1
|
delaO-Escamilla A, Valdez-Zertuche JA, Lara-Arias J, Noyola-Pérez A, Villarreal-Martínez A, Chávez-Álvarez S, Cuéllar-Barboza A, Franco-Márquez R, Ocampo-Candiani J, Vázquez-Martínez OT. Comparison of microneedling and CO 2 laser with adipose-derived stem cells for facial rejuvenation: a randomized split-face study. Int J Dermatol 2025; 64:702-711. [PMID: 39482810 DOI: 10.1111/ijd.17554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 11/03/2024]
Abstract
BACKGROUND Facial aging, characterized by structural decline and loss of collagen and elastin, has led to increased demand for rejuvenation treatments. Adipose-derived stem cells (ADSCs) have emerged as a promising option, but comparative studies on their application methods are limited. OBJECTIVE Our aim was to compare the efficacy of ADSC combined with microneedling or CO2 laser for facial rejuvenation. METHODS Twenty-seven participants were randomized into two groups: Microneedling (MN, n = 14) or CO2 laser (n = 13). Each group underwent three treatment sessions at 4-week intervals. The ADSC solution was applied to one side and the placebo to the other using a split-face design. We performed objective evaluations (UV spots, brown spots, wrinkles, texture, pores, red areas, and porphyrins) and subjective assessments, including clinical photographs, patient satisfaction scales, and histological analysis of skin biopsies. RESULTS The CO2 laser with the ADSC group showed significantly more significant improvements in UV spots (P = 0.002) and wrinkles (P = 0.002) compared to the MN with the ADSC group. Histological analysis revealed superior elastin fibers and epidermal thickness improvements with CO2 laser treatment. Patient satisfaction was higher in the CO2 laser group, with 84.6% reporting complete satisfaction compared to 50% in the MN group. CONCLUSIONS The combination of CO2 laser with ADSCs demonstrated superior efficacy for facial rejuvenation compared to MN with ADSCs. This approach improved UV spots, wrinkles, skin structure, and overall patient satisfaction. Further studies with larger cohorts and extended follow-up are needed to confirm long-term efficacy.
Collapse
Affiliation(s)
- Alejandra delaO-Escamilla
- Dermatology Department, Hospital Universitario "Dr. José E. González", Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | - Jair A Valdez-Zertuche
- Dermatology Department, Hospital Universitario "Dr. José E. González", Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | - Jorge Lara-Arias
- Bone and Tissue Bank Laboratory, Hospital Universitario "Dr. José E. González", Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | - Andrés Noyola-Pérez
- Dermatology Department, Hospital Universitario "Dr. José E. González", Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | - Alejandra Villarreal-Martínez
- Dermatology Department, Hospital Universitario "Dr. José E. González", Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | - Sonia Chávez-Álvarez
- Dermatology Department, Hospital Universitario "Dr. José E. González", Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | - Adrián Cuéllar-Barboza
- Dermatology Department, Hospital Universitario "Dr. José E. González", Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | - Rodolfo Franco-Márquez
- Pathology Department, Hospital Universitario "Dr. José E. González", Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | - Jorge Ocampo-Candiani
- Dermatology Department, Hospital Universitario "Dr. José E. González", Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | - Osvaldo T Vázquez-Martínez
- Dermatology Department, Hospital Universitario "Dr. José E. González", Universidad Autónoma de Nuevo León, Monterrey, Mexico
| |
Collapse
|
2
|
Zununi Vahed S, Hejazian SM, Bakari WN, Landon R, Gueguen V, Meddahi-Pellé A, Anagnostou F, Barzegari A, Pavon-Djavid G. Milking mesenchymal stem cells: Updated protocols for cell lysate, secretome, and exosome extraction, and comparative analysis of their therapeutic potential. Methods 2025; 238:40-60. [PMID: 40058715 DOI: 10.1016/j.ymeth.2025.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/28/2025] [Accepted: 03/04/2025] [Indexed: 03/21/2025] Open
Abstract
The potential of the cell lysate, secretome, and extracellular vesicles (EVs) of mesenchymal stem cells (MSCs) to modulate the immune response and promote tissue regeneration has positioned them as a promising option for cell-free therapy. Currently, many clinical trials in stem cells-derived EVs and secretome are in progress various diseases and sometimes the results are failing. The major challenge on this roadmap is the lack of a standard extraction method for exosome, secretome, and lysate. The most optimal method for obtaining the secretome of MSCs for clinical utilization involves a comprehensive approach that includes non-destructive collection methods, time optimization, multiple collection rounds, optimization of culture conditions, and quality control measures. Further research and clinical studies are warranted to validate and refine these methods for safe and effective utilization of the MSC exosome, secretome, and lysate in various clinical applications. To address these challenges, it is imperative to establish a standardized and unified methodology to ensure reliable evaluation of these extractions in clinical trials. This review seeks to outline the pros and cons of methods for the preparation of MSCs-derived exosome, and secretome/lysate, and comparative analysis of their therapeutic potential.
Collapse
Affiliation(s)
| | | | - William Ndjidda Bakari
- Université Sorbonne Paris Nord, INSERM U1148, Laboratory for Vascular Translational Science, Nanotechnologies for Vascular Medicine and Imaging Team, 99 Av. Jean-Baptiste Clément 93430 Villetaneuse, France; Université Paris Cité, CNRS UMR7052, INSERM U1271, ENVA, B3OA, F-75010 Paris, France
| | - Rebecca Landon
- Université Paris Cité, CNRS UMR7052, INSERM U1271, ENVA, B3OA, F-75010 Paris, France
| | - Virginie Gueguen
- Université Sorbonne Paris Nord, INSERM U1148, Laboratory for Vascular Translational Science, Nanotechnologies for Vascular Medicine and Imaging Team, 99 Av. Jean-Baptiste Clément 93430 Villetaneuse, France
| | - Anne Meddahi-Pellé
- Université Sorbonne Paris Nord, INSERM U1148, Laboratory for Vascular Translational Science, Nanotechnologies for Vascular Medicine and Imaging Team, 99 Av. Jean-Baptiste Clément 93430 Villetaneuse, France
| | - Fani Anagnostou
- Université Paris Cité, CNRS UMR7052, INSERM U1271, ENVA, B3OA, F-75010 Paris, France
| | - Abolfazl Barzegari
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Research Center for Pharmaceutical Nanotechnology (RCPN), Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Graciela Pavon-Djavid
- Université Sorbonne Paris Nord, INSERM U1148, Laboratory for Vascular Translational Science, Nanotechnologies for Vascular Medicine and Imaging Team, 99 Av. Jean-Baptiste Clément 93430 Villetaneuse, France.
| |
Collapse
|
3
|
Zhang L, Yu Z, Liu S, Liu F, Zhou S, Zhang Y, Tian Y. Advanced progress of adipose-derived stem cells-related biomaterials in maxillofacial regeneration. Stem Cell Res Ther 2025; 16:110. [PMID: 40038758 DOI: 10.1186/s13287-025-04191-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 01/24/2025] [Indexed: 03/06/2025] Open
Abstract
The tissue injury in maxillofacial region affects patients' physical function and specific mental health. This decade, utilizing regenerative medicine to achieve tissue regeneration has been proved a hopeful direction. Seed cells play a vital role in regeneration strategy. Among various kinds of stem cells that effectively to regenerate the soft and hard tissue of maxillofacial region, adipose-derived stem cells (ADSCs) have gained increasing interests of researchers due to their abundant sources, easy availability and multi-differentiation potentials in recent decades. Thus, this review focuses on the advances of ADSCs-based biomaterial in maxillofacial regeneration from the progress and strategies perspective. It is structured as introducing the properties of ADSCs, biomaterials (polymers, ceramics and metals) within ADSCs and the latest applications of ADSCs in maxillofacial regeneration, including temporomandibular joint (TMJ), bone, periodontal tissue, tooth, nerve as well as cosmetic field. In order to further facilitate ADSCs-based therapies as an emerging platform for regenerative medicine, this review also emphasized current challenges in translating ADSC-based therapies into clinical application and dissussed the strategies to solve these obstacles.
Collapse
Affiliation(s)
- Lijun Zhang
- Department of Orthodontics, School and Hospital of Stomatology, China Medical University, Nanjing North Street 117, Shenyang, 110002, China
| | - Zihang Yu
- Department of Orthodontics, School and Hospital of Stomatology, China Medical University, Nanjing North Street 117, Shenyang, 110002, China
| | - Shuchang Liu
- Department of Orthodontics, School and Hospital of Stomatology, China Medical University, Nanjing North Street 117, Shenyang, 110002, China
| | - Fan Liu
- Department of Orthodontics, School and Hospital of Stomatology, China Medical University, Nanjing North Street 117, Shenyang, 110002, China
| | - Shijie Zhou
- Department of Orthodontics, School and Hospital of Stomatology, China Medical University, Nanjing North Street 117, Shenyang, 110002, China
| | - Yuanyuan Zhang
- Department of Orthodontics, School and Hospital of Stomatology, China Medical University, Nanjing North Street 117, Shenyang, 110002, China
| | - Yulou Tian
- Department of Orthodontics, School and Hospital of Stomatology, China Medical University, Nanjing North Street 117, Shenyang, 110002, China.
| |
Collapse
|
4
|
Park KY, López Gehrke I. Combined multilevel anti-aging strategies and practical applications of dermocosmetics in aesthetic procedures. J Eur Acad Dermatol Venereol 2024; 38 Suppl 4:23-35. [PMID: 38881448 DOI: 10.1111/jdv.19975] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 02/28/2024] [Indexed: 06/18/2024]
Abstract
Management of the signs of facial aging and other cosmetic skin problems have greatly evolved in the past years. People are also seeking to improve their well-being and global skin appearance, and when they consider using cosmetic procedures, they expect natural and long-lasting aesthetic results. Combined dermocosmetic approaches that address the signs of facial aging at all levels are increasingly being used by dermatologists to meet patient expectations while ensuring their safety. Minimally invasive and reversible procedures that can be performed in only one session are popular approaches for skin restructuring and volumizing as they are flexible, rapid and less burdensome for patients. These interventions can achieve even better outcomes when they are combined with cosmeceuticals as pre- or post-procedural adjuvants to prepare the skin, accelerate recovery and sustain results. The use of topical dermocosmetics is also recommended as part of the daily skin care routine to improve skin quality and help maintain skin barrier function. This review thus outlines the most commonly used combined multilevel anti-aging strategies, which start by addressing the deepest skin layers and then the more superficial signs of skin aging. Examples of multi-active cosmeceuticals and skin delivery enhancing systems are also presented, together with examples of the use of dermocosmetics as supportive care for aesthetic procedures, to provide insights into current applications of dermocosmetic products.
Collapse
Affiliation(s)
- Kui Young Park
- Department of Dermatology, Chung-ang University College of Medicine, Seoul, South Korea
| | | |
Collapse
|
5
|
Li J, Liu Y, Zhang R, Yang Q, Xiong W, He Y, Ye Q. Insights into the role of mesenchymal stem cells in cutaneous medical aesthetics: from basics to clinics. Stem Cell Res Ther 2024; 15:169. [PMID: 38886773 PMCID: PMC11184751 DOI: 10.1186/s13287-024-03774-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/27/2024] [Indexed: 06/20/2024] Open
Abstract
With the development of the economy and the increasing prevalence of skin problems, cutaneous medical aesthetics are gaining more and more attention. Skin disorders like poor wound healing, aging, and pigmentation have an impact not only on appearance but also on patients with physical and psychological issues, and even impose a significant financial burden on families and society. However, due to the complexities of its occurrence, present treatment options cannot produce optimal outcomes, indicating a dire need for new and effective treatments. Mesenchymal stem cells (MSCs) and their secretomics treatment is a new regenerative medicine therapy that promotes and regulates endogenous stem cell populations and/or replenishes cell pools to achieve tissue homeostasis and regeneration. It has demonstrated remarkable advantages in several skin-related in vivo and in vitro investigations, aiding in the improvement of skin conditions and the promotion of skin aesthetics. As a result, this review gives a complete description of recent scientific breakthroughs in MSCs for skin aesthetics and the limitations of their clinical applications, aiming to provide new ideas for future research and clinical transformation.
Collapse
Affiliation(s)
- Junyi Li
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ye Liu
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Rui Zhang
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Qianyu Yang
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Wei Xiong
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Yan He
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, 430030, China.
| | - Qingsong Ye
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
6
|
Verling SD, Mashoudy K, Gompels M, Goldenberg G. Regenerative Medicine in Clinical and Aesthetic Dermatology. A COMPREHENSIVE GUIDE TO MALE AESTHETIC AND RECONSTRUCTIVE PLASTIC SURGERY 2024:65-79. [DOI: 10.1007/978-3-031-48503-9_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
7
|
Nainggolan ADC, Anjani QK, Hartrianti P, Donnelly RF, Kurniawan A, Ramadon D. Microneedle-Mediated Transdermal Delivery of Genetic Materials, Stem Cells, and Secretome: An Update and Progression. Pharmaceutics 2023; 15:2767. [PMID: 38140107 PMCID: PMC10747930 DOI: 10.3390/pharmaceutics15122767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Medical practitioners commonly use oral and parenteral dosage forms to administer drugs to patients. However, these forms have certain drawbacks, particularly concerning patients' comfort and compliance. Transdermal drug delivery presents a promising solution to address these issues. Nevertheless, the stratum corneum, as the outermost skin layer, can impede drug permeation, especially for macromolecules, genetic materials, stem cells, and secretome. Microneedles, a dosage form for transdermal delivery, offer an alternative approach, particularly for biopharmaceutical products. In this review, the authors will examine the latest research on microneedle formulations designed to deliver genetic materials, stem cells, and their derivatives. Numerous studies have explored different types of microneedles and evaluated their ability to deliver these products using preclinical models. Some of these investigations have compared microneedles with conventional dosage forms, demonstrating their significant potential for advancing the development of biotherapeutics in the future.
Collapse
Affiliation(s)
| | - Qonita Kurnia Anjani
- School of Pharmacy, Medical Biology Centre, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (Q.K.A.); (R.F.D.)
| | - Pietradewi Hartrianti
- School of Life Sciences, Indonesia International Institute of Life Sciences, Jakarta 13210, Indonesia;
| | - Ryan F. Donnelly
- School of Pharmacy, Medical Biology Centre, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (Q.K.A.); (R.F.D.)
| | - Arief Kurniawan
- Faculty of Pharmacy, Universitas Indonesia, Depok 16424, Indonesia; (A.D.C.N.); (A.K.)
| | - Delly Ramadon
- Faculty of Pharmacy, Universitas Indonesia, Depok 16424, Indonesia; (A.D.C.N.); (A.K.)
| |
Collapse
|
8
|
Liu HM, Tang W, Wang XY, Jiang JJ, Zhang Y, Liu QL, Wang W. Experimental and theoretical studies on inhibition against tyrosinase activity and melanin biosynthesis by antioxidant ergothioneine. Biochem Biophys Res Commun 2023; 682:163-173. [PMID: 37816300 DOI: 10.1016/j.bbrc.2023.10.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/22/2023] [Accepted: 10/01/2023] [Indexed: 10/12/2023]
Abstract
Ergothioneine, a natural derivative of histidine with a thiol/thine tautomeric structure, exhibits exceptional antioxidant properties and inhibition activities on tyrosinase. In this study, enzyme kinetics experiments and chromatographic spectral analysis revealed that ergothioneine inhibited tyrosinase in a reversible and non-competitive manner, with an inhibition constant of 0.554 mg/mL (2.41 mM). As the concentration of ergothioneine increased, the extremely flexible loop structure of tyrosinase extended from 40.1 % to 41.0 %, effectively covering the active center or binding site. Theoretical molecular docking simulation results show that ergothioneine forms complexes with tyrosinase through hydrogen bonding and salt bridges in the active center of Cu ions. Additionally, it was observed that ergothioneine's antioxidant had a stronger reducing impact on dopaquinone, an intermediate in melanin production, than the effect of ascorbic acid at an equivalent concentration (0.5 mg/mL). Ergothioneine reduced the intracellular reactive oxygen species to lower levels than the control group without UVA radiation and regulated the proliferation and differentiation in B16-F10 melanocytes. Clinical trials have shown that a 0.1 % concentration of ergothioneine can effectively suppress melanin production in irradiated skin. The significant reduction in melanin index and an increase in the individual type angle (ITA°) degree were measured after 4 weeks. These results collectively suggest that ergothioneine may be a promising inhibitor of natural antioxidant tyrosinase. Furthermore, due to its safety and efficacy, ergothioneine could be considered one of the bioactive substances for further study on diseases related to melanin production and tyrosinase activity which is of great significance for the cosmetics, medicine and food industries.
Collapse
Affiliation(s)
- Hui-Min Liu
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai, 201418, China; Engineering Research Center of Perfume & Aroma and Cosmetics, Ministry of Education, Shanghai, 201418, China
| | - Wei Tang
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Xiao-Yi Wang
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Jing-Jing Jiang
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Yun Zhang
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Qing-Lei Liu
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai, 201418, China; Engineering Research Center of Perfume & Aroma and Cosmetics, Ministry of Education, Shanghai, 201418, China
| | - Wei Wang
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai, 201418, China; Engineering Research Center of Perfume & Aroma and Cosmetics, Ministry of Education, Shanghai, 201418, China.
| |
Collapse
|
9
|
Liang C, Gao S, Gao J, Xu Y, Li Q. Comparison of effects of HucMSCs, exosomes, and conditioned medium on NASH. Sci Rep 2023; 13:18431. [PMID: 37891247 PMCID: PMC10611740 DOI: 10.1038/s41598-023-45828-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/24/2023] [Indexed: 10/29/2023] Open
Abstract
To investigate the effects and potential mechanisms of human umbilical cord mesenchymal stem cells, exosomes, and their conditioned media on lipid storage in oleic acid (OA) and palmitic acid (PA) treated hepatocytes and high-fat methionine- choline deficient diet (HFMRCD) induced non-alcoholic steatohepatitis (NASH) mice. AML12 cells were stimulated with OA and PA to establish the lipid storage cell model. HucMSCs, exosomes, and culture medium were then co-cultured. At the same time, C57BL/6 mice were fed an HFMRCD for 6 or 8 weeks to establish a NASH mouse model. The effect of HucMSCs, exosomes, and culture medium on lipid droplet repair of hepatocytes or NASH mice was then assessed. The weight of hepatocytes or liver tissue, Oil Red O, hematoxylin-eosin staining, Masson staining, Western blot, and qPCR were used to detect the related IL-6, TNF-α, TGF-β1 andEI24/AMPK/mTOR pathway expression in hepatocytes and liver tissue. Compared with the model group, the effect of HucMSCs-Ex on inhibiting the accumulation of lipid droplets was more obvious at the cell level. In vivo study showed that HucMSCs-Ex reduces activity scores in NASH mice and improves liver tissue morphology by reducing vacuolar degeneration, fat deposition, and collagen deposition of liver tissue. Western blot and qPCR results showed that inflammatory factors and AMPK/mTOR or EI24-related autophagy pathways were altered before and after treatment. HucMSCs, HucMSC-Ex, and CM can promote autophagy in hepatocytes or NASH mice through the AMPK/mTOR or EI24-related autophagy pathway and alleviate injury associated with lipid deposition, collagen deposition or inflammation, reversing the progression of NASH.
Collapse
Affiliation(s)
- Chenchen Liang
- School of Public Health, Dali University, Dali, 671013, Yunnan, China
| | - Siyuan Gao
- Center of Liver Diseases, The Third People's Hospital of Kunming, Kunming, 650041, Yunnan, China
| | - Jianpeng Gao
- Department of Administration, Kunming Yan'an Hospital, Kunming, 650051, Yunnan, China.
| | - Yanwen Xu
- School of Public Health, Dali University, Dali, 671013, Yunnan, China
| | - Qilong Li
- School of Public Health, Dali University, Dali, 671013, Yunnan, China
| |
Collapse
|
10
|
Karimi N. Approaches in line with human physiology to prevent skin aging. Front Physiol 2023; 14:1279371. [PMID: 37954446 PMCID: PMC10634238 DOI: 10.3389/fphys.2023.1279371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/16/2023] [Indexed: 11/14/2023] Open
Abstract
Skin aging is a complex process that is influenced by intrinsic and extrinsic factors that impact the skin's protective functions and overall health. As the body's outermost layer, the skin plays a critical role in defending it against external threats, regulating body temperature, providing tactile sensation, and synthesizing vitamin D for bone health, immune function, and body homeostasis. However, as individuals age, the skin undergoes structural and functional changes, leading to impairments in these essential functions. In contemporary society, there is an increasing recognition of skin health as a significant indicator of overall wellbeing, resulting in a growing demand for anti-aging products and treatments. However, these products often have limitations in terms of safety, effective skin penetration, and potential systemic complications. To address these concerns, researchers are now focusing on approaches that are safer and better aligned with physiology of the skin. These approaches include adopting a proper diet and maintaining healthy lifestyle habits, the development of topical treatments that synchronize with the skin's circadian rhythm, utilizing endogenous antioxidant molecules, such as melatonin and natural products like polyphenols. Moreover, exploring alternative compounds for sun protection, such as natural ultraviolet (UV)-absorbing compounds, can offer safer options for shielding the skin from harmful radiation. Researchers are currently exploring the potential of adipose-derived stem cells, cell-free blood cell secretome (BCS) and other endogenous compounds for maintaining skin health. These approaches are more secure and more effective alternatives which are in line with human physiology to tackle skin aging. By emphasizing these innovative strategies, it is possible to develop effective treatments that not only slow down the skin aging process but also align better with the natural physiology of the skin. This review will focus on recent research in this field, highlighting the potential of these treatments as being safer and more in line with the skin's physiology in order to combat the signs of aging.
Collapse
Affiliation(s)
- Nazli Karimi
- Department of Physiology, Faculty of Medicine, Hacettepe University, Ankara, Türkiye
| |
Collapse
|
11
|
Ahn HJ, Kim YJ, Myeong S, Huh G, Kim WS. Clinical Evaluation of Conditioned Media of Human Umbilical Cord Blood Mesenchymal Stem Cells for Improvement of Symptoms of Sensitive Skin: Prospective, Single Blinded, Split-face Study. Ann Dermatol 2023; 35:165-172. [PMID: 37290950 DOI: 10.5021/ad.21.287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 12/08/2022] [Accepted: 01/02/2023] [Indexed: 06/10/2023] Open
Abstract
BACKGROUND The exact definition of sensitive skin is not established yet. Since its high prevalence and significant influence on quality of life, it has become an important topic of research. Among various ingredients, conditioned media from umbilical cord blood-derived mesenchymal stem cells (UCB-MSC-CM) can be a promising source for the treatment of sensitive skin. OBJECTIVE We evaluated the efficacy and safety of UCB-MSC-CM on patients with sensitive skin. METHODS We designed a randomized, single blinded, prospective, split-face comparison study and enrolled thirty patients. All patients underwent nonablative fractional laser over the entire face before UCB-MSC-CM or normal saline was applied. Each facial area was randomly assigned to undergo treatment with either UCB-MSC-CM or normal saline. We performed three sessions at two-week intervals, and final results were assessed on six weeks after the last session. As an outcome measure, we evaluated a five-point global assessment scale, transepidermal water loss (TEWL), erythema index (EI) and Sensitive Scale-10. Twenty seven subjects were included in final analysis. RESULTS The treated side exhibited greater improvement compared to the untreated side based on a five-point global assessment scale. TEWL, EI of the treated side were significantly lower than those of the untreated side throughout study period. Sensitive Scale-10 was significantly improved after treatment. CONCLUSION The application of UCB-MSC-CM resulted in improved skin barrier function and reduced inflammatory responsiveness, which could provide beneficial effect on sensitive skin.
Collapse
Affiliation(s)
- Hee-Jin Ahn
- Derma Science R&D Center, Primoris International CO., LTD., Gwangmyeong, Korea
| | - Yoon-Jin Kim
- Derma Science R&D Center, Primoris International CO., LTD., Gwangmyeong, Korea
| | - Sujin Myeong
- Derma Science R&D Center, Primoris International CO., LTD., Gwangmyeong, Korea
| | - Gyoo Huh
- Department of Dermatology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Won-Serk Kim
- Department of Dermatology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea.
| |
Collapse
|
12
|
Qian H, Shan Y, Gong R, Lin D, Zhang M, Wang C, Wang L. Mechanism of action and therapeutic effects of oxidative stress and stem cell-based materials in skin aging: Current evidence and future perspectives. Front Bioeng Biotechnol 2023; 10:1082403. [PMID: 36698629 PMCID: PMC9868183 DOI: 10.3389/fbioe.2022.1082403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/23/2022] [Indexed: 01/11/2023] Open
Abstract
Aging is associated with multiple degenerative diseases, including atherosclerosis, osteoporosis, and Alzheimer's disease. As the most intuitive manifestation of aging, skin aging has received the most significant attention. Skin aging results from various intrinsic and extrinsic factors. Aged skin is characterized by wrinkles, laxity, elastosis, telangiectasia, and aberrant pigmentation. The underlying mechanism is complex and may involve cellular senescence, DNA damage, oxidative stress (OS), inflammation, and genetic mutations, among other factors. Among them, OS plays an important role in skin aging, and multiple antioxidants (e.g., vitamin C, glutathione, and melatonin) are considered to promote skin rejuvenation. In addition, stem cells that exhibit self-replication, multi-directional differentiation, and a strong paracrine function can exert anti-aging effects by inhibiting OS. With the further development of stem cell technology, treatments related to OS mitigation and involving stem cell use may have a promising future in anti-skin aging therapy.
Collapse
Affiliation(s)
- Huan Qian
- Department of Plastic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China,*Correspondence: Huan Qian, ; Lu Wang,
| | - Yihan Shan
- Wenzhou Medical University, Wenzhou, China
| | | | - Danfeng Lin
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Mengwen Zhang
- Department of Plastic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chen Wang
- Department of Plastic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lu Wang
- Starbody plastic surgery Clinic, Hangzhou, China,*Correspondence: Huan Qian, ; Lu Wang,
| |
Collapse
|
13
|
Lin TJ, Huang YL, Kang YN, Chen C. Effectiveness of Topical Conditioned Medium of Stem Cells in Facial Skin Nonsurgical Resurfacing Modalities for Antiaging: Systematic Review and Meta-Analysis of Randomized Controlled Trials. Aesthetic Plast Surg 2022; 47:799-807. [PMID: 36396862 DOI: 10.1007/s00266-022-03168-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/30/2022] [Indexed: 11/18/2022]
Abstract
Facial skin nonsurgical resurfacing modalities, including laser, chemical peeling, and microneedling, have become common due to increasing public concern about skin aging. The potential effect of stem cell conditioned medium (CM) for antiaging has been reported in recent years, and such medium may be able to improve the efficacy of resurfacing modalities. This study investigated the efficacy of topical CM combined with resurfacing in comparison with resurfacing alone. We searched the PubMed, Embase, and Cochrane Library databases for randomized controlled trials (RCTs). We used the Cochrane risk-of-bias tool (version 2) to assess the risk of bias of the included studies and Review Manager (version 5.4) for data analysis. Means and standard deviations of outcomes, namely wrinkle, pigmentation, pore, and overall improvement, were extracted. After screening, we included five RCTs in the analysis, four of which were quantitatively analyzed. The result revealed that stem cell CM significantly reduced wrinkles (P = 0.0006), pigmentation (P = 0.004), and pores (P = 0.01) and improved overall skin condition (P < 0.0001). In summary, we suggest that stem cell CM is a safe treatment that can enhance the efficacy of facial skin nonsurgical resurfacing modalities.Level of Evidence III This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
Affiliation(s)
- Ting-Jung Lin
- School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ya-Li Huang
- Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 110, Taiwan
| | - Yi-No Kang
- Cochrane Taiwan, Taipei Medical University, Taipei, Taiwan.
- Evidence-Based Medicine Center, Wan Fang Hospital, Medical University Hospital, Taipei, Taiwan.
- Research Center of Big Data and Meta-Analysis, Wan Fang Hospital, Taipei Medical University, 111 sec. 3 Xinlong Road, Taipei, 116, Taiwan.
- Institute of Health Policy and Management, College of Public Health, National Taiwan University, Taipei, Taiwan.
| | - Chiehfeng Chen
- Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 110, Taiwan.
- Cochrane Taiwan, Taipei Medical University, Taipei, Taiwan.
- Evidence-Based Medicine Center, Wan Fang Hospital, Medical University Hospital, Taipei, Taiwan.
- Division of Plastic Surgery, Department of Surgery, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
14
|
Liang X, Li J, Yan Y, Xu Y, Wang X, Wu H, Liu Y, Li L, Zhuo F. Efficacy of Microneedling Combined With Local Application of Human Umbilical Cord-Derived Mesenchymal Stem Cells Conditioned Media in Skin Brightness and Rejuvenation: A Randomized Controlled Split-Face Study. Front Med (Lausanne) 2022; 9:837332. [PMID: 35685406 PMCID: PMC9171013 DOI: 10.3389/fmed.2022.837332] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 04/14/2022] [Indexed: 11/20/2022] Open
Abstract
Background Fighting skin aging signs is one of the major challenges of the 21st century, recently, mesenchymal stem cells (MSCs) and microneedling (MN) have been applied for anti-aging. This study aims to evaluate the efficacy of the combination of MN and human umbilical cord-derived mesenchymal stem cells conditioned media (hUC-MSCs-CM) in skin brightness and rejuvenation. Methods Thirty volunteers with facial skin aging were recruited for the randomized, controlled split-face study. The left and right sides of the face were randomly applied with saline via MN or hUC-MSCs-CM via MN. Five sessions were performed for each volunteer at 2-week intervals. Two dermatologists evaluated the clinical improvement, in terms of skin brightness and texture. A satisfaction score based on a self-evaluation questionnaire was recorded at 2 weeks after the last treatment. The objective evaluation was recorded before the first treatment, and at 2 weeks after the last treatment. Results Twenty-eight volunteers with a mean (SD) age of 41 (6.54) years old completed the trial. The investigator’s assessment for skin brightness and texture, and the self-satisfaction score revealed statistically better effects in hUC-MSCs-CM -plus-MN group than in MN alone (MN saline) group. No severe side effects were reported during the whole study period. Compared to MN alone group, the objective assessment revealed significant improvements in skin brightness (reduced melanin index, ultraviolet spots, and brown spots) and skin texture (reduced wrinkles and pores, and increased skin elasticity) in hUC-MSCs-CM-plus-MN group, while there were no obvious differences in skin hydration, trans-epidermal water loss, and the erythema index. Conclusion The combination of hUC-MSCs-CM and MN exhibite anti-aging efficacy, and this could be used for facial rejuvenation in the future.
Collapse
Affiliation(s)
- Xuelei Liang
- Department of Dermatology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jiaying Li
- Department of Dermatology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yan Yan
- Department of Dermatology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yongsheng Xu
- Department of Dermatology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiujuan Wang
- Department of Dermatology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Haixuan Wu
- Department of Dermatology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yi Liu
- Department of Dermatology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Linfeng Li
- Department of Dermatology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Fenglin Zhuo
- Department of Dermatology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
15
|
Abstract
BACKGROUND In dermatology, exosomes have been leveraged given their roles in wound healing, cell migration, extracellular matrix reconstruction, and angiogenesis. OBJECTIVE The purpose of this article is to review the literature investigating the use of exosomes in skin rejuvenation and hair regeneration. MATERIALS AND METHODS The PubMed database was searched for studies published through October 2021. RESULTS Early preclinical studies in aesthetics have demonstrated promising effects of exosomes on skin rejuvenation and hair growth in in vitro and murine models. Despite this, only 1 clinical study has been published to date, and there are no FDA-approved products on the market. CONCLUSION Variation in purification techniques and practical issues surrounding isolation, storage, scalability, and reproducibility of an exosome product represent ongoing hindrances to the movement of exosomes into the clinical sphere.
Collapse
|
16
|
Abstract
BACKGROUND Regenerative aesthetics is an emerging branch of regenerative medicine with therapies aimed at recapturing youthful structure and function using the body's own systems. OBJECTIVE To introduce the field of regenerative aesthetics, and to explore themes and evidence surrounding current and emerging therapies in the field. MATERIALS AND METHODS A review of the literature was performed for each of the 3 pillars of regeneration; namely, stem cells, biochemical cues, and scaffolds. RESULTS Herein, we provide an overview of the field of regenerative aesthetics, a discussion surrounding the 3 pillars of regeneration, and an overview of the evidence supporting current and emerging therapeutic modalities that could play a pivotal role in the future of aesthetic treatments. CONCLUSION An enhanced understanding of this field can serve to further enhance our awareness about the regenerative effects of therapies we already offer, in addition to providing inspiration for future innovation.
Collapse
|
17
|
Chen S, He Z, Xu J. Application of adipose-derived stem cells in photoaging: basic science and literature review. Stem Cell Res Ther 2020; 11:491. [PMID: 33225962 PMCID: PMC7682102 DOI: 10.1186/s13287-020-01994-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 10/23/2020] [Indexed: 12/13/2022] Open
Abstract
Photoaging is mainly induced by continuous exposure to sun light, causing multiple unwanted skin characters and accelerating skin aging. Adipose-derived stem cells(ADSCs) are promising in supporting skin repair because of their significant antioxidant capacity and strong proliferation, differentiation, and migration ability, as well as their enriched secretome containing various growth factors and cytokines. The identification of the mechanisms by which ADSCs perform these functions for photoaging has great potential to explore therapeutic applications and combat skin aging. We also review the basic mechanisms of UV-induced skin aging and recent improvement in pre-clinical applications of ADSCs associated with photoaging. Results showed that ADSCs are potential to address photoaging problem and might treat skin cancer. Compared with ADSCs alone, the secretome-based approaches and different preconditionings of ADSCs are more promising to overcome the current limitations and enhance the anti-photoaging capacity.
Collapse
Affiliation(s)
- Shidie Chen
- Department of Plastic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310003, China
| | - Zhigang He
- Department of Plastic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310003, China.
| | - Jinghong Xu
- Department of Plastic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310003, China.
| |
Collapse
|
18
|
Skin Brightening Efficacy of Exosomes Derived from Human Adipose Tissue-Derived Stem/Stromal Cells: A Prospective, Split-Face, Randomized Placebo-Controlled Study. COSMETICS 2020. [DOI: 10.3390/cosmetics7040090] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Studies have shown that stem cells and their derivatives, including conditioned media (CM), have inhibitory effects on skin pigmentation. However, evidence supporting the skin brightening effect of exosomes derived from stem cells is lacking. We studied the antipigmentation effect in vitro and skin brightening efficacy in vivo of exosomes derived from human adipose tissue-derived mesenchymal stem/stromal cells (ASC-exosomes). Exosomes were isolated from the CM of ASCs using the tangential flow filtration method. ASC-exosomes reduced intracellular melanin levels in B16F10 melanoma cells regardless of the presence of the α-melanocyte-stimulating hormone (α-MSH). The skin brightening efficacy of a cosmetic formulation containing ASC-exosomes was assessed in human volunteers with hyperpigmentation in a prospective, split-face, double-blind, randomized placebo-controlled study. The ASC-exosome-containing formulation statistically decreased the melanin contents compared to the placebo control. However, the melanin-reduction activity was limited and diminished along with time. A further improvement in efficient transdermal delivery of ASC-exosomes will be helpful for more profound efficacy. In summary, these results suggest that ASC-exosomes can be used as a cosmeceutical for skin brightening.
Collapse
|
19
|
Cai Y, Li J, Jia C, He Y, Deng C. Therapeutic applications of adipose cell-free derivatives: a review. Stem Cell Res Ther 2020; 11:312. [PMID: 32698868 PMCID: PMC7374967 DOI: 10.1186/s13287-020-01831-3] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/25/2020] [Accepted: 07/13/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Adipose-derived stem cells (ADSCs) have become one of the most utilized adult stem cells due to their abundance and accessibility. Recent studies have shown that paracrine cytokines, exosomes, and other active substances are the main factors through which ADSCs exert their biological effects. MAIN BODY Adipose cell-free derivatives have been recently gaining attention as potential therapeutic agents for various human diseases. These derivatives include ADSC-conditioned medium (ADSC-CM), ADSC exosomes (ADSC-Exo), and cell-free adipose tissue extracts (ATEs), all of which can be conveniently carried, stored, and transported. Currently, research on ADSC-conditioned medium (ADSC-CM) and ADSC exosomes (ADSC-Exo) is surging. Moreover, cell-free adipose tissue extracts (ATEs), obtained by purely physical methods, have emerged as the focus of research in recent years. CONCLUSION Adipose cell-free derivatives delivery can promote cell proliferation, migration, and angiogenesis, suppress cell apoptosis, and inflammation, as well as reduce oxidative stress and immune regulation. Thus, adipose cell-free derivatives have a broad therapeutic potential in many areas, as they possess anti-skin aging properties, promote wound healing, reduce scar formation, and provide myocardial protection and neuroprotection. This article summarizes these effects and reviews research progress in the use of adipose cell-free derivatives.
Collapse
Affiliation(s)
- Yuan Cai
- Department of Dermatology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, People's Republic of China
| | - Jianyi Li
- Department of Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, People's Republic of China
| | - Changsha Jia
- Department of Dermatology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, People's Republic of China
| | - Yunfan He
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, People's Republic of China.
| | - Chengliang Deng
- Department of Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, People's Republic of China.
| |
Collapse
|
20
|
Adipose-derived stem cell-conditioned medium protects fibroblasts at different senescent degrees from UVB irradiation damages. Mol Cell Biochem 2019; 463:67-78. [PMID: 31602539 DOI: 10.1007/s11010-019-03630-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 09/24/2019] [Indexed: 12/31/2022]
Abstract
Adipose-derived stem cells (ADSCs) and their derivatives have aroused intense interest in fields of dermatological and aesthetic medicine. As a major component detected in ADSCs secretome, platelet-derived growth factor AA (PDGF-AA) has been reported mediating extracellular matrix deposition and remodeling, thus might contribute to its anti-aging effect. On the basis of establishing an experimental model that simulate actual skin aging by exposing HDFs to both intrinsic and extrinsic aging factors, we pretreated human dermal fibroblasts (HDFs) with ADSC-conditioned medium (ADSC-CM) before being irradiated, aiming at exploring preventive effects of ADSCs secretome against aging damages. 48 h after irradiation, we detected cellular proliferation; β-galactosidase stain; mRNA expressions of MMP-1, MMP-9, and TIMP-1; and protein expressions of collagen I, collagen III, and elastin. Moreover, we detected related protein expression of PI3K/Akt signal pathway, which can be activated by PDGF-AA and was newly found to promote extracellular matrix protein synthesis. Concentration of PDGF-AA in the prepared ADSC-CM decreased over time and maintained excellent bioactivity at low temperature until the 11th week. ADSC-CM pretreatment can slightly or significantly improve cellular proliferative activity and reduce cellular senescence in irradiated HDFs. Besides, ADSC-CM pretreatment increased collagen I, collagen III, elastin, and TIMP-1 expressions but decreased MMP-1 and MMP-9 expressions both in irradiated and nonirradiated HDFs. ADSC-CM pretreatment significantly increased pAkt protein expression, and ECM protein expression greatly decreased in case of LY294002 application. The results were similar in three generations of HDFs, yet varied with different degrees. Generally, ADSC-CM we prepared demonstrates a certain degree of positive role in preventing HDFs from intrinsic and extrinsic aging damages and that PDGF-AA may contribute to making it become effective with some other components in ADSC-CM.
Collapse
|