1
|
Schamel WW, Zintchenko M, Nguyen T, Fehse B, Briquez PS, Minguet S. The potential of γδ CAR and TRuC T cells: An unearthed treasure. Eur J Immunol 2024; 54:e2451074. [PMID: 39192467 DOI: 10.1002/eji.202451074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/06/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024]
Abstract
Recent years have witnessed the success of αβ T cells engineered to express chimeric antigen receptors (CARs) in treating haematological cancers. CARs combine the tumour antigen binding capability of antibodies with the signalling functions of the T-cell receptor (TCR) ζ chain and co-stimulatory receptors. Despite the success, αβ CAR T cells face limitations. Possible solutions would be the use of γδ T cells and new chimeric receptors, such as TCR fusion constructs (TRuCs). Notably, γδ CAR T cells are gaining traction in pre-clinical and clinical studies, demonstrating a promising safety profile in several pilot studies. This review delves into the current understanding of γδ CAR and TCR fusion construct T cells, exploring the opportunities and challenges they present for cancer treatment.
Collapse
Affiliation(s)
- Wolfgang W Schamel
- Signaling Research Centres BIOSS and CIBSS; Department of Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Department of Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Centre for Chronic Immunodeficiency (CCI), Faculty of Medicine, University Clinics Freiburg, Freiburg, Germany
| | - Marina Zintchenko
- Signaling Research Centres BIOSS and CIBSS; Department of Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Department of Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Trang Nguyen
- Signaling Research Centres BIOSS and CIBSS; Department of Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Department of Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Boris Fehse
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, and Hamburg Centre for Translational Immunology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Centre for Translational Immunology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Priscilla S Briquez
- Department of General and Visceral Surgery, Faculty of Medicine, Medical Center - University of Freiburg, Freiburg, Germany
| | - Susana Minguet
- Signaling Research Centres BIOSS and CIBSS; Department of Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Department of Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Centre for Chronic Immunodeficiency (CCI), Faculty of Medicine, University Clinics Freiburg, Freiburg, Germany
| |
Collapse
|
2
|
Bridge J, Johnson MJ, Kim J, Wenthe S, Krueger J, Wick B, Kluesner M, Crane AT, Bell J, Skeate JG, Moriarity BS, Webber BR. Efficient multiplex non-viral engineering and expansion of polyclonal γδ CAR-T cells for immunotherapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.03.611042. [PMID: 39464114 PMCID: PMC11507710 DOI: 10.1101/2024.09.03.611042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Gamma delta (γδ) T cells are defined by their unique ability to recognize a limited repertoire of non-peptide, non-MHC-associated antigens on transformed and pathogen-infected cells. In addition to their lack of alloreactivity, γδ T cells exhibit properties distinct from other lymphocyte subsets, prompting significant interest in their development as an off-the-shelf cellular immunotherapeutic. However, their low abundance in circulation, heterogeneity, limited methods for ex vivo expansion, and under-developed methodologies for genetic modification have hindered basic study and clinical application of γδ T cells. Here, we implement a feeder-free, scalable approach for ex vivo manufacture of polyclonal, non-virally modified, gene edited chimeric antigen receptor (CAR)-γδ T cells in support of therapeutic application. Engineered CAR-γδ T cells demonstrate high function in vitro and and in vivo. Longitudinal in vivo pharmacokinetic profiling of adoptively transferred polyclonal CAR-γδ T cells uncover subset-specific responses to IL-15 cytokine armoring and multiplex base editing. Our results present a robust platform for genetic modification of polyclonal CAR-γδ T cells and present unique opportunities to further define synergy and the contribution of discrete, engineered CAR-γδ T cell subsets to therapeutic efficacy in vivo.
Collapse
Affiliation(s)
- Jacob Bridge
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Matthew J Johnson
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Jihyun Kim
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Sophia Wenthe
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Joshua Krueger
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Bryce Wick
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Mitchell Kluesner
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA, USA
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Andrew T Crane
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Jason Bell
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Joseph G Skeate
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Branden S Moriarity
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| | - Beau R Webber
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
3
|
Thomas P, Paris P, Pecqueur C. Arming Vδ2 T Cells with Chimeric Antigen Receptors to Combat Cancer. Clin Cancer Res 2024; 30:3105-3116. [PMID: 38747974 PMCID: PMC11292201 DOI: 10.1158/1078-0432.ccr-23-3495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/19/2024] [Accepted: 04/18/2024] [Indexed: 08/02/2024]
Abstract
Immunotherapy has emerged as a promising approach in the field of cancer treatment, with chimeric antigen receptor (CAR) T-cell therapy demonstrating remarkable success. However, challenges such as tumor antigen heterogeneity, immune evasion, and the limited persistence of CAR-T cells have prompted the exploration of alternative cell types for CAR-based strategies. Gamma delta T cells, a unique subset of lymphocytes with inherent tumor recognition capabilities and versatile immune functions, have garnered increasing attention in recent years. In this review, we present how arming Vδ2-T cells might be the basis for next-generation immunotherapies against solid tumors. Following a comprehensive overview of γδ T-cell biology and innovative CAR engineering strategies, we discuss the clinical potential of Vδ2 CAR-T cells in overcoming the current limitations of immunotherapy in solid tumors. Although the applications of Vδ2 CAR-T cells in cancer research are relatively in their infancy and many challenges are yet to be identified, Vδ2 CAR-T cells represent a promising breakthrough in cancer immunotherapy.
Collapse
Affiliation(s)
- Pauline Thomas
- Nantes Université, CRCI2NA, INSERM, CNRS, Nantes, France
| | - Pierre Paris
- Nantes Université, CRCI2NA, INSERM, CNRS, Nantes, France
| | | |
Collapse
|
4
|
Wei CH, Chen YC, Huang SY. Dynamic changes in γδT cells and bone resorption markers after zoledronic acid in multiple myeloma: A prospective study. J Formos Med Assoc 2024:S0929-6646(24)00314-0. [PMID: 39004539 DOI: 10.1016/j.jfma.2024.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/02/2024] [Accepted: 07/09/2024] [Indexed: 07/16/2024] Open
Abstract
We conducted a prospective evaluation for the dynamic change of γδT cells in peripheral blood (PB) and N-telopeptide of type I collagen in urine (uNTX) of patients diagnosed with multiple myeloma (MM) who underwent their initial treatment with zoledronic acid (ZOA; Zobonic®, TTY, Taiwan). Between March 2012 and November 2015, a total of 35 patients were enrolled, including 25 newly diagnosed MM (NDMM) patients. The percentage of γδT cells in PB was assessed at 20 days prior to the first ZOA infusion, then at day 8, day 64, and day 85 after the infusion. Simultaneously, uNTX levels were measured as well. Thirty-three patients who had received at least one dose of ZOA were included in subsequent analysis. We identified three dynamic change patterns for γδT cells: fluctuated pattern, continuously increasing pattern, and continuously decreasing pattern. Among NDMM patients, those exhibiting a continuously increasing pattern showed a significantly shorter overall survival compared to those with the other two patterns combined (4.7 months vs. 92.9 months, p = 0.037). For uNTX, which levels significantly decreased following ZOA treatment. In conclusion, our findings reveal three distinct dynamic change patterns for γδT cells after ZOA initiation, with continuously increasing pattern being associated with a poor prognosis. These findings prompt further inquiry into the role of γδT cells in MM patients and support the suppressive nature of γδT cells and their associated tumor microenvironment.
Collapse
Affiliation(s)
- Chao-Hung Wei
- Department of Internal Medicine, National Taiwan University Hospital, Hsin-Chu Branch, Hsinchu, Taiwan
| | - Yeu-Chin Chen
- Department of Internal Medicine, Tri-Service General Hospital, Taipei, Taiwan
| | - Shang-Yi Huang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
5
|
Baker FL, Smith KA, Mylabathula PL, Zúñiga TM, Diak DM, Batatinha H, Niemiro GM, Seckeler MD, Pedlar CR, O'Connor DP, Colombo J, Katsanis E, Simpson RJ. Exercise-induced β2-adrenergic Receptor Activation Enhances the Antileukemic Activity of Expanded γδ T-Cells via DNAM-1 Upregulation and PVR/Nectin-2 Recognition. CANCER RESEARCH COMMUNICATIONS 2024; 4:1253-1267. [PMID: 38592213 PMCID: PMC11090081 DOI: 10.1158/2767-9764.crc-23-0570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/21/2024] [Accepted: 04/05/2024] [Indexed: 04/10/2024]
Abstract
Exercise mobilizes cytotoxic lymphocytes to blood which may allow superior cell products to be harvested and manufactured for cancer therapy. Gamma-Delta (γδ) T-cells have shown promise for treating solid tumors, but there is a need to increase their potency against hematologic malignancies. Here, we show that human γδ T-cells mobilized to blood in response to just 20 minutes of graded exercise have surface phenotypes and transcriptomic profiles associated with cytotoxicity, adhesion, migration, and cytokine signaling. Following 14 days ex vivo expansion with zoledronic acid and IL2, exercise mobilized γδ T-cells had surface phenotypes and transcriptomic profiles associated with enhanced effector functions and demonstrated superior cytotoxic activity against multiple hematologic tumors in vitro and in vivo in leukemia-bearing xenogeneic mice. Infusing humans with the β1+β2-agonist isoproterenol and administering β1 or β1+β2 antagonists prior to exercise revealed these effects to be β2-adrenergic receptor (AR) dependent. Antibody blocking of DNAM-1 on expanded γδ T-cells, as well as the DNAM-1 ligands PVR and Nectin-2 on leukemic targets, abolished the enhanced antileukemic effects of exercise. These findings provide a mechanistic link between exercise, β2-AR activation, and the manufacture of superior γδ T-cell products for adoptive cell therapy against hematologic malignancies. SIGNIFICANCE Exercise mobilizes effector γδ T-cells to blood via β2-adrenergic signaling which allows for generation of a potent expanded γδ T-cell product that is highly cytotoxic against hematologic malignancies.
Collapse
Affiliation(s)
- Forrest L. Baker
- School of Nutritional Sciences and Wellness, University of Arizona, Tucson, Arizona
- Department of Pediatrics, University of Arizona, Tucson, Arizona
| | - Kyle A. Smith
- School of Nutritional Sciences and Wellness, University of Arizona, Tucson, Arizona
| | | | - Tiffany M. Zúñiga
- School of Nutritional Sciences and Wellness, University of Arizona, Tucson, Arizona
| | - Douglass M. Diak
- School of Nutritional Sciences and Wellness, University of Arizona, Tucson, Arizona
| | - Helena Batatinha
- School of Nutritional Sciences and Wellness, University of Arizona, Tucson, Arizona
| | - Grace M. Niemiro
- Department of Pediatrics, University of Arizona, Tucson, Arizona
- The University of Arizona Cancer Center, Tucson, Arizona
| | - Michael D. Seckeler
- Department of Pediatrics (Cardiology), University of Arizona, Tucson, Arizona
| | - Charles R. Pedlar
- Faculty of Sport, Health and Applied Performance Science, St. Mary's University, London, United Kingdom
| | - Daniel P. O'Connor
- Department of Health and Human Performance, University of Houston, Houston, Texas
| | - Jamie Colombo
- Department of Pediatrics (Cardiology), University of Arizona, Tucson, Arizona
| | - Emmanuel Katsanis
- Department of Pediatrics, University of Arizona, Tucson, Arizona
- The University of Arizona Cancer Center, Tucson, Arizona
- Department of Immunobiology, University of Arizona, Tucson, Arizona
- Department of Medicine, University of Arizona, Tucson, Arizona
- Department of Pathology, University of Arizona, Tucson, Arizona
| | - Richard J. Simpson
- School of Nutritional Sciences and Wellness, University of Arizona, Tucson, Arizona
- Department of Pediatrics, University of Arizona, Tucson, Arizona
- The University of Arizona Cancer Center, Tucson, Arizona
- Department of Immunobiology, University of Arizona, Tucson, Arizona
| |
Collapse
|
6
|
Lu Y, Xiang Z, Wang W, Yun B, Yi C, Zhang M, Xie N, Wang C, Zhuang Z. Establishment and validation of a tumor-infiltrating γδT cell related prognostic gene signature in head and neck squamous cell carcinoma. Int Immunopharmacol 2024; 132:112054. [PMID: 38608477 DOI: 10.1016/j.intimp.2024.112054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 04/06/2024] [Accepted: 04/07/2024] [Indexed: 04/14/2024]
Abstract
γδT cells are unconventional T cells only accounting for 1-5 % of circulating T lymphocytes. Their potent anti-tumor capability has been evidenced by accumulating studies. However, the prognostic value of γδT cells remains not well documented in head and neck squamous cell carcinoma (HNSCC). In this study, we utilized the TCGA HNSCC database to evaluate the infiltration of γδT cells and the association between γδT cells and clinicopathological factors by related gene signature, which were then validated by a total of 100 collected tumor samples from HNSCC patient cohort. Heterogeneity and functional characteristics of distinct infiltrating γδT cell profiles in HNSCC were then investigated based on the scRNA-seq data from the GEO database. We found higher γδT cell gene signature score was significantly associated with longer survival. Cox regression models showed that γδT cell gene signature could serve as an independent prognostic indicator for HNSCC patients. A high level of γδT cell-related gene signature was positively correlated with the infiltration of tumor-infiltrating lymphocytes and immune score. Through scRNA-seq analysis, we identified that γδ+ Trm cells and γδ+ CTL cells possessed anti-tumor and immunoregulatory properties. Notably, we found a significant association between the presence of these cells and improved survival outcomes. In our cell-cell communication analyses, we identified that γδT cells have the potential to eliminate tumor cells through the secretion of interferon-gamma and granzyme. Collectively, the infiltration of γδT cells may serve as a promising prognostic tool, prompting the consideration of treatment options for patients with HNSCC.
Collapse
Affiliation(s)
- Yanwen Lu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Zhuqin Xiang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Wenjin Wang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Bokai Yun
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Chen Yi
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Ming Zhang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Nan Xie
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Cheng Wang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China.
| | - Zehang Zhuang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China.
| |
Collapse
|
7
|
Yuan M, Wang W, Hawes I, Han J, Yao Z, Bertaina A. Advancements in γδT cell engineering: paving the way for enhanced cancer immunotherapy. Front Immunol 2024; 15:1360237. [PMID: 38576617 PMCID: PMC10991697 DOI: 10.3389/fimmu.2024.1360237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/07/2024] [Indexed: 04/06/2024] Open
Abstract
Comprising only 1-10% of the circulating T cell population, γδT cells play a pivotal role in cancer immunotherapy due to their unique amalgamation of innate and adaptive immune features. These cells can secrete cytokines, including interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α), and can directly eliminate tumor cells through mechanisms like Fas/FasL and antibody-dependent cell-mediated cytotoxicity (ADCC). Unlike conventional αβT cells, γδT cells can target a wide variety of cancer cells independently of major histocompatibility complex (MHC) presentation and function as antigen-presenting cells (APCs). Their ability of recognizing antigens in a non-MHC restricted manner makes them an ideal candidate for allogeneic immunotherapy. Additionally, γδT cells exhibit specific tissue tropism, and rapid responsiveness upon reaching cellular targets, indicating a high level of cellular precision and adaptability. Despite these capabilities, the therapeutic potential of γδT cells has been hindered by some limitations, including their restricted abundance, unsatisfactory expansion, limited persistence, and complex biology and plasticity. To address these issues, gene-engineering strategies like the use of chimeric antigen receptor (CAR) T therapy, T cell receptor (TCR) gene transfer, and the combination with γδT cell engagers are being explored. This review will outline the progress in various engineering strategies, discuss their implications and challenges that lie ahead, and the future directions for engineered γδT cells in both monotherapy and combination immunotherapy.
Collapse
Affiliation(s)
| | - Wenjun Wang
- *Correspondence: Wenjun Wang, ; Alice Bertaina,
| | | | | | | | - Alice Bertaina
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University, School of Medicine, Stanford, CA, United States
| |
Collapse
|
8
|
Rao A, Agrawal A, Borthakur G, Battula VL, Maiti A. Gamma delta T cells in acute myeloid leukemia: biology and emerging therapeutic strategies. J Immunother Cancer 2024; 12:e007981. [PMID: 38417915 PMCID: PMC10900322 DOI: 10.1136/jitc-2023-007981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2024] [Indexed: 03/01/2024] Open
Abstract
γδ T cells play an important role in disease control in acute myeloid leukemia (AML) and have become an emerging area of therapeutic interest. These cells represent a minor population of T lymphocytes with intrinsic abilities to recognize antigens in a major histocompatibility complex-independent manner and functionally straddle the innate and adaptive immunity interface. AML shows high expression of phosphoantigens and UL-16 binding proteins that activate the Vδ2 and Vδ1 subtypes of γδ T cells, respectively, leading to γδ T cell-mediated cytotoxicity. Insights from murine models and clinical data in humans show improved overall survival, leukemia-free survival, reduced risk of relapse, enhanced graft-versus-leukemia effect, and decreased graft-versus-host disease in patients with AML who have higher reconstitution of γδ T cells following allogeneic hematopoietic stem cell transplantation. Clinical trials leveraging γδ T cell biology have used unmodified and modified allogeneic cells as well as bispecific engagers and monoclonal antibodies. In this review, we discuss γδ T cells' biology, roles in cancer and AML, and mechanisms of immune escape and antileukemia effect; we also discuss recent clinical advances related to γδ T cells in the field of AML therapeutics.
Collapse
Affiliation(s)
- Adishwar Rao
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Akriti Agrawal
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Gautam Borthakur
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Venkata Lokesh Battula
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Abhishek Maiti
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
9
|
Field KR, Wragg KM, Kent SJ, Lee WS, Juno JA. γδ T cells mediate robust anti-HIV functions during antiretroviral therapy regardless of immune checkpoint expression. Clin Transl Immunology 2024; 13:e1486. [PMID: 38299190 PMCID: PMC10825377 DOI: 10.1002/cti2.1486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/08/2024] [Accepted: 01/13/2024] [Indexed: 02/02/2024] Open
Abstract
Objectives Although antiretroviral therapy (ART) efficiently suppresses HIV viral load, immune dysregulation and dysfunction persist in people living with HIV (PLWH). γδ T cells are functionally impaired during untreated HIV infection, but the extent to which they are reconstituted upon ART is currently unclear. Methods Utilising a cohort of ART-treated PLWH, we assessed the frequency and phenotype, characterised in vitro functional responses and defined the impact of immune checkpoint marker expression on effector functions of both Vδ1 and Vδ2 T cells. We additionally explore the in vitro expansion of Vδ2 T cells from PLWH on ART and the mechanisms by which such expanded cells may sense and kill HIV-infected targets. Results A matured NK cell-like phenotype was observed for Vδ1 T cells among 25 ART-treated individuals (PLWH/ART) studied compared to 17 HIV-uninfected controls, with heightened expression of 2B4, CD160, TIGIT and Tim-3. Despite persistent phenotypic perturbations, Vδ1 T cells from PLWH/ART exhibited strong CD16-mediated activation and degranulation, which were suppressed upon Tim-3 and TIGIT crosslinking. Vδ2 T cell degranulation responses to the phosphoantigen (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate at concentrations up to 2 ng mL-1 were significantly impaired in an immune checkpoint-independent manner among ART-treated participants. Nonetheless, expanded Vδ2 T cells from PLWH/ART retained potent anti-HIV effector functions, with the NKG2D receptor contributing substantially to the elimination of infected cells. Conclusion Our findings highlight that although significant perturbations remain within the γδ T cell compartment throughout ART-treated HIV, both subsets retain the capacity for robust anti-HIV effector functions.
Collapse
Affiliation(s)
- Kirsty R Field
- Department of Microbiology and ImmunologyUniversity of Melbourne, at the Peter Doherty Institute for Infection and ImmunityMelbourneVICAustralia
| | - Kathleen M Wragg
- Department of Microbiology and ImmunologyUniversity of Melbourne, at the Peter Doherty Institute for Infection and ImmunityMelbourneVICAustralia
| | - Stephen J Kent
- Department of Microbiology and ImmunologyUniversity of Melbourne, at the Peter Doherty Institute for Infection and ImmunityMelbourneVICAustralia
- Melbourne Sexual Health Centre and Department of Infectious Diseases, Central Clinical SchoolMonash UniversityMelbourneVICAustralia
| | - Wen Shi Lee
- Department of Microbiology and ImmunologyUniversity of Melbourne, at the Peter Doherty Institute for Infection and ImmunityMelbourneVICAustralia
| | - Jennifer A Juno
- Department of Microbiology and ImmunologyUniversity of Melbourne, at the Peter Doherty Institute for Infection and ImmunityMelbourneVICAustralia
| |
Collapse
|
10
|
Hsu H, Zanettini C, Coker M, Boudova S, Rach D, Mvula G, Divala TH, Mungwira RG, Boldrin F, Degiacomi G, Mazzabò LC, Manganelli R, Laufer MK, Zhang Y, Marchionni L, Cairo C. Concomitant assessment of PD-1 and CD56 expression identifies subsets of resting cord blood Vδ2 T cells with disparate cytotoxic potential. Cell Immunol 2024; 395-396:104797. [PMID: 38157646 DOI: 10.1016/j.cellimm.2023.104797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/17/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
Vγ9Vδ2 T lymphocytes are programmed for broad antimicrobial responses with rapid production of Th1 cytokines even before birth, and thus thought to play key roles against pathogens in infants. The process regulating Vδ2 cell acquisition of cytotoxic potential shortly after birth remains understudied. We observed that perforin production in cord blood Vδ2 cells correlates with phenotypes defined by the concomitant assessment of PD-1 and CD56. Bulk RNA sequencing of sorted Vδ2 cell fractions indicated that transcripts related to cytotoxic activity and NK function are enriched in the subset with the highest proportion of perforin+ cells. Among differentially expressed transcripts, IRF8, previously linked to CD8 T cell effector differentiation and NK maturation, has the potential to mediate Vδ2 cell differentiation towards cytotoxic effectors. Our current and past results support the hypothesis that distinct mechanisms regulate Vδ2 cell cytotoxic function before and after birth, possibly linked to different levels of microbial exposure.
Collapse
Affiliation(s)
- Haoting Hsu
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Claudio Zanettini
- Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Modupe Coker
- Department of Oral Biology, Rutgers School of Dental Medicine, Rutgers State University of New Jersey, Newark, NJ, United States
| | - Sarah Boudova
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
| | - David Rach
- Molecular Microbiology and Immunology Graduate Program, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Godfrey Mvula
- Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Titus H Divala
- Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Randy G Mungwira
- Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Francesca Boldrin
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Giulia Degiacomi
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | | | | | - Miriam K Laufer
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Yuji Zhang
- Division of Biostatistics and Bioinformatics, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, United States; University of Maryland Marlene and Stewart Greenbaum Comprehensive Cancer Center, Baltimore, MD, United States
| | - Luigi Marchionni
- Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Cristiana Cairo
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
11
|
Sandoz PA, Kuhnigk K, Szabo EK, Thunberg S, Erikson E, Sandström N, Verron Q, Brech A, Watzl C, Wagner AK, Alici E, Malmberg KJ, Uhlin M, Önfelt B. Modulation of lytic molecules restrain serial killing in γδ T lymphocytes. Nat Commun 2023; 14:6035. [PMID: 37758698 PMCID: PMC10533871 DOI: 10.1038/s41467-023-41634-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
γδ T cells play a pivotal role in protection against various types of infections and tumours, from early childhood on and throughout life. They consist of several subsets characterised by adaptive and innate-like functions, with Vγ9Vδ2 being the largest subset in human peripheral blood. Although these cells show signs of cytotoxicity, their modus operandi remains poorly understood. Here we explore, using live single-cell imaging, the cytotoxic functions of γδ T cells upon interactions with tumour target cells with high temporal and spatial resolution. While γδ T cell killing is dominated by degranulation, the availability of lytic molecules appears tightly regulated in time and space. In particular, the limited co-occurrence of granzyme B and perforin restrains serial killing of tumour cells by γδ T cells. Thus, our data provide new insights into the cytotoxic arsenal and functions of γδ T cells, which may guide the development of more efficient γδ T cell based adoptive immunotherapies.
Collapse
Affiliation(s)
- Patrick A Sandoz
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden.
| | - Kyra Kuhnigk
- Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Edina K Szabo
- Precision Immunotherapy Alliance, University of Oslo, Oslo, Norway
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Sarah Thunberg
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Elina Erikson
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Niklas Sandström
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Quentin Verron
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Andreas Brech
- Cancell, Centre for Cancer Cell Reprogramming, Department for Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Biosciences, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University, Oslo, Norway
| | - Carsten Watzl
- Department for Immunology, Leibniz Research Centre for Working Environment and Human Factors, TU Dortmund, Dortmund, Germany
| | - Arnika K Wagner
- Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Evren Alici
- Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Karl-Johan Malmberg
- Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Precision Immunotherapy Alliance, University of Oslo, Oslo, Norway
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Michael Uhlin
- CLINTEC, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Björn Önfelt
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden.
- Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
- Department of Microbiology, Tumour and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
12
|
Wang Y, Wang L, Seo N, Okumura S, Hayashi T, Akahori Y, Fujiwara H, Amaishi Y, Okamoto S, Mineno J, Tanaka Y, Kato T, Shiku H. CAR-Modified Vγ9Vδ2 T Cells Propagated Using a Novel Bisphosphonate Prodrug for Allogeneic Adoptive Immunotherapy. Int J Mol Sci 2023; 24:10873. [PMID: 37446055 DOI: 10.3390/ijms241310873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/17/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
The benefits of CAR-T therapy could be expanded to the treatment of solid tumors through the use of derived autologous αβ T cell, but clinical trials of CAR-T therapy for patients with solid tumors have so far been disappointing. CAR-T therapy also faces hurdles due to the time and cost intensive preparation of CAR-T cell products derived from patients as such CAR-T cells are often poor in quality and low in quantity. These inadequacies may be mitigated through the use of third-party donor derived CAR-T cell products which have a potent anti-tumor function but a constrained GVHD property. Vγ9Vδ2 TCR have been shown to exhibit potent antitumor activity but not alloreactivity. Therefore, in this study, CAR-T cells were prepared from Vγ9Vδ2 T (CAR-γδ T) cells which were expanded by using a novel prodrug PTA. CAR-γδ T cells suppressed tumor growth in an antigen specific manner but only during a limited time window. Provision of GITR co-stimulation enhanced anti-tumor function of CAR-γδ T cells. Our present results indicate that, while further optimization of CAR-γδ T cells is necessary, the present results demonstrate that Vγ9Vδ2 T cells are potential source of 'off-the-shelf' CAR-T cell products for successful allogeneic adoptive immunotherapy.
Collapse
Affiliation(s)
- Yizheng Wang
- Department of Personalized Cancer Immunotherapy, Mie University Graduate School of Medicine, Tsu 514-8507, Mie, Japan
| | - Linan Wang
- Department of Personalized Cancer Immunotherapy, Mie University Graduate School of Medicine, Tsu 514-8507, Mie, Japan
| | - Naohiro Seo
- Department of Personalized Cancer Immunotherapy, Mie University Graduate School of Medicine, Tsu 514-8507, Mie, Japan
| | - Satoshi Okumura
- Department of Personalized Cancer Immunotherapy, Mie University Graduate School of Medicine, Tsu 514-8507, Mie, Japan
| | - Tae Hayashi
- Department of Personalized Cancer Immunotherapy, Mie University Graduate School of Medicine, Tsu 514-8507, Mie, Japan
| | - Yasushi Akahori
- Department of Personalized Cancer Immunotherapy, Mie University Graduate School of Medicine, Tsu 514-8507, Mie, Japan
| | - Hiroshi Fujiwara
- Department of Personalized Cancer Immunotherapy, Mie University Graduate School of Medicine, Tsu 514-8507, Mie, Japan
| | | | | | | | - Yoshimasa Tanaka
- Center for Medical Innovation, Nagasaki University, Nagasaki 852-8588, Sakamoto, Japan
| | - Takuma Kato
- Cellular and Molecular Immunology, Mie University Graduate School of Medicine, Tsu 514-8507, Mie, Japan
| | - Hiroshi Shiku
- Department of Personalized Cancer Immunotherapy, Mie University Graduate School of Medicine, Tsu 514-8507, Mie, Japan
- Center for Comprehensive Cancer Immunotherapy, Mie University, Tsu 514-8507, Mie, Japan
| |
Collapse
|
13
|
Wu SJ, Lin CT, Liao CH, Lin CM. Immunotherapeutic potential of blinatumomab-secreting γ9δ2 T Cells. Transl Oncol 2023; 31:101650. [PMID: 36917873 PMCID: PMC10024132 DOI: 10.1016/j.tranon.2023.101650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/14/2023] Open
Abstract
Previous studies have explored the use of engineered blinatumomab-secreting autologous αβ T cells for CD19-targeted cancer therapy. To create a more flexible allogeneic delivery system, we utilized γ9δ2 T cells rather than αβ T cells in a similar application. First, we showed that γ9δ2 T cells could serve as effector cells for blinatumomab, and these effector memory cells could survive for at least 7 days after infusion. The genetically modified blinatumomab-secreting γ9δ2 T cells induced significant cytotoxicity in CD19+ tumor cell lines and primary cells from chronic lymphocytic leukemia patients. Of note, blinatumomab-secreting γ9δ2 T cells might also exhibit dual-targeting of CD19 and isopentenyl pyrophosphate, a universal tumor-associated antigen. Furthermore, blinatumomab-secreting γ9δ2 T cells killed CD19-transfected adherent cells, suggesting that the γ9δ2 T cells might be effective for treating solid tumors with appropriate cancer antigens. Together, these results demonstrate the promise of blinatumomab-secreting γ9δ2 T cells as a cancer therapy.
Collapse
Affiliation(s)
- Shang-Ju Wu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Department of Hematological Oncology, National Taiwan University Cancer Center, Taipei, Taiwan.
| | - Chien-Ting Lin
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Department of Hematological Oncology, National Taiwan University Cancer Center, Taipei, Taiwan
| | | | | |
Collapse
|
14
|
Neo SY, Xu S, Chong J, Lam KP, Wu J. Harnessing novel strategies and cell types to overcome immune tolerance during adoptive cell therapy in cancer. J Immunother Cancer 2023; 11:jitc-2022-006434. [PMID: 37100458 PMCID: PMC10151952 DOI: 10.1136/jitc-2022-006434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2023] [Indexed: 04/28/2023] Open
Abstract
Cell therapy encompasses an expanding spectrum of cell-based regimes for the treatment of human ailments, such as the use of immune cells, in particular T cells, for combating tumors and the modulation of inflammatory immune responses. In this review, we focus on cell therapy in the immuno-oncology space, which is largely driven by interests and demands from the clinics for better solutions to target various hard-to-treat cancers. We discuss recent advances in various types of cell therapies, including T cell receptor-T cells, chimeric antigen receptor (CAR)-T cells, tumor-infiltrating lymphocytes and natural killer cells. Particularly, the present review focuses on the strategies to improve therapeutic responses by either enhancing tumor recognition or the resilience of infused immune cells within tumor microenvironment. Finally, we discuss the potential of other innate or innate-like immune cell types currently being explored as promising CAR-cell alternatives that seek to address the limitations of conventional adoptive cell therapies.
Collapse
Affiliation(s)
- Shi Yong Neo
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Shengli Xu
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | - Joni Chong
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Kong-Peng Lam
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Republic of Singapore
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | - Jing Wu
- Department of Pharmacy, The First Affiliated Hospital of Shandong First Medical University, Jinan, People's Republic of China
- Department of Pharmacy, Shandong Provincial Qianfoshan Hospital, Jinan, People's Republic of China
| |
Collapse
|
15
|
Esteso G, Felgueres MJ, García-Jiménez ÁF, Reyburn-Valés C, Benguría A, Vázquez E, Reyburn HT, Aguiló N, Martín C, Puentes E, Murillo I, Rodríguez E, Valés-Gómez M. BCG-activation of leukocytes is sufficient for the generation of donor-independent innate anti-tumor NK and γδ T-cells that can be further expanded in vitro. Oncoimmunology 2022; 12:2160094. [PMID: 36567803 PMCID: PMC9788708 DOI: 10.1080/2162402x.2022.2160094] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Bacillus Calmette-Guérin (BCG), the nonpathogenic Mycobacterium bovis strain used as tuberculosis vaccine, has been successfully used as treatment for non-muscle invasive bladder cancer for decades, and suggested to potentiate cellular and humoral immune responses. However, the exact mechanism of action is not fully understood. We previously described that BCG mainly activated anti-tumor cytotoxic NK cells with upregulation of CD56 and a CD16+ phenotype. Now, we show that stimulation of human peripheral blood mononuclear cells with iBCG, a preparation based on BCG-Moreau, expands oligoclonal γδ T-cells, with a cytotoxic phenotype, together with anti-tumor CD56high CD16+ NK cells. We have used scRNA-seq, flow cytometry, and functional assays to characterize these BCG-activated γδ T-cells in detail. They had a high IFNγ secretion signature with expression of CD27+ and formed conjugates with bladder cancer cells. BCG-activated γδ T-cells proliferated strongly in response to minimal doses of cytokines and had anti-tumor functions, although not fully based on degranulation. BCG was sufficient to stimulate proliferation of γδ T-cells when cultured with other PBMC; however, BCG alone did not stimulate expansion of purified γδ T-cells. The characterization of these non-donor restricted lymphocyte populations, which can be expanded in vitro, could provide a new approach to prepare cell-based immunotherapy tools.
Collapse
Affiliation(s)
- Gloria Esteso
- Department of Immunology and Oncology, National Centre for Biotechnology, Spanish National Research Council, Madrid, Spain
| | - María José Felgueres
- Department of Immunology and Oncology, National Centre for Biotechnology, Spanish National Research Council, Madrid, Spain
| | - Álvaro F. García-Jiménez
- Department of Immunology and Oncology, National Centre for Biotechnology, Spanish National Research Council, Madrid, Spain
| | - Christina Reyburn-Valés
- Department of Immunology and Oncology, National Centre for Biotechnology, Spanish National Research Council, Madrid, Spain
| | - Alberto Benguría
- Servicio de Genómica, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Enrique Vázquez
- Servicio de Genómica, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Hugh T. Reyburn
- Department of Immunology and Oncology, National Centre for Biotechnology, Spanish National Research Council, Madrid, Spain
| | - Nacho Aguiló
- Grupo de Genética de Micobacterias, Departamento de Microbiología y Medicina Preventiva, Facultad de Medicina, Universidad de Zaragoza, IIS-Aragon; Zaragoza, Spain and CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III; Madrid, Spain
| | - Carlos Martín
- Grupo de Genética de Micobacterias, Departamento de Microbiología y Medicina Preventiva, Facultad de Medicina, Universidad de Zaragoza, IIS-Aragon; Zaragoza, Spain and CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III; Madrid, Spain,Servicio de Microbiología, Hospital Universitario Miguel Servet, IIS Aragon; Zaragoza, Spain
| | - Eugenia Puentes
- Clinical Research Department y Research & Development Department, Biofabri, Grupo Zendal, O’Porriño, Pontevedra, Spain
| | - Ingrid Murillo
- Clinical Research Department y Research & Development Department, Biofabri, Grupo Zendal, O’Porriño, Pontevedra, Spain
| | - Esteban Rodríguez
- Clinical Research Department y Research & Development Department, Biofabri, Grupo Zendal, O’Porriño, Pontevedra, Spain
| | - Mar Valés-Gómez
- Department of Immunology and Oncology, National Centre for Biotechnology, Spanish National Research Council, Madrid, Spain,CONTACT Mar Valés-Gómez Department of Immunology and Oncology, National Centre for Biotechnology, Spanish National Research Council, Madrid, Spain
| |
Collapse
|
16
|
Rahimmanesh I, Tavangar M, Zahedi SN, Azizi Y, Khanahmad Shahreza H. Optimization of Culture Media for Ex vivo T-Cell Expansion for Adoptive T-Cell Therapy. Adv Biomed Res 2022; 11:94. [PMID: 36518860 PMCID: PMC9744083 DOI: 10.4103/abr.abr_349_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/12/2022] [Accepted: 01/31/2022] [Indexed: 06/17/2023] Open
Abstract
BACKGROUND Adoptive T-cell therapy is a promising treatment strategy for cancer immunotherapy. The ability of immunotherapy based on the adoptive cell transfer of genetically modified T cells to generate powerful clinical responses has been highlighted by recent clinical success. Techniques which are used to expand large numbers of T cells from different sources are critical in adoptive cell therapy. In this study, we evaluated the expansion, proliferation, activation of T lymphocytes, in the presence of various concentrations of interleukin-2, phytohemagglutinin (PHA), and insulin. MATERIALS AND METHODS The effect of different supplemented culture media on T cell expansion was evaluated using MTT assay. The expression level of the Ki-67 proliferation marker was evaluated by real-time polymerase chain reaction. In addition, flow cytometry analysis was performed to access T cell subpopulations. RESULTS Our results showed that supplemented culture media with an optimized concentration of PHA and interleukin-2 increased total fold expansion of T cells up to 500-fold with approximately 90% cell viability over 7 days. The quantitative assessment of Ki-67 in expanded T cells showed a significant elevation of this proliferation marker. Flow cytometry was also used to assess the proportion of CD4+ and CD8+ cells, and the main expanded population was CD3+ CD8+ cells. CONCLUSIONS Based on these findings, we introduced a low-cost and rapid method to support the efficient expansion of T cells for adoptive cell therapy and other in vivo experiments.
Collapse
Affiliation(s)
- Ilnaz Rahimmanesh
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehrsa Tavangar
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seyedeh Noushin Zahedi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Yadollah Azizi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Khanahmad Shahreza
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
17
|
Borchmann S, Selenz C, Lohmann M, Ludwig H, Gassa A, Brägelmann J, Lohneis P, Meder L, Mattlener J, Breid S, Nill M, Fassunke J, Wisdom AJ, Compes A, Gathof B, Alakus H, Kirsch D, Hekmat K, Büttner R, Reinhardt HC, Hallek M, Ullrich RT. Tripartite antigen-agnostic combination immunotherapy cures established poorly immunogenic tumors. J Immunother Cancer 2022; 10:e004781. [PMID: 36223955 PMCID: PMC9562723 DOI: 10.1136/jitc-2022-004781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Single-agent immunotherapy has shown remarkable efficacy in selected cancer entities and individual patients. However, most patients fail to respond. This is likely due to diverse immunosuppressive mechanisms acting in a concerted way to suppress the host anti-tumor immune response. Combination immunotherapy approaches that are effective in such poorly immunogenic tumors mostly rely on precise knowledge of antigenic determinants on tumor cells. Creating an antigen-agnostic combination immunotherapy that is effective in poorly immunogenic tumors for which an antigenic determinant is not known is a major challenge. METHODS We use multiple cell line and poorly immunogenic syngeneic, autochthonous, and autologous mouse models to evaluate the efficacy of a novel combination immunotherapy named tripartite immunotherapy (TRI-IT). To elucidate TRI-ITs mechanism of action we use immune cell depletions and comprehensive tumor and immune infiltrate characterization by flow cytometry, RNA sequencing and diverse functional assays. RESULTS We show that combined adoptive cellular therapy (ACT) with lymphokine-activated killer cells, cytokine-induced killer cells, Vγ9Vδ2-T-cells (γδ-T-cells) and T-cells enriched for tumor recognition (CTLs) display synergistic antitumor effects, which are further enhanced by cotreatment with anti-PD1 antibodies. Most strikingly, the full TRI-IT protocol, a combination of this ACT with anti-PD1 antibodies, local immunotherapy of agonists against toll-like receptor 3, 7 and 9 and pre-ACT lymphodepletion, eradicates and induces durable anti-tumor immunity in a variety of poorly immunogenic syngeneic, autochthonous, as well as autologous humanized patient-derived models. Mechanistically, we show that TRI-IT coactivates adaptive cellular and humoral, as well as innate antitumor immune responses to mediate its antitumor effect without inducing off-target toxicity. CONCLUSIONS Overall, TRI-IT is a novel, highly effective, antigen-agnostic, non-toxic combination immunotherapy. In this study, comprehensive insights into its preclinical efficacy, even in poorly immunogenic tumors, and mode of action are given, so that translation into clinical trials is the next step.
Collapse
Affiliation(s)
- Sven Borchmann
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany
- Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Carolin Selenz
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany
- Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Mia Lohmann
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany
| | - Hanna Ludwig
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany
- Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Asmae Gassa
- Department of Cardiothoracic Surgery, University of Cologne, Cologne, Germany
| | - Johannes Brägelmann
- Mildred Scheel School of Oncology, University Hospital Cologne, Medical Faculty, Cologne, Germany
| | - Philipp Lohneis
- Institute of Pathology, University of Cologne, Cologne, Germany
| | - Lydia Meder
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany
- Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Julia Mattlener
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany
| | - Sara Breid
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany
- Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Marieke Nill
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany
- Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Jana Fassunke
- Institute of Pathology, University of Cologne, Cologne, Germany
| | - Amy J Wisdom
- Department of Radiation Oncology and Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, USA
| | - Anik Compes
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany
- Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Birgit Gathof
- Institute of Transfusion Medicine, University of Cologne, Cologne, Germany
| | - Hakan Alakus
- Department of General, Visceral and Cancer Surgery, University of Cologne, Cologne, Germany
| | - David Kirsch
- Department of Radiation Oncology and Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, USA
| | - Khosro Hekmat
- Department of Cardiothoracic Surgery, University of Cologne, Cologne, Germany
| | | | - H Christian Reinhardt
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen,University Duisburg-Essen, German Cancer Consortium (DKTK partner site Essen), Essen, Germany
| | - Michael Hallek
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany
| | - Roland T Ullrich
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany
- Center for Molecular Medicine, University of Cologne, Cologne, Germany
| |
Collapse
|
18
|
Kuroshima S, Al‐Omari FA, Sasaki M, Sawase T. Medication‐related osteonecrosis of the jaw: A literature review and update. Genesis 2022; 60:e23500. [DOI: 10.1002/dvg.23500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 08/12/2022] [Accepted: 08/13/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Shinichiro Kuroshima
- Department of Applied Prosthodontics Graduate School of Biomedical Sciences, Nagasaki University Nagasaki Japan
| | - Farah A. Al‐Omari
- Department of Applied Prosthodontics Graduate School of Biomedical Sciences, Nagasaki University Nagasaki Japan
| | - Muneteru Sasaki
- Department of Applied Prosthodontics Graduate School of Biomedical Sciences, Nagasaki University Nagasaki Japan
| | - Takashi Sawase
- Department of Applied Prosthodontics Graduate School of Biomedical Sciences, Nagasaki University Nagasaki Japan
| |
Collapse
|
19
|
Zheng Y, Wang PP, Fu Y, Chen YY, Ding ZY. Zoledronic acid enhances the efficacy of immunotherapy in non-small cell lung cancer. Int Immunopharmacol 2022; 110:109030. [DOI: 10.1016/j.intimp.2022.109030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/01/2022] [Accepted: 07/02/2022] [Indexed: 12/09/2022]
|
20
|
Bustos X, Snedal S, Tordesillas L, Pelle E, Abate-Daga D. γδ T Cell-Based Adoptive Cell Therapies Against Solid Epithelial Tumors. Cancer J 2022; 28:270-277. [PMID: 35880936 PMCID: PMC9335899 DOI: 10.1097/ppo.0000000000000606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
ABSTRACT Conventionally, adoptive cell therapies have been developed and optimized using αβ T cells. However, the understudied and less abundant γδ T cells offer unique advantages to the immunotherapy field especially for therapies against solid tumors. Recently, γδ T-cell potential against a broad spectrum of malignant cells has been demonstrated in the preclinical setting. In the clinic, γδ T-cell-based immunotherapies have proven to be safe; however, their efficacy needs improvement. Considering the growing body of literature reflecting the increasing interest in γδ T cells, we sought to capture the current topics of discussion in the field, pertaining to their use in adoptive immunotherapy. We aimed to compile information about γδ T-cell enhancement in terms of expansion, phenotype, and inhibitory receptors, in addition to the latest advances in preclinical and clinical research using γδ T cells specifically against solid epithelial tumors.
Collapse
|
21
|
Nezhad Shamohammadi F, Yazdanifar M, Oraei M, Kazemi MH, Roohi A, Mahya Shariat Razavi S, Rezaei F, Parvizpour F, Karamlou Y, Namdari H. Controversial role of γδ T cells in pancreatic cancer. Int Immunopharmacol 2022; 108:108895. [PMID: 35729831 DOI: 10.1016/j.intimp.2022.108895] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/12/2022] [Accepted: 05/23/2022] [Indexed: 12/26/2022]
Abstract
γδ T cells are rare lymphocytes with cogent impact on immune responses. These cells are one of the earliest cells to be recruited in the sites of infection or tumors and play a critical role in coordinating innate and adaptive immune responses. The anti-tumor activity of γδ T cells have been numerously reported; nonetheless, there is controversy among published studies regarding their anti-tumor vs pro-tumor effect- especially in pancreatic cancer. A myriad of studies has confirmed that activated γδ T cells can potently lyse a broad variety of solid tumors and leukemia/lymphoma cells and produce an array of cytokines; however, early γδ T cell-based clinical trials did not lead to optimal efficacy, despite acceptable safety. Depending on the local micromilieu, γδ T cells can differentiate into tumor promoting or suppressing cells such as Th1-, Th2-, or Th17-like cells and produce prototypical cytokines such as interferon-γ (IFNγ) and interleukin (IL)-4/-10, IL-9, or IL-17. In an abstruse tumor such as pancreatic cancer- also known as immunologically cold tumor- γδ T cells are more likely to switch to their immunosuppressive phenotype. In this review we will adduce the accumulated knowledge on these two controversial aspects of γδ T cells in cancers- with a focus on solid tumors and pancreatic cancer. In addition, we propose strategies for enhancing the anti-tumor function of γδ T cells in cancers and discuss the potential future directions.
Collapse
Affiliation(s)
| | - Mahboubeh Yazdanifar
- Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Mona Oraei
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad H Kazemi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Azam Roohi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Farhad Rezaei
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzad Parvizpour
- Iranian Tissue Bank and Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Yalda Karamlou
- Iranian Tissue Bank and Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Haideh Namdari
- Iranian Tissue Bank and Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
22
|
Human γδ T Cell Subsets and Their Clinical Applications for Cancer Immunotherapy. Cancers (Basel) 2022; 14:cancers14123005. [PMID: 35740670 PMCID: PMC9221220 DOI: 10.3390/cancers14123005] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Research into the immunotherapeutic potential of T cells has predominantly focused on conventional alpha beta (αβ) T cells, which recognize peptide antigens presented by polymorphic major histocompatibility complex (MHC) class I and class II molecules. However, innate-like T cells, such as gamma delta (γδ) T cells, also play important roles in antitumor immunity. Here, we review the current understanding of γδ T cells in antitumor immunity and discuss strategies that could potentially maximize their potential in cancer immunotherapy. Abstract Gamma delta (γδ) T cells are a minor population of T cells that share adaptive and innate immune properties. In contrast to MHC-restricted alpha beta (αβ) T cells, γδ T cells are activated in an MHC-independent manner, making them ideal candidates for developing allogeneic, off-the-shelf cell-based immunotherapies. As the field of cancer immunotherapy progresses rapidly, different subsets of γδ T cells have been explored. In addition, γδ T cells can be engineered using different gene editing technologies that augment their tumor recognition abilities and antitumor functions. In this review, we outline the unique features of different subsets of human γδ T cells and their antitumor properties. We also summarize the past and the ongoing pre-clinical studies and clinical trials utilizing γδ T cell-based cancer immunotherapy.
Collapse
|
23
|
Song Y, Liu Y, Teo HY, Liu H. Targeting Cytokine Signals to Enhance γδT Cell-Based Cancer Immunotherapy. Front Immunol 2022; 13:914839. [PMID: 35747139 PMCID: PMC9210953 DOI: 10.3389/fimmu.2022.914839] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/09/2022] [Indexed: 12/28/2022] Open
Abstract
γδT cells represent a small percentage of T cells in circulation but are found in large numbers in certain organs. They are considered to be innate immune cells that can exert cytotoxic functions on target cells without MHC restriction. Moreover, γδT cells contribute to adaptive immune response via regulating other immune cells. Under the influence of cytokines, γδT cells can be polarized to different subsets in the tumor microenvironment. In this review, we aimed to summarize the current understanding of antigen recognition by γδT cells, and the immune regulation mediated by γδT cells in the tumor microenvironment. More importantly, we depicted the polarization and plasticity of γδT cells in the presence of different cytokines and their combinations, which provided the basis for γδT cell-based cancer immunotherapy targeting cytokine signals.
Collapse
Affiliation(s)
- Yuan Song
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
- Immunology Translational Research Program and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yonghao Liu
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
- Immunology Translational Research Program and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Huey Yee Teo
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
- Immunology Translational Research Program and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Haiyan Liu
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
- Immunology Translational Research Program and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- *Correspondence: Haiyan Liu,
| |
Collapse
|
24
|
Zakeri N, Hall A, Swadling L, Pallett LJ, Schmidt NM, Diniz MO, Kucykowicz S, Amin OE, Gander A, Pinzani M, Davidson BR, Quaglia A, Maini MK. Characterisation and induction of tissue-resident gamma delta T-cells to target hepatocellular carcinoma. Nat Commun 2022; 13:1372. [PMID: 35296658 PMCID: PMC8927126 DOI: 10.1038/s41467-022-29012-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 02/17/2022] [Indexed: 02/06/2023] Open
Abstract
Immunotherapy is now the standard of care for advanced hepatocellular carcinoma (HCC), yet many patients fail to respond. A major unmet goal is the boosting of T-cells with both strong HCC reactivity and the protective advantages of tissue-resident memory T-cells (TRM). Here, we show that higher intratumoural frequencies of γδ T-cells, which have potential for HLA-unrestricted tumour reactivity, associate with enhanced HCC patient survival. We demonstrate that γδ T-cells exhibit bona fide tissue-residency in human liver and HCC, with γδTRM showing no egress from hepatic vasculature, persistence for >10 years and superior anti-tumour cytokine production. The Vγ9Vδ2 T-cell subset is selectively depleted in HCC but can efficiently target HCC cell lines sensitised to accumulate isopentenyl-pyrophosphate by the aminobisphosphonate Zoledronic acid. Aminobisphosphonate-based expansion of peripheral Vγ9Vδ2 T-cells recapitulates a TRM phenotype and boosts cytotoxic potential. Thus, our data suggest more universally effective HCC immunotherapy may be achieved by combining aminobisphosphonates to induce Vγ9Vδ2TRM capable of replenishing the depleted pool, with additional intratumoural delivery to sensitise HCC to Vγ9Vδ2TRM-based targeting.
Collapse
Affiliation(s)
- Nekisa Zakeri
- Division of Infection & Immunity, Institute of Immunity & Transplantation, University College London, London, UK
| | - Andrew Hall
- Institute for Liver & Digestive Health, Royal Free London NHS Foundation Trust, London, UK
| | - Leo Swadling
- Division of Infection & Immunity, Institute of Immunity & Transplantation, University College London, London, UK
| | - Laura J Pallett
- Division of Infection & Immunity, Institute of Immunity & Transplantation, University College London, London, UK
| | - Nathalie M Schmidt
- Division of Infection & Immunity, Institute of Immunity & Transplantation, University College London, London, UK
| | - Mariana O Diniz
- Division of Infection & Immunity, Institute of Immunity & Transplantation, University College London, London, UK
| | - Stephanie Kucykowicz
- Division of Infection & Immunity, Institute of Immunity & Transplantation, University College London, London, UK
| | - Oliver E Amin
- Division of Infection & Immunity, Institute of Immunity & Transplantation, University College London, London, UK
| | - Amir Gander
- Division of Surgery, University College London, London, UK
| | - Massimo Pinzani
- Institute for Liver & Digestive Health, Royal Free London NHS Foundation Trust, London, UK
| | | | - Alberto Quaglia
- Department of Cellular Pathology, Royal Free London NHS Foundation Trust and UCL Cancer Institute, London, UK
| | - Mala K Maini
- Division of Infection & Immunity, Institute of Immunity & Transplantation, University College London, London, UK.
| |
Collapse
|
25
|
Peng F, Zhao S, Zhang X, Long S, He Y. Calcitonin gene-related peptide upregulates IL-17A and IL-22 in γδ-T cells through the paracrine effect of langerhans cells on LC/γδ-T co-culture model. J Neuroimmunol 2022; 364:577792. [PMID: 35030439 DOI: 10.1016/j.jneuroim.2021.577792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 12/16/2021] [Indexed: 11/21/2022]
Abstract
Intense mental stimulation and stress often directly induce or exacerbate psoriasis. On the contrary, patients with nerve injury and nervous system dysfunction have psoriasis remission. The nervous system plays an important role in the inflammatory process of psoriasis, and neuropeptides are considered as local mediators of disease maintenance. To examine the molecular mechanism involved in this, first we analyzed calcitonin gene-related peptide (CGRP)-treated langerhans Cells and γδ-T cells separately. CGRP induced IL-23 mRNA and protein expression via PDK1-Rsk signaling pathway. However, CGRP had no effect on secretion of IL-17A and IL-22 in γδ-T cells. Then we treated LCs/γδ-T cells Co-culture Model with CGRP. CGRP upregulated IL-17A and IL-22 expression in co-culture model through the paracrine effect of LCs. IL-17A and IL-22 are key cytokines of psoriasis. These findings provide a potential mechanism by which nerve factors affect the development of psoriasis.
Collapse
Affiliation(s)
- Fen Peng
- Department of Dermatology, Beijing Chao-Yang Hospital, Capital Medical University, National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Siqi Zhao
- Department of Dermatology, Beijing Chao-Yang Hospital, Capital Medical University, National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Xuan Zhang
- Department of Dermatology, Beijing Chao-Yang Hospital, Capital Medical University, National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Siyu Long
- Department of Dermatology, Beijing Chao-Yang Hospital, Capital Medical University, National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Yanling He
- Department of Dermatology, Beijing Chao-Yang Hospital, Capital Medical University, National Clinical Research Center for Skin and Immune Diseases, Beijing, China.
| |
Collapse
|
26
|
Zarobkiewicz MK, Bojarska-Junak AA. The Mysterious Actor-γδ T Lymphocytes in Chronic Lymphocytic Leukaemia (CLL). Cells 2022; 11:cells11040661. [PMID: 35203309 PMCID: PMC8870520 DOI: 10.3390/cells11040661] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/06/2022] [Accepted: 02/08/2022] [Indexed: 02/07/2023] Open
Abstract
Chronic lymphocytic leukaemia (CLL) is the most common leukaemia among adults. It is the clonal expansion of B cells expressing CD19 and CD5. Despite significant progress in treatment, CLL is still incurable. γδ T cells comprise an important subset of the cytotoxic T cells. Although γδ T cells in CLL are dysfunctional, they still can possibly be used for immunotherapy. The current paper reviews our understanding of γδ T lymphocytes in CLL.
Collapse
|
27
|
Zhong F, Lin Y, Jing X, Ye Y, Wang S, Shen Z. Innate tumor killers in colorectal cancer. Cancer Lett 2021; 527:115-126. [PMID: 34952144 DOI: 10.1016/j.canlet.2021.12.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/11/2021] [Accepted: 12/18/2021] [Indexed: 12/12/2022]
Abstract
Standard treatment of colorectal cancer (CRC) improves the prognosis of CRC patients, but it is still intractable to control the progression of metastatic CRC. Immune microenvironment and immunotherapies of CRC have received extensive attention in recent years, but present immunotherapies of CRC have mainly focused on T cells and therapeutic response is only observed in a small proportion of patients. Innate immune cells are the first-line of defense in the development of malignancies. Natural killer (NK) cells, NKT cells and γδT cells are three types of innate cells of lymphoid origin and show cytotoxicity against various tumor cells including CRC. Besides, in the development of CRC, they can also be inhibited or express regulatory type, promoting tumor progression. Researches about anti-tumorigenic and pro-tumorigenic mechanisms of these cells are ongoing and regulation of these cells is also being unearthed. Meanwhile, immunotherapies using these cells more or less have shown efficacy in animal models and some of them are under exploration in clinical trials. This review provides an overview of intrinsic properties of NK cell, NKT cell and γδT cell, and summarizes current related promising treatment strategies.
Collapse
Affiliation(s)
- Fengyun Zhong
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, 100044, PR China; Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Beijing, 100044, PR China.
| | - Yilin Lin
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, 100044, PR China; Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Beijing, 100044, PR China.
| | - Xiangxiang Jing
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, 100044, PR China; Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Beijing, 100044, PR China.
| | - Yingjiang Ye
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, 100044, PR China; Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Beijing, 100044, PR China.
| | - Shan Wang
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, 100044, PR China; Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Beijing, 100044, PR China.
| | - Zhanlong Shen
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, 100044, PR China; Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Beijing, 100044, PR China.
| |
Collapse
|
28
|
Barros MDS, de Araújo ND, Magalhães-Gama F, Pereira Ribeiro TL, Alves Hanna FS, Tarragô AM, Malheiro A, Costa AG. γδ T Cells for Leukemia Immunotherapy: New and Expanding Trends. Front Immunol 2021; 12:729085. [PMID: 34630403 PMCID: PMC8493128 DOI: 10.3389/fimmu.2021.729085] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/30/2021] [Indexed: 12/22/2022] Open
Abstract
Recently, many discoveries have elucidated the cellular and molecular diversity in the leukemic microenvironment and improved our knowledge regarding their complex nature. This has allowed the development of new therapeutic strategies against leukemia. Advances in biotechnology and the current understanding of T cell-engineering have led to new approaches in this fight, thus improving cell-mediated immune response against cancer. However, most of the investigations focus only on conventional cytotoxic cells, while ignoring the potential of unconventional T cells that until now have been little studied. γδ T cells are a unique lymphocyte subpopulation that has an extensive repertoire of tumor sensing and may have new immunotherapeutic applications in a wide range of tumors. The ability to respond regardless of human leukocyte antigen (HLA) expression, the secretion of antitumor mediators and high functional plasticity are hallmarks of γδ T cells, and are ones that make them a promising alternative in the field of cell therapy. Despite this situation, in particular cases, the leukemic microenvironment can adopt strategies to circumvent the antitumor response of these lymphocytes, causing their exhaustion or polarization to a tumor-promoting phenotype. Intervening in this crosstalk can improve their capabilities and clinical applications and can make them key components in new therapeutic antileukemic approaches. In this review, we highlight several characteristics of γδ T cells and their interactions in leukemia. Furthermore, we explore strategies for maximizing their antitumor functions, aiming to illustrate the findings destined for a better mobilization of γδ T cells against the tumor. Finally, we outline our perspectives on their therapeutic applicability and indicate outstanding issues for future basic and clinical leukemia research, in the hope of contributing to the advancement of studies on γδ T cells in cancer immunotherapy.
Collapse
Affiliation(s)
- Mateus de Souza Barros
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
| | - Nilberto Dias de Araújo
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil
| | - Fábio Magalhães-Gama
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-Graduação em Ciências da Saúde, Instituto René Rachou - Fundação Oswaldo Cruz (FIOCRUZ) Minas, Belo Horizonte, Brazil
| | - Thaís Lohana Pereira Ribeiro
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
| | - Fabíola Silva Alves Hanna
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil
| | - Andréa Monteiro Tarragô
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, Brazil
| | - Adriana Malheiro
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, Brazil
| | - Allyson Guimarães Costa
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, Brazil
- Programa de Pós-Graduação em Medicina Tropical, UEA, Manaus, Brazil
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Doutor Heitor Vieira Dourado (FMT-HVD), Manaus, Brazil
- Escola de Enfermagem de Manaus, UFAM, Manaus, Brazil
| |
Collapse
|
29
|
Choi H, Lee Y, Hur G, Lee SE, Cho HI, Sohn HJ, Cho BS, Kim HJ, Kim TG. γδ T cells cultured with artificial antigen-presenting cells and IL-2 show long-term proliferation and enhanced effector functions compared with γδ T cells cultured with only IL-2 after stimulation with zoledronic acid. Cytotherapy 2021; 23:908-917. [PMID: 34312069 DOI: 10.1016/j.jcyt.2021.06.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/18/2021] [Accepted: 06/01/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND AIMS Immunotherapeutic approaches using γδ T cells have emerged as the function of γδ T cells in tumor surveillance and clearance has been discovered. In vitro expansion methods of γ9δ2 T cells have been based on phosphoantigens and cytokines, but expansion methods using feeder cells to generate larger numbers of γδ T cells have also been studied recently. However, there are no studies that directly compare γδ T cells cultured with phosphoantigens with those cultured with feeder cells. Therefore, this study aimed to compare the expansion, characteristics and effector functions of γδ T cells stimulated with K562-based artificial antigen-presenting cells (aAPCs) (aAPC-γδ T cells) and γδ T cells stimulated with only zoledronic acid (ZA) (ZA-γδ T cells). METHODS Peripheral blood mononuclear cells were stimulated with ZA for 7 days, and aAPC-γδ T cells were stimulated weekly with K562-based aAPCs expressing CD32, CD80, CD83, 4-1BBL, CD40L and CD70, whereas ZA-γδ T cells were stimulated with only IL-2. Cultured γδ T cells were analyzed by flow cytometry for the expression of co-stimulatory molecules, activating receptors and checkpoint inhibitors. Differentially expressed gene (DEG) analysis was also performed to determine the difference in gene expression between aAPC-γδ T cells and ZA-γδ T cells. In vitro cytotoxicity assay was performed with calcein AM release assay, and in vivo anti-tumor effect was compared using a U937 xenograft model. RESULTS Fold expansion on day 21 was 690.7 ± 413.1 for ZA-γδ T cells and 1415.2 ± 1016.8 for aAPC- γδ T cells. Moreover, aAPC-γδ T cells showed continuous growth, whereas ZA-γδ T cells showed a decline in growth after day 21. The T-cell receptor Vγ9+δ2+ percentages (mean ± standard deviation) on day 21 were 90.0 ± 2.7% and 87.0 ± 4.5% for ZA-γδ T cells and aAPC-γδ T cells, respectively. CD25 and CD86 expression was significantly higher in aAPC-γδ T cells. In DEG analysis, aAPC-γδ T cells and ZA-γδ T cells formed distinct clusters, and aAPC-γδ T cells showed upregulation of genes associated with metabolism and cytokine pathways. In vitro cytotoxicity revealed superior anti-tumor effects of aAPC-γδ T cells compared with ZA-γδ T cells on Daudi, Raji and U937 cell lines. In addition, in the U937 xenograft model, aAPC-γδ T-cell treatment increased survival, and a higher frequency of aAPC-γδ T cells was shown in bone marrow compared with ZA-γδ T cells. CONCLUSIONS Overall, this study demonstrates that aAPC-γδ T cells show long-term proliferation, enhanced activation and anti-tumor effects compared with ZA-γδ T cells and provides a basis for using aAPC-γδ T cells in further studies, including clinical applications and genetic engineering of γδ T cells.
Collapse
Affiliation(s)
- Haeyoun Choi
- Department of Microbiology, College of Medicine, Catholic University of Korea, Seoul, Republic of Korea; Department of Biomedicine & Health Sciences, College of Medicine, Catholic University of Korea, Seoul, Republic of Korea
| | - Yunkyung Lee
- Catholic Hematopoietic Stem Cell Bank, College of Medicine, Catholic University of Korea, Seoul, Republic of Korea
| | - Gaeun Hur
- Department of Microbiology, College of Medicine, Catholic University of Korea, Seoul, Republic of Korea; Department of Biomedicine & Health Sciences, College of Medicine, Catholic University of Korea, Seoul, Republic of Korea
| | - Sang-Eun Lee
- R&D Division, ViGenCell Inc, Seoul, Republic of Korea
| | - Hyun-Il Cho
- R&D Division, ViGenCell Inc, Seoul, Republic of Korea
| | - Hyun-Jung Sohn
- Translational and Clinical Division, ViGenCell Inc, Seoul, Republic of Korea
| | - Byung Sik Cho
- Department of Hematology, Catholic Hematology Hospital, Seoul St. Mary's Hospital, College of Medicine, Catholic University of Korea, Seoul, Republic of Korea
| | - Hee-Je Kim
- Department of Hematology, Catholic Hematology Hospital, Seoul St. Mary's Hospital, College of Medicine, Catholic University of Korea, Seoul, Republic of Korea.
| | - Tai-Gyu Kim
- Department of Microbiology, College of Medicine, Catholic University of Korea, Seoul, Republic of Korea; Department of Biomedicine & Health Sciences, College of Medicine, Catholic University of Korea, Seoul, Republic of Korea; Catholic Hematopoietic Stem Cell Bank, College of Medicine, Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
30
|
Adoptive γδT-cell transfer alone or combined with chemotherapy for the treatment of advanced esophageal cancer. Cytotherapy 2021; 23:423-432. [PMID: 33781711 DOI: 10.1016/j.jcyt.2021.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 11/23/2022]
Abstract
BACKGROUND AIMS After therapy with platinum, 5-fluorouracil and taxane, no further recommended therapy is available for recurrent or metastatic esophageal cancer (r/mEC). Here the authors report two phase 1 trials of adoptive γδT-cell therapy, one for treatment-refractory r/mEC (γδT-monotherapy-P1, UMIN000001419) and the other for r/mEC with no prior systemic therapy (DCF-γδT-P1, UMIN000008097). METHODS For γδT-monotherapy-P1, patients received four weekly and four biweekly injections of autologous γδT cells. For DCF-γδT-P1, patients received docetaxel, cisplatin and 5-fluorouracil (DCF) chemotherapy consisting of docetaxel (60 mg/m2) and cisplatin (60 mg/m2) on day 1 and continuous injection of 5-fluorouracil (600 mg/m2/day) on days 1-5 of each 28-day cycle; additionally, they received autologous γδT-cell injections on day 15 and day 22 of each cycle. RESULTS Twenty-six patients were enrolled for γδT-monotherapy-P1. No severe adverse events were associated with γδT-cell therapy. Median overall survival was 5.7 months (95% confidence interval [CI], 4.3-10.0), and median progression-free survival was 2.4 months (95% CI, 1.7-2.8). Eighteen patients received DCF-γδT-P1. All treatment-related adverse events were associated with DCF chemotherapy, not γδT injection. Median overall survival was 13.4 months (95% CI, 6.7-not reached), and median progression-free survival was 4.0 months (95% CI, 2.5-5.7). The response rate and disease control rate were 39% and 78%, respectively. CONCLUSIONS The use of γδT-cell immunotherapy with or without chemotherapy was safe and feasible for r/mEC patients. Although the authors failed to demonstrate any clinical benefit of γδT-monotherapy-P1, survival benefits were observed in the DCF-γδT-P1 trial.
Collapse
|
31
|
Brayshaw LL, Martinez-Fleites C, Athanasopoulos T, Southgate T, Jespers L, Herring C. The role of small molecules in cell and gene therapy. RSC Med Chem 2021; 12:330-352. [PMID: 34046619 PMCID: PMC8130622 DOI: 10.1039/d0md00221f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/25/2020] [Indexed: 01/22/2023] Open
Abstract
Cell and gene therapies have achieved impressive results in the treatment of rare genetic diseases using gene corrected stem cells and haematological cancers using chimeric antigen receptor T cells. However, these two fields face significant challenges such as demonstrating long-term efficacy and safety, and achieving cost-effective, scalable manufacturing processes. The use of small molecules is a key approach to overcome these barriers and can benefit cell and gene therapies at multiple stages of their lifecycle. For example, small molecules can be used to optimise viral vector production during manufacturing or used in the clinic to enhance the resistance of T cell therapies to the immunosuppressive tumour microenvironment. Here, we review current uses of small molecules in cell and gene therapy and highlight opportunities for medicinal chemists to further consolidate the success of cell and gene therapies.
Collapse
Affiliation(s)
- Lewis L Brayshaw
- Cell & Gene Therapy Discovery Research, Medicinal Science & Technology, GlaxoSmithKline Medicines Research Centre Gunnels Wood Road Stevenage SG1 2NY UK
| | - Carlos Martinez-Fleites
- Protein Degradation Group, Medicinal Science & Technology, GlaxoSmithKline Medicines Research Centre Gunnels Wood Road Stevenage SG1 2NY UK
| | - Takis Athanasopoulos
- Cell & Gene Therapy Discovery Research, Medicinal Science & Technology, GlaxoSmithKline Medicines Research Centre Gunnels Wood Road Stevenage SG1 2NY UK
| | - Thomas Southgate
- Cell & Gene Therapy Discovery Research, Medicinal Science & Technology, GlaxoSmithKline Medicines Research Centre Gunnels Wood Road Stevenage SG1 2NY UK
| | - Laurent Jespers
- Cell & Gene Therapy Discovery Research, Medicinal Science & Technology, GlaxoSmithKline Medicines Research Centre Gunnels Wood Road Stevenage SG1 2NY UK
| | - Christopher Herring
- Cell & Gene Therapy Discovery Research, Medicinal Science & Technology, GlaxoSmithKline Medicines Research Centre Gunnels Wood Road Stevenage SG1 2NY UK
| |
Collapse
|
32
|
Abe T, Uosaki H, Shibata H, Hara H, Sarentonglaga B, Nagao Y, Hanazono Y. Fetal sheep support the development of hematopoietic cells in vivo from human induced pluripotent stem cells. Exp Hematol 2021; 95:46-57.e8. [PMID: 33395577 DOI: 10.1016/j.exphem.2020.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/14/2020] [Accepted: 12/28/2020] [Indexed: 10/22/2022]
Abstract
We report that a sheep fetal liver provides a microenvironment for generating hematopoietic cells with long-term engrafting capacity and multilineage differentiation potential from human induced pluripotent stem cell (iPSC)-derived hemogenic endothelial cells (HEs). Despite the promise of iPSCs for making any cell types, generating hematopoietic stem and progenitor cells (HSPCs) is still a challenge. We hypothesized that the hematopoietic microenvironment, which exists in fetal liver but is lacking in vitro, turns iPSC-HEs into HSPCs. To test this, we transplanted CD45-negative iPSC-HEs into fetal sheep liver, in which HSPCs first grow. Within 2 months, the transplanted cells became CD45 positive and differentiated into multilineage blood cells in the fetal liver. Then, CD45-positive cells translocated to the bone marrow and were maintained there for 3 years with the capability of multilineage differentiation, indicating that hematopoietic cells with long-term engraftment potential were generated. Moreover, human hematopoietic cells were temporally enriched by xenogeneic donor-lymphocyte infusion into the sheep. This study could serve as a foundation to generate HSPCs from iPSCs.
Collapse
Affiliation(s)
- Tomoyuki Abe
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, Shimotsuke-shi, Tochigi, Japan; Center for Development of Advanced Medical Technology, Jichi Medical University, Shimotsuke-shi, Tochigi, Japan.
| | - Hideki Uosaki
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, Shimotsuke-shi, Tochigi, Japan; Center for Development of Advanced Medical Technology, Jichi Medical University, Shimotsuke-shi, Tochigi, Japan
| | - Hiroaki Shibata
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, Shimotsuke-shi, Tochigi, Japan; Center for Development of Advanced Medical Technology, Jichi Medical University, Shimotsuke-shi, Tochigi, Japan
| | - Hiromasa Hara
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, Shimotsuke-shi, Tochigi, Japan; Center for Development of Advanced Medical Technology, Jichi Medical University, Shimotsuke-shi, Tochigi, Japan
| | | | - Yoshikazu Nagao
- Department of Agriculture, Utsunomiya University, Tochigi, Japan
| | - Yutaka Hanazono
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, Shimotsuke-shi, Tochigi, Japan; Center for Development of Advanced Medical Technology, Jichi Medical University, Shimotsuke-shi, Tochigi, Japan.
| |
Collapse
|
33
|
Suzuki T, Hayman L, Kilbey A, Edwards J, Coffelt SB. Gut γδ T cells as guardians, disruptors, and instigators of cancer. Immunol Rev 2020; 298:198-217. [PMID: 32840001 DOI: 10.1111/imr.12916] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/24/2020] [Accepted: 07/26/2020] [Indexed: 08/17/2023]
Abstract
Colorectal cancer is the third most common cancer worldwide with nearly 2 million cases per year. Immune cells and inflammation are a critical component of colorectal cancer progression, and they are used as reliable prognostic indicators of patient outcome. With the growing appreciation for immunology in colorectal cancer, interest is growing on the role γδ T cells have to play, as they represent one of the most prominent immune cell populations in gut tissue. This group of cells consists of both resident populations-γδ intraepithelial lymphocytes (γδ IELs)-and transient populations that each has unique functions. The homeostatic role of these γδ T cell subsets is to maintain barrier integrity and prevent microorganisms from breaching the mucosal layer, which is accomplished through crosstalk with enterocytes and other immune cells. Recent years have seen a surge in discoveries regarding the regulation of γδ IELs in the intestine and the colon with particular new insights into the butyrophilin family. In this review, we discuss the development, specialities, and functions of γδ T cell subsets during cancer progression. We discuss how these cells may be used to predict patient outcome, as well as how to exploit their behavior for cancer immunotherapy.
Collapse
Affiliation(s)
- Toshiyasu Suzuki
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Liam Hayman
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Anna Kilbey
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Joanne Edwards
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Seth B Coffelt
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Beatson Institute, Glasgow, UK
| |
Collapse
|
34
|
Wesch D, Kabelitz D, Oberg HH. Tumor resistance mechanisms and their consequences on γδ T cell activation. Immunol Rev 2020; 298:84-98. [PMID: 33048357 DOI: 10.1111/imr.12925] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/28/2020] [Accepted: 09/03/2020] [Indexed: 12/22/2022]
Abstract
Human γδ T lymphocytes are predominated by two major subsets, defined by the variable domain of the δ chain. Both, Vδ1 and Vδ2 T cells infiltrate in tumors and have been implicated in cancer immunosurveillance. Since the localization and distribution of tumor-infiltrating γδ T cell subsets and their impact on survival of cancer patients are not completely defined, this review summarizes the current knowledge about this issue. Different intrinsic tumor resistance mechanisms and immunosuppressive molecules of immune cells in the tumor microenvironment have been reported to negatively influence functional properties of γδ T cell subsets. Here, we focus on selected tumor resistance mechanisms including overexpression of cyclooxygenase (COX)-2 and indolamine-2,3-dioxygenase (IDO)-1/2, regulation by tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)/TRAIL-R4 pathway and the release of galectins. These inhibitory mechanisms play important roles in the cross-talk of γδ T cell subsets and tumor cells, thereby influencing cytotoxicity or proliferation of γδ T cells and limiting a successful γδ T cell-based immunotherapy. Possible future directions of a combined therapy of adoptively transferred γδ T cells together with γδ-targeting bispecific T cell engagers and COX-2 or IDO-1/2 inhibitors or targeting sialoglycan-Siglec pathways will be discussed and considered as attractive therapeutic options to overcome the immunosuppressive tumor microenvironment.
Collapse
Affiliation(s)
- Daniela Wesch
- Institute of Immunology, University Hospital Schleswig-Holstein, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Dieter Kabelitz
- Institute of Immunology, University Hospital Schleswig-Holstein, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Hans-Heinrich Oberg
- Institute of Immunology, University Hospital Schleswig-Holstein, Christian-Albrechts University of Kiel, Kiel, Germany
| |
Collapse
|
35
|
Kakimi K, Matsushita H, Masuzawa K, Karasaki T, Kobayashi Y, Nagaoka K, Hosoi A, Ikemura S, Kitano K, Kawada I, Manabe T, Takehara T, Ebisudani T, Nagayama K, Nakamura Y, Suzuki R, Yasuda H, Sato M, Soejima K, Nakajima J. Adoptive transfer of zoledronate-expanded autologous Vγ9Vδ2 T-cells in patients with treatment-refractory non-small-cell lung cancer: a multicenter, open-label, single-arm, phase 2 study. J Immunother Cancer 2020; 8:jitc-2020-001185. [PMID: 32948652 PMCID: PMC7511646 DOI: 10.1136/jitc-2020-001185] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Not all non-small cell lung cancer (NSCLC) patients possess drug-targetable driver mutations, and response rates to immune checkpoint blockade therapies also remain unsatisfactory. Therefore, more effective treatments are still needed. Here, we report the results of a phase 2 clinical trial of adoptive cell therapy using zoledronate-expanded autologous Vγ9Vδ2 T-cells for treatment-refractory NSCLC. METHODS NSCLC patients who had undergone at least two regimens of standard chemotherapy for unresectable disease or had had at least one treatment including chemotherapy or radiation for recurrent disease after surgery were enrolled in this open-label, single-arm, multicenter, phase 2 study. After preliminary testing of Vγ9Vδ2 T-cell proliferation, autologous peripheral blood mononuclear cells were cultured with zoledronate and IL-2 to expand the Vγ9Vδ2 T-cells. Cultured cells (>1×109) were intravenously administered every 2 weeks for six injections. The primary endpoint of this study was progression-free survival (PFS), and secondary endpoints included overall survival (OS), best objective response rate (ORR), disease control rate (DCR), safety and immunomonitoring. Clinical efficacy was defined as median PFS significantly >4 months. RESULTS Twenty-five patients (20 adenocarcinoma, 4 squamous cell carcinoma and 1 large cell carcinoma) were enrolled. Autologous Vγ9Vδ2 T-cell therapy was administered to all 25 patients, of which 16 completed the foreseen course of 6 injections of cultured cells. Median PFS was 95.0 days (95% CI 73.0 to 132.0 days); median OS was 418.0 days (179.0-479.0 days), and best overall responses were 1 partial response, 16 stable disease (SD) and 8 progressive disease. ORR and DCR were 4.0% (0.1%-20.4%) and 68.0% (46.5%-85.1%), respectively. Severe adverse events developed in nine patients, mostly associated with disease progression. In one patient, pneumonitis and inflammatory responses resulted from Vγ9Vδ2 T-cell infusions, together with the disappearance of a massive tumor. CONCLUSIONS Although autologous Vγ9Vδ2 T-cell therapy was well tolerated and may have an acceptable DCR, this trial did not meet its primary efficacy endpoint. TRIAL REGISTRATION NUMBER UMIN000006128.
Collapse
Affiliation(s)
- Kazuhiro Kakimi
- Department of Immunotherapeutics, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| | - Hirokazu Matsushita
- Department of Immunotherapeutics, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| | - Keita Masuzawa
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine Graduate School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Takahiro Karasaki
- Department of Immunotherapeutics, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan.,Department of Thoracic Surgery, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yukari Kobayashi
- Department of Immunotherapeutics, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| | - Koji Nagaoka
- Department of Immunotherapeutics, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| | - Akihiro Hosoi
- Department of Immunotherapeutics, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| | - Shinnosuke Ikemura
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine Graduate School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Kentaro Kitano
- Department of Thoracic Surgery, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Ichiro Kawada
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine Graduate School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Tadashi Manabe
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine Graduate School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Tomohiro Takehara
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine Graduate School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Toshiaki Ebisudani
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine Graduate School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Kazuhiro Nagayama
- Department of Thoracic Surgery, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | | | - Ryuji Suzuki
- Repertoire Genesis Inc, Ibaraki-Shi, Osaka, Japan
| | - Hiroyuki Yasuda
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine Graduate School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Masaaki Sato
- Department of Thoracic Surgery, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Kenzo Soejima
- Clinical and Translational Research Center, Keio University Hospital, Shinjuku-ku, Tokyo, Japan
| | - Jun Nakajima
- Department of Thoracic Surgery, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
36
|
Xu Y, Xiang Z, Alnaggar M, Kouakanou L, Li J, He J, Yang J, Hu Y, Chen Y, Lin L, Hao J, Li J, Chen J, Li M, Wu Q, Peters C, Zhou Q, Li J, Liang Y, Wang X, Han B, Ma M, Kabelitz D, Xu K, Tu W, Wu Y, Yin Z. Allogeneic Vγ9Vδ2 T-cell immunotherapy exhibits promising clinical safety and prolongs the survival of patients with late-stage lung or liver cancer. Cell Mol Immunol 2020; 18:427-439. [PMID: 32939032 PMCID: PMC8027668 DOI: 10.1038/s41423-020-0515-7] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/14/2020] [Indexed: 12/24/2022] Open
Abstract
Vγ9Vδ2 T cells are promising candidates for cellular tumor immunotherapy. Due to their HLA-independent mode of action, allogeneic Vγ9Vδ2 T cells can be considered for clinical application. To apply allogeneic Vγ9Vδ2 T cells in adoptive immunotherapy, the methodology used to obtain adequate cell numbers with optimal effector function in vitro needs to be optimized, and clinical safety and efficacy also need to be proven. Therefore, we developed a novel formula to improve the expansion of peripheral γδ T cells from healthy donors. Then, we used a humanized mouse model to validate the therapeutic efficacy of expanded γδ T cells in vivo; furthermore, the expanded γδ T cells were adoptively transferred into late-stage liver and lung cancer patients. We found that the expanded cells possessed significantly improved immune effector functions, including proliferation, differentiation, and cancer cell killing, both in vitro and in the humanized mouse model. Furthermore, a phase I clinical trial in 132 late-stage cancer patients with a total of 414 cell infusions unequivocally validated the clinical safety of allogeneic Vγ9Vδ2 T cells. Among these 132 patients, 8 liver cancer patients and 10 lung cancer patients who received ≥5 cell infusions showed greatly prolonged survival, which preliminarily verified the efficacy of allogeneic Vγ9Vδ2 T-cell therapy. Our clinical studies underscore the safety and efficacy of allogeneic Vγ9Vδ2 T-cell immunotherapy, which will inspire further clinical investigations and eventually benefit cancer patients.
Collapse
Affiliation(s)
- Yan Xu
- The First Affiliated Hospital, Faculty of Medical Science, Jinan University, Guangzhou, 510632, Guangdong, PR China.,Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai, 519000, Guangdong, PR China.,The Biomedical Translational Research Institute, Jinan University, Guangzhou, 510632, Guangdong, PR China
| | - Zheng Xiang
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, PR China
| | - Mohammed Alnaggar
- The Biomedical Translational Research Institute, Jinan University, Guangzhou, 510632, Guangdong, PR China.,Tongji Chibi Hospital, Tongji Medical College, Huazhong University of Science and Technology, Chibi, Hubei, PR China
| | - Léonce Kouakanou
- Institute of Immunology, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Jiawei Li
- Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai, 519000, Guangdong, PR China.,The Biomedical Translational Research Institute, Jinan University, Guangzhou, 510632, Guangdong, PR China
| | - Junyi He
- The Biomedical Translational Research Institute, Jinan University, Guangzhou, 510632, Guangdong, PR China
| | - Jiashuang Yang
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, PR China
| | - Yi Hu
- The Biomedical Translational Research Institute, Jinan University, Guangzhou, 510632, Guangdong, PR China
| | - Yan Chen
- The Biomedical Translational Research Institute, Jinan University, Guangzhou, 510632, Guangdong, PR China
| | - Li Lin
- The Biomedical Translational Research Institute, Jinan University, Guangzhou, 510632, Guangdong, PR China
| | - Jianlei Hao
- Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai, 519000, Guangdong, PR China.,The Biomedical Translational Research Institute, Jinan University, Guangzhou, 510632, Guangdong, PR China
| | - Jingxia Li
- The Biomedical Translational Research Institute, Jinan University, Guangzhou, 510632, Guangdong, PR China
| | - Jibing Chen
- Fuda Cancer Hospital, Faculty of Medical Science, Jinan University, Guangzhou, 510665, Guangdong, PR China
| | - Man Li
- The Biomedical Translational Research Institute, Jinan University, Guangzhou, 510632, Guangdong, PR China
| | - Qingling Wu
- The Biomedical Translational Research Institute, Jinan University, Guangzhou, 510632, Guangdong, PR China
| | - Christian Peters
- Institute of Immunology, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Qinghua Zhou
- Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai, 519000, Guangdong, PR China.,The Biomedical Translational Research Institute, Jinan University, Guangzhou, 510632, Guangdong, PR China
| | - Jianshuang Li
- Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai, 519000, Guangdong, PR China.,The Biomedical Translational Research Institute, Jinan University, Guangzhou, 510632, Guangdong, PR China
| | - Yingqing Liang
- Fuda Cancer Hospital, Faculty of Medical Science, Jinan University, Guangzhou, 510665, Guangdong, PR China
| | - Xiaohua Wang
- Fuda Cancer Hospital, Faculty of Medical Science, Jinan University, Guangzhou, 510665, Guangdong, PR China
| | - Baohui Han
- Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, PR China
| | - Meili Ma
- Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, PR China
| | - Dieter Kabelitz
- Institute of Immunology, Christian-Albrechts-University Kiel, Kiel, Germany.
| | - Kecheng Xu
- The Biomedical Translational Research Institute, Jinan University, Guangzhou, 510632, Guangdong, PR China.,Fuda Cancer Hospital, Faculty of Medical Science, Jinan University, Guangzhou, 510665, Guangdong, PR China
| | - Wenwei Tu
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, PR China
| | - Yangzhe Wu
- Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai, 519000, Guangdong, PR China. .,The Biomedical Translational Research Institute, Jinan University, Guangzhou, 510632, Guangdong, PR China.
| | - Zhinan Yin
- Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai, 519000, Guangdong, PR China. .,The Biomedical Translational Research Institute, Jinan University, Guangzhou, 510632, Guangdong, PR China.
| |
Collapse
|
37
|
Ma R, Yuan D, Guo Y, Yan R, Li K. Immune Effects of γδ T Cells in Colorectal Cancer: A Review. Front Immunol 2020; 11:1600. [PMID: 33013819 PMCID: PMC7509400 DOI: 10.3389/fimmu.2020.01600] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/16/2020] [Indexed: 12/17/2022] Open
Abstract
Gamma delta (γδ) T cells can effectively recognize and kill colorectal cancer (CRC) cells, thereby suppressing tumor progression via multiple mechanisms. They also have abilities to exert a protumor effect via secreting interleukin-17 (IL-17). γδ T cells have been selected as potential immunocytes for antitumor treatment because of their significant cytotoxic activity. Immunotherapy is another potential anti-CRC strategy after an operation, chemotherapy, and radiotherapy. γδ T cell-based immunotherapy for CRC shows fewer side effects and better toleration. This review will outline the immune functions and the mechanisms of γδ T cells in the growth and progression of CRC in recent years, and summarize the immunotherapies based on γδ T cells, thus providing a direction for future γδ T cells in CRC research.
Collapse
MESH Headings
- Animals
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/immunology
- Cell Transformation, Neoplastic/metabolism
- Colorectal Neoplasms/etiology
- Colorectal Neoplasms/metabolism
- Colorectal Neoplasms/pathology
- Colorectal Neoplasms/therapy
- Cytokines/metabolism
- Cytotoxicity, Immunologic
- Disease Susceptibility/immunology
- Humans
- Immunotherapy/adverse effects
- Immunotherapy/methods
- Inflammatory Bowel Diseases/complications
- Inflammatory Bowel Diseases/etiology
- Inflammatory Bowel Diseases/metabolism
- Intraepithelial Lymphocytes/immunology
- Intraepithelial Lymphocytes/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- Treatment Outcome
- Tumor Escape/immunology
Collapse
Affiliation(s)
- Rulan Ma
- Department of Surgical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Dawei Yuan
- Department of Surgical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yizhan Guo
- Department of Surgery, University of Virginia, Charlottesville, VA, United States
| | - Rong Yan
- Department of Surgical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Kang Li
- Department of Surgical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
38
|
Chronic Viral Liver Diseases: Approaching the Liver Using T Cell Receptor-Mediated Gene Technologies. Cells 2020; 9:cells9061471. [PMID: 32560123 PMCID: PMC7349849 DOI: 10.3390/cells9061471] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/04/2020] [Accepted: 06/09/2020] [Indexed: 12/11/2022] Open
Abstract
Chronic infection with viral hepatitis is a major risk factor for liver injury and hepatocellular carcinoma (HCC). One major contributing factor to the chronicity is the dysfunction of virus-specific T cell immunity. T cells engineered to express virus-specific T cell receptors (TCRs) may be a therapeutic option to improve host antiviral responses and have demonstrated clinical success against virus-associated tumours. This review aims to give an overview of TCRs identified from viral hepatitis research and discuss how translational lessons learned from cancer immunotherapy can be applied to the field. TCR isolation pipelines, liver homing signals, cell type options, as well as safety considerations will be discussed herein.
Collapse
|
39
|
Takimoto R, Miyashita T, Mizukoshi E, Kamigaki T, Okada S, Ibe H, Oguma E, Naitoh K, Yasumoto K, Makita K, Tomita K, Goto S. Identification of prognostic factors for γδT cell immunotherapy in patients with solid tumor. Cytotherapy 2020; 22:329-336. [PMID: 32303429 DOI: 10.1016/j.jcyt.2020.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND AIMS Activated γδT cells have been shown to exhibit cytotoxicity against tumor cells. However, the efficacy of γδT cell immunotherapy for a large number of patients with solid tumors remains unclear. In this study, we examined the efficacy of γδT cell immunotherapy using in vitro-activated γδT lymphocytes in combination with standard therapies in terms of the survival of patients with solid tumors, and determined prognostic factor for γδT cell immunotherapy. METHODS 131 patients enrolled in this study received γδT cell immunotherapy with or without standard therapies. Their overall survival was analyzed by the Kaplan-Meier with log-rank test and Cox regression methods. Immunological analysis was performed by flow cytometry (FCM) before and after six cycles of γδT cell immunotherapy. RESULTS Multivariable analysis revealed that patients who showed stable disease (SD) and partial response (PR) to γδT cell immunotherapy showed better prognosis than those with a progressive disease (PD) (P = 0.0269, hazard ratio [HR], 0.410, 95% confidence interval [CI], 0.190-0.901). Furthermore, when immunological parameters were examined by FCM, the high Vγ9/γδT ratio (i.e., the high purity of the Vγ9 cells within the adoptively transferred γδT cells) before treatment was found to be a good prognostic factor for γδT cell immunotherapy (P = 0.0142, HR, 0.328, 95% CI, 0.125-0.801). No serious adverse events were reported during γδT cell immunotherapy. CONCLUSION Thus, γδT cell immunotherapy might extend the survival of patients with solid tumors.
Collapse
Affiliation(s)
- Rishu Takimoto
- Seta Clinic Group, Tokyo, Japan; Department of Next-Generation Cell and Immune Therapy, Juntendo University School of Medicine, Tokyo, Japan.
| | | | - Eishiro Mizukoshi
- Department of Gastroenterology, Graduate School of Medicine, Kanazawa University, Kanazawa, Japan
| | - Takashi Kamigaki
- Seta Clinic Group, Tokyo, Japan; Department of Next-Generation Cell and Immune Therapy, Juntendo University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | - Shigenori Goto
- Seta Clinic Group, Tokyo, Japan; Department of Next-Generation Cell and Immune Therapy, Juntendo University School of Medicine, Tokyo, Japan
| |
Collapse
|
40
|
Lu H, Shi T, Wang M, Li X, Gu Y, Zhang X, Zhang G, Chen W. B7-H3 inhibits the IFN-γ-dependent cytotoxicity of Vγ9Vδ2 T cells against colon cancer cells. Oncoimmunology 2020; 9:1748991. [PMID: 32363121 PMCID: PMC7185217 DOI: 10.1080/2162402x.2020.1748991] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 02/12/2020] [Accepted: 03/22/2020] [Indexed: 12/19/2022] Open
Abstract
The immunoregulatory protein B7-H3, a member of the B7 family, has been confirmed to be highly expressed in colon cancer. However, the exact influence of B7-H3 on the features and antitumor ability of γδT cells in colon cancer remains unknown. In the present study, we investigated that the proportions of B7-H3+ γδT cells were distinctly increased in the peripheral blood and tumor tissues of colon cancer patients. B7-H3 blockade or knockdown promoted proliferation, inhibited cell apoptosis and induced the expression of activation markers (CD25 and CD69) on Vδ2 T cells. In contrast, treatment with the B7-H3 agonist 4H7 had the opposite effect. Furthermore, B7-H3 suppressed IFN-γ expression by inhibiting T-bet in Vδ2 T cells. Moreover, B7-H3 mediated the inhibition of Vδ2 T cell cytotoxicity via the downregulation of IFN-γ and perforin/granzyme B expression. More importantly, blocking the B7-H3 function significantly enhanced the cytotoxicity of Vδ2 T cells against colon cancer cells in vivo. Therefore, the inhibition or blockade of B7-H3 is a potential immunotherapeutic approach for colon cancer.
Collapse
Affiliation(s)
- Huimin Lu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Jiangsu Institute of Clinical Immunology, the First Affiliated Hospital of Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China
| | - Tongguo Shi
- Jiangsu Institute of Clinical Immunology, the First Affiliated Hospital of Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | | | - Xiaomi Li
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yanzheng Gu
- Jiangsu Institute of Clinical Immunology, the First Affiliated Hospital of Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xueguang Zhang
- Jiangsu Institute of Clinical Immunology, the First Affiliated Hospital of Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Guangbo Zhang
- Jiangsu Institute of Clinical Immunology, the First Affiliated Hospital of Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Weichang Chen
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Jiangsu Institute of Clinical Immunology, the First Affiliated Hospital of Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
41
|
Baker FL, Bigley AB, Agha NH, Pedlar CR, O'Connor DP, Bond RA, Bollard CM, Katsanis E, Simpson RJ. Systemic β-Adrenergic Receptor Activation Augments the ex vivo Expansion and Anti-Tumor Activity of Vγ9Vδ2 T-Cells. Front Immunol 2020; 10:3082. [PMID: 32038628 PMCID: PMC6993603 DOI: 10.3389/fimmu.2019.03082] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/17/2019] [Indexed: 12/21/2022] Open
Abstract
TCR-gamma delta (γδ) T-cells are considered important players in the graft-vs.-tumor effect following allogeneic hematopoietic cell transplantation (alloHCT) and have emerged as candidates for adoptive transfer immunotherapy in the treatment of both solid and hematological tumors. Systemic β-adrenergic receptor (β-AR) activation has been shown to mobilize TCR-γδ T-cells to the blood, potentially serving as an adjuvant for alloHCT and TCR-γδ T-cell therapy. We investigated if systemic β-AR activation, using acute dynamic exercise as an experimental model, can increase the mobilization, ex vivo expansion, and anti-tumor activity of TCR-γδ T-cells isolated from the blood of healthy humans. We also sought to investigate the β-AR subtypes involved, by administering a preferential β1-AR antagonist (bisoprolol) and a non-preferential β1 + β2-AR antagonist (nadolol) prior to exercise as part of a randomized placebo controlled cross-over experiment. We found that exercise mobilized TCR-γδ cells to blood and augmented their ex vivo expansion by ~182% compared to resting blood when stimulated with IL-2 and ZOL for 14-days. Exercise also increased the proportion of CD56+, NKG2D+/CD62L-, CD158a/b/e+ and NKG2A- cells among the expanded TCR-γδ cells, and increased their cytotoxic activity against several tumor target cells (K562, U266, 221.AEH) in vitro by 40-60%. Blocking NKG2D on TCR-γδ cells in vitro eliminated the augmented cytotoxic effects of exercise against U266 target cells. Furthermore, administering a β1 + β2-AR (nadolol), but not a β1-AR (bisoprolol) antagonist prior to exercise abrogated the exercise-induced enhancement in TCR-γδ T-cell mobilization and ex vivo expansion. Furthermore, nadolol completely abrogated while bisoprolol partially inhibited the exercise-induced increase in the cytotoxic activity of the expanded TCR-γδ T-cells. We conclude that acute systemic β-AR activation in healthy donors markedly augments the mobilization, ex vivo expansion, and anti-tumor activity of TCR-γδ T-cells and that some of these effects are due to β2-AR signaling and phenotypic shifts that promote a dominant activating signal via NKG2D. These findings highlight β-ARs as potential targets to favorably alter the composition of allogeneic peripheral blood stem cell grafts and improve the potency of TCR-γδ T-cell immune cell therapeutics.
Collapse
Affiliation(s)
- Forrest L. Baker
- Laboratory of Integrated Physiology, Department of Health and Human Performance, University of Houston, Houston, TX, United States
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ, United States
- Department of Pediatrics, University of Arizona, Tucson, AZ, United States
| | - Austin B. Bigley
- Laboratory of Integrated Physiology, Department of Health and Human Performance, University of Houston, Houston, TX, United States
| | - Nadia H. Agha
- Laboratory of Integrated Physiology, Department of Health and Human Performance, University of Houston, Houston, TX, United States
| | - Charles R. Pedlar
- School of Sport, Health and Applied Science, St. Mary's University, London, United Kingdom
| | - Daniel P. O'Connor
- Laboratory of Integrated Physiology, Department of Health and Human Performance, University of Houston, Houston, TX, United States
| | - Richard A. Bond
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX, United States
| | - Catherine M. Bollard
- Center for Cancer and Immunology Research, Children's National Health System and the George Washington University, Washington, DC, United States
| | - Emmanuel Katsanis
- Department of Pediatrics, University of Arizona, Tucson, AZ, United States
- Department of Immunobiology, University of Arizona, Tucson, AZ, United States
| | - Richard J. Simpson
- Laboratory of Integrated Physiology, Department of Health and Human Performance, University of Houston, Houston, TX, United States
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ, United States
- Department of Pediatrics, University of Arizona, Tucson, AZ, United States
- Department of Immunobiology, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
42
|
Polito VA, Cristantielli R, Weber G, Del Bufalo F, Belardinilli T, Arnone CM, Petretto A, Antonucci L, Giorda E, Tumino N, Pitisci A, De Angelis B, Quintarelli C, Locatelli F, Caruana I. Universal Ready-to-Use Immunotherapeutic Approach for the Treatment of Cancer: Expanded and Activated Polyclonal γδ Memory T Cells. Front Immunol 2019; 10:2717. [PMID: 31824502 PMCID: PMC6883509 DOI: 10.3389/fimmu.2019.02717] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 11/05/2019] [Indexed: 12/11/2022] Open
Abstract
In the last years, important progresses have been registered in the treatment of patients suffering from oncological/haematological malignancies, but more still needs to be done to reduce toxicity and side effects, improve outcome and offer new strategies for relapsed or refractory disease. A remarkable part of these clinical benefits is due to advances in immunotherapy. Here, we investigate the generation of a novel, universal and ready-to-use immunotherapeutic product based on γδ-T lymphocytes. These cells are part of the innate immune system, exerting potent natural cytotoxicity against bacteria, viruses and tumours. This ability, coupled with their negligible alloreactivity, makes them attractive for adoptive immunotherapy approaches. To achieve a cell product suitable for clinical use, we developed a strategy capable to generate polyclonal γδ-T cells with predominant memory-Vδ1 phenotype in good manufacturing practice (GMP) procedures with the additional possibility of gene-modification to improve their anti-tumour activity. Irradiated, engineered artificial antigen-presenting cells (aAPCs) expressing CD86/41BBL/CD40L and the cytomegalovirus (CMV)-antigen-pp65 were used. The presence of CMV-pp65 and CD40L proved to be crucial for expansion of the memory-Vδ1 subpopulation. To allow clinical translation and guarantee patient safety, aAPCs were stably transduced with an inducible suicide gene. Expanded γδ-T cells showed high expression of activation and memory markers, without signs of exhaustion; they maintained polyclonality and potent anti-tumour activity both in vitro (against immortalised and primary blasts) and in in vivo studies without displaying alloreactivity signals. The molecular characterisation (phophoproteomic and gene-expression) of these cell products underlines their unique properties. These cells can further be armed with chimeric antigen receptors (CAR) to improve anti-tumour capacity and persistence. We demonstrate the feasibility of establishing an allogeneic third-party, off-the-shelf and ready-to-use, γδ-T-cell bank. These γδ-T cells may represent an attractive therapeutic option endowed with broad clinical applications, including treatment of viral infections in highly immunocompromised patients, treatment of aggressive malignancies refractory to conventional approaches, bridging therapy to more targeted immunotherapeutic approaches and, ultimately, an innovative platform for the development of off-the-shelf CAR-T-cell products.
Collapse
Affiliation(s)
- Vinicia A Polito
- Department of Paediatric Haematology and Oncology, Cellular and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Rosaria Cristantielli
- Department of Paediatric Haematology and Oncology, Cellular and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Gerrit Weber
- Department of Paediatric Haematology and Oncology, Cellular and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Francesca Del Bufalo
- Department of Paediatric Haematology and Oncology, Cellular and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Tamascia Belardinilli
- Department of Paediatric Haematology and Oncology, Cellular and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Claudia M Arnone
- Department of Paediatric Haematology and Oncology, Cellular and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Andrea Petretto
- Core Facilities, Proteomics Laboratory, Istituto Giannina Gaslini, Genoa, Italy
| | - Laura Antonucci
- Department of Paediatric Haematology and Oncology, Cellular and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Ezio Giorda
- Core Facilities, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Nicola Tumino
- Immunology Research Area, IRCSS Bambino Gesù Children's Hospital, Rome, Italy
| | - Angela Pitisci
- Department of Paediatric Haematology and Oncology, Cellular and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Biagio De Angelis
- Department of Paediatric Haematology and Oncology, Cellular and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Concetta Quintarelli
- Department of Paediatric Haematology and Oncology, Cellular and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Franco Locatelli
- Department of Paediatric Haematology and Oncology, Cellular and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Rome, Italy.,Department of Gynaecology/Obstetrics and Paediatrics, Sapienza University of Rome, Rome, Italy
| | - Ignazio Caruana
- Department of Paediatric Haematology and Oncology, Cellular and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| |
Collapse
|
43
|
Grimaldi M, Randino R, Ciaglia E, Scrima M, Buonocore M, Stillitano I, Abate M, Covelli V, Tosco A, Gazzerro P, Bifulco M, Rodriquez M, D'Ursi AM. NMR for screening and a biochemical assay: Identification of new FPPS inhibitors exerting anticancer activity. Bioorg Chem 2019; 98:103449. [PMID: 32057422 DOI: 10.1016/j.bioorg.2019.103449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/01/2019] [Accepted: 11/14/2019] [Indexed: 01/14/2023]
Abstract
Farnesyl pyrophosphate synthase (FPPS) is a crucial enzyme for the synthesis of isoprenoids and the key target of nitrogen-containing bisphosphonates (N-BPs). N-BPs are potent and selective FPPS inhibitors that are used in the treatment of bone-related diseases, but have poor pharmacokinetic properties. Given the key role played by FPPS in many cancer-related pathways and the pharmacokinetic limits of N-BPs, hundreds of molecules have been screened to identify new FPPS inhibitors characterized by improved drug-like properties that are useful for broader therapeutic applications in solid, non-skeletal tumours. We have previously shown that N6-isopentenyladenosine (i6A) and its related compound N6-benzyladenosine (2) exert anti-glioma activity by interfering with the mevalonate pathway and inhibiting FPPS. Here, we report the design and synthesis of a panel of N6-benzyladenosine derivatives (compounds 2a-m) incorporating different chemical moieties on the benzyl ring. Compounds 2a-m show in vitro antiproliferative activity in U87MG glioma cells and, analogous to the bisphosphonate FPPS inhibitors, exhibit immunogenic properties in ex vivo γδ T cells from stimulated peripheral blood mononuclear cells (PBMCs). Using saturation transfer difference (STD) and quantitative 1H nuclear magnetic resonance (NMR) experiments, we found that 2f, the N6-benzyladenosine analogue that includes a tertbutyl moiety in the para position of the benzyl ring, is endowed with increased FPPS binding and inhibition compared to the parent compounds i6A and 2. N6-benzyladenosine derivatives, characterized by structural features that are significantly different from those of N-BPs, have been confirmed to be promising chemical scaffolds for the development of non N-BP FPPS inhibitors, exerting combined cytotoxic and immunostimulatory activities.
Collapse
Affiliation(s)
- Manuela Grimaldi
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy; Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, V.le J.F. Kennedy 54 - Pad. 20 Mostra d'Oltremare, 80125 Naples, Italy
| | - Rosario Randino
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Elena Ciaglia
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Via Salvatore Allende, 84081 Baronissi, Salerno, Italy
| | - Mario Scrima
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Michela Buonocore
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Ilaria Stillitano
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Mario Abate
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Via Salvatore Allende, 84081 Baronissi, Salerno, Italy
| | - Verdiana Covelli
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Alessandra Tosco
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Patrizia Gazzerro
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Maurizio Bifulco
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Via Pansini, 80131 Naples, Italy; Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Via Salvatore Allende, 84081 Baronissi, Salerno, Italy
| | - Manuela Rodriquez
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Anna Maria D'Ursi
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy.
| |
Collapse
|
44
|
Raverdeau M, Cunningham SP, Harmon C, Lynch L. γδ T cells in cancer: a small population of lymphocytes with big implications. Clin Transl Immunology 2019; 8:e01080. [PMID: 31624593 PMCID: PMC6787154 DOI: 10.1002/cti2.1080] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 09/02/2019] [Accepted: 09/02/2019] [Indexed: 12/24/2022] Open
Abstract
γδ T cells are a small population of mostly tissue-resident lymphocytes, with both innate and adaptive properties. These unique features make them particularly attractive candidates for the development of new cellular therapy targeted against tumor development. Nevertheless, γδ T cells may play dual roles in cancer, promoting cancer development on the one hand, while participating in antitumor immunity on the other hand. In mice, γδ T-cell subsets preferentially produce IL-17 or IFN-γ. While antitumor functions of murine γδ T cells can be attributed to IFN-γ+ γδ T cells, recent studies have implicated IL-17+ γδ T cells in tumor growth and metastasis. However, in humans, IL-17-producing γδ T cells are rare and most studies have attributed a protective role to γδ T cells against cancer. In this review, we will present the current knowledge and most recent findings on γδ T-cell functions in mouse models of tumor development and human cancers. We will also discuss their potential as cellular immunotherapy against cancer.
Collapse
Affiliation(s)
- Mathilde Raverdeau
- School of Biochemistry and ImmunologyTrinity College DublinDublinIreland
| | | | - Cathal Harmon
- Harvard Medical SchoolBostonMAUSA
- Brigham and Women's HospitalBostonMAUSA
| | - Lydia Lynch
- School of Biochemistry and ImmunologyTrinity College DublinDublinIreland
- Harvard Medical SchoolBostonMAUSA
- Brigham and Women's HospitalBostonMAUSA
| |
Collapse
|
45
|
Cibrian D, Castillo-González R, Fernández-Gallego N, de la Fuente H, Jorge I, Saiz ML, Punzón C, Ramírez-Huesca M, Vicente-Manzanares M, Fresno M, Daudén E, Fraga-Fernandez J, Vazquez J, Aragonés J, Sánchez-Madrid F. Targeting L-type amino acid transporter 1 in innate and adaptive T cells efficiently controls skin inflammation. J Allergy Clin Immunol 2019; 145:199-214.e11. [PMID: 31605740 DOI: 10.1016/j.jaci.2019.09.025] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 09/09/2019] [Accepted: 09/16/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Psoriasis is a frequent inflammatory skin disease that is mainly mediated by IL-23, IL-1β, and IL-17 cytokines. Although psoriasis is a hyperproliferative skin disorder, the possible role of amino acid transporters has remained unexplored. OBJECTIVE We sought to investigate the role of the essential amino acid transporter L-type amino acid transporter (LAT) 1 (SLC7A5) in psoriasis. METHODS LAT1 floxed mice were crossed to Cre-expressing mouse strains under the control of keratin 5, CD4, and retinoic acid receptor-related orphan receptor γ. We produced models of skin inflammation induced by imiquimod (IMQ) and IL-23 and tested the effect of inhibiting LAT1 (JPH203) and mammalian target of rapamycin (mTOR [rapamycin]). RESULTS LAT1 expression is increased in keratinocytes and skin-infiltrating lymphocytes of psoriatic lesions in human subjects and mice. LAT1 deletion in keratinocytes does not dampen the inflammatory response or their proliferation, which could be maintained by increased expression of the alternative amino acid transporters LAT2 and LAT3. Specific deletion of LAT1 in γδ and CD4 T cells controls the inflammatory response induced by IMQ. LAT1 deletion or inhibition blocks expansion of IL-17-secreting γ4+δ4+ and CD4 T cells and dampens the release of IL-1β, IL-17, and IL-22 in the IMQ-induced model. Moreover, inhibition of LAT1 blocks expansion of human γδ T cells and IL-17 secretion by human CD4 T cells. IL-23 and IL-1β stimulation upregulates LAT1 expression and induces mTOR activation in IL-17+ γδ and TH17 cells. Deletion or inhibition of LAT1 efficiently controls IL-23- and IL-1β-induced phosphatidylinositol 3-kinase/AKT/mTOR activation independent of T-cell receptor signaling. CONCLUSION Targeting LAT1-mediated amino acid uptake is a potentially useful immunosuppressive strategy to control skin inflammation mediated by the IL-23/IL-1β/IL-17 axis.
Collapse
Affiliation(s)
- Danay Cibrian
- Immunology Service, Hospital de la Princesa, Instituto Investigación Sanitaria Princesa, Universidad Autónoma de Madrid (UAM), Madrid, Spain; Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; CIBER de Enfermedades Cardiovasculares, Carlos III Health Institute, Madrid, Spain
| | - Raquel Castillo-González
- Immunology Service, Hospital de la Princesa, Instituto Investigación Sanitaria Princesa, Universidad Autónoma de Madrid (UAM), Madrid, Spain; Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Nieves Fernández-Gallego
- Immunology Service, Hospital de la Princesa, Instituto Investigación Sanitaria Princesa, Universidad Autónoma de Madrid (UAM), Madrid, Spain; Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Hortensia de la Fuente
- Immunology Service, Hospital de la Princesa, Instituto Investigación Sanitaria Princesa, Universidad Autónoma de Madrid (UAM), Madrid, Spain; Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; CIBER de Enfermedades Cardiovasculares, Carlos III Health Institute, Madrid, Spain
| | - Inmaculada Jorge
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; CIBER de Enfermedades Cardiovasculares, Carlos III Health Institute, Madrid, Spain
| | - María Laura Saiz
- Immunology Service, Hospital de la Princesa, Instituto Investigación Sanitaria Princesa, Universidad Autónoma de Madrid (UAM), Madrid, Spain; Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Carmen Punzón
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | | | - Miguel Vicente-Manzanares
- Centro de Investigación del Cáncer-Instituto de Biología Molecular y Celular del Cáncer, CIC-IBMCC (CSIC-Universidad de Salamanca), Salamanca, Spain
| | - Manuel Fresno
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Esteban Daudén
- Dermatology Service, Hospital de la Princesa, Madrid, Spain
| | | | - Jesús Vazquez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; CIBER de Enfermedades Cardiovasculares, Carlos III Health Institute, Madrid, Spain
| | - Julián Aragonés
- CIBER de Enfermedades Cardiovasculares, Carlos III Health Institute, Madrid, Spain; Reasearch Unit, Hospital de La Princesa, Instituto Investigación Sanitaria Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| | - Francisco Sánchez-Madrid
- Immunology Service, Hospital de la Princesa, Instituto Investigación Sanitaria Princesa, Universidad Autónoma de Madrid (UAM), Madrid, Spain; Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; CIBER de Enfermedades Cardiovasculares, Carlos III Health Institute, Madrid, Spain.
| |
Collapse
|
46
|
Gang W, Yu-Zhu W, Yang Y, Feng S, Xing-Li F, Heng Z. The critical role of calcineurin/NFAT (C/N) pathways and effective antitumor prospect for colorectal cancers. J Cell Biochem 2019; 120:19254-19273. [PMID: 31489709 DOI: 10.1002/jcb.29243] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 06/10/2019] [Indexed: 12/11/2022]
Abstract
Transcription factors (TFs) like a nuclear factor of activated T-cells (NFAT) and its controller calcineurin are highly expressed in primary intestinal epithelial cells (IECs) due to delamination, damage by tumor-associated flora and selective activation in the intestinal tract tumor are crucial in the progression and growth of colorectal cancer (CRC). This study sought to summarize the current findings concerning the dysregulated calcineurin/NFAT (C/N) signaling involved in CRC initiation and progression. These signalings include proliferation, T-cell functions, and glycolysis with high lactate production that remodels the acidosis, which genes in tumor cells provide an evolutionary advantage, or even increased their attack phenotype. Moreover, the relationship between C/N and gut microbiome in CRC, especially role of NFAT and toll-like receptor signaling in regulating intestinal microbiota are also discussed. Furthermore, this review will discuss the proteins and genes relating to C/N induced acidosis in CRC, which includes ASIC2 regulated C/N1 and TFs associated with the glycolytic by-product that affect T-cell functions and CRC cell growth. It is revealed that calcineurin or NFAT targeting to antitumor, selective calcineurin inhibition or targets in NFAT signaling may be useful for clinical treatment of CRC. This can further aid in the identification of specific targets via cancer patient-personalized approach. Future studies should be focused on targeting to C/N or TLR signaling by the combination of therapeutic agents to regulate T-cell functions and gut microbiome for activating potent anticancer property with the prospect of potentiating the antitumor therapy for CRC.
Collapse
Affiliation(s)
- Wang Gang
- Department of Pharmaceutics, Shanghai Eight People's Hospital, Jiangsu University, Shanghai, China
| | - Wang Yu-Zhu
- Department of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yu Yang
- Department of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Shi Feng
- Department of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Fu Xing-Li
- Department of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Zhang Heng
- Department of General Surgery, Nanjing Lishui District People's Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing, China
| |
Collapse
|
47
|
Ghosh A, Mondal RK, Romani S, Bagchi S, Cairo C, Pauza CD, Kottilil S, Poonia B. Persistent gamma delta T-cell dysfunction in chronic HCV infection despite direct-acting antiviral therapy induced cure. J Viral Hepat 2019; 26:1105-1116. [PMID: 31074195 PMCID: PMC7152509 DOI: 10.1111/jvh.13121] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 03/18/2019] [Accepted: 04/16/2019] [Indexed: 12/12/2022]
Abstract
Immune dysfunction is a hallmark of chronic HCV infection and viral clearance with direct antivirals recover some of these immune defects. TCRVγ9Vδ2 T-cell dysfunction in treated HCV patients however is not well studied and was the subject of this investigation. Peripheral blood cells from patients who had achieved sustained virologic response (SVR) or those who had relapsed after interferon-free therapy were phenotyped using flow cytometry. Functional potential of Vγ9Vδ2 T cells was tested by measuring proliferation in response to aminobisphosphonate zoledronic acid, and cytotoxicity against HepG2 hepatoma cell line. TCR sequencing was performed to analyse impact of HCV infection on Vδ2 T-cell repertoire. Vγ9Vδ2 cells from patients were activated and therapy resulted in reduction of CD38 expression on these cells in SVR group. Relapsed patients had Vδ2 cells with persistently activated and terminally differentiated cytotoxic phenotype (CD38+ CD45RA+ CD27- CD107a+ ). Irrespective of outcome with therapy, majority of patients had persistently poor Vδ2 T-cell proliferative response to zoledronate along with lower expression of CD56, which identifies anti-tumour cytotoxic subset, relative to healthy controls. There was no association between the number of antigen reactive Vγ2-Jγ1.2 TCR rearrangements at baseline and levels of proliferation indicating nonresponse to zoledronate is not due to depletion of phosphoantigen responding chains. Thus, HCV infection results in circulating Vγ9Vδ2 T cells with a phenotype equipped for immediate effector function but poor cytokine response and expansion in response to antigen, a functional defect that may have implications for susceptibility for carcinogenesis despite HCV cure.
Collapse
Affiliation(s)
- Alip Ghosh
- Institute of Human Virology, University of Maryland School of Medicine
| | - Rajiv K Mondal
- Institute of Human Virology, University of Maryland School of Medicine
| | - Sara Romani
- Institute of Human Virology, University of Maryland School of Medicine
| | - Shashwatee Bagchi
- Institute of Human Virology, University of Maryland School of Medicine
| | - Cristiana Cairo
- Institute of Human Virology, University of Maryland School of Medicine
| | - C David Pauza
- American Gene Technologies, Rockville, Maryland 20850
| | | | - Bhawna Poonia
- Institute of Human Virology, University of Maryland School of Medicine
| |
Collapse
|
48
|
Tawfik D, Groth C, Gundlach JP, Peipp M, Kabelitz D, Becker T, Oberg HH, Trauzold A, Wesch D. TRAIL-Receptor 4 Modulates γδ T Cell-Cytotoxicity Toward Cancer Cells. Front Immunol 2019; 10:2044. [PMID: 31555275 PMCID: PMC6722211 DOI: 10.3389/fimmu.2019.02044] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 08/13/2019] [Indexed: 12/17/2022] Open
Abstract
Acquired immune evasion is one of the mechanisms that contributes to the dismal prognosis of cancer. Recently, we observed that different γδ T cell subsets as well as CD8+ αβ T cells infiltrate the pancreatic tissue. Interestingly, the abundance of γδ T cells was reported to have a positive prognostic impact on survival of cancer patients. Since γδ T cells utilize TNF-related apoptosis inducing ligand (TRAIL) for killing of tumor cells in addition to granzyme B and perforin, we investigated the role of the TRAIL-/TRAIL-R system in γδ T cell-cytotoxicity toward pancreatic ductal adenocarcinoma (PDAC) and other cancer cells. Coculture of the different cancer cells with γδ T cells resulted in a moderate lysis of tumor cells. The lysis of PDAC Colo357 cells was independent of TRAIL as it was not inhibited by the addition of neutralizing anti-TRAIL antibodies or TRAIL-R2-Fc fusion protein. In accordance, knockdown (KD) of death receptors TRAIL-R1 or TRAIL-R2 in Colo357 cells had no effect on γδ T cell-mediated cytotoxicity. However, KD of decoy receptor TRAIL-R4, which robustly enhanced TRAIL-induced apoptosis, interestingly, almost completely abolished the γδ T cell-mediated lysis of these tumor cells. This effect was associated with a reduced secretion of granzyme B by γδ T cells and enhanced PGE2 production as a result of increased expression level of synthetase cyclooxygenase (COX)-2 by TRAIL-R4-KD cells. In contrast, knockin of TRAIL-R4 decreased COX-2 expression. Importantly, reduced release of granzyme B by γδ T cells cocultured with TRAIL-R4-KD cells was partially reverted by bispecific antibody [HER2xCD3] and led in consequence to enhanced lysis of tumor cells. Likewise, inhibition of COX-1 and/or COX-2 partially enhanced γδ T cell-mediated lysis of TRAIL-R4-KD cells. The combination of bispecific antibody and COX-inhibitor completely restored the lysis of TRAIL-R4-KD cells by γδ T cells. In conclusion, we uncovered an unexpected novel role of TRAIL-R4 in tumor cells. In contrast to its known pro-tumoral, anti-apoptotic function, TRAIL-R4 augments the anti-tumoral cytotoxic activity of γδ T cells.
Collapse
Affiliation(s)
- Doaa Tawfik
- Institute for Experimental Cancer Research, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Christopher Groth
- Institute for Experimental Cancer Research, Christian-Albrechts-University of Kiel, Kiel, Germany.,Institute of Immunology, University Hospital Schleswig-Holstein, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Jan-Paul Gundlach
- Institute for Experimental Cancer Research, Christian-Albrechts-University of Kiel, Kiel, Germany.,Department of General Surgery, Visceral, Thoracic, Transplantation and Pediatric Surgery, UKSH, Campus Kiel, Kiel, Germany
| | - Matthias Peipp
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, UKSH, CAU Kiel, Kiel, Germany
| | - Dieter Kabelitz
- Institute of Immunology, University Hospital Schleswig-Holstein, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Thomas Becker
- Department of General Surgery, Visceral, Thoracic, Transplantation and Pediatric Surgery, UKSH, Campus Kiel, Kiel, Germany
| | - Hans-Heinrich Oberg
- Institute of Immunology, University Hospital Schleswig-Holstein, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Anna Trauzold
- Institute for Experimental Cancer Research, Christian-Albrechts-University of Kiel, Kiel, Germany.,Department of General Surgery, Visceral, Thoracic, Transplantation and Pediatric Surgery, UKSH, Campus Kiel, Kiel, Germany
| | - Daniela Wesch
- Institute of Immunology, University Hospital Schleswig-Holstein, Christian-Albrechts University of Kiel, Kiel, Germany
| |
Collapse
|
49
|
Ex Vivo Expanded Human Vγ9Vδ2 T-Cells Can Suppress Epithelial Ovarian Cancer Cell Growth. Int J Mol Sci 2019; 20:ijms20051139. [PMID: 30845699 PMCID: PMC6429417 DOI: 10.3390/ijms20051139] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/28/2019] [Accepted: 03/01/2019] [Indexed: 12/20/2022] Open
Abstract
γδ-T-cells have attracted attention because of their potent cytotoxicity towards tumors. Most γδ-T-cells become activated via a major histocompatibility complex (MHC)-independent pathway by the interaction of their receptor, Natural Killer Group 2 Member D (NKG2D) with the tumor-specific NKG2D ligands, including MHC class I-related chain A/B (MICA/B) and UL16-binding proteins (ULBPs), to kill tumor cells. However, despite their potent antitumor effects, the treatment protocols specifically targeting ovarian tumors require further improvements. Ovarian cancer is one of the most lethal and challenging female malignancies worldwide because of delayed diagnoses and resistance to traditional chemotherapy. In this study, we successfully enriched and expanded γδ-T-cells up to ~78% from peripheral blood mononuclear cells (PBMCs) with mostly the Vγ9Vδ2-T-cell subtype in the circulation. We showed that expanded γδ-T-cells alone exerted significant cytotoxic activities towards specific epithelial-type OVCAR3 and HTB75 cells, whereas the combination of γδ-T cells and pamidronate (PAM), a kind of aminobisphosphonates (NBPs), showed significantly enhanced cytotoxic activities towards all types of ovarian cancer cells in vitro. Furthermore, in tumor xenografts of immunodeficient NSG mice, γδ-T-cells not only suppressed tumor growth but also completely eradicated preexisting tumors with an initial size of ~5 mm. Thus, we concluded that γδ-T-cells alone possess dramatic cytotoxic activities towards epithelial ovarian cancers both in vitro and in vivo. These results strongly support the potential of clinical immunotherapeutic application of γδ-T-cells to treat this serious female malignancy.
Collapse
|
50
|
Li L, Cao B, Liang X, Lu S, Luo H, Wang Z, Wang S, Jiang J, Lang J, Zhu G. Microenvironmental oxygen pressure orchestrates an anti- and pro-tumoral γδ T cell equilibrium via tumor-derived exosomes. Oncogene 2018; 38:2830-2843. [DOI: 10.1038/s41388-018-0627-z] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 10/13/2018] [Accepted: 11/24/2018] [Indexed: 12/17/2022]
|