1
|
Alarcón-Calle MA, Osorio-Guevara VL, Salas-Asencios R, Yareta J, Marcos-Carbajal P, Rodrigo-Rojas ME. Carbapenems and colistin resistance genes isolated in Musca domestica from a garbage dump near a hospital in Lima. Rev Peru Med Exp Salud Publica 2024; 41:164-170. [PMID: 39166639 PMCID: PMC11300682 DOI: 10.17843/rpmesp.2024.412.13257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 04/17/2024] [Indexed: 08/23/2024] Open
Abstract
Motivation for the study. The presence of antibiotic resistance genes in bacteria isolated from common flies is a potential public health hazard because it facilitates the presence and spread of antibiotic resistance genes in the environment. Main findings. Thirty-eight bacterial strains identified in 14 species were isolated from within the fly bodies, of which 31 strains showed resistance to carbapenems and 26 strains showed resistance to colistin. Seven bacterial strains showed carbapenem resistance genes and one Escherichia coli strain had resistance to KPC, OXA-48 and mcr-1. Implications. This is the first report of antibiotic resistance genes in bacteria carried by common flies in Peru. The objective was to determine the presence of carbapenem resistance genes and plasmid resistance to colistin (mcr-1) in bacteria isolated from Musca domestica in a garbage dump near a hospital in Lima, Peru. Bacteria with phenotypic resistance to carbapenemics were isolated on CHROMagar mSuperCARBATM medium and colistin resistance profiling was performed using the colistin disk elution method. Detection of blaKPC, blaNDM, blaIMP, blaOXA-48, blaVIM and mcr-1 genes was performed by conventional PCR. The antimicrobial susceptibility profile was determined using the automated MicroScan system. We found that 31/38 strains had phenotypic resistance to carbapenemics and 26/38 strains had phenotypic resistance to colistin with a minimum inhibitory concentration ≥ 4 µg/ml. Finally, we identified seven bacterial strains with carbapenem resistance genes (OXA-48 and KPC) and one bacterial strain with plasmid resistance to colistin (mcr-1). One Escherichia coli strain had three resistance genes: KPC, OXA-48 and mcr-1.
Collapse
Affiliation(s)
- Miguel A Alarcón-Calle
- Laboratorio de Investigación en Biología, Facultad de Ciencias Naturales y Matemática, Universidad Nacional Federico Villarreal, Lima, Perú
| | - Víctor L Osorio-Guevara
- Laboratorio de Investigación en Biología, Facultad de Ciencias Naturales y Matemática, Universidad Nacional Federico Villarreal, Lima, Perú
| | - Ramsés Salas-Asencios
- Laboratorio de Biotecnología, Facultad de Ciencias Naturales y Matemática, Universidad Nacional Federico Villarreal, Lima, Perú
| | - José Yareta
- Laboratorio de Investigación en Biología Molecular, Escuela Profesional de Medicina, Universidad Peruana Unión, Lima, Perú
| | - Pool Marcos-Carbajal
- Laboratorio de Epidemiología Molecular y Genómica, Instituto de Investigación en Ciencias Biomédicas, Facultad de Medicina Humana, Universidad Ricardo Palma, Lima, Perú
| | - María E Rodrigo-Rojas
- Laboratorio de Investigación en Biología, Facultad de Ciencias Naturales y Matemática, Universidad Nacional Federico Villarreal, Lima, Perú
| |
Collapse
|
2
|
Ibáñez-Prada ED, Bustos IG, Gamboa-Silva E, Josa DF, Mendez L, Fuentes YV, Serrano-Mayorga CC, Baron O, Ruiz-Cuartas A, Silva E, Judd LM, Harshegyi T, Africano HF, Urrego-Reyes J, Beltran CC, Medina S, Leal R, Stewardson AJ, Wyres KL, Hawkey J, Reyes LF. Molecular characterization and descriptive analysis of carbapenemase-producing Gram-negative rod infections in Bogota, Colombia. Microbiol Spectr 2024; 12:e0171423. [PMID: 38629835 PMCID: PMC11237484 DOI: 10.1128/spectrum.01714-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 03/13/2024] [Indexed: 06/06/2024] Open
Abstract
In this study, the genetic differences and clinical impact of the carbapenemase-encoding genes among the community and healthcare-acquired infections were assessed. This retrospective, multicenter cohort study was conducted in Colombia and included patients infected with carbapenem-resistant Gram-negative rods between 2017 and 2021. Carbapenem resistance was identified by Vitek, and carbapenemase-encoding genes were identified by whole-genome sequencing (WGS) to classify the alleles and sequence types (STs). Descriptive statistics were used to determine the association of any pathogen or gene with clinical outcomes. A total of 248 patients were included, of which only 0.8% (2/248) had community-acquired infections. Regarding the identified bacteria, the most prevalent pathogens were Pseudomonas aeruginosa and Klebsiella pneumoniae. In the WGS analysis, 228 isolates passed all the quality criteria and were analyzed. The principal carbapenemase-encoding gene was blaKPC, specifically blaKPC-2 [38.6% (88/228)] and blaKPC-3 [36.4% (83/228)]. These were frequently detected in co-concurrence with blaVIM-2 and blaNDM-1 in healthcare-acquired infections. Notably, the only identified allele among community-acquired infections was blaKPC-3 [50.0% (1/2)]. In reference to the STs, 78 were identified, of which Pseudomonas aeruginosa ST111 was mainly related to blaKPC-3. Klebsiella pneumoniae ST512, ST258, ST14, and ST1082 were exclusively associated with blaKPC-3. Finally, no particular carbapenemase-encoding gene was associated with worse clinical outcomes. The most identified genes in carbapenemase-producing Gram-negative rods were blaKPC-2 and blaKPC-3, both related to gene co-occurrence and diverse STs in the healthcare environment. Patients had several systemic complications and poor clinical outcomes that were not associated with a particular gene.IMPORTANCEAntimicrobial resistance is a pandemic and a worldwide public health problem, especially carbapenem resistance in low- and middle-income countries. Limited data regarding the molecular characteristics and clinical outcomes of patients infected with these bacteria are available. Thus, our study described the carbapenemase-encoding genes among community- and healthcare-acquired infections. Notably, the co-occurrence of carbapenemase-encoding genes was frequently identified. We also found 78 distinct sequence types, of which two were novel Pseudomonas aeruginosa, which could represent challenges in treating these infections. Our study shows that in low and middle-income countries, such as Colombia, the burden of carbapenem resistance in Gram-negative rods is a concern for public health, and regardless of the allele, these infections are associated with poor clinical outcomes. Thus, studies assessing local epidemiology, prevention strategies (including trials), and underpinning genetic mechanisms are urgently needed, especially in low and middle-income countries.
Collapse
Affiliation(s)
- Elsa D. Ibáñez-Prada
- Unisabana Center for Translational Science, School of Medicine, Universidad de la Sabana, Chía, Colombia
- Critical Care Department, Clínica Universidad de La Sabana, Chía, Colombia
| | - Ingrid G. Bustos
- Unisabana Center for Translational Science, School of Medicine, Universidad de la Sabana, Chía, Colombia
- Critical Care Department, Clínica Universidad de La Sabana, Chía, Colombia
| | - Enrique Gamboa-Silva
- Unisabana Center for Translational Science, School of Medicine, Universidad de la Sabana, Chía, Colombia
| | - Diego F. Josa
- Unisabana Center for Translational Science, School of Medicine, Universidad de la Sabana, Chía, Colombia
- Microbiology Department, Fundación Clínica Shaio, Bogota, Colombia
| | - Lina Mendez
- Critical Care Department, Clínica Universidad de La Sabana, Chía, Colombia
| | - Yuli V. Fuentes
- Unisabana Center for Translational Science, School of Medicine, Universidad de la Sabana, Chía, Colombia
| | | | - Oscar Baron
- Unisabana Center for Translational Science, School of Medicine, Universidad de la Sabana, Chía, Colombia
| | - Alejandra Ruiz-Cuartas
- Unisabana Center for Translational Science, School of Medicine, Universidad de la Sabana, Chía, Colombia
| | - Edwin Silva
- Unisabana Center for Translational Science, School of Medicine, Universidad de la Sabana, Chía, Colombia
- Microbiology Department, Fundación Clínica Shaio, Bogota, Colombia
| | - Louise M. Judd
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Taylor Harshegyi
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Hector F. Africano
- Critical Care Department, Clínica Universidad de La Sabana, Chía, Colombia
| | | | | | - Sebastian Medina
- Global Medical Scientific Affairs, MSD Colombia, Bogota, Colombia
| | - Rafael Leal
- Microbiology Department, Fundación Clínica Shaio, Bogota, Colombia
| | - Andrew J. Stewardson
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Kelly L. Wyres
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Jane Hawkey
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Luis Felipe Reyes
- Unisabana Center for Translational Science, School of Medicine, Universidad de la Sabana, Chía, Colombia
- Critical Care Department, Clínica Universidad de La Sabana, Chía, Colombia
- Pandemic Sciences Institute, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
3
|
Sotomayor N, Villacis JE, Burneo N, Reyes J, Zapata S, Bayas-Rea RDLÁ. Carbapenemase genes in clinical and environmental isolates of Acinetobacter spp. from Quito, Ecuador. PeerJ 2024; 12:e17199. [PMID: 38680892 PMCID: PMC11056107 DOI: 10.7717/peerj.17199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 03/14/2024] [Indexed: 05/01/2024] Open
Abstract
Carbapenem-resistant Acinetobacter spp. is associated with nosocomial infections in intensive care unit patients, resulting in high mortality. Although Acinetobacter spp. represent a serious public health problem worldwide, there are a few studies related to the presence of carbapenemases in health care facilities and other environmental settings in Ecuador. The main aim of this study was to characterize the carbapenem-resistant Acinetobacter spp. isolates obtained from four hospitals (52) and from five rivers (27) close to Quito. We used the disc diffusion and EDTA sinergy tests to determine the antimicrobial susceptibility and the production of metallo β-lactamases, respectively. We carried out a multiplex PCR of gyrB gene and the sequencing of partial rpoB gene to bacterial species identification. We performed molecular screening of nine carbapenem-resistant genes (blaSPM, blaSIM, blaGIM, blaGES, blaOXA-23, blaOXA-24, blaOXA-51, blaOXA-58, and blaOXA-143) by multiplex PCR, followed by identification using sequencing of blaOXA genes. Our findings showed that carbapenem-resistant A. baumannii were the main species found in health care facilities and rivers. Most of the clinical isolates came from respiratory tract samples and harbored blaOXA-23, blaOXA-366, blaOXA-72, blaOXA-65, blaOXA-70, and blaOXA-143-like genes. The river isolates harbored only the blaOXA-51 and probably blaOXA-259 genes. We concluded that the most predominant type of carbapenem genes among isolates were both blaOXA-23 and blaOXA-65 among A. baumannii clinical isolates.
Collapse
Affiliation(s)
- Nicole Sotomayor
- Escuela de Ciencias Biológicas, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - José Eduardo Villacis
- Centro de Referencia Nacional de Resistencia a los Antimicrobianos, Instituto Nacional de Investigación en Salud Pública-INSPI Dr. Leopoldo Izquieta Pérez, Quito, Ecuador
- Centro de Investigación para la Salud en América Latina (CISeAL), Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Noela Burneo
- Escuela de Ciencias Biológicas, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Jorge Reyes
- Facultad de Ciencias Químicas, Universidad Central del Ecuador, Quito, Ecuador
| | - Sonia Zapata
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador
| | - Rosa de los Ángeles Bayas-Rea
- Escuela de Ciencias Biológicas, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador
| |
Collapse
|
4
|
Soria-Segarra C, Soria-Segarra C, Molina-Matute M, Agreda-Orellana I, Núñez-Quezada T, Cevallos-Apolo K, Miranda-Ayala M, Salazar-Tamayo G, Galarza-Herrera M, Vega-Hall V, Villacis JE, Gutiérrez-Fernández J. Molecular epidemiology of carbapenem-resistant gram-negative bacilli in Ecuador. BMC Infect Dis 2024; 24:378. [PMID: 38582858 PMCID: PMC10998298 DOI: 10.1186/s12879-024-09248-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 03/23/2024] [Indexed: 04/08/2024] Open
Abstract
INTRODUCTION Carbapenem-resistant gram-negative bacilli are a worldwide concern because of high morbidity and mortality rates. Additionally, the increasing prevalence of these bacteria is dangerous. To investigate the extent of antimicrobial resistance and prioritize the utility of novel drugs, we evaluated the molecular characteristics and antimicrobial susceptibility profiles of carbapenem-resistant Enterobacterales, Pseudomonas aeruginosa and Acinetobacter baumannii in Ecuador in 2022. METHODS Ninety-five clinical isolates of carbapenem non-susceptible gram-negative bacilli were collected from six hospitals in Ecuador. Carbapenem resistance was confirmed with meropenem disk diffusion assays following Clinical Laboratory Standard Institute guidelines. Carbapenemase production was tested using a modified carbapenemase inactivation method. Antimicrobial susceptibility was tested with a disk diffusion assay, the Vitek 2 System, and gradient diffusion strips. Broth microdilution assays were used to assess colistin susceptibility. All the isolates were screened for the blaKPC, blaNDM, blaOXA-48, blaVIM and blaIMP genes. In addition, A. baumannii isolates were screened for the blaOXA-23, blaOXA-58 and blaOXA-24/40 genes. RESULTS Carbapenemase production was observed in 96.84% of the isolates. The blaKPC, blaNDM and blaOXA-48 genes were detected in Enterobacterales, with blaKPC being predominant. The blaVIM gene was detected in P. aeruginosa, and blaOXA-24/40 predominated in A. baumannii. Most of the isolates showed co-resistance to aminoglycosides, fluoroquinolones, and trimethoprim/sulfamethoxazole. Both ceftazidime/avibactam and meropenem/vaborbactam were active against carbapenem-resistant gram-negative bacilli that produce serin-carbapenemases. CONCLUSION The epidemiology of carbapenem resistance in Ecuador is dominated by carbapenemase-producing K. pneumoniae harbouring blaKPC. Extensively drug resistant (XDR) P. aeruginosa and A. baumannii were identified, and their identification revealed the urgent need to implement strategies to reduce the dissemination of these strains.
Collapse
Affiliation(s)
- Claudia Soria-Segarra
- Sosecali, Medical Services, Guayaquil, EC, 090308, Ecuador.
- Faculty of Medical Sciences, Guayaquil University, Guayaquil, Ecuador.
- Department of Microbiology, School of Medicine and PhD Program in Clinical Medicine and Public Health, University of Granada & ibs, Granada, Spain.
| | - Carmen Soria-Segarra
- Sosecali, Medical Services, Guayaquil, EC, 090308, Ecuador
- Department of Internal Medicine, School of Medicine, Universidad Católica de Santiago de Guayaquil, Guayaquil, Ecuador
| | | | | | - Tamara Núñez-Quezada
- Hospital del Instituto Ecuatoriano de Seguridad Social Dr. Teodoro Maldonado Carbo, Guayaquil, Ecuador
| | - Kerly Cevallos-Apolo
- Hospital de Infectología Dr. José Daniel Rodríguez Maridueña, Guayaquil, Ecuador
| | | | | | | | | | - José E Villacis
- Centro de Investigación Para La Salud en América Latina (CISeAL), Pontificia Universidad Católica del Ecuador, Quito, 1701-2184, Ecuador
| | - José Gutiérrez-Fernández
- Department of Microbiology, School of Medicine and PhD Program in Clinical Medicine and Public Health, University of Granada & ibs, Granada, Spain
- Department of Microbiology, Hospital Virgen de Las Nieves, Institute for Biosanitary Research-Ibs, Granada, Spain
| |
Collapse
|
5
|
Li Q, Zhou X, Yang R, Shen X, Li G, Zhang C, Li P, Li S, Xie J, Yang Y. Carbapenem-resistant Gram-negative bacteria (CR-GNB) in ICUs: resistance genes, therapeutics, and prevention - a comprehensive review. Front Public Health 2024; 12:1376513. [PMID: 38601497 PMCID: PMC11004409 DOI: 10.3389/fpubh.2024.1376513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/20/2024] [Indexed: 04/12/2024] Open
Abstract
Intensive care units (ICUs) are specialized environments dedicated to the management of critically ill patients, who are particularly susceptible to drug-resistant bacteria. Among these, carbapenem-resistant Gram-negative bacteria (CR-GNB) pose a significant threat endangering the lives of ICU patients. Carbapenemase production is a key resistance mechanism in CR-GNB, with the transfer of resistance genes contributing to the extensive emergence of antimicrobial resistance (AMR). CR-GNB infections are widespread in ICUs, highlighting an urgent need for prevention and control measures to reduce mortality rates associated with CR-GNB transmission or infection. This review provides an overview of key aspects surrounding CR-GNB within ICUs. We examine the mechanisms of bacterial drug resistance, the resistance genes that frequently occur with CR-GNB infections in ICU, and the therapeutic options against carbapenemase genotypes. Additionally, we highlight crucial preventive measures to impede the transmission and spread of CR-GNB within ICUs, along with reviewing the advances made in the field of clinical predictive modeling research, which hold excellent potential for practical application.
Collapse
Affiliation(s)
- Qi Li
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaoshi Zhou
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Rou Yang
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaoyan Shen
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Department of Pharmacy, Chengdu Qingbaijiang District People's Hospital, Chengdu, China
| | - Guolin Li
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Changji Zhang
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Pengfei Li
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Shiran Li
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jingxian Xie
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yong Yang
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
6
|
Dos Santos PAS, Silva MJA, Gouveia MIM, Lima LNGC, Quaresma AJPG, De Lima PDL, Brasiliense DM, Lima KVB, Rodrigues YC. The Prevalence of Metallo-Beta-Lactamese-(MβL)-Producing Pseudomonas aeruginosa Isolates in Brazil: A Systematic Review and Meta-Analysis. Microorganisms 2023; 11:2366. [PMID: 37764210 PMCID: PMC10534863 DOI: 10.3390/microorganisms11092366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/12/2023] [Accepted: 08/19/2023] [Indexed: 09/29/2023] Open
Abstract
The purpose of the current study is to describe the prevalence of Pseudomonas aeruginosa (PA)-producing MβL among Brazilian isolates and the frequency of blaSPM-1 in MβL-PA-producing isolates. From January 2009 to August 2023, we carried out an investigation on this subject in the internet databases SciELO, PubMed, Science Direct, and LILACS. A total of 20 papers that met the eligibility requirements were chosen by comprehensive meta-analysis software v2.2 for data retrieval and analysis by one meta-analysis using a fixed-effects model for the two investigations. The prevalence of MβL-producing P. aeruginosa was 35.8% or 0.358 (95% CI = 0.324-0.393). The studies' differences were significantly different from one another (x2 = 243.15; p < 0.001; I2 = 92.18%), so they were divided into subgroups based on Brazilian regions. There was indication of asymmetry in the meta-analyses' publishing bias funnel plot; so, a meta-regression was conducted by the study's publication year. According to the findings of Begg's test, no discernible publishing bias was found. blaSPM-1 prevalence was estimated at 66.9% or 0.669 in MβL-PA isolates (95% CI = 0.593-0.738). The analysis of this one showed an average heterogeneity (x2 = 90.93; p < 0.001; I2 = 80.20%). According to the results of Begg's test and a funnel plot, no discernible publishing bias was found. The research showed that MβL-P. aeruginosa and SPM-1 isolates were relatively common among individuals in Brazil. P. aeruginosa and other opportunistic bacteria are spreading quickly and causing severe infections, so efforts are needed to pinpoint risk factors, reservoirs, transmission pathways, and the origin of infection.
Collapse
Affiliation(s)
- Pabllo Antonny Silva Dos Santos
- Program in Parasitic Biology in the Amazon Region (PPGBPA), State University of Pará (UEPA), Belém 66087-662, PA, Brazil; (P.A.S.D.S.); (L.N.G.C.L.); (P.D.L.D.L.); (D.M.B.); (K.V.B.L.)
- Bacteriology and Mycology Section, Evandro Chagas Institute (SABMI/IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil; (M.I.M.G.); (A.J.P.G.Q.)
| | - Marcos Jessé Abrahão Silva
- Bacteriology and Mycology Section, Evandro Chagas Institute (SABMI/IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil; (M.I.M.G.); (A.J.P.G.Q.)
- Program in Epidemiology and Health Surveillance (PPGEVS), Evandro Chagas Institute (IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil
| | - Maria Isabel Montoril Gouveia
- Bacteriology and Mycology Section, Evandro Chagas Institute (SABMI/IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil; (M.I.M.G.); (A.J.P.G.Q.)
| | - Luana Nepomuceno Gondim Costa Lima
- Program in Parasitic Biology in the Amazon Region (PPGBPA), State University of Pará (UEPA), Belém 66087-662, PA, Brazil; (P.A.S.D.S.); (L.N.G.C.L.); (P.D.L.D.L.); (D.M.B.); (K.V.B.L.)
- Bacteriology and Mycology Section, Evandro Chagas Institute (SABMI/IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil; (M.I.M.G.); (A.J.P.G.Q.)
- Program in Epidemiology and Health Surveillance (PPGEVS), Evandro Chagas Institute (IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil
| | - Ana Judith Pires Garcia Quaresma
- Bacteriology and Mycology Section, Evandro Chagas Institute (SABMI/IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil; (M.I.M.G.); (A.J.P.G.Q.)
| | - Patrícia Danielle Lima De Lima
- Program in Parasitic Biology in the Amazon Region (PPGBPA), State University of Pará (UEPA), Belém 66087-662, PA, Brazil; (P.A.S.D.S.); (L.N.G.C.L.); (P.D.L.D.L.); (D.M.B.); (K.V.B.L.)
| | - Danielle Murici Brasiliense
- Program in Parasitic Biology in the Amazon Region (PPGBPA), State University of Pará (UEPA), Belém 66087-662, PA, Brazil; (P.A.S.D.S.); (L.N.G.C.L.); (P.D.L.D.L.); (D.M.B.); (K.V.B.L.)
- Bacteriology and Mycology Section, Evandro Chagas Institute (SABMI/IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil; (M.I.M.G.); (A.J.P.G.Q.)
- Program in Epidemiology and Health Surveillance (PPGEVS), Evandro Chagas Institute (IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil
| | - Karla Valéria Batista Lima
- Program in Parasitic Biology in the Amazon Region (PPGBPA), State University of Pará (UEPA), Belém 66087-662, PA, Brazil; (P.A.S.D.S.); (L.N.G.C.L.); (P.D.L.D.L.); (D.M.B.); (K.V.B.L.)
- Bacteriology and Mycology Section, Evandro Chagas Institute (SABMI/IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil; (M.I.M.G.); (A.J.P.G.Q.)
- Program in Epidemiology and Health Surveillance (PPGEVS), Evandro Chagas Institute (IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil
| | - Yan Corrêa Rodrigues
- Bacteriology and Mycology Section, Evandro Chagas Institute (SABMI/IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil; (M.I.M.G.); (A.J.P.G.Q.)
- Program in Epidemiology and Health Surveillance (PPGEVS), Evandro Chagas Institute (IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil
- Department of Natural Science, State University of Pará (DCNA/UEPA), Belém 66050-540, PA, Brazil
| |
Collapse
|
7
|
Veloso M, Arros P, Acosta J, Rojas R, Berríos-Pastén C, Varas M, Araya P, Hormazábal JC, Allende ML, Chávez FP, Lagos R, Marcoleta AE. Antimicrobial resistance, pathogenic potential, and genomic features of carbapenem-resistant Klebsiella pneumoniae isolated in Chile: high-risk ST25 clones and novel mobile elements. Microbiol Spectr 2023; 11:e0039923. [PMID: 37707451 PMCID: PMC10581085 DOI: 10.1128/spectrum.00399-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 07/26/2023] [Indexed: 09/15/2023] Open
Abstract
Multidrug- and carbapenem-resistant Klebsiella pneumoniae (CR-Kp) are critical threats to global health and key traffickers of resistance genes to other pathogens. Despite the sustained increase in CR-Kp infections in Chile, few strains have been described at the genomic level, lacking details of their resistance and virulence determinants and the mobile elements mediating their dissemination. In this work, we studied the antimicrobial susceptibility and performed a comparative genomic analysis of 10 CR-Kp isolates from the Chilean surveillance of carbapenem-resistant Enterobacteriaceae. High resistance was observed among the isolates (five ST25, three ST11, one ST45, and one ST505), which harbored 44 plasmids, most carrying genes for conjugation and resistance to several antibiotics and biocides. Ten plasmids encoding carbapenemases were characterized, including novel plasmids or variants with additional resistance genes, a novel genetic environment for blaKPC-2, and plasmids widely disseminated in South America. ST25 K2 isolates belonging to CG10224, a clone traced back to 2012 in Chile, which recently acquired blaNDM-1, blaNDM-7, or blaKPC-2 plasmids stood out as high-risk clones. Moreover, this corresponds to the first report of ST25 and ST45 Kp producing NDM-7 in South America and ST505 CR-Kp producing both NDM-7 and KPC-2 worldwide. Also, we characterized a variety of genomic islands carrying virulence and fitness factors. These results provide baseline knowledge for a detailed understanding of molecular and genetic determinants behind antibiotic resistance and virulence of CR-Kp in Chile and South America. IMPORTANCE In the ongoing antimicrobial resistance crisis, carbapenem-resistant strains of Klebsiella pneumoniae are critical threats to public health. Besides globally disseminated clones, the burden of local problem clones remains substantial. Although genomic analysis is a powerful tool for improving pathogen and antimicrobial resistance surveillance, it is still restricted in low- to middle-income countries, including Chile, causing them to be underrepresented in genomic databases and epidemiology surveys. This study provided the first 10 complete genomes of the Chilean surveillance for carbapenem-resistant K. pneumoniae in healthcare settings, unveiling their resistance and virulence determinants and the mobile genetic elements mediating their dissemination, placed in the South American and global K. pneumoniae epidemiological context. We found ST25 with K2 capsule as an emerging high-risk clone, along with other lineages producing two carbapenemases and several other resistance and virulence genes encoded in novel plasmids and genomic islands.
Collapse
Affiliation(s)
- Marcelo Veloso
- Grupo de Microbiología Integrativa, Laboratorio de Biología Estructural y Molecular BEM, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Patricio Arros
- Grupo de Microbiología Integrativa, Laboratorio de Biología Estructural y Molecular BEM, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Joaquin Acosta
- Grupo de Microbiología Integrativa, Laboratorio de Biología Estructural y Molecular BEM, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Roberto Rojas
- Grupo de Microbiología Integrativa, Laboratorio de Biología Estructural y Molecular BEM, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Camilo Berríos-Pastén
- Grupo de Microbiología Integrativa, Laboratorio de Biología Estructural y Molecular BEM, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Macarena Varas
- Grupo de Microbiología Integrativa, Laboratorio de Biología Estructural y Molecular BEM, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | | | | | - Miguel L. Allende
- Millennium Institute Center for Genome Regulation (CGR), Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Francisco P. Chávez
- Laboratorio de Microbiología de Sistemas, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Rosalba Lagos
- Grupo de Microbiología Integrativa, Laboratorio de Biología Estructural y Molecular BEM, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Andrés E. Marcoleta
- Grupo de Microbiología Integrativa, Laboratorio de Biología Estructural y Molecular BEM, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
8
|
Vásquez-Ponce F, Bispo J, Becerra J, Fontana H, Pariona JGM, Esposito F, Fuga B, Oliveira FA, Brunetti F, Power P, Gutkind G, Schreiber AZ, Lincopan N. Emergence of KPC-113 and KPC-114 variants in ceftazidime-avibactam-resistant Klebsiella pneumoniae belonging to high-risk clones ST11 and ST16 in South America. Microbiol Spectr 2023; 11:e0037423. [PMID: 37671877 PMCID: PMC10580961 DOI: 10.1128/spectrum.00374-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 07/18/2023] [Indexed: 09/07/2023] Open
Abstract
Two novel variants of Klebsiella pneumoniae carbapenemase (KPC) associated with resistance to ceftazidime-avibactam (CZA) and designated as KPC-113 and KPC-114 by NCBI were identified in 2020, in clinical isolates of Klebsiella pneumoniae in Brazil. While K. pneumoniae of ST16 harbored the blaKPC-113 variant on an IncFII-IncFIB plasmid, K. pneumoniae of ST11 carried the blaKPC-114 variant on an IncN plasmid. Both isolates displayed resistance to broad-spectrum cephalosporins, β-lactam inhibitors, and ertapenem and doripenem, whereas K. pneumoniae producing KPC-114 showed susceptibility to imipenem and meropenem. Whole-genome sequencing and in silico analysis revealed that KPC-113 presented a Gly insertion between Ambler positions 264 and 265 (R264_A265insG), whereas KPC-114 displayed two amino acid insertions (Ser-Ser) between Ambler positions 181 and 182 (S181_P182insSS) in KPC-2, responsible for CZA resistance profiles. Our results confirm the emergence of novel KPC variants associated with resistance to CZA in international clones of K. pneumoniae circulating in South America. IMPORTANCE KPC-2 carbapenemases are endemic in Latin America. In this regard, in 2018, ceftazidime-avibactam (CZA) was authorized for clinical use in Brazil due to its significant activity against KPC-2 producers. In recent years, reports of resistance to CZA have increased in this country, limiting its clinical application. In this study, we report the emergence of two novel KPC-2 variants, named KPC-113 and KPC-114, associated with CZA resistance in Klebsiella pneumoniae strains belonging to high-risk clones ST11 and ST16. Our finding suggests that novel mutations in KPC-2 are increasing in South America, which is a critical issue deserving active surveillance.
Collapse
Affiliation(s)
- Felipe Vásquez-Ponce
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil
| | - Jessica Bispo
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil
| | - Johana Becerra
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil
| | - Herrison Fontana
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil
- Department of Clinical Analysis, School of Pharmacy, University of São Paulo, São Paulo, Brazil
| | - Jesus G. M. Pariona
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil
- Department of Clinical Analysis, School of Pharmacy, University of São Paulo, São Paulo, Brazil
| | - Fernanda Esposito
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil
- Department of Clinical Analysis, School of Pharmacy, University of São Paulo, São Paulo, Brazil
| | - Bruna Fuga
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil
- Department of Clinical Analysis, School of Pharmacy, University of São Paulo, São Paulo, Brazil
| | - Flavio A. Oliveira
- School of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - Florencia Brunetti
- Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriologia y Virología Molecular, Universidad de Buenos Aires, and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Pablo Power
- Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriologia y Virología Molecular, Universidad de Buenos Aires, and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Gabriel Gutkind
- Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriologia y Virología Molecular, Universidad de Buenos Aires, and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | | | - Nilton Lincopan
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil
- Department of Clinical Analysis, School of Pharmacy, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
9
|
Aguilar GR, Swetschinski LR, Weaver ND, Ikuta KS, Mestrovic T, Gray AP, Chung E, Wool EE, Han C, Hayoon AG, Araki DT, Abdollahi A, Abu-Zaid A, Adnan M, Agarwal R, Dehkordi JA, Aravkin AY, Areda D, Azzam AY, Berezin EN, Bhagavathula AS, Bhutta ZA, Bhuyan SS, Browne AJ, Castañeda-Orjuela CA, Chandrasekar EK, Ching PR, Dai X, Darmstadt GL, De la Hoz FP, Diao N, Diaz D, Mombaque dos Santos W, Eyre D, Garcia C, Haines-Woodhouse G, Hassen MB, Henry NJ, Hopkins S, Hossain MM, Iregbu KC, Iwu CC, Jacobs JA, Janko MM, Jones R, Karaye IM, Khalil IA, Khan IA, Khan T, Khubchandani J, Khusuwan S, Kisa A, Koyaweda GW, Krapp F, Kumaran EA, Kyu HH, Lim SS, Liu X, Luby S, Maharaj SB, Maronga C, Martorell M, May J, McManigal B, Mokdad AH, Moore CE, Mostafavi E, Murillo-Zamora E, Mussi-Pinhata MM, Nanavati R, Nassereldine H, Natto ZS, Qamar FN, Nuñez-Samudio V, Ochoa TJ, Ojo-Akosile TR, Olagunju AT, Olivas-Martinez A, Ortiz-Brizuela E, Ounchanum P, Paredes JL, Patthipati VS, Pawar S, Pereira M, Pollard A, Ponce-De-Leon A, Sady Prates EJ, Qattea I, Reyes LF, Roilides E, Rosenthal VD, Rudd KE, Sangchan W, Seekaew S, Seylani A, Shababi N, Sham S, Sifuentes-Osornio J, Singh H, Stergachis A, Tasak N, Tat NY, Thaiprakong A, Valdez PR, Yada DY, Yunusa I, Zastrozhin MS, Hay SI, Dolecek C, Sartorius B, Murray CJ, Naghavi M. The burden of antimicrobial resistance in the Americas in 2019: a cross-country systematic analysis. LANCET REGIONAL HEALTH. AMERICAS 2023; 25:100561. [PMID: 37727594 PMCID: PMC10505822 DOI: 10.1016/j.lana.2023.100561] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/22/2023] [Accepted: 07/10/2023] [Indexed: 09/21/2023]
Abstract
Background Antimicrobial resistance (AMR) is an urgent global health challenge and a critical threat to modern health care. Quantifying its burden in the WHO Region of the Americas has been elusive-despite the region's long history of resistance surveillance. This study provides comprehensive estimates of AMR burden in the Americas to assess this growing health threat. Methods We estimated deaths and disability-adjusted life-years (DALYs) attributable to and associated with AMR for 23 bacterial pathogens and 88 pathogen-drug combinations for countries in the WHO Region of the Americas in 2019. We obtained data from mortality registries, surveillance systems, hospital systems, systematic literature reviews, and other sources, and applied predictive statistical modelling to produce estimates of AMR burden for all countries in the Americas. Five broad components were the backbone of our approach: the number of deaths where infection had a role, the proportion of infectious deaths attributable to a given infectious syndrome, the proportion of infectious syndrome deaths attributable to a given pathogen, the percentage of pathogens resistant to an antibiotic class, and the excess risk of mortality (or duration of an infection) associated with this resistance. We then used these components to estimate the disease burden by applying two counterfactual scenarios: deaths attributable to AMR (compared to an alternative scenario where resistant infections are replaced with susceptible ones), and deaths associated with AMR (compared to an alternative scenario where resistant infections would not occur at all). We generated 95% uncertainty intervals (UIs) for final estimates as the 25th and 975th ordered values across 1000 posterior draws, and models were cross-validated for out-of-sample predictive validity. Findings We estimated 569,000 deaths (95% UI 406,000-771,000) associated with bacterial AMR and 141,000 deaths (99,900-196,000) attributable to bacterial AMR among the 35 countries in the WHO Region of the Americas in 2019. Lower respiratory and thorax infections, as a syndrome, were responsible for the largest fatal burden of AMR in the region, with 189,000 deaths (149,000-241,000) associated with resistance, followed by bloodstream infections (169,000 deaths [94,200-278,000]) and peritoneal/intra-abdominal infections (118,000 deaths [78,600-168,000]). The six leading pathogens (by order of number of deaths associated with resistance) were Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, Streptococcus pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii. Together, these pathogens were responsible for 452,000 deaths (326,000-608,000) associated with AMR. Methicillin-resistant S. aureus predominated as the leading pathogen-drug combination in 34 countries for deaths attributable to AMR, while aminopenicillin-resistant E. coli was the leading pathogen-drug combination in 15 countries for deaths associated with AMR. Interpretation Given the burden across different countries, infectious syndromes, and pathogen-drug combinations, AMR represents a substantial health threat in the Americas. Countries with low access to antibiotics and basic health-care services often face the largest age-standardised mortality rates associated with and attributable to AMR in the region, implicating specific policy interventions. Evidence from this study can guide mitigation efforts that are tailored to the needs of each country in the region while informing decisions regarding funding and resource allocation. Multisectoral and joint cooperative efforts among countries will be a key to success in tackling AMR in the Americas. Funding Bill & Melinda Gates Foundation, Wellcome Trust, and Department of Health and Social Care using UK aid funding managed by the Fleming Fund.
Collapse
|
10
|
Dos Santos PAS, Rodrigues YC, Marcon DJ, Lobato ARF, Cazuza TB, Gouveia MIM, Silva MJA, Souza AB, Lima LNGC, Quaresma AJPG, Brasiliense DM, Lima KVB. Endemic High-Risk Clone ST277 Is Related to the Spread of SPM-1-Producing Pseudomonas aeruginosa during the COVID-19 Pandemic Period in Northern Brazil. Microorganisms 2023; 11:2069. [PMID: 37630629 PMCID: PMC10457858 DOI: 10.3390/microorganisms11082069] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/20/2023] [Accepted: 07/20/2023] [Indexed: 08/27/2023] Open
Abstract
Pseudomonas aeruginosa is a high-priority bacterial agent that causes healthcare-acquired infections (HAIs), which often leads to serious infections and poor prognosis in vulnerable patients. Its increasing resistance to antimicrobials, associated with SPM production, is a case of public health concern. Therefore, this study aims to determine the antimicrobial resistance, virulence, and genotyping features of P. aeruginosa strains producing SPM-1 in the Northern region of Brazil. To determine the presence of virulence and resistance genes, the PCR technique was used. For the susceptibility profile of antimicrobials, the Kirby-Bauer disk diffusion method was performed on Mueller-Hinton agar. The MLST technique was used to define the ST of the isolates. The exoS+/exoU- virulotype was standard for all strains, with the aprA, lasA, toxA, exoS, exoT, and exoY genes as the most prevalent. All the isolates showed an MDR or XDR profile against the six classes of antimicrobials tested. HRC ST277 played a major role in spreading the SPM-1-producing P. aeruginosa strains.
Collapse
Affiliation(s)
- Pabllo Antonny Silva Dos Santos
- Program in Parasitic Biology in the Amazon Region (PPGBPA), State University of Pará (UEPA), Tv. Perebebuí, 2623-Marco, Belém 66087-662, PA, Brazil; (P.A.S.D.S.); (D.J.M.); (L.N.G.C.L.); (D.M.B.)
- Bacteriology and Mycology Section, Evandro Chagas Institute (SABMI/IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil; (A.R.F.L.); (T.B.C.); (M.I.M.G.); (M.J.A.S.); (A.B.S.); (A.J.P.G.Q.)
| | - Yan Corrêa Rodrigues
- Bacteriology and Mycology Section, Evandro Chagas Institute (SABMI/IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil; (A.R.F.L.); (T.B.C.); (M.I.M.G.); (M.J.A.S.); (A.B.S.); (A.J.P.G.Q.)
- Program in Epidemiology and Health Surveillance (PPGEVS), Evandro Chagas Institute (IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil
- Department of Natural Science, State University of Pará (DCNA/UEPA), Belém 66050-540, PA, Brazil
| | - Davi Josué Marcon
- Program in Parasitic Biology in the Amazon Region (PPGBPA), State University of Pará (UEPA), Tv. Perebebuí, 2623-Marco, Belém 66087-662, PA, Brazil; (P.A.S.D.S.); (D.J.M.); (L.N.G.C.L.); (D.M.B.)
- Bacteriology and Mycology Section, Evandro Chagas Institute (SABMI/IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil; (A.R.F.L.); (T.B.C.); (M.I.M.G.); (M.J.A.S.); (A.B.S.); (A.J.P.G.Q.)
| | - Amália Raiana Fonseca Lobato
- Bacteriology and Mycology Section, Evandro Chagas Institute (SABMI/IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil; (A.R.F.L.); (T.B.C.); (M.I.M.G.); (M.J.A.S.); (A.B.S.); (A.J.P.G.Q.)
| | - Thalyta Braga Cazuza
- Bacteriology and Mycology Section, Evandro Chagas Institute (SABMI/IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil; (A.R.F.L.); (T.B.C.); (M.I.M.G.); (M.J.A.S.); (A.B.S.); (A.J.P.G.Q.)
| | - Maria Isabel Montoril Gouveia
- Bacteriology and Mycology Section, Evandro Chagas Institute (SABMI/IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil; (A.R.F.L.); (T.B.C.); (M.I.M.G.); (M.J.A.S.); (A.B.S.); (A.J.P.G.Q.)
| | - Marcos Jessé Abrahão Silva
- Bacteriology and Mycology Section, Evandro Chagas Institute (SABMI/IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil; (A.R.F.L.); (T.B.C.); (M.I.M.G.); (M.J.A.S.); (A.B.S.); (A.J.P.G.Q.)
- Program in Epidemiology and Health Surveillance (PPGEVS), Evandro Chagas Institute (IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil
| | - Alex Brito Souza
- Bacteriology and Mycology Section, Evandro Chagas Institute (SABMI/IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil; (A.R.F.L.); (T.B.C.); (M.I.M.G.); (M.J.A.S.); (A.B.S.); (A.J.P.G.Q.)
| | - Luana Nepomuceno Gondim Costa Lima
- Program in Parasitic Biology in the Amazon Region (PPGBPA), State University of Pará (UEPA), Tv. Perebebuí, 2623-Marco, Belém 66087-662, PA, Brazil; (P.A.S.D.S.); (D.J.M.); (L.N.G.C.L.); (D.M.B.)
- Bacteriology and Mycology Section, Evandro Chagas Institute (SABMI/IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil; (A.R.F.L.); (T.B.C.); (M.I.M.G.); (M.J.A.S.); (A.B.S.); (A.J.P.G.Q.)
- Program in Epidemiology and Health Surveillance (PPGEVS), Evandro Chagas Institute (IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil
| | - Ana Judith Pires Garcia Quaresma
- Bacteriology and Mycology Section, Evandro Chagas Institute (SABMI/IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil; (A.R.F.L.); (T.B.C.); (M.I.M.G.); (M.J.A.S.); (A.B.S.); (A.J.P.G.Q.)
| | - Danielle Murici Brasiliense
- Program in Parasitic Biology in the Amazon Region (PPGBPA), State University of Pará (UEPA), Tv. Perebebuí, 2623-Marco, Belém 66087-662, PA, Brazil; (P.A.S.D.S.); (D.J.M.); (L.N.G.C.L.); (D.M.B.)
- Bacteriology and Mycology Section, Evandro Chagas Institute (SABMI/IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil; (A.R.F.L.); (T.B.C.); (M.I.M.G.); (M.J.A.S.); (A.B.S.); (A.J.P.G.Q.)
- Program in Epidemiology and Health Surveillance (PPGEVS), Evandro Chagas Institute (IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil
| | - Karla Valéria Batista Lima
- Program in Parasitic Biology in the Amazon Region (PPGBPA), State University of Pará (UEPA), Tv. Perebebuí, 2623-Marco, Belém 66087-662, PA, Brazil; (P.A.S.D.S.); (D.J.M.); (L.N.G.C.L.); (D.M.B.)
- Bacteriology and Mycology Section, Evandro Chagas Institute (SABMI/IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil; (A.R.F.L.); (T.B.C.); (M.I.M.G.); (M.J.A.S.); (A.B.S.); (A.J.P.G.Q.)
- Program in Epidemiology and Health Surveillance (PPGEVS), Evandro Chagas Institute (IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil
| |
Collapse
|
11
|
Garza-Ramos U, Rodríguez-Medina N, Córdova-Fletes C, Rubio-Mendoza D, Alonso-Hernández CJ, López-Jácome LE, Morfín-Otero R, Rodríguez-Noriega E, Rojas-Larios F, Vázquez-Larios MDR, Ponce-de-Leon A, Choy-Chang EV, Franco-Cendejas R, Martinez-Guerra BA, Morales-de-La-Peña CT, Mena-Ramírez JP, López-Gutiérrez E, García-Romo R, Ballesteros-Silva B, Valadez-Quiroz A, Avilés-Benítez LK, Feliciano-Guzmán JM, Pérez-Vicelis T, Velázquez-Acosta MDC, Padilla-Ibarra C, López-Moreno LI, Corte-Rojas RE, Couoh-May CA, Quevedo-Ramos MA, López-García M, Chio-Ortiz G, Gil-Veloz M, Molina-Chavarria A, Mora-Domínguez JP, Romero-Romero D, May-Tec FJ, Garza-González E. Whole genome analysis of Gram-negative bacteria using the EPISEQ CS application and other bioinformatic platforms. J Glob Antimicrob Resist 2023; 33:61-71. [PMID: 36878463 DOI: 10.1016/j.jgar.2023.02.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/23/2023] [Accepted: 02/26/2023] [Indexed: 03/07/2023] Open
Abstract
OBJECTIVES To determine genomic characteristics and molecular epidemiology of carbapenem non-susceptible Klebsiella pneumoniae, Escherichia coli, Acinetobacter baumannii, and Pseudomonas aeruginosa from medical centres of Mexico using whole genome sequencing data analysed with the EPISEQⓇ CS application and other bioinformatic platforms. METHODS Clinical isolates collected from 28 centres in Mexico included carbapenem-non-susceptible K. pneumoniae (n = 22), E. coli (n = 24), A. baumannii (n = 16), and P. aeruginosa (n = 13). Isolates were subjected to whole genome sequencing using the Illumina (MiSeq) platform. FASTQ files were uploaded to the EPISEQⓇ CS application for analysis. Additionally, the tools Kleborate v2.0.4 and Pathogenwatch were used as comparators for Klebsiella genomes, and the bacterial whole genome sequence typing database was used for E. coli and A. baumannii. RESULTS For K. pneumoniae, both bioinformatic approaches detected multiple genes encoding aminoglycoside, quinolone, and phenicol resistance, and the presence of blaNDM-1 explained carbapenem non-susceptibility in 18 strains and blaKPC-3 in four strains. Regarding E. coli, both EPISEQⓇ CS and bacterial whole genome sequence typing database analyses detected multiple virulence and resistance genes: 20 of 24 (83.3%) strains carried blaNDM, 3 of 24 (12.4%) carried blaOXA-232, and 1 carried blaOXA-181. Genes that confer resistance to aminoglycosides, tetracyclines, sulfonamides, phenicols, trimethoprim, and macrolides were also detected by both platforms. Regarding A. baumannii, the most frequent carbapenemase-encoding gene detected by both platforms was blaOXA-72, followed by blaOXA-66. Both approaches detected similar genes for aminoglycosides, carbapenems, tetracyclines, phenicols, and sulfonamides. Regarding P. aeruginosa, blaVIM, blaIMP, and blaGES were the more frequently detected. Multiple virulence genes were detected in all strains. CONCLUSION Compared to the other available platforms, EPISEQⓇ CS enabled a comprehensive resistance and virulence analysis, providing a reliable method for bacterial strain typing and characterization of the virulome and resistome.
Collapse
Affiliation(s)
| | | | | | - Daira Rubio-Mendoza
- Facultad de Medicina, Universidad Autónoma de Nuevo León, Nuevo León, Mexico
| | | | | | - Rao Morfín-Otero
- Hospital Civil de Guadalajara Fray Antonio Alcalde, Universidad de Guadalajara, Jalisco, Mexico
| | | | | | | | - Alfredo Ponce-de-Leon
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de Mexico, Mexico
| | | | | | | | | | - Juan Pablo Mena-Ramírez
- Hospital General de Zona No. 21, IMSS. Centro Universitario de los Altos, Universidad de Guadalajara. Jalisco, Mexico
| | | | | | | | | | | | | | - Talia Pérez-Vicelis
- Hospital Regional de alta especialidad Bicentenario de la independencia, Estado de México, Mexico
| | | | | | | | | | | | | | | | | | - Mariana Gil-Veloz
- Hospital Regional de Alta Especialidad del Bajío, Guanajuato, Mexico
| | | | | | | | | | | |
Collapse
|
12
|
Josa DF, Bustos IG, Yusef SA, Crevoisier S, Silva E, López N, Leal R, Molina IT, Osorio JP, Arias G, Cortés-Muñoz F, Sánchez C, Reyes LF. Rapid Detection of Carbapenemase and Extended-Spectrum β-Lactamase Producing Gram-Negative Bacteria Directly from Positive Blood Cultures Using a Novel Protocol. Antibiotics (Basel) 2022; 12:antibiotics12010034. [PMID: 36671235 PMCID: PMC9854742 DOI: 10.3390/antibiotics12010034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Early and adequate antibiotic treatment is the cornerstone of improving clinical outcomes in patients with bloodstream infections (BSI). Delays in appropriate antimicrobial therapy have catastrophic consequences for patients with BSI. Microbiological characterization of multi-drug resistant pathogens (MDRP) allows clinicians to provide appropriate treatments. Current microbiologic techniques may take up to 96 h to identify causative pathogens and their resistant patterns. Therefore, there is an important need to develop rapid diagnostic strategies for MDRP. We tested a modified protocol to detect carbapenemase and extended-spectrum β-lactamase (ESBL) producing Gram-negative bacteria (GNB) from positive blood cultures. METHODS This is a prospective cohort study of consecutive patients with bacteremia. We developed a modified protocol using the HB&L® system to detect MDRP. The operational characteristics were analyzed for each test (HB&L-ESBL/AmpC® and HB&L-Carbapenemase® kits). The kappa coefficient, sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), likelihood ratios (LR) with 95% confidence intervals (CI), and reduction in identification time of this novel method were calculated. RESULTS Ninety-six patients with BSI were included in the study. A total of 161 positive blood cultures were analyzed. Escherichia coli (50%, 81/161) was the most frequently identified pathogen, followed by Klebsiella pneumoniae (15%, 24/161) and Pseudomonas aeruginosa (8%, 13/161). Thirty-three percent of isolations had usual resistance patterns. However, 34/161 (21%) of identified pathogens were producers of carbapenemases and 21/161 (13%) of extended-spectrum β-lactamases. Concordance between our HB&L® modified protocol and the traditional method was 99% (159/161). Finally, identification times were significantly shorter using our HB&L®-modified protocol than traditional methods: median (IQR) 19 h (18, 22) vs. 61 h (60, 64), p < 0.001. CONCLUSIONS Here, we provide novel evidence that using our HB&L®-modified protocol is an effective strategy to reduce the time to detect MDRP producers of carbapenemases or extended-spectrum β-lactamases, with an excellent concordance rate when compared to the gold standard. Further studies are needed to confirm these findings and to determine whether this method may improve clinical outcomes.
Collapse
Affiliation(s)
- Diego Fernando Josa
- Research Group Cardiovascular Medicine and Specialties of High Complexity, Fundación Clínica Shaio, Bogotá 110121, Colombia; (I.G.B.); (E.S.); (N.L.); (R.L.); (I.T.M.); (J.P.O.); (G.A.); (F.C.-M.); (C.S.)
- Correspondence: (D.F.J.); (L.F.R.); Tel.: +57-1-861-5555 (ext. 23342) (L.F.R.)
| | - Ingrid Gisell Bustos
- Research Group Cardiovascular Medicine and Specialties of High Complexity, Fundación Clínica Shaio, Bogotá 110121, Colombia; (I.G.B.); (E.S.); (N.L.); (R.L.); (I.T.M.); (J.P.O.); (G.A.); (F.C.-M.); (C.S.)
| | - Soad Amira Yusef
- Department of Critical Medicine, Fundación Clínica Shaio, Bogotá 110111, Colombia; (S.A.Y.); (S.C.)
- Unisabana Center of Translational Science, Universidad de la Sabana, Chía 53753, Colombia
| | - Stephanie Crevoisier
- Department of Critical Medicine, Fundación Clínica Shaio, Bogotá 110111, Colombia; (S.A.Y.); (S.C.)
- Unisabana Center of Translational Science, Universidad de la Sabana, Chía 53753, Colombia
| | - Edwin Silva
- Research Group Cardiovascular Medicine and Specialties of High Complexity, Fundación Clínica Shaio, Bogotá 110121, Colombia; (I.G.B.); (E.S.); (N.L.); (R.L.); (I.T.M.); (J.P.O.); (G.A.); (F.C.-M.); (C.S.)
- Infectious Diseases Department, Fundación Clínica Shaio, Bogotá 110111, Colombia
| | - Natalia López
- Research Group Cardiovascular Medicine and Specialties of High Complexity, Fundación Clínica Shaio, Bogotá 110121, Colombia; (I.G.B.); (E.S.); (N.L.); (R.L.); (I.T.M.); (J.P.O.); (G.A.); (F.C.-M.); (C.S.)
| | - Rafael Leal
- Research Group Cardiovascular Medicine and Specialties of High Complexity, Fundación Clínica Shaio, Bogotá 110121, Colombia; (I.G.B.); (E.S.); (N.L.); (R.L.); (I.T.M.); (J.P.O.); (G.A.); (F.C.-M.); (C.S.)
| | - Isabel Torres Molina
- Research Group Cardiovascular Medicine and Specialties of High Complexity, Fundación Clínica Shaio, Bogotá 110121, Colombia; (I.G.B.); (E.S.); (N.L.); (R.L.); (I.T.M.); (J.P.O.); (G.A.); (F.C.-M.); (C.S.)
| | - Juan Pablo Osorio
- Research Group Cardiovascular Medicine and Specialties of High Complexity, Fundación Clínica Shaio, Bogotá 110121, Colombia; (I.G.B.); (E.S.); (N.L.); (R.L.); (I.T.M.); (J.P.O.); (G.A.); (F.C.-M.); (C.S.)
- Infectious Diseases Department, Fundación Clínica Shaio, Bogotá 110111, Colombia
| | - Gerson Arias
- Research Group Cardiovascular Medicine and Specialties of High Complexity, Fundación Clínica Shaio, Bogotá 110121, Colombia; (I.G.B.); (E.S.); (N.L.); (R.L.); (I.T.M.); (J.P.O.); (G.A.); (F.C.-M.); (C.S.)
- Infectious Diseases Department, Fundación Clínica Shaio, Bogotá 110111, Colombia
| | - Fabián Cortés-Muñoz
- Research Group Cardiovascular Medicine and Specialties of High Complexity, Fundación Clínica Shaio, Bogotá 110121, Colombia; (I.G.B.); (E.S.); (N.L.); (R.L.); (I.T.M.); (J.P.O.); (G.A.); (F.C.-M.); (C.S.)
| | - Carolina Sánchez
- Research Group Cardiovascular Medicine and Specialties of High Complexity, Fundación Clínica Shaio, Bogotá 110121, Colombia; (I.G.B.); (E.S.); (N.L.); (R.L.); (I.T.M.); (J.P.O.); (G.A.); (F.C.-M.); (C.S.)
| | - Luis Felipe Reyes
- Unisabana Center of Translational Science, Universidad de la Sabana, Chía 53753, Colombia
- Department of Critical Care, Clínica Universidad de La Sabana, Chía 250001, Colombia
- Correspondence: (D.F.J.); (L.F.R.); Tel.: +57-1-861-5555 (ext. 23342) (L.F.R.)
| |
Collapse
|
13
|
Abstract
Carbapenem-resistant Pseudomonas aeruginosa (CR-PA) is a major healthcare-associated pathogen worldwide. In the United States, 10–30% of P. aeruginosa isolates are carbapenem-resistant, while globally the percentage varies considerably. A subset of carbapenem-resistant P. aeruginosa isolates harbour carbapenemases, although due in part to limited screening for these enzymes in clinical laboratories, the actual percentage is unknown. Carbapenemase-mediated carbapenem resistance in P. aeruginosa is a significant concern as it greatly limits the choice of anti-infective strategies, although detecting carbapenemase-producing P. aeruginosa in the clinical laboratory can be challenging. Such organisms also have been associated with nosocomial spread requiring infection prevention interventions. The carbapenemases present in P. aeruginosa vary widely by region but include the Class A beta-lactamases, KPC and GES; metallo-beta-lactamases IMP, NDM, SPM, and VIM; and the Class D, OXA-48 enzymes. Rapid confirmation and differentiation among the various classes of carbapenemases is key to the initiation of early effective therapy. This may be accomplished using either molecular genotypic methods or phenotypic methods, although both have their limitations. Prompt evidence that rules out carbapenemases guides clinicians to more optimal therapeutic selections based on local phenotypic profiling of non-carbapenemase-producing, carbapenem-resistant P. aeruginosa. This article will review the testing strategies available for optimizing therapy of P. aeruginosa infections.
Collapse
Affiliation(s)
| | - David P Nicolau
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, CT, USA.,Division of Infectious Diseases, Hartford Hospital, Hartford, CT, USA
| | - Christian M Gill
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, CT, USA
| |
Collapse
|
14
|
Thomas GR, Corso A, Pasterán F, Shal J, Sosa A, Pillonetto M, de Souza Peral RT, Hormazábal JC, Araya P, Saavedra SY, Ovalle MV, Jiménez Pearson MA, Chacón GC, Carbon E, Mazariegos Herrera CJ, Velásquez SDCG, Satan-Salazar C, Villavicencio F, Touchet NM, Busignani S, Mayta-Barrios M, Ramírez-Illescas J, Vega ML, Mogdasy C, Rosas V, Salgado N, Quiroz R, El-Omeiri N, Galas MF, Ramón-Pardo P, Melano RG. Increased Detection of Carbapenemase-Producing Enterobacterales Bacteria in Latin America and the Caribbean during the COVID-19 Pandemic. Emerg Infect Dis 2022; 28:1-8. [PMID: 36286547 PMCID: PMC9622262 DOI: 10.3201/eid2811.220415] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During 2020–2021, countries in Latin America and the Caribbean reported clinical emergence of carbapenemase-producing Enterobacterales that had not been previously characterized locally, increased prevalence of carbapenemases that had previously been detected, and co-production of multiple carbapenemases in some isolates. These increases were likely fueled by changes related to the COVID-19 pandemic, including empirical antibiotic use for potential COVID-19–related bacterial infections and healthcare limitations resulting from the rapid rise in COVID-19 cases. Strengthening antimicrobial resistance surveillance, epidemiologic research, and infection prevention and control programs and antimicrobial stewardship in clinical settings can help prevent emergence and transmission of carbapenemase-producing Enterobacterales.
Collapse
|
15
|
First identification of the bla IMP-27 gene in a clinical isolate of Providencia rettgeri in Colombia. J Glob Antimicrob Resist 2022; 30:428-430. [PMID: 35569756 DOI: 10.1016/j.jgar.2022.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 12/31/2022] Open
|
16
|
Comparative In Vitro Activity of Ceftolozane/Tazobactam against Clinical Isolates of Pseudomonas aeruginosa and Enterobacterales from Five Latin American Countries. Antibiotics (Basel) 2022; 11:antibiotics11081101. [PMID: 36009970 PMCID: PMC9405202 DOI: 10.3390/antibiotics11081101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/04/2022] [Accepted: 08/10/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Ceftolozane/tazobactam (C/T) is a combination of an antipseudomonal oxyiminoaminothiazolyl cephalosporin with potent in vitro activity against Pseudomonas aeruginosa and tazobactam, a known β-lactamase inhibitor. The aim of this study was to evaluate the activity of C/T against clinical isolates of P. aeruginosa and Enterobacterales collected from five Latin American countries between 2016 and 2017, before its clinical use in Latin America, and to compare it with the activity of other available broad-spectrum antimicrobial agents. Methods: a total of 2760 clinical isolates (508 P. aeruginosa and 2252 Enterobacterales) were consecutively collected from 20 hospitals and susceptibility to C/T and comparator agents was tested and interpreted following the current guidelines. Results: according to the CLSI breakpoints, 68.1% (346/508) of P. aeruginosa and 83.9% (1889/2252) of Enterobacterales isolates were susceptible to C/T. Overall, C/T demonstrated higher in vitro activity than currently available cephalosporins, piperacillin/tazobactam and carbapenems when tested against P. aeruginosa, and its performance in vitro was comparable to fosfomycin. When tested against Enterobacterales, it showed higher activity than cephalosporins and piperacillin/tazobactam, and similar activity to ertapenem. Conclusions: these results show that C/T is an active β-lactam agent against clinical isolates of P. aeruginosa and Enterobacterales.
Collapse
|
17
|
Rodríguez-Noriega E, Garza-González E, Bocanegra-Ibarias P, Paz-Velarde BA, Esparza-Ahumada S, González-Díaz E, Pérez-Gómez HR, Escobedo-Sánchez R, León-Garnica G, Morfín-Otero R. A case–control study of infections caused by Klebsiella pneumoniae producing New Delhi metallo-beta-lactamase-1: Predictors and outcomes. Front Cell Infect Microbiol 2022; 12:867347. [PMID: 35967868 PMCID: PMC9366880 DOI: 10.3389/fcimb.2022.867347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 06/24/2022] [Indexed: 12/05/2022] Open
Abstract
Introduction Infections caused by antimicrobial-resistant bacteria are a significant cause of death worldwide, and carbapenemase-producing bacteria are the principal agents. New Delhi metallo-beta-lactamase-1 producing Klebsiella pneumoniae (KP-NDM-1) is an extensively drug-resistant bacterium that has been previously reported in Mexico. Our aim was to conduct a case–control study to describe the risk factors associated with nosocomial infections caused by K. pneumoniae producing NDM-1 in a tertiary-care hospital in Mexico. Methods A retrospective case–control study with patients hospitalized from January 2012 to February 2018 at the Hospital Civil de Guadalajara “Fray Antonio Alcalde” was designed. During this period, 139 patients with a culture that was positive for K. pneumoniae NDM-1 (cases) and 486 patients hospitalized in the same department and on the same date as the cases (controls) were included. Data were analyzed using SPSS v. 24, and logistic regression analysis was conducted to calculate the risk factors for KP-NDM-1 infection. Results One hundred and thirty-nine case patients with a KP-NDM-1 isolate and 486 control patients were analyzed. In the case group, acute renal failure was a significant comorbidity, hospitalization days were extended, and significantly more deaths occurred. In a multivariate analysis of risk factors, the independent variables included the previous use of antibiotics (odds ratio, OR = 12.252), the use of a urinary catheter (OR = 5.985), the use of a central venous catheter (OR = 5.518), the use of mechanical ventilation (OR = 3.459), and the length of intensive care unit (ICU) stay (OR = 2.334) as predictors of infection with NDM-1 K. pneumoniae. Conclusion In this study, the previous use of antibiotics, the use of a urinary catheter, the use of a central venous catheter, the use of mechanical ventilation, and ICU stay were shown to be predictors of infection with NDM-1 K. pneumoniae and were independent risk factors for infection with NDM-1 K. pneumoniae.
Collapse
Affiliation(s)
- Eduardo Rodríguez-Noriega
- Instituto de Patología Infecciosa y Experimental “Dr. Francisco Ruiz Sánchez”, Centro Universitario de Ciencias de la Salud, Guadalajara, Mexico
| | | | | | | | - Sergio Esparza-Ahumada
- Instituto de Patología Infecciosa y Experimental “Dr. Francisco Ruiz Sánchez”, Centro Universitario de Ciencias de la Salud, Guadalajara, Mexico
- Hospital Civil de Guadalajara. Epidemiology, Microbiology and Infectious Disease Department, Guadalajara, Mexico
| | - Esteban González-Díaz
- Instituto de Patología Infecciosa y Experimental “Dr. Francisco Ruiz Sánchez”, Centro Universitario de Ciencias de la Salud, Guadalajara, Mexico
- Hospital Civil de Guadalajara. Epidemiology, Microbiology and Infectious Disease Department, Guadalajara, Mexico
| | - Héctor R. Pérez-Gómez
- Instituto de Patología Infecciosa y Experimental “Dr. Francisco Ruiz Sánchez”, Centro Universitario de Ciencias de la Salud, Guadalajara, Mexico
| | - Rodrigo Escobedo-Sánchez
- Hospital Civil de Guadalajara. Epidemiology, Microbiology and Infectious Disease Department, Guadalajara, Mexico
| | - Gerardo León-Garnica
- Instituto de Patología Infecciosa y Experimental “Dr. Francisco Ruiz Sánchez”, Centro Universitario de Ciencias de la Salud, Guadalajara, Mexico
- Hospital Civil de Guadalajara. Epidemiology, Microbiology and Infectious Disease Department, Guadalajara, Mexico
| | - Rayo Morfín-Otero
- Instituto de Patología Infecciosa y Experimental “Dr. Francisco Ruiz Sánchez”, Centro Universitario de Ciencias de la Salud, Guadalajara, Mexico
- *Correspondence: Rayo Morfín-Otero,
| |
Collapse
|
18
|
Whole-Genome Characterisation of ESBL-Producing E. coli Isolated from Drinking Water and Dog Faeces from Rural Andean Households in Peru. Antibiotics (Basel) 2022; 11:antibiotics11050692. [DOI: 10.3390/antibiotics11050692] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/06/2022] [Accepted: 05/11/2022] [Indexed: 02/04/2023] Open
Abstract
E. coli that produce extended-spectrum β-lactamases (ESBLs) are major multidrug-resistant bacteria. In Peru, only a few reports have characterised the whole genome of ESBL enterobacteria. We aimed to confirm the identity and antimicrobial resistance (AMR) profile of two ESBL isolates from dog faeces and drinking water of rural Andean households and determine serotype, phylogroup, sequence type (ST)/clonal complex (CC), pathogenicity, virulence genes, ESBL genes, and their plasmids. To confirm the identity and AMR profiles, we used the VITEK®2 system. Whole-genome sequencing (WGS) and bioinformatics analysis were performed subsequently. Both isolates were identified as E. coli, with serotypes -:H46 and O9:H10, phylogroups E and A, and ST/CC 5259/- and 227/10, respectively. The isolates were ESBL-producing, carbapenem-resistant, and not harbouring carbapenemase-encoding genes. Isolate 1143 ST5259 harboured the astA gene, encoding the EAST1 heat-stable toxin. Both genomes carried ESBL genes (blaEC-15, blaCTX-M-8, and blaCTX-M-55). Nine plasmids were detected, namely IncR, IncFIC(FII), IncI, IncFIB(AP001918), Col(pHAD28), IncFII, IncFII(pHN7A8), IncI1, and IncFIB(AP001918). Finding these potentially pathogenic bacteria is worrisome given their sources and highlights the importance of One-Health research efforts in remote Andean communities.
Collapse
|
19
|
Tamma PD, Aitken SL, Bonomo RA, Mathers AJ, van Duin D, Clancy CJ. Infectious Diseases Society of America 2022 Guidance on the Treatment of Extended-Spectrum β-lactamase Producing Enterobacterales (ESBL-E), Carbapenem-Resistant Enterobacterales (CRE), and Pseudomonas aeruginosa with Difficult-to-Treat Resistance (DTR-P. aeruginosa). Clin Infect Dis 2022; 75:187-212. [PMID: 35439291 PMCID: PMC9890506 DOI: 10.1093/cid/ciac268] [Citation(s) in RCA: 228] [Impact Index Per Article: 114.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/04/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND The Infectious Diseases Society of America (IDSA) is committed to providing up-to-date guidance on the treatment of antimicrobial-resistant infections. The initial guidance document on infections caused by extended-spectrum β-lactamase producing Enterobacterales (ESBL-E), carbapenem-resistant Enterobacterales (CRE), and Pseudomonas aeruginosa with difficult-to-treat resistance (DTR-P. aeruginosa) was published on 17 September 2020. Over the past year, there have been a number of important publications furthering our understanding of the management of ESBL-E, CRE, and DTR-P. aeruginosa infections, prompting a rereview of the literature and this updated guidance document. METHODS A panel of 6 infectious diseases specialists with expertise in managing antimicrobial-resistant infections reviewed, updated, and expanded previously developed questions and recommendations about the treatment of ESBL-E, CRE, and DTR-P. aeruginosa infections. Because of differences in the epidemiology of resistance and availability of specific anti-infectives internationally, this document focuses on the treatment of infections in the United States. RESULTS Preferred and alternative treatment recommendations are provided with accompanying rationales, assuming the causative organism has been identified and antibiotic susceptibility results are known. Approaches to empiric treatment, duration of therapy, and other management considerations are also discussed briefly. Recommendations apply for both adult and pediatric populations. CONCLUSIONS The field of antimicrobial resistance is highly dynamic. Consultation with an infectious diseases specialist is recommended for the treatment of antimicrobial-resistant infections. This document is current as of 24 October 2021. The most current versions of IDSA documents, including dates of publication, are available at www.idsociety.org/practice-guideline/amr-guidance/.
Collapse
Affiliation(s)
- Pranita D Tamma
- Correspondence: P. D. Tamma, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA ()
| | - Samuel L Aitken
- Department of Pharmacy, University of Michigan Health, Ann Arbor, Michigan, USA
| | - Robert A Bonomo
- Medical Service and Center for Antimicrobial Resistance and Epidemiology, Louis Stokes Cleveland Veterans Affairs Medical Center, University Hospitals Cleveland Medical Center and Departments of Medicine, Pharmacology, Molecular Biology, and Microbiology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Amy J Mathers
- Departments of Medicine and Pathology, University of Virginia, Charlottesville, Virginia, USA
| | - David van Duin
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Cornelius J Clancy
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
20
|
González D, Robas M, Fernández V, Bárcena M, Probanza A, Jiménez PA. Comparative Metagenomic Study of Rhizospheric and Bulk Mercury-Contaminated Soils in the Mining District of Almadén. Front Microbiol 2022; 13:797444. [PMID: 35330761 PMCID: PMC8940170 DOI: 10.3389/fmicb.2022.797444] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/17/2022] [Indexed: 12/22/2022] Open
Abstract
Soil contamination by heavy metals, particularly mercury (Hg), is a problem that can seriously affect the environment, animals, and human health. Hg has the capacity to biomagnify in the food chain. That fact can lead to pathologies, of those which affect the central nervous system being the most severe. It is convenient to know the biological environmental indicators that alert of the effects of Hg contamination as well as the biological mechanisms that can help in its remediation. To contribute to this knowledge, this study conducted comparative analysis by the use of Shotgun metagenomics of the microbial communities in rhizospheric soils and bulk soil of the mining region of Almadén (Ciudad Real, Spain), one of the most affected areas by Hg in the world The sequences obtained was analyzed with MetaPhlAn2 tool and SUPER-FOCUS. The most abundant taxa in the taxonomic analysis in bulk soil were those of Actinobateria and Alphaproteobacteria. On the contrary, in the rhizospheric soil microorganisms belonging to the phylum Proteobacteria were abundant, evidencing that roots have a selective effect on the rhizospheric communities. In order to analyze possible indicators of biological contamination, a functional potential analysis was performed. The results point to a co-selection of the mechanisms of resistance to Hg and the mechanisms of resistance to antibiotics or other toxic compounds in environments contaminated by Hg. Likewise, the finding of antibiotic resistance mechanisms typical of the human clinic, such as resistance to beta-lactams and glycopeptics (vancomycin), suggests that these environments can behave as reservoirs. The sequences involved in Hg resistance (operon mer and efflux pumps) have a similar abundance in both soil types. However, the response to abiotic stress (salinity, desiccation, and contaminants) is more prevalent in rhizospheric soil. Finally, sequences involved in nitrogen fixation and metabolism and plant growth promotion (PGP genes) were identified, with higher relative abundances in rhizospheric soils. These findings can be the starting point for the targeted search for microorganisms suitable for further use in bioremediation processes in Hg-contaminated environments.
Collapse
Affiliation(s)
- Daniel González
- Department of Pharmaceutical Science and Health, CEU Universities, Boadilla del Monte, Spain
| | - Marina Robas
- Department of Pharmaceutical Science and Health, CEU Universities, Boadilla del Monte, Spain
| | - Vanesa Fernández
- Department of Pharmaceutical Science and Health, CEU Universities, Boadilla del Monte, Spain
| | - Marta Bárcena
- Department of Pharmaceutical Science and Health, CEU Universities, Boadilla del Monte, Spain
| | - Agustín Probanza
- Department of Pharmaceutical Science and Health, CEU Universities, Boadilla del Monte, Spain
| | - Pedro A Jiménez
- Department of Pharmaceutical Science and Health, CEU Universities, Boadilla del Monte, Spain
| |
Collapse
|
21
|
Martins WM, Lenzi MH, Narciso AC, Dantas P, Andrey DO, Yang QE, Sands K, Medeiros EA, Walsh TR, Gales AC. Silent Circulation of BKC-1-producing Klebsiella pneumoniae ST442: Molecular and Clinical Characterisation of an Early and Unreported Outbreak. Int J Antimicrob Agents 2022; 59:106568. [DOI: 10.1016/j.ijantimicag.2022.106568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 01/25/2022] [Accepted: 03/06/2022] [Indexed: 11/29/2022]
|
22
|
Lynch JP, Zhanel GG. Pseudomonas aeruginosa Pneumonia: Evolution of Antimicrobial Resistance and Implications for Therapy. Semin Respir Crit Care Med 2022; 43:191-218. [PMID: 35062038 DOI: 10.1055/s-0041-1740109] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Pseudomonas aeruginosa (PA), a non-lactose-fermenting gram-negative bacillus, is a common cause of nosocomial infections in critically ill or debilitated patients, particularly ventilator-associated pneumonia (VAP), and infections of urinary tract, intra-abdominal, wounds, skin/soft tissue, and bloodstream. PA rarely affects healthy individuals, but may cause serious infections in patients with chronic structural lung disease, comorbidities, advanced age, impaired immune defenses, or with medical devices (e.g., urinary or intravascular catheters, foreign bodies). Treatment of pseudomonal infections is difficult, as PA is intrinsically resistant to multiple antimicrobials, and may acquire new resistance determinants even while on antimicrobial therapy. Mortality associated with pseudomonal VAP or bacteremias is high (> 35%) and optimal therapy is controversial. Over the past three decades, antimicrobial resistance (AMR) among PA has escalated globally, via dissemination of several international multidrug resistant "epidemic" clones. We discuss the importance of PA as a cause of pneumonia including health care-associated pneumonia, hospital-acquired pneumonia, VAP, the emergence of AMR to this pathogen, and approaches to therapy (both empirical and definitive).
Collapse
Affiliation(s)
- Joseph P Lynch
- Division of Pulmonary, Critical Care Medicine, Allergy, and Clinical Immunology, Department of Medicine, The David Geffen School of Medicine at UCLA, Los Angeles, California
| | - George G Zhanel
- Department of Medical Microbiology/Infectious Diseases, University of Manitoba, Max Rady College of Medicine, Winnipeg, Manitoba, Canada
| |
Collapse
|
23
|
Rada AM, Correa A, Restrepo E, Capataz C. Escherichia coli ST471 Producing VIM-4 Metallo-β-Lactamase in Colombia. Microb Drug Resist 2022; 28:288-292. [PMID: 34990286 PMCID: PMC8968847 DOI: 10.1089/mdr.2021.0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
An Escherichia coli isolate sequence-type 471 (ST471) producing Verona integron-encoded metallo-β-lactamases (VIM)-4 was recovered from a rectal swab in a patient without travel records with osteomyelitis in Colombia. The isolate carried a class 1 integron-borne blaVIM-4 gene with a 170-bp duplication in the 3′ end of the gene, preceded by an aac(6′)-Ib gene. The genetic environment of blaVIM-4, blaCMY-2, and sul2 genes showed similarities to the backbone of pKKp4, an IncA/C-type plasmid from a Klebsiella pneumoniae strain carrying blaVIM-4 recovered in Kuwait. This is the first report of blaVIM-4 in Enterobacterales in South America. Our results suggest that blaVIM-4 gene was found on an IncA/C-type plasmid that could play a role in the spread of VIM-4 carbapenemase in Colombia.
Collapse
Affiliation(s)
- Ana Mercedes Rada
- Department of Microbiology, Bacteria and Cáncer Group, University of Antioquia, Medellín, Colombia.,Facultad de Ciencias de la Salud, Biociencias Group, Institución Universitaria Colegio Mayor de Antioquia, Medellín, Colombia
| | - Adriana Correa
- Facultad de Ciencias Básicas, Universidad Santiago de Cali, Cali, Colombia.,Clínica Imbanaco, Cali, Colombia
| | - Eliana Restrepo
- Facultad de Ciencias de la Salud, Biociencias Group, Institución Universitaria Colegio Mayor de Antioquia, Medellín, Colombia
| | | |
Collapse
|
24
|
Kotrange H, Najda A, Bains A, Gruszecki R, Chawla P, Tosif MM. Metal and Metal Oxide Nanoparticle as a Novel Antibiotic Carrier for the Direct Delivery of Antibiotics. Int J Mol Sci 2021; 22:ijms22179596. [PMID: 34502504 PMCID: PMC8431128 DOI: 10.3390/ijms22179596] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/31/2021] [Accepted: 08/31/2021] [Indexed: 12/23/2022] Open
Abstract
In addition to the benefits, increasing the constant need for antibiotics has resulted in the development of antibiotic bacterial resistance over time. Antibiotic tolerance mainly evolves in these bacteria through efflux pumps and biofilms. Leading to its modern and profitable uses, emerging nanotechnology is a significant field of research that is considered as the most important scientific breakthrough in recent years. Metal nanoparticles as nanocarriers are currently attracting a lot of interest from scientists, because of their wide range of applications and higher compatibility with bioactive components. As a consequence of their ability to inhibit the growth of bacteria, nanoparticles have been shown to have significant antibacterial, antifungal, antiviral, and antiparasitic efficacy in the battle against antibiotic resistance in microorganisms. As a result, this study covers bacterial tolerance to antibiotics, the antibacterial properties of various metal nanoparticles, their mechanisms, and the use of various metal and metal oxide nanoparticles as novel antibiotic carriers for direct antibiotic delivery.
Collapse
Affiliation(s)
- Harshada Kotrange
- Department of Food Technology and Nutrition, Lovely Professional University, Jalandhar 144411, Punjab, India; (H.K.); (M.M.T.)
| | - Agnieszka Najda
- Department of Vegetable Crops and Medicinal Plants, University of Life Sciences in Lublin, Doświadczalna Street, 20-280 Lublin, Poland;
- Correspondence: (A.N.); (P.C.)
| | - Aarti Bains
- Department of Biotechnology, CT Institute of Pharmaceutical Sciences, South Campus, Jalandhar 144020, Punjab, India;
| | - Robert Gruszecki
- Department of Vegetable Crops and Medicinal Plants, University of Life Sciences in Lublin, Doświadczalna Street, 20-280 Lublin, Poland;
| | - Prince Chawla
- Department of Food Technology and Nutrition, Lovely Professional University, Jalandhar 144411, Punjab, India; (H.K.); (M.M.T.)
- Correspondence: (A.N.); (P.C.)
| | - Mansuri M. Tosif
- Department of Food Technology and Nutrition, Lovely Professional University, Jalandhar 144411, Punjab, India; (H.K.); (M.M.T.)
| |
Collapse
|
25
|
McCreary EK, Heil EL, Tamma PD. New Perspectives on Antimicrobial Agents: Cefiderocol. Antimicrob Agents Chemother 2021; 65:e0217120. [PMID: 34031052 PMCID: PMC8373209 DOI: 10.1128/aac.02171-20] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Bacterial resistance to carbapenem agents has reached alarming levels. Accordingly, collaborative efforts between national and international organizations and the pharmaceutical industry have led to an impressive expansion of commercially available β-lactam agents in recent years. No available agent comes close to the broad range of activity afforded by cefiderocol, a novel siderophore-cephalosporin conjugate. The novelty of and need for cefiderocol are clear, but available clinical data are conflicting, leaving infectious diseases specialists puzzled as to when to prescribe this agent in clinical practice. After a brief overview of cefiderocol pharmacokinetics and pharmacodynamics, safety data, cefiderocol susceptibility testing, and putative mechanisms of cefiderocol resistance, this review focuses on determining cefiderocol's role in the management of specific pathogens, including carbapenem-resistant Acinetobacter baumannii complex, carbapenem-resistant Pseudomonas aeruginosa, carbapenem-resistant Enterobacterales, and less commonly identified glucose-nonfermenting organisms such as Stenotrophomonas maltophilia, Burkholderia species, and Achromobacter species. Available preclinical, clinical trial, and postmarketing data are summarized for each organism, and each section concludes with our opinions on where to position cefiderocol as a clinical therapeutic.
Collapse
Affiliation(s)
- Erin K. McCreary
- Department of Medicine, Division of Infectious Diseases, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Emily L. Heil
- Department of Pharmacy Practice and Science, University of Maryland School of Pharmacy, Baltimore, Maryland, USA
| | - Pranita D. Tamma
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Baltimore, Maryland, USA
| |
Collapse
|
26
|
Epidemiology of Carbapenem Resistance Determinants Identified in Meropenem-Nonsusceptible Enterobacterales Collected as Part of a Global Surveillance Program, 2012 to 2017. Antimicrob Agents Chemother 2021; 65:e0200020. [PMID: 33972241 DOI: 10.1128/aac.02000-20] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
To estimate the incidence of carbapenem-resistant Enterobacterales (CRE), a global collection of 81,781 surveillance isolates of Enterobacterales collected from patients in 39 countries in five geographic regions from 2012 to 2017 was studied. Overall, 3.3% of isolates were meropenem-nonsusceptible (MIC ≥2 μg/ml), ranging from 1.4% (North America) to 5.3% (Latin America) of isolates by region. Klebsiella pneumoniae accounted for the largest number of meropenem-nonsusceptible isolates (76.7%). The majority of meropenem-nonsusceptible Enterobacterales carried KPC-type carbapenemases (47.4%), metallo-β-lactamases (MBLs; 20.6%) or OXA-48-like β-lactamases (19.0%). Forty-three carbapenemase sequence variants (8 KPC-type, 4 GES-type, 7 OXA-48-like, 5 NDM-type, 7 IMP-type, and 12 VIM-type) were detected, with KPC-2, KPC-3, OXA-48, NDM-1, IMP-4, and VIM-1 identified as the most common variants of each carbapenemase type. The resistance mechanisms responsible for meropenem-nonsusceptibility varied by region. A total of 67.3% of all carbapenemase-positive isolates identified carried at least one additional plasmid-mediated or intrinsic chromosomally encoded extended-spectrum β-lactamase, AmpC β-lactamase, or carbapenemase. The overall percentage of meropenem-nonsusceptible Enterobacterales increased from 2.7% in 2012 to 2014 to 3.8% in 2015 to 2017. This increase could be attributed to the increasing proportion of carbapenemase-positive isolates that was observed, most notably among isolates carrying NDM-type MBLs in Asia/South Pacific, Europe, and Latin America; OXA-48-like carbapenemases in Europe, Middle East/Africa, and Asia/South Pacific; VIM-type MBLs in Europe; and KPC-type carbapenemases in Latin America. Ongoing CRE surveillance combined with a global antimicrobial stewardship strategy, sensitive clinical laboratory detection methods, and adherence to infection control practices will be needed to interrupt the spread of CRE.
Collapse
|
27
|
Molecular Characterization of KPC-2-Producing Enterobacter cloacae Complex Isolates from Cali, Colombia. Antibiotics (Basel) 2021; 10:antibiotics10060694. [PMID: 34200675 PMCID: PMC8229714 DOI: 10.3390/antibiotics10060694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/31/2021] [Accepted: 05/31/2021] [Indexed: 12/28/2022] Open
Abstract
The Enterobacter cloacae complex is an emerging opportunistic pathogen whose increased resistance to carbapenems is considered a public health problem. This is due to the loss of efficacy of beta-lactam antibiotics, which are used as the first treatment option in the management of infections caused by Gram-negative bacteria. The objective of this study was to perform the molecular characterization of 28 isolates of the E. cloacae complex resistant to cephalosporins and carbapenems isolated between 2011 and 2018 from five hospitals located in the municipality of Santiago de Cali, Colombia. Molecular detection of blaKPC, blaVIM, blaNDM and blaOXA-48-like genes was performed on these isolates and the genetic relationship between the isolates was assessed using multilocus sequence typing (MLST). Forty-three percent of the isolates carried the blaKPC-2 gene variant. MLST showed high genetic diversity among isolates, the most frequent being the sequence type ST510 with a frequency of 50%. The identification of the genes involved in carbapenem resistance and dispersing genotypes is an important step toward the development of effective prevention and epidemiological surveillance strategies in Colombian hospitals.
Collapse
|
28
|
da Silva RB, Araujo RO, Salles MJ. Non-elective and revision arthroplasty are independently associated with hip and knee prosthetic joint infection caused by Acinetobacter baumannii: a Brazilian single center observational cohort study of 98 patients. BMC Musculoskelet Disord 2021; 22:511. [PMID: 34078354 PMCID: PMC8173725 DOI: 10.1186/s12891-021-04393-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 05/21/2021] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Prosthetic joint infection (PJI) caused by Acinetobacter baumannii (Ab) has become a growing concern due to its overwhelming ability to express resistance to antibiotics and produce biofilm. AIM This study aimed to identify independent risk factors (RFs) associated with Ab-associated PJI and their role in the treatment outcome. METHODS This was a single-centre, retrospective cohort study of PJI patients diagnosed between January 2014 and July 2018. A PJI diagnosis was made based upon the MSIS 2018 criteria. To estimate RFs associated with Ab-associated PJI, multivariate analyses with a level of significance of p < 0.05 were performed. To evaluate treatment failure, Kaplan-Meier analysis and log-rank test were performed. RESULTS Overall, 98 PJI cases were assessed, including 33 with Ab-associated PJI and 65 with PJI involving other microorganisms (non-Ab-associated PJI). Independent RFs associated with Ab-associated PJI were revision arthroplasty [odds ratio (OR) = 3.01; 95% confidence interval (CI) = 1.15-7.90; p = 0.025] and nonelective arthroplasty (OR = 2.65; 95% CI = 1.01-7.01; p = 0.049). Ab-associated PJI was also more likely than non-Ab-associated PJI to be classified as a chronic late infection (OR = 5.81; 95% CI = 2.1-16.07; p = 0.001). Ab-associated PJI was not associated with treatment failure (p = 0.557). CONCLUSIONS Late chronic infections, surgical revision and nonelective arthroplasty are well-known predictors of PJI but were also independently associated with Ab-associated PJI. Infections caused by Ab and surgical treatment with debridement, antibiotics and implant retention were not associated with PJI treatment failure. TRIAL REGISTRATION Study data supporting our results were registered with the Brazilian Registry of Clinical Trials ( https://www.ensaiosclinicos.gov.br/rg/RBR-6ft5yb/ ), an open-access virtual platform for the registration of studies on humans performed in Brazil. Registration no. RBR-6ft5yb .
Collapse
Affiliation(s)
| | - Rodrigo Otavio Araujo
- Department of Orthopedics Hospital São Francisco de Assis, Belo Horizonte, MG Brazil
| | - Mauro José Salles
- Division of Infectious Diseases, Santa Casa de São Paulo School of Medical Sciences, São Paulo, Brazil
- Departamento de medicina, Universidade Federal de São Paulo- Escola Paulista de Medicina (UNIFESP-EPM), Laboratório LEMC, Disciplina de infectologia, São Paulo, SP Brazil
| |
Collapse
|
29
|
Mushtaq S, Garello P, Vickers A, Woodford N, Livermore DM. Activity of cefepime/zidebactam (WCK 5222) against 'problem' antibiotic-resistant Gram-negative bacteria sent to a national reference laboratory. J Antimicrob Chemother 2021; 76:1511-1522. [PMID: 33760082 DOI: 10.1093/jac/dkab067] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/11/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Triple-action diazabicyclooctanes, e.g. zidebactam, combine β-lactamase inhibition, antibacterial activity, and 'enhancement' of PBP3-targeted β-lactams. OBJECTIVES To examine the activity of cefepime/zidebactam against consecutive 'problem' Gram-negative bacteria referred to the UK national reference laboratory. METHODS MICs were determined by BSAC agar dilution for 1632 Enterobacterales, 745 Pseudomonas aeruginosa and 450 other non-fermenters, categorized by carbapenemase detection and interpretive reading. RESULTS Universal susceptibility to cefepime/zidebactam 8 + 8 mg/L was seen for otherwise multidrug-resistant Enterobacterales with AmpC, extended-spectrum, K1, KPC and OXA-48-like β-lactamases, or with impermeability and 'unassigned' mechanisms. Unlike ceftazidime/avibactam and all other comparators, cefepime/zidebactam 8 + 8 mg/L also inhibited most (190/210, 90.5%) Enterobacterales with MBLs. Resistance in the remaining minority of MBL producers, and in 13/24 with both NDM MBLs and OXA-48-like enzymes, was associated with Klebsiella pneumoniae ST14. For Pseudomonas aeruginosa, MICs of cefepime/zidebactam rose with efflux grade, but exceeded 8 + 8 mg/L for only 11/85 isolates even in the highly-raised efflux group. Among 103 P. aeruginosa with ESBLs or MBLs, 97 (94.5%) were inhibited by cefepime/zidebactam 8 + 8 mg/L whereas fewer than 15% were susceptible to any comparator. MICs for Acinetobacter baumannii with acquired OXA carbapenemases clustered around 8 + 8 to 32 + 32 mg/L, with higher values for MBL producers. A strong enhancer effect augmented activity against many isolates that were highly resistant to cefepime and zidebactam alone and which had mechanisms not inhibited by zidebactam. CONCLUSIONS Assuming successful clinical trials, cefepime/zidebactam has scope to widely overcome critical resistances in both Enterobacterales and non-fermenters.
Collapse
Affiliation(s)
- Shazad Mushtaq
- Antimicrobial Resistance and Healthcare-Associated Infections Reference Unit, Public Health England, 61 Colindale Avenue, London NW9 5EQ, UK
| | - Paolo Garello
- Antimicrobial Resistance and Healthcare-Associated Infections Reference Unit, Public Health England, 61 Colindale Avenue, London NW9 5EQ, UK
| | - Anna Vickers
- Antimicrobial Resistance and Healthcare-Associated Infections Reference Unit, Public Health England, 61 Colindale Avenue, London NW9 5EQ, UK
| | - Neil Woodford
- Antimicrobial Resistance and Healthcare-Associated Infections Reference Unit, Public Health England, 61 Colindale Avenue, London NW9 5EQ, UK
| | - David M Livermore
- Antimicrobial Resistance and Healthcare-Associated Infections Reference Unit, Public Health England, 61 Colindale Avenue, London NW9 5EQ, UK.,Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK
| |
Collapse
|
30
|
Antimicrobial stewardship programs in adult intensive care units in Latin America: Implementation, assessments, and impact on outcomes. Infect Control Hosp Epidemiol 2021; 43:181-190. [PMID: 33829982 DOI: 10.1017/ice.2021.80] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE To assess the impact of antimicrobial stewardship programs (ASPs) in adult medical-surgical intensive care units (MS-ICUs) in Latin America. DESIGN Quasi-experimental prospective with continuous time series. SETTING The study included 77 MS-ICUs in 9 Latin American countries. PATIENTS Adult patients admitted to an MS-ICU for at least 24 hours were included in the study. METHODS This multicenter study was conducted over 12 months. To evaluate the ASPs, representatives from all MS-ICUs performed a self-assessment survey (0-100 scale) at the beginning and end of the study. The impact of each ASP was evaluated monthly using the following measures: antimicrobial consumption, appropriateness of antimicrobial treatments, crude mortality, and multidrug-resistant microorganisms in healthcare-associated infections (MDRO-HAIs). Using final stewardship program quality self-assessment scores, MS-ICUs were stratified and compared among 3 groups: ≤25th percentile, >25th to <75th percentile, and ≥75th percentile. RESULTS In total, 77 MS-ICU from 9 Latin American countries completed the study. Twenty MS-ICUs reached at least the 75th percentile at the end of the study in comparison with the same number who remain within the 25th percentile (score, 76.1 ± 7.5 vs 28.0 ± 7.3; P < .0001). Several indicators performed better in the MS-ICUs in the 75th versus 25th percentiles: antimicrobial consumption (143.4 vs 159.4 DDD per 100 patient days; P < .0001), adherence to clinical guidelines (92.5% vs 59.3%; P < .0001), validation of prescription by pharmacist (72.0% vs 58.0%; P < .0001), crude mortality (15.9% vs 17.7%; P < .0001), and MDRO-HAIs (9.45 vs 10.96 cases per 1,000 patient days; P = .004). CONCLUSION MS-ICUs with more comprehensive ASPs showed significant improvement in antimicrobial utilization.
Collapse
|
31
|
Garza-González E, Bocanegra-Ibarias P, Rodríguez-Noriega E, González-Díaz E, Silva-Sanchez J, Garza-Ramos U, Contreras-Coronado-Tovar IF, Santos-Hernández JE, Gutiérrez-Bañuelos D, Mena-Ramirez JP, Ramírez-De-Los-Santos S, Camacho-Ortiz A, Morfín-Otero R. Molecular investigation of an outbreak associated with total parenteral nutrition contaminated with NDM-producing Leclercia adecarboxylata. BMC Infect Dis 2021; 21:235. [PMID: 33639886 PMCID: PMC7916303 DOI: 10.1186/s12879-021-05923-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/19/2021] [Indexed: 12/02/2022] Open
Abstract
Background This study aimed to determine the epidemiological, microbiological, and molecular characteristics of an outbreak of carbapenem-resistant Leclercia adecarboxylata in three hospitals associated with the unintended use of contaminated total parental nutrition (TPN). Methods For 10 days, 25 patients who received intravenous TPN from the same batch of a formula developed sepsis and had blood cultures positive for L. adecarboxylata. Antimicrobial susceptibility and carbapenemase production were performed in 31 isolates, including one from an unopened bottle of TPN. Carbapenemase-encoding genes, extended-spectrum β-lactamase–encoding genes were screened by PCR, and plasmid profiles were determined. Horizontal transfer of carbapenem resistance was performed by solid mating. Clonal diversity was performed by pulsed-field gel electrophoresis. The resistome was explored by whole-genome sequencing on two selected strains, and comparative genomics was performed using Roary. Results All 31 isolates were resistant to aztreonam, cephalosporins, carbapenems, trimethoprim/sulfamethoxazole, and susceptible to gentamicin, tetracycline, and colistin. Lower susceptibility to levofloxacin (51.6%) and ciprofloxacin (22.6%) was observed. All the isolates were carbapenemase producers and positive for blaNDM-1, blaTEM-1B, and blaSHV-12 genes. One main lineage was detected (clone A, 83.9%; A1, 12.9%; A2, 3.2%). The blaNDM-1 gene is embedded in a Tn125-like element. Genome analysis showed genes encoding resistance for aminoglycosides, quinolones, trimethoprim, colistin, phenicols, and sulphonamides and the presence of IncFII (Yp), IncHI2, and IncHI2A incompatibility groups. Comparative genomics showed a major phylogenetic relationship among L. adecarboxylata I1 and USDA-ARS-USMARC-60222 genomes, followed by our two selected strains. Conclusion We present epidemiological, microbiological, and molecular evidence of an outbreak of carbapenem-resistant L. adecarboxylata in three hospitals in western Mexico associated with the use of contaminated TPN. Supplementary Information The online version contains supplementary material available at 10.1186/s12879-021-05923-0.
Collapse
Affiliation(s)
- Elvira Garza-González
- Hospital Universitario Dr. José Eleuterio González, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, Mexico
| | - Paola Bocanegra-Ibarias
- Hospital Universitario Dr. José Eleuterio González, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, Mexico
| | - Eduardo Rodríguez-Noriega
- Hospital Civil de Guadalajara Fray Antonio Alcalde, Instituto de Patología Infecciosa y Experimental, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Esteban González-Díaz
- Hospital Civil de Guadalajara Fray Antonio Alcalde, Instituto de Patología Infecciosa y Experimental, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Jesús Silva-Sanchez
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, Mexico
| | - Ulises Garza-Ramos
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, Mexico
| | | | | | | | - Juan Pablo Mena-Ramirez
- Hospital General de Zona No.21 IMSS, Centro Universitario de los Altos (CUALTOS), Universidad de Guadalajara, Tepatitlán de Morelos, Jalisco, Mexico.,Instituto de Investigación en Biociencias, Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, Jalisco, Mexico
| | - Saúl Ramírez-De-Los-Santos
- Instituto de Investigación en Biociencias, Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, Jalisco, Mexico
| | - Adrián Camacho-Ortiz
- Hospital Universitario Dr. José Eleuterio González, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, Mexico
| | - Rayo Morfín-Otero
- Hospital Civil de Guadalajara Fray Antonio Alcalde, Instituto de Patología Infecciosa y Experimental, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico.
| |
Collapse
|
32
|
Nagvekar V, Shah A, Unadkat VP, Chavan A, Kohli R, Hodgar S, Ashpalia A, Patil N, Kamble R. Clinical Outcome of Patients on Ceftazidime-Avibactam and Combination Therapy in Carbapenem-resistant Enterobacteriaceae. Indian J Crit Care Med 2021; 25:780-784. [PMID: 34316172 PMCID: PMC8286375 DOI: 10.5005/jp-journals-10071-23863] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Introduction Carbapenem-resistant Enterobacteriaceae (CRE) infections have a major effect on mortality as well as healthcare cost. Intensive care units (ICUs) in India, the epicenters for multidrug-resistant organisms, are facing a “postantibiotic era” because of very limited treatment options. A latest beta-lactam/beta-lactamase inhibitor ceftazidime–avibactam (CZA) new has a broad-spectrum antibacterial activity. CZA inhibits class-A and class-C beta-lactamases (as well Klebsiella pneumoniaecarbapenemase (KPC)), along with some class-D carbapenems such as OXA-48-like enzymes that are seen in Enterobacteriaceae has recently become available. The current study aimed to assess and present the clinical response and patient outcome with infections due to CRE when treated with CZA alone or in combination with other drugs. Materials and methods This retrospective study reviews the experience recorded and analyzed at two tertiary care centers including only adult patients with CRE infection who had received CZA alone or in combination with other antibiotics over a period between February 2019 and January 2020. Results In the period from February 2019 to January 2020, 119 culture-confirmed CRE isolates were tested for Xpert Carba-R. The predominant genetic mechanism was a combination of NDM+OXA-48 in 45/119 (37.81%). Total 40/57 patients received CZA+aztreonam alone or in combination with other drugs with an overall cure rate of 77.5% while the rest 17 received CZA alone in combination with the cure rate of 82.35%. 41/57 (71.92%) patients were in ICU. Conclusion With overall mortality of 21%, these data suggest that CZA is a viable option for patients with CRE infections. To our knowledge, this is the first Indian study reporting CZA data in CRE infections. How to cite this article Nagvekar V, Shah A, Unadkat VP, Chavan A, Kohli R, Hodgar S, et al. Clinical Outcome of Patients on Ceftazidime–Avibactam and Combination Therapy in Carbapenem-resistant Enterobacteriaceae. Indian J Crit Care Med 2021;25(7):780–784.
Collapse
Affiliation(s)
- Vasant Nagvekar
- Lilavati Hospital and Research Centre, Mumbai, Maharashtra, India
| | - Anand Shah
- Lilavati Hospital and Research Centre, Mumbai, Maharashtra, India
| | - Vrajeshkumar P Unadkat
- Department of Pathology, Lilavati Hospital and Research Centre, Mumbai, Maharashtra, India
| | - Amol Chavan
- Lilavati Hospital and Research Centre, Mumbai, Maharashtra, India
| | - Ruhi Kohli
- Lilavati Hospital and Research Centre, Mumbai, Maharashtra, India
| | | | | | - Niranjan Patil
- Lilavati Hospital and Research Centre, Mumbai, Maharashtra, India
| | - Rahul Kamble
- Lilavati Hospital and Research Centre, Mumbai, Maharashtra, India
| |
Collapse
|
33
|
Dias MF, de Castro GM, de Paiva MC, de Paula Reis M, Facchin S, do Carmo AO, Alves MS, Suhadolnik ML, de Moraes Motta A, Henriques I, Kalapothakis E, Lobo FP, Nascimento AMA. Exploring antibiotic resistance in environmental integron-cassettes through intI-attC amplicons deep sequencing. Braz J Microbiol 2020; 52:363-372. [PMID: 33247398 DOI: 10.1007/s42770-020-00409-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 11/19/2020] [Indexed: 02/08/2023] Open
Abstract
INTRODUCTION Freshwater ecosystems provide propitious conditions for the acquisition and spread of antibiotic resistance genes (ARGs), and integrons play an important role in this process. MATERIAL AND METHODS In the present study, the diversity of putative environmental integron-cassettes, as well as their potential bacterial hosts in the Velhas River (Brazil), was explored through intI-attC and 16S rRNA amplicons deep sequencing. RESULTS AND DISCUSSION: ORFs related to different biological processes were observed, from DNA integration to oxidation-reduction. ARGs-cassettes were mainly associated with class 1 mobile integrons carried by pathogenic Gammaproteobacteria, and possibly sedentary chromosomal integrons hosted by Proteobacteria and Actinobacteria. Two putative novel ARG-cassettes homologs to fosB3 and novA were detected. Regarding 16SrRNA gene analysis, taxonomic and functional profiles unveiled Proteobacteria, Bacteroidetes, Firmicutes, and Actinobacteria as dominant phyla. Betaproteobacteria, Alphaproteobacteria, and Actinobacteria classes were the main contributors for KEGG orthologs associated with resistance. CONCLUSIONS Overall, these results provide new information about environmental integrons as a source of resistance determinants outside clinical settings and the bacterial community in the Velhas River.
Collapse
Affiliation(s)
- Marcela França Dias
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Belo Horizonte, MG, 31270-901, Brazil.,Departamento de Biologia, Universidade de Aveiro, Aveiro, Portugal
| | - Giovanni Marques de Castro
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Belo Horizonte, MG, 31270-901, Brazil
| | | | - Mariana de Paula Reis
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Belo Horizonte, MG, 31270-901, Brazil
| | - Susanne Facchin
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Belo Horizonte, MG, 31270-901, Brazil
| | - Anderson Oliveira do Carmo
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Belo Horizonte, MG, 31270-901, Brazil
| | - Marta Salgueiro Alves
- Departamento de Biologia, Universidade de Aveiro, Aveiro, Portugal.,CESAM, Universidade de Aveiro, Aveiro, Portugal
| | - Maria Luíza Suhadolnik
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Belo Horizonte, MG, 31270-901, Brazil
| | - Amanda de Moraes Motta
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Belo Horizonte, MG, 31270-901, Brazil
| | - Isabel Henriques
- CESAM, Universidade de Aveiro, Aveiro, Portugal.,Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade de Coimbra, Coimbra, Portugal
| | - Evanguedes Kalapothakis
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Belo Horizonte, MG, 31270-901, Brazil
| | - Francisco Pereira Lobo
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Belo Horizonte, MG, 31270-901, Brazil
| | - Andréa Maria Amaral Nascimento
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Belo Horizonte, MG, 31270-901, Brazil.
| |
Collapse
|
34
|
Martínez D, Caña L, Rodulfo H, García J, González D, Rodríguez L, Donato MD. Characteristics of dual carbapenemase-producing Klebsiella pneumoniae strains from an outbreak in Venezuela: a retrospective study. Rev Panam Salud Publica 2020; 44:e50. [PMID: 32973902 PMCID: PMC7498284 DOI: 10.26633/rpsp.2020.50] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 03/12/2020] [Indexed: 12/16/2022] Open
Abstract
Objective. To characterize carbapenemase-producing Klebsiella pneumoniae isolated from patients treated at a hospital in Cumaná, Sucre, Venezuela. Methods. This was a retrospective study conducted at the general hospital in Cumaná where 58 K. pneumoniae strains were analyzed for resistance to antimicrobials, specifically carbapenems, in January – June 2015. Production of metallo-β-lactamases and serine carbapenemases was determined by the double-disc synergy test, using EDTA-sodium mercaptoacetic acid and 3-aminophenyl boronic acid discs, respectively. Multiplex-PCR was used to detect genes coding for carbapenemases. Molecular typing using ERIC-PCR determined the presence of clones. Results. Four strains of K. pneumoniae resistant to carbapenems were identified. Phenotypic methods for detection of metallo-β-lactamases and serine carbapenemases were positive, and PCR demonstrated the co-presence of blaNDM and blaKPC genes in all four strains. ERIC-PCR identified two clones circulating in the hospital. Conclusions. Infection control strategies are needed at the central hospital in Cumaná and its surrounding areas to prevent the spread of these pathogens, especially given the high levels of migration from Venezuela to other countries in South America.
Collapse
Affiliation(s)
- Dianny Martínez
- Clinical Bacteriology Laboratory, Antonio Patricio de Alcalá University Hospital Cumaná Venezuela Clinical Bacteriology Laboratory, Antonio Patricio de Alcalá University Hospital, Cumaná, Venezuela
| | - Luisa Caña
- Clinical Bacteriology Laboratory, Antonio Patricio de Alcalá University Hospital Cumaná Venezuela Clinical Bacteriology Laboratory, Antonio Patricio de Alcalá University Hospital, Cumaná, Venezuela
| | - Hectorina Rodulfo
- Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias Querétaro Mexico Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Querétaro, Mexico
| | - José García
- Clinical Bacteriology Laboratory, Antonio Patricio de Alcalá University Hospital Cumaná Venezuela Clinical Bacteriology Laboratory, Antonio Patricio de Alcalá University Hospital, Cumaná, Venezuela
| | - Diorelis González
- Clinical Bacteriology Laboratory, Antonio Patricio de Alcalá University Hospital Cumaná Venezuela Clinical Bacteriology Laboratory, Antonio Patricio de Alcalá University Hospital, Cumaná, Venezuela
| | - Lucy Rodríguez
- Clinical Bacteriology Laboratory, Antonio Patricio de Alcalá University Hospital Cumaná Venezuela Clinical Bacteriology Laboratory, Antonio Patricio de Alcalá University Hospital, Cumaná, Venezuela
| | - Marcos De Donato
- Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias Querétaro Mexico Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Querétaro, Mexico
| |
Collapse
|
35
|
Angles-Yanqui E, Huaringa-Marcelo J, Sacsaquispe-Contreras R, Pampa-Espinoza L. [Panorama of carbapenemases in PeruUm panorama das carbapenemases presentes no Peru]. Rev Panam Salud Publica 2020; 44:e61. [PMID: 32973907 PMCID: PMC7498286 DOI: 10.26633/rpsp.2020.61] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 04/07/2020] [Indexed: 02/06/2023] Open
Abstract
Objetivo. Describir los genotipos de las carbapenemasas reportadas de aislamientos microbiológicos de pacientes en Perú. Métodos. Se realizó una búsqueda sistemática de la literatura biomédica publicada desde el 1 enero de 2000 hasta el 15 de setiembre de 2019 en las bases de datos PubMed, SCOPUS, Biblioteca Virtual de Salud, Biblioteca Virtual de CONCYTEC, Google Scholar y otras fuentes de publicaciones de resúmenes o póster en congresos nacionales o internacionales sobre carbapenemasas con confirmación genotípica; la selección y extracción de datos fue por pares. Resultados. Se incluyeron 14 estudios en los que se realizó la caracterización genotípica de 313 carbapenemasas. Ciento tres de estos reportes pertenecían a estudios efectuados en enterobacterias; de estos, 74 fueron en Klebsiella pneumoniae, 11 en Proteus mirabilis, 7 en Enterobacter cloacae y 11 en otras. Sesenta y una de estas 103 corresponden a blaNDM, 39 a blaKPC y 3 a blaIMP. Según su estructura molecular, 64 son metalobetalactamasas y 39 son serinbetalactamasas. En Pseudomonas aeruginosa se incluyeron 84 reportes, 79 corresponden a blaIMP, 4 a blaVIM, y 1 a blaGES. En Acinetobacter baumannii 126 reportes, 55 corresponden a blaOXA-23, 66 a blaOXA24, 3 a blaNDM y 2 a blaOXA-143. Conclusiones. Existe un número escaso de publicaciones respecto a carbapenemasas de pacientes en Perú; los reportes genotípicos provienen en su mayoría de hospitales de la capital del país. Esta es la primera revisión que intenta conocer los tipos de carbapenemasas reportadas en enterobacterias, P. aeruginosa y A. baumannii.
Collapse
Affiliation(s)
- Eddie Angles-Yanqui
- Facultad de Medicina Alberto Hurtado, Universidad Peruana Cayetano Heredia Lima Perú Facultad de Medicina Alberto Hurtado, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Jorge Huaringa-Marcelo
- Facultad de Ciencias de la Salud, Universidad Científica del Sur Lima Perú Facultad de Ciencias de la Salud, Universidad Científica del Sur, Lima, Perú
| | | | - Luis Pampa-Espinoza
- Instituto Nacional de Salud Lima Perú Instituto Nacional de Salud, Lima, Perú
| |
Collapse
|
36
|
García-Betancur JC, Appel TM, Esparza G, Gales AC, Levy-Hara G, Cornistein W, Vega S, Nuñez D, Cuellar L, Bavestrello L, Castañeda-Méndez PF, Villalobos-Vindas JM, Villegas MV. Update on the epidemiology of carbapenemases in Latin America and the Caribbean. Expert Rev Anti Infect Ther 2020; 19:197-213. [PMID: 32813566 DOI: 10.1080/14787210.2020.1813023] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Carbapenemases are β-lactamases able to hydrolyze a wide range of β-lactam antibiotics, including carbapenems. Carbapenemase production in Enterobacterales, Pseudomonas aeruginosa, and Acinetobacter spp., with and without the co-expression of other β-lactamases is a serious public health threat. Carbapenemases belong to three main classes according to the Ambler classification: class A, class B, and class D. AREAS COVERED Carbapenemase-bearing pathogens are endemic in Latin America. In this review, we update the status of carbapenemases in Latin America and the Caribbean. EXPERT OPINION Understanding the current epidemiology of carbapenemases in Latin America and the Caribbean is of critical importance to improve infection control policies limiting the dissemination of multi-drug-resistant pathogens and in implementing appropriate antimicrobial therapy.
Collapse
Affiliation(s)
| | - Tobias Manuel Appel
- Grupo de Resistencia Antimicrobiana y Epidemiología Hospitalaria, Universidad El Bosque . Bogotá, Colombia
| | - German Esparza
- Programa de Aseguramiento de Calidad. PROASECAL SAS, Bogotá, Colombia
| | - Ana C Gales
- Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina/Universidade Federal de São Paulo - UNIFESP , São Paulo, Brazil
| | | | | | - Silvio Vega
- Complejo Hospitalario Metropolitano , Ciudad de Panamá, Panama
| | - Duilio Nuñez
- Infectious Diseases División, IPS Hospital Central , Asunción, Paraguay
| | - Luis Cuellar
- Servicio de Infectologia, Instituto Nacional de Enfermedades Neoplasicas , Lima, Peru
| | | | - Paulo F Castañeda-Méndez
- Department of Infectious Diseases, Hospital San Angel Inn Universidad , Ciudad de México, Mexico
| | | | - María Virginia Villegas
- Grupo de Resistencia Antimicrobiana y Epidemiología Hospitalaria, Universidad El Bosque . Bogotá, Colombia.,Centro Médico Imbanaco . Cali, Colombia
| |
Collapse
|
37
|
Varón FA, Uribe AM, Palacios JO, Sánchez EG, Gutiérrez D, Carvajal K, Cardona S, Noreña IE. Mortalidad y desenlaces clínicos en pacientes críticamente enfermos con infecciones por bacterias productoras de carbapenemasas en un hospital de alta complejidad en Bogotá, Colombia. INFECTIO 2020. [DOI: 10.22354/in.v25i1.903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Introducción: Los microorganismos capaces de producir carbapenemasas vienen incrementándose a nivel mundial y se han convertido en un problema de salud pública global. En Colombia actualmente la resistencia a carbapenémicos en las unidades de cuidado intensivo está aumentando y se desconoce su impacto en desenlaces clínicos. Objetivos: Determinar las características demográficas, clínicas, y los desenlaces de los pacientes adultos en estado crítico con infección por microorganismos productores de carbapenemasas en una unidad de cuidado intensivo polivalente de una institución de alta complejidad. Métodos: Estudio observacional, descriptivo y retrospectivo, incluyendo pacientes con infección por bacterias resistentes a carbapenémicos, ingresados a la unidad de cuidado intensivo entre el 1 de Enero de 2014 y el 1 de Enero de 2018. Se excluyeron los pacientes colonizados. Se evaluaron complicaciones clínicas, estancia en UCI y hospitalaria, así como la mortalidad en UCI y hospitalaria. Resultados: Se incluyó 58 pacientes. La mortalidad global fue de 67,2%, de los cuales 55,17% murió durante su estancia en la unidad de cuidado intensivo y 12.06% en hospitalización. La mediana de estancia en la unidad de cuidado intensivo fue de 18 días (RIQ 4-28). La causa más frecuente de mortalidad fue choque séptico en 51% y las complicaciones más comunes fueron lesión renal aguda y delirium en un 55,2% y 43,1%, respectivamente. La mediana de estancia en la UCI fue de 18 días (RIQ 4-28). Conclusiones: Las infecciones por bacterias resistentes a carbapenémicos en pacientes críticamente enfermos se relacionan con altas tasas de mortalidad, complicaciones y estancia prolongada en UCI
Collapse
|
38
|
Roach D, Waalkes A, Abanto J, Zunt J, Cucho C, Soria J, Salipante SJ. Whole Genome Sequencing of Peruvian Klebsiella pneumoniae Identifies Novel Plasmid Vectors Bearing Carbapenem Resistance Gene NDM-1. Open Forum Infect Dis 2020; 7:ofaa266. [PMID: 32760750 PMCID: PMC7395672 DOI: 10.1093/ofid/ofaa266] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/25/2020] [Indexed: 01/07/2023] Open
Abstract
Background Klebsiella pneumoniae is a bacterial pathogen with increasing rates of resistance to carbapenem antibiotics, but the population structure and genetic drivers of carbapenem-resistant K pneumoniae (CRKP) remain underexplored in developing countries. Carbapenem-resistant K pneumoniae were recently introduced into Peru but have grown rapidly in prevalence, enabling study of this pathogen as it expands into an unaffected environment. Methods In this study, using whole genome sequencing, we show that 3 distinct lineages encompass almost all CRKP identified in the hospital where it was first reported in Peru. Results The most prevalent lineage, ST348, has not been described outside of Europe, raising concern for global dissemination. We identified metallo- β -lactamase NDM-1 as the primary carbapenem resistance effector, which was harbored on a novel vector resulting from recombination between 2 different plasmids, pKP1-NDM-1 and pMS7884A. Conclusions This study is the first of its kind performed in Peru, and it furthers our understanding of the landscape of CRKP infections in Latin America.
Collapse
Affiliation(s)
- David Roach
- University of Washington School of Medicine, Department of Internal Medicine, Seattle, Washington, USA.,University of Washington School of Medicine, Department of Global Health, Seattle, Washington, USA
| | - Adam Waalkes
- University of Washington School of Medicine, Department of Laboratory Medicine, Seattle, Washington, USA
| | | | - Joseph Zunt
- University of Washington School of Medicine, Department of Internal Medicine, Seattle, Washington, USA.,University of Washington School of Medicine, Department of Global Health, Seattle, Washington, USA
| | | | | | - Stephen J Salipante
- University of Washington School of Medicine, Department of Laboratory Medicine, Seattle, Washington, USA
| |
Collapse
|
39
|
do Nascimento APB, Medeiros Filho F, Pauer H, Antunes LCM, Sousa H, Senger H, Albano RM, Trindade Dos Santos M, Carvalho-Assef APD, da Silva FAB. Characterization of a SPM-1 metallo-beta-lactamase-producing Pseudomonas aeruginosa by comparative genomics and phenotypic analysis. Sci Rep 2020; 10:13192. [PMID: 32764694 PMCID: PMC7413544 DOI: 10.1038/s41598-020-69944-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 07/16/2020] [Indexed: 11/17/2022] Open
Abstract
Pseudomonas aeruginosa is one of the most common pathogens related to healthcare-associated infections. The Brazilian isolate, named CCBH4851, is a multidrug-resistant clone belonging to the sequence type 277. The antimicrobial resistance mechanisms of the CCBH4851 strain are associated with the presence of the bla\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$_\text {SPM-1}$$\end{document}SPM-1 gene, encoding a metallo-beta-lactamase, in combination with other exogenously acquired genes. Whole-genome sequencing studies focusing on emerging pathogens are essential to identify key features of their physiology that may lead to the identification of new targets for therapy. Using both Illumina and PacBio sequencing data, we obtained a single contig representing the CCBH4851 genome with annotated features that were consistent with data reported for the species. However, comparative analysis with other Pseudomonas aeruginosa strains revealed genomic differences regarding virulence factors and regulatory proteins. In addition, we performed phenotypic assays that revealed CCBH4851 is impaired in bacterial motilities and biofilm formation. On the other hand, CCBH4851 genome contained acquired genomic islands that carry transcriptional factors, virulence and antimicrobial resistance-related genes. Presence of single nucleotide polymorphisms in the core genome, mainly those located in resistance-associated genes, suggests that these mutations may also influence the multidrug-resistant behavior of CCBH4851. Overall, characterization of Pseudomonas aeruginosa CCBH4851 complete genome revealed the presence of features that strongly relates to the virulence and antibiotic resistance profile of this important infectious agent.
Collapse
Affiliation(s)
| | | | - Heidi Pauer
- Centro de Desenvolvimento Tecnológico em Saúde, Fundação Oswaldo Cruz, Rio de Janeiro, 21040-361, Brazil
| | - Luis Caetano Martha Antunes
- Centro de Desenvolvimento Tecnológico em Saúde, Fundação Oswaldo Cruz, Rio de Janeiro, 21040-361, Brazil.,Escola Nacional de Saúde Pública Sergio Arouca, Fundação Oswaldo Cruz, Rio de Janeiro, 21041-210, Brazil
| | - Hério Sousa
- Departamento de Computação, Universidade Federal de São Carlos, São Carlos, 13565-905, Brazil
| | - Hermes Senger
- Departamento de Computação, Universidade Federal de São Carlos, São Carlos, 13565-905, Brazil
| | - Rodolpho Mattos Albano
- Departamento de Bioquímica, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, 21941-909, Brazil
| | | | | | | |
Collapse
|
40
|
Galarce N, Sánchez F, Fuenzalida V, Ramos R, Escobar B, Lapierre L, Paredes-Osses E, Arriagada G, Alegría-Morán R, Lincopán N, Fuentes-Castillo D, Vera-Leiva A, González-Rocha G, Bello-Toledo H, Borie C. Phenotypic and Genotypic Antimicrobial Resistance in Non-O157 Shiga Toxin-Producing Escherichia coli Isolated From Cattle and Swine in Chile. Front Vet Sci 2020; 7:367. [PMID: 32754621 PMCID: PMC7365902 DOI: 10.3389/fvets.2020.00367] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/27/2020] [Indexed: 01/09/2023] Open
Abstract
Non-O157 Shiga toxin-producing Escherichia coli (STEC) is a zoonotic pathogen that causes bloody diarrhea and hemolytic-uremic syndrome in humans, and a major cause of foodborne disease. Despite antibiotic treatment of STEC infections in humans is not recommended, the presence of antimicrobial-resistant bacteria in animals and food constitutes a risk to public health, as the pool of genes from which pathogenic bacteria can acquire antibiotic resistance has increased. Additionally, in Chile there is no information on the antimicrobial resistance of this pathogen in livestock. Thus, the aim of this study was to characterize the phenotypic and genotypic antimicrobial resistance of STEC strains isolated from cattle and swine in the Metropolitan region, Chile, to contribute relevant data to antimicrobial resistance surveillance programs at national and international level. We assessed the minimal inhibitory concentration of 18 antimicrobials, and the distribution of 12 antimicrobial resistance genes and class 1 and 2 integrons in 54 STEC strains. All strains were phenotypically resistant to at least one antimicrobial drug, with a 100% of resistance to cefalexin, followed by colistin (81.5%), chloramphenicol (14.8%), ampicillin and enrofloxacin (5.6% each), doxycycline (3.7%), and cefovecin (1.9%). Most detected antibiotic resistance genes were dfrA1 and tetA (100%), followed by tetB (94.4%), blaTEM−1 (90.7%), aac(6)-Ib (88.9%), blaAmpC (81.5%), cat1 (61.1%), and aac(3)-IIa (11.1%). Integrons were detected only in strains of swine origin. Therefore, this study provides further evidence that non-O157 STEC strains present in livestock in the Metropolitan region of Chile exhibit phenotypic and genotypic resistance against antimicrobials that are critical for human and veterinary medicine, representing a major threat for public health. Additionally, these strains could have a competitive advantage in the presence of antimicrobial selective pressure, leading to an increase in food contamination. This study highlights the need for coordinated local and global actions regarding the use of antimicrobials in animal food production.
Collapse
Affiliation(s)
- Nicolás Galarce
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Fernando Sánchez
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Verónica Fuenzalida
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Romina Ramos
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Beatriz Escobar
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Lisette Lapierre
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Esteban Paredes-Osses
- Departamento de Salud Ambiental, Instituto de Salud Pública de Chile, Santiago, Chile
| | - Gabriel Arriagada
- Instituto de Ciencias Agroalimentarias, Animales y Ambientales, Universidad de O'Higgins, San Fernando, Chile
| | - Raúl Alegría-Morán
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile.,Facultad de Ciencias Agropecuarias, Universidad Pedro de Valdivia, Santiago, Chile
| | - Nilton Lincopán
- Departamento de Microbiología, Instituto de Ciências Biomedicas, Universidade de São Paulo, São Paulo, Brazil
| | - Danny Fuentes-Castillo
- Departamento de Patologia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, Brazil
| | - Alejandra Vera-Leiva
- Laboratorio de Investigación en Agentes Antibacterianos, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Gerardo González-Rocha
- Laboratorio de Investigación en Agentes Antibacterianos, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile.,Millenium Nucleus on Interdisciplinary Approach to Antimicrobial Resistance, Santiago, Chile
| | - Helia Bello-Toledo
- Laboratorio de Investigación en Agentes Antibacterianos, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile.,Millenium Nucleus on Interdisciplinary Approach to Antimicrobial Resistance, Santiago, Chile
| | - Consuelo Borie
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
41
|
De Oliveira DMP, Forde BM, Kidd TJ, Harris PNA, Schembri MA, Beatson SA, Paterson DL, Walker MJ. Antimicrobial Resistance in ESKAPE Pathogens. Clin Microbiol Rev 2020; 23:788-99. [PMID: 32404435 DOI: 10.1111/imb.12124] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023] Open
Abstract
Antimicrobial-resistant ESKAPE ( Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) pathogens represent a global threat to human health. The acquisition of antimicrobial resistance genes by ESKAPE pathogens has reduced the treatment options for serious infections, increased the burden of disease, and increased death rates due to treatment failure and requires a coordinated global response for antimicrobial resistance surveillance. This looming health threat has restimulated interest in the development of new antimicrobial therapies, has demanded the need for better patient care, and has facilitated heightened governance over stewardship practices.
Collapse
Affiliation(s)
- David M P De Oliveira
- School of Chemistry and Molecular Biosciences, The University of Queensland, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
| | - Brian M Forde
- School of Chemistry and Molecular Biosciences, The University of Queensland, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
| | - Timothy J Kidd
- School of Chemistry and Molecular Biosciences, The University of Queensland, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
| | - Patrick N A Harris
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
- UQ Centre for Clinical Research, The University of Queensland, QLD, Australia
| | - Mark A Schembri
- School of Chemistry and Molecular Biosciences, The University of Queensland, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
| | - Scott A Beatson
- School of Chemistry and Molecular Biosciences, The University of Queensland, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
| | - David L Paterson
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
- UQ Centre for Clinical Research, The University of Queensland, QLD, Australia
| | - Mark J Walker
- School of Chemistry and Molecular Biosciences, The University of Queensland, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
| |
Collapse
|
42
|
De Oliveira DMP, Forde BM, Kidd TJ, Harris PNA, Schembri MA, Beatson SA, Paterson DL, Walker MJ. Antimicrobial Resistance in ESKAPE Pathogens. Clin Microbiol Rev 2020; 33:e00181-19. [PMID: 32404435 PMCID: PMC7227449 DOI: 10.1128/cmr.00181-19] [Citation(s) in RCA: 900] [Impact Index Per Article: 225.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Antimicrobial-resistant ESKAPE ( Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) pathogens represent a global threat to human health. The acquisition of antimicrobial resistance genes by ESKAPE pathogens has reduced the treatment options for serious infections, increased the burden of disease, and increased death rates due to treatment failure and requires a coordinated global response for antimicrobial resistance surveillance. This looming health threat has restimulated interest in the development of new antimicrobial therapies, has demanded the need for better patient care, and has facilitated heightened governance over stewardship practices.
Collapse
Affiliation(s)
- David M P De Oliveira
- School of Chemistry and Molecular Biosciences, The University of Queensland, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
| | - Brian M Forde
- School of Chemistry and Molecular Biosciences, The University of Queensland, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
| | - Timothy J Kidd
- School of Chemistry and Molecular Biosciences, The University of Queensland, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
| | - Patrick N A Harris
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
- UQ Centre for Clinical Research, The University of Queensland, QLD, Australia
| | - Mark A Schembri
- School of Chemistry and Molecular Biosciences, The University of Queensland, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
| | - Scott A Beatson
- School of Chemistry and Molecular Biosciences, The University of Queensland, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
| | - David L Paterson
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
- UQ Centre for Clinical Research, The University of Queensland, QLD, Australia
| | - Mark J Walker
- School of Chemistry and Molecular Biosciences, The University of Queensland, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
| |
Collapse
|
43
|
Vivas R, Dolabella SS, Barbosa AAT, Jain S. Prevalence of Klebsiella pneumoniae carbapenemase - and New Delhi metallo-beta-lactamase-positive K. pneumoniae in Sergipe, Brazil, and combination therapy as a potential treatment option. Rev Soc Bras Med Trop 2020; 53:e20200064. [PMID: 32401864 PMCID: PMC7269519 DOI: 10.1590/0037-8682-0064-2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/02/2020] [Indexed: 12/01/2022] Open
Abstract
INTRODUCTION Carbapenem-resistant Klebsiella pneumoniae infection lacks treatment options and is associated with prolonged hospital stays and high mortality rates. The production of carbapenemases is one of the most important factors responsible for this multi-resistance phenomenon. METHODS In the present study, we analyzed the presence of genes encoding carbapenemases in K. pneumoniae isolates circulating in one of the public hospitals in the city of Aracaju, Sergipe, Brazil. We also determined the best combination of drugs that display in vitro antimicrobial synergy. First, 147 carbapenem-resistant K. pneumoniae isolates were validated for the presence of blaKPC, bla GES, bla NDM, bla SPM, bla IMP, bla VIM, and bla OXA-48 genes using multiplex polymerase chain reaction. Thereafter, using two isolates (97 and 102), the role of double and triple combinational drug therapy as a treatment option was analyzed. RESULTS Seventy-four (50.3%) isolates were positive for bla NDM, eight (5.4%) for bla KPC, and one (1.2%) for both bla NDM and bla KPC. In the synergy tests, double combinations were better than triple combinations. Polymyxin B and amikacin for isolate 97 and polymyxin B coupled with meropenem for isolate 102 showed the best response. CONCLUSIONS Clinicians in normal practice use multiple drugs to treat infections caused by multi-resistant microorganism; however, in most cases, the benefit of the combinations is unknown. In vitro synergistic tests, such as those described herein, are important as they might help select an appropriate multi-drug antibiotic therapy and a correct dosage, ultimately reducing toxicities and the development of antibiotic resistance.
Collapse
Affiliation(s)
- Roberto Vivas
- Universidade Federal de Sergipe, Programa de Pós-Graduação em
Biologia Parasitária, São Cristóvão, SE, Brasil
| | - Silvio Santana Dolabella
- Universidade Federal de Sergipe, Programa de Pós-Graduação em
Biologia Parasitária, São Cristóvão, SE, Brasil
| | - Ana Andréa Teixeira Barbosa
- Universidade Federal de Sergipe, Programa de Pós-Graduação em
Biologia Parasitária, São Cristóvão, SE, Brasil
| | - Sona Jain
- Universidade Federal de Sergipe, Programa de Pós-Graduação em
Biologia Parasitária, São Cristóvão, SE, Brasil
- Universidade Tiradentes, Programa de Pós-Graduação em Biotecnologia
Industrial, Aracaju, SE, Brasil
| |
Collapse
|
44
|
Reyes S, Nicolau DP. Precision medicine for the diagnosis and treatment of carbapenem-resistant Enterobacterales: time to think from a different perspective. Expert Rev Anti Infect Ther 2020; 18:721-740. [PMID: 32368940 DOI: 10.1080/14787210.2020.1760844] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Carbapenem-resistant Enterobacterales (CRE) represent a global public health problem. Precision medicine (PM) is a multicomponent medical approach that should be used to individualize the management of patients infected with CRE. AREAS COVERED Here, we differentiate carbapenem-producing CRE (CP-CRE) from non-CP-CRE and the importance of this distinction in clinical practice. The current phenotypic CRE-case definition and its implications are also discussed. Additionally, we summarize data regarding phenotypic and molecular diagnostic tools and available antibiotics. In order to review the most relevant data, a comprehensive literature search of peer-reviewed articles in PubMed and abstracts presented at high-impact conferences was performed. EXPERT OPINION PM in CRE infections entails a multi-step process that includes applying the current phenotypic definition, utilization of the right phenotypic or molecular testing methods, and thorough evaluation of risk factors, source of infection, and comorbidities. A powerful armamentarium is available to treat CRE infections, including recently approved agents. Randomized controlled trials targeting specific pathogens instead of site of infections may be appropriate to fill in the current gaps. In light of the diverse enzymology behind CP-CRE, PM should be employed to provide the best therapy based on the underlying resistance mechanism.
Collapse
Affiliation(s)
- Sergio Reyes
- Center for Anti-Infective Research and Development, Hartford Hospital , Hartford, CT, USA
| | - David P Nicolau
- Center for Anti-Infective Research and Development, Hartford Hospital , Hartford, CT, USA.,Division of Infectious Diseases, Hartford Hospital , Hartford, CT, USA
| |
Collapse
|
45
|
OXA-48 Carbapenemase in Klebsiella pneumoniae Sequence Type 307 in Ecuador. Microorganisms 2020; 8:microorganisms8030435. [PMID: 32204571 PMCID: PMC7143988 DOI: 10.3390/microorganisms8030435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/10/2020] [Accepted: 03/17/2020] [Indexed: 01/04/2023] Open
Abstract
Antibiotic resistance is on the rise, leading to an increase in morbidity and mortality due to infectious diseases. Klebsiella pneumoniae is a Gram-negative bacterium that causes bronchopneumonia, abscesses, urinary tract infection, osteomyelitis, and a wide variety of infections. The ubiquity of this microorganism confounds with the great increase in antibiotic resistance and have bred great concern worldwide. K. pneumoniae sequence type (ST) 307 is a widespread emerging clone associated with hospital-acquired infections, although sporadic community infections have also been reported. The aim of our study is to describe the first case of Klebsiella pneumoniae (ST) 307 harboring the blaOXA-48-like gene in Ecuador. We characterized a new plasmid that carry OXA-48 and could be the source of future outbreaks. The strain was recovered from a patient with cancer previously admitted in a Ukrainian hospital, suggesting that this mechanism of resistance could be imported. These findings highlight the importance of programs based on active molecular surveillance for the intercontinental spread of multidrug-resistant microorganisms with emergent carbapenemases.
Collapse
|
46
|
Garcia-Fulgueiras V, Zapata Y, Papa-Ezdra R, Ávila P, Caiata L, Seija V, Rojas Rodriguez AE, Magallanes C, Márquez Villalba C, Vignoli R. First characterization of K. pneumoniae ST11 clinical isolates harboring bla KPC-3 in Latin America. Rev Argent Microbiol 2019; 52:211-216. [PMID: 31874719 DOI: 10.1016/j.ram.2019.10.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 09/02/2019] [Accepted: 10/25/2019] [Indexed: 12/01/2022] Open
Abstract
Antimicrobial resistance due to carbapenemase production in Enterobacteriaceae clinical isolates is a global threat. Klebsiellapneumoniae harboring the blaKPC gene is one of the major concerns in hospital settings in Latin America. The aim of this study was to characterize the antibiotic resistance mechanisms and to typify four carbapenem-resistant K. pneumoniae clinical isolates from the city of Manizales, Colombia. We identified blaKPC-3 in all four isolates by polymerase chain reaction and subsequent sequencing. The plasmid-mediated quinolone resistance genes qnrB19-like and aac(6')Ib-cr; fosfomycin resistance gene fosA and an insertion sequence IS5-like in mgrB (colistin resistance) were also detected. Sequence types ST11 with capsular type wzi75, and ST258 with wzi154, were characterized. The blaKPC-3 gene was mobilized in a 100-kb IncFIB conjugative plasmid with vagCD toxin-antitoxin system. This work reports multiple resistance genes in blaKPC-producing K. pneumoniae and the first occurrence of ST11 clinical isolates harboring blaKPC-3 in Latin America.
Collapse
Affiliation(s)
- Virginia Garcia-Fulgueiras
- Departamento de Bacteriología y Virología, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Yuliana Zapata
- Grupo de Investigación en Enfermedades Infecciosas, Universidad Católica de Manizales, Caldas, Colombia
| | - Romina Papa-Ezdra
- Departamento de Bacteriología y Virología, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Pablo Ávila
- Departamento de Bacteriología y Virología, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Leticia Caiata
- Departamento de Bacteriología y Virología, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Verónica Seija
- Departamento de Laboratorio Clínico, Área Microbiología, Hospital de Clínicas, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Ana E Rojas Rodriguez
- Grupo de Investigación en Enfermedades Infecciosas, Universidad Católica de Manizales, Caldas, Colombia
| | - Carmen Magallanes
- Cátedra de Microbiología, Instituto de Química Biológica, Facultad de Ciencias y de Química, Universidad de la República, Montevideo, Uruguay
| | - Carolina Márquez Villalba
- Cátedra de Microbiología, Instituto de Química Biológica, Facultad de Ciencias y de Química, Universidad de la República, Montevideo, Uruguay
| | - Rafael Vignoli
- Departamento de Bacteriología y Virología, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
47
|
Rojas R, Macesic N, Tolari G, Guzman A, Uhlemann AC. Multidrug-Resistant Klebsiella pneumoniae ST307 in Traveler Returning from Puerto Rico to Dominican Republic. Emerg Infect Dis 2019; 25:1583-1585. [PMID: 31310203 PMCID: PMC6649323 DOI: 10.3201/eid2508.171730] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
We report blaKPC-2-harboring carbapenem-resistant Klebsiella pneumoniae in an emerging sequence type 307 lineage in a traveler returning from Puerto Rico to the Dominican Republic. Phylogenetic analyses indicate regional dissemination of this highly drug-resistant clone across the Americas, underscoring the need for adequate surveillance and infection control efforts to prevent further spread.
Collapse
|
48
|
Optimizing the management of Pseudomonas aeruginosa infections with tools for the detection of resistance mechanisms and pharmacokinetic/pharmacodynamic (PK/PD) analysis. Enferm Infecc Microbiol Clin 2019; 37:623-625. [DOI: 10.1016/j.eimc.2019.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 09/01/2019] [Indexed: 11/21/2022]
|
49
|
Reyes J, Aguilar AC, Caicedo A. Carbapenem-Resistant Klebsiella pneumoniae: Microbiology Key Points for Clinical Practice. Int J Gen Med 2019; 12:437-446. [PMID: 31819594 PMCID: PMC6886555 DOI: 10.2147/ijgm.s214305] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 10/24/2019] [Indexed: 01/20/2023] Open
Abstract
Carbapenemase–producing Klebsiella pneumoniae strains (Cp-Kpn) represent a challenge for clinical practitioners due to their increasing prevalence in hospital settings and antibiotic resistance. Clinical practitioners are often overwhelmed by the extensive list of publications regarding Cp-Kpn infections, treatment, characteristics, identification, and diagnosis. In this perspective article, we provide key points for clinical practitioners to consider for improved patient management including identification of risk factors and strategies for treatment. Additionally, we also discuss genetic underpinnings of antibiotic resistance, implementation of an antimicrobial stewardship program (ASP), and use of automated systems for detection of Cp-Kpn. Collectively, implementation of such key points would enhance clinical practices through providing practical knowledge to health professionals worldwide.
Collapse
Affiliation(s)
- Jorge Reyes
- Colegio de Ciencias Biológicas y Ambientales, Instituto de Microbiología, Universidad San Francisco de Quito (USFQ), Quito 17-09-01, Ecuador.,Facultad de Ciencias Químicas, Universidad Central del Ecuador, Quito, Ecuador
| | - Ana Cristina Aguilar
- Colegio de Ciencias Biológicas y Ambientales, Instituto de Microbiología, Universidad San Francisco de Quito (USFQ), Quito 17-09-01, Ecuador.,Colegio de Ciencias de la Salud (COCSA), Escuela de Medicina, Universidad San Francisco de Quito (USFQ), Quito 17-12-841, Ecuador
| | - Andrés Caicedo
- Colegio de Ciencias Biológicas y Ambientales, Instituto de Microbiología, Universidad San Francisco de Quito (USFQ), Quito 17-09-01, Ecuador.,Colegio de Ciencias de la Salud (COCSA), Escuela de Medicina, Universidad San Francisco de Quito (USFQ), Quito 17-12-841, Ecuador.,Sistemas Médicos (SIME), Universidad San Francisco de Quito (USFQ), Quito 17-12-841, Ecuador
| |
Collapse
|
50
|
Antimicrobial activity of cefoperazone-sulbactam tested against Gram-Negative organisms from Europe, Asia-Pacific, and Latin America. Int J Infect Dis 2019; 91:32-37. [PMID: 31715325 DOI: 10.1016/j.ijid.2019.11.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/04/2019] [Accepted: 11/05/2019] [Indexed: 01/26/2023] Open
Abstract
OBJECTIVES To evaluate the antimicrobial activities of cefoperazone-sulbactam and comparator agents tested against a large collection of clinical isolates of Gram-negative organisms. METHODS A total of 19545 Gram-negative organisms were collected from medical centers located in western Europe (W-EUR; n=10626), eastern Europe and the Mediterranean region (E-EUR; n=4029), the Asia-Pacific region (APAC; n=2491), and Latin America (LATAM; n=2399) in 2015-2016 and susceptibility tested by reference broth microdilution methods. RESULTS Overall, 91.5% of Enterobacterales were susceptible (≤16mg/L) to cefoperazone-sulbactam, with susceptibility rates ranging from 82.0% (E-EUR) to 94.4% (W-EUR); overall susceptibility to cefoperazone-sulbactam, piperacillin-tazobactam, imipenem, and ceftriaxone was 91.5%, 85.4%, 90.5%, and 72.1%, respectively. Among Pseudomonas aeruginosa isolates, cefoperazone-sulbactam susceptibility rates were higher in W-EUR, APAC, and LATAM (83.0-84.6%) compared to E-EUR (59.5%). Susceptibility to piperacillin-tazobactam, imipenem, and ceftazidime was 78.3%, 76.2%, and 82.0% in W-EUR; 52.3%, 43.5%, and 57.4% in E-EUR; 83.5%, 80.1%, and 84.5% in APAC; and 81.5%, 72.8%, and 83.0% in LATAM, respectively. Acinetobacter spp. susceptibility rates varied from 43.0% in E-EUR to 75.8% in LATAM (53.2% overall) for cefoperazone-sulbactam and from 19.8% in E-EUR to 40.2% in W-EUR (26.4% overall) for imipenem. CONCLUSIONS Susceptibility rates varied widely among geographic regions and were generally lowest in E-EUR. Based on the potency and activity spectrum, cefoperazone-sulbactam remains among the most active compounds in vitro at published breakpoints.
Collapse
|