1
|
Ma CY, Hao PC, Peng LY, Peng MJ, Li WY, Zhang SY, Zhao QS. Ellagitannins From Pomegranate Flower With Whitening and Anti-Skin Photoaging Effect. Chem Biodivers 2025:e202403292. [PMID: 39817306 DOI: 10.1002/cbdv.202403292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 01/18/2025]
Abstract
A new depside glucoside rosarugoside E (1), together with four known compounds punicalagin (2), corilagin (3), granatin B (4), and ellagic acid (5) were isolated from the ethanol extract of pomegranate (Punica granatum L.) flower. Their structures were identified based on careful analysis of various spectral data including ultraviolet, infrared, high-resolution electrospray ionization-mass spectrometry, and 1D and 2D nuclear magnetic resonance. The whitening and anti-aging effects of all compounds were evaluated based on the levels of protein and gene. The result displayed that all compounds exhibited inhibitory activity for tyrosinase at maximum safe concentration, except for compound 2. Compounds 3 and 5 exhibited significant inhibitory activity for tyrosinase, indicating their whitening efficacy. The anti-aging activity evaluation assay showed that all compounds could downregulate the expression of the MMP1 gene, decrease the expression of matrix metalloproteinase 1, and increase the content of type 1 collagen at the maximum safe concentration compared with negative control (ultraviolet A irradiation treatment).
Collapse
Affiliation(s)
- Chao-Yan Ma
- State Key Laboratory of Phytochemistry and Plant Resource in West China, Kunming Institute of Botany, Chinese Academy of Science, Kunming, P. R. China
- University of Chines Academy of Science, Beijing, P. R. China
| | - Peng-Chao Hao
- Yatsen Global Innovation R&D Center, Shanghai, China
| | - Li-Yan Peng
- State Key Laboratory of Phytochemistry and Plant Resource in West China, Kunming Institute of Botany, Chinese Academy of Science, Kunming, P. R. China
| | | | - Wen-Yuan Li
- Yatsen Global Innovation R&D Center, Shanghai, China
| | | | - Qin-Shi Zhao
- State Key Laboratory of Phytochemistry and Plant Resource in West China, Kunming Institute of Botany, Chinese Academy of Science, Kunming, P. R. China
| |
Collapse
|
2
|
Chu S, Shi Z, Xiao J, Wu Y. Bioactive constituents of amphibious Rotala rotundifolia at different growth stages and response surface optimization for flavonoid extraction. Sci Rep 2024; 14:29055. [PMID: 39580527 PMCID: PMC11585568 DOI: 10.1038/s41598-024-80300-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/18/2024] [Indexed: 11/25/2024] Open
Abstract
Rotala rotundifolia is an amphibious aquatic plant that can live in submerged and emergent forms. It is superior in nitrogen and phosphorus removal and has been used as a traditional medicine in China for over a hundred years. In this study, the bioactive constituents from different tissues of submerged and emergent R. rotundifolia at different growth periods were investigated. The response surface method was used to optimize the flavonoids extraction condition. The amount of flavonoids and triterpenoids from different tissues of R. rotundifolia were much higher than tannins and alkaloids. The highest total flavonoids amount from the leaves of submerged R. rotundifolia was 270.92 ± 13.34 mg/g at day 30 (phyllomorphosis finished), 1.8 times that of the emergent form (150.45 ± 15.11 mg/g). The highest triterpenoids content from the submerged and emergent forms was 242.20 ± 11.51 and 163.09 ± 14.87 mg/g at days 90 and 150 (flowering stage), respectively. The optimal flavonoid extraction conditions were: extraction time 50 min, ultrasonic power 333 W, ethanol concentration 79.3%, and a solid-liquid ratio of 1:60. The LC-MS/MS analysis showed that the extracts from submerged and emergent R. rotundifolia contained 26 and 22 flavonoids, respectively. This study provides phytochemical evidence for the further utilization of R. rotundifolia.
Collapse
Affiliation(s)
- Shuyi Chu
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou University, Wenzhou, 325035, China
- Institute for Eco-Environmental Research of Sanyang Wetland, Wenzhou University, Wenzhou, 325035, China
| | - Zhijun Shi
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou University, Wenzhou, 325035, China
| | - Jibo Xiao
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou University, Wenzhou, 325035, China.
- Institute for Eco-Environmental Research of Sanyang Wetland, Wenzhou University, Wenzhou, 325035, China.
| | - Yuxin Wu
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou University, Wenzhou, 325035, China
| |
Collapse
|
3
|
Zhou Z, Ma C, Hao P, Peng L, Zhang SY, Zhao Q. Phenolic Components and Biological Activity of Pomegranate. Chem Biodivers 2024:e202402301. [PMID: 39532669 DOI: 10.1002/cbdv.202402301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/09/2024] [Accepted: 11/11/2024] [Indexed: 11/16/2024]
Abstract
Pomegranate (Punica granatum L.) have been subject of extensive studies for its abundance of phytochemicals and numerous biological and medicinal properties. It is a fruit-bearing tree, which is widely consumed as a nutraceutical source as well as functional food for putative health benefits. The phenolic components are the characteristic bioactive constitutes of pomegranate, including hydrolysable tannins, flavonoids, and phenolic acids. The whole plant of this tree has many medicinal folkloric uses and good therapeutic effect, such as anticancer, antioxidant, antibacterial, antiviral, hypoglycemic, lipid-lowering, cardioprotection and digestive system protection. Through comprehensive search of available literature, this narrative review can provide an up-to-date overview of the current knowledge of characteristic bioactive constituents's structure and potential health benefits of Pomegranate, which can be used as reference for the future clinical and basic research, and also helpful for the development of pomegranate into functional food and nutraceuticals.
Collapse
Affiliation(s)
- Zhiping Zhou
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, P. R. China
| | - Chaoyan Ma
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, P. R. China
| | - Pengchao Hao
- Yatsen Global Innovation R&D Center, No. 11 Building, No. 210, Wenshui Road, Jingan District, Shanghai, China
| | - Liyan Peng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, P. R. China
| | - Sophia Yi Zhang
- Yatsen Global Innovation R&D Center, No. 11 Building, No. 210, Wenshui Road, Jingan District, Shanghai, China
| | - Qinshi Zhao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, P. R. China
| |
Collapse
|
4
|
Mingmuang J, Bunwatcharaphansakun P, Suriya U, Pipatrattanaseree W, Andriyas T, Tansawat R, Chansriniyom C, De-Eknamkul W. Identification of pancreatin inhibitors from Thai medicinal Piper plants for antidiabetic and anti-obesity activities using high-performance thin-layer chromatography-bioautographic assay. J Chromatogr A 2024; 1736:465358. [PMID: 39277979 DOI: 10.1016/j.chroma.2024.465358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/17/2024]
Abstract
Exploring the potential of natural products against diabetes and obesity is in demand nowadays. Pancreatic α-amylase and pancreatic lipase are the drug targets to minimize the absorption of glucose from starch and fatty acids from lipids, respectively. In this study, five Piper species, namely P. sarmentosum (Ps), P. wallichii (Pw), P. retrofractum (Pr), P. nigrum (Pn), and P. betle (Pb), which are commonly used as food ingredients and traditional medicines, were evaluated for their inhibitory activities against pancreatin using the microtiter plate method. Additionally, pancreatin inhibitors were identified through a cost-effective high-performance thin-layer chromatography (HPTLC)-bioautography developed using red starch and p-nitrophenyl palmitate, corresponding to anti-amylase and -lipase activities, respectively. Of the 15 samples tested, leaf samples from Pb, which had the highest total phenolic and total flavonoid contents, exhibited remarkable inhibitory activity against pancreatin, with a relative amylase inhibitory capacity (RAIC) ranging between 4.260 × 10-5 and 4.861 × 10-5 and a reciprocal half-maximal inhibitory concentration (1/IC50, PTL) of 0.390-0.510 (mg/mL)-1. Additionally, Ps samples demonstrated the second-ranked anti-pancreatin activity. Principal component analysis indicated that total phenolic content contributed to the anti-pancreatin activities of Pb samples. The anti-pancreatin bands were isolated and identified as caffeic acid, myricetin, genistein, piperine, and eugenol. Myricetin, in the roots of Ps samples, showed notable anti-pancreatin activity, which was consistent with results from the in silico prediction toward pancreatic α-amylase and pancreatic lipase. Caffeic acid and eugenol were present in Pb samples. In conclusion, the developed cost-effective pancreatin HPTLC-bioautography efficiently identified amylase and lipase inhibitors from Piper herbs, which supported the use of these plants for antidiabetes and anti-obesity.
Collapse
Affiliation(s)
- Jiranuch Mingmuang
- Pharmaceutical Sciences and Technology Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | | | - Utid Suriya
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Weerachai Pipatrattanaseree
- Regional Medical Science Center 12 Songkhla, Department of Medical Sciences, Ministry of Public Health, Songkhla, 90110, Thailand
| | - Tushar Andriyas
- Metabolomics for Life Sciences Research Unit, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Rossarin Tansawat
- Metabolomics for Life Sciences Research Unit, Chulalongkorn University, Bangkok, 10330, Thailand; Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Chaisak Chansriniyom
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand; Center of Excellence in Natural Products and Nanoparticles, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Wanchai De-Eknamkul
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand; Center of Excellence in Natural Products and Nanoparticles, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
5
|
Li Y, Ma Y, Zhu H, Liu Y, Pan S, Chen X, Wu T. Identifying distinct markers in two Sorghum varieties for baijiu fermentation using untargeted metabolomics and molecular network approaches. Food Chem X 2024; 23:101646. [PMID: 39139485 PMCID: PMC11321435 DOI: 10.1016/j.fochx.2024.101646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 08/15/2024] Open
Abstract
The quality of strong-flavor Baijiu, a prominent Chinese liquor, is intricately tied to the choice of sorghum variety used in fermentation. However, a significant gap remains in our understanding of how glutinous and non-glutinous sorghum varieties comprehensively impact Baijiu flavor formation through fermentation metabolites. This study employed untargeted metabolomics combined with feature-based molecular networking (FBMN) to explore the unique metabolic characteristics of these two sorghum varieties during fermentation. FBMN analysis revealed 267 metabolites within both types of fermented sorghum (Zaopei) in the cellar. Further multidimensional statistical analyses highlighted sphingolipids, 2,5-diketopiperazines, and methionine derivatives as critical markers for quality control. These findings represent a significant advancement in our understanding and provide valuable insights for regulating the quality of Baijiu flavors.
Collapse
Affiliation(s)
- Yulan Li
- School of Food and Biotechnology, Xihua University, No.9999 Guangchang Road, Chengdu 610039, China
| | - Yi Ma
- Sichuan Province Engineering Technology Research Center of Liquor-Making Grains, Sichuan University of Science and Engineering, Zigong 643000, China
| | - Hui Zhu
- Sichuan Province Engineering Technology Research Center of Liquor-Making Grains, Sichuan University of Science and Engineering, Zigong 643000, China
| | - Yin Liu
- Sichuan Yibin Hengshengfu Liquor Industry Group Co., Ltd., Yibin 644100, China
| | - Shijiang Pan
- Sichuan Yibin Agriculture and Rural Affairs Bureau, Yibin 644100, China
| | - Xi Chen
- SCIEX Analytical Instrument Trading Co., Shanghai, 200335, China
| | - Tao Wu
- School of Food and Biotechnology, Xihua University, No.9999 Guangchang Road, Chengdu 610039, China
| |
Collapse
|
6
|
Laurindo LF, Rodrigues VD, Minniti G, de Carvalho ACA, Zutin TLM, DeLiberto LK, Bishayee A, Barbalho SM. Pomegranate (Punica granatum L.) phytochemicals target the components of metabolic syndrome. J Nutr Biochem 2024; 131:109670. [PMID: 38768871 DOI: 10.1016/j.jnutbio.2024.109670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 04/08/2024] [Accepted: 05/14/2024] [Indexed: 05/22/2024]
Abstract
Pomegranate (Punica granatum L.) is a multipurpose dietary and medicinal plant known for its ability to promote various health benefits. Metabolic syndrome (MetS) is a complex metabolic disorder driving health and socioeconomic challenges worldwide. It may be characterized by insulin resistance, abdominal obesity, hypertension, and dyslipidemia. This study aims to conduct a review of pomegranate's effects on MetS parameters using a mechanistic approach relying on pre-clinical studies. The peel, juice, roots, bark, seeds, flowers, and leaves of the fruit present several bioactive compounds that are related mainly to anti-inflammatory and antioxidant activities as well as cardioprotective, antidiabetic, and antiobesity effects. The use of the juice extract can work as a potent inhibitor of angiotensin-converting enzyme activities, consequently regulating blood pressure. The major bioactive compounds found within the fruit are phenolic compounds (hydrolysable tannins and flavonoids) and fatty acids. Alkaloids, punicalagin, ellagitannins, ellagic acid, anthocyanins, tannins, flavonoids, luteolin, and punicic acid are also present. The antihyperglycemia, antihyperlipidemia, and weight loss promoting effects are likely related to the anti-inflammatory and antioxidant effects. When considering clinical application, pomegranate extracts are found to be frequently well-tolerated, further supporting its efficacy as a treatment modality. We suggest that pomegranate fruit, extract, or processed products can be used to counteract MetS-related risk factors. This review represents an important step towards exploring potential avenues for further research in this area.
Collapse
Affiliation(s)
- Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), São Paulo, São Paulo, Brazil; Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), São Paulo, São Paulo, Brazil
| | - Victória Dogani Rodrigues
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), São Paulo, São Paulo, Brazil
| | - Giulia Minniti
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), São Paulo, São Paulo, Brazil
| | - Antonelly Cassio Alves de Carvalho
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Universidade de Marília (UNIMAR), São Paulo, São Paulo, Brazil
| | - Tereza Laís Menegucci Zutin
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), São Paulo, São Paulo, Brazil; Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Universidade de Marília (UNIMAR), São Paulo, São Paulo, Brazil
| | - Lindsay K DeLiberto
- Department of Pharmacology, College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL USA
| | - Anupam Bishayee
- Department of Pharmacology, College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL USA.
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), São Paulo, São Paulo, Brazil; Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Universidade de Marília (UNIMAR), São Paulo, São Paulo, Brazil; Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), São Paulo, São Paulo, Brazil.
| |
Collapse
|
7
|
Zhu M, Sun Y, Su Y, Guan W, Wang Y, Han J, Wang S, Yang B, Wang Q, Kuang H. Luteolin: A promising multifunctional natural flavonoid for human diseases. Phytother Res 2024; 38:3417-3443. [PMID: 38666435 DOI: 10.1002/ptr.8217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/06/2024] [Accepted: 04/14/2024] [Indexed: 07/12/2024]
Abstract
Natural products are closely associated with human health. Luteolin (LUT), a flavonoid polyphenolic compound, is widely found in fruits, vegetables, flowers, and herbs. It is noteworthy that LUT exhibits a variety of beneficial pharmacological properties and holds significant potential for clinical applications, particularly in antitumor, anti-convulsion, diabetes control, anti-inflammatory, neuroprotection, anti-oxidation, anti-cardiovascular, and other aspects. The potential mechanism of action has been partially elucidated, including the mediation of NF-κB, toll-like receptor, MAPK, Wnt/β-catenin, PI3K/Akt, AMPK/mTOR, and Nrf-2, among others. The review that aimed to comprehensively consolidate essential information on natural sources, pharmacological effects, therapeutic and preventive potential, as well as potential mechanisms of LUT. The objective is to establish a theoretical basis for the continued development and application of LUT.
Collapse
Affiliation(s)
- Mingtao Zhu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Yanping Sun
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Yang Su
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Wei Guan
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Yu Wang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Jianwei Han
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Shuang Wang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Bingyou Yang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Qiuhong Wang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Haixue Kuang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| |
Collapse
|
8
|
Xu H, Hu H, Zhao M, Shi C, Zhang X. Preparation of luteolin loaded nanostructured lipid carrier based gel and effect on psoriasis of mice. Drug Deliv Transl Res 2024; 14:637-654. [PMID: 37695445 DOI: 10.1007/s13346-023-01418-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2023] [Indexed: 09/12/2023]
Abstract
This study investigated a nanostructured lipid carrier (NLC)-gel system containing luteolin (LUT), a potential drug delivery system for the treatment of psoriasis. LUT-NLC was prepared by solvent emulsification ultrasonication method. The particle size was 199.9 ± 2.6 nm, with the encapsulation efficiency of 99.81% and drug loading of 4.06%. X-ray diffractometry (XRD), Fourier-transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC) were used to characterize the LUT-NLC. The NLC was dispersed in Carbomer 940 to form the NLC based gel. The rheological characteristics of LUT-NLC-gel showed an excellent shear-thinning behavior (non-Newtonian properties) and coincided with the Herschel-Bulkley model. LUT-NLC-gel (78.89 μg/cm2) exhibited better permeation properties and released over 36 hours than LUT gel (32.17 μg/cm2). The dye-labeled LUT-NLC presented intense fluorescence in the epidermis and dermis by the visualization of fluorescence and confocal microscopy, and it could accumulate in the hair follicles. The effect of LUT-NLC-gel on imiquimod-induced psoriasis mice was evaluated by psoriasis area severity index scoring, spleen index assay, histopathology, and inflammatory cytokines. These results confirmed that LUT-NLC-gel with high dose (80 mg/kg/day) remarkably reduced the level of inflammatory and proliferation factors such as TNF-α, IL-6, IL-17, and IL-23 in both skin lesions and blood. LUT-NLC-gel improved the macroscopic features. Therefore, the LUT-NLC-gel had great potential as an effective delivery system for skin diseases.
Collapse
Affiliation(s)
- Hongjia Xu
- School of Function Food and Wine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Hao Hu
- School of Function Food and Wine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Mengyuan Zhao
- School of Function Food and Wine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Caihong Shi
- School of Function Food and Wine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Xiangrong Zhang
- School of Function Food and Wine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China.
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China.
| |
Collapse
|
9
|
Lam TP, Tran NVN, Pham LHD, Lai NVT, Dang BTN, Truong NLN, Nguyen-Vo SK, Hoang TL, Mai TT, Tran TD. Flavonoids as dual-target inhibitors against α-glucosidase and α-amylase: a systematic review of in vitro studies. NATURAL PRODUCTS AND BIOPROSPECTING 2024; 14:4. [PMID: 38185713 PMCID: PMC10772047 DOI: 10.1007/s13659-023-00424-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 11/27/2023] [Indexed: 01/09/2024]
Abstract
Diabetes mellitus remains a major global health issue, and great attention is directed at natural therapeutics. This systematic review aimed to assess the potential of flavonoids as antidiabetic agents by investigating their inhibitory effects on α-glucosidase and α-amylase, two key enzymes involved in starch digestion. Six scientific databases (PubMed, Virtual Health Library, EMBASE, SCOPUS, Web of Science, and WHO Global Index Medicus) were searched until August 21, 2022, for in vitro studies reporting IC50 values of purified flavonoids on α-amylase and α-glucosidase, along with corresponding data for acarbose as a positive control. A total of 339 eligible articles were analyzed, resulting in the retrieval of 1643 flavonoid structures. These structures were rigorously standardized and curated, yielding 974 unique compounds, among which 177 flavonoids exhibited inhibition of both α-glucosidase and α-amylase are presented. Quality assessment utilizing a modified CONSORT checklist and structure-activity relationship (SAR) analysis were performed, revealing crucial features for the simultaneous inhibition of flavonoids against both enzymes. Moreover, the review also addressed several limitations in the current research landscape and proposed potential solutions. The curated datasets are available online at https://github.com/MedChemUMP/FDIGA .
Collapse
Affiliation(s)
- Thua-Phong Lam
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, 700000, Ho Chi Minh City, Vietnam
- Faculty of Pharmacy, Uppsala University, 75105, Uppsala, Sweden
| | - Ngoc-Vi Nguyen Tran
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, 700000, Ho Chi Minh City, Vietnam
- Faculty of Pharmacy, Uppsala University, 75105, Uppsala, Sweden
| | - Long-Hung Dinh Pham
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, 700000, Ho Chi Minh City, Vietnam
- Department of Chemistry, Imperial College London, London, W12 0BZ, UK
| | - Nghia Vo-Trong Lai
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, 700000, Ho Chi Minh City, Vietnam
| | - Bao-Tran Ngoc Dang
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, 700000, Ho Chi Minh City, Vietnam
| | - Ngoc-Lam Nguyen Truong
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, 700000, Ho Chi Minh City, Vietnam
| | - Song-Ky Nguyen-Vo
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, 700000, Ho Chi Minh City, Vietnam
| | - Thuy-Linh Hoang
- California Northstate University College of Pharmacy, California, 95757, USA
| | - Tan Thanh Mai
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, 700000, Ho Chi Minh City, Vietnam.
| | - Thanh-Dao Tran
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, 700000, Ho Chi Minh City, Vietnam.
| |
Collapse
|
10
|
Brahma S, Goyal AK, Dhamodhar P, Kumari MR, Jayashree S, Usha T, Middha SK. Can Polyherbal Medicine be used for the Treatment of Diabetes? - A Review of Historical Classics, Research Evidence and Current Prevention Programs. Curr Diabetes Rev 2024; 20:e140323214600. [PMID: 36918778 DOI: 10.2174/1573399819666230314093721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/05/2023] [Accepted: 01/17/2023] [Indexed: 03/16/2023]
Abstract
Diabetes mellitus (DM), a chronic medical condition, has attained a global pandemic status over the last few decades affecting millions of people. Despite a variety of synthetic drugs available in the market, the use of herbal medicines for managing diabetes is gaining importance because of being comparatively safer. This article reviews the result of a substantial literature search on polyherbal formulations (PHFs) developed and evaluated with potential for DM. The accumulated data in the literature allowed us to enlist 76PHFs consisting of different parts of 147 plant species belonging to 58 botanical families. The documented plant species are laden with bioactive components with anti-diabetic properties and thus draw attention. The most favoured ingredient for PHFs was leaves of Gymnema sylvestre and seeds of Trigonella foenum-graecum used in 27 and 22 formulations, respectively. Apart from herbs, shilajit (exudates from high mountain rocks) formed an important component of 9 PHFs, whereas calcined Mytilus margaritiferus and goat pancreas were used in Dolabi, the most commonly used tablet form of PHF in Indian markets. The healing properties of PHFs against diabetes have been examined in both pre-clinical studies and clinical trials. However, the mechanism(s) of action of PHFs are still unclear and considered the pitfalls inherent in understanding the benefits of PHFs. From the information available based on experimental systems, it could be concluded that plant-derived medicines will have a considerable role to play in the control of diabetes provided the challenges related to their bioavailability, bioefficacy, optimal dose, lack of characterization, ambiguous mechanism of action, and clinical efficiency are addressed.
Collapse
Affiliation(s)
- Sudem Brahma
- Department of Biotechnology, Bodoland University, Kokrajhar-783370, BTR, Assam, India
| | - Arvind Kumar Goyal
- Department of Biotechnology, Bodoland University, Kokrajhar-783370, BTR, Assam, India
| | - Prakash Dhamodhar
- Department of Biotechnology, M.S. Ramaiah Institute of Technology, Bangaluru-560054, Karnataka, India
| | - Mani Reema Kumari
- Department of Botany, Maharani Lakshmi Ammanni College for Women, Bengaluru-560012, Karnataka, India
| | - S Jayashree
- School of Allied Health Sciences, REVA University, Bengaluru-560064, Karnataka, India
| | - Talambedu Usha
- Department of Biochemistry, Maharani Lakshmi Ammanni College for Women, Bengaluru-560012, Karnataka, India
| | - Sushil Kumar Middha
- Department of Biochemistry, Maharani Lakshmi Ammanni College for Women, Bengaluru-560012, Karnataka, India
| |
Collapse
|
11
|
Gao Y, Peng K, Wang Y, Guo Y, Zeng C, Hua R, Liu Q, Li X, Qiu Y, Wang Z. Ellagic acid ameliorates cisplatin-induced acute kidney injury by regulating inflammation and SIRT6/TNF-α signaling. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2023.03.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
12
|
Guo F, An J, Wang M, Zhang W, Chen C, Mao X, Liu S, Wang P, Ren F. Inhibitory Mechanism of Quercimeritrin as a Novel α-Glucosidase Selective Inhibitor. Foods 2023; 12:3415. [PMID: 37761124 PMCID: PMC10528180 DOI: 10.3390/foods12183415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
In this study, 12 flavonoid glycosides were selected based on virtual screening and the literature, and Quercimeritrin was selected as the best selective inhibitor of α-glucosidase through in vitro enzyme activity inhibition experiments. Its IC50 value for α-glucosidase was 79.88 µM, and its IC50 value for α-amylase >250 µM. As such, it could be used as a new selective inhibitor of α-glucosidase. The selective inhibition mechanism of Quercimeritrin on the two starch-digesting enzymes was further explored, and it was confirmed that Quercimeritrin had a strong binding affinity for α-glucosidase and occupied the binding pocket of α-glucosidase through non-covalent binding. Subsequently, animal experiments demonstrated that Quercimeritrin can effectively control postprandial blood glucose in vivo, with the same inhibitory effect as acarbose but without side effects. Our results, therefore, provide insights into how flavone aglycones can be used to effectively control the rate of digestion to improve postprandial blood glucose levels.
Collapse
Affiliation(s)
- Fengyu Guo
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (F.G.); (X.M.)
| | - Jie An
- Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (J.A.); (M.W.); (W.Z.); (C.C.); (S.L.)
| | - Minlong Wang
- Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (J.A.); (M.W.); (W.Z.); (C.C.); (S.L.)
| | - Weibo Zhang
- Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (J.A.); (M.W.); (W.Z.); (C.C.); (S.L.)
| | - Chong Chen
- Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (J.A.); (M.W.); (W.Z.); (C.C.); (S.L.)
| | - Xueying Mao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (F.G.); (X.M.)
| | - Siyuan Liu
- Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (J.A.); (M.W.); (W.Z.); (C.C.); (S.L.)
- Food Laboratory of Zhongyuan, China Agricultural University, Beijing 100083, China
| | - Pengjie Wang
- Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (J.A.); (M.W.); (W.Z.); (C.C.); (S.L.)
- Food Laboratory of Zhongyuan, China Agricultural University, Beijing 100083, China
| | - Fazheng Ren
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (F.G.); (X.M.)
| |
Collapse
|
13
|
Kashtoh H, Baek KH. New Insights into the Latest Advancement in α-Amylase Inhibitors of Plant Origin with Anti-Diabetic Effects. PLANTS (BASEL, SWITZERLAND) 2023; 12:2944. [PMID: 37631156 PMCID: PMC10458243 DOI: 10.3390/plants12162944] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/11/2023] [Accepted: 08/13/2023] [Indexed: 08/27/2023]
Abstract
The rising predominance of type 2 diabetes, combined with the poor medical effects seen with commercially available anti-diabetic medications, has motivated the development of innovative treatment approaches for regulating postprandial glucose levels. Natural carbohydrate digestion enzyme inhibitors might be a viable option for blocking dietary carbohydrate absorption with fewer side effects than manufactured medicines. Alpha-amylase is a metalloenzyme that facilitates digestion by breaking down polysaccharides into smaller molecules such as maltose and maltotriose. It also contributes to elevated blood glucose levels and postprandial hyperglycemia. As a result, scientists are being urged to target α-amylase and create inhibitors that can slow down the release of glucose from carbohydrate chains and prolong its absorption, thereby resulting in lower postprandial plasma glucose levels. Natural α-amylase inhibitors derived from plants have gained popularity as safe and cost-effective alternatives. The bioactive components responsible for the inhibitory actions of various plant extracts have been identified through phytochemical research, paving the way for further development and application. The majority of the findings, however, are based on in vitro investigations. Only a few animal experiments and very few human investigations have confirmed these findings. Despite some promising results, additional investigation is needed to develop feasible anti-diabetic drugs based on plant-derived pancreatic α-amylase inhibitors. This review summarizes the most recent findings from research on plant-derived pancreatic α-amylase inhibitors, including plant extracts and plant-derived bioactive compounds. Furthermore, it offers insights into the structural aspects of the crucial therapeutic target, α-amylases, in addition to their interactions with inhibitors.
Collapse
Affiliation(s)
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| |
Collapse
|
14
|
Ali MY, Jannat S, Chang MS. Discovery of Potent Angiotensin-Converting Enzyme Inhibitors in Pomegranate as a Treatment for Hypertension. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37384918 DOI: 10.1021/acs.jafc.3c02115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
Pomegranate (Punica granatum L.) is associated with numerous health benefits due to its high levels of antioxidant polyphenolic substances. Since pomegranate extract has been shown to inhibit angiotensin-converting enzyme (ACE), the potential inhibitory effect of most of its main constituents against ACE is unknown. Therefore, we tested the activities of 24 major compounds, the majority of which significantly inhibited ACE. Notably, pedunculagin, punicalin, and gallagic acid were the most effective ACE inhibitors with IC50 values of 0.91, 1.12, and 1.77 μM, respectively. As demonstrated in molecular docking studies, compounds block ACE by forming multiple hydrogen bonds and hydrophobic interactions with catalytic residues and zinc ions in ACE's C- and N-domains, consequently inhibiting ACE's catalytic activity. Also, the most active pedunculagin stimulated nitric oxide (NO) production, activated the endothelial nitric oxide synthase enzyme (eNOS), and significantly increased eNOS protein expression levels up to 5.3-fold in EA.hy926 cells. Furthermore, pedunculagin increased in cellular calcium (Ca2+) concentration promoted eNOS enzyme activation and reduced the production of reactive oxygen species (ROS). In addition, the active compounds improved glucose uptake in insulin-resistant C2C12 skeletal muscle cells in a dose-dependent manner. The results of these computational, in vitro, and cellular experiments provide further evidence to the traditional medicine that involves using pomegranates to treat cardiovascular diseases like hypertension.
Collapse
Affiliation(s)
- Md Yousof Ali
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB T2N 1N4, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Susoma Jannat
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Mun Seog Chang
- Department of Prescriptionology, College of Korean Medicine, Kyung Hee University, 26 Kyunghee dae-ro, Seoul 02447, Korea
- Qgenetics, Seoul Bio Cooperation Center 504, 23 Kyunghee dae-ro, Dongdaemun-gu, Seoul 02447, Korea
| |
Collapse
|
15
|
Benedetti G, Zabini F, Tagliavento L, Meneguzzo F, Calderone V, Testai L. An Overview of the Health Benefits, Extraction Methods and Improving the Properties of Pomegranate. Antioxidants (Basel) 2023; 12:1351. [PMID: 37507891 PMCID: PMC10376364 DOI: 10.3390/antiox12071351] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/24/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Pomegranate (Punica granatum L.) is a polyphenol-rich edible food and medicinal plant of ancient origin, containing flavonols, anthocyanins, and tannins, with ellagitannins as the most abundant polyphenols. In the last decades, its consumption and scientific interest increased, due to its multiple beneficial effects. Pomegranate is a balausta fruit, a large berry surrounded by a thick colored peel composed of exocarp and mesocarp with edible arils inside, from which the pomegranate juice can be produced by pressing. Seeds are used to obtain the seed oil, rich in fatty acids. The non-edible part of the fruit, the peel, although generally disposed as a waste or transformed into compost or biogas, is also used to extract bioactive products. This review summarizes some recent preclinical and clinical studies on pomegranate, which highlight promising beneficial effects in several fields. Although further insight is needed on key aspects, including the limited oral bioavailability and the role of possible active metabolites, the ongoing development of suitable encapsulation and green extraction techniques enabling the valorization of waste pomegranate products point to the great potential of pomegranate and its bioactive constituents as dietary supplements or adjuvants in therapies of cardiovascular and non-cardiovascular diseases.
Collapse
Affiliation(s)
- Giada Benedetti
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56120 Pisa, Italy
| | - Federica Zabini
- Istituto per la Bioeconomia, CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | | | - Francesco Meneguzzo
- Istituto per la Bioeconomia, CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56120 Pisa, Italy
- Interdeparmental Center of Nutrafood, University of Pisa, Via del Borghetto, 56120 Pisa, Italy
| | - Lara Testai
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56120 Pisa, Italy
- Interdeparmental Center of Nutrafood, University of Pisa, Via del Borghetto, 56120 Pisa, Italy
| |
Collapse
|
16
|
Insights on Dietary Polyphenols as Agents against Metabolic Disorders: Obesity as a Target Disease. Antioxidants (Basel) 2023; 12:antiox12020416. [PMID: 36829976 PMCID: PMC9952395 DOI: 10.3390/antiox12020416] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/02/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
Obesity is a condition that leads to increased health problems associated with metabolic disorders. Synthetic drugs are available for obesity treatment, but some of these compounds have demonstrated considerable side effects that limit their use. Polyphenols are vital phytonutrients of plant origin that can be incorporated as functional food ingredients. This review presents recent developments in dietary polyphenols as anti-obesity agents. Evidence supporting the potential application of food-derived polyphenols as agents against obesity has been summarized. Literature evidence supports the effectiveness of plant polyphenols against obesity. The anti-obesity mechanisms of polyphenols have been explained by their potential to inhibit obesity-related digestive enzymes, modulate neurohormones/peptides involved in food intake, and their ability to improve the growth of beneficial gut microbes while inhibiting the proliferation of pathogenic ones. Metabolism of polyphenols by gut microbes produces different metabolites with enhanced biological properties. Thus, research demonstrates that dietary polyphenols can offer a novel path to developing functional foods for treating obesity. Upcoming investigations need to explore novel techniques, such as nanocarriers, to improve the content of polyphenols in foods and their delivery and bioavailability at the target sites in the body.
Collapse
|
17
|
Rodríguez IA, Serafini M, Alves IA, Lang KL, Silva FRMB, Aragón DM. Natural Products as Outstanding Alternatives in Diabetes Mellitus: A Patent Review. Pharmaceutics 2022; 15:85. [PMID: 36678714 PMCID: PMC9867152 DOI: 10.3390/pharmaceutics15010085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/16/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
Diabetes mellitus (DM) is a metabolic syndrome that can be considered a growing health problem in the world. High blood glucose levels are one of the most notable clinical signs. Currently, new therapeutic alternatives have been tackled from clinicians' and scientists' points of view. Natural products are considered a promising source, due to the huge diversity of metabolites with pharmaceutical applications. Therefore, this review aimed to uncover the latest advances in this field as a potential alternative to the current therapeutic strategies for the treatment of DM. This purpose is achieved after a patent review, using the Espacenet database of the European Patent Office (EPO) (2016-2022). Final screening allowed us to investigate 19 patents, their components, and several technology strategies in DM. Plants, seaweeds, fungi, and minerals were used as raw materials in the patents. Additionally, metabolites such as tannins, organic acids, polyphenols, terpenes, and flavonoids were found to be related to the potential activity in DM. Moreover, the cellular transportation of active ingredients and solid forms with special drug delivery profiles is also considered a pharmaceutical technology strategy that can improve their safety and efficacy. From this perspective, natural products can be a promissory source to obtain new drugs for DM therapy.
Collapse
Affiliation(s)
- Ingrid Andrea Rodríguez
- Departamento de Farmacia, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá 110321, D.C., Colombia
| | - Mairim Serafini
- Departamento de Farmácia, Universidade Federal de Sergipe, Sao Cristovao 49100-000, SE, Brazil
| | - Izabel Almeida Alves
- Department of Medicines, Faculty of Pharmacy, Universidade Federal da Bahia, Salvador 40170-115, BA, Brazil
| | - Karen Luise Lang
- Departamento de Farmácia, Campus Governador Valadares, Universidade Federal de Juiz de Fora, Governador Valadares, Juiz de Fora 36038-330, MG, Brazil
| | - Fátima Regina Mena Barreto Silva
- Departamento de Bioquímica—Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Rua João Pio Duarte Silva, Florianópolis 88037-000, SC, Brazil
| | - Diana Marcela Aragón
- Departamento de Farmacia, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá 110321, D.C., Colombia
| |
Collapse
|
18
|
Antidiabetic Potential of Commonly Available Fruit Plants in Bangladesh: Updates on Prospective Phytochemicals and Their Reported MoAs. Molecules 2022; 27:molecules27248709. [PMID: 36557843 PMCID: PMC9782115 DOI: 10.3390/molecules27248709] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/03/2022] [Accepted: 12/04/2022] [Indexed: 12/13/2022] Open
Abstract
Diabetes mellitus is a life-threatening disorder affecting people of all ages and adversely disrupts their daily functions. Despite the availability of numerous synthetic-antidiabetic medications and insulin, the demand for the development of novel antidiabetic medications is increasing due to the adverse effects and growth of resistance to commercial drugs in the long-term usage. Hence, antidiabetic phytochemicals isolated from fruit plants can be a very nifty option to develop life-saving novel antidiabetic therapeutics, employing several pathways and MoAs (mechanism of actions). This review focuses on the antidiabetic potential of commonly available Bangladeshi fruits and other plant parts, such as seeds, fruit peals, leaves, and roots, along with isolated phytochemicals from these phytosources based on lab findings and mechanism of actions. Several fruits, such as orange, lemon, amla, tamarind, and others, can produce remarkable antidiabetic actions and can be dietary alternatives to antidiabetic therapies. Besides, isolated phytochemicals from these plants, such as swertisin, quercetin, rutin, naringenin, and other prospective phytochemicals, also demonstrated their candidacy for further exploration to be established as antidiabetic leads. Thus, it can be considered that fruits are one of the most valuable gifts of plants packed with a wide spectrum of bioactive phytochemicals and are widely consumed as dietary items and medicinal therapies in different civilizations and cultures. This review will provide a better understanding of diabetes management by consuming fruits and other plant parts as well as deliver innovative hints for the researchers to develop novel drugs from these plant parts and/or their phytochemicals.
Collapse
|
19
|
Izcara S, Perestrelo R, Morante-Zarcero S, Sierra I, Câmara JS. Volatilomic fingerprinting from edible flowers. Unravelling some impact compounds behind its attractiveness. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
20
|
Yisimayili Z, Chao Z. A review on phytochemicals, metabolic profiles and pharmacokinetics studies of the different parts (juice, seeds, peel, flowers, leaves and bark) of pomegranate (Punica granatum L.). Food Chem 2022; 395:133600. [DOI: 10.1016/j.foodchem.2022.133600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/13/2022] [Accepted: 06/27/2022] [Indexed: 11/04/2022]
|
21
|
Medicinal uses, pharmacological activities, phytochemistry, and the molecular mechanisms of Punica granatum L. (pomegranate) plant extracts: A review. Biomed Pharmacother 2022; 153:113256. [DOI: 10.1016/j.biopha.2022.113256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/30/2022] [Accepted: 06/03/2022] [Indexed: 12/11/2022] Open
|
22
|
Identification and Characterization of Two Regiospecific Tricetin UDP-Dependent Glycosyltransferases from Pomegranate (Punica granatum L.). PLANTS 2022; 11:plants11060810. [PMID: 35336691 PMCID: PMC8948884 DOI: 10.3390/plants11060810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/16/2022] [Accepted: 03/16/2022] [Indexed: 11/17/2022]
Abstract
Tricetin (5,7,3′,4′,5′-pentahydroxyflavone) is a dietary flavone from flowers of Myrtales plants with demonstrated functions in promoting human health. By contrast, the bioactivity of its glucosylated derivative tricetin 4′-O-glucoside has not been extensively explored. We conducted metabolite profiling analysis of pomegranate (a Myrtales plant) floral tissues and revealed that tricetin and tricetin 4′-O-glucoside accumulate in anthers, but not petals. In addition, the comparative analysis of anther and petal transcriptomes identified 10 UGTs that are more highly expressed in anthers than petals. Of the 10 UGTs, PgUGT76Z1 and PgUGT73AL1 glucosylated specifically at the 4′-O position of tricetin to form tricetin 4′-O-glucoside. The phylogenetic analysis indicated that PgUGT76Z1 and PgUGT73AL1 belong to different plant UGT groups, suggesting a convergent evolution of these tricetin UGTs. Overall, identification and characterization of PgUGT76Z1 and PgUGT73AL1 not only provides evolutionary insights into tricetin glucosylation, but also offers an opportunity to produce tricetin 4′-O-glucoside in large quantities through microbial biotransformation or plant metabolic engineering, thus facilitating the investigation of tricetin 4′-O-glucoside bioactivities.
Collapse
|
23
|
Bahmanzadegan A, Tavallali H, Tavallali V, Karimi MA. Bioactive compounds of Punica granatum L. wastes by high performance liquid chromatography analysis. Nat Prod Res 2022:1-5. [PMID: 35175886 DOI: 10.1080/14786419.2022.2041634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The massive pomaces of Punica granatum L. exhibit a challenging losses exposure difficulty for the processing industries. The resent study was aimed to investigate the bioactive compounds of pomace extracts to introduce it to different industries such as pharmaceutical, food, medicinal, agricultural etcetera for optimum use. Four different extracts were prepared and the phenolic compounds were quantified using HPLC-DAD. Different amounts of phenolic compounds were detected in the samples including gallic acid, catechin, ellagic acid, rosmarinic acid, hesperidin, p-coumaric acid and chlorogenic acid. Gallic acid was major compound in all studied extracts of pomaces, with the maximum amount belonging to water extract (at 60 °C). The average amount of gallic acid detected in water extract (at 60 °C) of Punica granatum L. was 11.25 mg g-1 dry weight, while it was 3.24 3.02 and 1.09 mg g-1 dry weight for the extracts obtained by distilled water, methanol and methanol 80%, respectively.
Collapse
Affiliation(s)
- Atefeh Bahmanzadegan
- Department of Chemistry, Payame Noor University (P NU), Tehran, Iran, P. O. Box 19395-4697
| | - Hossein Tavallali
- Department of Chemistry, Payame Noor University (P NU), Tehran, Iran, P. O. Box 19395-4697
| | - Vahid Tavallali
- Department of Agriculture, Payame Noor University (P NU), Tehran, Iran, P.O. Box 19395-4697
| | - Mohammad Ali Karimi
- Department of Chemistry, Payame Noor University (P NU), Tehran, Iran, P. O. Box 19395-4697
| |
Collapse
|
24
|
Therapeutic Potential of Pomegranate in Metabolic Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1328:421-440. [PMID: 34981494 DOI: 10.1007/978-3-030-73234-9_28] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Metabolic syndrome and associated disorders have become one of the major challenging health problems over the last decades. Considerable attention has been paid to natural products and herbal medicines for the management of metabolic disorders in recent years. Many studies have investigated the therapeutic effects of different parts (arils, peels, seeds, and flowers) of pomegranate (Punica granatum L.) for the prevention and treatment of this syndrome. This study aims to provide an updated review on the in vitro and in vivo studies as well as clinical trials investigating the effects of pomegranate and its active compounds on different components of metabolic problems such as hyperglycemia, hyperlipidemia, hypertension, as well as obesity over the last two decades. Besides, the key mechanisms by which pomegranate affects these pathogenic conditions are also discussed. The studies show that although pomegranate has promising beneficial effects on diabetes, hypertension, hyperlipidemia, and obesity in various cellular, animal, and clinical models of studies, there are some conflicting results, particularly for hyperglycemic conditions. The main mechanisms include influencing oxidative stress and anti-inflammatory responses. Overall, pomegranate seems to have positive effects on the pathogenic conditions of metabolic syndrome according to the reviewed studies. Although pomegranate is not suggested as the first line of therapy or monotherapy, it could be only used as an adjunctive therapy. Nevertheless, further large and long-term clinical studies are still required.
Collapse
|
25
|
Xian W, Yang S, Deng Y, Yang Y, Chen C, Li W, Yang R. Distribution of Urolithins Metabotypes in Healthy Chinese Youth: Difference in Gut Microbiota and Predicted Metabolic Pathways. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13055-13065. [PMID: 34694785 DOI: 10.1021/acs.jafc.1c04849] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
This is the first study to report the distribution of urolithin metabotypes (UMs) in Asian people, specifically in the Chinese. As was reported for Europeans and Latin Americans, three UMs were observed, UM-A (54.3%), UM-B (31.4%), and UM-0 (14.3%), in 35 healthy Chinese youth. The richness and diversity of gut microbiota were lower in UM-0 than in UM-A and UM-B at the genus level. Gordonibacter in UM-A and UM-B was significantly higher than that in UM-0. The Akkermansia was not found in UM-0. The correlation analysis between the type and content of urolithins and the gut microbiota at the genus level showed that 27 genera were significantly positively correlated with urolithin A and 20 genera were significantly positively associated with isourolithin A and urolithin B. In addition, different KEGG pathways such as TCA cycle, energy metabolism, and some disease were found between the gut microbiome of the three UMs. Further research is needed to explore the mechanisms of metabotypes and the differential health benefits or illness predisposition of the three UMs.
Collapse
Affiliation(s)
- Wenyan Xian
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Shiying Yang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yu Deng
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yuzhe Yang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Chunlian Chen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Wu Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Ruili Yang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
26
|
Lam PY, Lui ACW, Wang L, Liu H, Umezawa T, Tobimatsu Y, Lo C. Tricin Biosynthesis and Bioengineering. FRONTIERS IN PLANT SCIENCE 2021; 12:733198. [PMID: 34512707 PMCID: PMC8426635 DOI: 10.3389/fpls.2021.733198] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 07/28/2021] [Indexed: 05/23/2023]
Abstract
Tricin (3',5'-dimethoxyflavone) is a specialized metabolite which not only confers stress tolerance and involves in defense responses in plants but also represents a promising nutraceutical. Tricin-type metabolites are widely present as soluble tricin O-glycosides and tricin-oligolignols in all grass species examined, but only show patchy occurrences in unrelated lineages in dicots. More strikingly, tricin is a lignin monomer in grasses and several other angiosperm species, representing one of the "non-monolignol" lignin monomers identified in nature. The unique biological functions of tricin especially as a lignin monomer have driven the identification and characterization of tricin biosynthetic enzymes in the past decade. This review summarizes the current understanding of tricin biosynthetic pathway in grasses and tricin-accumulating dicots. The characterized and potential enzymes involved in tricin biosynthesis are highlighted along with discussion on the debatable and uncharacterized steps. Finally, current developments of bioengineering on manipulating tricin biosynthesis toward the generation of functional food as well as modifications of lignin for improving biorefinery applications are summarized.
Collapse
Affiliation(s)
- Pui Ying Lam
- Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto, Japan
| | - Andy C. W. Lui
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Lanxiang Wang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Hongjia Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Toshiaki Umezawa
- Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto, Japan
| | - Yuki Tobimatsu
- Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto, Japan
| | - Clive Lo
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| |
Collapse
|
27
|
Modelling studies reveal the importance of the C-terminal inter motif loop of NSP1 as a promising target site for drug discovery and screening of potential phytochemicals to combat SARS-CoV-2. J Mol Graph Model 2021; 106:107920. [PMID: 33933885 PMCID: PMC8053965 DOI: 10.1016/j.jmgm.2021.107920] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/25/2021] [Accepted: 04/06/2021] [Indexed: 02/06/2023]
Abstract
COVID-19 pandemic causative SARS-CoV-2 coronavirus is still rapid in progression and transmission even after a year. Understanding the viral transmission and impeding the replication process within human cells are considered as the vital point to control and overcome COVID-19 infection. Non-structural Protein 1, one among the proteins initially produced upon viral entry into human cells, instantly binds with the human ribosome and inhibit the host translation process by preventing the mRNA attachment. However, the formation of NSP1 bound Ribosome complex does not affect the viral replication process. NSP1 plays an indispensable role in modulating the host gene expression and completely steals the host cellular machinery. The full-length structure of NSP1 is essential for the activity in the host cell and importantly the loop connecting N and C-terminal domains are reported to play a role in ribosome binding. Due to the unavailability of the experimentally determined full-length structure of NSP1, we have modelled the complete structure using comparative modelling and the stability and conformational behaviour of the modelled structure was evaluated through molecular dynamics simulation. Interestingly, the present study reveals the significance of the inter motif loop to serves as a potential binding site for drug discovery experiments. Further, we have screened the phytochemicals from medicinal plant sources since they were used for several hundred years that minimizes the traditional drug development time. Among the 5638 phytochemicals screened against the functionally associated binding site of NSP1, the best five phytochemicals shown high docking score of −9.63 to −8.75 kcal/mol were further evaluated through molecular dynamics simulations to understand the binding affinity and stability of the complex. Prime MM-GBSA analysis gave the relative binding free energies for the top five compounds (dihydromyricetin, 10-demethylcephaeline, dihydroquercetin, pseudolycorine and tricetin) in the range of −45.17 kcal/mol to −37.23 kcal/mol, indicating its binding efficacy in the predicted binding site of NSP1. The density functional theory calculations were performed for the selected five phytochemicals to determine the complex stability and chemical reactivity. Thus, the identified phytochemicals could further be used as effective anti-viral agents to overcome COVID-19 and as well as several other viral infections.
Collapse
|
28
|
Chobot V, Hadacek F, Bachmann G, Weckwerth W, Kubicova L. In Vitro Evaluation of Pro- and Antioxidant Effects of Flavonoid Tricetin in Comparison to Myricetin. Molecules 2020; 25:molecules25245850. [PMID: 33322312 PMCID: PMC7768484 DOI: 10.3390/molecules25245850] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/02/2020] [Accepted: 12/09/2020] [Indexed: 11/23/2022] Open
Abstract
Flavonoids are rather common plant phenolic constituents that are known for potent antioxidant effects and can be beneficial for human health. Flavonoids with a pyrogallol moiety are highly efficient reducing agents with possible pro- and antioxidant effects, depending on the reaction milieu. Therefore, the redox properties of myricetin and tricetin were investigated by differential pulse voltammetry and deoxyribose degradation assay. Tricetin proved to be a good antioxidant but only showed negligible pro-oxidant activity in one of the deoxyribose degradation assay variants. Compared to tricetin, myricetin showed pro- and antioxidant effects. The more efficient reducing properties of myricetin are probably caused by the positive mesomeric effect of the enolic 3-hydroxy group on ring C. It is evident that the antioxidant properties of structurally similar flavonoids can be converted to apparent pro-oxidant effects by relatively small structural changes, such as hydroxylation. Since reactive oxygen species (ROS) often serve as secondary messengers in pathological and physiological processes in animal and plant cells, the pro- and antioxidant properties of flavonoids are an important part of controlling mechanisms of tissue signal cascades.
Collapse
Affiliation(s)
- Vladimir Chobot
- Division of Molecular Systems Biology, Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria; (G.B.); (W.W.); (L.K.)
- Correspondence: ; Tel.: +43-1-4277-76551
| | - Franz Hadacek
- Department of Plant Biochemistry, Albrecht-von-Haller Institut, Georg-August-Universität Göttingen, Justus-von-Liebig-Weg 11, D-37077 Göttingen, Germany;
| | - Gert Bachmann
- Division of Molecular Systems Biology, Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria; (G.B.); (W.W.); (L.K.)
| | - Wolfram Weckwerth
- Division of Molecular Systems Biology, Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria; (G.B.); (W.W.); (L.K.)
- Vienna Metabolomics Center (VIME), University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
| | - Lenka Kubicova
- Division of Molecular Systems Biology, Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria; (G.B.); (W.W.); (L.K.)
| |
Collapse
|
29
|
Ellagic Acid as a Tool to Limit the Diabetes Burden: Updated Evidence. Antioxidants (Basel) 2020; 9:antiox9121226. [PMID: 33287432 PMCID: PMC7761821 DOI: 10.3390/antiox9121226] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 11/29/2020] [Accepted: 12/02/2020] [Indexed: 12/30/2022] Open
Abstract
Oxidative stress contributes not only to the pathogenesis of type 2 diabetes (T2D) but also to diabetic vascular complications. It follows that antioxidants might contribute to limiting the diabetes burden. In this review we focus on ellagic acid (EA), a compound that can be obtained upon intestinal hydrolysis of dietary ellagitannins, a family of polyphenols naturally found in several fruits and seeds. There is increasing research on cardiometabolic effects of ellagitannins, EA, and urolithins (EA metabolites). We updated research conducted on these compounds and (I) glucose metabolism; (II) inflammation, oxidation, and glycation; and (III) diabetic complications. We included studies testing EA in isolation, extracts or preparations enriched in EA, or EA-rich foods (mostly pomegranate juice). Animal research on the topic, entirely conducted in murine models, mostly reported glucose-lowering, antioxidant, anti-inflammatory, and anti-glycation effects, along with prevention of micro- and macrovascular diabetic complications. Clinical research is incipient and mostly involved non-randomized and low-powered studies, which confirmed the antioxidant and anti-inflammatory properties of EA-rich foods, but without conclusive results on glucose control. Overall, EA-related compounds might be potential agents to limit the diabetes burden, but well-designed human randomized controlled trials are needed to fill the existing gap between experimental and clinical research.
Collapse
|
30
|
Maltoheptaoside hydrolysis with chromatographic detection and starch hydrolysis with reducing sugar analysis: Comparison of assays allows assessment of the roles of direct α-amylase inhibition and starch complexation. Food Chem 2020; 343:128423. [PMID: 33168261 DOI: 10.1016/j.foodchem.2020.128423] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 11/21/2022]
Abstract
The aim was to determine inhibition of human α-amylase activity by (poly)phenols using maltoheptaoside as substrate with direct chromatographic product quantification, compared to hydrolysis of amylose and amylopectin estimated using 3,5-dinitrosalicylic acid. Acarbose exhibited similar IC50 values (50% inhibition) with maltoheptaoside, amylopectin or amylose as substrates (2.37 ± 0.11, 3.71 ± 0.12 and 2.08 ± 0.01 µM respectively). Epigallocatechin gallate, quercetagetin and punicalagin were weaker inhibitors of hydrolysis of maltoheptaoside (<50% inhibition) than amylose (IC50: epigallocatechin gallate = 20.41 ± 0.25 µM, quercetagetin = 30.15 ± 2.05 µM) or amylopectin. Interference using 3,5-dinitrosalicylic acid was in the order punicalagin > epigallocatechin gallate > quercetagetin, with minimal interference using maltoheptaoside as substrate. The main inhibition mechanism of epigallocatechin gallate and punicalagin was through complexation with starch, especially amylose, whereas only quercetagetin additionally binds to the α-amylase active site. Interference is minimised using maltoheptaoside as substrate with product detection by chromatography, potentially allowing assessment of direct enzyme inhibition by almost any compound.
Collapse
|
31
|
Alfei S, Marengo B, Zuccari G. Oxidative Stress, Antioxidant Capabilities, and Bioavailability: Ellagic Acid or Urolithins? Antioxidants (Basel) 2020; 9:E707. [PMID: 32759749 PMCID: PMC7465258 DOI: 10.3390/antiox9080707] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 07/24/2020] [Accepted: 08/03/2020] [Indexed: 12/14/2022] Open
Abstract
Oxidative stress (OS), triggered by overproduction of reactive oxygen and nitrogen species, is the main mechanism responsible for several human diseases. The available one-target drugs often face such illnesses, by softening symptoms without eradicating the cause. Differently, natural polyphenols from fruits and vegetables possess multi-target abilities for counteracting OS, thus representing promising therapeutic alternatives and adjuvants. Although in several in vitro experiments, ellagitannins (ETs), ellagic acid (EA), and its metabolites urolithins (UROs) have shown similar great potential for the treatment of OS-mediated human diseases, only UROs have demonstrated in vivo the ability to reach tissues to a greater extent, thus appearing as the main molecules responsible for beneficial activities. Unfortunately, UROs production depends on individual metabotypes, and the consequent extreme variability limits their potentiality as novel therapeutics, as well as dietary assumption of EA, EA-enriched functional foods, and food supplements. This review focuses on the pathophysiology of OS; on EA and UROs chemical features and on the mechanisms of their antioxidant activity. A discussion on the clinical applicability of the debated UROs in place of EA and on the effectiveness of EA-enriched products is also included.
Collapse
Affiliation(s)
- Silvana Alfei
- Department of Pharmacy, University of Genoa, Viale Cembrano, 4, I-16148 Genoa, Italy;
| | - Barbara Marengo
- Department of Experimental Medicine—DIMES, Via Alberti L.B. 2, I-16132 Genoa, Italy;
| | - Guendalina Zuccari
- Department of Pharmacy, University of Genoa, Viale Cembrano, 4, I-16148 Genoa, Italy;
| |
Collapse
|
32
|
Wang CY, Chen ZZ, Guo YX, Sun HJ, Zhang GL, Kuang MA, Yang SX, Li XM, Díaz de la Garza RI, Gou JY. Isolation of wheat mutants with higher grain phenolics to enhance anti-oxidant potential. Food Chem 2020; 303:125363. [DOI: 10.1016/j.foodchem.2019.125363] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 08/08/2019] [Accepted: 08/10/2019] [Indexed: 12/17/2022]
|
33
|
Küçükbay FZ, Tekin Z. Evaluation of phytochemical contents and antioxidant activity of pomegranate flower. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2019. [DOI: 10.18596/jotcsa.628615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
34
|
El Deeb KS, Eid HH, Ali ZY, Shams MM, Elfiky AM. Bioassay-guided fractionation and identification of antidiabetic compounds from the rind of Punica Granatum Var. nana. Nat Prod Res 2019; 35:2103-2106. [PMID: 31436116 DOI: 10.1080/14786419.2019.1655411] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This study aimed to evaluate the antidiabetic potential of the rind of Punica granatum var. nana. Acute oral toxicity test revealed the safety profile of its ethanolic extract. The extract was administered at 200 mg/kg b.wt to streptozotocin-induced diabetic rats. Serum diagnostic markers of diabetes (insulin, glucose and glycated hemoglobin), inflammatory mediators (tumor necrosis factor-α, interleukin-6, and nitric oxide), and oxidative stress (total antioxidant capacity and reduced glutathione and malondialdehyde) were assayed. The ethanolic extract was further fractionated and assessed for the aforementioned bioactivities at two different doses (100 and 200 mg/kg b.wt). The results revealed that the ethyl acetate fraction of rind exhibited the highest activities. Using different chromatographic techniques, four compounds were isolated and identified as rutin, gallic acid, nictoflorin, and tulipanin. In conclusion: The ethyl acetate fraction of the rind of Punica granatum var. nana may provide a potential therapeutic approach for hyperglycemia.
Collapse
Affiliation(s)
- Kadriya S El Deeb
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Hanaa H Eid
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Zeinab Y Ali
- Department of Biochemistry, National Organization for Drug Control & Research (NODCAR), Giza, Egypt
| | - Manal M Shams
- Department of Medicinal plants and natural products, National Organization for Drug Control & Research (NODCAR), Giza, Egypt
| | - Aliaa M Elfiky
- Department of Medicinal plants and natural products, National Organization for Drug Control & Research (NODCAR), Giza, Egypt
| |
Collapse
|
35
|
Russo M, Cacciola F, Arena K, Mangraviti D, de Gara L, Dugo P, Mondello L. Characterization of the polyphenolic fraction of pomegranate samples by comprehensive two-dimensional liquid chromatography coupled to mass spectrometry detection. Nat Prod Res 2019; 34:39-45. [DOI: 10.1080/14786419.2018.1561690] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Marina Russo
- Unit of Food Science and Nutrition, Department of Medicine, University Campus Bio-Medico of Rome, Rome, Italy
| | - Francesco Cacciola
- Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali, University of Messina, Messina, Italy
| | - Katia Arena
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, University of Messina, Messina, Italy
| | - Domenica Mangraviti
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, University of Messina, Messina, Italy
| | - Laura de Gara
- Unit of Food Science and Nutrition, Department of Medicine, University Campus Bio-Medico of Rome, Rome, Italy
| | - Paola Dugo
- Unit of Food Science and Nutrition, Department of Medicine, University Campus Bio-Medico of Rome, Rome, Italy
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, University of Messina, Messina, Italy
- Chromaleont s.r.l., c/o Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, University of Messina, Messina, Italy
| | - Luigi Mondello
- Unit of Food Science and Nutrition, Department of Medicine, University Campus Bio-Medico of Rome, Rome, Italy
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, University of Messina, Messina, Italy
- Chromaleont s.r.l., c/o Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, University of Messina, Messina, Italy
| |
Collapse
|
36
|
Dludla PV, Nkambule BB, Jack B, Mkandla Z, Mutize T, Silvestri S, Orlando P, Tiano L, Louw J, Mazibuko-Mbeje SE. Inflammation and Oxidative Stress in an Obese State and the Protective Effects of Gallic Acid. Nutrients 2018; 11:nu11010023. [PMID: 30577684 PMCID: PMC6356415 DOI: 10.3390/nu11010023] [Citation(s) in RCA: 163] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/08/2018] [Accepted: 11/17/2018] [Indexed: 12/12/2022] Open
Abstract
Metabolic complications in an obese state can be aggravated by an abnormal inflammatory response and enhanced production of reactive oxygen species. Pro-inflammatory response is known to be associated with the formation of toxic reactive oxygen species and subsequent generation of oxidative stress. Indeed, adipocytes from obese individuals display an altered adipokine profile, with upregulated expression and secretion of pro-inflammatory cytokines such as tumor necrosis factor alpha (TNF-α) and interleukin (IL-6). Interestingly, natural compounds, including phenolic enriched foods are increasingly explored for their ameliorative effects against various metabolic diseases. Of interest is gallic acid, a trihydroxybenzoic acid that has progressively demonstrated robust anti-obesity capabilities in various experimental models. In addition to reducing excessive lipid storage in obese subjects, gallic acid has been shown to specifically target the adipose tissue to suppress lipogenesis, improve insulin signaling, and concomitantly combat raised pro-inflammatory response and oxidative stress. This review will revise mechanisms involved in the pathophysiological effects of inflammation and oxidative stress in an obese state. To better inform on its therapeutic potential and improvement of human health, available evidence reporting on the anti-obesity properties of gallic acid and its derivatives will be discussed, with emphases on its modulatory effect on molecular mechanisms involved in insulin signaling, inflammation and oxidative stress.
Collapse
Affiliation(s)
- Phiwayinkosi V Dludla
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy.
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa.
| | - Bongani B Nkambule
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa.
| | - Babalwa Jack
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa.
| | - Zibusiso Mkandla
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa.
| | - Tinashe Mutize
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa.
| | - Sonia Silvestri
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy.
| | - Patrick Orlando
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy.
| | - Luca Tiano
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy.
| | - Johan Louw
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa.
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa.
| | - Sithandiwe E Mazibuko-Mbeje
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa.
- Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg 7505, South Africa.
| |
Collapse
|