1
|
Chiang HC, Wu IC. Useful biomarkers for predicting poor prognosis of patients with drug-induced liver injury: A retrospective cohort study. Am J Med Sci 2025; 369:218-227. [PMID: 39182648 DOI: 10.1016/j.amjms.2024.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 08/15/2024] [Accepted: 08/15/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND Drug-induced liver injury (DILI) plays an important role in liver failure and causes mortality. Patients with DILI compatible with Hy's law are associated with poorer outcomes. However, the predictive accuracy of Hy's law is not good enough in clinical practice. This study aimed to investigate the optimal values of biomarkers associated with the prognosis of DILI. METHODS From June 1, 2014-May 30, 2022, patients with reported DILI were included. Patients' characteristics, drugs, DILI type, liver enzymes, and comorbidities were assessed. The associations with DILI-related comorbidities and survival were analyzed. RESULTS Ninety-five DILI patients were enrolled, 5 patients died of liver failure, and 23 patients died within 56 weeks after DILI. This study found that 15 mg/dL of total bilirubin, 1000 U/L of ALT, and 2 of PT-INR were optimal cut-off values in predicting DILI-related mortality. For the overall survival, patients with sepsis (HR:5.053, 95% CI:1.594-16.018, p = 0.006), malignancy (HR:4.371, 95% CI:1.573-12.147, p = 0.005), or end-stage renal disease (HR:7.409, 95% CI:1.404-39.103, p = 0.018) were independent poor prognostic factors in multivariate Cox regression analysis. CONCLUSIONS Total bilirubin >15 mg/dL, ALT >1000 U/L, and PT-INR >2 are useful biomarkers in predicting DILI-related mortality. DILI patients with sepsis, malignancy, or end-stage renal disease are associated with worse overall survival.
Collapse
Affiliation(s)
- Hsueh-Chien Chiang
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - I-Chin Wu
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
2
|
El-Sayed NM, Menze ET, Tadros MG, Hanna DMF. Mangiferin mitigates methotrexate-induced liver injury and suppresses hepatic stellate cells activation in rats: Imperative role of Nrf2/NF-κB/NLRP3 signaling axis. JOURNAL OF ETHNOPHARMACOLOGY 2025; 340:119296. [PMID: 39732297 DOI: 10.1016/j.jep.2024.119296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 11/16/2024] [Accepted: 12/26/2024] [Indexed: 12/30/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Mangifera indica (family Anacardiaceae), often acknowledged as mango and renowned for being a plant of diverse ethnopharmacological background since ancient times, harbors the polyphenolic bioactive constituent, mangiferin (MNG). MNG is a major phytochemical of Mangifera indica and other plants with a wide range of reported pharmacological activities, including antioxidant, anti-inflammatory, neuroprotective and hepatoprotective effects. MNG has also been utilized in traditional medicine; it is reportedly a major bioactive element in over 40 polyherbal products in traditional Chinese medicine (TCM), and two prominent anti-inflammatory, immunomodulatory and antiviral Cuban formulations. Despite the availability of evidence in support of MNG hepatoprotective properties, its hepatoprotective potential against MTX-induced liver injury and fibrosis has not been explored yet. AIM To unravel the hepatoprotective potential of MNG against MTX-induced hepatic injury and fibrosis and elucidate the possible underlying molecular mechanisms. MATERIALS AND METHODS Male Sprague-Dawley rats were, randomly, distributed into five groups; two of which were administered MNG 50 mg/kg and MNG 100 mg/kg intraperitoneally (i.p.) for ten days, and a single i.p. injection of MTX 40 mg/kg on the seventh day to establish hepatotoxicity. Blood and liver tissue samples were retrieved from all study groups and analyzed for liver functions, histopathological alterations, and oxidative stress, inflammatory, and fibrotic biomarkers. RESULTS MNG restored the MTX-induced degenerations in hepatic architecture and function. Moreover, it combated the MTX-elicited oxidative stress evidently by the significantly attenuated hepatic tissue levels of malondialdehyde, and the significantly elevated reduced glutathione and Nrf2 levels. MNG also halted inflammation depicted by the downregulation of the NF-κB/NLRP3 inflammasome axis. It further demonstrated anti-fibrogenic potential as evidenced by the significant reduction in fibrous tissue deposition and hepatic expression of α-SMA. CONCLUSION The current study proved the hepatoprotective, and anti-fibrogenic effects of MNG against MTX-induced hepatotoxicity via the downregulation of NF-κB/NLRP3 inflammasome signaling axis, preceded by the amelioration of oxidative stress and Nrf2 signaling upregulation.
Collapse
Affiliation(s)
- Nada M El-Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, 11566, Cairo, Egypt; School of Life and Medical Sciences, University of Hertfordshire Hosted By Global Academic Foundation, New Administrative Capital, Cairo, Egypt
| | - Esther T Menze
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, 11566, Cairo, Egypt
| | - Mariane G Tadros
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, 11566, Cairo, Egypt
| | - Diana M F Hanna
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, 11566, Cairo, Egypt.
| |
Collapse
|
3
|
Akram W, Najmi AK, Haque SE. Levocabastine ameliorates cyclophosphamide-induced hepatotoxicity in Swiss albino mice: modulation of Nrf2, NF-κB p65, cleaved caspase-3 and TGF-β signaling molecules. J Mol Histol 2024; 56:3. [PMID: 39602021 DOI: 10.1007/s10735-024-10286-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 10/31/2024] [Indexed: 11/29/2024]
Abstract
BACKGROUND Cyclophosphamide (CP)-induced hepatotoxicity is a significant problem in clinical settings. This study aimed to evaluate the protective effect of levocabastine (LEV) on CP-induced hepatotoxicity in Swiss albino mice. METHODS AND RESULTS Mice were given CP (toxic drug) 200 mg/kg, i.p., once on the 7th day, and LEV 50 and 100 µg/kg, i.p., and fenofibrate (FF) 80 mg/kg, p.o., daily for 14 days. On the 15th day, blood and liver samples were collected to assess biological parameters. CP 200 mg/kg caused hepatotoxicity due to oxidative stress, inflammation, apoptosis, and fibrosis as manifested by a reduction in catalase, reduced glutathione (GSH), superoxide dismutase (SOD), and an increase in thiobarbituric acid reactive substance (TBARS), nitrite, tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), transforming growth factor-beta 1 (TGF-β1), interleukin-1β (IL-1β), alkaline phosphatase (ALP), alanine aminotransferase (ALT), aspartate aminotransferase (AST), and gamma-glutamyl transferase (GGT) levels. Cleaved caspase-3 and nuclear factor kappa-B (NF-κB) expression was also increased and nuclear factor erythroid 2-related factor (Nrf2) expression was decreased as confirmed by Immunohistochemical analysis. It also caused histopathological abnormalities and fibrosis as manifested by Hematoxylin-Eosin (H&E) and Masson's trichrome (MT) staining. These alterations were returned to almost normal when treated with LEV 100 µg/kg and FF 80 mg/kg. Thus, LEV protected CP-induced hepatotoxicity by reversing inflammation, apoptosis, fibrosis, oxidative stress, hepatic injury, and histopathological damages. CONCLUSION LEV can be helpful as an adjuvant in cancer patients who are on CP treatment, to minimize toxicity. However, its role in in-vivo cancer model is further needed to be confirmed.
Collapse
Affiliation(s)
- Wasim Akram
- Department of Pharmacology, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, 110062, India
| | - Abul Kalam Najmi
- Department of Pharmacology, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, 110062, India
| | - Syed Ehtaishamul Haque
- Department of Pharmacology, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
4
|
Fettiplace A, Marcinak J, Merz M, Zhang HT, Kikuchi L, Regev A, Palmer M, Rockey D, Fontana R, Hayashi PH, Tillmann HL, Di Bisceglie AM, Lewis JH. Review article: Recommendations for detection, assessment and management of suspected drug-induced liver injury during clinical trials in oncology patients. Aliment Pharmacol Ther 2024; 60:1293-1307. [PMID: 39300766 DOI: 10.1111/apt.18271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/07/2024] [Accepted: 09/02/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Drug-induced liver injury (DILI) is a major concern for oncology drugs in clinical practice and under development. Monitoring cancer patients for hepatotoxicity is challenging as these patients may have abnormal liver tests pre-treatment or on-study for many reasons including liver injury due to past oncology treatments, hepatic metastases, medical co-morbidities such as heart failure, and concomitant medications. At present, there are no regulatory guidelines or position papers that systematically address best practices pertaining to DILI detection, assessment and management in oncology patients. AIMS The goals of this review are (1) to examine and interpret the available evidence and (2) to make recommendations for detection, monitoring, adjudication, and management of suspected hepatocellular DILI during oncology clinical trials. METHODS This manuscript was developed by the IQ Consortium (International Consortium for Innovation and Quality in pharmaceutical development) DILI Initiative that consists of members from 17 pharmaceutical companies, in collaboration with academic and regulatory DILI experts. The manuscript is based on extensive literature review, expert interpretation of the literature, and several rounds of consensus discussions. RESULTS This review highlights recommendations for patient eligibility for clinical trials with or without primary/metastatic liver involvement, as well as changes in liver tests that should trigger increased monitoring and/or discontinuation of study drug. Guidance regarding causality assessment for suspected DILI events, rechallenge and dose-modification is provided. CONCLUSIONS This review brings together evidence-based recommendations and expert opinion to provide the first dedicated consensus for best practices in detection, assessment, and management of DILI in oncology clinical trials.
Collapse
Affiliation(s)
| | - John Marcinak
- Pharmacovigilance and Patient Safety, AbbVie, North Chicago, Illinois, USA
| | | | - Hui-Talia Zhang
- Benefit-Risk Management and Pharmacovigilance, Bayer Pharmaceuticals, USA
| | | | - Arie Regev
- Global Patient Safety, Eli Lilly and Company, Indianapolis, Indiana, USA
| | | | - Don Rockey
- Digestive Disease Research Center, Charleston, South Carolina, USA
| | | | - Paul H Hayashi
- Food and Drug Administration, Silver Spring, Maryland, USA
| | | | | | | |
Collapse
|
5
|
Bourdakou MM, Melliou E, Magiatis P, Spyrou GM. Computational investigation of the functional landscape of the protective role that extra virgin olive oil consumption may have on chronic lymphocytic leukemia. J Transl Med 2024; 22:869. [PMID: 39334178 PMCID: PMC11428436 DOI: 10.1186/s12967-024-05672-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND The health benefits of the Mediterranean diet are partially attributed to the polyphenols present in extra virgin olive oil (EVOO), which have been shown to have anti-cancer properties. However, the possible effect that EVOO could have on Chronic Lymphocytic Leukemia (CLL) has not been fully explored. METHODS This study investigates the anti-CLL activity of EVOO through a computational multi-level data analysis procedure, focusing on the identification of shared biological functions between them. Specifically, publicly available data from genomics, transcriptomics and proteomics related to EVOO consumption and CLL were collected from several resources and analyzed through a computational pipeline, highlighting common molecular mechanisms and biological processes. Computational verification of a number of the highlighted functional terms associating CLL and EVOO has been performed as well. RESULTS Our investigation revealed four molecular pathways and three biological processes that overlap between mechanisms associated with CLL and those impacted by the consumption of EVOO. To further investigate the common biological functions, we focused on AKT1-related terms, aiming to investigate the potential importance of AKT1 in the anti- CLL effects associated with EVOO. CONCLUSIONS Overall, the results provide valuable insights into the potential beneficial effect of EVOO in CLL and highlight EVOO's bioactive compounds as promising candidates for future investigations.
Collapse
Affiliation(s)
- Marilena M Bourdakou
- Bioinformatics Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Eleni Melliou
- Laboratory of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Prokopios Magiatis
- Laboratory of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece.
| | - George M Spyrou
- Bioinformatics Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.
| |
Collapse
|
6
|
Cheng M, Tao X, Wang F, Shen N, Xu Z, Hu Y, Huang P, Luo P, He Q, Zhang Y, Yan F. Underlying mechanisms and management strategies for regorafenib-induced toxicity in hepatocellular carcinoma. Expert Opin Drug Metab Toxicol 2024; 20:907-922. [PMID: 39225462 DOI: 10.1080/17425255.2024.2398628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
INTRODUCTION Hepatocellular carcinoma (HCC) accounts for 85% of liver cancer cases and is the third leading cause of cancer death. Regorafenib is a multi-target inhibitor that dramatically prolongs progression-free survival in HCC patients who have failed sorafenib therapy. However, one of the primary factors limiting regorafenib's clinical utilization is toxicity. Using Clinical Trials.gov and PubMed, we gathered clinical data on regorafenib and conducted a extensive analysis of the medication's adverse reactions and mechanisms. Next, we suggested suitable management techniques to improve regorafenib's effectiveness. AREAS COVERED We have reviewed the mechanisms by which regorafenib-induced toxicity occurs and general management strategies through clinical trials of regorafenib. Furthermore, by examining the literature on regorafenib and other tyrosine kinase inhibition, we summarized the mechanics of the onset of regorafenib toxicity and mechanism-based intervention strategies by reviewing the literature related to regorafenib and other tyrosine kinase inhibition. EXPERT OPINION One of the primary factors restricting regorafenib's clinical utilization and combination therapy is its toxicity reactions. To optimize regorafenib treatment regimens, it is especially important to further understand the specific toxicity mechanisms of regorafenib as a multi-kinase inhibitor.
Collapse
Affiliation(s)
- Mengting Cheng
- College of Pharmaceutical Sciences, Center for Drug Safety Evaluation and Research of Zhejiang University, Hangzhou, China
- Clinical Pharmacy Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Xinyu Tao
- Clinical Pharmacy Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Fei Wang
- Outpatient Pharmacy, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Nonger Shen
- Clinical Pharmacy Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Zhifei Xu
- College of Pharmaceutical Sciences, Center for Drug Safety Evaluation and Research of Zhejiang University, Hangzhou, China
| | - Yuhuai Hu
- Department of Pharmacology and Toxicology, Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, China
| | - Ping Huang
- Clinical Pharmacy Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for malignant tumor, Hangzhou, Zhejiang, People's Republic of China
| | - Peihua Luo
- College of Pharmaceutical Sciences, Center for Drug Safety Evaluation and Research of Zhejiang University, Hangzhou, China
- Department of Pharmacology and Toxicology, Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, China
| | - Qiaojun He
- College of Pharmaceutical Sciences, Center for Drug Safety Evaluation and Research of Zhejiang University, Hangzhou, China
- Department of Pharmacology and Toxicology, Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, China
| | - Yiwen Zhang
- Clinical Pharmacy Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for malignant tumor, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, China
| | - Fangjie Yan
- Department of Pharmacology and Toxicology, Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, China
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
7
|
Merz M, Fettiplace A, Marcinak J, Tillmann HL, Rockey DC, Kullak-Ublick GA. Liver toxicity in oncology trials and beyond: a simplified concept for management of hepatocellular drug-induced liver injury in patients with abnormal baseline liver tests. Expert Opin Drug Saf 2024; 23:527-537. [PMID: 38482670 DOI: 10.1080/14740338.2024.2327509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/26/2024] [Indexed: 04/06/2024]
Abstract
BACKGROUND Management of side effects in clinical trials has to balance generation of meaningful data with risk for patients. A toxicity area requiring detailed management guidelines is drug-induced liver injury (DILI). In oncology trials, patients are often included despite baseline liver test abnormalities, for whom there is no consensus yet on levels of liver test changes that should trigger action, such as drug interruption or discontinuation. METHODS We provide an innovative approach to manage hepatocellular DILI in oncology trials for patients with abnormal baseline alanine aminotransferase (ALT) levels. The algorithm proposed is based on mathematical derivation of action thresholds from those generally accepted for patients with normal baselines. RESULTS The resulting algorithm is grouped by level of baseline abnormality and avoids calculation of baseline multiples. Suggested layered action levels are 4, 6, and 11 × Upper Limit of Normal (ULN) for patients with baseline ALT between 1.5 and 3 × ULN, and 6, 8, and 12 × ULN for patients with baseline ALT between 3 and 5 × ULN, respectively. CONCLUSIONS Our concept and resulting algorithm are consistent, transparent, and easy to follow, and the method for derivation from consensus-based thresholds may also be applicable to other drug toxicity areas.
Collapse
Affiliation(s)
- Michael Merz
- Michael Merz Consulting, Freiburg, Germany
- Mechanistic Safety, Patient Safety and Pharmacovigilance, Global Drug Development, Novartis, Basel, Switzerland
| | | | - John Marcinak
- Medical Safety Evaluation, Pharmacovigilance and Patient Safety, AbbVie, North Chicago, IL, USA
| | - Hans L Tillmann
- Division Gastroenterology, Hepatology & Nutrition, Department of Medicine, East Carolina University, Greenville, NC, USA
| | - Don C Rockey
- Digestive Disease Research Center, Medical University of South Carolina, Charleston, SC, USA
| | - Gerd A Kullak-Ublick
- Mechanistic Safety, Patient Safety and Pharmacovigilance, Global Drug Development, Novartis, Basel, Switzerland
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
8
|
Challoob MA, Mohammed NS. Assessing the Hepatotoxic Effects of Fluoropyrimidine Chemotherapy in Male Iraqi Colorectal Cancer Patients. Cureus 2024; 16:e58126. [PMID: 38741871 PMCID: PMC11088962 DOI: 10.7759/cureus.58126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2024] [Indexed: 05/16/2024] Open
Abstract
INTRODUCTION Colorectal cancer (CRC) is one the most frequently occurring cancer types among various populations. Fluoropyrimidine is the backbone of first-line chemotherapy, the oral capecitabine, or intravenous 5-fluorouracil (5-FU) in various combinations and schedules the chemotherapy regime in the treatment of a wide variety of gastrointestinal cancers. The enzyme dihydropyrimidine dehydrogenase (DPD) functions as the rate-limiting step in the metabolism of fluoropyrimidine chemotherapies, and patients with complete or partial DPD deficiency are at increased risk of severe and fatal toxicity during treatment with fluorouracil. AIM This study aimed to examine the chemotoxicity of the 5-FU drug on hepatocytes in male Iraqi CRC patients. MATERIALS AND METHODS This research is a cross-sectional study conducted between November 2022 and April 2023. The study included 80 male participants who had undergone surgical intervention for stage III CRC under the care of the Misan Health Directorate, Misan Center for Tumors Treatment, located in Misan, Iraq. Based on their subsequent surgical treatment, the participants were divided into two groups. The first group, comprising 45 males aged between 41 and 71 years, experienced a relapse despite receiving adjuvant therapy, which involved a singular cycle of fluoropyrimidine-based chemotherapy (5-FU). The second group consisted of 35 male patients with CRC, aged between 40 and 57 years, who did not experience a relapse post-adjuvant therapy. Their adjuvant therapy involved a single round of fluoropyrimidine-based chemotherapy with 5-FU. Relapse in patients was determined by assessing the white blood cell count (WBC). RESULTS Liver enzymes were significantly increased after 5-FU treatment, while the concentration of albumin was significantly decreased. CONCLUSION The findings of our study clearly indicate that 5-FU induced hepatic injury, lowering the hepatocyte function with elevated levels of hepatic enzymes and low concentration of albumin in the blood, which is an important predictive marker of chemotherapy toxicity.
Collapse
Affiliation(s)
- Muhtada A Challoob
- Department of Clinical Biochemistry, University of Baghdad, College of Medicine, Baghdad, IRQ
- College of Pharmacy, University of Misan, Misan, IRQ
| | - Nawar S Mohammed
- Department of Biochemistry, University of Baghdad, College of Medicine, Baghdad, IRQ
| |
Collapse
|
9
|
Liu K, Yang J, Tang Y, Li Y, Hu Z, Hao X, Yi P, Yuan C. Bioassay-guided isolation of anti-leukemic steroids from Aglaia abbreviata by inducing apoptosis. Bioorg Chem 2024; 144:107147. [PMID: 38280357 DOI: 10.1016/j.bioorg.2024.107147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/08/2024] [Accepted: 01/20/2024] [Indexed: 01/29/2024]
Abstract
The strategy of bioactivity-guided isolation is widely used to obtain active compounds as quickly as possible. Thus, the inhibitory effects on human erythroleukemia cells (HEL) were applied to guide the isolation of the anti-leukemic compounds from Aglaia abbreviata. As a result, 19 compounds (16 steroids, two phenol derivatives, and a rare C12 chain nor-sesquiterpenoid), including 13 new compounds, were isolated and identified based on spectroscopic data analysis, single-crystal X-ray diffraction data, and electronic circular dichroism (ECD) calculations. Among them, 9 steroids exhibited good selective anti-leukemic activity against HEL and K562 (human chronic myeloid leukemia cells) cells with IC50 values between 2.29 ± 0.18 μM and 19.58 ± 0.13 μM. Notably, all the active compounds had relatively lower toxicity on the normal human liver cell line (HL-7702). Furthermore, five compounds (1, 4, 8, 10, and 19) displayed good anti-inflammatory effects, with IC50 values between 7.15 ± 0.16 and 27.1 ± 0.37 μM. An α,β-unsaturated ketone or a 5,6Δ double bond was crucial for improving anti-leukemic effect from the structure-activity relationship analysis. The compound with the most potential, 14 was selected for the preliminary mechanistic study. Compound 14 can induce apoptosis and cause cell cycle arrest. The expression of the marker proteins, such as PARP and caspase 3, were notably effected by this compound, thus inducing apoptosis. In conclusion, our investigation implied that compound 14 may serve as a potential anti-leukemia agent.
Collapse
Affiliation(s)
- Keying Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, People's Republic of China; School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, People's Republic of China; Natural Products Research Center of Guizhou Province, Guiyang 550014, People's Republic of China
| | - Jue Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, People's Republic of China; School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, People's Republic of China; Natural Products Research Center of Guizhou Province, Guiyang 550014, People's Republic of China
| | - Yunyan Tang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, People's Republic of China; School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, People's Republic of China; Natural Products Research Center of Guizhou Province, Guiyang 550014, People's Republic of China
| | - Yanan Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, People's Republic of China; School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, People's Republic of China; Natural Products Research Center of Guizhou Province, Guiyang 550014, People's Republic of China
| | - Zhanxing Hu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, People's Republic of China; School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, People's Republic of China; Natural Products Research Center of Guizhou Province, Guiyang 550014, People's Republic of China
| | - Xiaojiang Hao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, People's Republic of China; School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, People's Republic of China; Natural Products Research Center of Guizhou Province, Guiyang 550014, People's Republic of China; State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Ping Yi
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, People's Republic of China; School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, People's Republic of China; Natural Products Research Center of Guizhou Province, Guiyang 550014, People's Republic of China.
| | - Chunmao Yuan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, People's Republic of China; School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, People's Republic of China; Natural Products Research Center of Guizhou Province, Guiyang 550014, People's Republic of China.
| |
Collapse
|
10
|
Zaafar D, Khalil HMA, Elnaggar R, Saad DZ, Rasheed RA. Protective role of hesperetin in sorafenib-induced hepato- and neurotoxicity in mice via modulating apoptotic pathways and mitochondrial reprogramming. Life Sci 2024; 336:122295. [PMID: 38007145 DOI: 10.1016/j.lfs.2023.122295] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 11/27/2023]
Abstract
INTRODUCTION Sorafenib, an FDA-approved standard chemotherapy for advanced hepatocellular carcinoma, is associated with numerous adverse effects that significantly impact patients' physiological well-being. Consequently, identifying agents that mitigate these side effects while enhancing efficacy is crucial. Hesperetin, a flavone present in fruits and vegetables, possesses antioxidant, anti-inflammatory, and anti-cancer properties. This study aimed to investigate the hepatotoxic and neurotoxic effects of sorafenib and the potential protective role of hesperetin. MATERIALS AND METHODS Swiss albino mice were orally administered sorafenib (100 mg/kg) alone or in combination with hesperetin (50 mg/kg) over 21 days. Behavioral assessments for anxiety and depressive-like behaviors were conducted. Additionally, evaluations encompassed apoptotic activity, mitochondrial integrity, liver enzyme levels, proliferation rates, and histopathological changes. RESULTS Combining hesperetin with sorafenib showed improvements in behavioral alterations, liver damage, brain mitochondrial dysfunction, and liver apoptosis compared to the sorafenib-only group in mice. CONCLUSION Hesperetin exhibits potential as an adjunct to sorafenib, mitigating its side effects by attenuating its toxicity, enhancing efficacy, and potentially reducing the occurrence of sorafenib-induced resistance through the downregulation of hepatocyte growth factor levels.
Collapse
Affiliation(s)
- Dalia Zaafar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Modern University, Cairo, Egypt.
| | - Heba M A Khalil
- Department of Veterinary Hygiene and Management, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt.
| | - Reham Elnaggar
- Department of Pharmacology and Toxicology, College of Pharmacy and Drug Manufacturing, Misr University of Science and Technology (MUST), 6th October, Giza 12566, Egypt.
| | - Diana Z Saad
- Department of Pathology, Faculty of Medicine, Ain Shams University, Cairo, Egypt; Department of Basic Medical Sciences, Faculty of Medicine, King Salman International University, South Sinai, Egypt.
| | - Rabab Ahmed Rasheed
- Department of Medical Histology and Cell Biology, Faculty of Medicine, King Salman International University, South Sinai, Egypt.
| |
Collapse
|
11
|
Kubica S, Szota-Czyż J, Strzałka-Mrozik B, Adamska J, Bębenek E, Chrobak E, Gola JM. The Influence of Betulin Derivatives EB5 and ECH147 on the Expression of Selected TGFβ Superfamily Genes, TGFβ1, GDF15 and BMP2, in Renal Proximal Tubule Epithelial Cells. Curr Issues Mol Biol 2023; 45:9961-9975. [PMID: 38132468 PMCID: PMC10741875 DOI: 10.3390/cimb45120622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/05/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
Betulin derivatives are proposed to serve as an alternative to the drugs already established in oncologic treatment. Drug-induced nephrotoxicity leading to acute kidney injury frequently accompanies cancer treatment, and thus there is a need to research the effects of betulin derivatives on renal cells. The objective of our study was to assess the influence of the betulin derivatives 28-propynylobetulin (EB5) and 29-diethoxyphosphoryl-28-propynylobetulin (ECH147) on the expression of TGFβ1, BMP2 and GDF15 in renal proximal tubule epithelial cells (RPTECs) cultured in vitro. The changes in mRNA expression and copy numbers were assessed using real-time reverse transcription quantitative polymerase chain reaction (RT-qPCR) and the standard curve method, respectively. An enzyme-linked immunosorbent assay (ELISA) was used to evaluate the effect of the betulin derivatives on the protein concentration in the culture media's supernatant. The assessment of the betulin derivatives' influence on gene expression demonstrated that the mRNA level and protein concentration did not always correlate with each other. Each of the tested compounds affected the mRNA expression. The RT-qPCR analyses showed that EB5 and ECH147 induced effects similar to those of betulin or cisplatin and resulted in a decrease in the mRNA copy number of all the analyzed genes. The ELISA demonstrated that EB5 and ECH147 elevated the protein concentration of TGFβ1 and GDF15, while the level of BMP2 decreased. The concentration of the derivatives used in the treatment was crucial, but the effects did not always exhibit a simple linear dose-dependent relationship. Betulin and its derivatives, EB5 and ECH147, influenced the gene expression of TGFβ1, BMP2 and GDF15 in the renal proximal tubule epithelial cells. The observed effects raise the question of whether treatment with these compounds could promote the development of renal fibrosis.
Collapse
Affiliation(s)
- Sebastian Kubica
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland; (S.K.); (J.S.-C.); (J.A.); (J.M.G.)
| | - Justyna Szota-Czyż
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland; (S.K.); (J.S.-C.); (J.A.); (J.M.G.)
| | - Barbara Strzałka-Mrozik
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland; (S.K.); (J.S.-C.); (J.A.); (J.M.G.)
| | - Jolanta Adamska
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland; (S.K.); (J.S.-C.); (J.A.); (J.M.G.)
| | - Ewa Bębenek
- Department of Organic Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland; (E.B.); (E.C.)
| | - Elwira Chrobak
- Department of Organic Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland; (E.B.); (E.C.)
| | - Joanna Magdalena Gola
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland; (S.K.); (J.S.-C.); (J.A.); (J.M.G.)
| |
Collapse
|
12
|
Lam CS, Hua R, Au-Doung PLW, Wu YK, Koon HK, Zhou KR, Loong HHF, Chung VCH, Cheung YT. Association between potential supplement-drug interactions and liver diseases in patients with cancer: A large prospective cohort study. Clin Nutr ESPEN 2023; 58:152-159. [PMID: 38057000 DOI: 10.1016/j.clnesp.2023.09.919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 09/19/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND & AIMS The concurrent use of herbal and dietary supplements and conventional drugs can lead to interactions in patients with cancer, of which hepatotoxicity is one of the most concerning sequelae. This study examined the potential supplement-drug interactions involving the hepatic system, and their associations with documented liver diseases, among patients with cancer in a large population-based cohort in the UK Biobank. METHODS Participants diagnosed with cancer and had completed supplement-use assessment after diagnosis were included. Potentially interacting supplement-drug combinations that involved CYP enzymes or increased the risk of hepatotoxicity were identified from four tertiary databases. Liver diseases were identified using ICD-codes K70-77. Log-binomial regression was used to investigate the associations between potentially-interacting supplement-drug combinations and liver diseases documented (1) at any time, and (2) confined to only after the time of supplement-use assessment, adjusting for age, sex and pre-existing comorbidities. RESULTS This analysis included 30,239 participants (mean age = 60.0 years; 61.9% female). Over half (n = 17,698, 58.5%) reported the use of supplements after cancer diagnoses. Among supplements users, 36.9% (n = 6537/17,698) were on supplement-drug combinations with interacting potential involving the hepatic system. Patients taking supplements and drugs who had hepatic comorbidities were more likely to take potentially interacting pairs (adjusted risk ratio = 1.14, 95% CI = 1.06-1.23, p < 0.001). However, no significant association was observed between the use of these combinations and subsequent liver diseases (all p > 0.05). CONCLUSION Approximately one-third of the participants who had cancer and were supplement users had a risk of potential supplement-drug interactions that contribute to adverse liver effect. Healthcare professionals should communicate with patients with cancer, especially those with pre-existing liver diseases, about supplement use and proactively assess the clinical significance of potential interactions.
Collapse
Affiliation(s)
- Chun Sing Lam
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Rong Hua
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | | | - Yu Kang Wu
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Ho Kee Koon
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Keary Rui Zhou
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Herbert Ho-Fung Loong
- Department of Clinical Oncology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Vincent Chi-Ho Chung
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yin Ting Cheung
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
13
|
Huyut Z, Uçar B, Altındağ F, Yıldızhan K, Huyut MT. Effect of curcumin on lipid profile, fibrosis, and apoptosis in liver tissue in abemaciclib-administered rats. Drug Chem Toxicol 2023; 46:1138-1146. [PMID: 36259448 DOI: 10.1080/01480545.2022.2135007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 08/18/2022] [Accepted: 09/13/2022] [Indexed: 11/03/2022]
Abstract
Abemaciclib (ABEM) is an important antitumor agent for breast cancer treatment. However, the side-effects of ABEM are unclear in the liver. This study investigated the protective effect of curcumin (CURC) on liver damage caused by ABEM. The rats were divided into five groups with eight animals in each group; Control, DMSO (150 µL for per rats), CURC, 30 mg/kg/day), ABE (26 mg/kg/day), and ABE + CURC (26 mg/kg/day ABE, 30 mg/kg/day) groups. Injections were administered daily for 28 days. The levels of AST, LDH, HDL, LDL, triglyceride, and total cholesterol in serum, and hepatic tissue fibrosis, caspase-3, Bax, and TNF-α expression were higher in the ABE group compared to the control group (p < 0.05). Also, these parameters in the ABEM + CURC group were lower than in the ABE group (p < 0.05). The results showed that ABE administration could cause liver damage and increase fibrosis in the liver. In addition, it was shown that co-administration of CURC with ABE could suppress the levels of AST, LDH, HDL, LDL, triglyceride, and total cholesterol in serum, and fibrosis, caspase-3, Bax, and TNF-α expressions in the liver. These data are the first in the literature. Therefore, the administration of CURC following ABE may be a therapeutic agent in preventing liver damage.
Collapse
Affiliation(s)
- Zübeyir Huyut
- Department of Biochemistry, Faculty of Medicine, Van Yuzuncu Yil University, Van, Turkey
| | - Bünyamin Uçar
- Department of Biochemistry, Faculty of Medicine, Van Yuzuncu Yil University, Van, Turkey
| | - Fikret Altındağ
- Department of Histology and Embryology, Faculty of Medicine, Van Yuzuncu Yil University, Van, Turkey
| | - Kenan Yıldızhan
- Department of Biophysics, Faculty of Medicine, Van Yuzuncu Yil University, Van, Turkey
| | - Mehmet Tahir Huyut
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Erzincan Binali Yıldırım University, Erzincan, Turkey
| |
Collapse
|
14
|
Challoob MA, Mohammed NS. The Evaluation of Dihydropyrimidine Dehydrogenase Enzyme Level in the Serum of Colorectal Cancer Iraqi Males on Fluoropyrimidine-Based Chemotherapy (Capecitabine). Cureus 2023; 15:e44534. [PMID: 37790008 PMCID: PMC10544661 DOI: 10.7759/cureus.44534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2023] [Indexed: 10/05/2023] Open
Abstract
The cornerstone of systemic chemotherapy for colorectal cancer (CRC) revolves around fluoropyrimidines. This class encompasses 5-fluorouracil (5-FU), which is administered intravenously, along with its oral prodrug counterpart, capecitabine. Central to the metabolism of both 5-FU and capecitabine is the pivotal enzyme dihydropyrimidine dehydrogenase (DPD). Operating at the rate-limiting juncture, DPD assumes a critical role. Notably, a deficiency in DPD significantly elevates the risk quotient for encountering unfavorable outcomes linked to the administration of fluoropyrimidines. This study seeks to assess the significance of DPD enzyme levels in the serum of Iraqi colorectal cancer male patients undergoing fluoropyrimidine-based chemotherapy, specifically with capecitabine. It adopts a case-control design and comprises 80 male participants. Those males are divided into two distinct groups. Group 1 comprises 45 male patients diagnosed with CRC who have experienced relapse subsequent to undergoing chemotherapy based on fluoropyrimidine (capecitabine). Their ages span from 41 to 71 years, and they were treated at the Misan Health Directorate/Misan Center for Tumor Treatment. Group 2 encompasses 35 male patients diagnosed with CRC who underwent fluoropyrimidine-based chemotherapy (capecitabine) without encountering relapse. Their ages range from 40 to 57 years. All participants were provided with comprehensive information regarding the research, and data collection occurred through a structured questionnaire. Subsequent to capecitabine-based treatment, serum samples were collected from CRC patients (stage III). The findings from this research indicate a notable elevation in DPD enzyme activity. Furthermore, a significant reduction in enzyme activity was observed among patients who experienced relapse, in contrast to those who remained non-relapsed. The results indicate that individuals with an insufficiency in DPD are notably more vulnerable to experiencing severe and potentially life-threatening side effects upon exposure to the commonly utilized chemotherapy drug, 5-FU.
Collapse
Affiliation(s)
| | - Nawar S Mohammed
- Department of Biochemistry, College of Medicine, University of Baghdad, Baghdad, IRQ
| |
Collapse
|
15
|
Yassin-Kassab A, Wang N, Foley J, Stewart TM, Burns MR, Casero RA, Harbison RA, Duvvuri U. Polyamine transport inhibition and cisplatin synergistically enhance tumor control through oxidative stress in murine head and neck cancer models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.25.550524. [PMID: 37546993 PMCID: PMC10402081 DOI: 10.1101/2023.07.25.550524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Background Surgery and/or platinum-based chemoradiation remain standard of care for patients with head and neck squamous cell carcinoma (HNSCC). While these therapies are effective in a subset of patients, a substantial proportion experience recurrence or treatment resistance. As cisplatin mediates cytotoxicity through oxidative stress while polyamines play a role in redox regulation, we posited that combining cisplatin with polyamine transport inhibitor, AMXT-1501, would increase oxidative stress and tumor cell death in HNSCC cells. Methods Cell proliferation was measured in syngeneic mouse HNSCC cell lines treated with cisplatin ± AMXT-1501. Synergy was determined by administering cisplatin and AMXT-1501 at a ratio of 1:10 to cancer cells in vitro . Cancer cells were transferred onto mouse flanks to test the efficacy of treatments in vivo . Reactive oxygen species (ROS) were measured. Cellular apoptosis was measured with flow cytometry using Annexin V/PI staining. High-performance liquid chromatography (HPLC) was used to quantify polyamines in cell lines. Cell viability and ROS were measured in the presence of exogenous cationic amino acids. Results The combination of cisplatin and AMXT-1501 synergize in vitro on HNSCC cell lines. In vivo combination treatment resulted in tumor growth inhibition greater than either treatment individually. The combination treatment increased ROS production and induced apoptotic cell death. HPLC revealed the synergistic mechanism was independent of intracellular polyamine levels. Supplementation of cationic amino acids partially rescued cancer cell viability and reduced ROS. Conclusion AMXT-1501 enhances the cytotoxic effects of cisplatin in vitro and in vivo in aggressive HNSCC cell lines through a polyamine-independent mechanism.
Collapse
|
16
|
Diniz-Lima I, da Fonseca LM, Dos Reis JS, Decote-Ricardo D, Morrot A, Previato JO, Previato LM, Freire-de-Lima CG, Freire-de-Lima L. Non-self glycan structures as possible modulators of cancer progression: would polysaccharides from Cryptococcus spp. impact this phenomenon? Braz J Microbiol 2023; 54:907-919. [PMID: 36840821 PMCID: PMC10235250 DOI: 10.1007/s42770-023-00936-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 02/15/2023] [Indexed: 02/26/2023] Open
Abstract
Invasive fungal infections (IFI) are responsible for a large number of annual deaths. Most cases are closely related to patients in a state of immunosuppression, as is the case of patients undergoing chemotherapy. Cancer patients are severely affected by the worrisome proportions that an IFI can take during cancer progression, especially in an already immunologically and metabolically impaired patient. There is scarce knowledge about strategies to mitigate cancer progression in these cases, beyond conventional treatment with antifungal drugs with a narrow therapeutic range. However, in recent years, ample evidence has surfaced describing the possible interferences that IFI may have both on the progression of pre-existing cancers and in the induction of newly transformed cells. The leading gambit for modulation of tumor progression comes from the ability of fungal virulence factors to modulate the host's immune system, since they are found in considerable concentrations in the tumor microenvironment during infection. In this context, cryptococcosis is of particular concern, since the main virulence factor of the pathogenic yeast is its polysaccharide capsule, which carries constituents with high immunomodulatory properties and cytotoxic potential. Therefore, we open a discussion on what has already been described regarding the progression of cryptococcosis in the context of cancer progression, and the possible implications that fungal glycan structures may take in both cancer development and progression.
Collapse
Affiliation(s)
- Israel Diniz-Lima
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Leonardo Marques da Fonseca
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Jhenifer Santos Dos Reis
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Debora Decote-Ricardo
- Departamento de Microbiologia E Imunologia Veterinária, Instituto de Veterinária, Universidade Federal Rural Do Rio de Janeiro, Rio de Janeiro, 23890-000, Brazil
| | - Alexandre Morrot
- Faculdade de Medicina, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
- Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, 21040-360, Brazil
| | - Jose Osvaldo Previato
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Lucia Mendonça Previato
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Celio Geraldo Freire-de-Lima
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Leonardo Freire-de-Lima
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil.
| |
Collapse
|
17
|
Wang Z, Xie Y, Yu M, Yang S, Lu Y, Du G. Recent Advances on the Biological Study of Pharmaceutical Cocrystals. AAPS PharmSciTech 2022; 23:303. [DOI: 10.1208/s12249-022-02451-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/31/2022] [Indexed: 11/18/2022] Open
|
18
|
Zhao L, Xie H, Li J. Red Blood Cell Membrane-Camouflaged Gold Nanoparticles for Treatment of Melanoma. JOURNAL OF ONCOLOGY 2022; 2022:3514984. [PMID: 36276288 PMCID: PMC9586750 DOI: 10.1155/2022/3514984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/14/2022] [Accepted: 09/21/2022] [Indexed: 07/22/2023]
Abstract
Background Patients with melanoma have poor response and low long-term survival to conventional cisplatin (CP). Recently, biomimetic nanoparticles have played a significant role in tumor therapy. The purpose of this study was to mechanistically evaluate the effect of red blood cell membrane camouflaged gold nanoparticles loaded with CP (RBCm@AuNPs-CP) on enhancing chemotherapy in melanoma. Methods Treated B16-F10 cells with RBCm@AuNPs-CP, the antimelanoma effect in vitro was explored by detecting cell viability, apoptosis rate, level of reactive oxygen species (ROS), and singlet oxygen. RBCm@AuNPs-CP was injected into the melanoma-bearing mice via tail vein, and the target-ability, therapeutic effect, and toxicity were detected in melanoma tumor-bearing mice. Results RBCm@AuNPs-CP had an antiproliferation and apoptosis-inducing effect on B16-F10 cells, which might be mediated by oxidative stress of ROS, and its effect was significantly enhanced compared with the CP treatment group. In vivo experiments suggested the same outcome, with better target-ability of RBCm@AuNPs-CP. Conclusion The erythrocyte camouflage nanosystem RBCm@AuNPs-CP exhibited well passive tumor target-ability and promoted apoptosis of melanocytes by inducing ROS. RBCm@AuNPs-CP as a novel safe and effective targeted drug delivery system may provide a promising choice for the treatment of melanoma.
Collapse
Affiliation(s)
- Lei Zhao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Hongfu Xie
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Ji Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| |
Collapse
|
19
|
Famurewa AC, Mukherjee AG, Wanjari UR, Sukumar A, Murali R, Renu K, Vellingiri B, Dey A, Valsala Gopalakrishnan A. Repurposing FDA-approved drugs against the toxicity of platinum-based anticancer drugs. Life Sci 2022; 305:120789. [PMID: 35817170 DOI: 10.1016/j.lfs.2022.120789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/02/2022] [Accepted: 07/05/2022] [Indexed: 11/17/2022]
Abstract
Platinum-based anticancer drugs (PADs), mainly cisplatin, carboplatin, and oxaliplatin, are widely used efficacious long-standing anticancer agents for treating several cancer types. However, clinicians worry about PAD chemotherapy and its induction of severe non-targeted organ toxicity. Compelling evidence has shown that toxicity of PAD on delicate body organs is associated with free radical generation, DNA impairment, endocrine and mitochondrial dysfunctions, oxidative inflammation, apoptosis, endoplasmic reticulum stress, and activation of regulator signaling proteins, cell cycle arrest, apoptosis, and pathways. The emerging trend is the repurposing of FDA-approved non-anticancer drugs (FNDs) for combating the side effects toxicity of PADs. Thus, this review chronicled the mechanistic preventive and therapeutic effects of FNDs against PAD organ toxicity in preclinical studies. FNDs are potential clinical drugs for the modulation of toxicity complications associated with PAD chemotherapy. Therefore, FNDs may be suggested as non-natural agent inhibitors of unpalatable side effects of PADs.
Collapse
Affiliation(s)
- Ademola C Famurewa
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, Alex Ekwueme Federal University, Ndufu-Alike lkwo, Nigeria.
| | - Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Uddesh Ramesh Wanjari
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Aarthi Sukumar
- Department of Integrative Biology, School of Bio-Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Reshma Murali
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Kaviyarasi Renu
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, Tamil Nadu, India
| | - Balachandar Vellingiri
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, West Bengal 700073, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India.
| |
Collapse
|
20
|
Upregulation of Nrf2/HO-1 Signaling and Attenuation of Oxidative Stress, Inflammation, and Cell Death Mediate the Protective Effect of Apigenin against Cyclophosphamide Hepatotoxicity. Metabolites 2022; 12:metabo12070648. [PMID: 35888772 PMCID: PMC9322057 DOI: 10.3390/metabo12070648] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 12/04/2022] Open
Abstract
Liver injury is among the adverse effects of the chemotherapeutic agent cyclophosphamide (CP). This study investigated the protective role of the flavone apigenin (API) against CP-induced liver damage, pointing to the involvement of Nrf2/HO-1 signaling. Rats were treated with API (20 and 40 mg/kg) for 15 days and received CP (150 mg/kg) on day 16. CP caused liver damage manifested by an elevation of transaminases, alkaline phosphatase (ALP), and lactate dehydrogenase (LDH), and histological alterations, including granular vacuolation, mononuclear cell infiltration, and hydropic changes. Hepatic reactive oxygen species (ROS), malondialdehyde (MDA), and nitric oxide (NO) were increased and glutathione (GSH) and antioxidant enzymes were decreased in CP-administered rats. CP upregulated the inflammatory markers NF-κB p65, TNF-α, IL-6, and iNOS, along with the pro-apoptotic Bax and caspase-3. Pre-treatment with API ameliorated circulating transaminases, ALP, and LDH, and prevented histopathological changes in CP-intoxicated rats. API suppressed ROS, MDA, NO, NF-κB p65, iNOS, inflammatory cytokines, oxidative DNA damage, Bax, and caspase-3 in CP-intoxicated rats. In addition, API enhanced hepatic antioxidants and Bcl-2 and boosted the Nrf2 and HO-1 mRNA abundance and protein. In conclusion, API is effective in preventing CP hepatotoxicity by attenuating oxidative stress, the inflammatory response, and apoptosis. The hepatoprotective efficacy of API was associated with the upregulation of Nrf2/HO-1 signaling.
Collapse
|
21
|
Domingo IK, Latif A, Bhavsar AP. Pro-Inflammatory Signalling PRRopels Cisplatin-Induced Toxicity. Int J Mol Sci 2022; 23:7227. [PMID: 35806229 PMCID: PMC9266867 DOI: 10.3390/ijms23137227] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 02/04/2023] Open
Abstract
Cisplatin is a platinum-based chemotherapeutic that has long since been effective against a variety of solid-cancers, substantially improving the five-year survival rates for cancer patients. Its use has also historically been limited by its adverse drug reactions, or cisplatin-induced toxicities (CITs). Of these reactions, cisplatin-induced nephrotoxicity (CIN), cisplatin-induced peripheral neuropathy (CIPN), and cisplatin-induced ototoxicity (CIO) are the three most common of several CITs recognised thus far. While the anti-cancer activity of cisplatin is well understood, the mechanisms driving its toxicities have only begun to be defined. Most of the literature pertains to damage caused by oxidative stress that occurs downstream of cisplatin treatment, but recent evidence suggests that the instigator of CIT development is inflammation. Cisplatin has been shown to induce pro-inflammatory signalling in CIN, CIPN, and CIO, all of which are associated with persisting markers of inflammation, particularly from the innate immune system. This review covered the hallmarks of inflammation common and distinct between different CITs, the role of innate immune components in development of CITs, as well as current treatments targeting pro-inflammatory signalling pathways to conserve the use of cisplatin in chemotherapy and improve long-term health outcomes of cancer patients.
Collapse
Affiliation(s)
| | | | - Amit P. Bhavsar
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2E1, Canada; (I.K.D.); (A.L.)
| |
Collapse
|
22
|
Gong JY, Ren H, Peng SY, Xing K, Fan L, Liu MZ, Luo ZY, Luo JQ. Comparative effectiveness of glycyrrhizic acid preparations aimed at preventing and treating anti-tuberculosis drug-induced liver injury: A network meta-analysis of 97 randomized controlled trials. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 98:153942. [PMID: 35093672 DOI: 10.1016/j.phymed.2022.153942] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/24/2021] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND AND OBJECTIVES Clinical guidelines and expert consensus do not yet recommend glycyrrhizic acid (GA) preparations, such as compound glycyrrhizin, diammonium glycyrrhizin, magnesium isoglycyrrhizinate (MGIG), et al., for the prevention of anti-tuberculosis(anti-TB) drug-induced liver injury (DILI) due to insufficient evidence. Although these GA preparations are recommended for the treatment of anti-TB DILI, which one performs best is unclear. Previous conventional meta-analyses did not summarize the results of simultaneous comparisons of different glycyrrhizinate preparations. Therefore, we aimed to compare and rank different GA preparations on preventing and treating the anti-TB DILI by network meta-analysis (NMA). METHODS A systematic search on PubMed, Web of Science, Embase, the Cochrane Library, China National Knowledge Infrastructure, SinoMed, Chongqing VIP and, the Wanfang Database was performed up to December 19, 2020. The literature was screened according to predefined inclusion and exclusion criteria to extract important information. The outcomes were the incidence of liver injury (prevention section) and treatment response rate (treatment section). The NMA was conducted with a random-effects model under the Bayesian framework to calculate risk ratios (RRs) with 95% credible intervals (95% CrIs) using R software (version 3.6.1). RESULTS From 1,411 publications, we included 97 relevant randomized clinical trials (RCTs) (10,923 participants). In terms of preventing anti-TB DILI (33 RCTs, comprising 5,762 patients), CGC, DGC, DGEC, and DGI, but not CGI, significantly reduced the incidence of liver injury than control group (RRs ranged from 0.26 to 0.58); CGC and DGEC were superior to DGC (RRs = 0.50 and 0.58, respectively). In terms of treating anti-TB DILI (64 RCTs, comprising 5,161 patients), MGIG was most effective among all regimens (RRs ranged from 1.15 to 1.72) while DGC ranked last (RRs ranged from 0.58 to 0.83). CONCLUSIONS All GA preparations except for CGI were effective in preventing the incidence of anti-TB DILI and CGC was superior to DGC. MGIG seems to be the best choice among all GA preparations for the treatment of anti-TB DILI. Future clinical practice guidelines should factor in these novel findings to improve patient outcomes; however, further high-quality trials are needed to validate these results.
Collapse
Affiliation(s)
- Jin-Yu Gong
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China; Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Huan Ren
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China; Institute of Clinical Pharmacy, Central South University, Changsha, China; Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.
| | - Si-Yin Peng
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Kai Xing
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China; Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Li Fan
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Mou-Ze Liu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China; Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Zhi-Ying Luo
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China; Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Jian-Quan Luo
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China; Institute of Clinical Pharmacy, Central South University, Changsha, China.
| |
Collapse
|
23
|
Devarapalli UV, Sarma MS, Mathiyazhagan G. Gut and liver involvement in pediatric hematolymphoid malignancies. World J Gastrointest Oncol 2022; 14:587-606. [PMID: 35321282 PMCID: PMC8919016 DOI: 10.4251/wjgo.v14.i3.587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/22/2021] [Accepted: 02/27/2022] [Indexed: 02/06/2023] Open
Abstract
Hematolymphoid malignancies are common neoplasms in childhood. The involvement of the gastrointestinal (GI) tract, liver, biliary system, pancreas, and peritoneum are closely interlinked and commonly encountered. In leukemias, lymphomas, and Langerhans cell histiocytosis (LCH), the manifestations result from infiltration, compression, overwhelmed immune system, and chemotherapy-induced drug toxicities. In acute leukemias, major manifestations are infiltrative hepatitis, drug induced gastritis, neutropenic typhlitis and chemotherapy related pancreatitis. Chronic leukemias are rare. Additional presentation in lymphomas is cholestasis due to infiltration or biliary obstruction by lymph nodal masses. Presence of ascites needs a thorough workup for the underlying pathophysiology that may modify the therapy and affect the outcome. Uncommon hematolymphoid malignancies are primary hepatic, hepatosplenic, and GI lymphomas which have strict definitions. In advanced diseases with extensive spread, it may be impossible to distinguish these diseases from the primary site of origin. LCH produces biliary strictures that mimic as sclerosing cholangitis. Liver infiltration is associated with poor liver recovery even after chemotherapy. The heterogeneity of gut and liver manifestations in hematolymphoid malignancies has a clinical impact on their management. Though chemotherapy is the mainstay of therapy in all hematolymphoid malignancies, debulking surgery and radiotherapy have an adjuvant role in specific clinical scenarios. Rare situations presenting as liver failure or end-stage liver disease require liver transplantation. At their initial presentation to a primary care physician, given the ambiguity in clinical manifestations and the prognostic difference with time-bound management, it is vital to recognize them early for optimal outcomes. Pooled data from robust registries across the world is required for better understanding of these complications.
Collapse
Affiliation(s)
- Umeshreddy V Devarapalli
- Department of Pediatric Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, Uttar Pradesh, India
| | - Moinak S Sarma
- Department of Pediatric Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, Uttar Pradesh, India
| | - Gopinathan Mathiyazhagan
- Department of Hematology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, Uttar Pradesh, India
| |
Collapse
|
24
|
Drug-Induced Liver Injury: Clinical Evidence of N-Acetyl Cysteine Protective Effects. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:3320325. [PMID: 34912495 PMCID: PMC8668310 DOI: 10.1155/2021/3320325] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/12/2021] [Accepted: 11/22/2021] [Indexed: 12/29/2022]
Abstract
Oxidative stress is a key pathological feature implicated in both acute and chronic liver diseases, including drug-induced liver injury (DILI). The latter describes hepatic injury arising as a direct toxic effect of administered drugs or their metabolites. Although still underreported, DILI remains a significant cause of liver failure, especially in developed nations. Currently, it is understood that mitochondrial-generated oxidative stress and abnormalities in phase I/II metabolism, leading to glutathione (GSH) suppression, drive the onset of DILI. N-Acetyl cysteine (NAC) has attracted a lot of interest as a therapeutic agent against DILI because of its strong antioxidant properties, especially in relation to enhancing endogenous GSH content to counteract oxidative stress. Thus, in addition to updating information on the pathophysiological mechanisms implicated in oxidative-induced hepatic injury, the current review critically discusses clinical evidence on the protective effects of NAC against DILI, including the reduction of patient mortality. Besides injury caused by paracetamol, NAC can also improve liver function in relation to other forms of liver injury such as those induced by excessive alcohol intake. The implicated therapeutic mechanisms of NAC extend from enhancing hepatic GSH levels to reducing biomarkers of paracetamol toxicity such as keratin-18 and circulating caspase-cleaved cytokeratin-18. However, there is still lack of evidence confirming the benefits of using NAC in combination with other therapies in patients with DILI.
Collapse
|
25
|
Choi JW, Yoo JJ, Kim SG, Kim YS, Chin S. Pazopanib-induced severe acute liver injury: A case report. Medicine (Baltimore) 2021; 100:e27731. [PMID: 34797298 PMCID: PMC8601284 DOI: 10.1097/md.0000000000027731] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/22/2021] [Indexed: 01/05/2023] Open
Abstract
RATIONALE Drug-induced liver injury (DILI) is the most common cause of acute liver failure in the United States. Painkillers and fever antipyretics are the most common cause of DILI. Hepatic injury can be provoked by DILI as hepatocellular or cholestatic type. PATIENT CONCERNS A 48-year-old woman presented jaundice accompanied by nausea and vomiting. The patient was an inactive hepatitis B carrier with low viral titer and was diagnosed renal cell carcinoma (RCC) with hepatic metastasis requiring pazopanib treatment. Prior to administration of pazopanib, tenofovir administration was started to prevent exacerbation of hepatitis B. The patient was referred to clinic of gastroenterology department due to sudden elevation of bilirubin after 5 weeks of pazopanib treatment. DIAGNOSES Abdominal ultrasound and computed tomography showed non-specific finding other than metastatic nodule in the liver and liver cirrhosis. After then, the patient was performed liver biopsy, and the biopsy result was acute cholestatic hepatitis with centrilobular area necrosis and portal inflammation. Therefore, considering the clinical history and biopsy results, the patient was diagnosed as DILI due to pazopanib. INTERVENTIONS After the biopsy, empirical steroid therapy was initiated and after 7 weeks of pazopanib discontinuation. OUTCOMES The total bilirubin level returned to normal from peak level of 24.61 to 1.52 mg/dL. LESSONS In patients with renal cell carcinoma, pazopanib treatment requires clinical caution as it causes rare complications such as severe jaundice and acute cholestatic hepatitis.
Collapse
Affiliation(s)
- Jin-Wook Choi
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Soonchunhyang University School of Medicine, Bucheon, Republic of Korea
| | - Jeong-Ju Yoo
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Soonchunhyang University School of Medicine, Bucheon, Republic of Korea
| | - Sang Gyune Kim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Soonchunhyang University School of Medicine, Bucheon, Republic of Korea
| | - Young Seok Kim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Soonchunhyang University School of Medicine, Bucheon, Republic of Korea
| | - Susie Chin
- Department of Pathology, Soonchunhyang University Bucheon Hospital, Soonchunhyang University School of Medicine, Bucheon, Republic of Korea
| |
Collapse
|
26
|
Cui R, Wang C, Li T, Hua J, Zhao T, Ren L, Wang Y, Li Y. Carboxypeptidase N1 is anticipated to be a synergy metrics for chemotherapy effectiveness and prognostic significance in invasive breast cancer. Cancer Cell Int 2021; 21:571. [PMID: 34711246 PMCID: PMC8555242 DOI: 10.1186/s12935-021-02256-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/10/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The incidence and mortality of invasive breast cancer (IBC) are increasing annually. Hence, it is urgently needed to determine reliable biomarkers for not only monitoring curative effects, but evaluating prognosis. In present study, we aim to determine the potential role of Carboxypeptidase N1 (CPN1) in IBC tissues on chemotherapeutic efficacy and poor prognosis. METHODS The expression level of CPN1 in IBC tissue samples (n = 123) was quantified by tissue microarray technique and immunohistochemical staining. Moreover, sera of IBC patients (n = 34) that underwent three to five consecutive chemotherapy sessions were collected. The patients were randomly stratified into a training (n = 15) as well as a validation group (n = 19). The expression of serum CA153 and CPN1 was quantified by electrochemiluminescence and ELISA assay, respectively. RESULTS By univariate and multivariate Cox regression analysis, we show that CPN1 expression in IBC tissues, as an independent risk factor, is related to a poor overall survival (OS) and progression-free survival (PFS) (P < 0.05). Analysis of the data revealed that CPN1 over-expression could be consistently linked to adverse clinicopathological features such as lymph node metastasis and the pathological stage (pTNM) (P < 0.05). The serum CPN1 level trajectory of individual patients generally decreased during chemotherapy. In line with these findings were changes in the follow-up ultrasonography and a consistent decrease in serum CPN1 levels. The comparison of the area under the receiver operating curves (ROC) revealed that CPN1 has a better surveillance value than CA153 in the training (AUCCPN1 = 0.834 vs. AUCCA153 = 0.724) as well as the validation set (AUCCPN1 = 0.860 vs. AUCCA153 = 0.720) when comparing cycle2 versus cycle3. CONCLUSIONS CPN1 is a suitable potential biomarker for chemotherapeutic surveillance purposes as well as being an appropriate prognostic indicator which would support an improved chemotherapy regimen.
Collapse
Affiliation(s)
- Ranliang Cui
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Huanhuxi Road, Hexi District, Tianjin, 300060, China
| | - Chaomin Wang
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Huanhuxi Road, Hexi District, Tianjin, 300060, China
| | - Tiantian Li
- School of Medical Laboratory, Tianjin Medical University, Tianjin, China
| | - Jialei Hua
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Huanhuxi Road, Hexi District, Tianjin, 300060, China
| | - Ting Zhao
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Huanhuxi Road, Hexi District, Tianjin, 300060, China
| | - Li Ren
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Huanhuxi Road, Hexi District, Tianjin, 300060, China.
| | - Yichao Wang
- Department of Clinical Laboratory Medicine, Taizhou Central Hospital (Taizhou University Hospital), No. 999 Donghai Road, Jiaojiang District, Taizhou, 318000, Zhejiang, China.
| | - Yueguo Li
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Huanhuxi Road, Hexi District, Tianjin, 300060, China.
| |
Collapse
|
27
|
Kanikarla Marie P, Fowlkes NW, Afshar-Kharghan V, Martch SL, Sorokin A, Shen JP, Morris VK, Dasari A, You N, Sood AK, Overman MJ, Kopetz S, Menter DG. The Provocative Roles of Platelets in Liver Disease and Cancer. Front Oncol 2021; 11:643815. [PMID: 34367949 PMCID: PMC8335590 DOI: 10.3389/fonc.2021.643815] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 06/30/2021] [Indexed: 12/12/2022] Open
Abstract
Both platelets and the liver play important roles in the processes of coagulation and innate immunity. Platelet responses at the site of an injury are rapid; their immediate activation and structural changes minimize the loss of blood. The majority of coagulation proteins are produced by the liver—a multifunctional organ that also plays a critical role in many processes: removal of toxins and metabolism of fats, proteins, carbohydrates, and drugs. Chronic inflammation, trauma, or other causes of irreversible damage to the liver can dysregulate these pathways leading to organ and systemic abnormalities. In some cases, platelet-to-lymphocyte ratios can also be a predictor of disease outcome. An example is cirrhosis, which increases the risk of bleeding and prothrombotic events followed by activation of platelets. Along with a triggered coagulation cascade, the platelets increase the risk of pro-thrombotic events and contribute to cancer progression and metastasis. This progression and the resulting tissue destruction is physiologically comparable to a persistent, chronic wound. Various cancers, including colorectal cancer, have been associated with increased thrombocytosis, platelet activation, platelet-storage granule release, and thrombosis; anti-platelet agents can reduce cancer risk and progression. However, in cancer patients with pre-existing liver disease who are undergoing chemotherapy, the risk of thrombotic events becomes challenging to manage due to their inherent risk for bleeding. Chemotherapy, also known to induce damage to the liver, further increases the frequency of thrombotic events. Depending on individual patient risks, these factors acting together can disrupt the fragile balance between pro- and anti-coagulant processes, heightening liver thrombogenesis, and possibly providing a niche for circulating tumor cells to adhere to—thus promoting both liver metastasis and cancer-cell survival following treatment (that is, with minimal residual disease in the liver).
Collapse
Affiliation(s)
- Preeti Kanikarla Marie
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Natalie W Fowlkes
- Department of Veterinary Medicine and Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Vahid Afshar-Kharghan
- Division of Internal Medicine, Benign Hematology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Stephanie L Martch
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Alexey Sorokin
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - John Paul Shen
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Van K Morris
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Arvind Dasari
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Nancy You
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Michael J Overman
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - David George Menter
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
28
|
Wang W, Wang J, Ding Y. Gold nanoparticle-conjugated nanomedicine: design, construction, and structure-efficacy relationship studies. J Mater Chem B 2021; 8:4813-4830. [PMID: 32227036 DOI: 10.1039/c9tb02924a] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In comparison with conventional therapies, nanomedicine shows prominent clinical performance, with better therapeutic efficacy and less off-target toxicity. As an important component of nanomedicine, gold nanoparticle (GNP)-based nanodrugs have attracted considerable interest because of their excellent performance given by the unique structure. Although no pharmaceutical formulations of GNP-associated nanodrugs have been officially marketed yet, a substantial amount of research on this aspect is being carried out, producing numerous GNP-based drug delivery systems with potential clinical applications. In this review, we present an overview of our progress on GNP-based nanodrugs combined with other achievements in biomedical applications, including drug-conjugated GNPs prepared for disease treatments and specific tumour targeting, structure-efficacy relationship (SER) studies on GNP-conjugated nanodrugs, and therapeutic hybrid nanosystems composed of GNPs. In addition, we also put forward some proposals to guide future work in developing GNP-based nanomedicine. We hope that this review will offer some useful experience for our peers and GNP-based nanodrugs will be utilized in the clinic with further persistent efforts.
Collapse
Affiliation(s)
- Wenjie Wang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, 210009, China.
| | - Jing Wang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, 210009, China.
| | - Ya Ding
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
29
|
Sheikhi-Mobarakeh Z, Yarmohammadi H, Mokhatri-Hesari P, Fahimi S, Montazeri A, Heydarirad G. Herbs as old potential treatments for lymphedema management: A systematic review. Complement Ther Med 2020; 55:102615. [PMID: 33221590 DOI: 10.1016/j.ctim.2020.102615] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 10/20/2020] [Accepted: 11/04/2020] [Indexed: 12/30/2022] Open
Abstract
INTRODUCTION Herbs have been reported to be effective in reducing lymphedema burden. This paper aimed to review literature reporting on herbs for lymphedema treatment. METHODS A systematic review was performed using the PRISMA guideline. Clinical studies on herbal intervention and lymphedema were included. Evidence on the effectiveness of herbal interventions for desired outcomes including reduction of edema volume, other symptoms, quality of life and inflammation were collected and assessed in detail. RESULTS In all twenty studies were included in this review. Of these 14 studies were randomized clinical trials and the rest were prospective pilot studies. Herbal treatment was reported for breast cancer-related lymphedema in most studies and coumarin was the most reported herb that used for lymphedema management. Edema volume reduction (17 out of 20) and symptoms improvement (15 out of 20) were the outcomes reported in most studies. CONCLUSION Phytochemicals can be a promising pharmacotherapy for lymphedema management. However, further evidence is needed to establish definite effectiveness for the use of herbal remedies for lymphedema management.
Collapse
Affiliation(s)
- Zahra Sheikhi-Mobarakeh
- Traditional Persian Medicine, Department of Traditional Medicine, School of Traditional Medicine, Shahid Beheshti University of Medical Sciences, No. 8 Shams Alley, Vali-e-Asr Street, Tehran, 1516745811, Iran; Quality of Life Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, No.146, South Gandi Ave, Vanak Sq, Tehran, 1517964311, Iran; Integrative Oncology Research Group, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, No.146, South Gandi Ave, Vanak Sq, Tehran, 1517964311, Iran
| | - Hossein Yarmohammadi
- Quality of Life Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, No.146, South Gandi Ave, Vanak Sq, Tehran, 1517964311, Iran; Medical Students Research Committee, Shahed University College of Medicine, Mostafa Khomeini Hospital, Italy Street, Keshavarz Blvd, Tehran, Iran
| | - Parisa Mokhatri-Hesari
- Integrative Oncology Research Group, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, No.146, South Gandi Ave, Vanak Sq, Tehran, 1517964311, Iran; Population Health Research Group, Health Metrics Research Center, Iranian Institute for Health Sciences Research, ACECR, Tehran, Iran
| | - Shirin Fahimi
- Traditional Medicine and Material Medical Research Center, Department of Traditional Pharmacy, School of Traditional Medicine, Shahid Beheshti University of Medical Sciences, No.19, Tavaneer Alley, Vali-e-Asr Ave, Tehran, Iran
| | - Ali Montazeri
- Population Health Research Group, Health Metrics Research Center, Iranian Institute for Health Sciences Research, ACECR, Tehran, Iran
| | - Ghazaleh Heydarirad
- Traditional Persian Medicine, Department of Traditional Medicine, School of Traditional Medicine, Shahid Beheshti University of Medical Sciences, No. 8 Shams Alley, Vali-e-Asr Street, Tehran, 1516745811, Iran.
| |
Collapse
|
30
|
Álamo P, Pallarès V, Céspedes MV, Falgàs A, Sanchez JM, Serna N, Sánchez-García L, Voltà-Duràn E, Morris GA, Sánchez-Chardi A, Casanova I, Mangues R, Vazquez E, Villaverde A, Unzueta U. Fluorescent Dye Labeling Changes the Biodistribution of Tumor-Targeted Nanoparticles. Pharmaceutics 2020; 12:pharmaceutics12111004. [PMID: 33105866 PMCID: PMC7690626 DOI: 10.3390/pharmaceutics12111004] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/16/2020] [Accepted: 10/20/2020] [Indexed: 02/06/2023] Open
Abstract
Fluorescent dye labeling is a common strategy to analyze the fate of administered nanoparticles in living organisms. However, to which extent the labeling processes can alter the original nanoparticle biodistribution has been so far neglected. In this work, two widely used fluorescent dye molecules, namely, ATTO488 (ATTO) and Sulfo-Cy5 (S-Cy5), have been covalently attached to a well-characterized CXCR4-targeted self-assembling protein nanoparticle (known as T22-GFP-H6). The biodistribution of labeled T22-GFP-H6-ATTO and T22-GFP-H6-S-Cy5 nanoparticles has been then compared to that of the non-labeled nanoparticle in different CXCR4+ tumor mouse models. We observed that while parental T22-GFP-H6 nanoparticles accumulated mostly and specifically in CXCR4+ tumor cells, labeled T22-GFP-H6-ATTO and T22-GFP-H6-S-Cy5 nanoparticles showed a dramatic change in the biodistribution pattern, accumulating in non-target organs such as liver or kidney while reducing tumor targeting capacity. Therefore, the use of such labeling molecules should be avoided in target and non-target tissue uptake studies during the design and development of targeted nanoscale drug delivery systems, since their effect over the fate of the nanomaterial can lead to considerable miss-interpretations of the actual nanoparticle biodistribution.
Collapse
Affiliation(s)
- Patricia Álamo
- Biomedical Research Institute Sant Pau (IIB Sant Pau), Sant Antoni Mª Claret 167, 08025 Barcelona, Spain; (P.Á.); (V.P.); (M.V.C.); (A.F.); (I.C.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3–5, 28029 Madrid, Spain; (N.S.); (L.S.-G.); (E.V.-D.); (E.V.)
- Josep Carreras Leukaemia Research Institute (IJC Campus Sant Pau), 08025 Barcelona, Spain
| | - Victor Pallarès
- Biomedical Research Institute Sant Pau (IIB Sant Pau), Sant Antoni Mª Claret 167, 08025 Barcelona, Spain; (P.Á.); (V.P.); (M.V.C.); (A.F.); (I.C.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3–5, 28029 Madrid, Spain; (N.S.); (L.S.-G.); (E.V.-D.); (E.V.)
- Josep Carreras Leukaemia Research Institute (IJC Campus Sant Pau), 08025 Barcelona, Spain
| | - María Virtudes Céspedes
- Biomedical Research Institute Sant Pau (IIB Sant Pau), Sant Antoni Mª Claret 167, 08025 Barcelona, Spain; (P.Á.); (V.P.); (M.V.C.); (A.F.); (I.C.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3–5, 28029 Madrid, Spain; (N.S.); (L.S.-G.); (E.V.-D.); (E.V.)
| | - Aïda Falgàs
- Biomedical Research Institute Sant Pau (IIB Sant Pau), Sant Antoni Mª Claret 167, 08025 Barcelona, Spain; (P.Á.); (V.P.); (M.V.C.); (A.F.); (I.C.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3–5, 28029 Madrid, Spain; (N.S.); (L.S.-G.); (E.V.-D.); (E.V.)
- Josep Carreras Leukaemia Research Institute (IJC Campus Sant Pau), 08025 Barcelona, Spain
| | - Julieta M. Sanchez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain;
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- ICTA & Cátedra de Química Biológica, Departamento de Química, Instituto de Investigaciones Biológicas y Tecnológicas (IIBYT) (CONICET—Universidad Nacional de Córdoba), FCEFyN, UNC. Av. Velez Sarsfield 1611, X 5016GCA Córdoba, Argentina
| | - Naroa Serna
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3–5, 28029 Madrid, Spain; (N.S.); (L.S.-G.); (E.V.-D.); (E.V.)
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain;
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Laura Sánchez-García
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3–5, 28029 Madrid, Spain; (N.S.); (L.S.-G.); (E.V.-D.); (E.V.)
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain;
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Eric Voltà-Duràn
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3–5, 28029 Madrid, Spain; (N.S.); (L.S.-G.); (E.V.-D.); (E.V.)
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain;
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Gordon A. Morris
- Department of Chemical Sciences, School of Applied Science, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK;
| | - Alejandro Sánchez-Chardi
- Servei de Microscòpia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain;
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Isolda Casanova
- Biomedical Research Institute Sant Pau (IIB Sant Pau), Sant Antoni Mª Claret 167, 08025 Barcelona, Spain; (P.Á.); (V.P.); (M.V.C.); (A.F.); (I.C.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3–5, 28029 Madrid, Spain; (N.S.); (L.S.-G.); (E.V.-D.); (E.V.)
- Josep Carreras Leukaemia Research Institute (IJC Campus Sant Pau), 08025 Barcelona, Spain
| | - Ramón Mangues
- Biomedical Research Institute Sant Pau (IIB Sant Pau), Sant Antoni Mª Claret 167, 08025 Barcelona, Spain; (P.Á.); (V.P.); (M.V.C.); (A.F.); (I.C.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3–5, 28029 Madrid, Spain; (N.S.); (L.S.-G.); (E.V.-D.); (E.V.)
- Josep Carreras Leukaemia Research Institute (IJC Campus Sant Pau), 08025 Barcelona, Spain
- Correspondence: (R.M.); or (A.V.); (U.U.)
| | - Esther Vazquez
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3–5, 28029 Madrid, Spain; (N.S.); (L.S.-G.); (E.V.-D.); (E.V.)
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain;
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Antonio Villaverde
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3–5, 28029 Madrid, Spain; (N.S.); (L.S.-G.); (E.V.-D.); (E.V.)
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain;
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Correspondence: (R.M.); or (A.V.); (U.U.)
| | - Ugutz Unzueta
- Biomedical Research Institute Sant Pau (IIB Sant Pau), Sant Antoni Mª Claret 167, 08025 Barcelona, Spain; (P.Á.); (V.P.); (M.V.C.); (A.F.); (I.C.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3–5, 28029 Madrid, Spain; (N.S.); (L.S.-G.); (E.V.-D.); (E.V.)
- Josep Carreras Leukaemia Research Institute (IJC Campus Sant Pau), 08025 Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Correspondence: (R.M.); or (A.V.); (U.U.)
| |
Collapse
|
31
|
Vora HD, Johnson M, Brea RJ, Rudd AK, Devaraj NK. Inhibition of NRAS Signaling in Melanoma through Direct Depalmitoylation Using Amphiphilic Nucleophiles. ACS Chem Biol 2020; 15:2079-2086. [PMID: 32568509 DOI: 10.1021/acschembio.0c00222] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Activating mutations in the small GTPase NRAS are responsible for driving tumor growth in several cancers. Unfortunately, the development of NRAS inhibitors has proven difficult due to the lack of hydrophobic binding pockets on the protein's surface. To overcome this limitation, we chose to target the post-translational S-palmitoyl modification of NRAS, which is required for its signaling activity. Utilizing an amphiphile-mediated depalmitoylation (AMD) strategy, we demonstrate the ability to directly cleave S-palmitoyl groups from NRAS and inhibit its function. C8 alkyl cysteine causes a dose-dependent decrease in NRAS palmitoylation and inhibits downstream signaling in melanoma cells with an activating mutation in NRAS. This compound reduces cell growth in NRAS-driven versus non-NRAS-driven melanoma lines and inhibits tumor progression in an NRAS-mutated melanoma xenograft mouse model. Our work demonstrates that AMD can effectively suppress NRAS activity and could represent a promising new avenue for discovering lead compounds for treatment of NRAS-driven cancers.
Collapse
Affiliation(s)
- Hetika D. Vora
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, Natural Sciences Building 3328, La Jolla, California 92093, United States
| | - Mai Johnson
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, Natural Sciences Building 3328, La Jolla, California 92093, United States
| | - Roberto J. Brea
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, Natural Sciences Building 3328, La Jolla, California 92093, United States
| | - Andrew K. Rudd
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, Natural Sciences Building 3328, La Jolla, California 92093, United States
| | - Neal K. Devaraj
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, Natural Sciences Building 3328, La Jolla, California 92093, United States
| |
Collapse
|
32
|
Durymanov M, Permyakova A, Reineke J. Pre-treatment With PLGA/Silibinin Nanoparticles Mitigates Dacarbazine-Induced Hepatotoxicity. Front Bioeng Biotechnol 2020; 8:495. [PMID: 32671024 PMCID: PMC7332747 DOI: 10.3389/fbioe.2020.00495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/28/2020] [Indexed: 12/02/2022] Open
Abstract
Drug-induced hepatotoxicity is one of the major barriers limiting application of current pharmaceuticals as well as clinical translation of novel and perspective drugs. In this context, numerous hepatoprotective molecules have been proposed to prevent or mitigate drug-induced hepatotoxicity. To date, silibinin (SBN) is a one the most studied hepatoprotective plant-derived agents for prevention/alleviation of drug-induced liver injury. Hepatoprotective mechanisms of SBN include scavenging of free radicals, upregulation of detoxifying enzymes via Nrf2 activation and inhibition of inflammatory activation of resident macrophages. However, low solubility of this phytochemical in water prevents its intravenous administration and constrains its bioavailability and efficacy. Here, we developed SBN-loaded poly(lactic-co-glycolic) acid (PLGA)-based nanoparticles for intravenous administration aiming at mitigation of drug-induced hepatotoxicity. Obtained nanoparticles demonstrated a slow drug release profile in vitro and caused upregulation of antioxidant and phase II enzymes in AML12 hepatocytes including superoxide dismutase 2, glutathione-S-transferase P1, and glutathione-reductase. Intravenous administration of PLGA nanoparticles to mice led to their fast liver accumulation. In vivo analysis of hepatoprotective effects of PLGA/SBN nanoparticles was carried out on melanoma tumor-bearing syngeneic mouse model treated with the antineoplastic drug dacarbazine (DTIC), which often causes severe hepatotoxicity including development of veno-occlusive disease. It was found that PLGA/SBN caused effective induction of detoxifying liver enzymes. Moreover, pre-treatment with PLGA/SBN nanoparticles reduced elevated transaminase and bilirubin levels in blood, caspase 3 activation, and morphological histology changes in liver tissue upon DTIC treatment. Treatment with PLGA/SBN nanoparticles did not interfere with therapeutic efficacy of DTIC.
Collapse
Affiliation(s)
- Mikhail Durymanov
- Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, South Dakota State University, Brookings, SD, United States.,Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Anastasia Permyakova
- Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, South Dakota State University, Brookings, SD, United States
| | - Joshua Reineke
- Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, South Dakota State University, Brookings, SD, United States
| |
Collapse
|
33
|
Wang C, Shi D, Zhang F, Yu X, Lin G, Zhou Z. Characterization of binding interaction between magnesium isoglycyrrhizinate and human serum albumin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 234:118245. [PMID: 32179463 DOI: 10.1016/j.saa.2020.118245] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/24/2020] [Accepted: 03/07/2020] [Indexed: 06/10/2023]
Abstract
Magnesium isoglycyrrhizinate (MgIG) is the magnesium salt of 18β-glycyrrhizic acid extracted from licorice, a Chinese traditional medicine. The pharmacokinetic characteristics of MgIG have been widely studied; nevertheless, its target protein and mechanism of action remain unclear. Therefore, the objective of present work was to determine the characteristics of binding between human serum albumin (HSA) and MgIG. The formation of HSA-MgIG complex was studied using spectrometric techniques, LC-MS/MS, and molecular docking calculations. The results of fluorescence study demonstrated the quenching mechanism is definitely static. The negative thermodynamic parameters suggested that the interaction is enthalpically driven and occurs spontaneously. Binding density and probe displacement analysis suggested that MgIG bound to HSA at a single site, determined to be site I. The mean albumin binding rate of MgIG with HSA concentration ranged from 35 to 50 g·L-1 reached 85.6%. Molecular docking analysis revealed the major residues and interaction forces involved in formation of HSA-MgIG complex, corresponding with the experimental results.
Collapse
Affiliation(s)
- Chenxiang Wang
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Dawei Shi
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Fangfang Zhang
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Xuben Yu
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Guanyang Lin
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| | - Ziye Zhou
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| |
Collapse
|
34
|
Zárybnický T, Matoušková P, Skálová L, Boušová I. The Hepatotoxicity of Alantolactone and Germacrone: Their Influence on Cholesterol and Lipid Metabolism in Differentiated HepaRG Cells. Nutrients 2020; 12:nu12061720. [PMID: 32521813 PMCID: PMC7353089 DOI: 10.3390/nu12061720] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/01/2020] [Accepted: 06/05/2020] [Indexed: 02/07/2023] Open
Abstract
The sesquiterpenes alantolactone (ATL) and germacrone (GER) are potential anticancer agents of natural origin. Their toxicity and biological activity have been evaluated using the differentiated HepaRG (dHepaRG) cells, a hepatocyte-like model. The half-maximal inhibitory concentrations of cell viability after 24-h treatment of dHepaRG cells are approximately 60 µM for ATL and 250 µM for GER. However, both sesquiterpenes induce reactive oxygen species (ROS) formation in non-toxic concentrations and significantly dysregulate the mRNA expression of several functional markers of mature hepatocytes. They similarly decrease the protein level of signal transducer and activator of transcription 3 (STAT3), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and their transcription target, intercellular adhesion molecule 1 (ICAM-1). Based on the results of a BATMAN-TCM analysis, the effects of sesquiterpenes on cholesterol and lipid metabolism were studied. Sesquiterpene-mediated dysregulation of both cholesterol and lipid metabolism was observed, during which these compounds influenced the protein expression of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) and sterol regulatory element-binding protein 2 (SREBP-2), as well as the mRNA expression of HMGCR, CYP19A1, PLIN2, FASN, SCD, ACACB, and GPAM genes. In conclusion, the two sesquiterpenes caused ROS induction at non-toxic concentrations and alterations in cholesterol and lipid metabolism at slightly toxic and toxic concentrations, suggesting a risk of liver damage if administered to humans.
Collapse
|
35
|
Ali FEM, Hassanein EHM, Bakr AG, El-Shoura EAM, El-Gamal DA, Mahmoud AR, Abd-Elhamid TH. Ursodeoxycholic acid abrogates gentamicin-induced hepatotoxicity in rats: Role of NF-κB-p65/TNF-α, Bax/Bcl-xl/Caspase-3, and eNOS/iNOS pathways. Life Sci 2020; 254:117760. [PMID: 32418889 DOI: 10.1016/j.lfs.2020.117760] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/02/2020] [Accepted: 05/05/2020] [Indexed: 02/07/2023]
Abstract
AIM The present study focused on the possible underlying protective mechanisms of UDCA against GNT-induced hepatic injury. METHODS For achieving this goal, adult male rats were allocated into 4 groups: normal control (received vehicle), GNT (100 mg/kg, i.p. for 8 days), UDCA (60 mg/kg, P.O. for 15 days), and GNT + UDCA (received UDCA for 15 days and GNT started from the 7th day and lasted for 8 days). RESULTS The results revealed that UDCA significantly improved GNT-induced hepatic injury, oxidative stress, apoptosis, and inflammatory response. Interestingly, UDCA inhibited apoptosis by marked down-regulation of the Bax gene, Caspase-3, and cleaved Caspase-3 protein expressions while the level of Bcl-xL gene significantly increased. Moreover, UDCA strongly inhibited the inflammatory response through the down-regulation of both NF-κB-p65 and TNF-α accompanied by IL-10 elevation. Furthermore, the obtained results ended with the restored of mitochondria function that confirmed by electron microscopy. Histological analysis showed that UDCA remarkably ameliorated the histopathological changes induced by GNT. SIGNIFICANCE UDCA may be a promising agent that can be used to prevent hepatotoxicity observed in GNT treatment. This effect could be attributed to, at least in part, the ability of UDCA to modulate NF-κB-p65/TNF-α, Bax/Bcl-xl/Caspase-3, and eNOS/iNOS signaling pathways.
Collapse
Affiliation(s)
- Fares E M Ali
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt.
| | - Emad H M Hassanein
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Adel G Bakr
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Ehab A M El-Shoura
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Dalia A El-Gamal
- Department of Histology and Cell Biology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Amany R Mahmoud
- Department of Human Anatomy and Embryology, Faculty of Medicine, Assiut University, Assiut, Egypt; Department of Anatomy, Unaizah College of Medicine, Qassim University, Unaizah Al Qassim Region, Saudi Arabia
| | - Tarek Hamdy Abd-Elhamid
- Department of Histology and Cell Biology, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
36
|
Geraniol protects against cyclophosphamide-induced hepatotoxicity in rats: Possible role of MAPK and PPAR-γ signaling pathways. Food Chem Toxicol 2020; 139:111251. [DOI: 10.1016/j.fct.2020.111251] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/17/2020] [Accepted: 03/06/2020] [Indexed: 02/07/2023]
|
37
|
Xiao Z, Jiang Y, Chen XF, Wang CQ, Xu WH, Liu Y, Hu SS, Huang XR, Shan LJ, Tang YH, Yang YB, Feng JH, Xiao X, Li XF. The Hepatorenal Toxicity and Tumor Response of Chemotherapy With or Without Aidi Injection in Advanced Lung Cancer: A Meta-Analysis of 80 Randomized Controlled Trials. Clin Ther 2020; 42:515-543.e31. [PMID: 32088021 DOI: 10.1016/j.clinthera.2020.01.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/20/2019] [Accepted: 01/18/2020] [Indexed: 02/06/2023]
Abstract
PURPOSE Chemotherapy-induced hepatorenal toxicity often decreases tolerance for further therapies and results in poor quality of life and prognosis for patients with lung cancer. In this meta-analysis, all related studies were systematically re-evaluated to determine whether Aidi injection relieves hepatorenal toxicity and improves tumor response, and to determine its threshold and the optimal treatment regimen for obtaining the desired responses. METHODS All studies regarding Aidi injection with chemotherapy were gathered from Chinese and English databases (from inception until January 2019). Their bias risk was evaluated and the data were synthesized using meta-analysis; the quality of evidence of all outcomes was rated by using the Grades of Recommendation Assessment, Development, and Evaluation approach. FINDINGS Eighty randomized controlled trials containing 6279 patients were included in the study. Most of the trials showed unclear risk of bias. Aidi injection with chemotherapy increased the objective response rate (risk ratio [RR], 1.32; 95% CI, 1.25-1.40) and the disease control rate (RR, 1.15; 95% CI, 1.12-1.17) and resulted in a lower incidence of hepatotoxicity (RR, 0.61; 95% CI, 0.55-0.69) and nephrotoxicity (RR, 0.62; 95% CI, 0.53-0.72) than that of chemotherapy alone. Subgroup analyses showed that treatment with 50 mL per time, 10 to 14 days per cycle, and 2 to 3 cycles of Aidi injection with chemotherapy resulted in a low incidence of hepatorenal toxicity. All of the results were robust, and their quality was moderate. IMPLICATIONS The moderate evidence indicates that Aidi injection with chemotherapy may improve tumor response and result in a low incidence of hepatorenal toxicity in patients with lung cancer. Aidi injection may relieve hepatorenal toxicity and exhibit an important protective effect against chemotherapy-induced hepatorenal toxicity. Based on the subgroup analysis results, Aidi injection seems to lower the threshold for chemotherapy. Treatment with 50 mL per time, 10 to 14 days per cycle, and 2 to 3 cycles may be the optimal usage for attaining a decrease in hepatorenal toxicity.
Collapse
Affiliation(s)
- Zheng Xiao
- Department of General Medicine, Affiliated Hospital of Zunyi Medical University, Guizhou, China; Evidence-Based Medicine Center, MOE Virtual Research Center of Evidence-based Medicine at Zunyi Medical University, Affiliated Hospital of Zunyi Medical University, Guizhou, China; School of Management, Zunyi Medical University, Guizhou, China.
| | - Yuan Jiang
- Department of General Medicine, Affiliated Hospital of Zunyi Medical University, Guizhou, China; School of Management, Zunyi Medical University, Guizhou, China
| | - Xiao-Fan Chen
- Evidence-Based Medicine Research Centre, Jiangxi University of Traditional Chinese Medicine, Jiangxi, China
| | - Cheng-Qiong Wang
- Department of General Medicine, Affiliated Hospital of Zunyi Medical University, Guizhou, China; Evidence-Based Medicine Center, MOE Virtual Research Center of Evidence-based Medicine at Zunyi Medical University, Affiliated Hospital of Zunyi Medical University, Guizhou, China
| | - Wei-Hong Xu
- Grade 2017 Students, Zunyi Medical University, Guizhou, China
| | - Yao Liu
- Grade 2017 Students, Zunyi Medical University, Guizhou, China
| | - Shan-Shan Hu
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Guizhou, China
| | - Xiao-Rong Huang
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Guizhou, China
| | - Li-Jing Shan
- Department of General Medicine, Affiliated Hospital of Zunyi Medical University, Guizhou, China
| | - Yu-Hong Tang
- School of Management, Zunyi Medical University, Guizhou, China
| | - Yi-Bin Yang
- Department of Nephropathy, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou, China
| | - Ji-Hong Feng
- Department of Oncology, Lishui People's Hospital, Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, China
| | - Xue Xiao
- Department of General Medicine, Affiliated Hospital of Zunyi Medical University, Guizhou, China; Evidence-Based Medicine Center, MOE Virtual Research Center of Evidence-based Medicine at Zunyi Medical University, Affiliated Hospital of Zunyi Medical University, Guizhou, China
| | - Xiao-Fei Li
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Guizhou, China
| |
Collapse
|
38
|
Urrutia-Maldonado E, Abril-Molina A, Alés-Palmer M, Gómez-Luque JM, Muñoz de Rueda P, Ocete-Hita E. Lesión hepática inducida por quimioterapia en niños. An Pediatr (Barc) 2019; 91:256-263. [DOI: 10.1016/j.anpedi.2019.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 12/28/2018] [Accepted: 01/09/2019] [Indexed: 01/19/2023] Open
|
39
|
Urrutia-Maldonado E, Abril-Molina A, Alés-Palmer M, Gómez-Luque JM, Muñoz de Rueda P, Ocete-Hita E. Chemotherapy-induced liver injury in children. An Pediatr (Barc) 2019. [DOI: 10.1016/j.anpede.2019.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
40
|
Yang YZ, Zhao XJ, Xu HJ, Wang SC, Pan Y, Wang SJ, Xu Q, Jiao RQ, Gu HM, Kong LD. Magnesium isoglycyrrhizinate ameliorates high fructose-induced liver fibrosis in rat by increasing miR-375-3p to suppress JAK2/STAT3 pathway and TGF-β1/Smad signaling. Acta Pharmacol Sin 2019; 40:879-894. [PMID: 30568253 DOI: 10.1038/s41401-018-0194-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 11/08/2018] [Indexed: 12/26/2022] Open
Abstract
Increasing evidence has demonstrated that excessive fructose intake induces liver fibrosis. Epithelial-mesenchymal transition (EMT) driven by transforming growth factor-β1 (TGF-β1)/mothers against decapentaplegic homolog (Smad) signaling activation promotes the occurrence and development of liver fibrosis. Magnesium isoglycyrrhizinate is clinically used as a hepatoprotective agent to treat liver fibrosis, but its underlying molecular mechanism has not been identified. Using a rat model, we found that high fructose intake reduced microRNA (miR)-375-3p expression and activated the janus-activating kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) cascade and TGF-β1/Smad signaling, which is consistent with the EMT and liver fibrosis. To further verify these observations, BRL-3A cells and/or primary rat hepatocytes were exposed to high fructose and/or transfected with a miR-375-3p mimic or inhibitor or treated with a JAK2 inhibitor, and we found that the low expression of miR-375-3p could induce the JAK2/STAT3 pathway to activate TGF-β1/Smad signaling and promote the EMT. Magnesium isoglycyrrhizinate was found to ameliorate high fructose-induced EMT and liver fibrosis in rats. More importantly, magnesium isoglycyrrhizinate increased miR-375-3p expression to suppress the JAK2/STAT3 pathway and TGF-β1/Smad signaling in these animal and cell models. This study provides evidence showing that magnesium isoglycyrrhizinate attenuates liver fibrosis associated with a high fructose diet.
Collapse
|
41
|
S-ADEMETHIONINE ROLE IN SUPPORTIVE TREATMENT OF ACUTE MYELOBLASTIC LEUKEMIA. WORLD OF MEDICINE AND BIOLOGY 2019. [DOI: 10.26724/2079-8334-2019-4-70-159-163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
42
|
A Dual Role of Heme Oxygenase-1 in Cancer Cells. Int J Mol Sci 2018; 20:ijms20010039. [PMID: 30583467 PMCID: PMC6337503 DOI: 10.3390/ijms20010039] [Citation(s) in RCA: 303] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/18/2018] [Accepted: 12/19/2018] [Indexed: 02/06/2023] Open
Abstract
Heme oxygenase (HO)-1 is known to metabolize heme into biliverdin/bilirubin, carbon monoxide, and ferrous iron, and it has been suggested to demonstrate cytoprotective effects against various stress-related conditions. HO-1 is commonly regarded as a survival molecule, exerting an important role in cancer progression and its inhibition is considered beneficial in a number of cancers. However, increasing studies have shown a dark side of HO-1, in which HO-1 acts as a critical mediator in ferroptosis induction and plays a causative factor for the progression of several diseases. Ferroptosis is a newly identified iron- and lipid peroxidation-dependent cell death. The critical role of HO-1 in heme metabolism makes it an important candidate to mediate protective or detrimental effects via ferroptosis induction. This review summarizes the current understanding on the regulatory mechanisms of HO-1 in ferroptosis. The amount of cellular iron and reactive oxygen species (ROS) is the determinative momentum for the role of HO-1, in which excessive cellular iron and ROS tend to enforce HO-1 from a protective role to a perpetrator. Despite the dark side that is related to cell death, there is a prospective application of HO-1 to mediate ferroptosis for cancer therapy as a chemotherapeutic strategy against tumors.
Collapse
|
43
|
Wang Z, Yang Y, Zhang F, Li M, Chen J, Man H, Jiang W, Zhang R, Gao S, Chen W. A direct, sensitive and efficient method for determination of alpha-fluoro-beta-alanine in urine: Evaluating the influence of magnesium isoglycyrrhizinate on excretion in rat model. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1102-1103:17-22. [PMID: 30366208 DOI: 10.1016/j.jchromb.2018.10.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 10/09/2018] [Accepted: 10/17/2018] [Indexed: 12/11/2022]
Abstract
Alpha-fluoro-beta-alanine (FBAL), the final metabolite of capecitabine, is a toxic compound excreting with urine. Magnesium isoglycyrrhizinate injection is a traditional Chinese medicine prescribed with capecitabine as a hepatoprotective agent. The purposes of this study are to develop an ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) method for direct, efficient and sensitive determination of FBAL in urine and explore the influence of magnesium isoglycyrrhizinate on the excretion of FBAL in rat model. The method development and validation were successfully achieved. The run time was 3 min based on an HILIC column and linear range was 0.02-10.00 μg/mL. The mass detection was completed using electrospray ionization in positive ionization mode with a multiple reaction monitoring mode. A simplified sample pretreatment procedure was performed by direct dilution using 50% acetonitrile aqueous solution with the matrix effect range 48.98%-52.10% and the recovery range 78.68%-83.28%. The intra-day and inter-day precision and accuracy were <11% and within ±6%, and the stability, specificity, carry-over, dilution effect and linearity all conformed to the criterions. This study presented preliminary results that the influence of magnesium isoglycyrrhizinate on the excretion of FBAL was insignificant in rats based on this new developed method.
Collapse
Affiliation(s)
- Zhipeng Wang
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200003, PR China
| | - Yang Yang
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200003, PR China
| | - Feng Zhang
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200003, PR China
| | - Mingming Li
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200003, PR China
| | - Jing Chen
- School of Chemistry and Biology, Yichun College, Yichun City, Jiangxi Province 336000, PR China
| | - Huan Man
- School of Chemistry and Biology, Yichun College, Yichun City, Jiangxi Province 336000, PR China
| | - Wei Jiang
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200003, PR China
| | - Rui Zhang
- School of Chemistry and Biology, Yichun College, Yichun City, Jiangxi Province 336000, PR China
| | - Shouhong Gao
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200003, PR China.
| | - Wansheng Chen
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200003, PR China.
| |
Collapse
|
44
|
Shivange G, Urbanek K, Przanowski P, Perry JSA, Jones J, Haggart R, Kostka C, Patki T, Stelow E, Petrova Y, Llaneza D, Mayo M, Ravichandran KS, Landen CN, Bhatnagar S, Tushir-Singh J. A Single-Agent Dual-Specificity Targeting of FOLR1 and DR5 as an Effective Strategy for Ovarian Cancer. Cancer Cell 2018; 34:331-345.e11. [PMID: 30107179 PMCID: PMC6404966 DOI: 10.1016/j.ccell.2018.07.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 05/07/2018] [Accepted: 07/16/2018] [Indexed: 12/17/2022]
Abstract
Therapeutic antibodies targeting ovarian cancer (OvCa)-enriched receptors have largely been disappointing due to limited tumor-specific antibody-dependent cellular cytotoxicity. Here we report a symbiotic approach that is highly selective and superior compared with investigational clinical antibodies. This bispecific-anchored cytotoxicity activator antibody is rationally designed to instigate "cis" and "trans" cytotoxicity by combining specificities against folate receptor alpha-1 (FOLR1) and death receptor 5 (DR5). Whereas the in vivo agonist DR5 signaling requires FcγRIIB interaction, the FOLR1 anchor functions as a primary clustering point to retain and maintain a high level of tumor-specific apoptosis. The presented proof of concept study strategically makes use of a tumor cell-enriched anchor receptor for agonist death receptor targeting to potentially generate a clinically viable strategy for OvCa.
Collapse
Affiliation(s)
- Gururaj Shivange
- Laboratory of Novel Biologics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; UVA Cancer Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Karol Urbanek
- Laboratory of Novel Biologics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; UVA Cancer Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Piotr Przanowski
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; UVA Cancer Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Justin S A Perry
- Center for Cell Clearance and Department of Microbiology, Immunology, Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - James Jones
- Laboratory of Novel Biologics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Undergraduate Research Program, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Robert Haggart
- Laboratory of Novel Biologics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Undergraduate Research Program, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Christina Kostka
- Laboratory of Novel Biologics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Undergraduate Research Program, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Tejal Patki
- Laboratory of Novel Biologics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Undergraduate Research Program, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Edward Stelow
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Yuliya Petrova
- Department of Obstetrics and Gynecology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; UVA Cancer Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Danielle Llaneza
- Department of Obstetrics and Gynecology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; UVA Cancer Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Marty Mayo
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Kodi S Ravichandran
- Center for Cell Clearance and Department of Microbiology, Immunology, Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Charles N Landen
- Department of Obstetrics and Gynecology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; UVA Cancer Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Sanchita Bhatnagar
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; UVA Cancer Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Jogender Tushir-Singh
- Laboratory of Novel Biologics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; UVA Cancer Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.
| |
Collapse
|
45
|
Vincenzi B, Russo A, Terenzio A, Galvano A, Santini D, Vorini F, Antonelli-Incalzi R, Vespasiani-Gentilucci U, Tonini G. The use of SAMe in chemotherapy-induced liver injury. Crit Rev Oncol Hematol 2018; 130:70-77. [PMID: 30196914 DOI: 10.1016/j.critrevonc.2018.06.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 06/22/2018] [Accepted: 06/25/2018] [Indexed: 02/07/2023] Open
Abstract
Drug-induced liver injury (DILI) remains the most common cause of acute liver failure in the Western world. Chemotherapy is one of the major class of drugs most frequently associated with idiosyncratic DILI. For this reason, patients who receive chemotherapy require careful assessment of liver function prior to treatment to determine which drugs may not be appropriate and which drug doses should be modified. S-adenosylmethionine (SAMe) is an endogenous agent derived from methionine. Its supplementation is effective in the treatment of liver disease, in particular intrahepatic cholestasis (IHC). The target of this review is to analyze the mechanisms of hepatotoxicity of the principal anticancer agents and the role of SAMe in the prevention of this complication.
Collapse
Affiliation(s)
- B Vincenzi
- Medical Oncology Unit, Campus Bio-Medico University, Rome, Italy.
| | - A Russo
- Department of Surgery and Oncology, Section of Medical Oncology, University of Palermo, Italy
| | - A Terenzio
- Medical Oncology Unit, Campus Bio-Medico University, Rome, Italy
| | - A Galvano
- Department of Surgery and Oncology, Section of Medical Oncology, University of Palermo, Italy
| | - D Santini
- Medical Oncology Unit, Campus Bio-Medico University, Rome, Italy
| | - F Vorini
- Interdisciplinary Center for Biomedical Research (CIR), Laboratory of Internal Medicine and Hepatology, Campus Bio-Medico University, Rome, Italy
| | | | - U Vespasiani-Gentilucci
- Interdisciplinary Center for Biomedical Research (CIR), Laboratory of Internal Medicine and Hepatology, Campus Bio-Medico University, Rome, Italy
| | - G Tonini
- Medical Oncology Unit, Campus Bio-Medico University, Rome, Italy
| |
Collapse
|
46
|
Saini N, Bakshi S, Sharma S. In-silico approach for drug induced liver injury prediction: Recent advances. Toxicol Lett 2018; 295:288-295. [PMID: 29981923 DOI: 10.1016/j.toxlet.2018.06.1216] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 06/06/2018] [Accepted: 06/25/2018] [Indexed: 02/07/2023]
Abstract
Drug induced liver injury (DILI) is the prime cause of liver disfunction which may lead to mild non-specific symptoms to more severe signs like hepatitis, cholestasis, cirrhosis and jaundice. Not only the prescription medications, but the consumption of herbs and health supplements have also been reported to cause these adverse reactions resulting into high mortality rates and post marketing withdrawal of drugs. Due to the continuously increasing DILI incidences in recent years, robust prediction methods with high accuracy, specificity and sensitivity are of priority. Bioinformatics is the emerging field of science that has been used in the past few years to explore the mechanisms of DILI. The major emphasis of this review is the recent advances of in silico tools for the diagnostic and therapeutic interventions of DILI. These tools have been developed and widely used in the past few years for the prediction of pathways induced from both hepatotoxic as well as hepatoprotective Chinese drugs and for the identification of DILI specific biomarkers for prognostic purpose. In addition to this, advanced machine learning models have been developed for the classification of drugs into DILI causing and non-DILI causing. Moreover, development of 3 class models over 2 class offers better understanding of multi-class DILI risks and at the same time providing authentic prediction of toxicity during drug designing before clinical trials.
Collapse
Affiliation(s)
- Neha Saini
- Department of Biochemistry, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India.
| | - Shikha Bakshi
- Department of Biochemistry, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India.
| | - Sadhna Sharma
- Department of Biochemistry, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India.
| |
Collapse
|
47
|
Díaz R, Pallarès V, Cano-Garrido O, Serna N, Sánchez-García L, Falgàs A, Pesarrodona M, Unzueta U, Sánchez-Chardi A, Sánchez JM, Casanova I, Vázquez E, Mangues R, Villaverde A. Selective CXCR4 + Cancer Cell Targeting and Potent Antineoplastic Effect by a Nanostructured Version of Recombinant Ricin. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1800665. [PMID: 29845742 DOI: 10.1002/smll.201800665] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 04/24/2018] [Indexed: 05/14/2023]
Abstract
Under the unmet need of efficient tumor-targeting drugs for oncology, a recombinant version of the plant toxin ricin (the modular protein T22-mRTA-H6) is engineered to self-assemble as protein-only, CXCR4-targeted nanoparticles. The soluble version of the construct self-organizes as regular 11 nm planar entities that are highly cytotoxic in cultured CXCR4+ cancer cells upon short time exposure, with a determined IC50 in the nanomolar order of magnitude. The chemical inhibition of CXCR4 binding sites in exposed cells results in a dramatic reduction of the cytotoxic potency, proving the receptor-dependent mechanism of cytotoxicity. The insoluble version of T22-mRTA-H6 is, contrarily, moderately active, indicating that free, nanostructured protein is the optimal drug form. In animal models of acute myeloid leukemia, T22-mRTA-H6 nanoparticles show an impressive and highly selective therapeutic effect, dramatically reducing the leukemia cells affectation of clinically relevant organs. Functionalized T22-mRTA-H6 nanoparticles are then promising prototypes of chemically homogeneous, highly potent antitumor nanostructured toxins for precise oncotherapies based on self-mediated intracellular drug delivery.
Collapse
Affiliation(s)
- Raquel Díaz
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193, Barcelona, Spain
| | - Victor Pallarès
- Biomedical Research Institute Sant Pau (IIB-Sant Pau) and Josep Carreras Research Institute, Hospital de la Santa Creu i Sant Pau, 08025, Barcelona, Spain
| | - Olivia Cano-Garrido
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193, Barcelona, Spain
| | - Naroa Serna
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193, Barcelona, Spain
| | - Laura Sánchez-García
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193, Barcelona, Spain
| | - Aïda Falgàs
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193, Barcelona, Spain
- Biomedical Research Institute Sant Pau (IIB-Sant Pau) and Josep Carreras Research Institute, Hospital de la Santa Creu i Sant Pau, 08025, Barcelona, Spain
| | - Mireia Pesarrodona
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193, Barcelona, Spain
| | - Ugutz Unzueta
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193, Barcelona, Spain
- Biomedical Research Institute Sant Pau (IIB-Sant Pau) and Josep Carreras Research Institute, Hospital de la Santa Creu i Sant Pau, 08025, Barcelona, Spain
| | | | - Julieta M Sánchez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
- Instituto de Investigaciones Biológicas y Tecnológicas (IIBYT) (CONICET-Universidad Nacional de Córdoba), ICTA and Cátedra de Química Biológica, Departamento de Química, FCEFyN, UNC, Av. Velez Sarsfield 1611, X 5016GCA, Córdoba, Argentina
| | - Isolda Casanova
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193, Barcelona, Spain
- Biomedical Research Institute Sant Pau (IIB-Sant Pau) and Josep Carreras Research Institute, Hospital de la Santa Creu i Sant Pau, 08025, Barcelona, Spain
| | - Esther Vázquez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193, Barcelona, Spain
| | - Ramón Mangues
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193, Barcelona, Spain
- Biomedical Research Institute Sant Pau (IIB-Sant Pau) and Josep Carreras Research Institute, Hospital de la Santa Creu i Sant Pau, 08025, Barcelona, Spain
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193, Barcelona, Spain
| |
Collapse
|
48
|
Yeung KS, Hernandez M, Mao JJ, Haviland I, Gubili J. Herbal medicine for depression and anxiety: A systematic review with assessment of potential psycho-oncologic relevance. Phytother Res 2018; 32:865-891. [PMID: 29464801 DOI: 10.1002/ptr.6033] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 12/08/2017] [Accepted: 12/21/2017] [Indexed: 12/14/2022]
Abstract
Anxiety and depression are prevalent among cancer patients, with significant negative impact. Many patients prefer herbs for symptom relief to conventional medications which have limited efficacy/side effects. We identified single-herb medicines that may warrant further study in cancer patients. Our search included PubMed, Allied and Complementary Medicine, Embase, and Cochrane databases, selecting only single-herb randomized controlled trials between 1996 and 2016 in any population for data extraction, excluding herbs with known potential for interactions with cancer treatments. One hundred articles involving 38 botanicals met our criteria. Among herbs most studied (≥6 randomized controlled trials each), lavender, passionflower, and saffron produced benefits comparable to standard anxiolytics and antidepressants. Black cohosh, chamomile, and chasteberry are also promising. Anxiety or depressive symptoms were measured in all studies, but not always as primary endpoints. Overall, 45% of studies reported positive findings with fewer adverse effects compared with conventional medications. Based on available data, black cohosh, chamomile, chasteberry, lavender, passionflower, and saffron appear useful in mitigating anxiety or depression with favorable risk-benefit profiles compared to standard treatments. These may benefit cancer patients by minimizing medication load and accompanying side effects. However, well-designed larger clinical trials are needed before these herbs can be recommended and to further assess their psycho-oncologic relevance.
Collapse
Affiliation(s)
- K Simon Yeung
- Integrative Medicine Service, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Marisol Hernandez
- Information Systems/Medical Library, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Jun J Mao
- Integrative Medicine Service, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Ingrid Haviland
- Integrative Medicine Service, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Jyothirmai Gubili
- Integrative Medicine Service, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| |
Collapse
|
49
|
Sánchez-García L, Serna N, Álamo P, Sala R, Céspedes MV, Roldan M, Sánchez-Chardi A, Unzueta U, Casanova I, Mangues R, Vázquez E, Villaverde A. Self-assembling toxin-based nanoparticles as self-delivered antitumoral drugs. J Control Release 2018; 274:81-92. [PMID: 29408658 DOI: 10.1016/j.jconrel.2018.01.031] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 01/21/2018] [Accepted: 01/29/2018] [Indexed: 02/07/2023]
Abstract
Loading capacity and drug leakage from vehicles during circulation in blood is a major concern when developing nanoparticle-based cell-targeted cytotoxics. To circumvent this potential issue it would be convenient the engineering of drugs as self-delivered nanoscale entities, devoid of any heterologous carriers. In this context, we have here engineered potent protein toxins, namely segments of the diphtheria toxin and the Pseudomonas aeruginosa exotoxin as self-assembling, self-delivered therapeutic materials targeted to CXCR4+ cancer stem cells. The systemic administration of both nanostructured drugs in a colorectal cancer xenograft mouse model promotes efficient and specific local destruction of target tumor tissues and a significant reduction of the tumor volume. This observation strongly supports the concept of intrinsically functional protein nanoparticles, which having a dual role as drug and carrier, are designed to be administered without the assistance of heterologous vehicles.
Collapse
Affiliation(s)
- Laura Sánchez-García
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Naroa Serna
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Patricia Álamo
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain; Institut d'Investigacions Biomèdiques Sant Pau, Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain; Josep Carreras Research Institute, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Rita Sala
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain; Institut d'Investigacions Biomèdiques Sant Pau, Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain
| | - María Virtudes Céspedes
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain; Institut d'Investigacions Biomèdiques Sant Pau, Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain
| | - Mònica Roldan
- Unitat de Microscòpia Confocal, Servei d'Anatomia Patològica, Institut Pediàtric de Malalties Rares (IPER), Hospital Sant Joan de Déu, Edifici Consultes Externes, Passeig Sant Joan de Déu, 2, Planta 0, 08950, Esplugues de Llobregat, Barcelona, Spain
| | | | - Ugutz Unzueta
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain; Institut d'Investigacions Biomèdiques Sant Pau, Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain
| | - Isolda Casanova
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain; Institut d'Investigacions Biomèdiques Sant Pau, Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain; Josep Carreras Research Institute, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Ramón Mangues
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain; Institut d'Investigacions Biomèdiques Sant Pau, Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain; Josep Carreras Research Institute, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.
| | - Esther Vázquez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain.
| |
Collapse
|
50
|
Wu Z, Zhang Y, Song T, Song Q, Zhang Y, Zhang X, Han X, Zhang J, Chu L. Magnesium isoglycyrrhizinate ameliorates doxorubicin-induced acute cardiac and hepatic toxicity via anti-oxidant and anti-apoptotic mechanisms in mice. Exp Ther Med 2017; 15:1005-1012. [PMID: 29399108 DOI: 10.3892/etm.2017.5470] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 09/19/2017] [Indexed: 12/27/2022] Open
Abstract
The present study investigated the effects and potential mechanisms of action of magnesium isoglycyrrhizinate (MgIG) in doxorubicin (DOX)-treated mice. Histopathological analysis and western blot analysis were conducted in the liver and heart tissues and biochemical analysis of the serum was performed. The results revealed that MgIG (10, 20 and 40 mg/kg/day) could protect the structure and functions of the liver and heart by inhibiting the activities of the myocardial enzymes creatine kinase (CK), CK-MB and lactate dehydrogenase and the hepatic-specific enzymes aspirate aminotransferase and alanine aminotransferase, increasing the activities of the antioxidants superoxide dismutase and glutathione peroxidase, and inhibiting cellular apoptosis induced by DOX (30 mg/kg). These results demonstrate that inhibiting lipid peroxidation and reducing myocardial and hepatocyte apoptosis may be one of the mechanisms by which MgIG exhibits hepatoprotective and cardioprotective effects in DOX-treated mice.
Collapse
Affiliation(s)
- Zhonglin Wu
- Department of Radiology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Yuanyuan Zhang
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, P.R. China
| | - Tao Song
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Qiongtao Song
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Ying Zhang
- Department of Pathology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, P.R. China
| | - Xuan Zhang
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, P.R. China
| | - Xue Han
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, P.R. China
| | - Jianping Zhang
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, P.R. China
| | - Li Chu
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, P.R. China.,Department of Pharmacology, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| |
Collapse
|