1
|
Heise M, Dillard J, Taft-Benz S, Knight A, Anderson E, Pressey K, Parotti B, Martinez S, Diaz J, Sarkar S, Madden E, De la Cruz G, Adams L, Dinnon K, Leist S, Martinez D, Schaefer A, Powers J, Yount B, Castillo I, Morales N, Burdick J, Evangelista MK, Ralph L, Pankow N, Linnertz C, Lakshmanane P, Montgomery S, Ferris M, Baric R, Baxter V. Adjuvant-dependent effects on the safety and efficacy of inactivated SARS-CoV-2 vaccines during heterologous infection by a SARS-related coronavirus. RESEARCH SQUARE 2023:rs.3.rs-3401539. [PMID: 37961507 PMCID: PMC10635311 DOI: 10.21203/rs.3.rs-3401539/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Inactivated whole virus SARS-CoV-2 vaccines adjuvanted with aluminum hydroxide (Alum) are among the most widely used COVID-19 vaccines globally and have been critical to the COVID-19 pandemic response. Although these vaccines are protective against homologous virus infection in healthy recipients, the emergence of novel SARS-CoV-2 variants and the presence of large zoonotic reservoirs provide significant opportunities for vaccine breakthrough, which raises the risk of adverse outcomes including vaccine-associated enhanced respiratory disease (VAERD). To evaluate this possibility, we tested the performance of an inactivated SARS-CoV-2 vaccine (iCoV2) in combination with Alum against either homologous or heterologous coronavirus challenge in a mouse model of coronavirus-induced pulmonary disease. Consistent with human results, iCoV2 + Alum protected against homologous challenge. However, challenge with a heterologous SARS-related coronavirus, Rs-SHC014-CoV (SHC014), up to at least 10 months post-vaccination, resulted in VAERD in iCoV2 + Alum-vaccinated animals, characterized by pulmonary eosinophilic infiltrates, enhanced pulmonary pathology, delayed viral clearance, and decreased pulmonary function. In contrast, vaccination with iCoV2 in combination with an alternative adjuvant (RIBI) did not induce VAERD and promoted enhanced SHC014 clearance. Further characterization of iCoV2 + Alum-induced immunity suggested that CD4+ T cells were a major driver of VAERD, and these responses were partially reversed by re-boosting with recombinant Spike protein + RIBI adjuvant. These results highlight potential risks associated with vaccine breakthrough in recipients of Alum-adjuvanted inactivated vaccines and provide important insights into factors affecting both the safety and efficacy of coronavirus vaccines in the face of heterologous virus infections.
Collapse
Affiliation(s)
- Mark Heise
- University of North Carolina at Chapel Hill
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Boyd Yount
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill
| | | | | | | | | | | | | | | | - Prem Lakshmanane
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC
| | | | | | | | - Victoria Baxter
- Texas Biomedical Research Institute, San Antonio, Texas, USA
| |
Collapse
|
2
|
Gangadharan S, Ambrose JM, Rajajagadeesan A, Kullappan M, Patil S, Gandhamaneni SH, Veeraraghavan VP, Nakkella AK, Agarwal A, Jayaraman S, Surapaneni KM. Repurposing of potential antiviral drugs against RNA-dependent RNA polymerase of SARS-CoV-2 by computational approach. J Infect Public Health 2022; 15:1180-1191. [PMID: 36240528 PMCID: PMC9514006 DOI: 10.1016/j.jiph.2022.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 01/18/2023] Open
Abstract
The high incidences of COVID-19 cases are believed to be associated with high transmissibility rates, which emphasizes the need for the discovery of evidence-based antiviral therapies for curing the disease. The rationale of repurposing existing classes of antiviral small molecule therapeutics against SARS-CoV-2 infection has been expected to accelerate the tedious and expensive drug development process. While Remdesivir has been recently approved to be the first treatment option for specific groups of COVID-19 patients, combinatory therapy with potential antiviral drugs may be necessary to enhance the efficacy in different populations. Hence, a comprehensive list of investigational antimicrobial drug compounds such as Favipiravir, Fidaxomicin, Galidesivir, GC376, Ribavirin, Rifabutin, and Umifenovir were computationally evaluated in this study. We performed in silico docking and molecular dynamics simulation on the selected small molecules against RNA-dependent RNA polymerase, which is one of the key target proteins of SARS-CoV-2, using AutoDock and GROMACS. Interestingly, our results revealed that the macrocyclic antibiotic, Fidaxomicin, possesses the highest binding affinity with the lowest energy value of -8.97 kcal/mol binding to the same active sites of RdRp. GC376, Rifabutin, Umifenovir and Remdesivir were identified as the next best compounds. Therefore, the above-mentioned compounds could be considered good leads for further preclinical and clinical experimentations as potentially efficient antiviral inhibitors for combination therapies against SARS-CoV-2.
Collapse
Affiliation(s)
- Sivakumar Gangadharan
- Department of Chemistry, Panimalar Engineering College, Varadharajapuram, Poonamallee, Chennai 600123, Tamil Nadu, India.
| | - Jenifer Mallavarpu Ambrose
- Department of Research, Panimalar Medical College Hospital & Research Institute, Varadharajapuram, Chennai 600123, Tamil Nadu, India.
| | - Anusha Rajajagadeesan
- Department of Biochemistry, Panimalar Medical College Hospital & Research Institute, Varadharajapuram, Chennai 600123, Tamil Nadu, India.
| | - Malathi Kullappan
- Department of Research, Panimalar Medical College Hospital & Research Institute, Varadharajapuram, Chennai 600123, Tamil Nadu, India.
| | - Shankargouda Patil
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, UTAH-84095, USA; Centre of Molecular Medicine and Diagnostics ( COMManD), Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India.
| | - Sri Harshini Gandhamaneni
- Department of General Medicine, Panimalar Medical College Hospital & Research Institute, Varadharajapuram, Chennai 600123, Tamil Nadu, India.
| | - Vishnu Priya Veeraraghavan
- Centre of Molecular Medicine and Diagnostics ( COMManD), Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India.
| | - Aruna Kumari Nakkella
- Department of Engineering Chemistry, Dr B R Ambedkar University, Etcherla, Srikakulam 532410, Andhra Pradesh, India.
| | - Alok Agarwal
- Department of Chemistry, Chinmaya Degree College, BHEL, Haridwar 249403, Uttarakhand, India.
| | - Selvaraj Jayaraman
- Centre of Molecular Medicine and Diagnostics ( COMManD), Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India.
| | - Krishna Mohan Surapaneni
- Departments of Biochemistry, Molecular Virology, Research, Clinical Skills & Simulation, Panimalar Medical College Hospital & Research Institute, Varadharajapuram, Poonamallee, Chennai 600123, Tamil Nadu, India.
| |
Collapse
|
3
|
Nkanga C, Ortega-Rivera OA, Shin MD, Moreno-Gonzalez MA, Steinmetz NF. Injectable Slow-Release Hydrogel Formulation of a Plant Virus-Based COVID-19 Vaccine Candidate. Biomacromolecules 2022; 23:1812-1825. [PMID: 35344365 PMCID: PMC9003890 DOI: 10.1021/acs.biomac.2c00112] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/09/2022] [Indexed: 01/09/2023]
Abstract
Cowpea mosaic virus (CPMV) is a potent immunogenic adjuvant and epitope display platform for the development of vaccines against cancers and infectious diseases, including coronavirus disease 2019. However, the proteinaceous CPMV nanoparticles are rapidly degraded in vivo. Multiple doses are therefore required to ensure long-lasting immunity, which is not ideal for global mass vaccination campaigns. Therefore, we formulated CPMV nanoparticles in injectable hydrogels to achieve slow particle release and prolonged immunostimulation. Liquid formulations were prepared from chitosan and glycerophosphate (GP) before homogenization with CPMV particles at room temperature. The formulations containing high-molecular-weight chitosan and 0-4.5 mg mL-1 CPMV gelled rapidly at 37 °C (5-8 min) and slowly released cyanine 5-CPMV particles in vitro and in vivo. Importantly, when a hydrogel containing CPMV displaying severe acute respiratory syndrome coronavirus 2 spike protein epitope 826 (amino acid 809-826) was administered to mice as a single subcutaneous injection, it elicited an antibody response that was sustained over 20 weeks, with an associated shift from Th1 to Th2 bias. Antibody titers were improved at later time points (weeks 16 and 20) comparing the hydrogel versus soluble vaccine candidates; furthermore, the soluble vaccine candidates retained Th1 bias. We conclude that CPMV nanoparticles can be formulated effectively in chitosan/GP hydrogels and are released as intact particles for several months with conserved immunotherapeutic efficacy. The injectable hydrogel containing epitope-labeled CPMV offers a promising single-dose vaccine platform for the prevention of future pandemics as well as a strategy to develop long-lasting plant virus-based nanomedicines.
Collapse
Affiliation(s)
- Christian
Isalomboto Nkanga
- Department
of NanoEngineering, University of California
San Diego, 9500 Gilman Dr., La Jolla, California 92039, United States
| | - Oscar A. Ortega-Rivera
- Department
of NanoEngineering, University of California
San Diego, 9500 Gilman Dr., La Jolla, California 92039, United States
- Center
for Nano-ImmunoEngineering, University of
California San Diego, 9500 Gilman Dr., La Jolla, California 92039, United States
| | - Matthew D. Shin
- Department
of NanoEngineering, University of California
San Diego, 9500 Gilman Dr., La Jolla, California 92039, United States
- Center
for Nano-ImmunoEngineering, University of
California San Diego, 9500 Gilman Dr., La Jolla, California 92039, United States
| | - Miguel A. Moreno-Gonzalez
- Department
of NanoEngineering, University of California
San Diego, 9500 Gilman Dr., La Jolla, California 92039, United States
- Center
for Nano-ImmunoEngineering, University of
California San Diego, 9500 Gilman Dr., La Jolla, California 92039, United States
| | - Nicole F. Steinmetz
- Department
of NanoEngineering, University of California
San Diego, 9500 Gilman Dr., La Jolla, California 92039, United States
- Department
of Bioengineering, University of California
San Diego, 9500 Gilman
Dr., La Jolla, California 92039, United States
- Department
of Radiology, University of California San
Diego, 9500 Gilman Dr., La Jolla, California 92039, United States
- Center
for Nano-ImmunoEngineering, University of
California San Diego, 9500 Gilman Dr., La Jolla, California 92039, United States
- Moores
Cancer Center, University of California
San Diego, 9500 Gilman
Dr., La Jolla, California 92039, United States
- Institute
for Materials Discovery and Design, University
of California San Diego, 9500 Gilman Dr., La Jolla, California 92039, United States
| |
Collapse
|
4
|
Dai X, Zhao W, Tong X, Liu W, Zeng X, Duan X, Wu H, Wang L, Huang Z, Tang X, Yang Y. Non-clinical immunogenicity, biodistribution and toxicology evaluation of a chimpanzee adenovirus-based COVID-19 vaccine in rat and rhesus macaque. Arch Toxicol 2022; 96:1437-1453. [PMID: 35226134 PMCID: PMC8883008 DOI: 10.1007/s00204-021-03221-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/23/2021] [Indexed: 01/05/2023]
Abstract
Coronavirus Disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in 2019 has rapidly expanded into a serious global pandemic. Due to the high morbidity and mortality of COVID-19, there is an urgent need to develop safe and effective vaccines. AdC68-19S is an investigational chimpanzee adenovirus serotype 68 (AdC68) vector-based vaccine which encodes the full-length spike protein of SARS-CoV-2. Here, we evaluated the immunogenicity, biodistribution and safety profiles of the candidate vaccine AdC68-19S in Sprague Dawley (SD) rat and rhesus macaque under GLP conditions. To characterize the biodistribution profile of AdC68-19S, SD rats were given a single intramuscular injection of AdC68-19S 2 × 1011 VP/dose. Designated organs were collected on day 1, day 2, day 4, day 8 and day 15. Genomic DNA was extracted from all samples and was further quantified by real-time quantitative polymerase chain reaction (qPCR). To characterize the toxicology and immunogenicity profiles of AdC68-19S, the rats and rhesus macaques were injected intramuscularly with AdC68-19S up to 2 × 1011vp/dose or 4 × 1011vp/dose (2 and fourfold the proposed clinical dose of 1 × 1011vp/dose) on two or three occasions with a 14-day interval period, respectively. In addition to the conventional toxicological evaluation indexes, the antigen-specific cellular and humoral responses were evaluated. We proved that multiple intramuscular injections could elicit effective and long-lasting neutralizing antibody responses and Th1 T cell responses. AdC68-19S was mainly distributed in injection sites and no AdC68-19S related toxicological reaction was observed. In conclusion, these results have shown that AdC68-19S could induce an effective immune response with a good safety profile, and is a promising candidate vaccine against COVID-19.
Collapse
Affiliation(s)
- Xuedong Dai
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, Jiangsu, 211198, People's Republic of China
| | - Weijun Zhao
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, Jiangsu, 211198, People's Republic of China
| | - Xin Tong
- Yunnan Walvax Biotech, Co. LTD, Kunming, People's Republic of China
| | - Wei Liu
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, Jiangsu, 211198, People's Republic of China
| | - Xianhuan Zeng
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, Jiangsu, 211198, People's Republic of China
| | - Xiaohui Duan
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, Jiangsu, 211198, People's Republic of China
| | - Hua Wu
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, Jiangsu, 211198, People's Republic of China
| | - Lili Wang
- Yunnan Walvax Biotech, Co. LTD, Kunming, People's Republic of China
| | - Zhen Huang
- Yunnan Walvax Biotech, Co. LTD, Kunming, People's Republic of China.
| | - Xinying Tang
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, Jiangsu, 211198, People's Republic of China.
| | - Yong Yang
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, Jiangsu, 211198, People's Republic of China.
| |
Collapse
|
5
|
Mekonnen D, Mengist HM, Jin T. SARS-CoV-2 subunit vaccine adjuvants and their signaling pathways. Expert Rev Vaccines 2022; 21:69-81. [PMID: 34633259 PMCID: PMC8567292 DOI: 10.1080/14760584.2021.1991794] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 10/07/2021] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Vaccines are the agreed upon weapon against the COVID-19 pandemic. This review discusses about COVID-19 subunit vaccines adjuvants and their signaling pathways, which could provide a glimpse into the selection of appropriate adjuvants for prospective vaccine development studies. AREAS COVERED In the introduction, a brief background about the SARS-CoV-2 pandemic, the vaccine development race and classes of vaccine adjuvants were provided. . The antigen, trial stage, and types of adjuvants were extracted from the included articles and thun assimilated. Finally, the pattern recognition receptors (PRRs), their classes, cognate adjuvants, and potential signaling pathways were comprehended. EXPERT OPINION Adjuvants are unsung heroes of subunit vaccines. The in silico studies are very vital in avoiding several costly trial errors and save much work times. The majority of the (pre)clinical studies are promising. It is encouraging that most of the selected adjuvants are novel. Much emphasis must be paid to the optimal paring of antigen-adjuvant-PRRs for obtaining the desired vaccine effect. A good subunit vaccine/adjuvant is one that has high efficacy, safety, dose sparing, and rapid seroconversion rate and broad spectrum of immune response. In the years to come, COVID-19 adjuvanted subunit vaccines are expected to have superior utility than any other vaccines for various reasons.
Collapse
Affiliation(s)
- Daniel Mekonnen
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Hylemariam Mihiretie Mengist
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, Cas Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Department of Medical Laboratory Science, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Tengchuan Jin
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, Cas Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
6
|
Noor R. A review on the induction of host immunity by the current COVID-19 vaccines and a brief non-pharmaceutical intervention to mitigate the pandemic. BULLETIN OF THE NATIONAL RESEARCH CENTRE 2022; 46:31. [PMID: 35194369 PMCID: PMC8853290 DOI: 10.1186/s42269-022-00719-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 02/03/2022] [Indexed: 05/12/2023]
Abstract
BACKGROUND To mitigate the current COVID-19 pandemic by the severe acute respiratory coronavirus 2 (SARS-CoV-2), designing of repurposed antiviral drugs and the development of vaccines using different platforms have been the most significant work by the scientists around the world since the beginning of 2020. MAIN BODY OF THE ABSTRACT While positive results are being noticed with the currently used vaccines, the emerging variants of SARS-CoV-2 as well as the second wave of COVID-19 pandemic put the global public health in the deadliest health issue. Present review attempted to focus on the development of the current COVID-19 situation in the light of knowledge gathered from the recently published literature. An important facet regarding the COVID-19 severity is the avoidance of host immunity by the SARS-CoV-2 and its variants. Indeed, the genetic similarities between SARS-CoV-2, SARS-CoV-1 and the Middle East respiratory syndrome coronavirus (MERS-CoV) showed the viral escape strategies of the protective host immunity which appeared as the major problem for the effective vaccine development. SHORT CONCLUSION Present review discussed the prescribed platforms of vaccine development and pondered on the cellular and humoral immune responses by vaccines; and apart from vaccination approaches, non-pharmaceutical intervention approaches have also been pondered based on modeling rules.
Collapse
Affiliation(s)
- Rashed Noor
- Department of Life Sciences (DLS), School of Environment and Life Sciences (SELS), Independent University, Bangladesh (IUB), Plot 16, Block B, Bashundhara, Dhaka 1229 Bangladesh
| |
Collapse
|
7
|
Ghasemi S, Naderi Saffar K, Ebrahimi F, Khatami P, Monazah A, Alizadeh GA, Ettehadi HA, Rad I, Nojehdehi S, Kehtari M, Kouhkan F, Barjasteh H, Moradi S, Ghorbani MH, Khodaie A, Papizadeh M, Najafi R, Naghneh E, Sadeghi D, Karimi Rahjerdi A. Development of Inactivated FAKHRAVAC ® Vaccine against SARS-CoV-2 Virus: Preclinical Study in Animal Models. Vaccines (Basel) 2021; 9:vaccines9111271. [PMID: 34835202 PMCID: PMC8622747 DOI: 10.3390/vaccines9111271] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/21/2021] [Accepted: 10/28/2021] [Indexed: 11/29/2022] Open
Abstract
The recent viral infection disease pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has resulted in a global public health crisis. Iran, as one of the countries that reported over five million infected cases by September 2021, has been concerned with the urgent development of effective vaccines against SARS-CoV-2. In this paper, we report the results of a study on potency and safety of an inactivated SARS-CoV-2 vaccine candidate (FAKHRAVAC) in a preclinical study so as to confirm its potential for further clinical evaluation. Here, we developed a pilot-scale production of FAKHRAVAC, a purified inactivated SARS-CoV-2 virus vaccine candidate that induces neutralizing antibodies in Balb/c mice, guinea pigs, rabbits, and non-human primates (Rhesus macaques—RM). After obtaining ethical code of IR.IUMS.REC.1399.566, immunizations of animals were conducted by using either of three different vaccine dilutions; High (H): 10 μg/dose, Medium (M): 5 μg/dose, and Low (L): 1 μg/dose, respectively. In the process of screening for viral seeds, viral strains that resulted in the most severe clinical manifestation in patients have been isolated for vaccine development. The viral seed produced the optimal immunity against SARS-CoV-2 virus, which suggests a possible broader neutralizing ability against SARS-CoV-2 strains. The seroconversion rate at the H-, M-, and L-dose groups of all tested animals reached 100% by 28 days after immunization. These data support the eligibility of FAKHRAVAC vaccine candidate for further evaluation in a clinical trial.
Collapse
Affiliation(s)
- Soheil Ghasemi
- Milad Daro Noor Pharmaceutical (MDNP) Company, Unit 3, Mirsharifi Alley, Valiasr Street, Tehran 1986936914, Iran; (S.G.); (K.N.S.); (P.K.); (A.M.); (G.-A.A.); (H.-A.E.); (H.B.); (S.M.); (M.-H.G.); (A.K.); (M.P.); (R.N.); (E.N.)
| | - Kosar Naderi Saffar
- Milad Daro Noor Pharmaceutical (MDNP) Company, Unit 3, Mirsharifi Alley, Valiasr Street, Tehran 1986936914, Iran; (S.G.); (K.N.S.); (P.K.); (A.M.); (G.-A.A.); (H.-A.E.); (H.B.); (S.M.); (M.-H.G.); (A.K.); (M.P.); (R.N.); (E.N.)
- Stem Cell Technology Research Center (STRC), Building No. 9, 2nd East Alley, Mohammad-Ali Keshavarz Blvd., Saadat Abad, Tehran 1997775555, Iran; (I.R.); (S.N.); (M.K.); (F.K.)
| | - Firooz Ebrahimi
- Department of Biology, Faculty of Basic Sciences, Imam Hussein University, Tehran 1698715461, Iran; (F.E.); (D.S.)
| | - Pezhman Khatami
- Milad Daro Noor Pharmaceutical (MDNP) Company, Unit 3, Mirsharifi Alley, Valiasr Street, Tehran 1986936914, Iran; (S.G.); (K.N.S.); (P.K.); (A.M.); (G.-A.A.); (H.-A.E.); (H.B.); (S.M.); (M.-H.G.); (A.K.); (M.P.); (R.N.); (E.N.)
| | - Arina Monazah
- Milad Daro Noor Pharmaceutical (MDNP) Company, Unit 3, Mirsharifi Alley, Valiasr Street, Tehran 1986936914, Iran; (S.G.); (K.N.S.); (P.K.); (A.M.); (G.-A.A.); (H.-A.E.); (H.B.); (S.M.); (M.-H.G.); (A.K.); (M.P.); (R.N.); (E.N.)
| | - Ghorban-Ali Alizadeh
- Milad Daro Noor Pharmaceutical (MDNP) Company, Unit 3, Mirsharifi Alley, Valiasr Street, Tehran 1986936914, Iran; (S.G.); (K.N.S.); (P.K.); (A.M.); (G.-A.A.); (H.-A.E.); (H.B.); (S.M.); (M.-H.G.); (A.K.); (M.P.); (R.N.); (E.N.)
| | - Hossein-Ali Ettehadi
- Milad Daro Noor Pharmaceutical (MDNP) Company, Unit 3, Mirsharifi Alley, Valiasr Street, Tehran 1986936914, Iran; (S.G.); (K.N.S.); (P.K.); (A.M.); (G.-A.A.); (H.-A.E.); (H.B.); (S.M.); (M.-H.G.); (A.K.); (M.P.); (R.N.); (E.N.)
| | - Iman Rad
- Stem Cell Technology Research Center (STRC), Building No. 9, 2nd East Alley, Mohammad-Ali Keshavarz Blvd., Saadat Abad, Tehran 1997775555, Iran; (I.R.); (S.N.); (M.K.); (F.K.)
| | - Shahrzad Nojehdehi
- Stem Cell Technology Research Center (STRC), Building No. 9, 2nd East Alley, Mohammad-Ali Keshavarz Blvd., Saadat Abad, Tehran 1997775555, Iran; (I.R.); (S.N.); (M.K.); (F.K.)
| | - Mousa Kehtari
- Stem Cell Technology Research Center (STRC), Building No. 9, 2nd East Alley, Mohammad-Ali Keshavarz Blvd., Saadat Abad, Tehran 1997775555, Iran; (I.R.); (S.N.); (M.K.); (F.K.)
| | - Fatemeh Kouhkan
- Stem Cell Technology Research Center (STRC), Building No. 9, 2nd East Alley, Mohammad-Ali Keshavarz Blvd., Saadat Abad, Tehran 1997775555, Iran; (I.R.); (S.N.); (M.K.); (F.K.)
| | - Hesam Barjasteh
- Milad Daro Noor Pharmaceutical (MDNP) Company, Unit 3, Mirsharifi Alley, Valiasr Street, Tehran 1986936914, Iran; (S.G.); (K.N.S.); (P.K.); (A.M.); (G.-A.A.); (H.-A.E.); (H.B.); (S.M.); (M.-H.G.); (A.K.); (M.P.); (R.N.); (E.N.)
| | - Sohrab Moradi
- Milad Daro Noor Pharmaceutical (MDNP) Company, Unit 3, Mirsharifi Alley, Valiasr Street, Tehran 1986936914, Iran; (S.G.); (K.N.S.); (P.K.); (A.M.); (G.-A.A.); (H.-A.E.); (H.B.); (S.M.); (M.-H.G.); (A.K.); (M.P.); (R.N.); (E.N.)
| | - Mohammad-Hosein Ghorbani
- Milad Daro Noor Pharmaceutical (MDNP) Company, Unit 3, Mirsharifi Alley, Valiasr Street, Tehran 1986936914, Iran; (S.G.); (K.N.S.); (P.K.); (A.M.); (G.-A.A.); (H.-A.E.); (H.B.); (S.M.); (M.-H.G.); (A.K.); (M.P.); (R.N.); (E.N.)
| | - Ali Khodaie
- Milad Daro Noor Pharmaceutical (MDNP) Company, Unit 3, Mirsharifi Alley, Valiasr Street, Tehran 1986936914, Iran; (S.G.); (K.N.S.); (P.K.); (A.M.); (G.-A.A.); (H.-A.E.); (H.B.); (S.M.); (M.-H.G.); (A.K.); (M.P.); (R.N.); (E.N.)
| | - Moslem Papizadeh
- Milad Daro Noor Pharmaceutical (MDNP) Company, Unit 3, Mirsharifi Alley, Valiasr Street, Tehran 1986936914, Iran; (S.G.); (K.N.S.); (P.K.); (A.M.); (G.-A.A.); (H.-A.E.); (H.B.); (S.M.); (M.-H.G.); (A.K.); (M.P.); (R.N.); (E.N.)
| | - Roghayeh Najafi
- Milad Daro Noor Pharmaceutical (MDNP) Company, Unit 3, Mirsharifi Alley, Valiasr Street, Tehran 1986936914, Iran; (S.G.); (K.N.S.); (P.K.); (A.M.); (G.-A.A.); (H.-A.E.); (H.B.); (S.M.); (M.-H.G.); (A.K.); (M.P.); (R.N.); (E.N.)
| | - Ehsan Naghneh
- Milad Daro Noor Pharmaceutical (MDNP) Company, Unit 3, Mirsharifi Alley, Valiasr Street, Tehran 1986936914, Iran; (S.G.); (K.N.S.); (P.K.); (A.M.); (G.-A.A.); (H.-A.E.); (H.B.); (S.M.); (M.-H.G.); (A.K.); (M.P.); (R.N.); (E.N.)
| | - Davood Sadeghi
- Department of Biology, Faculty of Basic Sciences, Imam Hussein University, Tehran 1698715461, Iran; (F.E.); (D.S.)
| | - Ahmad Karimi Rahjerdi
- Milad Daro Noor Pharmaceutical (MDNP) Company, Unit 3, Mirsharifi Alley, Valiasr Street, Tehran 1986936914, Iran; (S.G.); (K.N.S.); (P.K.); (A.M.); (G.-A.A.); (H.-A.E.); (H.B.); (S.M.); (M.-H.G.); (A.K.); (M.P.); (R.N.); (E.N.)
- Stem Cell Technology Research Center (STRC), Building No. 9, 2nd East Alley, Mohammad-Ali Keshavarz Blvd., Saadat Abad, Tehran 1997775555, Iran; (I.R.); (S.N.); (M.K.); (F.K.)
- Correspondence: or
| |
Collapse
|
8
|
Abdoli A, Aalizadeh R, Aminianfar H, Kianmehr Z, Teimoori A, Azimi E, Emamipour N, Eghtedardoost M, Siavashi V, Jamshidi H, Hosseinpour M, Taqavian M, Jalili H. Safety and potency of BIV1-CovIran inactivated vaccine candidate for SARS-CoV-2: A preclinical study. Rev Med Virol 2021; 32:e2305. [PMID: 34699647 PMCID: PMC8646699 DOI: 10.1002/rmv.2305] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/26/2021] [Accepted: 10/04/2021] [Indexed: 12/23/2022]
Abstract
The development of effective and safe COVID‐19 vaccines is a major move forward in our global effort to control the SARS‐CoV‐2 pandemic. The aims of this study were (1) to develop an inactivated whole‐virus SARS‐CoV‐2 candidate vaccine named BIV1‐CovIran and (2) to determine the safety and potency of BIV1‐CovIran inactivated vaccine candidate against SARS‐CoV‐2. Infectious virus was isolated from nasopharyngeal swab specimen and propagated in Vero cells with clear cytopathic effects in a biosafety level‐3 facility using the World Health Organization’s laboratory biosafety guidance related to COVID‐19. After characterisation of viral seed stocks, the virus working seed was scaled‐up in Vero cells. After chemical inactivation and purification, it was formulated with alum adjuvant. Finally, different animal species were used to determine the toxicity and immunogenicity of the vaccine candidate. The study showed the safety profile in studied animals including guinea pig, rabbit, mice and monkeys. Immunisation at two different doses (3 or 5 μg per dose) elicited a high level of SARS‐CoV‐2 specific and neutralising antibodies in mice, rabbits and nonhuman primates. Rhesus macaques were immunised with the two‐dose schedule of 5 or 3 μg of the BIV1‐CovIran vaccine and showed highly efficient protection against 104 TCID50 of SARS‐CoV‐2 intratracheal challenge compared with the control group. These results highlight the BIV1‐CovIran vaccine as a potential candidate to induce a strong and potent immune response that may be a promising and feasible vaccine to protect against SARS‐CoV‐2 infection.
Collapse
Affiliation(s)
- Asghar Abdoli
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran.,Amirabad Virology Laboratory, Vaccine Unit, Tehran, Iran
| | - Reza Aalizadeh
- Biochemistry Department, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | | | - Zahra Kianmehr
- Department of Biochemistry, Faculty of Biological Science, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | - Ali Teimoori
- Department of Virology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ebrahim Azimi
- Department of Biotechnology, Darou Pakhsh Pharmaceutical Co., Tehran, Iran
| | - Nabbi Emamipour
- Department of Biotechnology, Darou Pakhsh Pharmaceutical Co., Tehran, Iran
| | | | - Vahid Siavashi
- Azma Teb Gostar Sorena Research Company, Basic Medical Science Research Center, Tehran, Iran
| | - Hamidreza Jamshidi
- Department of Pharmacology, Faculty of Medicine, Shaheed Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | - Hasan Jalili
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| |
Collapse
|
9
|
DiPiazza AT, Leist SR, Abiona OM, Moliva JI, Werner A, Minai M, Nagata BM, Bock KW, Phung E, Schäfer A, Dinnon KH, Chang LA, Loomis RJ, Boyoglu-Barnum S, Alvarado GS, Sullivan NJ, Edwards DK, Morabito KM, Mascola JR, Carfi A, Corbett KS, Moore IN, Baric RS, Graham BS, Ruckwardt TJ. COVID-19 vaccine mRNA-1273 elicits a protective immune profile in mice that is not associated with vaccine-enhanced disease upon SARS-CoV-2 challenge. Immunity 2021; 54:1869-1882.e6. [PMID: 34270939 PMCID: PMC8249710 DOI: 10.1016/j.immuni.2021.06.018] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/30/2021] [Accepted: 06/25/2021] [Indexed: 12/03/2022]
Abstract
Vaccine-associated enhanced respiratory disease (VAERD) was previously observed in some preclinical models of severe acute respiratory syndrome (SARS) and MERS coronavirus vaccines. We used the SARS coronavirus 2 (SARS-CoV-2) mouse-adapted, passage 10, lethal challenge virus (MA10) mouse model of acute lung injury to evaluate the immune response and potential for immunopathology in animals vaccinated with research-grade mRNA-1273. Whole-inactivated virus or heat-denatured spike protein subunit vaccines with alum designed to elicit low-potency antibodies and Th2-skewed CD4+ T cells resulted in reduced viral titers and weight loss post challenge but more severe pathological changes in the lung compared to saline-immunized animals. In contrast, a protective dose of mRNA-1273 induced favorable humoral and cellular immune responses that protected from viral replication in the upper and lower respiratory tract upon challenge. A subprotective dose of mRNA-1273 reduced viral replication and limited histopathological manifestations compared to animals given saline. Overall, our findings demonstrate an immunological signature associated with antiviral protection without disease enhancement following vaccination with mRNA-1273.
Collapse
Affiliation(s)
- Anthony T DiPiazza
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sarah R Leist
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Olubukola M Abiona
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Juan I Moliva
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anne Werner
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mahnaz Minai
- Infectious Disease Pathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bianca M Nagata
- Infectious Disease Pathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kevin W Bock
- Infectious Disease Pathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Emily Phung
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alexandra Schäfer
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kenneth H Dinnon
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Lauren A Chang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rebecca J Loomis
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Seyhan Boyoglu-Barnum
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gabriela S Alvarado
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nancy J Sullivan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Kaitlyn M Morabito
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Kizzmekia S Corbett
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ian N Moore
- Infectious Disease Pathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Tracy J Ruckwardt
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
10
|
Excler JL, Saville M, Berkley S, Kim JH. Vaccine development for emerging infectious diseases. Nat Med 2021; 27:591-600. [PMID: 33846611 DOI: 10.1038/s41591-021-01301-0] [Citation(s) in RCA: 179] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/01/2021] [Indexed: 01/19/2023]
Abstract
Examination of the vaccine strategies and technical platforms used for the COVID-19 pandemic in the context of those used for previous emerging and reemerging infectious diseases and pandemics may offer some mutually beneficial lessons. The unprecedented scale and rapidity of dissemination of recent emerging infectious diseases pose new challenges for vaccine developers, regulators, health authorities and political constituencies. Vaccine manufacturing and distribution are complex and challenging. While speed is essential, clinical development to emergency use authorization and licensure, pharmacovigilance of vaccine safety and surveillance of virus variants are also critical. Access to vaccines and vaccination needs to be prioritized in low- and middle-income countries. The combination of these factors will weigh heavily on the ultimate success of efforts to bring the current and any future emerging infectious disease pandemics to a close.
Collapse
Affiliation(s)
| | - Melanie Saville
- Coalition for Epidemic Preparedness Innovations (CEPI), London, UK
| | | | - Jerome H Kim
- International Vaccine Institute, Seoul, Republic of Korea.
| |
Collapse
|
11
|
Korkmaz E, Balmert SC, Sumpter TL, Carey CD, Erdos G, Falo LD. Microarray patches enable the development of skin-targeted vaccines against COVID-19. Adv Drug Deliv Rev 2021; 171:164-186. [PMID: 33539853 PMCID: PMC8060128 DOI: 10.1016/j.addr.2021.01.022] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/10/2021] [Accepted: 01/27/2021] [Indexed: 12/13/2022]
Abstract
The COVID-19 pandemic is a serious threat to global health and the global economy. The ongoing race to develop a safe and efficacious vaccine to prevent infection by SARS-CoV-2, the causative agent for COVID-19, highlights the importance of vaccination to combat infectious pathogens. The highly accessible cutaneous microenvironment is an ideal target for vaccination since the skin harbors a high density of antigen-presenting cells and immune accessory cells with broad innate immune functions. Microarray patches (MAPs) are an attractive intracutaneous biocargo delivery system that enables safe, reproducible, and controlled administration of vaccine components (antigens, with or without adjuvants) to defined skin microenvironments. This review describes the structure of the SARS-CoV-2 virus and relevant antigenic targets for vaccination, summarizes key concepts of skin immunobiology in the context of prophylactic immunization, and presents an overview of MAP-mediated cutaneous vaccine delivery. Concluding remarks on MAP-based skin immunization are provided to contribute to the rational development of safe and effective MAP-delivered vaccines against emerging infectious diseases, including COVID-19.
Collapse
Affiliation(s)
- Emrullah Korkmaz
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | - Stephen C Balmert
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Tina L Sumpter
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Cara Donahue Carey
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Geza Erdos
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Louis D Falo
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA; UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA; Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA; The McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA.
| |
Collapse
|
12
|
Looking beyond COVID-19 vaccine phase 3 trials. Nat Med 2021; 27:205-211. [PMID: 33469205 DOI: 10.1038/s41591-021-01230-y] [Citation(s) in RCA: 365] [Impact Index Per Article: 91.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/06/2021] [Indexed: 12/23/2022]
Abstract
After the recent announcement of COVID-19 vaccine efficacy in clinical trials by several manufacturers for protection against severe disease, a comprehensive post-efficacy strategy for the next steps to ensure vaccination of the global population is now required. These considerations should include how to manufacture billions of doses of high-quality vaccines, support for vaccine purchase, coordination of supply, the equitable distribution of vaccines and the logistics of global vaccine delivery, all of which are a prelude to a massive vaccination campaign targeting people of all ages. Furthermore, additional scientific questions about the vaccines remain that should be answered to improve vaccine efficacy, including questions regarding the optimization of vaccination regimens, booster doses, the correlates of protection, vaccine effectiveness, safety and enhanced surveillance. The timely and coordinated execution of these post-efficacy tasks will bring the pandemic to an effective, and efficient, close.
Collapse
|
13
|
Han HJ, Nwagwu C, Anyim O, Ekweremadu C, Kim S. COVID-19 and cancer: From basic mechanisms to vaccine development using nanotechnology. Int Immunopharmacol 2020; 90:107247. [PMID: 33307513 PMCID: PMC7709613 DOI: 10.1016/j.intimp.2020.107247] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 12/17/2022]
Abstract
Shows updated understanding of SARS-CoV-2, including the interaction between ACE 2 and the viral spike protein. More effective vaccines are required for immunocompromised cancer patients. Cancer alters the immune system through different levels of D-Dimer, albumin, prothrombin, and neutrophils. Nanomaterials assist vaccine delivery, including viral vector and mRNA vaccines with lipid nanoparticles.
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a global pandemic which has induced unprecedented ramifications, severely affecting our society due to the long incubation time, unpredictably high prevalence and lack of effective vaccines. One of the interesting notions is that there is an association between COVID-19 and cancer. Cancer patients seem to exhibit exacerbated conditions and a higher mortality rate when exposed to the virus. Therefore, vaccines are the promising solution to minimise the problem amongst cancer patients threatened by the new viral strains. However, there are still limitations to be considered, including the efficacy of COVID vaccines for immunocompromised individuals, possible interactions between the vaccine and cancer, and personalised medicine. Not only to eradicate the pandemic, but also to make it more effective for immunocompromised patients who are suffering from cancer, a successful vaccine platform is required through the implementation of nanotechnology which can also enable scalable manufacturing and worldwide distribution along with its faster and precise delivery. In this review, we summarise the current understanding of COVID-19 with clinical perspectives, highlighting the association between COVID-19 and cancer, followed by a vaccine development for this association using nanotechnology. We suggest different administration methods for the COVID-19 vaccine formulation options. This study will contribute to paving the way towards the prevention and treatment of COVID-19, especially for the immunocompromised individuals.
Collapse
Affiliation(s)
- Hyun Jee Han
- University College London, Department of Neonatology, United Kingdom.
| | - Chinekwu Nwagwu
- Department of Pharmaceutics, University of Nigeria Nsukka, Nigeria.
| | - Obumneme Anyim
- Department of Internal Medicine, University of Nigeria Teaching Hospital Ituku-Ozalla, Enugu, Nigeria
| | - Chinedu Ekweremadu
- Department of Pharmaceutics and Pharmaceutical Technology Enugu State University of Science and Technology, Nigeria.
| | - San Kim
- Basildon and Thurrock University Hospital, United Kingdom.
| |
Collapse
|
14
|
Abstract
Over the past 9 mo, with 34 million infections and 1 million deaths, the COVID-19 pandemic has levied a grisly toll. Some countries, through political will and social organization, have successfully reduced the number of infections and deaths, but the global scale of loss reflects the difficulty of translating these approaches in other countries. An effective SARS-CoV-2 vaccine presents a technological solution to the failure of social and political ones. Vaccines are, however, not a silver bullet, but a safe, cost-effective, and globally applicable tool that will require a substantial effort-cooperation, commitment, time, and funding-to be effective.
Collapse
|