1
|
Huang KM, Chen HB, Lin JR. Potential of traditional Chinese medicine lyophilized powder of Poecilobdella manillensis in the treatment of hyperuricemia. World J Clin Cases 2024; 12:6939-6943. [DOI: 10.12998/wjcc.v12.i36.6939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/23/2024] [Accepted: 10/15/2024] [Indexed: 10/31/2024] Open
Abstract
Traditional Chinese medicine has a long and illustrious history, and with the development of modern science and technology, the research and application of traditional Chinese medicines have continued to progress significantly. Many traditional Chinese medicinal herbs have undergone scientific validation, reinvigorating with new life and vitality, and contributing unique strengths to the advancement of human health. Recently, the discovery that leech total protein extracted from Poecilobdella manillensis lyophilized powder reduces blood uric acid (UA) levels by inhibiting the activity of xanthine oxidase to decrease UA synthesis and promotes UA excretion by regulating different UA transporters in the kidney and intestine has undoubtedly injected new vitality and hope into this field of research. The purpose of this editorial is to comment on this study, explore its strengths and weaknesses, and there is a hope to treat a range of metabolic-related syndromes, including hyperuricemia, by targeting the gut microbiota.
Collapse
Affiliation(s)
- Kang-Ming Huang
- Department of Gastroenterology, Sanming First Affiliated Hospital of Fujian Medical University, Sanming 365000, Fujian Province, China
| | - Hong-Bin Chen
- Department of Gastroenterology, Sanming First Affiliated Hospital of Fujian Medical University, Sanming 365000, Fujian Province, China
| | - Jin-Rong Lin
- Department of Ultrasound imaging, The First Affiliated Hospital of Xiamen University, Xiamen 361000, Fujian Province, China
| |
Collapse
|
2
|
Girigoswami K, Arunkumar R, Girigoswami A. Management of hypertension addressing hyperuricaemia: introduction of nano-based approaches. Ann Med 2024; 56:2352022. [PMID: 38753584 PMCID: PMC11100442 DOI: 10.1080/07853890.2024.2352022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/22/2024] [Indexed: 05/18/2024] Open
Abstract
Uric acid (UA) levels in blood serum have been associated with hypertension, indicating a potential causal relationship between high serum UA levels and the progression of hypertension. Therefore, the reduction of serum UA level is considered a potential strategy for lowering and mitigating blood pressure. If an individual is at risk of developing or already manifesting elevated blood pressure, this intervention could be an integral part of a comprehensive treatment plan. By addressing hyperuricaemia, practitioners may subsidize the optimization of blood pressure regulation, which illustrates the importance of addressing UA levels as a valuable strategy within the broader context of hypertension management. In this analysis, we outlined the operational principles of effective xanthine oxidase inhibitors for the treatment of hyperuricaemia and hypertension, along with an exploration of the contribution of nanotechnology to this field.
Collapse
Affiliation(s)
- Koyeli Girigoswami
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital & Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Chennai, India
| | - Radhakrishnan Arunkumar
- Department of Pharmacology, Chettinad Hospital & Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Chennai, India
| | - Agnishwar Girigoswami
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital & Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Chennai, India
| |
Collapse
|
3
|
Zhao Z, Chen X, Luo J, Chen M, Luo J, Chen J, Li Z, Wan S, Wu T, Zhang J, Pang J, Tian Y. Design, synthesis and bioactivity evaluation of isobavachin derivatives as hURAT1 inhibitors for hyperuricemia agents. Eur J Med Chem 2024; 277:116753. [PMID: 39142150 DOI: 10.1016/j.ejmech.2024.116753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/26/2024] [Accepted: 08/04/2024] [Indexed: 08/16/2024]
Abstract
Previously, we reported a novel natural scaffold compound, isobavachin (4',7-dihydroxy-8-prenylflavanone), as a highly potent hURAT1 inhibitor with anti-hyperuricemia effect. However, the structure-activity relationship remains unknown and the poor pharmacokinetic (PK) parameters may limit further clinical use. Herein, a series of isobavachin derivatives were rationally designed and synthesized to explore the structure-activity relationship of isobavachin target hURAT1, and to improve their PK properties. Among them, compounds 15d, 15f, 15g, 27b and 27d showed promising hURAT1 inhibitory activities, which could comparable to that of isobavachin (IC50 = 0.24 μM). In addition, 27b also inhibited another urate reabsorption transporter GLUT9 with an IC50 of 4.47 μM. Compound 27b displayed greater urate-lowering activity in a hyperuricemia mouse model at a dose of 10 mg/kg compared to isobavachin and lesinurad. Overall, our results suggest that compound 27b represents a novel, safe hURAT1 and GLUT9 dual-target inhibitor with excellent drug availability and is worthy of further investigation as an anti-hyperuricemia agent.
Collapse
Affiliation(s)
- Zean Zhao
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, China; Good Clinical Practice Development, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Xinhua Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, China
| | - Jiajun Luo
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, China
| | - Mengyu Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, China
| | - Jian Luo
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, China
| | - Jianjun Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, China
| | - Zhonghuang Li
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, China
| | - Shanhe Wan
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, China
| | - Ting Wu
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, China
| | - Jiajie Zhang
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, China.
| | - Jianxin Pang
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, China; Good Clinical Practice Development, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.
| | - Yuanxin Tian
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, China; Department of Pediatric Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
4
|
Zhao F, Tie N, Kwok LY, Ma T, Wang J, Man D, Yuan X, Li H, Pang L, Shi H, Ren S, Yu Z, Shen X, Li H, Zhang H. Baseline gut microbiome as a predictive biomarker of response to probiotic adjuvant treatment in gout management. Pharmacol Res 2024; 209:107445. [PMID: 39396767 DOI: 10.1016/j.phrs.2024.107445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 09/30/2024] [Accepted: 09/30/2024] [Indexed: 10/15/2024]
Abstract
Gout is characterized by dysregulation of uric acid (UA) metabolism, and the gut microbiota may serve as a regulatory target. This two-month randomized, double-blind, placebo-controlled trial aimed to investigate the additional benefits of coadministering Probio-X alongside febuxostat. A total of 160 patients with gout were randomly assigned to either the probiotic group (n = 120; Probio-X [1 ×1011 CFU/day] with febuxostat) or the placebo group (n = 40; placebo material with febuxostat). Coadministration of Probio-X significantly decreased serum UA levels and the rate of acute gout attacks (P < 0.05). Based on achieving a target sUA level (360 μmol/L) after the intervention, the probiotic group was further subdivided into probiotic-responsive (ProA; n = 54) and probiotic-unresponsive (ProB; n = 66) subgroups. Post-intervention clinical indicators, metagenomic, and metabolomic changes in the ProB and placebo groups were similar, but differed from those in the ProA group, which exhibited significantly lower levels of acute gout attack, gout impact score, serum indicators (UA, XOD, hypoxanthine, and IL-1β), and fecal gene abundances of UA-producing pathways (KEGG orthologs of K13479 and K01487; gut metabolic modules for formate conversion and lactose and galactose degradation). Additionally, the ProA group showed significantly higher levels (P < 0.05) of gut SCFAs-producing bacteria and UA-related metabolites (xanthine, hypoxanthine, bile acids) after the intervention. Finally, we established a gout metagenomic classifier to predict probiotic responsiveness based on subjects' baseline gut microbiota composition. Our results indicate that probiotic-driven therapeutic responses are highly individual, with the probiotic-responsive cohort benefitting significantly from probiotic coadministration.
Collapse
Affiliation(s)
- Feiyan Zhao
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Ning Tie
- Department of Rheumatology and Immunology, The Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia Key Laboratory for Pathogenesis and Diagnosis of Rheumatic and Autoimmune Diseases, Hohhot, Inner Mongolia, China
| | - Lai-Yu Kwok
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Teng Ma
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Jing Wang
- Department of Rheumatology and Immunology, The Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia Key Laboratory for Pathogenesis and Diagnosis of Rheumatic and Autoimmune Diseases, Hohhot, Inner Mongolia, China
| | - Dafu Man
- Department of Rheumatology and Immunology, The Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia Key Laboratory for Pathogenesis and Diagnosis of Rheumatic and Autoimmune Diseases, Hohhot, Inner Mongolia, China
| | - Xiangzheng Yuan
- Physical examination center, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Huiyun Li
- Department of Rheumatology, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia, China
| | - Lixia Pang
- Department of Rheumatology and Immunology, Hulunbuir People's Hospital, Hohhot, Inner Mongolia, China
| | - Hui Shi
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Inner Mongolia Medical University, Baotou, Inner Mongolia, China
| | - Shuiming Ren
- Department of Rheumatology and Immunology, Ordos School of Clinical Medicine, Inner Mongolia Medical University, Ordos, Inner Mongolia, China
| | - Zhongjie Yu
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Xin Shen
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Hongbin Li
- Department of Rheumatology and Immunology, The Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia Key Laboratory for Pathogenesis and Diagnosis of Rheumatic and Autoimmune Diseases, Hohhot, Inner Mongolia, China.
| | - Heping Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China.
| |
Collapse
|
5
|
Yi H, Yu H, Wang L, Wang Y, Ouyang C, Keshta BE. Microneedle transdermal drug delivery as a candidate for the treatment of gouty arthritis: Material structure, design strategies and prospects. Acta Biomater 2024; 187:20-50. [PMID: 39182801 DOI: 10.1016/j.actbio.2024.08.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/01/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
Gouty arthritis (GA) is caused by monosodium urate (MSU) crystals deposition. GA is difficult to cure because of its complex disease mechanism and the tendency to reoccur. GA patients require long-term uric acid-lowering and anti-inflammatory treatments. In the past ten years, as a painless, convenient and well-tolerated new drug transdermal delivery method, microneedles (MNs) administration has been continuously developed, which can realize various drug release modes to deal with various complex diseases. Compared with the traditional administration methods (oral and injection), MNs are more conducive to the long-term independent treatment of GA patients because of their safe, efficient and controllable drug delivery ability. In this review, the pathological mechanism of GA and common therapeutic drugs for GA are summarized. After that, MNs drug delivery mechanisms were summarized: dissolution release mechanism, swelling release mechanism and channel-assisted release mechanism. According to drug delivery patterns of MNs, the mechanisms and applications of rapid-release MNs, long-acting MNs, intelligent-release MNs and multiple-release MNs were reviewed. Additionally, existing problems and future trends of MNs in the treatment of GA were also discussed. STATEMENT OF SIGNIFICANCE: Gout is an arthritis caused by metabolic disease "hyperuricemia". Epidemiological studies show that the number of gouty patients is increasing rapidly worldwide. Due to the complex disease mechanism and recurrent nature of gout, gouty patients require long-term therapy. However, traditional drug delivery modes (oral and injectable) have poor adherence, low drug utilization, and lack of local localized targeting. They may lead to adverse effects such as rashes and gastrointestinal reactions. As a painless, convenient and well-tolerated new drug transdermal delivery method, microneedles have been continuously developed, which can realize various drug release modes to deal with gouty arthritis. In this review, the material structure, design strategy and future outlook of microneedles for treating gouty arthritis will be reviewed.
Collapse
Affiliation(s)
- Hong Yi
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China
| | - Haojie Yu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China; Zhejiang-Russia Joint Laboratory of Photo-Electron-Megnetic Functional Materials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China.
| | - Li Wang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China; Zhejiang-Russia Joint Laboratory of Photo-Electron-Megnetic Functional Materials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China.
| | - Yu Wang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China
| | - Chenguang Ouyang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China
| | - Basem E Keshta
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China
| |
Collapse
|
6
|
Li KW, Raza F, Jiang LD, Su J, Qiu MF. Clerodendranthus Spicatus: A review of its active compounds, mechanisms of action, and clinical studies in urinary diseases. Fitoterapia 2024; 177:106082. [PMID: 38901804 DOI: 10.1016/j.fitote.2024.106082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/09/2024] [Accepted: 06/16/2024] [Indexed: 06/22/2024]
Abstract
Clerodendranthus spicatus (Thunb.) C.Y.Wu (CS) is a widely studied plant that shows potential in treating urinary diseases. Previous studies have focused on its chemical composition, pharmacological effects, and clinical applications. This review aims to provide a comprehensive summary and evaluation of the existing literature on CS. It also suggests future research directions to increase our understanding of its medicinal value. 129 pieces of literature were selected from several databases, including PubMed, Web of Science, China National Knowledge Infrastructure (CNKI), Wan-fang Database, and Google Scholar, and were analyzed. Forty-five active compounds of CS have pharmacological effects such as lowering uric acid, anti-inflammation, anti-oxidation, and kidney protection. The potential mechanisms of these effects may be related to inhibiting transforming growth factor β1 (TGF-β1) activation, reducing inflammatory factors such as IL-8, IL-1β, TNF-α, PGE2, IFN-γ, and IL-6 levels, suppressing the activation of NF-κB, JAK/STAT pathway, enhancing the clearance of ROS, MDA DPPH·, and O2 ̇ -, and regulating the expression of apoptosis-related pathways and proteins. This paper also discusses the quality control of CS and its efficacy and safety in treating urinary diseases. The study concludes that CS has a high potential for treating urinary diseases. Future studies should focus on observing the metabolic changes of CS active compounds in vivo and investigating the effects of CS on key signaling pathways. Additionally, more standardized and reasonable clinical studies and safety evaluation experiments should be conducted to obtain more clinical data.
Collapse
Affiliation(s)
- Kun-Wei Li
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Faisal Raza
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Liang-di Jiang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jing Su
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ming-Feng Qiu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
7
|
Du L, Zong Y, Li H, Wang Q, Xie L, Yang B, Pang Y, Zhang C, Zhong Z, Gao J. Hyperuricemia and its related diseases: mechanisms and advances in therapy. Signal Transduct Target Ther 2024; 9:212. [PMID: 39191722 DOI: 10.1038/s41392-024-01916-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 06/08/2024] [Accepted: 06/27/2024] [Indexed: 08/29/2024] Open
Abstract
Hyperuricemia, characterized by elevated levels of serum uric acid (SUA), is linked to a spectrum of commodities such as gout, cardiovascular diseases, renal disorders, metabolic syndrome, and diabetes, etc. Significantly impairing the quality of life for those affected, the prevalence of hyperuricemia is an upward trend globally, especially in most developed countries. UA possesses a multifaceted role, such as antioxidant, pro-oxidative, pro-inflammatory, nitric oxide modulating, anti-aging, and immune effects, which are significant in both physiological and pathological contexts. The equilibrium of circulating urate levels hinges on the interplay between production and excretion, a delicate balance orchestrated by urate transporter functions across various epithelial tissues and cell types. While existing research has identified hyperuricemia involvement in numerous biological processes and signaling pathways, the precise mechanisms connecting elevated UA levels to disease etiology remain to be fully elucidated. In addition, the influence of genetic susceptibilities and environmental determinants on hyperuricemia calls for a detailed and nuanced examination. This review compiles data from global epidemiological studies and clinical practices, exploring the physiological processes and the genetic foundations of urate transporters in depth. Furthermore, we uncover the complex mechanisms by which the UA induced inflammation influences metabolic processes in individuals with hyperuricemia and the association with its relative disease, offering a foundation for innovative therapeutic approaches and advanced pharmacological strategies.
Collapse
Grants
- 82002339, 81820108020 National Natural Science Foundation of China (National Science Foundation of China)
- 82002339, 81820108020 National Natural Science Foundation of China (National Science Foundation of China)
- 82002339, 81820108020 National Natural Science Foundation of China (National Science Foundation of China)
- 82002339, 81820108020 National Natural Science Foundation of China (National Science Foundation of China)
- 82002339, 81820108020 National Natural Science Foundation of China (National Science Foundation of China)
- 82002339, 81820108020 National Natural Science Foundation of China (National Science Foundation of China)
- 82002339, 81820108020 National Natural Science Foundation of China (National Science Foundation of China)
- 82002339, 81820108020 National Natural Science Foundation of China (National Science Foundation of China)
- 82002339, 81820108020 National Natural Science Foundation of China (National Science Foundation of China)
- 82002339, 81820108020 National Natural Science Foundation of China (National Science Foundation of China)
Collapse
Affiliation(s)
- Lin Du
- Sports Medicine Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
- Institute of Sports Medicine, Shantou University Medical College, Shantou, 515041, China
| | - Yao Zong
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, WA, 6009, Australia
| | - Haorui Li
- Sports Medicine Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
- Institute of Sports Medicine, Shantou University Medical College, Shantou, 515041, China
| | - Qiyue Wang
- Sports Medicine Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
- Institute of Sports Medicine, Shantou University Medical College, Shantou, 515041, China
| | - Lei Xie
- Sports Medicine Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
- Institute of Sports Medicine, Shantou University Medical College, Shantou, 515041, China
| | - Bo Yang
- Sports Medicine Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
- Institute of Sports Medicine, Shantou University Medical College, Shantou, 515041, China
| | - Yidan Pang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Changqing Zhang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Zhigang Zhong
- Sports Medicine Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China.
- Institute of Sports Medicine, Shantou University Medical College, Shantou, 515041, China.
| | - Junjie Gao
- Sports Medicine Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China.
- Institute of Sports Medicine, Shantou University Medical College, Shantou, 515041, China.
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| |
Collapse
|
8
|
Song K, Kong X, Yu Z, Xiao H, Ren Y. Research progress on bariatric surgery for hyperuricemia. BMC Surg 2024; 24:235. [PMID: 39169366 PMCID: PMC11337558 DOI: 10.1186/s12893-024-02525-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/06/2024] [Indexed: 08/23/2024] Open
Abstract
Hyperuricemia is closely linked to obesity. As lifestyles and dietary patterns evolve, the prevalence of hyperuricemia has been on the rise. Bariatric surgery, an efficacious intervention for morbid obesity and its associated metabolic disorders, not only manages the weight of patients with severe obesity but also exerts beneficial therapeutic effects on hyperuricemia and gout. Moreover, it demonstrates substantial efficacy against other obesity-related metabolic conditions. However, the dramatic fluctuations in serum uric acid levels and acute gouty attacks in the immediate postoperative period are issues that should not be overlooked, and effective preventative strategies for some related adverse complications are still underexplored. This review discusses and reviews the advancements in the treatment of obese patients with hyperuricemia through bariatric surgery. By reviewing pertinent literature, it summarizes the short-term and long-term therapeutic outcomes of bariatric surgery for hyperuricemia, as well as common adverse reactions. Furthermore, by discussing preoperative and postoperative interventional measures and influential factors, this review aims to provide novel perspectives for the clinical management of hyperuricemia and offer insights for the prevention of related complications.
Collapse
Affiliation(s)
- Ke Song
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan Province, China
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, Sichuan Province, China
| | - Xiangxin Kong
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan Province, China
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, Sichuan Province, China
| | - Zhenghang Yu
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan Province, China
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, Sichuan Province, China
| | - He Xiao
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, Sichuan Province, China
| | - Yixing Ren
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan Province, China.
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, Sichuan Province, China.
- General Surgery, Chengdu XinHua Hospital Affiliated to North Sichuan Medical College, Chengdu, 610000, Sichuan Province, China.
| |
Collapse
|
9
|
Massoud G, Parish M, Hazimeh D, Moukarzel P, Singh B, Cayton Vaught KC, Segars J, Islam MS. Unlocking the potential of tranilast: Targeting fibrotic signaling pathways for therapeutic benefit. Int Immunopharmacol 2024; 137:112423. [PMID: 38861914 PMCID: PMC11245748 DOI: 10.1016/j.intimp.2024.112423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 06/01/2024] [Accepted: 06/03/2024] [Indexed: 06/13/2024]
Abstract
Fibrosis is the excessive deposition of extracellular matrix in an organ or tissue that results from an impaired tissue repair in response to tissue injury or chronic inflammation. The progressive nature of fibrotic diseases and limited treatment options represent significant healthcare challenges. Despite the substantial progress in understanding the mechanisms of fibrosis, a gap persists translating this knowledge into effective therapeutics. Here, we discuss the critical mediators involved in fibrosis and the role of tranilast as a potential antifibrotic drug to treat fibrotic conditions. Tranilast, an antiallergy drug, is a derivative of tryptophan and has been studied for its role in various fibrotic diseases. These include scleroderma, keloid and hypertrophic scars, liver fibrosis, renal fibrosis, cardiac fibrosis, pulmonary fibrosis, and uterine fibroids. Tranilast exerts antifibrotic effects by suppressing fibrotic pathways, including TGF-β, and MPAK. Because it disrupts fibrotic pathways and has demonstrated beneficial effects against keloid and hypertrophic scars, tranilast could be used to treat other conditions characterized by fibrosis.
Collapse
Affiliation(s)
- Gaelle Massoud
- Department of Gynecology and Obstetrics, Division of Reproductive Sciences & Women's Health Research, Johns Hopkins Medicine, Baltimore, MD 21205, USA
| | - Maclaine Parish
- Department of Gynecology and Obstetrics, Division of Reproductive Sciences & Women's Health Research, Johns Hopkins Medicine, Baltimore, MD 21205, USA
| | - Dana Hazimeh
- Department of Gynecology and Obstetrics, Division of Reproductive Sciences & Women's Health Research, Johns Hopkins Medicine, Baltimore, MD 21205, USA
| | - Pamela Moukarzel
- American University of Beirut Medical Center, Faculty of Medicine, Riad El Solh, Beirut, Lebanon
| | - Bhuchitra Singh
- Department of Gynecology and Obstetrics, Division of Reproductive Sciences & Women's Health Research, Johns Hopkins Medicine, Baltimore, MD 21205, USA
| | - Kamaria C Cayton Vaught
- Department of Gynecology and Obstetrics, Division of Reproductive Sciences & Women's Health Research, Johns Hopkins Medicine, Baltimore, MD 21205, USA
| | - James Segars
- Department of Gynecology and Obstetrics, Division of Reproductive Sciences & Women's Health Research, Johns Hopkins Medicine, Baltimore, MD 21205, USA.
| | - Md Soriful Islam
- Department of Gynecology and Obstetrics, Division of Reproductive Sciences & Women's Health Research, Johns Hopkins Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
10
|
Liu X, Liang XQ, Lu TC, Feng Z, Zhang M, Liao NQ, Zhang FL, Wang B, Wang LS. Leech Poecilobdella manillensis protein extract ameliorated hyperuricemia by restoring gut microbiota dysregulation and affecting serum metabolites. World J Gastroenterol 2024; 30:3488-3510. [PMID: 39156502 PMCID: PMC11326090 DOI: 10.3748/wjg.v30.i29.3488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/20/2024] [Accepted: 07/19/2024] [Indexed: 07/29/2024] Open
Abstract
BACKGROUND Hyperuricemia (HUA) is a public health concern that needs to be solved urgently. The lyophilized powder of Poecilobdella manillensis has been shown to significantly alleviate HUA; however, its underlying metabolic regulation remains unclear. AIM To explore the underlying mechanisms of Poecilobdella manillensis in HUA based on modulation of the gut microbiota and host metabolism. METHODS A mouse model of rapid HUA was established using a high-purine diet and potassium oxonate injections. The mice received oral drugs or saline. Additionally, 16S rRNA sequencing and ultra-high performance liquid chromatography with quadrupole time-of-flight mass spectrometry-based untargeted metabolomics were performed to identify changes in the microbiome and host metabolome, respectively. The levels of uric acid transporters and epithelial tight junction proteins in the renal and intestinal tissues were analyzed using an enzyme-linked immunosorbent assay. RESULTS The protein extract of Poecilobdella manillensis lyophilized powder (49 mg/kg) showed an enhanced anti-trioxypurine ability than that of allopurinol (5 mg/kg) (P < 0.05). A total of nine bacterial genera were identified to be closely related to the anti-trioxypurine activity of Poecilobdella manillensis powder, which included the genera of Prevotella, Delftia, Dialister, Akkermansia, Lactococcus, Escherichia_Shigella, Enterococcus, and Bacteroides. Furthermore, 22 metabolites in the serum were found to be closely related to the anti-trioxypurine activity of Poecilobdella manillensis powder, which correlated to the Kyoto Encyclopedia of Genes and Genomes pathways of cysteine and methionine metabolism, sphingolipid metabolism, galactose metabolism, and phenylalanine, tyrosine, and tryptophan biosynthesis. Correlation analysis found that changes in the gut microbiota were significantly related to these metabolites. CONCLUSION The proteins in Poecilobdella manillensis powder were effective for HUA. Mechanistically, they are associated with improvements in gut microbiota dysbiosis and the regulation of sphingolipid and galactose metabolism.
Collapse
Affiliation(s)
- Xia Liu
- Medical College, Guangxi University, Nanning 530004, Guangxi Zhuang Autonomous Region, China
- Department of Traditional Chinese Medicine, HIV/AIDS Clinical Treatment Center of Guangxi (Nanning), The Fourth People’s Hospital of Nanning, Nanning 530023, Guangxi Zhuang Autonomous Region, China
| | - Xing-Qiu Liang
- Department of Science and Technology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning 530011, Guangxi Zhuang Autonomous Region, China
| | - Tian-Cai Lu
- General Manager’s Office, Guangxi Fuxinyi Biological Technology Co. Ltd., Pingnan 537300, Guangxi Zhuang Autonomous Region, China
| | - Zhe Feng
- Department of Joint and Sports Medicine, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning 530011, Guangxi Zhuang Autonomous Region, China
| | - Min Zhang
- Department of Gerontology, Nanning Social Welfare Hospital, Nanning 530004, Guangxi Zhuang Autonomous Region, China
| | - Nan-Qing Liao
- Medical College, Guangxi University, Nanning 530004, Guangxi Zhuang Autonomous Region, China
| | - Feng-Lian Zhang
- Medical College, Guangxi University, Nanning 530004, Guangxi Zhuang Autonomous Region, China
| | - Bo Wang
- Medical College, Guangxi University, Nanning 530004, Guangxi Zhuang Autonomous Region, China
| | - Li-Sheng Wang
- Medical College, Guangxi University, Nanning 530004, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
11
|
Lin JH, Lin CH, Kuo YW, Liao CA, Chen JF, Tsai SY, Li CM, Hsu YC, Huang YY, Hsia KC, Yeh YT, Ho HH. Probiotic Lactobacillus fermentum TSF331, Lactobacillus reuteri TSR332, and Lactobacillus plantarum TSP05 improved liver function and uric acid management-A pilot study. PLoS One 2024; 19:e0307181. [PMID: 39046973 PMCID: PMC11268587 DOI: 10.1371/journal.pone.0307181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/30/2024] [Indexed: 07/27/2024] Open
Abstract
Metabolic-associated fatty liver disease (MAFLD) is predominantly associated with metabolic disturbances representing aberrant liver function and increased uric acid (UA) levels. Growing evidences have suggested a close relationship between metabolic disturbances and the gut microbiota. A placebo-controlled, double-blinded, randomized clinical trial was therefore conducted to explore the impacts of daily supplements with various combinations of the probiotics, Lactobacillus fermentum TSF331, Lactobacillus reuteri TSR332, and Lactobacillus plantarum TSP05 with a focus on liver function and serum UA levels. Test subjects with abnormal levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), and UA were recruited and randomly allocated into six groups. Eighty-two participants successfully completed the 60-day intervention without any dropouts or occurrence of adverse events. The serum AST, ALT, and UA levels were significantly reduced in all treatment groups (P < 0.05). The fecal microbiota analysis revealed the intervention led to an increase in the population of commensal bacteria and a decrease in pathobiont bacteria, especially Bilophila wadsworthia. The in vitro study indicated the probiotic treatments reduced lipid accumulation and inflammatory factor expressions in HepG2 cells, and also promoted UA excretion in Caco-2 cells. The supplementation of multi-strain probiotics (TSF331, TSR332, and TSP05) together can improve liver function and UA management and may have good potential in treating asymptomatic MAFLD. Trial registration. The trial was registered in the US Library of Medicine (clinicaltrials.gov) with the number NCT06183801 on December 28, 2023.
Collapse
Affiliation(s)
- Jia-Hung Lin
- Functional R&D Department, Research and Design Center, Glac Biotech Co., Ltd., Tainan City, Taiwan
| | - Chi-Huei Lin
- Functional R&D Department, Research and Design Center, Glac Biotech Co., Ltd., Tainan City, Taiwan
| | - Yi-Wei Kuo
- Functional R&D Department, Research and Design Center, Glac Biotech Co., Ltd., Tainan City, Taiwan
| | - Chorng-An Liao
- Aging and Disease Prevention Research Center, Fooyin University, Kaohsiung City, Taiwan
| | - Jui-Fen Chen
- Research Product Department, Research and Design Center, Glac Biotech Co., Ltd., Tainan City, Taiwan
| | - Shin-Yu Tsai
- Research Product Department, Research and Design Center, Glac Biotech Co., Ltd., Tainan City, Taiwan
| | - Ching-Min Li
- Research Product Department, Research and Design Center, Glac Biotech Co., Ltd., Tainan City, Taiwan
| | - Yu-Chieh Hsu
- Research Product Department, Research and Design Center, Glac Biotech Co., Ltd., Tainan City, Taiwan
| | - Yen-Yu Huang
- Research Product Department, Research and Design Center, Glac Biotech Co., Ltd., Tainan City, Taiwan
| | - Ko-Chiang Hsia
- Research Product Department, Research and Design Center, Glac Biotech Co., Ltd., Tainan City, Taiwan
| | - Yao-Tsung Yeh
- Aging and Disease Prevention Research Center, Fooyin University, Kaohsiung City, Taiwan
- Department of Medical Laboratory Sciences and Biotechnology, Fooyin University, Kaohsiung City, Taiwan
| | - Hsieh-Hsun Ho
- Functional R&D Department, Research and Design Center, Glac Biotech Co., Ltd., Tainan City, Taiwan
- Research Product Department, Research and Design Center, Glac Biotech Co., Ltd., Tainan City, Taiwan
| |
Collapse
|
12
|
Bai H, Zhang Z, Zhu M, Sun Y, Wang Y, Li B, Wang Q, Kuang H. Research progress of treating hyperuricemia in rats and mice with traditional Chinese medicine. Front Pharmacol 2024; 15:1428558. [PMID: 39101136 PMCID: PMC11294118 DOI: 10.3389/fphar.2024.1428558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/01/2024] [Indexed: 08/06/2024] Open
Abstract
Hyperuricemia (HUA) is a common chronic metabolic disease caused by abnormal purine metabolism and uric acid excretion. Despite extensive research on HUA, no clear treatment has been found so far. Improving purine metabolism and promoting uric acid excretion is crucial for the effective treatment of HUA. In recent years, traditional Chinese medicine and traditional Chinese medicine prescriptions have shown good effects in treating HUA. This article summarizes the latest progress in treating HUA in rats and mice using traditional Chinese medicine and prescriptions, elaborates on the pathogenesis of HUA, explores the application of commonly used traditional Chinese medicine treatment methods and prescriptions, and discusses the previous pharmacological mechanisms. In general, our research indicates that traditional Chinese medicine can effectively relieve the symptoms related to elevated uric acid levels in HUA rats and mice. However, further exploration and research are needed to verify its efficacy, safety, and feasibility.
Collapse
Affiliation(s)
- Haodong Bai
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, China
| | - Zidong Zhang
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Mingtao Zhu
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, China
| | - Yanping Sun
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, China
| | - Yimeng Wang
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, China
| | - Biao Li
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, China
| | - Qiuhong Wang
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, China
| | - Haixue Kuang
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, China
| |
Collapse
|
13
|
Song K, He M, Kong X, Xian Y, Zhang Y, Xie X, Xie S, Jia A, Ren Y. Benefits of uric acid-lowering medication after bariatric surgery in patients with gout. BMC Surg 2024; 24:186. [PMID: 38877436 PMCID: PMC11177500 DOI: 10.1186/s12893-024-02472-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/06/2024] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND/PURPOSE Patients with gout are at risk for increased serum uric acid (SUA) levels and gout attacks in the short term after undergoing bariatric surgery, and the purpose of this study was to evaluate the benefits of short-term treatment with uric acid-lowering medication after bariatric surgery for the control of gout attacks and SUA levels in patients with gout. METHODS 71 patients who underwent SG from January 2020 to December 2022 were prospectively included. These patients were diagnosed with hyperuricemia before surgery and had a history of gout attacks. Patients were classified into a drug-treatment group (DTG, n = 32) and a non-drug-treatment group (NDTG, n = 39) according to whether they took uric acid-lowering medication after surgery. Changes in the number of gout attacks, body mass index (BMI), and SUA levels at 1 week, 1 month, 3 months, and 6 months after bariatric surgery were measured in both groups. RESULTS In the DTG, 22 patients (68.8%) experienced an increase in SUA within 1 week, 3 patients (9.4%) had an acute attack of gout within the first month, and no patients had a gout attack thereafter. In the NDTG, 35 patients (89.7%) experienced an increase in SUA within 1 week, 7 patients (17.9%) had an acute gout attack within the first month, and 4 patients (10.3%) experienced gout attacks between month 1 and month 3 postoperatively. Both groups were free of gout attacks between the 3rd and 6th postoperative month and showed a significant decrease in SUA and BMI by the sixth month. CONCLUSION In patients with gout, continued use of uric acid-lowering medication after bariatric surgery is beneficial in reducing the number of gout attacks and the risk of rising SUA.
Collapse
Affiliation(s)
- Ke Song
- Department of General Surgery, the Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, P.R. China
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, P.R. China
| | - Ming He
- Department of General Surgery, the Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, P.R. China
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, P.R. China
| | - Xiangxin Kong
- Department of General Surgery, the Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, P.R. China
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, P.R. China
| | - Yin Xian
- Nanchong Psychosomatic Hospital, Nanchong, 637770, P.R. China
| | - Yuan Zhang
- Department of General Surgery, the Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, P.R. China
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, P.R. China
| | - Xing Xie
- Department of General Surgery, the Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, P.R. China
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, P.R. China
| | - Sijun Xie
- Department of General Surgery, the Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, P.R. China
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, P.R. China
| | - Aimei Jia
- Department of General Surgery, the Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, P.R. China
| | - Yixing Ren
- Department of General Surgery, the Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, P.R. China.
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, P.R. China.
- Chengdu XinHua Hospital Affiliated to North Sichuan Medical College, Chengdu, 610000, P.R. China.
| |
Collapse
|
14
|
Tong M, Wang S, Luan J, Xie Q, Wang L, Shen X, Xiong S. Rationalization design, soluble expression and PEG modification of highly active recombinant human-porcine uricase mutant protein. Int J Biol Macromol 2024; 269:131989. [PMID: 38697425 DOI: 10.1016/j.ijbiomac.2024.131989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/20/2024] [Accepted: 04/28/2024] [Indexed: 05/05/2024]
Abstract
Uric acid is the end product of purine metabolism in humans due to inactivation of the uricase determined by the mutated uricase gene. Uricase catalyzes the conversion of uric acid into water-soluble allantoin that is easily excreted by the kidneys. Hyperuricemia occurs when the serum concentration of uric acid exceeds its solubility (7 mg/dL). However, modifications to improve the uricase activity is under development for treating the hyperuricemia. Here we designed 7 types of human-porcine chimeric uricase by multiple sequence comparisons and targeted mutagenesis. An optimal human-porcine chimeric uricase mutant (uricase-10) with both high activity (6.33 U/mg) and high homology (91.45 %) was determined by enzyme activity measurement. The engineering uricase was further modified with PEGylation to improve the stability of recombinant protein drugs and reduce immunogenicity, uricase-10 could be more suitable for the treatment of gout and hyperuricemia theoretically.
Collapse
Affiliation(s)
- Mingjie Tong
- Institute of Biomedicine and National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, People's Republic of China.
| | - Shengli Wang
- Institute of Biomedical Transformation, School of Basic Medicine and Public Health, Jinan University, Guangzhou 510632, People's Republic of China.
| | - Junxi Luan
- Institute of Biomedicine and National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, People's Republic of China.
| | - Qiuling Xie
- Institute of Biomedicine and National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, People's Republic of China; Guangdong JNU Genetic Medicine Engineering Research Center Co. Ltd, Guangzhou 510530, People's Republic of China.
| | - Luquan Wang
- 13F, Bldg. D, Runhui Sci-Tech Park, 18 Shenzhou Rd., Science City, Huangpu Dist., Vibrant Therapeutics, Guangzhou 510663, People's Republic of China.
| | - Xiaoyang Shen
- Beijing Chemgen Pharma Co.Ltd District 1, Building B, No.12 Hongda North Road, Jingkai District, Beijing 100176, People's Republic of China.
| | - Sheng Xiong
- Institute of Biomedicine and National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, People's Republic of China; Guangdong JNU Genetic Medicine Engineering Research Center Co. Ltd, Guangzhou 510530, People's Republic of China.
| |
Collapse
|
15
|
Zheng F, Mai S, Cen X, Zhao P, Ye W, Ke J, Lin S, Hu H, Guo Z, Zhang S, Liao H, Wu T, Tian Y, Zhang Q, Pang J, Zhao Z. Discovery of digallic acid as XOD/URAT1 dual target inhibitor for the treatment of hyperuricemia. Bioorg Chem 2024; 147:107381. [PMID: 38669781 DOI: 10.1016/j.bioorg.2024.107381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/14/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024]
Abstract
The development of XOD/URAT1 dual target inhibitors has emerged as a promising therapeutic strategy for the management of hyperuricemia. Here, through virtual screening, we have identified digallic acid as a novel dual target inhibitor of XOD/URAT1 and subsequently evaluated its pharmacological properties, pharmacokinetics, and toxicities. Digallic acid inhibited URAT1 with an IC50 of 5.34 ± 0.65 μM, which is less potent than benzbromarone (2.01 ± 0.36 μM) but more potent than lesinurad (10.36 ± 1.23 μM). Docking and mutation analysis indicated that residues S35, F241 and R477 of URAT1 confer a high affinity for digallic acid. Digallic acid inhibited XOD with an IC50 of 1.04 ± 0.23 μM. Its metabolic product, gallic acid, inhibited XOD with an IC50 of 0.91 ± 0.14 μM. Enzyme kinetic studies indicated that both digallic acid and gallic acid act as mixed-type XOD inhibitors. It shares the same binding mode as digallic acid, and residues E802, R880, F914, T1010, N768 and F1009 contribute to their high affinity. The anion group (carboxyl) of digallic acid contribute significantly to its inhibition activity on both XOD and URAT1 as indicated by docking analysis. Remarkably, at a dosage of 10 mg/kg in vivo, digallic acid exhibited a stronger urate-lowering and uricosuric effect compared to the positive drug benzbromarone and lesinurad. Pharmacokinetic study indicated that digallic acid can be hydrolyzed into gallic acid in vivo and has a t1/2 of 0.77 ± 0.10 h. Further toxicity evaluation indicated that digallic acid exhibited no obvious renal toxicity, as reflected by CCK-8, biochemical analysis (CR and BUN) and HE examination. The findings of our study can provide valuable insights for the development of XOD/URAT1 dual target inhibitors, and digallic acid deserves further investigation as a potential anti-hyperuricemic drug.
Collapse
Affiliation(s)
- Fengxin Zheng
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Suiqing Mai
- Good Clinical Practice Development, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Xiaolin Cen
- Good Clinical Practice Development, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Pei Zhao
- Good Clinical Practice Development, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Wenjie Ye
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jiale Ke
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Shiqin Lin
- Good Clinical Practice Development, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Huazhong Hu
- Good Clinical Practice Development, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Zitao Guo
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Shuqin Zhang
- Good Clinical Practice Development, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Hui Liao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Ting Wu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yuanxin Tian
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Qun Zhang
- Good Clinical Practice Development, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.
| | - Jianxin Pang
- Good Clinical Practice Development, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China; NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Zean Zhao
- Good Clinical Practice Development, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
16
|
Liu WW, Dong HJ, Zhang Z, Ma XH, Liu S, Huang W, Wang X. Analyzing chemical composition of Sargentodoxae caulis water extract and their hypouricemia effect in hyperuricemic mice. Fitoterapia 2024; 175:105926. [PMID: 38537887 DOI: 10.1016/j.fitote.2024.105926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/17/2024] [Accepted: 03/24/2024] [Indexed: 04/26/2024]
Abstract
Hyperuricemia (HUA) is a metabolic disease characterized by the increase of serum uric acid (UA) level. Sargentodoxae Caulis (SC) is a commonly used herbal medicine for the treatment of gouty arthritis, traumatic swelling, and rheumatic arthritis in clinic. In this study, a total of fifteen compounds were identified in SC water extract using UHPLC-Q-TOF-MS/MS, including three phenolic acids, seven phenolic glycosides, four organic acids, and one lignan. Then, to study the hypouricemia effect of SC, a HUA mouse model was induced using a combination of PO, HX, and 20% yeast feed. After 14 days of treatment with the SC water extract, the levels of serum UA, creatinine (CRE), blood urea nitrogen (BUN) were reduced significantly, and the organ indexes were restored, the xanthine oxidase (XOD) activity were inhibited as well. Meanwhile, SC water extract could ameliorate the pathological status of kidneys and intestine of HUA mice. Additionally, quantitative real-time PCR (qRT-PCR) and western blotting results showed that SC water extract could increase the expression of ATP binding cassette subfamily G member 2 (ABCG2), organic cation transporter 1 (OCT1), organic anion transporter 1 (OAT1) and organic anion transporter 3 (OAT3), whereas decrease the expression of glucose transporter 9 (GLUT9). This study provided a data support for the clinical application of SC in the treatment of HUA.
Collapse
Affiliation(s)
- Wen-Wen Liu
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250300, China
| | - Hong-Jing Dong
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250300, China
| | - Zhe Zhang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250300, China
| | - Xin-Hui Ma
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250300, China
| | - Shuang Liu
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Wei Huang
- Shandong Academy of Chinese Medicine, Jinan 250014, China
| | - Xiao Wang
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250300, China.
| |
Collapse
|
17
|
Li Y, Zheng F, Zhong S, Zhao K, Liao H, Liang J, Zheng Q, Wu H, Zhang S, Cao Y, Wu T, Pang J. Protecting against ferroptosis in hyperuricemic nephropathy: The potential of ferrostatin-1 and its inhibitory effect on URAT1. Eur J Pharmacol 2024; 971:176528. [PMID: 38556118 DOI: 10.1016/j.ejphar.2024.176528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/08/2024] [Accepted: 03/21/2024] [Indexed: 04/02/2024]
Abstract
Hyperuricemic nephropathy (HN) is characterized by renal fibrosis and tubular necrosis caused by elevated uric acid levels. Ferroptosis, an iron-dependent type of cell death, has been implicated in the pathogenesis of kidney diseases. The objective of this study was to explore the role of ferroptosis in HN and the impact of a ferroptosis inhibitor, ferrostatin-1 (Fer-1). The study combined adenine and potassium oxonate administration to establish a HN model in mice and treated HK-2 cells with uric acid to simulate HN conditions. The effects of Fer-1 on the renal function, fibrosis, and ferroptosis-associated molecules were investigated in HN mice and HK-2 cells treated with uric acid. The HN mice presented with renal dysfunction characterized by elevated tissue iron levels and diminished antioxidant capacity. There was a significant decrease in the mRNA and protein expression levels of SLC7A11, GPX4, FTL-1 and FTH-1 in HN mice. Conversely, treatment with Fer-1 reduced serum uric acid, serum creatinine, and blood urea nitrogen, while increasing uric acid levels in urine. Fer-1 administration also ameliorated renal tubule dilatation and reduced renal collagen deposition. Additionally, Fer-1 also upregulated the expression levels of SLC7A11, GPX4, FTL-1, and FTH-1, decreased malondialdehyde and iron levels, and enhanced glutathione in vivo and in vitro. Furthermore, we first found that Fer-1 exhibited a dose-dependent inhibition of URAT1, with the IC50 value of 7.37 ± 0.66 μM. Collectively, the current study demonstrated that Fer-1 effectively mitigated HN by suppressing ferroptosis, highlighting the potential of targeting ferroptosis as a therapeutic strategy for HN.
Collapse
Affiliation(s)
- Yongmei Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Fengxin Zheng
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Shiqi Zhong
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Kunlu Zhao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Hui Liao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Jiacheng Liang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Qiang Zheng
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Huicong Wu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Shifan Zhang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Ying Cao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Ting Wu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China.
| | - Jianxin Pang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China.
| |
Collapse
|
18
|
Zhang QZ, Zhang JR, Li X, Yin JL, Jin LM, Xun ZR, Xue H, Yang WQ, Zhang H, Qu J, Xing ZK, Wang XM. Fangyukangsuan granules ameliorate hyperuricemia and modulate gut microbiota in rats. Front Immunol 2024; 15:1362642. [PMID: 38745649 PMCID: PMC11091346 DOI: 10.3389/fimmu.2024.1362642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/16/2024] [Indexed: 05/16/2024] Open
Abstract
Hyperuricaemia (HUA) is a metabolic disorder characterised by high blood uric acid (UA) levels; moreover, HUA severity is closely related to the gut microbiota. HUA is also a risk factor for renal damage, diabetes, hypertension, and dyslipidaemia; however, current treatments are associated with detrimental side effects. Alternatively, Fangyukangsuan granules are a natural product with UA-reducing properties. To examine their efficacy in HUA, the binding of small molecules in Fangyukangsuan granules to xanthine oxidase (XOD), a key factor in UA metabolism, was investigated via molecular simulation, and the effects of oral Fangyukangsuan granule administration on serum biochemical indices and intestinal microorganisms in HUA-model rats were examined. Overall, 24 small molecules in Fangyukangsuan granules could bind to XOD. Serum UA, creatinine, blood urea nitrogen, and XOD levels were decreased in rats treated with Fangyukangsuan granules compared to those in untreated HUA-model rats. Moreover, Fangyukangsuan granules restored the intestinal microbial structure in HUA-model rats. Functional analysis of the gut microbiota revealed decreased amino acid biosynthesis and increased fermentation of pyruvate into short-chain fatty acids in Fangyukangsuan granule-treated rats. Together, these findings demonstrate that Fangyukangsuan granules have anti-hyperuricaemic and regulatory effects on the gut microbiota and may be a therapeutic candidate for HUA.
Collapse
Affiliation(s)
- Qing-zheng Zhang
- College of Life Sciences, Yantai University, Yantai, Shandong, China
| | - Ji-rui Zhang
- College of Life Sciences, Yantai University, Yantai, Shandong, China
| | - Xue Li
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Jin-long Yin
- Department of Food Science and Engineering, Jilin Business and Technology College, Changchun, Jilin, China
| | - Li-ming Jin
- Key Laboratory of Biotechnology and Bioresources Utilization, Dalian Minzu University, Dalian, China
| | - Zhuo-ran Xun
- College of Life Sciences, Yantai University, Yantai, Shandong, China
| | - Hao Xue
- College of Life Sciences, Yantai University, Yantai, Shandong, China
| | - Wan-qi Yang
- College of Life Sciences, Yantai University, Yantai, Shandong, China
| | - Hua Zhang
- College of Life Sciences, Yantai University, Yantai, Shandong, China
| | - Jingyong Qu
- College of Life Sciences, Yantai University, Yantai, Shandong, China
| | - Zhi-kai Xing
- College of Life Sciences, Yantai University, Yantai, Shandong, China
| | - Xu-min Wang
- College of Life Sciences, Yantai University, Yantai, Shandong, China
| |
Collapse
|
19
|
Ou G, Wu J, Wang S, Jiang Y, Chen Y, Kong J, Xu H, Deng L, Zhao H, Chen X, Xu L. Dietary Factors and Risk of Gout: A Two-Sample Mendelian Randomization Study. Foods 2024; 13:1269. [PMID: 38672942 PMCID: PMC11049247 DOI: 10.3390/foods13081269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Dietary intervention is the preferred approach for the prevention and clinical management of gout. Nevertheless, the existing evidence regarding the influence of specific foods on gout is insufficient. METHODS We used two-sample Mendelian randomization for genetic prediction to analyze the relationship between the intake of more than a dozen daily food items, such as pork, beef, cheese, and poultry, and dietary macronutrient intake (fat, protein, carbohydrates, and sugar) and the risk of developing gout and elevating the serum uric acid level. Inverse-variance weighted MR analyses were used as the main evaluation method, and the reliability of the results was tested by a sensitivity analysis. RESULTS Cheese intake was associated with lower serum uric acid levels, and tea intake (OR = 0.523, [95%CI: 0.348~0.784], p = 0.002), coffee intake (OR = 0.449, [95%CI: 0.229~0.882], p = 0.020), and dried fruit intake (OR = 0.533, [95%CI: 0.286~0.992], p = 0.047) showed a preventive effect on the risk of gouty attacks. In contrast, non-oily fish intake (β = 1.08, [95%CI: 0.24~1.92], p = 0.012) and sugar intake (β = 0.34, [95%CI: 0.03~0.64], p = 0.030) were risk factors for elevated serum uric acid levels, and alcohol intake frequency (OR = 1.422, [95%CI: 1.079~1.873], p = 0.012) was a risk factors for gout predisposition. CONCLUSIONS These results will significantly contribute to the formulation and refinement of nutritional strategies tailored to patients afflicted with gout.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Lu Xu
- School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China; (G.O.); (J.W.); (S.W.); (Y.J.); (Y.C.); (J.K.); (H.X.); (L.D.); (H.Z.); (X.C.)
| |
Collapse
|
20
|
Xu R, Deng P, Ma Y, Li K, Ren F, Li N. Anti-Hyperuricemic Effects of Extracts from Chaenomeles speciosa (Sweet) Nakai Fruits on Hyperuricemic Rats. Metabolites 2024; 14:117. [PMID: 38393010 PMCID: PMC10890149 DOI: 10.3390/metabo14020117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Chaenomeles speciosa (Sweet) Nakai (C. speciosa) fruit has medicinal and food applications and exhibits beneficial pharmacological properties. This study aimed to explore the hypouricemic effect of C. speciosa fruit extracts on hyperuricemic rats and uncover potential protective mechanisms. The rats were given hypoxanthine (HX, 100 mg/kg) and potassium oxonate (PO, 300 mg/kg) for 14 days to induce hyperuricemia. Subsequently, the rats were orally administered C. speciosa fruits total extract (CSFTE, 250, 500, and 1000 mg/kg) and allopurinol (AP, 10 mg/kg) one hour after exposure to HX and PO. The results showed that CSFTE had significant xanthine oxidase (XOD) inhibitory activity in vitro (IC50 value of 334.2 μg/mL) and exhibited hypouricemic effects in vivo, reducing uric acid (UA), creatinine (CRE), and blood urea nitrogen (BUN) levels in serum. CSFTE increased UA excretion through the regulation of URAT1, GLUT9, OAT1, and OAT3 protein expression in the kidneys of hyperuricemic rats. Additionally, CSFTE (500 and 1000 mg/kg) was more effective than AP in improving renal injury and protecting kidney function in hyperuricemic rats. Our study demonstrated that CSFTE effectively reduced UA levels and protected the kidneys by inhibiting XOD expression in vitro and regulating UA, CRE, BUN, URAT1, GLUT9, OAT1, and OAT3 proteins in vivo.
Collapse
Affiliation(s)
- Ruoling Xu
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Peng Deng
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Yiren Ma
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Kui Li
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Fucai Ren
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Ning Li
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
21
|
Pantakitcharoenkul J, Touma J, Jovanovic G, Coblyn M. Enzyme-functionalized hydrogel film for extracorporeal uric acid reduction. J Biomed Mater Res B Appl Biomater 2024; 112:e35375. [PMID: 38359171 DOI: 10.1002/jbm.b.35375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 11/22/2023] [Accepted: 01/02/2024] [Indexed: 02/17/2024]
Abstract
Enzyme replacement therapy for hyperuricemia treatment has been proven effective for critical state hyperuricemia patients. Still, direct administration of recombinant uricase can induce several fatal side effects. To circumvent this drawback, hydrogel protein carriers can be used in platforms for extracorporeal treatment such as microscale-based devices. In this work, calcium alginate and poly-(vinyl alcohol) hydrogel films were studied for their urate oxidase immobilization and uric acid reduction, which could be implemented in microscale-based extracorporeal devices. A mathematical model was developed in conjunction with uric acid reduction experiments to evaluate the influence of mass transfer and reaction parameters in the Michaelis-Menten kinetic expression. Alginate hydrogels prepared with crosslinker 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide and N-(hydroxysuccinimide) offered superior diffusivity of uric acid in the gel matrix at the maximum value ofD g , UA ≈ $$ {D}_{\mathrm{g},\mathrm{UA}}\approx $$ 1.98 × 10-11 m2 /s compared with alginate prepared solely from ionic crosslinking withD g , UA ≈ $$ {D}_{\mathrm{g},\mathrm{UA}}\approx $$ 5.31 × 10-12 m2 /s at the same alginate concentration. The maximum value of νmax was experimentally determined at 7.78 × 10-5 mol/(m3 s). A 3% sodium alginate hydrogel with crosslinkers yielded the highest reduction of uric acid at 92.70%. The mathematical model demonstrated an excellent prediction of uric acid conversion suggesting potential use of the model for formulation and maximizing the therapeutic performance of functionalized hydrogels.
Collapse
Affiliation(s)
- Jaturavit Pantakitcharoenkul
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Oregon, USA
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
| | - Jad Touma
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Oregon, USA
| | - Goran Jovanovic
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Oregon, USA
| | - Matthew Coblyn
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Oregon, USA
| |
Collapse
|
22
|
Li X, Qi C, Shao M, Yang Y, Wang Y, Li J, Xiao Z, Ye F. A System for Discovering Novel Uricosurics Targeting Urate Transporter 1 Based on In Vitro and In Vivo Modeling. Pharmaceutics 2024; 16:172. [PMID: 38399232 PMCID: PMC10893275 DOI: 10.3390/pharmaceutics16020172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Hyperuricemia has become a global burden with the increasing prevalence and risk of associated metabolic disorders and cardiovascular diseases. Uricosurics act as a vital urate-lowering therapy by promoting uric acid excretion via the kidneys. However, potent and safe uricosurics are still in urgent demand for use in the clinic. In this study, we aimed to establish in vitro and in vivo models to aid the discovery of novel uricosurics, and to search for potent active compounds, especially targeting urate transporter 1 (URAT1), the major urate transporter in the kidney handling uric acid homeostasis. As a result, for preliminary screening, the in vitro URAT1 transport activity was assessed using a non-isotopic uric acid uptake assay in hURAT1-stably expressed HEK293 cells. The in vivo therapeutic effect was evaluated in a subacute hyperuricemic mouse model (sub-HUA) and further confirmed in a chronic hyperuricemic mouse model (Ch-HUA). By utilizing these models, compound CC18002 was obtained as a potent URAT1 inhibitor, with an IC50 value of 1.69 μM, and favorable uric acid-lowering effect in both sub-HUA and Ch-HUA mice, which was comparable to that of benzbromarone at the same dosage. Moreover, the activity of xanthine oxidoreductase, the key enzyme catalyzing uric acid synthesis, was not altered by CC18002 treatment. Taken together, we have developed a novel screening system, including a cell model targeting URAT1 and two kinds of mouse models, for the discovery of novel uricosurics. Utilizing this system, compound CC18002 was investigated as a candidate URAT1 inhibitor to treat hyperuricemia.
Collapse
Affiliation(s)
- Xuechen Li
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
- Diabetes Research Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Chufan Qi
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
- Diabetes Research Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Mengjie Shao
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yajun Yang
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yuying Wang
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
- Diabetes Research Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jiang Li
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
- Diabetes Research Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhiyan Xiao
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Fei Ye
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
- Diabetes Research Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
23
|
Wang X, Lu H, Rong J, Sun Z, Zheng Y, Fan B, Jia Z. PEGylated porcine-human recombinant uricase: A novel fusion protein with improved efficacy and safety for the treatment of hyperuricemia and renal complications. Open Life Sci 2024; 19:20220799. [PMID: 38283118 PMCID: PMC10811527 DOI: 10.1515/biol-2022-0799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/08/2023] [Accepted: 11/06/2023] [Indexed: 01/30/2024] Open
Abstract
The growing prevalence of hyperuricemia necessitates the urgent development of more potent treatments. This study aimed to develop, optimize, and evaluate the safety and efficacy of porcine-human recombinant uricase (PHRU) both in vitro and in vivo. The study employed gene editing of PHRU through site-directed mutagenesis, with recombinant proteins expressed in vitro utilizing Escherichia coli. The polyethylene glycol (PEG) approach was employed to augment uricase stability and diminish immunogenicity. The pharmacokinetics and pharmacodynamics of PHRU were tested in vitro and in Sprague Dawley rats. Successful expression of the fusion protein in E. coli and the development of the PEGylated drug were achieved. In vitro experiments confirmed the efficacy of PEG-PHRU in degrading uric acid, with PEGylation not markedly affecting the biological activity of PHRU. Animal studies revealed that PEG-PHRU significantly lowered plasma uric acid levels and mitigated hyperuricemia-induced renal damage in rats. Both drug metabolism and pharmacokinetics exhibited favorable characteristics without observable adverse effects in experimental animals. This novel fusion protein shows the potential for ameliorating hyperuricemia and related renal complications, highlighting it as a promising drug candidate with substantial market applications.
Collapse
Affiliation(s)
- Xiangyan Wang
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan430079, China
| | - Hao Lu
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan430079, China
| | - Jun Rong
- College of Life Science, Yangtze University, Jingzhou434000, PR China
| | - Zhongjie Sun
- Jing Zhou Chang Xin Biotechnology Co., Ltd, Jingzhou434000, PR China
| | - Yanhua Zheng
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan430079, China
| | - Bolin Fan
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan430079, China
| | - Ziming Jia
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan430079, China
| |
Collapse
|
24
|
Xu G, Wu L, Yang H, Liu T, Tong Y, Wan J, Han B, Zhou L, Hu X. Eupatilin inhibits xanthine oxidase in vitro and attenuates hyperuricemia and renal injury in vivo. Food Chem Toxicol 2024; 183:114307. [PMID: 38052408 DOI: 10.1016/j.fct.2023.114307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/10/2023] [Accepted: 11/27/2023] [Indexed: 12/07/2023]
Abstract
Uric acid (UA) is the final metabolite of purines in the liver that can cause hyperuricemia at high levels. The kidneys are the main excretory organs for UA. The excessive accumulation of UA in the kidneys causes the development of hyperuricemia that often leads to renal injury. Eupatilin (Eup) is a flavonoid natural product that possesses various pharmacological properties such as antioxidant, anti-cancer, and anti-inflammatory. We were interested in exploring the potential role of Eup in lowering UA and nephroprotective. We initially investigated the effects of Eup on xanthin oxidase (XOD) activity in vitro, followed by investigating its ability to lower UA levels, anti-inflammatory effects, nephroprotective effects, and the underlying mechanisms using hyperuricemia rats sustained at high UA level. The results showed that Eup had an inhibitory effect on XOD activity in vitro and significantly reduced serum UA, creatinine, BUN, IL-1β and IL-6 levels in hyperuricemic rats, ameliorating inflammation, renal oxidative stress and pathological injury. Furthermore, Eup inhibited ADA and XOD enzyme activities in the liver and serum and modulated GLUT9, URAT1 and ABCG2 protein expression in the kidneys and ileum. Our findings provide a scientific basis for suggesting Eup as an option for a potential treatment for hyperuricemia.
Collapse
Affiliation(s)
- Guitao Xu
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Lele Wu
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Hongxuan Yang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Tianfeng Liu
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Ying Tong
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Jiliang Wan
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Bin Han
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Lin Zhou
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China.
| | - Xuguang Hu
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China.
| |
Collapse
|
25
|
Rui G, Qin ZY, Chang YQ, Zheng YG, Zhang D, Yao LM, Guo L. Chemical Comparison and Identification of Xanthine Oxidase Inhibitors of Dioscoreae Hypoglaucae Rhizoma and Dioscoreae Spongiosae Rhizoma by Chemometric Analysis and Spectrum-Effect Relationship. Molecules 2023; 28:8116. [PMID: 38138603 PMCID: PMC10745721 DOI: 10.3390/molecules28248116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Dioscoreae hypoglaucae Rhizoma (DH) and Dioscoreae spongiosae Rhizoma (DS) are two similar Chinese herbal medicines derived from the Dioscorea family. DH and DS have been used as medicines in China and other Asian countries for a long time, but study on their phytochemicals and bioactive composition is limited. This present study aimed to compare the chemical compositions of DH and DS, and explore the anti-xanthine oxidase components based on chemometric analysis and spectrum-effect relationship. Firstly, an HPLC method was used to establish the chemical fingerprints of DH and DS samples, and nine common peaks were selected. Then, hierarchical clustering analysis, principal component analysis and orthogonal partial least squares discriminant analysis were employed to compare and discriminate DH and DS samples based on the fingerprints data, and four steroidal saponins compounds (protodioscin, protogracillin, dioscin, gracillin) could be chemical markers responsible for the differences between DH and DS. Meanwhile, the anti-xanthine oxidase activities of these two herbal medicines were evaluated by xanthine oxidase inhibitory assay in vitro. Pearson correlation analysis and partial least squares regression analysis were subsequently used to investigate the spectrum-effect relationship between chemical fingerprints and xanthine oxidase inhibitory activities. The results showed that four steroidal saponins, including protodioscin, protogracillin, methyl protodioscin and pseudoprogracillin could be potential anti-xanthine oxidase compounds in DH and DS. Furthermore, the xanthine oxidase inhibitory activities of the four selected inhibitors were validated by anti-xanthine oxidase inhibitory assessment and molecular docking experiments. The present work provided evidence for understanding of the chemical differences and the discovery of the anti-xanthine oxidase constituent of DH and DS, which could be useful for quality evaluation and bioactive components screening of these two herbal medicines.
Collapse
Affiliation(s)
- Guo Rui
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; (G.R.); (Z.-Y.Q.); (Y.-Q.C.); (Y.-G.Z.); (D.Z.)
- International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Zhang-Yi Qin
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; (G.R.); (Z.-Y.Q.); (Y.-Q.C.); (Y.-G.Z.); (D.Z.)
- International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Ya-Qing Chang
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; (G.R.); (Z.-Y.Q.); (Y.-Q.C.); (Y.-G.Z.); (D.Z.)
- International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Yu-Guang Zheng
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; (G.R.); (Z.-Y.Q.); (Y.-Q.C.); (Y.-G.Z.); (D.Z.)
- Department of Pharmaceutical Engineering, Hebei Chemical & Pharmaceutical College, Shijiazhuang 050026, China
| | - Dan Zhang
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; (G.R.); (Z.-Y.Q.); (Y.-Q.C.); (Y.-G.Z.); (D.Z.)
- International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Li-Min Yao
- Bethune International Peace Hospital, Shijiazhuang 050082, China
| | - Long Guo
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; (G.R.); (Z.-Y.Q.); (Y.-Q.C.); (Y.-G.Z.); (D.Z.)
- International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| |
Collapse
|
26
|
Qu Y, Yu Y, Pan J, Li H, Cui C, Liu D. Systematic review and model-based analysis to identify whether renal safety risks of URAT1 inhibitors are fully determined by uric acid-lowering efficacies. Semin Arthritis Rheum 2023; 63:152279. [PMID: 37866004 DOI: 10.1016/j.semarthrit.2023.152279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 10/24/2023]
Abstract
OBJECTIVE Renal safety risk is currently an important factor that hinders the development of uric acid transporter 1 (URAT1) inhibitors. This study aimed to compare the renal safety and uric acid-lowering efficacy of different URAT1 inhibitors and clarify the association between them. METHODS A systematic review of published randomized controlled trials on URAT1 inhibitors was conducted to investigate the incidence of renal safety events. A model-based analysis was performed to predict the uric acid-lowering efficacy of representative URAT1 inhibitors. RESULTS The overall renal safety event incidences of lesinurad, verinurad, dotinurad, SHR4640, and benzbromarone in patients with hyperuricemia were 11.2 % (142/1264), 12.0 % (34/284), 0.5 % (2/421), 2.3 % (5/213), and 1.3 % (5/393), respectively. A semi-mechanistic pharmacokinetic/pharmacodynamic model was used to establish the dose-exposure-effect relationship of lesinurad, verinurad, dotinurad, and SHR4640 with or without the combination of xanthine oxidase inhibitors (XOIs). The efficacy ranking of the intermediate dose of URAT1 inhibitors with once-daily dosing was 2 mg dotinurad > 10 mg verinurad > 5 mg SHR4640 > 400 mg lesinurad. The combination of 80 mg febuxostat and 600 mg allopurinol reduced the 24-h cumulative renal uric acid excretion by 48.4 % and 48.3 %, respectively. CONCLUSION Uric acid-lowering efficacy is not an independent factor for the renal safety risk of different URAT1 inhibitors, and structural differences could be responsible for the difference. The adverse renal effects of URAT1 inhibitors are dose-dependent, and the combination with high doses of XOIs can significantly reduce the renal safety risk by reducing uric acid excretion by the kidneys.
Collapse
Affiliation(s)
- Yuchen Qu
- Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yunli Yu
- Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jie Pan
- Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Haiyan Li
- Drug Clinical Trial Center, Peking University Third Hospital, Beijing, China; Center of Clinical Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China; Department of Cardiology, Peking University Third Hospital, Beijing, China
| | - Cheng Cui
- Drug Clinical Trial Center, Peking University Third Hospital, Beijing, China; Center of Clinical Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China; Department of Cardiology, Peking University Third Hospital, Beijing, China.
| | - Dongyang Liu
- Drug Clinical Trial Center, Peking University Third Hospital, Beijing, China; Center of Clinical Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China; Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University Third Hospital, Beijing, China.
| |
Collapse
|
27
|
Qi X, Guan K, Liu C, Chen H, Ma Y, Wang R. Whey protein peptides PEW and LLW synergistically ameliorate hyperuricemia and modulate gut microbiota in potassium oxonate and hypoxanthine-induced hyperuricemic rats. J Dairy Sci 2023; 106:7367-7381. [PMID: 37562644 DOI: 10.3168/jds.2023-23369] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/29/2023] [Indexed: 08/12/2023]
Abstract
Pro-Glu-Trp (PEW) and Leu-Leu-Trp (LLW) are peptides derived from whey protein digestive products; both peptides exhibit xanthine oxidase inhibitory activity in vitro. However, it remains unclear whether these peptides can alleviate hyperuricemia (HUA) in vivo. In this study, we investigated the roles of PEW and LLW, both individually and in combination, in alleviating HUA induced by potassium oxonate and hypoxanthine. Together, PEW and LLW exhibited synergistic effects in reducing the serum levels of uric acid (UA), creatinine, and blood urea nitrogen, as well as increasing the fractional excretion of UA. The combined treatment with PEW and LLW inhibited UA synthesis, promoted UA excretion, and restored renal oxidative stress and mitochondrial damage. Moreover, the combined treatment alleviated dysbiosis of the gut microbiota, characterized by increased helpful microbial abundance, decreased harmful bacterial abundance, and increased production of short-chain fatty acids. Taken together, these results indicate that the combination of PEW and LLW mitigate HUA and kidney injury by rebalancing UA synthesis and excretion, modulating gut microbiota composition, and improving oxidative stress.
Collapse
Affiliation(s)
- Xiaofen Qi
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
| | - Kaifang Guan
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
| | - Chunhong Liu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
| | - Haoran Chen
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
| | - Ying Ma
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China.
| | - Rongchun Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China.
| |
Collapse
|
28
|
Singh V, Mishra BK, Kumar D, Tiwari B. Construction of Highly Functionalized C4-Oxyacylated and Aminated Pyrazolines. Org Lett 2023; 25:7089-7094. [PMID: 37748130 DOI: 10.1021/acs.orglett.3c02366] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Pyrazolines and pyrazolones are prevalent cores in drugs and bioactive molecules. Functionalizing them with heteroatoms on the ring improves or expands their clinical efficacy. However, a general method to selectively heterofunctionalize them at C4 and C5 is still elusive. Herein, we have demonstrated an iodine(III)-mediated construction of C4-heterofunctionalized pyrazolines from α,β-unsaturated hydrazones. The oxyacylated and aminated products, bearing a tertiary as well as a secondary stereocenter, were obtained via aza-Michael, followed by a C-O/C-N bond formation. A deprotection/oxidation sequence produced pyrazolones in a quantitative yield.
Collapse
Affiliation(s)
- Vikram Singh
- Department of Biological and Synthetic Chemistry, Centre of Biomedical Research, SGPGIMS-Campus, Raebareli Road, Lucknow 226014, India
| | - Bal Krishna Mishra
- Department of Biological and Synthetic Chemistry, Centre of Biomedical Research, SGPGIMS-Campus, Raebareli Road, Lucknow 226014, India
| | - Deepak Kumar
- Department of Biological and Synthetic Chemistry, Centre of Biomedical Research, SGPGIMS-Campus, Raebareli Road, Lucknow 226014, India
| | - Bhoopendra Tiwari
- Department of Biological and Synthetic Chemistry, Centre of Biomedical Research, SGPGIMS-Campus, Raebareli Road, Lucknow 226014, India
| |
Collapse
|
29
|
Zheng J, Gong S, Wu G, Zheng X, Li J, Nie J, Liu Y, Chen B, Liu Y, Su Z, Chen J, Li Y. Berberine attenuates uric acid-induced cell injury by inhibiting NLRP3 signaling pathway in HK-2 cells. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:2405-2416. [PMID: 37193772 PMCID: PMC10497693 DOI: 10.1007/s00210-023-02451-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 02/27/2023] [Indexed: 05/18/2023]
Abstract
Hyperuricemia (HUA) is a common chronic metabolic disease that can cause renal failure and even death in severe cases. Berberine (BBR) is an isoquinoline alkaloid derived from Phellodendri Cortex with strong antioxidant, anti-inflammatory, and anti-apoptotic properties. The purpose of this study was to investigate the protective effects of berberine (BBR) against uric acid (UA)-induced HK-2 cells and unravel their regulatory potential mechanisms. The CCK8 assay was carried out to detect cell viability. The expression levels of inflammatory factors interleukin-1β (IL-1β) and interleukin-18 (IL-18) and Lactate dehydrogenase (LDH) were measured using Enzyme-linked immunosorbent assays (ELISA). The expression of the apoptosis-related protein (cleaved-Caspase3, cleaved-Caspase9, BAX, BCL-2) was detected by western blot. The effects of BBR on the activities of the NOD-like receptor family pyrin domain containing 3 (NLRP3) and the expression of the downstream genes were determined by RT-PCR and western blot in HK-2 cells. From the data, BBR significantly reversed the up-regulation of inflammatory factors (IL-1β, IL-18) and LDH. Furthermore, BBR down-regulated protein expression of pro-apoptotic proteins BAX, cleaved caspase3 (cl-Caspase3), cleaved caspase9 (cl-Caspase9), and enhanced the expression of antiapoptotic protein BCL-2. Simultaneously, BBR inhibited the activated NLPR3 and reduced the mRNA levels of NLRP3, Caspase1, IL-18, and IL-1β. Also, BBR attenuated the expression of NLRP3 pathway-related proteins (NLRP3, ASC, Caspase1, cleaved-Caspase1, IL-18, IL-1β, and GSDMD). Furthermore, specific NLRP3-siRNA efficiently blocked UA-induced the level of inflammatory factors (IL-1β, IL-18) and LDH and further inhibited activated NLRP3 pathway. Collectively, our results suggested that BBR can alleviate cell injury induced by UA. The underlying unctionary mechanism may be through the NLRP3 signaling pathway.
Collapse
Affiliation(s)
- Jingna Zheng
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou Higher Education Mega Center, 232# Wai Huan East Road, Guangzhou, 510006 Guangdong China
| | - Shiting Gong
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou Higher Education Mega Center, 232# Wai Huan East Road, Guangzhou, 510006 Guangdong China
| | - Gong Wu
- Department of TCM Orthopedics & Traumatology, Orthopedic Hospital of Longgang, Shenzhen, 518116 Guangdong China
| | - Xiaohong Zheng
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou Higher Education Mega Center, 232# Wai Huan East Road, Guangzhou, 510006 Guangdong China
| | - Jincan Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou Higher Education Mega Center, 232# Wai Huan East Road, Guangzhou, 510006 Guangdong China
| | - Juan Nie
- Medical School, Hubei Minzu University, Enshi, 445000 Hubei China
| | - Yanlu Liu
- School of Food and Pharmaceutical Engineering, Zhaoqing University, Zhaoqing, 526040 Guangdong China
| | - Baoyi Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou Higher Education Mega Center, 232# Wai Huan East Road, Guangzhou, 510006 Guangdong China
| | - Yuhong Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou Higher Education Mega Center, 232# Wai Huan East Road, Guangzhou, 510006 Guangdong China
- Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan, 523808 Guangdong China
| | - Ziren Su
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou Higher Education Mega Center, 232# Wai Huan East Road, Guangzhou, 510006 Guangdong China
- Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan, 523808 Guangdong China
| | - Jiannan Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou Higher Education Mega Center, 232# Wai Huan East Road, Guangzhou, 510006 Guangdong China
- Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan, 523808 Guangdong China
| | - Yucui Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou Higher Education Mega Center, 232# Wai Huan East Road, Guangzhou, 510006 Guangdong China
- Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan, 523808 Guangdong China
| |
Collapse
|
30
|
Zhang Y, Wang S, Dai X, Liu T, Liu Y, Shi H, Yin J, Xu T, Zhang Y, Zhao D, Sukhorukov V, Orekhov AN, Gao S, Wang L, Zhang D. Simiao San alleviates hyperuricemia and kidney inflammation by inhibiting NLRP3 inflammasome and JAK2/STAT3 signaling in hyperuricemia mice. JOURNAL OF ETHNOPHARMACOLOGY 2023; 312:116530. [PMID: 37098372 DOI: 10.1016/j.jep.2023.116530] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/15/2023] [Accepted: 04/18/2023] [Indexed: 05/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Simiao San (SmS), a famous traditional Chinese formula, is clinically used to treat patients with hyperuricemia (HUA). However, its mechanism of action on lowering uric acid (UA) and inhibiting inflammation still deserves further investigation. AIM OF THE STUDY To examine the effect and its possible underlying mechanism of SmS on UA metabolism and kidney injury in HUA mouse. MATERIALS AND METHODS The HUA mouse model was constructed with the combined administration of both potassium oxalate and hypoxanthine. The effects of SmS on UA, xanthine oxidase (XOD), creatinine (CRE), blood urea nitrogen (BUN), interleukin-10 (IL-10), interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) were determined by ELISA or biochemical assays. Hematoxylin and eosin (H&E) was used to observe pathological alterations in the kidneys of HUA mice. The expression levels of organic anion transporter 1 (OAT1), recombinant urate transporter 1 (URAT1), glucose transporter 9 (GLUT9), nucleotide binding domain and leucine rich repeat pyrin domain containing 3 (NLRP3), Cleaved-Caspase 1, apoptosis-associated speck like protein (ASC), nuclear factor kappa-B (NF-κB), IL-6, janus kinase 2 (JAK2), phosphor (P)-JAK2, signal transducers and activators of transcription 3 (STAT3), P-STAT3, suppressor of cytokine signaling 3 (SOCS3) were examined by Western blot and/or immunohistochemical (IHC) staining. The major ingredients in SmS were identified by a HPLC-MS assay. RESULTS HUA mouse exhibited an elevation in serum levels of UA, BUN, CRE, XOD, and the ratio of urinary albumin to creatinine (UACR), and a decline in urine levels of UA and CRE. In addition, HUA induces pro-inflammatory microenvironment in mouse, including an increase in serum levels of IL-1β, IL-6, and TNF-α, and renal expressions of URAT1, GULT9, NLRP3, ASC, Cleaved-Caspase1, P-JAK2/JAK2, P-STAT3/STAT3, and SOCS3, and a decrease in serum IL-10 level and renal OAT1 expression as well as a disorganization of kidney pathological microstructure. In contrast, SmS intervention reversed these alterations in HUA mouse. CONCLUSION SmS could alleviate hyperuricemia and renal inflammation in HUA mouse. The action mechanisms behind these alterations may be associated with a limitation of the NLRP3 inflammasome and JAK2/STAT3 signaling pathways.
Collapse
Affiliation(s)
- Yueyi Zhang
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Shan Wang
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Xuan Dai
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Tianyuan Liu
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Yage Liu
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Hanfen Shi
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Jiyuan Yin
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Tianshu Xu
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Yanfei Zhang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Dandan Zhao
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Vasily Sukhorukov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow, 125315, Russia.
| | - Alexander N Orekhov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow, 125315, Russia.
| | - Sihua Gao
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Lili Wang
- Department of TCM Pharmacology, Chinese Material Medica School, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Dongwei Zhang
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
31
|
Cao X, Cai J, Zhang Y, Liu C, Song M, Xu Q, Liu Y, Yan H. Biodegradation of Uric Acid by Bacillus paramycoides-YC02. Microorganisms 2023; 11:1989. [PMID: 37630550 PMCID: PMC10460076 DOI: 10.3390/microorganisms11081989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
High serum uric acid levels, known as hyperuricemia (HUA), are associated with an increased risk of developing gout, chronic kidney disease, cardiovascular disease, diabetes, and other metabolic syndromes. In this study, a promising bacterial strain capable of biodegrading uric acid (UA) was successfully isolated from Baijiu cellar mud using UA as the sole carbon and energy source. The bacterial strain was identified as Bacillus paramycoides-YC02 through 16S rDNA sequence analysis. Under optimal culture conditions at an initial pH of 7.0 and 38 °C, YC02 completely biodegraded an initial UA concentration of 500 mg/L within 48 h. Furthermore, cell-free extracts of YC02 were found to catalyze and remove UA. These results demonstrate the strong biodegradation ability of YC02 toward UA. To gain further insight into the mechanisms underlying UA biodegradation by YC02, the draft genome of YC02 was sequenced using Illumina HiSeq. Subsequent analysis revealed the presence of gene1779 and gene2008, which encode for riboflavin kinase, flavin mononucleotide adenylyl transferase, and flavin adenine dinucleotide (FAD)-dependent urate hydroxylase. This annotation was based on GO or the KEEG database. These enzymes play a crucial role in the metabolism pathway, converting vitamin B2 to FAD and subsequently converting UA to 5-hydroxyisourate (HIU) with the assistance of FAD. Notably, HIU undergoes a slow non-enzymatic breakdown into 2-oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline (OHCU) and (S)-allantoin. The findings of this study provide valuable insights into the metabolism pathway of UA biodegradation by B. paramycoides-YC02 and offer a potential avenue for the development of bacterioactive drugs against HUA and gout.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hai Yan
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; (X.C.); (J.C.)
| |
Collapse
|
32
|
Kivitz A, DeHaan W, Azeem R, Park J, Rhodes S, Inshaw J, Leung SS, Nicolaou S, Johnston L, Kishimoto TK, Traber PG, Sands E, Choi H. Phase 2 Dose-Finding Study in Patients with Gout Using SEL-212, a Novel PEGylated Uricase (SEL-037) Combined with Tolerogenic Nanoparticles (SEL-110). Rheumatol Ther 2023; 10:825-847. [PMID: 37069364 PMCID: PMC10326180 DOI: 10.1007/s40744-023-00546-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/03/2023] [Indexed: 04/19/2023] Open
Abstract
INTRODUCTION SEL-212 is a developmental treatment for uncontrolled gout characterized by serum uric acid (sUA) levels ≥ 6 mg/dl despite treatment. It comprises a novel PEGylated uricase (SEL-037; also called pegadricase) co-administered with tolerogenic nanoparticles containing sirolimus (rapamycin) (SEL-110; also called ImmTOR®), which mitigates the formation of anti-drug antibodies (ADAs) against uricase and SEL-037 (PEGylated uricase), thereby enabling sustained sUA control (sUA < 6 mg/dl). The aim of this study was to identify appropriate dosing for SEL-037 and SEL-110 for use in phase 3 clinical trials. METHODS This open-label phase 2 study was conducted in adults with symptomatic gout and sUA ≥ 6 mg/dl. Participants received five monthly infusions of SEL-037 (0.2 or 0.4 mg/kg) alone or in combination with three or five monthly infusions of SEL-110 (0.05-0.15 mg/kg). Safety, tolerability, sUA, ADAs, and tophi were monitored for 6 months. RESULTS A total of 152 adults completed the study. SEL-037 alone resulted in rapid sUA reductions that were not sustained beyond 30 days in most participants due to ADA formation and loss of uricase activity. Levels of ADAs decreased with increasing doses of SEL-110 up to 0.1 mg/kg, with anti-uricase titers < 1080 correlating with sustained sUA control and reductions in tophi. Overall, 66% of evaluable participants achieved sUA control at week 20 following five monthly doses of SEL-037 0.2 mg/kg + SEL-110 0.1-0.15 mg/kg, whereas only 26% achieved sUA control at week 20 when SEL-110 was withdrawn after week 12. Compared to other dose combinations, SEL-037 0.2 mg/kg + SEL-110 0.15 mg/kg achieved the greatest sUA control at week 12 and was well-tolerated with no safety concerns. CONCLUSION Results provide continued support for the use of multiple monthly administrations of SEL-037 0.2 mg/kg + SEL-110 0.1-0.15 mg/kg in clinical trials for SEL-212. TRIAL REGISTRATION ClinicalTrials.gov identifier, NCT02959918.
Collapse
Affiliation(s)
- Alan Kivitz
- Altoona Center for Clinical Research, Duncansville, PA, USA
| | | | - Rehan Azeem
- Selecta Biosciences, Inc., Watertown, MA, USA
| | - Justin Park
- Selecta Biosciences, Inc., Watertown, MA, USA
| | | | | | | | - Savvas Nicolaou
- University of British Columbia, Vancouver General Hospital, Vancouver, BC, Canada
| | | | | | | | - Earl Sands
- Selecta Biosciences, Inc., Watertown, MA, USA
| | - Hyon Choi
- Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
33
|
Zhang Y, Li Y, Li C, Zhao Y, Xu L, Ma S, Lin F, Xie Y, An J, Wang S. Paeonia × suffruticosa Andrews leaf extract and its main component apigenin 7-O-glucoside ameliorate hyperuricemia by inhibiting xanthine oxidase activity and regulating renal urate transporters. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 118:154957. [PMID: 37478683 DOI: 10.1016/j.phymed.2023.154957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/20/2023] [Accepted: 07/06/2023] [Indexed: 07/23/2023]
Abstract
BACKGROUND Hyperuricemia is an important pathological basis of gout and a distinct hazard factor for metabolic syndromes and cardiovascular and chronic renal disease, but lacks safe and effective treatments currently. Paeonia × suffruticosa Andrews leaf effectively reduced serum uric acid in gout patients; however, the material foundation and the mechanism remain unclear. PURPOSE To determine the primary active components and mechanism of P. suffruticosa leaf in hyperuricemic mice. METHODS The chemical constituents of P. suffruticosa leaf was identified using high-performance liquid chromatographic analysis. The anti-hyperuricemic activity of P. suffruticosa leaf extract (12.5, 25, 50, 100, and 200 mg/kg) and its components was evaluated in hyperuricemic mice induced by a high purine diet for 14 days. Then, the urate-lowering effects of apigenin 7-O-glucoside (0.09, 0.18, and 0.36 mg/kg) were assessed in another hyperuricemic mice model built by administrating potassium oxonate and adenine for 4 weeks. The inhibitory effect of apigenin 7-O-glucoside on uric acid production was elucidated by investigating xanthine oxidase activity in vitro and in serum and the liver and through molecular docking. Immunofluorescence and western blot analyses of the expression of renal urate transporter 1 (URAT1), glucose transporter 9 (GLUT9), organic anion transporters 1 (OAT1), and ATP-binding cassette G member 2 (ABCG2) proteins elucidated how apigenin 7-O-glucoside promoted uric acid excretion. RESULTS Six compounds were identified in P. suffruticosa leaf: gallic acid, methyl gallate, oxypaeoniflorin, paeoniflorin, galloylpaeoniflorin, and apigenin 7-O-glucoside. P. suffruticosa leaf extract significantly attenuated increased serum uric acid, creatinine, and xanthine oxidase activity in hyperuricemic mice. Apigenin 7-O-glucoside from P. suffruticosa leaf reduced uric acid, creatinine, and malondialdehyde serum levels, increased superoxide dismutase activity, and partially restored the spleen coefficient in hyperuricemic mice. Apigenin 7-O-glucoside inhibited xanthine oxidase activity in vitro and decreased serum and liver xanthine oxidase activity and liver xanthine oxidase protein expression in hyperuricemic mice. Molecular docking revealed that apigenin 7-O-glucoside bound to xanthine oxidase. Apigenin 7-O-glucoside facilitated uric acid excretion by modulating the renal urate transporters URAT1, GLUT9, OAT1, and ABCG2. Apigenin 7-O-glucoside protected against renal damage and oxidative stress caused by hyperuricemia by reducing serum creatinine, blood urea nitrogen, malondialdehyde, and renal reactive oxygen species levels; increasing serum and renal superoxide dismutase activity; restoring the renal coefficient; and reducing renal pathological injury. CONCLUSION Apigenin 7-O-glucoside is the main urate-lowering active component of P. suffruticosa leaf extract in the hyperuricemic mice. It suppressed liver xanthine oxidase activity to decrease uric acid synthesis and modulated renal urate transporters to stimulate uric acid excretion, alleviating kidney damage caused by hyperuricemia.
Collapse
Affiliation(s)
- Yan Zhang
- The College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China
| | - Yao Li
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, China
| | - Chang Li
- The College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China
| | - Yani Zhao
- Xi'an Encephalopathy Hospital of Traditional Chinese Medicine, Xi'an, Shaanxi 710000, China
| | - Lu Xu
- The College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China
| | - Shanbo Ma
- The College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China
| | - Fen Lin
- Research and Development Department, Shaanxi Fengdan Zhengyuan Biotechnology Limited Company, Xi'an, Shaanxi 710076, China
| | - Yanhua Xie
- The College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China
| | - Junming An
- Department of Acupuncture, Xi'an Hospital of Traditional Chinese Medicine, Xi'an, Shaanxi 710021, China.
| | - Siwang Wang
- The College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China.
| |
Collapse
|
34
|
James A, Wang K, Wang Y. Therapeutic Activity of Green Tea Epigallocatechin-3-Gallate on Metabolic Diseases and Non-Alcoholic Fatty Liver Diseases: The Current Updates. Nutrients 2023; 15:3022. [PMID: 37447347 DOI: 10.3390/nu15133022] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Green tea polyphenols have numerous functions including antioxidation and modulation of various cellular proteins and are thus beneficial against metabolic diseases including obesity, type 2 diabetes, cardiovascular and non-alcoholic fatty liver diseases, and their comorbidities. Epigallocatechin-3-gallate (EGCG) is the most abundant polyphenol in green tea and is attributed to antioxidant and free radical scavenging activities, and the likelihood of targeting multiple metabolic pathways. It has been shown to exhibit anti-obesity, anti-inflammatory, anti-diabetic, anti-arteriosclerotic, and weight-reducing effects in humans. Worldwide, the incidences of metabolic diseases have been escalating across all age groups in modern society. Therefore, EGCG is being increasingly investigated to address the problems. This review presents the current updates on the effects of EGCG on metabolic diseases, and highlights evidence related to its safety. Collectively, this review brings more evidence for therapeutic application and further studies on EGCG and its derivatives to alleviate metabolic diseases and non-alcoholic fatty liver diseases.
Collapse
Affiliation(s)
- Armachius James
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China
- Tanzania Agricultural Research Institute (TARI), Makutupora Center, Dodoma P.O. Box 1676, Tanzania
| | - Ke Wang
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China
- Rizhao Huawei Institute of Comprehensive Health Industries, Shandong Keepfit Biotech. Co., Ltd., Rizhao 276800, China
| | - Yousheng Wang
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
35
|
Lin F, Sun M, Gao J, Zhang B, Mao Q, Bao Z, Shen C, Li Q, Wang H, Wang S. Identification of 5-[5-cyano-1-(pyridin-2-ylmethyl)-1H-indole-3-carboxamido] thiazole-4-carboxylic acid as a promising dual inhibitor of urate transporter 1 and xanthine oxidase. Eur J Med Chem 2023; 257:115532. [PMID: 37295161 DOI: 10.1016/j.ejmech.2023.115532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/18/2023] [Accepted: 05/27/2023] [Indexed: 06/12/2023]
Abstract
In combination with allopurinol, tranilast is used as an urate transporter 1 (URAT1) inhibitor for the treatment of hyperuricemia, but its structure-activity relationship concerning URAT1 inhibitory activity is rarely studied. In this paper, analogs 1-30 were designed and synthesized using scaffold hopping strategy on the basis of tranilast and the privileged scaffold indole. Then, URAT1 activity was evaluated using 14C-uric acid uptake assay with HEK293-URAT1 overexpressing cells. Compared with tranilast (inhibitory rate = 44.9% at 10 μM), most compounds displayed apparent inhibitory effects, ranging from 40.0% to 81.0% at 10 μM on URAT1. Surprisingly, along with the bringing in of a cyano group at the 5-position of indole ring, compounds 26 and 28-30 exerted xanthine oxidase (XO) inhibitory activity. In particular, compound 29 presented potency on URAT1 (48.0% at 10 μM) and XO (IC50 = 1.01 μM). Molecular simulation analysis revealed that the basic structure of compound 29 had an affinity with URAT1, and XO. Furthermore, compound 29 demonstrated a significant hypouricemic effect in a potassium oxonate-induced hyperuricemia rat model at an oral dose of 10 mg/kg during in vivo tests. In summary, tranilast analog 29 was identified as a potent dual-target inhibitor of URAT1 and XO, and a promising lead compound for further investigation.
Collapse
Affiliation(s)
- Fengwei Lin
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang, 110016, China
| | - Ming Sun
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang, 110016, China
| | - Jun Gao
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang, 110016, China
| | - Bing Zhang
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang, 110016, China
| | - Qing Mao
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang, 110016, China
| | - Ziyang Bao
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang, 110016, China
| | - Chao Shen
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang, 110016, China
| | - Qiuhua Li
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang, 110016, China
| | - Han Wang
- Department of Orthopaedics, The First Hospital of China Medical University, Shenyang, 110001, China.
| | - Shaojie Wang
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang, 110016, China.
| |
Collapse
|
36
|
Guo XL, Gao YY, Yang YX, Zhu QF, Guan HY, He X, Zhang CL, Wang Y, Xu GB, Zou SH, Wei MC, Zhang J, Zhang JJ, Liao SG. Amelioration effects of α-viniferin on hyperuricemia and hyperuricemia-induced kidney injury in mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 116:154868. [PMID: 37209608 DOI: 10.1016/j.phymed.2023.154868] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/12/2023] [Accepted: 05/08/2023] [Indexed: 05/22/2023]
Abstract
BACKGROUND α-Viniferin, the major constituent of the roots of Caragana sinica (Buc'hoz) Rehder with a trimeric resveratrol oligostilbenoid skeleton, was demonstrated to possess a strong inhibitory effect on xanthine oxidase in vitro, suggesting it to be a potential anti-hyperuricemia agent. However, the in vivo anti-hyperuricemia effect and its underlying mechanism were still unknown. PURPOSE The current study aimed to evaluate the anti-hyperuricemia effect of α-viniferin in a mouse model and to assess its safety profile with emphasis on its protective effect on hyperuricemia-induced renal injury. METHODS The effects were assessed in a potassium oxonate (PO)- and hypoxanthine (HX)-induced hyperuricemia mice model by analyzing the levels of serum uric acid (SUA), urine uric acid (UUA), serum creatinine (SCRE), serum urea nitrogen (SBUN), and histological changes. Western blotting and transcriptomic analysis were used to identify the genes, proteins, and signaling pathways involved. RESULTS α-Viniferin treatment significantly reduced SUA levels and markedly mitigated hyperuricemia-induced kidney injury in the hyperuricemia mice. Besides, α-viniferin did not show any obvious toxicity in mice. Research into the mechanism of action of α-viniferin revealed that it not only inhibited uric acid formation by acting as an XOD inhibitor, but also reduced uric acid absorption by acting as a GLUT9 and URAT1 dual inhibitor as well as promoted uric acid excretion by acting as a ABCG2 and OAT1 dual activator. Then, 54 differentially expressed (log2 FPKM ≥ 1.5, p ≤ 0.01) genes (DEGs) repressed by the treatment of α-viniferin in the hyperuricemia mice were identified in the kidney. Finally, gene annotation results revealed that downregulation of S100A9 in the IL-17 pathway, of CCR5 and PIK3R5 in the chemokine signaling pathway, and of TLR2, ITGA4, and PIK3R5 in the PI3K-AKT signaling pathway were involved in the protective effect of α-viniferin on the hyperuricemia-induced renal injury. CONCLUSIONS α-Viniferin inhibited the production of uric acid through down-regulation of XOD in hyperuricemia mice. Besides, it also down-regulated the expressions of URAT1 and GLUT9 and up-regulated the expressions of ABCG2 and OAT1 to promote the excretion of uric acid. α-Viniferin could prevent hyperuricemia mice from renal damage by regulating the IL-17, chemokine, and PI3K-AKT signaling pathways. Collectively, α-viniferin was a promising antihyperuricemia agent with desirable safety profile. This is the first report of α-viniferin as an antihyperuricemia agent.
Collapse
Affiliation(s)
- Xiao-Li Guo
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guian New District, 550025, Guizhou, China
| | - Yan-Yan Gao
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guian New District, 550025, Guizhou, China
| | - Ya-Xin Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guian New District, 550025, Guizhou, China
| | - Qin-Feng Zhu
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guian New District, 550025, Guizhou, China
| | - Huan-Yu Guan
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guian New District, 550025, Guizhou, China
| | - Xun He
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guian New District, 550025, Guizhou, China
| | - Chun-Lei Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guian New District, 550025, Guizhou, China
| | - Ya Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guian New District, 550025, Guizhou, China
| | - Guo-Bo Xu
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guian New District, 550025, Guizhou, China; National Engineering Research Center of Miao's Medicines & Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education & Guizhou Provincial Key Laboratory of Pharmaceutics, Guiyang, 550004, Guizhou, China
| | - Shu-Han Zou
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guian New District, 550025, Guizhou, China
| | - Mao-Chen Wei
- Guiyang Xintian Pharmaceutical Co., Ltd, Guiyang, 550000, Guizhou, China
| | - Jian Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guian New District, 550025, Guizhou, China; Medicinal Bioinformatics Center, Shanghai JiaoTong University School of Medicine, 2000000, Shanghai, China
| | - Jin-Juan Zhang
- School of Basic Medical Sciences, Guizhou Medical University, Guizhou 550025, China.
| | - Shang-Gao Liao
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guian New District, 550025, Guizhou, China; National Engineering Research Center of Miao's Medicines & Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education & Guizhou Provincial Key Laboratory of Pharmaceutics, Guiyang, 550004, Guizhou, China.
| |
Collapse
|
37
|
Bi M, Feng A, Liu Y, Tian S. U-shaped association of serum uric acid with cardiovascular disease risk scores and the modifying role of sex among Chinese adults. Nutr Metab Cardiovasc Dis 2023; 33:1066-1076. [PMID: 36958966 DOI: 10.1016/j.numecd.2023.02.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 02/16/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023]
Abstract
BACKGROUND AND AIMS Serum uric acid (SUA) is involved in the development of cardiovascular disease (CVD). However, information on the dose-response relationship between SUA and CVD is limited in the Chinese population. This study aimed to investigate the potential nonlinear dose-response association of SUA with CVD risk in a Chinese population and to explore the effect of sex on these associations. METHODS AND RESULTS Cross-sectional data, from 6252 Chinese adults aged 30-74 years who participated in the China Health and Nutrition Survey 2009, were stratified by SUA deciles. The 10-year risk of CVD was determined using the Framingham risk score. A restricted cubic spline (RCS) was incorporated into the logistic models to assess the nonlinear relationship between SUA and CVD. Among the participants, 65%, 20%, and 15% had low, moderate, and high 10-year CVD risks, respectively. Compared with the reference SUA strata of 225 to <249 μmol/L, CVD risk was significantly increased at SUA ≥294 μmol/L, with adjusted ORs ranging from 2.39 (1.33-4.33) to 4.25 (2.37-7.65). An increasingly higher nonsignificant CVD risk was found at SUA <225 μmol/L and showed a nonlinear U-shaped association. In the fitted RCS model, an approximate U-shaped association between SUA and CVD risk scores was found in women, but this significant nonlinear relationship was not found in men. CONCLUSION This study showed that both lower and higher SUA levels were associated with a higher 10-year CVD risk among Chinese adults, forming a U-shaped relationship, and this pattern was particularly pronounced for women.
Collapse
Affiliation(s)
- Mei Bi
- Department of Clinical Nutrition and Metabolism, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Ao Feng
- Department of Prevention and Healthcare, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Yazhuo Liu
- Department of Clinical Nutrition and Metabolism, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Simiao Tian
- Department of Medical Record and Statistics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China.
| |
Collapse
|
38
|
Cicero AFG, Fogacci F, Di Micoli V, Angeloni C, Giovannini M, Borghi C. Purine Metabolism Dysfunctions: Experimental Methods of Detection and Diagnostic Potential. Int J Mol Sci 2023; 24:ijms24087027. [PMID: 37108190 PMCID: PMC10138451 DOI: 10.3390/ijms24087027] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/06/2023] [Accepted: 04/09/2023] [Indexed: 04/29/2023] Open
Abstract
Purines, such as adenine and guanine, perform several important functions in the cell. They are found in nucleic acids; are structural components of some coenzymes, including NADH and coenzyme A; and have a crucial role in the modulation of energy metabolism and signal transduction. Moreover, purines have been shown to play an important role in the physiology of platelets, muscles, and neurotransmission. All cells require a balanced number of purines for growth, proliferation, and survival. Under physiological conditions, enzymes involved in purines metabolism maintain a balanced ratio between their synthesis and degradation in the cell. In humans, the final product of purine catabolism is uric acid, while most other mammals possess the enzyme uricase that converts uric acid to allantoin, which can be easily eliminated with urine. During the last decades, hyperuricemia has been associated with a number of human extra-articular diseases (in particular, the cardiovascular ones) and their clinical severity. In this review, we go through the methods of investigation of purine metabolism dysfunctions, looking at the functionality of xanthine oxidoreductase and the formation of catabolites in urine and saliva. Finally, we discuss how these molecules can be used as markers of oxidative stress.
Collapse
Affiliation(s)
- Arrigo F G Cicero
- Cardiovascular Internal Medicine Unit, IRCCS Azienda Ospedaliero Universitaria di Bologna, 40138 Bologna, Italy
- Hypertension and Cardiovascular Risk Research Group, Medical and Surgical Sciences Department, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy
| | - Federica Fogacci
- Hypertension and Cardiovascular Risk Research Group, Medical and Surgical Sciences Department, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy
| | - Valentina Di Micoli
- Medical and Surgical Sciences Department, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy
| | - Cristina Angeloni
- Department for Life Quality Studies, Alma Mater Studiorum University of Bologna, 47921 Rimini, Italy
| | - Marina Giovannini
- Hypertension and Cardiovascular Risk Research Group, Medical and Surgical Sciences Department, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy
| | - Claudio Borghi
- Cardiovascular Internal Medicine Unit, IRCCS Azienda Ospedaliero Universitaria di Bologna, 40138 Bologna, Italy
- Hypertension and Cardiovascular Risk Research Group, Medical and Surgical Sciences Department, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy
| |
Collapse
|
39
|
Bitar AN, Sulaiman SAS. The evidence from clinical trials on Gout medicines effect on COVID-19: A protocol for systematic review and meta-analysis. Nurs Open 2023; 10:2684-2688. [PMID: 36443281 PMCID: PMC9878240 DOI: 10.1002/nop2.1501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 08/13/2022] [Accepted: 11/15/2022] [Indexed: 12/02/2022] Open
Abstract
AIM To evaluate the available evidence from clinical trials on the efficacy of gout medicines against COVID-19. DESIGN Systematic review and Meta-analysis. METHODS We are systematically searching five databases [PubMed, Embase, CT.gov, ICTRP, CINAHL (EBSCO)]. We are following the PRISMA statement and the EPOC guidelines. The meta-analysis will be conducted using Revman-5.4.1 from Cochrane collaboration, UK. This review's protocol was also registered in PROSPERO, University of York, UK (CRD42022299718). RESULTS In this meta-analysis, we plan to give a conclusive overview of the available evidence on the efficacy of the medications used to manage gout in reducing COVID-19 mortality, ICU admission, ventilation rate and hospitalization duration. If the results were positive, these drugs would greatly add to the scarce treatment options against COVID-19. Furthermore, these drugs might provide an excellent alternative to inconvenient and expensive drugs. Additionally, most of these drugs have a well-established safety profile for use during nursing, making them a much safer option for nursing mothers with COVID-19.
Collapse
Affiliation(s)
- Ahmad Naoras Bitar
- Department of Clinical Pharmacy, Faculty of Pharmacy, University of Aleppo, Aleppo, Syria.,Department of Clinical Pharmacy, Michel Sayegh College of Pharmacy, Aqaba University of Technology, Aqaba, Jordan
| | - Syed Azhar Syed Sulaiman
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia
| |
Collapse
|
40
|
Onódi Z, Koch S, Rubinstein J, Ferdinandy P, Varga ZV. Drug repurposing for cardiovascular diseases: New targets and indications for probenecid. Br J Pharmacol 2023; 180:685-700. [PMID: 36484549 DOI: 10.1111/bph.16001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 11/12/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022] Open
Abstract
The available pharmacological options in the management of cardiovascular diseases such as ischaemic heart disease and subsequent heart failure are effective in slowing the progression of this condition. However, the long-term prognosis is still poor, raising the demand for new therapeutic strategies. Drug repurposing is a time- and cost-effective drug development strategy that offers approved and abandoned drugs a new chance for new indications. Recently, drugs used for the management of gout-related inflammation such as canakinumab or colchicine have been considered for drug repurposing in cardiovascular indications. The old uricosuric drug, probenecid, has been identified as a novel therapeutic option in the management of specific cardiac diseases as well. Probenecid can modulate myocardial contractility and vascular tone and exerts anti-inflammatory properties. The mechanisms behind these beneficial effects might be related inhibition of inflammasomes, and to modulation purinergic-pannexin-1 signalling and TRPV2 channels, which are recently identified molecular targets of probenecid. In this review, we provide an overview on repurposing probenecid for ischaemic heart disease and subsequent heart failure by summarizing the related experimental and clinical data and propose its potential repurposing to treat cardiovascular diseases.
Collapse
Affiliation(s)
- Zsófia Onódi
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary.,HCEMM-SU Cardiometabolic Immunology Research Group, Semmelweis University, Budapest, Hungary.,MTA-SE Momentum Cardio-Oncology and Cardioimmunology Research Group, Semmelweis University, Budapest, Hungary
| | - Sheryl Koch
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, College of Medicine, University of Cincinnati Medical Center, Cincinnati, Ohio, USA
| | - Jack Rubinstein
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, College of Medicine, University of Cincinnati Medical Center, Cincinnati, Ohio, USA
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary.,Pharmahungary Group, Szeged, Hungary
| | - Zoltán V Varga
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary.,HCEMM-SU Cardiometabolic Immunology Research Group, Semmelweis University, Budapest, Hungary.,MTA-SE Momentum Cardio-Oncology and Cardioimmunology Research Group, Semmelweis University, Budapest, Hungary
| |
Collapse
|
41
|
Mechanism of Xiezhuo Huayu Yiqi Tongluo Formula in the Treatment of Uric Acid Nephropathy Based on Network Pharmacology, Molecular Docking, and In Vivo Experiments. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2023; 2023:6931644. [PMID: 36865745 PMCID: PMC9974263 DOI: 10.1155/2023/6931644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/28/2023] [Accepted: 02/03/2023] [Indexed: 02/23/2023]
Abstract
Background Xiezhuo Huayu Yiqi Tongluo Formula (XHYTF) consists of 14 Chinese herbal medicines. In this study, we investigated the potential mechanism of XHYTF in the treatment of uric acid nephropathy (UAN) through network pharmacology, molecular docking, and in vivo methods. Methods Using various pharmacological databases and analysis platforms, information on the active ingredients and targets of Chinese herbal medicine was collected, and UAN disease targets were retrieved using OMIM, Gene Cards, and NCBI. Then common target proteins were integrated. A Drug-Component-Target (D-C-T) map was constructed to screen core compounds and build a protein-protein interaction (PPI) network. Further, Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed for common targets, and a Drug-Component-Target-Pathway (D-C-T-P) network diagram was constructed. The molecular docking simulation was performed to verify the binding affinity between core components and hub targets. Subsequently, the UAN rat model was established, followed by the collection of serum and renal tissues. The expression levels of indicators in the serum were determined using an enzyme-linked immunosorbent assay. The pathological changes of renal tissues were detected using H & E staining and Masson staining. The expression of related proteins in renal tissue was detected by western blot. Results In the study, 216 active ingredients and 439 targets in XHYTF were screened, and 868 targets were identified as being related to UAN. Among them, 115 were common targets. Based on the D-C-T network, quercetin, luteolin, β-sitosterol, and stigmasterol were observed to be the key active ingredients of XHYTF that were effective against UAN. The analysis of the PPI network revealed TNF, IL6, AKT1, PPARG, and IL1β as the 5 key targets. GO enrichment analysis revealed that the pathways were mainly concentrated in cell killing, regulation of signaling receptor activity, and other activities. Subsequently, KEGG pathway analysis revealed that multiple signaling pathways, including the HIF-1, PI3K-Akt, IL-17, and other signaling pathways, were closely related to the action of XHYTF. All 5 key targets were confirmed to interact with all core active ingredients. In vivo experiments indicated that XHYTF significantly reduced blood uric acid and creatinine levels, alleviated inflammatory cell infiltration in kidney tissues, reduced the levels of serum inflammatory factors such as TNF-α and IL1β, and ameliorated renal fibrosis in rats with UAN. Finally, western blot revealed decreased levels of PI3K and AKT1 proteins in the kidney, which confirmed the hypothesis. Conclusion Collectively, our observations demonstrated that XHYTF significantly protects kidney function, including alleviation of inflammation and renal fibrosis via multiple pathways. This study provided novel insights into the treatment of UAN using traditional Chinese medicines.
Collapse
|
42
|
Huang Z, Zhang W, An Q, Lang Y, Liu Y, Fan H, Chen H. Exploration of the anti-hyperuricemia effect of TongFengTangSan (TFTS) by UPLC-Q-TOF/MS-based non-targeted metabonomics. Chin Med 2023; 18:17. [PMID: 36797795 PMCID: PMC9933412 DOI: 10.1186/s13020-023-00716-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 01/28/2023] [Indexed: 02/18/2023] Open
Abstract
BACKGROUND TongFengTangSan (TFTS) is a commonly used Tibetan prescription for gout treatment. Previously, TFTS (CF) was confirmed to have a significant uric acid-lowering effect. However, the anti-hyperuricemia mechanisms and the main active fractions remain unclear. The current study aimed to investigate the anti-hyperuricemia mechanism using metabolomics and confirm the active CF fraction. METHODS The hyperuricemia model was established through intraperitoneal injection containing 100 mg/kg potassium oxonate and 150 mg/kg hypoxanthine by gavage. We used serum uric acid (sUA), creatinine (CRE), blood urea nitrogen (BUN), xanthine oxidase (XOD) activity, interleukin-6 (IL-6) and interleukin-1β (IL-1β) as indicators to evaluate the efficacy of CF and the four fractions (SX, CF30, CF60, and CF90). The anti-hyperuricemia mechanism of CF was considered through non-targeted metabolomics depending on the UPLC-Q-TOF-MS technology. Principle component analysis (PCA) and orthogonal partial least squares-discriminant analysis (OPLS-DA) helped explore the potential biomarkers in hyperuricemia. Moreover, the differential metabolites and metabolic pathways regulated by CF and four fractions were also assessed. RESULTS CF revealed a significant anti-hyperuricemia effect by down-regulating the level of sUA, sCRE, sIL-1β, and XOD. SX, CF30, CF60, and CF90 differed in the anti-hyperuricemia effect. Only CF60 significantly lowered the sUA level among the four fractions, and it could be the main efficacy fraction of TFTS. Forty-three differential metabolites were identified in hyperuricemia rats from plasma and kidney. Pathway analysis demonstrated that seven pathways were disrupted among hyperuricemia rats. CF reversed 19 metabolites in hyperuricemia rats and exerted an anti-hyperuricemia effect by regulating purine metabolism. CF60 was the main active fraction of TFTS and exerted a similar effect of CF by regulating purine metabolism. CONCLUSIONS CF and CF60 could exert an anti-hyperuricemia effect by regulating the abnormal purine metabolism because of hyperuricemia while improving intestinal and renal function. CF60 could be the main active fraction of TFTS.
Collapse
Affiliation(s)
- Zhichao Huang
- grid.411868.20000 0004 1798 0690Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang, 330004 China
| | - Wugang Zhang
- grid.411868.20000 0004 1798 0690Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang, 330004 China ,grid.411868.20000 0004 1798 0690State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330006 China
| | - Qiong An
- grid.411868.20000 0004 1798 0690Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang, 330004 China
| | - Yifan Lang
- grid.411868.20000 0004 1798 0690State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330006 China
| | - Ye Liu
- grid.411868.20000 0004 1798 0690State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330006 China
| | - Huifang Fan
- grid.411868.20000 0004 1798 0690State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330006 China
| | - Haifang Chen
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang, 330004, China.
| |
Collapse
|
43
|
Rodríguez JM, Garranzo M, Segura J, Orgaz B, Arroyo R, Alba C, Beltrán D, Fernández L. A randomized pilot trial assessing the reduction of gout episodes in hyperuricemic patients by oral administration of Ligilactobacillus salivarius CECT 30632, a strain with the ability to degrade purines. Front Microbiol 2023; 14:1111652. [PMID: 36865781 PMCID: PMC9971985 DOI: 10.3389/fmicb.2023.1111652] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/17/2023] [Indexed: 02/16/2023] Open
Abstract
Introduction Hyperuricemia and gout are receiving an increasing scientific and medical attention because of their relatively high prevalence and their association with relevant co-morbidities. Recently, it has been suggested that gout patients have an altered gut microbiota. The first objective of this study was to investigate the potential of some Ligilactobacillus salivarius strains to metabolize purine-related metabolites. The second objective was to evaluate the effect of administering a selected potential probiotic strain in individuals with a history of hyperuricemia. Methods Inosine, guanosine, hypoxanthine, guanine, xanthine, and uric acid were identified and quantified by high-performance liquid chromatography analysis. The uptake and biotransformation of these compounds by a selection of L. salivarius strains were assessed using bacterial whole cells and cell-free extracts, respectively. The efficacy of L. salivarius CECT 30632 to prevent gout was assessed in a pilot randomized controlled clinical trial involving 30 patients with hyperuricemia and a history of recurrent gout episodes. Half of the patients consumed L. salivarius CECT 30632 (9 log10 CFU/day; probiotic group; n = 15) for 6 months while the remaining patients consumed allopurinol (100-300 mg/daily; control group; n = 15) for the same period. The clinical evolution and medical treatment received by the participants were followed, as well as the changes in several blood biochemical parameters. Results L. salivarius CECT 30632 was the most efficient strain for inosine (100%), guanosine (100%) and uric acid (50%) conversion and, therefore, it was selected for the pilot clinical trial. In comparison with the control group, administration of L. salivarius CECT 30632 resulted in a significant reduction in the number of gout episodes and in the use of gout-related drugs as well as an improvement in some blood parameters related to oxidative stress, liver damage or metabolic syndrome. Conclusion Regular administration of L. salivarius CECT 30632 reduced serum urate levels, the number of gout episodes and the pharmacological therapy required to control both hyperuricemia and gout episodes in individuals with a history of hyperuricemia and suffering from repeated episodes of gout.
Collapse
Affiliation(s)
- Juan M. Rodríguez
- Department of Nutrition and Food Science, Complutense University of Madrid, Madrid, Spain,Juan M. Rodríguez, ✉
| | - Marco Garranzo
- Department of Galenic Pharmacy and Food Technology, Complutense University of Madrid, Madrid, Spain
| | - José Segura
- Department of Galenic Pharmacy and Food Technology, Complutense University of Madrid, Madrid, Spain
| | - Belén Orgaz
- Department of Galenic Pharmacy and Food Technology, Complutense University of Madrid, Madrid, Spain
| | - Rebeca Arroyo
- Department of Nutrition and Food Science, Complutense University of Madrid, Madrid, Spain
| | - Claudio Alba
- Department of Nutrition and Food Science, Complutense University of Madrid, Madrid, Spain
| | - David Beltrán
- Centro de Diagnóstico Médico, Ayuntamiento de Madrid, Madrid, Spain
| | - Leónides Fernández
- Department of Galenic Pharmacy and Food Technology, Complutense University of Madrid, Madrid, Spain,*Correspondence: Leónides Fernández, ✉
| |
Collapse
|
44
|
Wang C, Yu Q, Jiang X, Deng Y, Sun F, Li X, Tao Y, Lin P, Ma Y, Zhu Y, Li C, Cao Y. A Drug-Drug Interaction Study of a Novel Selective Urate Reabsorption Inhibitor, SHR4640, and Xanthine Oxidase Inhibitor, Febuxostat, in Patients With Primary Hyperuricemia. J Clin Pharmacol 2023; 63:239-249. [PMID: 36131360 DOI: 10.1002/jcph.2159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 09/14/2022] [Indexed: 01/21/2023]
Abstract
SHR4640 is a novel, selective urate reabsorption inhibitor. As the mode of action of SHR4640 differs from that of a xanthine oxidase inhibitor, such as febuxostat, coadministration of these drugs may be a treatment option for patients with primary hyperuricemia. We assessed the potential drug-drug interaction between SHR4640 and febuxostat. In this single-center, open-label, randomized, drug-drug interaction study, subjects received 80 mg febuxostat or 10 mg SHR4640 alone daily in the first week, whereas during the second week a combination of SHR4640 and febuxostat was administered daily to all subjects. Plasma concentrations of SHR4640 and febuxostat were analyzed. We compared their pharmacokinetic and pharmacodynamic parameters and assessed both safety and tolerability. Compared with febuxostat alone, the geometric mean ratios (90%CIs) of the maximum concentration (Cmax ) and the area under the plasma concentration-time curve over the dosing interval τ (AUC0-τ ) for febuxostat after coadministration were 1.284 (1.016 to 1.621) and 0.984 (0.876 to 1.106), respectively. The geometric mean ratios (90%CIs) of Cmax and AUC0-τ for SHR4640 after coadministration compared with SHR4640 alone were 0.910 (0.839 to 0.988) and 0.929 (0.893 to 0.966), respectively. Febuxostat had no effect on SHR4640 pharmacokinetic parameters, as the 90%CIs of the geometric mean ratios were all within the range of 0.80 to 1.25. The coadministration of febuxostat and SHR4640 was well tolerated. The coadministration of SHR4640 with febuxostat was not associated with any clinically relevant pharmacokinetic drug interactions. SHR4640 combined with febuxostat had a synergistic effect on reducing uric acid in the pharmacodynamics, with the AUC decreasing from 7440 to 3170 h μmol/L compared with febuxostat alone and from 5730 to 2960 h μmol/L compared with SHR4640 alone.
Collapse
Affiliation(s)
- Chenjing Wang
- Clinical Trial Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qing Yu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xin Jiang
- Clinical Trial Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yujie Deng
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Feifei Sun
- Clinical Trial Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xin Li
- Clinical Trial Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ye Tao
- Clinical Trial Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Pingping Lin
- Clinical Trial Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yaping Ma
- Clinical Trial Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yuxian Zhu
- Jiangsu Hengrui Pharmaceuticals Co., Ltd, Shanghai, China
| | - Chengqian Li
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yu Cao
- Clinical Trial Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
45
|
Ai G, Huang R, Xie J, Zhong L, Wu X, Qin Z, Su Z, Chen J, Yang X, Dou Y. Hypouricemic and nephroprotective effects of palmatine from Cortex Phellodendri Amurensis: A uric acid modulator targeting Keap1-Nrf2/NLRP3 axis. JOURNAL OF ETHNOPHARMACOLOGY 2023; 301:115775. [PMID: 36198377 DOI: 10.1016/j.jep.2022.115775] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/19/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Palmatine (Pal) is a major bioactive alkaloid originated from ancient Chinese herbal medicine Cortex Phellodendri Amurensis (CPA), which has long been applied to treat hyperuricemia (HUA)-related diseases. Pal possesses potent anti-inflammatory and anti-oxidant effects against metabolic diseases. However, its potential beneficial effect against PO (potassium oxonate)/HX (hypoxanthine)-induced HUA remains elusive. AIM OF THE STUDY This study aimed to investigate the potential pharmacological effect and mechanism of Pal on PO/HX-induced HUA in mice. MATERIAL AND METHODS A mouse model of HUA was established by co-administration of PO/HX once daily for 7 consecutive days. The HUA mice were orally given three doses (25, 50 and 100 mg/kg) of Pal daily for a week. Febuxostat (Feb, 5 mg/kg) was given as a positive control. At the scheduled termination of the experiment, the whole blood, liver and kidney were collected for subsequent analyses. The concentrations of uric acid (UA), creatinine (CRE) and blood urea nitrogen (BUN), and activities of adenosine deaminase (ADA) and xanthine oxidase (XOD) were evaluated. Histopathological alterations of the kidney were detected by H&E staining. The inflammatory and oxidative stress status was detected by assay kits. Additionally, key proteins involved in the urate transporter, Keap1-Nrf2 and TXNIP/NLRP3 signaling pathways were evaluated by immunohistochemistry and Western blotting. Finally, molecular docking was employed to probe the binding characteristics of Pal and target proteins Keap1, NLRP3, URAT1 and HO-1. RESULTS Administration of Pal substantially decreased the elevated kidney weight, lowered UA, CRE and BUN levels, and attenuated abnormal histopathological alterations. Meanwhile, treatment with Pal also dramatically lowered hepatic XOD and ADA activities. Besides, Pal treatment effectively mitigated the renal inflammatory and oxidative stress markers. Further mechanistic investigation indicated Pal distinctly downregulated the protein levels of GLUT9 and URAT1, while up-regulated the expression levels of OAT1 and ABCG2. Pal also restored Nrf2 activation, promoted subsequent expression of anti-oxidative enzymes, and downregulated the expressions of TXNIP, NLRP3, apoptosis-associated speck-like (ASC), caspase-1, IL-1β and IL-18. Molecular docking analysis also indicated Pal firmly bound with Keap1, NLRP3, URAT1 and HO-1. CONCLUSIONS These findings indicated that Pal exhibited favorable anti-HUA effect via modulating the expressions of transporter-related proteins and suppressing XOD activity. Furthermore, Pal also alleviated HUA-induced kidney injury, which was at least partially related to restoring Keap1-Nrf2 pathway and inhibiting TXNIP/NLRP3 inflammasome. Our investigation was envisaged to provide experimental support for the traditional application of CPA and CPA-containing classical herbal formulas in the management of HUA-related diseases and might provide novel dimension to the clinical application of Pal.
Collapse
Affiliation(s)
- Gaoxiang Ai
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Ronglei Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Jianhui Xie
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, 510006, PR China
| | - Linjiang Zhong
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Xiaoyan Wu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Zehui Qin
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Ziren Su
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Jiannan Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Xiaobo Yang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, 510006, PR China.
| | - Yaoxing Dou
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China; The Second Clinical Medical College of Guangzhou University of Chinese Medicine/Post-Doctoral Research Station, Guangzhou, 510006, PR China.
| |
Collapse
|
46
|
Xie D, Shen Y, Su E, Du L, Xie J, Wei D. Anti-Hyperuricemic, Nephroprotective, and Gut Microbiota Regulative Effects of Separated Hydrolysate of α-Lactalbumin on Potassium Oxonate- and Hypoxanthine-Induced Hyperuricemic Mice. Mol Nutr Food Res 2023; 67:e2200162. [PMID: 36308034 DOI: 10.1002/mnfr.202200162] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 09/29/2022] [Indexed: 01/19/2023]
Abstract
SCOPE This study aims to investigate the anti-hyperuricemic and nephroprotective effects and the potential mechanisms of the separated gastrointestinal hydrolysates of α-lactalbumin on hyperuricemic mice. METHODS AND RESULTS The gastrointestinal hydrolysate of α-lactalbumin, the hydrolysate fraction with molecular weight (MW) < 3 kDa (LH-3k), and the fragments with smallest MW among LH-3K harvested through dextran gel chromatography (F5) are used. Hyperuricemia mice are induced via daily oral gavage of potassium oxonate and hypoxanthine. F5 displays the highest in vitro xanthine oxidase (XO) inhibition among all the fractions separated from LH-3k. Oral administration of F5 significantly reduces the levels of serum uric acid (UA), creatinine, and urea nitrogen. F5 treatment could ameliorate kidney injury through alleviating oxidative stress and inflammation. F5 alleviates hyperuricemia in mice by inhibiting hepatic XO activity and regulating the expression of renal urate transporters. Gut microbiota analysis illustrates that F5 administration increases the abundance of some SCFAs producers, and inhibits the growth of hyperuricemia and inflammation associated genera. LH-3k exhibits similar effects but does not show significance as those of the F5 fraction. CONCLUSION The anti-hyperuricemia and nephroprotective functions of F5 are mediated by inhibiting hepatic XO activity, ameliorating oxidative stress and inflammation, regulating renal urate transporters, and modulating the gut microbiota in hyperuricemic mice.
Collapse
Affiliation(s)
- Dewei Xie
- State Key Laboratory of Bioreactor Engineering, Department of Food Science and Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Yaling Shen
- State Key Laboratory of Bioreactor Engineering, Department of Food Science and Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Erzheng Su
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, P. R. China
| | - Lei Du
- State Key Laboratory of Bioreactor Engineering, Department of Food Science and Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Jingli Xie
- State Key Laboratory of Bioreactor Engineering, Department of Food Science and Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, P. R. China.,Shanghai Collaborative Innovation Center for Biomanufacturing (SCICB), Shanghai, 200237, P. R. China
| | - Dongzhi Wei
- State Key Laboratory of Bioreactor Engineering, Department of Food Science and Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, P. R. China.,Shanghai Collaborative Innovation Center for Biomanufacturing (SCICB), Shanghai, 200237, P. R. China
| |
Collapse
|
47
|
Huang J, Lin Z, Wang Y, Ding X, Zhang B. Wuling San Based on Network Pharmacology and in vivo Evidence Against Hyperuricemia via Improving Oxidative Stress and Inhibiting Inflammation. Drug Des Devel Ther 2023; 17:675-690. [PMID: 36911073 PMCID: PMC9994669 DOI: 10.2147/dddt.s398625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/12/2023] [Indexed: 03/06/2023] Open
Abstract
Background Hyperuricemia (HUA) is a major public health issue with a high prevalence worldwide. Wuling San (WLS) is an effective treatment for HUA. However, the active compounds and the related mechanism are unclear. In this study, we aimed to explore the active compounds and the underlying pharmacological mechanisms of WLS against HUA. Methods First, a network pharmacology approach was used to detect active compounds of WLS, and potential targets and signaling pathways involved in the treatment of HUA were predicted. Then, a molecular docking strategy was used to predict the affinity between active compounds and key targets. Finally, to verify the prediction, the HUA rat model was established. Results 49 active compounds with 108 common targets were obtained. Besides, cerevisterol, luteolin, ergosterol peroxide, beta-sitosterol, and sitosterol were identified as key active compounds. In PPI analysis, TNF, IL6, CASP3, PPARG, STAT3, and other 12 core targets were obtained. GO enrichment analysis indicated that WLS was likely to interfere with oxidative stress in the treatment of HUA, and KEGG enrichment analysis indicated multiple inflammation-related signaling pathways possibly involved in the treatment of HUA by WLS, including TNF, and NOD-like receptor, HIF-1, PI3K-Akt, and IL-17 signaling pathways. The results of molecular docking indicated that the active compounds had good binding properties to their key targets. In the validation experiments, WLS significantly reduced the levels of serum uric acid (SUA) and serum malondialdehyde (MDA). Moreover, WLS not only significantly increased the levels of total antioxidant capacity (T-AOC) and superoxide dismutase (SOD), but also inhibited the expression of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). Conclusion In the present study, we demonstrate that WLS has multicomponent, multitarget, and multi-pathway properties in the treatment of HUA. Its potential capability to reduce SUA could be ascribed to oxidative stress improvement and inflammation inhibition.
Collapse
Affiliation(s)
- Jing Huang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Zhijian Lin
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Yu Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Xueli Ding
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Bing Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| |
Collapse
|
48
|
Li YJ, Chen LR, Yang ZL, Wang P, Jiang FF, Guo Y, Qian K, Yang M, Yin SJ, He GH. Comparative efficacy and safety of uricosuric agents in the treatment of gout or hyperuricemia: a systematic review and network meta-analysis. Clin Rheumatol 2023; 42:215-224. [PMID: 36036279 DOI: 10.1007/s10067-022-06356-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/17/2022] [Accepted: 08/20/2022] [Indexed: 01/14/2023]
Abstract
OBJECTIVES The current world witnesses a greatly increased prevalence and incidence of hyperuricemia and gout with unfortunately the comparative efficacy and safety of present available uricosuric agents remaining uncertain. We herein aimed to investigate the most appropriate uricosuric agent for gout or hyperuricemia patients. METHOD PubMed, Embase, Cochrane Library databases, and ClinicalTrials.gov from inception to 2 July 2022 were searched to retrieve eligible studies assessing efficacy and safety of uricosuric drugs in hyperuricemia or gout patients. Network meta-analysis was carried out using the Stata 16.0 software. RESULTS Twelve randomized controlled trials comprising 1851 patients were eventually included. Network meta-analysis showed that dotinurad 4 mg once daily, verinurad, dotinurad 2 mg once daily, dotinurad 1 mg once daily, and benzbromarone were the top 5 effective treatments to achieve target serum uric acid. Furthermore, dotinurad 4 mg once daily was more effective at achieving urate-lowering targets (RR of dotinurad 4 mg once daily vs. probenecid: 1.68, 95% CI [1.13; 2.50]) and safer (RR of probenecid vs. dotinurad 4 mg once daily: 1.77, 95% CI [0.69; 4.56]) than probenecid. CONCLUSIONS This network meta-analysis demonstrated an important absolute benefit of dotinurad 4 mg once daily to achieve target serum uric acid and low risk of adverse events for drug treatment of gout or hyperuricemia patients. Additionally, verinurad might be used as an alternative uricosuric therapeutic option to dotinurad. These findings provided further comprehensive insight into the treatment value of current uricosuric agents for gout or hyperuricemia. Key Points 1. This is the first systematic review and network meta-analysis examining the efficacy and safety of currently available uricosuric agents in gout or hyperuricemia patients. 2. Recommended doses of dotinurad 4mg once daily used for the treatment of gout or hyperuricemia patients can significantly decrease serum uric acid levels. 3. The present findings will provide further comprehensive insight into the treatment value of certain uricosuric agents for gout or hyperuricemia.
Collapse
Affiliation(s)
- Ya-Jia Li
- Department of Clinical Pharmacy, 920th Hospital of Joint Logistics Support Force, 650032, Kunming, China
| | - Li-Rong Chen
- Department of Clinical Pharmacy, 920th Hospital of Joint Logistics Support Force, 650032, Kunming, China
| | - Zhong-Lei Yang
- Department of Clinical Pharmacy, 920th Hospital of Joint Logistics Support Force, 650032, Kunming, China
| | - Ping Wang
- Department of Clinical Pharmacy, 920th Hospital of Joint Logistics Support Force, 650032, Kunming, China
| | - Fang-Fang Jiang
- Department of Clinical Pharmacy, 920th Hospital of Joint Logistics Support Force, 650032, Kunming, China
| | - Yu Guo
- Department of Clinical Pharmacy, 920th Hospital of Joint Logistics Support Force, 650032, Kunming, China
| | - Kai Qian
- Department of Clinical Pharmacy, 920th Hospital of Joint Logistics Support Force, 650032, Kunming, China
| | - Mei Yang
- Department of Clinical Pharmacy, 920th Hospital of Joint Logistics Support Force, 650032, Kunming, China
| | - Sun-Jun Yin
- Department of Clinical Pharmacy, 920th Hospital of Joint Logistics Support Force, 650032, Kunming, China.
| | - Gong-Hao He
- Department of Clinical Pharmacy, 920th Hospital of Joint Logistics Support Force, 650032, Kunming, China.
| |
Collapse
|
49
|
Xanthine oxidase inhibitory potentials of flavonoid aglycones of Tribulus terrestris: in vivo, in silico and in vitro studies. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2022. [DOI: 10.1186/s43094-022-00448-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Abstract
Background
Despite the ongoing safety-driven spate of flavonoid xanthine oxidase (XOD) inhibition investigations, there is a lack of flavonoid-based uricostatic antihyperuricemic agents in clinical medicine. The poor pharmacokinetic profiles of glycosides (the natural form of existence of most flavonoids) relative to their aglycones could be largely responsible for this paradox. This investigation was aimed at providing both functional and molecular bases for the possible discovery of XOD inhibitory (or uricostatic) anti-hyperuricemic flavonoid aglycones from the leaves of a flavonoid-rich medicinal plant, Tribulus terrestris. To this end, the flavonoid aglycone fraction of T. terrestris leaf extract (FATT) was evaluated in vivo for antihyperuricemic activity in ethanol-induced hyperuricemic mice, monitoring serum and liver uric acid levels. Molecular docking and molecular dynamics simulation studies were carried out on the three major flavonoid aglycones of T. terrestris (isorhamnetin, quercetin and kaempferol) against an inhibitor conformation XOD model. The three flavonoids were also subjected to in vitro XOD activity assay, comparing their IC50 to that of allopurinol, a standard uricostatic antihyperuricemic drug.
Results
FATT significantly lowered serum uric acid (p < 0.0001) and liver uric acid (p < 0.05) levels of the experimental animals, implying anti-hyperuricemic activity with uricostatic action mechanism allusions. Molecular docking studies revealed high binding affinity values (− 7.8, − 8.1, − 8.2 kcal/mol) for the aglycones (isorhamnetin, quercetin and kaempferol, respectively). Radius of gyration and RMSD analyses of the molecular dynamics simulation trajectories of the three aglycone–XOD complexes revealed substantial stability, the highest stability being demonstrated by the kaempferol–XOD complex. In vitro XOD activity assay showed kaempferol (IC50: 8.2 ± 0.9 μg/ml), quercetin (IC50: 20.4 ± 1.3 μg/ml) and isorhamnetin (IC50: 22.2 ± 2.1 μg/ml) to be more potent than allopurinol (IC50: 30.1 ± 3.0 μg/ml).
Conclusion
This work provides a scientific basis for the use of T. terrestris in the treatment of hyperuricemia-related (e.g. kidney stone and gout) disorders. It also provides the molecular basis for a focussed screening of the flavonoid aglycones chemical space for the possible discovery of flavonoid-based uricostatic anti-hyperuricemic drugs or drug templates.
Collapse
|
50
|
Zhang J, Dong Y, Gao S, Zhang X, Liao H, Shi X, Zhang Z, Zhao T, Liang R, Qi D, Wu T, Pang J, Liu X, Zhan P. Design, synthesis and activity evaluation of novel lesinurad analogues containing thienopyrimidinone or pyridine substructure as human urate transporter 1 inhibitors. Eur J Med Chem 2022; 244:114816. [PMID: 36219903 DOI: 10.1016/j.ejmech.2022.114816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 11/29/2022]
Abstract
Urate Transporter 1 (URAT1) plays a crucial role in uric acid transport, making it an attractive target for the treatment of gout and hyperuricemia. As a representative URAT1 inhibitor, Lesinurad treat gout by promoting the uric acid excretion. However, its lower in vitro and in vivo activity should be highly attracted attention. Herein, the bioisosterism, molecular hybridization and scaffold hopping strategies were exploited to modify all the structural components of Lesinurad and finally thirty novel compounds bearing thienopyrimidinone or pyridine core were obtained. Most of the compounds displayed certain URAT1 inhibitory activity in vitro. Among them, thienopyrimidinones 6 (IC50 = 7.68 μM), 10 (IC50 = 7.56 μM), 14 (IC50 = 7.31 μM) and 15 (IC50 = 7.90 μM) showed slightly better potency than positive control Lesinurad (IC50 = 9.38 μM). Notably, 10 also displayed inhibitory activity (IC50 = 55.96 μM) against GLUT9. Additionally, in vivo serum uric acid (SUA)-lowering experiments were performed on some representative compounds and it was revealed that all the selected compounds could decrease the SUA level in mice, of which the decrease rate of SUA was 73.29% for the most promising compound 10, significantly greater than that of Lesinurad (26.89%). Meanwhile, the preliminary SARs based on the URAT1 inhibitory activity were discussed in detail, which pointed out the direction for further structural optimization. Overall, the thienopyrimidinone and pyridine are prospective skeletons for the developing novel URAT1 inhibitors with considerable potential for optimization.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Yue Dong
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Shenghua Gao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Xujie Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Hui Liao
- School of Pharmaceutical Sciences, Southern Medical University, 1838 North Guangzhou Ave, 510515, Guangzhou, PR China
| | - Xiaoyu Shi
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Zhijiao Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Tong Zhao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Ruipeng Liang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Danhui Qi
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Ting Wu
- School of Pharmaceutical Sciences, Southern Medical University, 1838 North Guangzhou Ave, 510515, Guangzhou, PR China.
| | - Jianxin Pang
- School of Pharmaceutical Sciences, Southern Medical University, 1838 North Guangzhou Ave, 510515, Guangzhou, PR China.
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China.
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China.
| |
Collapse
|