DOI: 10.1007/s12011-021-02673-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 03/10/2021] [Indexed: 01/19/2023]
Abstract
Heat stress (HS)-induced apoptosis in Leydig cells is mediated by various molecular mechanisms, including endoplasmic reticulum (ER) stress. Zinc, an inorganic mineral element, exhibits several cytoprotective properties, but its potential protective action against Leydig cell apoptosis and the related molecular mechanisms has not been fully elucidated. In this study, we evaluated the effects of zinc sulfate, a predominant chemical form of zinc, exerted on cell viability, apoptosis, and testosterone production in HS-treated TM3 Leydig cells and investigated the underlying signaling pathways. HS treatment inhibited cell viability and induced apoptosis, which was accompanied by the induction of the activity of caspase 3, an executioner of apoptosis, involved in the expression of pro-apoptotic protein B cell lymphoma 2-associated X protein (Bax), and in the reduction of the expression of anti-apoptotic protein B cell lymphoma 2 (Bcl-2), thereby activating ER stress marker protein expression (glucose-regulated protein 78 (GRP78) and CCAAT/enhancer-binding protein homologous protein (CHOP)). However, zinc sulfate led to the attenuation of deleterious effects, including increases in apoptosis, caspase-3 activity, Bax, GRP78, and CHOP expression, and decreases in cell viability and Bcl-2 protein expression in cells treated with HS or thapsigargin (an ER stress activator). Furthermore, 4-phenylbutyric acid (an ER stress inhibitor) treatment markedly alleviated the HS-induced adverse effects in cells exposed to HS, which was similar to zinc sulfate. Additionally, zinc sulfate supplementation in the culture medium effectively restored the HS-induced decrease in testosterone levels in HS-treated cells. In summary, these findings indicate that HS triggers apoptosis in TM3 Leydig cells via the ER stress pathway and that zinc confers protection against these detrimental effects. This study provides new insights into the benefits of using zinc against HS-induced apoptosis and cell injury.
Collapse
Affiliation(s)
- Yongjie Xiong
- College of Animal Science, Anhui Science and Technology University, Fengyang, 233100, Anhui, China
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Anhui Science and Technology University, Fengyang, 233100, Anhui, China
| | - Jing Li
- College of Animal Science, Anhui Science and Technology University, Fengyang, 233100, Anhui, China
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Anhui Science and Technology University, Fengyang, 233100, Anhui, China
| | - Shaojun He
- College of Animal Science, Anhui Science and Technology University, Fengyang, 233100, Anhui, China.
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Anhui Science and Technology University, Fengyang, 233100, Anhui, China.
| |
Collapse
|
29
|
Zhu X, Yu C, Wu W, Shi L, Jiang C, Wang L, Ding Z, Liu Y. Zinc transporter ZIP12 maintains zinc homeostasis and protects spermatogonia from oxidative stress during spermatogenesis. Reprod Biol Endocrinol 2022; 20:17. [PMID: 35065654 PMCID: PMC8783530 DOI: 10.1186/s12958-022-00893-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 01/14/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Overwhelming evidences suggest oxidative stress is a major cause of sperm dysfunction and male infertility. Zinc is an important non-enzymatic antioxidant with a wide range of biological functions and plays a significant role in preserving male fertility. Notably, zinc trafficking through the cellular and intracellular membrane is mediated by specific families of zinc transporters, i.e., SLC39s/ZIPs and SLC30s/ZnTs. However, their expression and function were rarely evaluated in the male germ cells. The aim of this study is to determine and characterize the crucial zinc transporter responsible for the maintenance of spermatogenesis. METHODS The expression patterns of all 14 ZIP members were characterized in the mouse testis. qRT-PCR, immunoblot and immunohistochemistry analyses evaluated the ZIP12 gene and protein expression levels. The role of ZIP12 expression was evaluated in suppressing the sperm quality induced by exposure to an oxidative stress in a spermatogonia C18-4 cell line. Zip12 RNAi transfection was performed to determine if its downregulation altered cell viability and apoptosis in this cell line. An obese mouse model fed a high-fat-diet was employed to determine if there is a correlation between changes in the ZIP12 expression level and sperm quality. RESULTS The ZIP12 mRNA and protein expression levels were higher than those of other ZIP family members in both the mouse testis and other tissues. Importantly, the ZIP12 expression levels were very significantly higher in both mice and human spermatogonia and spermatozoa. Moreover, the testicular ZIP12 expression levels significantly decreased in obese mice, which was associated with reduced sperm zinc content, excessive sperm ROS generation, poor sperm quality and male subfertility. Similarly, exposure to an oxidative stress induced significant declines in the ZIP12 expression level in C18-4 cells. Knockdown of ZIP12 expression mediated by transfection of a ZIP12 siRNA reduced both the zinc content and viability whereas apoptotic activity increased in the C18-4 cell line. CONCLUSIONS The testicular zinc transporter ZIP12 expression levels especially in spermatogonia and spermatozoa are higher than in other tissues. ZIP12 may play a key role in maintaining intracellular zinc content at levels that reduce the inhibitory effects of rises in oxidative stress on spermatogonia and spermatozoa viability during spermatogenesis which help counteract declines in male fertility.
Collapse
Affiliation(s)
- Xinye Zhu
- Department of Clinical Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chengxuan Yu
- Department of Clinical Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Wangshu Wu
- Department of Clinical Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Lei Shi
- Department of Clinical Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chenyi Jiang
- Department of Clinical Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Li Wang
- Department of Histology, Embryology, Genetics and Developmental Biology, Shanghai Key Laboratory for Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Zhide Ding
- Department of Histology, Embryology, Genetics and Developmental Biology, Shanghai Key Laboratory for Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Yue Liu
- Department of Histology, Embryology, Genetics and Developmental Biology, Shanghai Key Laboratory for Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
30
|
Changes in heavy metal levels, reproductive characteristics, oxidative stress markers and testicular apoptosis in rams raised around thermal power plant. Theriogenology 2021; 179:211-222. [PMID: 34894490 DOI: 10.1016/j.theriogenology.2021.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 11/18/2021] [Accepted: 12/02/2021] [Indexed: 11/24/2022]
Abstract
Male reproductive dysfunction is one of the damages in the organism caused by heavy metals. In this study, it was aimed to investigate the changes in heavy metal levels in serum and testicular tissue, and serum hormone levels, epididymal spermatozoa characteristics, tissue oxidative stress levels, testicular histology and testicular apoptosis level in rams raised in remote and near regions of a thermal power plant. A total of 75 rams were divided into 3 groups according to the regions, where they were born and raised, being far [250 km distance, group 1 (control), n = 25], close (20 km distance, group 2, n = 25) and very close (10 km distance, group 3, n = 25) to the thermal power plant. The blood along with testis and epididymis tissues was taken from the animals after slaughtering. In addition, soil and water heavy metal analyzes were also performed. The highest levels of serum Al, Cr, As, Ag, Sn and testicular Al, V, Ni, Ag, Cd, Cr, As, Pb, and the lowest levels of serum Cu, testicular Cu and Zn were determined in group 3 compared to control. Soil and water heavy metal results were similar to those found in serum and testis. The lowest serum testosterone level, tissue glutathione-peroxidase and catalase activities, spermatozoon concentration, and the highest tissue malondialdehyde level, dead spermatozoon rate, Bax apoptotic protein expression level and Bax/Bcl-2 rate alongside some testicular histopathological lesions were found in group 3 in comparison to control. Significant correlations were determined between some heavy metal levels and some parameters measured. As a result, heavy metals accumulate in the soil and water in the region close to the thermal power plant. The endocrine and exocrine reproductive potentials of rams born and grown in these regions were clearly damaged by the increased testicular heavy metals due to water drank and herbs consumed.
Collapse
|
31
|
Osadchuk L, Kleshchev M, Danilenko A, Osadchuk A. Impact of seminal and serum zinc on semen quality and hormonal status: A population-based cohort study of Russian young men. J Trace Elem Med Biol 2021; 68:126855. [PMID: 34547694 DOI: 10.1016/j.jtemb.2021.126855] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/16/2021] [Accepted: 09/03/2021] [Indexed: 01/09/2023]
Abstract
BACKGROUND Trace elements are important factors in human reproductive health. Among them, special attention is paid to zinc, which is an essential trace element and is necessary for the normal functioning of the male reproductive system and the process of spermatogenesis. The aim of the study was to investigate the association between seminal and serum zinc concentrations and semen quality and reproductive hormone levels in population of Russian young men. METHODS The study population consisted of 626 young Russian men (median age 22.5 years), recruited from the general population, regardless of their fertility status. Each participant provided semen and blood sample, information about his lifestyle and ethnicity. Semen quality (sperm concentration, motility and morphology), reproductive hormone levels (testosterone, estradiol, LH, FSH and inhibin B), and serum and seminal zinc concentrations were evaluated. The semen samples were analyzed according to the WHO laboratory manual (WHO, 2010). Serum hormones were measured by enzyme immunoassay, zinc concentrations were determined using spectrophotometry and direct colorimetry without deproteinization. RESULTS Zinc was present in the seminal plasma in a significantly higher concentration than in the blood serum (median serum Zn concentration was 23.6 μmol/L vs seminal Zn concentration 1571.8 μmol/L). The seminal zinc concentration was positively related to the total sperm count, sperm concentration, progressive motility and normal morphology (Spearman's test: 0.221; 0.286; 0.269; 0.183, respectively, p < 0.001), while the serum Zn concentration was negatively related to serum testosterone and estradiol levels (r = -0.249 and r = -0.096, respectively, p < 0.001-0.05). It was found that the seminal Zn content in men with normal semen quality was higher compared to men with lowered semen quality (means: 6.37 and 5.03 μmol/ejaculate, respectively, p < 0.001). Similarly, the semen volume, total sperm count, sperm concentration, progressive motility, normal morphology and the serum testosterone level in men with the seminal Zn deficiency were lower than in men with the normal seminal Zn content. CONCLUSION Based on the results of our population-based study, seminal Zn levels were closely associated with semen parameters in young men, so Zn deficiency may be an important risk factor for lowered semen quality. Seminal Zn determinations should be considered as a useful tool in addition to other parameters in assessing male fertility.
Collapse
Affiliation(s)
- Ludmila Osadchuk
- Department of Human Molecular Genetics, Federal Research Center 'Institute of Cytology and Genetics', the Siberian Branch of the Russian Academy of Sciences, Prospekt Academician Lavrentyeva 10, Novosibirsk, 630090, Russian Federation.
| | - Maxim Kleshchev
- Department of Human Molecular Genetics, Federal Research Center 'Institute of Cytology and Genetics', the Siberian Branch of the Russian Academy of Sciences, Prospekt Academician Lavrentyeva 10, Novosibirsk, 630090, Russian Federation.
| | - Anna Danilenko
- Department of Human Molecular Genetics, Federal Research Center 'Institute of Cytology and Genetics', the Siberian Branch of the Russian Academy of Sciences, Prospekt Academician Lavrentyeva 10, Novosibirsk, 630090, Russian Federation.
| | - Alexander Osadchuk
- Department of Human Molecular Genetics, Federal Research Center 'Institute of Cytology and Genetics', the Siberian Branch of the Russian Academy of Sciences, Prospekt Academician Lavrentyeva 10, Novosibirsk, 630090, Russian Federation.
| |
Collapse
|
32
|
Li Z, Wang S, Gong C, Hu Y, Liu J, Wang W, Chen Y, Liao Q, He B, Huang Y, Luo Q, Zhao Y, Xiao Y. Effects of Environmental and Pathological Hypoxia on Male Fertility. Front Cell Dev Biol 2021; 9:725933. [PMID: 34589489 PMCID: PMC8473802 DOI: 10.3389/fcell.2021.725933] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/23/2021] [Indexed: 12/28/2022] Open
Abstract
Male infertility is a widespread health problem affecting approximately 6%-8% of the male population, and hypoxia may be a causative factor. In mammals, two types of hypoxia are known, including environmental and pathological hypoxia. Studies looking at the effects of hypoxia on male infertility have linked both types of hypoxia to poor sperm quality and pregnancy outcomes. Hypoxia damages testicular seminiferous tubule directly, leading to the disorder of seminiferous epithelium and shedding of spermatogenic cells. Hypoxia can also disrupt the balance between oxidative phosphorylation and glycolysis of spermatogenic cells, resulting in impaired self-renewal and differentiation of spermatogonia, and failure of meiosis. In addition, hypoxia disrupts the secretion of reproductive hormones, causing spermatogenic arrest and erectile dysfunction. The possible mechanisms involved in hypoxia on male reproductive toxicity mainly include excessive ROS mediated oxidative stress, HIF-1α mediated germ cell apoptosis and proliferation inhibition, systematic inflammation and epigenetic changes. In this review, we discuss the correlations between hypoxia and male infertility based on epidemiological, clinical and animal studies and enumerate the hypoxic factors causing male infertility in detail. Demonstration of the causal association between hypoxia and male infertility will provide more options for the treatment of male infertility.
Collapse
Affiliation(s)
- Zhibin Li
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China.,Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China
| | - Sumin Wang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Chunli Gong
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Yiyang Hu
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Jiao Liu
- Department of Endoscope, The General Hospital of Shenyang Military Region, Liaoning, China
| | - Wei Wang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Yang Chen
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Qiushi Liao
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Bing He
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China.,Department of Laboratory Medicine, General Hospital of Northern Theater Command, Shenyang, China
| | - Yu Huang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Qiang Luo
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Yongbing Zhao
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Yufeng Xiao
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
33
|
Asgharzadeh F, Roshan-Milani S, Fard AA, Ahmadi K, Saboory E, Pourjabali M, Chodari L, Amini M. The protective effect of zinc on morphine-induced testicular toxicity via p53 and Akt pathways: An in vitro and in vivo approach. J Trace Elem Med Biol 2021; 67:126776. [PMID: 33984544 DOI: 10.1016/j.jtemb.2021.126776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/21/2021] [Accepted: 05/04/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUND Chronic use of morphine is associated with reproductive complications, such as hypogonadism and infertility. While the side effects of morphine have been extensively studied in the testis, much less is known regarding the effects of morphine on Sertoli cells and the effects of zinc on morphine-induced testicular injury as well as their underlying mechanisms. Therefore, the purpose of this study was to investigate the effect of morphine (alone and co-administered with zinc) on cell viability and apoptosis of the testicular (Sertoli) cells as well as the tumor suppressor p53 and phosphorylated-protein kinase B (p-Akt) protein levels in both in vitro and in vivo models. METHODS Cultured Sertoli cells were exposed to morphine (23 μM), zinc (8 μM), and zinc prior to morphine and their effects on Sertoli cell viability and apoptosis were investigated. Morphine (3 mg/kg) and zinc (5 mg/kg, 1 h before morphine) were also injected intraperitoneally to rats and then the apoptotic changes in the testis were evaluated. RESULTS Cell viability and p-Akt protein levels decreased in morphine-treated cells, while apoptosis and p53 protein expression increased in these cells. Pretreatment with zinc recovered morphine-induced apoptotic effects, as well as over-expression of p53 and down-regulation of p-Akt. These findings were supported by a subsequent animal study. CONCLUSION The present data indicated the protective effect of zinc against morphine-induced testicular (Sertoli) cell toxicity via p53/Akt pathways in both in vivo and in vitro models and suggested the clinical importance of zinc on infertility among chronic opioid users and addicted men.
Collapse
Affiliation(s)
- Fatemeh Asgharzadeh
- Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran; Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran.
| | - Shiva Roshan-Milani
- Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran; Neurophysiology Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran.
| | - Amin Abdollahzade Fard
- Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran; Nephrology and Kidney Transplant Research Center, Urmia University of Medical Sciences, Urmia, Iran.
| | - Kimia Ahmadi
- Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran; Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia, Iran.
| | - Ehsan Saboory
- Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Masoumeh Pourjabali
- Department of Pathology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| | - Leila Chodari
- Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran; Neurophysiology Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran.
| | - Mohammad Amini
- Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
34
|
Torres-Arce E, Vizmanos B, Babio N, Márquez-Sandoval F, Salas-Huetos A. Dietary Antioxidants in the Treatment of Male Infertility: Counteracting Oxidative Stress. BIOLOGY 2021; 10:241. [PMID: 33804600 PMCID: PMC8003818 DOI: 10.3390/biology10030241] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 02/07/2023]
Abstract
Infertility affects about 15% of the population and male factors only are responsible for ~25-30% of cases of infertility. Currently, the etiology of suboptimal semen quality is poorly understood, and many environmental and genetic factors, including oxidative stress, have been implicated. Oxidative stress is an imbalance between the production of free radicals, or reactive oxygen species (ROS), and the capacity of the body to counteract their harmful effects through neutralization by antioxidants. The purpose of this review, by employing the joint expertise of international researchers specialized in nutrition and male fertility areas, is to update the knowledge about the reproductive consequences of excessive ROS concentrations and oxidative stress on the semen quality and Assisted Reproduction Techniques (ART) clinical outcomes, to discuss the role of antioxidants in fertility outcomes, and finally to discuss why foods and dietary patterns are more innocuous long term solution for ameliorating oxidative stress and therefore semen quality results and ART fertility outcomes. Since this is a narrative review and not a systematic/meta-analysis, the summarized information in the present study should be considered cautiously.
Collapse
Affiliation(s)
- Elizabeth Torres-Arce
- Center of Health Sciences, Institute of Translational Nutrigenetics and Nutrigenomics, Universidad de Guadalajara, 44340 Guadalajara, Mexico; (E.T.-A.); (B.V.)
- Andrology and IVF Laboratory, Division of Urology, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT 84108, USA
| | - Barbara Vizmanos
- Center of Health Sciences, Institute of Translational Nutrigenetics and Nutrigenomics, Universidad de Guadalajara, 44340 Guadalajara, Mexico; (E.T.-A.); (B.V.)
| | - Nancy Babio
- Human Nutrition Unit, Biochemistry and Biotechnology Department, Universitat Rovira i Virgili, 43201 Reus, Spain;
- Institut d’Investigació Sanitària Pere i Virgili, 43204 Reus, Spain
- Consorcio CIBER, M.P., Fisiopatología de la Obesidad y Nutrición (ciBeRobn), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Fabiola Márquez-Sandoval
- Center of Health Sciences, Institute of Translational Nutrigenetics and Nutrigenomics, Universidad de Guadalajara, 44340 Guadalajara, Mexico; (E.T.-A.); (B.V.)
| | - Albert Salas-Huetos
- Andrology and IVF Laboratory, Division of Urology, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT 84108, USA
- Consorcio CIBER, M.P., Fisiopatología de la Obesidad y Nutrición (ciBeRobn), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| |
Collapse
|
35
|
Tsujimura A, Hiramatsu I, Miyoshi M, Ogasa T, Miyoshi Y, Ishikawa K, Uesaka Y, Nozaki T, Shirai M, Kobayashi K, Horie S. Relationship between serum zinc concentration and semen quality in newly-wed men. Int J Urol 2021; 28:289-293. [PMID: 33254285 DOI: 10.1111/iju.14448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 11/01/2020] [Indexed: 12/13/2022]
Abstract
OBJECTIVES To clarify factors associated with semen quality and confirm whether there is an association between semen quality and serum zinc concentration. METHODS A semen test was performed on 217 men just after or just before marriage. Variables assessed in the study were: age; symptomatic scores, including sexual function evaluated using several specific questionnaires; endocrinological profiles, especially follicle-stimulating hormone; and serum zinc concentrations. Based on World Health Organization criteria for assessing sperm quality, semen volume ≥1.5 mL, sperm concentration ≥15 million/mL, or sperm motility rate ≥40%, the men were grouped according to whether they had values below or above these criteria. The two groups were compared with regard to the study variables, and correlation between serum zinc concentration and semen quality was evaluated. Independent predictors for inclusion in the group with values below the criteria were investigated further. RESULTS Of the 217 men included in the study, 45 (20.7%) were categorized as having values below the World Health Organization criteria. The men in this group were significantly older and had significantly worse sexual function, significantly higher follicle-stimulating hormone levels, and significantly lower serum zinc concentrations, than those in the group with values above the criteria. There was no significant correlation between serum zinc concentration and semen quality. However, the independent predictors for having values below the criteria in binomial logistic regression analysis were follicle-stimulating hormone and serum zinc concentration. CONCLUSION We suggest that semen analysis may be considered in men with a low level of serum zinc and high level of follicle-stimulating hormone when developing a life plan for fertilization.
Collapse
Affiliation(s)
- Akira Tsujimura
- Department of Urology, Juntendo University Urayasu Hospital, Urayasu, Chiba, Japan
| | - Ippei Hiramatsu
- Department of Urology, Juntendo University Urayasu Hospital, Urayasu, Chiba, Japan
- Department of Urology, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Miho Miyoshi
- Department of Urology, Juntendo University Urayasu Hospital, Urayasu, Chiba, Japan
- Department of Urology, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Taiki Ogasa
- Department of Urology, Juntendo University Urayasu Hospital, Urayasu, Chiba, Japan
| | - Yuto Miyoshi
- Department of Urology, Juntendo University Urayasu Hospital, Urayasu, Chiba, Japan
| | - Keisuke Ishikawa
- Department of Urology, Juntendo University Urayasu Hospital, Urayasu, Chiba, Japan
- Department of Urology, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Yuka Uesaka
- Department of Urology, Juntendo University Urayasu Hospital, Urayasu, Chiba, Japan
| | - Taiji Nozaki
- Department of Urology, Juntendo University Urayasu Hospital, Urayasu, Chiba, Japan
| | - Masato Shirai
- Department of Urology, Juntendo University Urayasu Hospital, Urayasu, Chiba, Japan
| | | | - Shigeo Horie
- Department of Urology, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| |
Collapse
|
36
|
Vickram S, Rohini K, Srinivasan S, Veenakumari DN, Archana K, Anbarasu K, Jeyanthi P, Thanigaivel S, Gulothungan G, Rajendiran N, Srikumar PS. Role of Zinc (Zn) in Human Reproduction: A Journey from Initial Spermatogenesis to Childbirth. Int J Mol Sci 2021; 22:2188. [PMID: 33671837 PMCID: PMC7926410 DOI: 10.3390/ijms22042188] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/19/2021] [Accepted: 02/19/2021] [Indexed: 02/08/2023] Open
Abstract
Zinc (Zn), the second-most necessary trace element, is abundant in the human body. The human body lacks the capacity to store Zn; hence, the dietary intake of Zn is essential for various functions and metabolism. The uptake of Zn during its transport through the body is important for proper development of the three major accessory sex glands: the testis, epididymis, and prostate. It plays key roles in the initial stages of germ cell development and spermatogenesis, sperm cell development and maturation, ejaculation, liquefaction, the binding of spermatozoa and prostasomes, capacitation, and fertilization. The prostate releases more Zn into the seminal plasma during ejaculation, and it plays a significant role in sperm release and motility. During the maternal, labor, perinatal, and neonatal periods, the part of Zn is vital. The average dietary intake of Zn is in the range of 8-12 mg/day in developing countries during the maternal period. Globally, the dietary intake of Zn varies for pregnant and lactating mothers, but the average Zn intake is in the range of 9.6-11.2 mg/day. The absence of Zn and the consequences of this have been discussed using critical evidence. The events and functions of Zn related to successful fertilization have been summarized in detail. Briefly, our current review emphasizes the role of Zn at each stage of human reproduction, from the spermatogenesis process to childbirth. The role of Zn and its supplementation in in vitro fertilization (IVF) opens opportunities for future studies on reproductive biology.
Collapse
Affiliation(s)
- Sundaram Vickram
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu 602105, India; (S.V.); (S.T.)
| | - Karunakaran Rohini
- Unit of Biochemistry, Faculty of Medicine, AIMST University, Semeling, Bedong 08100, Kedah, Malaysia
| | - Subramanian Srinivasan
- Department of Biomedical Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu 602105, India; (S.S.); (G.G.); (N.R.)
| | | | - Kumar Archana
- Department of Agriculture Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu 602105, India;
| | - Krishnan Anbarasu
- Department of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu 602105, India;
| | - Palanivelu Jeyanthi
- Department of Biotechnology, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai, Tamil Nadu 600062, India;
| | - Sundaram Thanigaivel
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu 602105, India; (S.V.); (S.T.)
| | - Govindarajan Gulothungan
- Department of Biomedical Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu 602105, India; (S.S.); (G.G.); (N.R.)
| | - Nanmaran Rajendiran
- Department of Biomedical Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu 602105, India; (S.S.); (G.G.); (N.R.)
| | | |
Collapse
|
37
|
Xiong L, Zhou B, Liu H, Cai L. Comprehensive Review of Cadmium Toxicity Mechanisms in Male Reproduction and Therapeutic Strategies. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 258:151-193. [PMID: 34618232 DOI: 10.1007/398_2021_75] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Cadmium (Cd) has been widely studied as an environmental pollutant for many years. Numerous studies have reported that Cd exposure causes damage to the heart, liver, kidneys, and thyroid in vivo. The emerging evidence suggests that Cd exposure induces damage on male reproductive system, which is related to oxidative stress, inflammation, steroidogenesis disruption, and epigenetics. Current preclinical animal studies have confirmed a large number of proteins and intracellular signaling pathways involved in the pathological process of Cd-induced male reproductive damage and potential measures for prophylaxis and treatment, which primarily include antioxidants, anti-inflammatory agents, and essential ion supplement. However, explicit pathogenesis and effective treatments remain uncertain. This review collects data from the literatures, discusses the underlying mechanisms of Cd-induced toxicity on male reproductive function, and summarizes evidence that may provide guidance for the treatment and prevention of Cd-induced male reproductive toxicity.
Collapse
Affiliation(s)
- Lijuan Xiong
- Department of Emergency, Jiangxi Provincial Children's Hospital, Nanchang, Jiangxi, China.
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, USA.
| | - Bin Zhou
- Department of Emergency, Jiangxi Provincial Children's Hospital, Nanchang, Jiangxi, China
| | - Hong Liu
- Department of Emergency, Jiangxi Provincial Children's Hospital, Nanchang, Jiangxi, China
| | - Lu Cai
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, USA.
- Departments of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA.
| |
Collapse
|
38
|
Lu X, Zhang Q, Xu L, Lin X, Fu J, Wang X, Liu Y, Lin Y, Li B, Wang R, Liu L, Mi X, Wei H, Tan Y, Fang Y. Zinc is essential for the transcription function of the PGC-1α/Nrf2 signaling pathway in human primary endometrial stromal cells. Am J Physiol Cell Physiol 2020; 318:C640-C648. [PMID: 31940246 DOI: 10.1152/ajpcell.00152.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Zinc (Zn) has antioxidant effect in different types of organs and is closely associated with human health. Endometrial receptivity is one of the most important factors in the embryo implantation and development. However, the regulatory mechanism of Zn in endometrium tissue is still unclear. In the study, we found that plasma Zn level is significantly associated with female infertility, which severely affects female reproductive health. Primary endometrial stromal cells were isolated from female endometrium and cultured in the laboratory. Zn chelator TPEN treatment reduced the expression of stem cell markers CD73, CD90, and CD105 and generated reactive oxygen species in endometrial stromal cells. However, pretreatment of Zn (zinc sulfate) is able to prevent TPEN-induced oxidative stress in vitro. By transcriptional profiling and gene ontology analysis, we found that Zn increased the cellular pluripotency signaling and extracellular matrix-receptor interaction, but reduced autophagy, endocytosis, and the nitrogen metabolism pathway. We further discovered the antioxidant function of Zn through the peroxisome proliferator-activated receptor gamma coactivator 1α/nuclear factor erythroid-2-related factor signaling pathway in endometrial stromal cells. Zn supplementation may open up an effective therapeutic approach for patients with oxidative stress-related endometrial diseases.
Collapse
Affiliation(s)
- Xiaodan Lu
- Diagnostic Medical Center, Jilin Province People's Hospital, Changchun, China.,School of Medicine, Changchun University of Chinese Medicine, Changchun, China.,School of Life Science, Changchun Normal University, Changchun, China
| | - Qiang Zhang
- Department of Clinical Laboratory, Department of Nephrology, the Second Hospital of Jilin University, Changchun, China
| | - Li Xu
- Department of Clinical Laboratory, Department of Nephrology, the Second Hospital of Jilin University, Changchun, China
| | - Xiuying Lin
- Diagnostic Medical Center, Jilin Province People's Hospital, Changchun, China
| | - Jianhua Fu
- Diagnostic Medical Center, Jilin Province People's Hospital, Changchun, China
| | - Xue Wang
- Diagnostic Medical Center, Jilin Province People's Hospital, Changchun, China
| | - Yinong Liu
- Department of Clinical Laboratory, Department of Nephrology, the Second Hospital of Jilin University, Changchun, China
| | - Yifan Lin
- Diagnostic Medical Center, Jilin Province People's Hospital, Changchun, China.,School of Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Bing Li
- Department of Clinical Laboratory, Department of Nephrology, the Second Hospital of Jilin University, Changchun, China
| | - Ruobing Wang
- Department of Hepatobiliary and Pancreatic Surgery, the First Hospital of Jilin University, Changchun, China
| | - Lei Liu
- Diagnostic Medical Center, Jilin Province People's Hospital, Changchun, China
| | - Xuguang Mi
- Diagnostic Medical Center, Jilin Province People's Hospital, Changchun, China
| | - Haifeng Wei
- Diagnostic Medical Center, Jilin Province People's Hospital, Changchun, China
| | - Yan Tan
- Diagnostic Medical Center, Jilin Province People's Hospital, Changchun, China
| | - Yanqiu Fang
- Diagnostic Medical Center, Jilin Province People's Hospital, Changchun, China.,School of Medicine, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
39
|
Mirnamniha M, Faroughi F, Tahmasbpour E, Ebrahimi P, Beigi Harchegani A. An overview on role of some trace elements in human reproductive health, sperm function and fertilization process. REVIEWS ON ENVIRONMENTAL HEALTH 2019; 34:339-348. [PMID: 31203261 DOI: 10.1515/reveh-2019-0008] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 04/28/2019] [Indexed: 05/28/2023]
Abstract
Human semen contains several trace elements such as calcium (Ca), copper (Cu), manganese (Mn), magnesium (Mg), zinc (Zn) and selenium (Se) which are necessary for reproductive health, normal spermatogenesis, sperm maturation, motility and capacitation, as well as normal sperm function. In this review, the potential role of these trace elements in male reproductive health, normal function of spermatozoa and fertility potency were considered. We selected and reviewed articles that considered crucial roles of trace elements in human sperm function and fertility. Ca is essential for sperm motility and its hyperactivation, sperm capacitation and acrosome reaction, as well as sperm chemotaxis. Sodium (Na) and potassium (K) are involved in sperm motility and capacitation. Mg is necessary for normal ejaculation, spermatogenesis and sperm motility. Zn is one of the most significant nutrients in human semen. Seminal deficiency of Zn can be associated with delayed testicular development, impaired spermatogenesis, deficiency of sex hormones, oxidative stress and inflammation, and apoptosis. Se is another significant element which has antioxidative properties and is essential for spermatogenesis and the maintenance of male fertility. Mn is a potent stimulator for sperm motility; however, increased level of seminal plasma Se can be toxic for sperm. Like Se, Cu has antioxidative properties and has a positive effect on sperm parameters. Decreased level of these trace elements can negatively affect human reproductive health, semen quality, sperm normal function and as the result, fertility potency in men. Measurement of these trace elements in men with idiopathic infertility is necessary.
Collapse
Affiliation(s)
- Mahdiyeh Mirnamniha
- Department of Medical Radiation Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Fereshteh Faroughi
- Department of Medical Radiation Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Eisa Tahmasbpour
- Laboratory of Regenerative Medicine and Biomedical Innovations, Pasteur Institute of Iran, Tehran, Iran
| | - Pirooz Ebrahimi
- University Scientific Education and Research Network, Tehran, Iran
| | - Asghar Beigi Harchegani
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, P.O. Box: 19945-581, Tehran, Iran
| |
Collapse
|