1
|
Liu T, Wang S, Chen Y, Luo J, Hao B, Zhang Z, Yang B, Guo W. Bio-organic fertilizer promoted phytoremediation using native plant leymus chinensis in heavy Metal(loid)s contaminated saline soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 327:121599. [PMID: 37037280 DOI: 10.1016/j.envpol.2023.121599] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/20/2023] [Accepted: 04/05/2023] [Indexed: 06/19/2023]
Abstract
Heavy metal(loid)s (HMs) contaminated saline soil appeared around the world, however, remediation regarding these collected from field conditions remains unknown. Native plants cultivation and bio-organic fertilizer (BOF) application were two efficient tools for soil amelioration. Herein, a pot experiment was conducted to examine the feasibility of a native plant (Leymus chinensis) for phytoremediation, and investigate the impacts of lignite based bio-organic fertilizer (LBOF) and manure based bio-organic fertilizer (MBOF) on phytoremediation of the soil contaminated by Pb, Cd, As, Zn, Cu, Ca2+, and SO42-. The results demonstrated the effectiveness of L. chinensis and highlighted the positive impacts of BOF according to the improved plant growth, HMs phytostabilization, salt removal, and soil properties. LBOF and MBOF changed soil microbiome to assist phytoremediation in addition to physiological modulation. Having enhanced fungal and bacterial richness respectively, LBOF and MBOF recruited various plant growth promoting rhizobacteria with different functions, and shifted microbial co-occurrence networks and keystone taxa towards these different but beneficial forms. Structural equation models comprehensively reveled the strategy discrepancy of LBOF and MBOF to regulate the plant biomass, HMs uptake, and soil salt. In summary, L. chinensis coupled with BOF, especially LBOF, was a effective strategy to remediate HMs contaminated saline soil.
Collapse
Affiliation(s)
- Tai Liu
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Sensen Wang
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Yunong Chen
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Junqing Luo
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Baihui Hao
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Zhechao Zhang
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Bo Yang
- Key Laboratory of Non-point Source Pollution Control, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wei Guo
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China.
| |
Collapse
|
2
|
Perlein A, Bert V, de Souza MF, Papin A, Meers E. Field evaluation of industrial non-food crops for phytomanaging a metal-contaminated dredged sediment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:44963-44984. [PMID: 36701059 DOI: 10.1007/s11356-022-24964-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Phytomanagement is a concept fit for a bio-based circular economy that combines phytotechnologies and biomass production for non-food purposes. Here, ten annual and perennial industrial non-food crops (Sorghum Biomass 133, Sorghum Santa Fe red, Linum usitatissimum L., Eucalyptus sp., Salix Inger, Salix Tordis, Beta vulgaris L., Phacelia tanacetifolia Benth., Malva sylvestris L., and Chenopodium album L.) were studied under field conditions for phytomanaging a metal (Cd, Cu, Pb, and Zn)-contaminated dredged sediment in the North of France. The crops were selected according to their relevance to pedoclimatic and future climatic conditions, and one or more non-food end-products were proposed for each plant part collected, such as biogas, bioethanol, compost, natural dye, ecocatalyst, and fiber. Based on the soil-plant transfer of metals, eight out of the crops cultivated on field plots exhibited an excluder behavior (bioconcentration factor, BCF < 1), a trait suitable for phytostabilization. However, these crops did not change the metal mobilities in the dredged sediment. The BCF < 1 was not sufficient to characterize the excluder behavior of crops as this factor depended on the total dredged-sediment contaminant. Therefore, a BCF group ranking method was proposed accounting for metal phytotoxicity levels or yield decrease as a complemental way to discuss the crop behavior. The feasibility of the biomass-processing chains was discussed based on these results and according to a survey of available legislation in standard and scientific literature.
Collapse
Affiliation(s)
- Alexandre Perlein
- Laboratory for Bioresource Recovery, Ghent University Campus Coupure, B6, Coupure Links 653, 9000, Ghent, Belgium.
- Clean Technologies and Circular Economy, INERIS, Parc Technologique Alata, BP2, 60550, Verneuil-en-Halatte, France.
| | - Valérie Bert
- Clean Technologies and Circular Economy, INERIS, Parc Technologique Alata, BP2, 60550, Verneuil-en-Halatte, France
| | - Marcella Fernandes de Souza
- Laboratory for Bioresource Recovery, Ghent University Campus Coupure, B6, Coupure Links 653, 9000, Ghent, Belgium
| | - Arnaud Papin
- Analytical Methods and Developments for the Environment, INERIS, Parc Technologique Alata, BP2, 60550, Verneuil-en-Halatte, France
| | - Erik Meers
- Laboratory for Bioresource Recovery, Ghent University Campus Coupure, B6, Coupure Links 653, 9000, Ghent, Belgium
| |
Collapse
|
3
|
Mondal S, Singh G. Air pollution tolerance, anticipated performance, and metal accumulation capacity of common plant species for green belt development. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:25507-25518. [PMID: 34843046 DOI: 10.1007/s11356-021-17716-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
Green vegetation enrichment is a cost-effective technique for reducing atmospheric pollution. Fifteen common tropical plant species were assessed for identifying their air pollution tolerance, anticipated performance, and metal accumulation capacity at Jharia Coalfield and Reference (JCF) site using Air Pollution Tolerance Index (APTI), Anticipated Performance Index (API), and Metal Accumulation Index (MAI). Metal accumulation efficiencies were observed to be highest for Ficus benghalensis L. (12.67mg/kg) and Ficus religiosa L. (10.71 mg/kg). The values of APTI were found to be highest at JCF for F. benghalensis (APTI: 25.21 ± 0.95), F. religiosa (APTI: 23.02 ± 0.21), Alstonia scholaris (L.) R. Br. (APTI: 18.50 ± 0.43), Mangifera indica L. (APTI: 16.88 ± 0.65), Azadirachta indica A. Juss. (APTI: 15.87 ± 0.21), and Moringa oleifera Lam. (APTI: 16.32 ± 0.66). F. benghalensis and F. religiosa were found to be excellent performers to mitigate air pollution at JCF as per their API score. Values of MAI, APTI, and API were observed to be lowest at reference sites for all the studied plant species due to absence of any air polluting sources. The findings revealed that air pollution played a significant impact in influencing the biochemical and physiological parameters of plants in a contaminated coal mining area. The species with the maximum MAI and APTI values might be employed in developing a green belt to minimize the levels of pollutants into the atmosphere.
Collapse
Affiliation(s)
- Shilpi Mondal
- Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, 826004, Jharkhand, India
| | - Gurdeep Singh
- Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, 826004, Jharkhand, India.
| |
Collapse
|
4
|
El Rasafi T, Pereira R, Pinto G, Gonçalves FJM, Haddioui A, Ksibi M, Römbke J, Sousa JP, Marques CR. Potential of Eucalyptus globulus for the phytoremediation of metals in a Moroccan iron mine soil-a case study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:15782-15793. [PMID: 33242196 DOI: 10.1007/s11356-020-11494-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/30/2020] [Indexed: 06/11/2023]
Abstract
The contamination left by abandoned mines demands sustainable mitigation measures. Hence, the aim of this study was to examine the phytoremediator ability of Eucalyptus globulus Labill. to be used for cleaning up metal-contaminated soils from an African abandoned iron (Fe) mine (Ait Ammar, Oued Zem, Morocco). Plantlets of this species were exposed to a control (CTL), a reference (REF), and a mine-contaminated soil (CS). Morphological (growth, leaf area) and physiological stress biomarkers (photosynthetic efficiency, pigments content, leaf relative water, and malondialdehyde (MDA) levels) and metal bioaccumulation were assessed. The growth and leaf area of E. globulus increased overtime in all soils, although at a lower rate in the CS. Its photosynthetic efficiency was not markedly impaired, as well as MDA levels decreased throughout the experiment in CS. In this soil, higher metal contents were detected in E. globulus roots than in leaves, especially Fe (roots: 15.98-213.99 μg g-1; leaves: 5.97-15.98 μg g-1) and Zn (roots: 1.64-1.99 μg g-1; leaves: 0.67-1.19 μg g-1), indicating their reduced translocation. Additionally, though at low extent, the plants bioaccumulated some metals (Pb > Zn > Cu) from CS. Overall, E. globulus may be potentially used for the phytoremediation of metals in metal-contaminated soils.
Collapse
Affiliation(s)
- Taoufik El Rasafi
- Department of Biology, Faculty of Science and Techniques, University of Sultan Moulay Slimane, Beni-Mellal, Morocco
| | - Ruth Pereira
- 1GreenUPorto - Sustainable Agrifood Production Research Centre & Department of Biology, 8 Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007, Porto, Portugal
| | - Glória Pinto
- CESAM (Centro de Estudos do Ambiente e do Mar) & Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Fernando J M Gonçalves
- CESAM (Centro de Estudos do Ambiente e do Mar) & Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Abdelmajid Haddioui
- Department of Biology, Faculty of Science and Techniques, University of Sultan Moulay Slimane, Beni-Mellal, Morocco
| | - Mohamed Ksibi
- Laboratory of Water, Energy and Environment (3E), National School of Engineering of Sfax, University of Sfax, Route de Soukra Km 3.5, PO Box 1173, 3038, Sfax, Tunisia
| | - Jörg Römbke
- ECT Oekotoxikologie GmbH, Böttgerstraße 2-14, D-65439, Flörsheim a.M, Germany
| | - José Paulo Sousa
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Catarina R Marques
- CESAM (Centro de Estudos do Ambiente e do Mar) & Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
5
|
Parihar JK, Parihar PK, Pakade YB, Katnoria JK. Bioaccumulation potential of indigenous plants for heavy metal phytoremediation in rural areas of Shaheed Bhagat Singh Nagar, Punjab (India). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:2426-2442. [PMID: 32888151 DOI: 10.1007/s11356-020-10454-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 08/10/2020] [Indexed: 06/11/2023]
Abstract
The present study was planned to explore the bioaccumulation potential of 23 plant species via bioaccumulation factor (BAf), metal accumulation index (MAI), translocation potential (Tf), and comprehensive bioconcentration index (CBCI) for seven heavy metals (cadmium, chromium, cobalt, copper, iron, manganese, and zinc). The studied plants, in the vicinity of ponds at Sahlon: site 1, Chahal Khurd: site 2, and Karnana: site 3 in Shaheed Bhagat Singh Nagar, Punjab (India), were Ageratum conyzoides (L.) L., Amaranthus spinosus L., Amaranthus viridis L., Brassica napus L., Cannabis sativa L., Dalbergia sissoo DC., Duranta repens L., Dysphania ambrosioides (L.) Mosyakin & Clemants, Ficus infectoria Roxb., Ficus palmata Forssk., Ficus religiosa L., Ipomoea carnea Jacq., Medicago polymorpha L., Melia azedarach L., Morus indica L., Malva rotundifolia L., Panicum virgatum L., Parthenium hysterophorus L., Dolichos lablab L., Ricinus communis L., Rumex dentatus L., Senna occidentalis (L.) Link, and Solanum nigrum L. BAf and Tf values showed high inter-site deviations for studied metals. MAI values were found to be more substantial in shoots as compared with that of roots of plants. Maximum CBCI values were observed for M. azedarach (0.626), M. indica (0.572), D. sissoo (0.497), and R. communis (0.474) for site 1; F. infectoria (0.629), R. communis (0.541), D. sissoo (0.483), F. palmata (0.457), and D. repens (0.448) for site 2; D. sissoo (0.681), F. religiosa (0.447), and R. communis (0.429) for site 3. Although, high bioaccumulation of individual metals was observed in herbs like C. sativa, M. polymorpha, and Amaranthus spp., cumulatively, trees were found to be the better bioaccumulators of heavy metals.
Collapse
Affiliation(s)
- Jagdeep Kaur Parihar
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Pardeep Kaur Parihar
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Yogesh B Pakade
- CSIR-National Environmental Engineering Research Institute, Nagpur, India
| | - Jatinder Kaur Katnoria
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, India.
| |
Collapse
|
6
|
Roy A, Bhattacharya T, Kumari M. Air pollution tolerance, metal accumulation and dust capturing capacity of common tropical trees in commercial and industrial sites. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 722:137622. [PMID: 32199354 DOI: 10.1016/j.scitotenv.2020.137622] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 02/25/2020] [Accepted: 02/27/2020] [Indexed: 06/10/2023]
Abstract
Total nine tree species of common tropical trees were assessed for their air pollution tolerance, dust capturing capacity and possibility to act as metal bio-monitors in commercial, industrial and control sites. Two seasons sampling was done respectively in monsoon and post-monsoon, to study their seasonal variations. According to Air Pollution Tolerance Index (APTI) values Mangifera indica, Azadirachta indica and Ficus religiosa were the most tolerant species while Ficus bengalensis and Alstonia scholaris were intermediately tolerant towards air pollution. Single factor ANOVA of biochemical parameters between the sampling sites, revealed that APTI of plants did not vary significantly in both the seasons. Site-wise variation was significant both at commercial and industrial sites. The same trend of result was also found in Anticipated Performance Index (API) which also includes other social benefits. So, these species can be recommended for the green belt development in urban commercial and industrial areas. Ficus bengalensis, Ficus religiosa and Mangifera indica were also having the best dust capturing capacity as Scanning Electron Microscope image revealed that they have rough and large surface area of leaf with short petiole and large canopy structure. According to the Geoaccumulation index (Igeo) and Enrichment Factor (EF) of soil in the sampling sites were found to be contaminated with copper and cadmium. Psidium guajava, Mangifera indica, Alstonia scholaris and Ficus religiosa were found to be good phytoextractors of copper. They did not accumulate cadmium. So, these plants can be recommended as copper bioindicators. However, the metals accumulation efficiencies were high for Mangifera indica and Ficus religiosa.
Collapse
Affiliation(s)
- Arpita Roy
- Department of Civil & Environmental Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215, India.
| | - Tanushree Bhattacharya
- Department of Civil & Environmental Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215, India.
| | - Mala Kumari
- Department of Civil & Environmental Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215, India
| |
Collapse
|
7
|
|
8
|
Alatou H, Sahli L. Using tree leaves and barks collected from contaminated and uncontaminated areas as indicators of air metallic pollution. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2019; 21:985-997. [PMID: 31016999 DOI: 10.1080/15226514.2019.1583723] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The aim of this study was to show the usefulness of woody species in assessing air pollution by cadmium, copper, lead, and zinc. For this, washed leaves, unwashed leaves, and barks of a coniferous species (Cupressus sempervirens var. fastigiata) and a broadleaved one (Eucalyptus cladocalyx F. Muell) were analyzed for cadmium, copper, lead and zinc contents. A transect sampling approach was carried out during spring 2016. Fifty stations were selected along an intensive traffic road, and three in a control area. The results showed that the highest concentrations were recorded in barks for copper (21.86 µg/g, 23.33 µg/g) and lead (14.53 µg/g, 63.33 µg/g), and in unwashed leaves for cadmium (0.57 µg/g, 1.19 µg/g) and zinc (48.94 µg/g, 47.6 µg/g) for E. cladocalyx F. Muell, and C. sempervirens var. fastigiata, respectively. Lead and zinc are the most accumulated metals compared to cadmium and copper in all samples. The studied metal contents in urban area were significantly higher than that of the control one. This represents that traffic road has influenced the metals contamination of the surrounding area. Results of the bioconcentration factor (BCF) for both species indicate that the studied species could be used as biomonitors to identify ecological problems and to predict effect on wildlife habitats. The highest values of metal accumulation index (MAI) indicate the effectiveness of these trees for controlling the air metals in the polluted areas. Result shows too that the studied species could be used for phytoextraction of heavy metals from the polluted soils and/or air.
Collapse
Affiliation(s)
- Hana Alatou
- a Laboratory of Biology and Environment, University Mentouri Brothers-Constantine1 , Constantine , Algeria
| | - Leila Sahli
- a Laboratory of Biology and Environment, University Mentouri Brothers-Constantine1 , Constantine , Algeria
| |
Collapse
|
9
|
Wang S, Gao B, Li Y, Ok YS, Shen C, Xue S. Biochar provides a safe and value-added solution for hyperaccumulating plant disposal: A case study of Phytolacca acinosa Roxb. (Phytolaccaceae). CHEMOSPHERE 2017; 178:59-64. [PMID: 28319742 DOI: 10.1016/j.chemosphere.2017.02.121] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 02/11/2017] [Accepted: 02/23/2017] [Indexed: 06/06/2023]
Abstract
In this work, an innovative approach using biochar technology for hyperaccumulator disposal was developed and evaluated. The heavy metal enriched P. acinosa biomass (PBM) was pyrolyzed to produce biochar (PBC). Both PBM and PBC were characterized with X-ray diffraction (XRD) for crystal phases, scanning electron microscopy (SEM) for surface topography, and analyzed for elemental composition and mobility. The results revealed that whewellite, a dominant crystal form in biomass, was decomposed to calcite after pyrolysis. Elemental analysis indicated that 91-99% total non-volatile elements in the biomass were retained in the biochar. The toxicity characteristic leaching procedure (TCLP) results revealed that 94.6% and 0.15% of total Mn was extracted for biomass and biochar, respectively. This suggests that mobility and bioavailability of Mn in biochar was much lower relative to pristine biomass. Batch sorption experiment showed that excellent removal of aqueous silver, lead, cadmium, and copper ions can be achieved with PBC. Findings from this work indicated that biochar technology can provide a value-added solution for hyperaccumulator disposal.
Collapse
Affiliation(s)
- Shengsen Wang
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou 225009, China; Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Bin Gao
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611, USA.
| | - Yuncong Li
- Tropical Research and Education Center, University of Florida, Homestead, FL 33031, USA
| | - Yong Sik Ok
- Korea Biochar Research Center & School of Natural Resources and Environmental Science, Kangwon National University, Chuncheon 24341, South Korea
| | - Chaofeng Shen
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Shengguo Xue
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| |
Collapse
|
10
|
Madejón P, Marañón T, Navarro-Fernández CM, Domínguez MT, Alegre JM, Robinson B, Murillo JM. Potential of Eucalyptus camaldulensis for phytostabilization and biomonitoring of trace-element contaminated soils. PLoS One 2017; 12:e0180240. [PMID: 28666017 PMCID: PMC5493371 DOI: 10.1371/journal.pone.0180240] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 06/12/2017] [Indexed: 01/26/2023] Open
Abstract
Soil pollution by trace elements (TEs) from mining and industrial activity is widespread and presents a risk to humans and ecosystems. The use of trees to immobilize TEs (phytostabilization) is a low-cost and effective method of soil remediation. We aimed to determine the chemical composition of leaves and flower buds of Eucalyptus camaldulensis in seven sites along the Guadiamar River valley (SW Spain), an area contaminated by a mine-spill in 1998. E. camaldulensis trees in the spill-affected area and adjacent non affected areas were growing on a variety of soils with pH from 5.6 to 8.1 with low concentration of plant nutrients. The spill affected soils contained up to 1069 mg kg-1 of As and 4086 mg kg-1 of Pb. E. camaldulensis tolerated elevated TE concentrations in soil and, compared to other species growing in the same environment, had low TE concentrations in the aerial portions. Besides tolerance to soil contamination, E. camaldulensis had low bioaccumulation coefficients for soil contaminants. TE concentrations in the aboveground portions were below levels reported to be toxic to plants or ecosystems. Flower buds had even lower TE concentrations than leaves. Despite the relatively low concentration of TEs in leaves they were significantly correlated with the soil extractable (0.01 M CaCl2) Cd, Mn and Zn (but not Cu and Pb). The general features of this tree species: tolerance to impoverished and contaminated soils, fast growth and deep root system, and low transfer of TEs from soil to aboveground organs makes it suitable for phytostabilization of soils contaminated by TEs. In addition, eucalyptus leaves could be used for biomonitoring the soil extractability of Cd, Mn and Zn but not Cu or Pb.
Collapse
Affiliation(s)
- Paula Madejón
- Instituto de Recursos Naturales y Agrobiología de Sevilla, IRNAS, Seville, Spain
- * E-mail:
| | - Teodoro Marañón
- Instituto de Recursos Naturales y Agrobiología de Sevilla, IRNAS, Seville, Spain
| | | | - María T. Domínguez
- Instituto de Recursos Naturales y Agrobiología de Sevilla, IRNAS, Seville, Spain
| | - José M. Alegre
- Instituto de Recursos Naturales y Agrobiología de Sevilla, IRNAS, Seville, Spain
| | - Brett Robinson
- Department of Soil and Physical Sciences, Lincoln University, Lincoln, Canterbury, New Zealand
| | - José M. Murillo
- Instituto de Recursos Naturales y Agrobiología de Sevilla, IRNAS, Seville, Spain
| |
Collapse
|
11
|
Paramashivam D, Dickinson NM, Clough TJ, Horswell J, Robinson BH. Potential Environmental Benefits from Blending Biosolids with Other Organic Amendments before Application to Land. JOURNAL OF ENVIRONMENTAL QUALITY 2017; 46:481-489. [PMID: 28724106 DOI: 10.2134/jeq2016.10.0421] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Biosolids disposal to landfill or through incineration is wasteful of a resource that is rich in organic matter and plant nutrients. Land application can improve soil fertility and enhance crop production but may result in excessive nitrate N (NO-N) leaching and residual contamination from pathogens, heavy metals, and xenobiotics. This paper evaluates evidence that these concerns can be reduced significantly by blending biosolids with organic materials to reduce the environmental impact of biosolids application to soils. It appears feasible to combine organic waste streams for use as a resource to build or amend degraded soils. Sawdust and partially pyrolyzed biochars provide an opportunity to reduce the environmental impact of biosolids application, with studies showing reductions of NO-N leaching of 40 to 80%. However, other organic amendments including lignite coal waste may result in excessive NO-N leaching. Field trials combining biosolids and biochars for rehabilitation of degraded forest and ecological restoration are recommended.
Collapse
|
12
|
Alahabadi A, Ehrampoush MH, Miri M, Ebrahimi Aval H, Yousefzadeh S, Ghaffari HR, Ahmadi E, Talebi P, Abaszadeh Fathabadi Z, Babai F, Nikoonahad A, Sharafi K, Hosseini-Bandegharaei A. A comparative study on capability of different tree species in accumulating heavy metals from soil and ambient air. CHEMOSPHERE 2017; 172:459-467. [PMID: 28104557 DOI: 10.1016/j.chemosphere.2017.01.045] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 01/05/2017] [Accepted: 01/06/2017] [Indexed: 06/06/2023]
Abstract
Heavy metals (HMs) in the urban environment can be bio-accumulated by plant tissues. The aim of this study was to compare fourteen different tree species in terms of their capability to accumulate four airborne and soilborne HMs including; zinc (Zn), copper (Cu), lead (Pb), and cadmium (Cd). Samplings were performed during spring, summer, and fall seasons. To compare bioaccumulation ability, bio-concentration factor (BCF), comprehensive bio-concentration index (CBCI), and metal accumulation index (MAI) were applied. Species with the highest accumulation for single metal which shown using BCF did not have the highest CBCI and MAI. Based on CBCI and MAI, Pinus eldarica (7.74), Wistaria sinensis (8.82), Morus alba (8.7), and Nigral morus (27.15) had the highest bioaccumulation capacity of HMs, respectively. Therefore, these species can be used for phytoextraction of HMs pollution and green and buffer zone in the urban.
Collapse
Affiliation(s)
- Ahmad Alahabadi
- Department of Environmental Health, School of Public Health, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Mohammad Hassan Ehrampoush
- Department of Environmental Health, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Miri
- Department of Environmental Health, School of Public Health, Sabzevar University of Medical Sciences, Sabzevar, Iran; Department of Environmental Health, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Hamideh Ebrahimi Aval
- Department of Environmental Health, School of Public Health, Semnan University of Medical Sciences, Semnan, Iran
| | - Samira Yousefzadeh
- Department of Environmental Health Engineering, Aradan School of Public Health and Paramedical, Semnan University of Medical Sciences, Semnan, Iran; Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Ghaffari
- Social Determinants in Health Promotion Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Ehsan Ahmadi
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Environmental Health, School of Health, Kashan University of Medical Sciences, Kashan, Iran
| | - Parvaneh Talebi
- Department of Environmental Health, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Zeynab Abaszadeh Fathabadi
- Department of Environmental Health, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fatemeh Babai
- Department of Environmental Health, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ali Nikoonahad
- Department of Environmental Health, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Kiomars Sharafi
- Research Center for Environmental Determinants of Health (RCEDH), Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Hosseini-Bandegharaei
- Department of Environmental Health, School of Public Health, Sabzevar University of Medical Sciences, Sabzevar, Iran; Department of Engineering, Kashmar Branch, Islamic Azad University, PO Box 161, Kashmar, Iran
| |
Collapse
|
13
|
Esperschuetz J, Bulman S, Anderson C, Lense O, Horswell J, Dickinson N, Robinson BH. Production of Biomass Crops Using Biowastes on Low-Fertility Soil: 2. Effect of Biowastes on Nitrogen Transformation Processes. JOURNAL OF ENVIRONMENTAL QUALITY 2016; 45:1970-1978. [PMID: 27898783 DOI: 10.2134/jeq2015.12.0597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Increasing production of biowastes, particularly biosolids (sewage sludge), requires sustainable management strategies for their disposal. Biosolids can contain high concentrations of nutrients; hence, land application can have positive effects on plant growth and soil fertility, especially when applied to degraded soils. However, high rates of biosolids application may result in excessive nitrogen (N) leaching, which can be mitigated by blending biosolids with other biowastes, such as sawdust. We aimed to determine the effects of biosolids and sawdust on growth and N uptake by sorghum, rapeseed, and ryegrass as well as N losses via leaching. Plants were grown in a greenhouse over a 5-mo period in a low-fertility soil amended with biosolids (1250 kg N ha), biosolids-sawdust (0.5:1), or urea (200 kg N ha). Urea application increased biomass production of sorghum and ryegrass but proved insufficient for rapeseed on low-fertility soil. Biosolids application increased plant N concentrations in ryegrass and rapeseed and increased N uptake into the seeds of sorghum, increasing seed quality. Biosolids application did result in lower N leaching compared with urea, irrespective of plant species, and N leaching was unaffected by mixing the biosolids with sawdust. There was an indication of biological nitrification inhibition in the rhizosphere of sorghum. Rapeseed had similar growth and N uptake into biomass in biosolids and biosolids-sawdust treatments and hence was the most promising species with regard to recycling fresh sawdust in combination with high rates of biosolids on low-fertility soil.
Collapse
|
14
|
Nirola R, Megharaj M, Beecham S, Aryal R, Thavamani P, Vankateswarlu K, Saint C. Remediation of metalliferous mines, revegetation challenges and emerging prospects in semi-arid and arid conditions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:20131-20150. [PMID: 27539471 DOI: 10.1007/s11356-016-7372-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 08/01/2016] [Indexed: 05/23/2023]
Abstract
Understanding plant behaviour in polluted soils is critical for the sustainable remediation of metal-polluted sites including abandoned mines. Post-operational and abandoned metal mines particularly in semi-arid and arid zones are one of the major sources of pollution by soil erosion or plant hyperaccumulation bringing ecological impacts. We have selected from the literature 157 species belonging to 50 families to present a global overview of 'plants under action' against heavy metal pollution. Generally, all species of plants that are drought, salt and metal tolerant are candidates of interest to deal with harsh environmental conditions, particularly at semi-arid and arid mine sites. Pioneer metallophytes namely Atriplex nummularia, Atriplex semibaccata, Salsola kali, Phragmites australis and Medicago sativa, representing the taxonomic orders Caryophyllales, Poales and Fabales are evaluated in terms of phytoremediation in this review. Phytoremediation processes, microbial and algal bioremediation, the use and implication of tissue culture and biotechnology are critically examined. Overall, an integration of available remediation plant-based technologies, referred to here as 'integrated remediation technology,' is proposed to be one of the possible ways ahead to effectively address problems of toxic heavy metal pollution. Graphical abstract Integrated remediation technology (IRT) in metal-contaminated semi-arid and arid conditions. The hexagonal red line represents an IRT concept based on remediation decisions by combination of plants and microbial processes.
Collapse
Affiliation(s)
- Ramkrishna Nirola
- Future Industries Institute, Division of Information Technology, Engineering and the Environment, University of South Australia, Adelaide, SA, 5095, Australia.
- Natural & Built Environments Research Centre, Division of Information Technology, Engineering and the Environment, University of South Australia, Adelaide, SA, 5095, Australia.
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation (GCER), University of Newcastle, ATC Building, Callaghan, Newcastle, NSW, 2308, Australia
| | - Simon Beecham
- Natural & Built Environments Research Centre, Division of Information Technology, Engineering and the Environment, University of South Australia, Adelaide, SA, 5095, Australia
| | - Rupak Aryal
- Natural & Built Environments Research Centre, Division of Information Technology, Engineering and the Environment, University of South Australia, Adelaide, SA, 5095, Australia
| | - Palanisami Thavamani
- Global Centre for Environmental Remediation (GCER), University of Newcastle, ATC Building, Callaghan, Newcastle, NSW, 2308, Australia
| | | | - Christopher Saint
- Natural & Built Environments Research Centre, Division of Information Technology, Engineering and the Environment, University of South Australia, Adelaide, SA, 5095, Australia
| |
Collapse
|
15
|
Esperschütz J, Lense O, Anderson C, Bulman S, Horswell J, Dickinson N, Robinson B. Biowaste Mixtures Affecting the Growth and Elemental Composition of Italian Ryegrass (). JOURNAL OF ENVIRONMENTAL QUALITY 2016; 45:1054-1061. [PMID: 27136174 DOI: 10.2134/jeq2015.09.0459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Biosolids (sewage sludge) can be beneficially applied to degraded lands to improve soil quality. Plants grown on biosolids-amended soils have distinct concentrations of macronutrients and trace elements, which can be beneficial or present a risk to humans and ecosystems. Potentially, biosolids could be blended with other biowastes, such as sawdust, to reduce the risks posed by rebuilding soils using biosolids alone. We sought to determine the effect of mixing biosolids and sawdust on the macronutrient and trace element concentration of ryegrass over a 5-mo period. was grown in a low fertility soil, typical for marginal farm areas, that was amended with biosolids (1250 kg N ha), biosolids + sawdust (0.5:1) and urea (200 kg N ha), as well as a control. Biosolids increased the growth of from 2.93 to 4.14 t ha. This increase was offset by blending the biosolids with sawdust (3.00 t ha). Urea application increased growth to 4.93 t ha. The biowaste treatments increased N, P, Cu, Mn, and Zn relative to the control, which may be beneficial for grazing animals. Although biowaste application caused elevated Cd concentrations (0.15-0.24 mg kg) five- to eightfold higher than control and urea treatments, these were below levels that are likely to result in unacceptable concentrations in animal tissues. Mixing biosolids with sawdust reduced Cd uptake while still resulting in increased micronutrient concentrations (P, S, Mn, Zn, Cu) in plants. There were significant changes in the elemental uptake during the experiment, which was attributed to the decomposition of the sawdust.
Collapse
|
16
|
Nirola R, Megharaj M, Aryal R, Naidu R. Screening of metal uptake by plant colonizers growing on abandoned copper mine in Kapunda, South Australia. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2016; 18:399-405. [PMID: 26552328 DOI: 10.1080/15226514.2015.1109599] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Systematic site survey for sample collection and analysis was conducted at a derelict copper (Cu) mine at Kapunda, South Australia. Cu concentrations in the soils at this former mine ranged from 65-10107 mg kg(-1). The pH and EC varied widely in the 3.9-8.4 and 152-7311 µS ranges, respectively. Nine plant species growing over the copper mine site were selected to screen for metal uptake to determine their suitability for phytoremediation. The Australian native tree species Eucalyptus camaldulensis indicated enrichment factor (EF) of 2.17, 1.89, and 1.30 for Cu, Zn, and Pb, respectively, suggesting that this species of tree can accumulate these metals to some degree. The stress-resistant exotic olive, Olea europaea exhibited EF of ≤ 0.01 for Cu, Cd, and Pb, and 0.29 for Zn, which is characteristic of an excluder plant. Acacia pycnantha, the Australian pioneer legume species with EF 0.03, 0.80, 0.32, and 0.01 for Cu, Zn, Cd, and Pb, respectively, emerged as another strong metal excluder and consequently as an ideal metal stabilizer.
Collapse
Affiliation(s)
- Ramkrishna Nirola
- a Future Industries Institute Division of Information Technology, Engineering and the Environment, University of South Australia , Adelaide , SA , Australia
| | - Mallavarapu Megharaj
- b Global Centre for Environmental Remediation, University of Newcastle , ATC Building, Callaghan, Newcastle , NSW , Australia
| | - Rupak Aryal
- c School of Natural and Built Environments, Division of Information Technology, Engineering and the Environment, University of South Australia , Adelaide , SA , Australia
| | - Ravi Naidu
- b Global Centre for Environmental Remediation, University of Newcastle , ATC Building, Callaghan, Newcastle , NSW , Australia
| |
Collapse
|
17
|
Laidlaw WS, Baker AJM, Gregory D, Arndt SK. Irrigation water quality influences heavy metal uptake by willows in biosolids. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2015; 155:31-9. [PMID: 25770960 DOI: 10.1016/j.jenvman.2015.03.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 02/09/2015] [Accepted: 03/04/2015] [Indexed: 05/22/2023]
Abstract
Phytoextraction is an effective method to remediate heavy metal contaminated landscapes but is often applied for single metal contaminants. Plants used for phytoextraction may not always be able to grow in drier environments without irrigation. This study investigated if willows (Salix x reichardtii A. Kerner) can be used for phytoextraction of multiple metals in biosolids, an end-product of the wastewater treatment process, and if irrigation with reclaimed and freshwater influences the extraction process. A plantation of willows was established directly onto a tilled stockpile of metal-contaminated biosolids and irrigated with slightly saline reclaimed water (EC ∼2 dS/cm) at a wastewater processing plant in Victoria, Australia. Biomass was harvested annually and analysed for heavy metal content. Phytoextraction of cadmium, copper, nickel and zinc was benchmarked against freshwater irrigated willows. The minimum irrigation rate of 700 mm per growing season was sufficient for willows to grow and extract metals. Increasing irrigation rates produced no differences in total biomass and also no differences in the extraction of heavy metals. The reclaimed water reduced both the salinity and the acidity of the biosolids significantly within the first 12 months after irrigation commenced and after three seasons the salinity of the biosolids had dropped to <15% of initial values. A flushing treatment to remove excess salts was therefore not necessary. Irrigation had an impact on biosolids attributes such as salinity and pH, and that this had an influence on metal extraction. Reclaimed water irrigation reduced the biosolid pH and this was associated with reductions of the extraction of Ni and Zn, it did not influence the extraction of Cu and enhanced the phytoextraction of Cd, which was probably related to the high chloride content of the reclaimed water. Our results demonstrate that flood-irrigation with reclaimed water was a successful treatment to grow willows in a dry climate. However, the reclaimed water can also change biosolids properties, which will influence the effectiveness of willows to extract different metals.
Collapse
Affiliation(s)
- W Scott Laidlaw
- School of Botany, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Alan J M Baker
- School of Botany, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - David Gregory
- Technology and Marine Research, Melbourne Water, 990 Latrobe Street, Docklands, Victoria 3008, Australia
| | - Stefan K Arndt
- School of Ecosystem and Forest Sciences, The University of Melbourne, 500 Yarra Boulevard, Richmond, Victoria 3121, Australia; Terrestrial Ecosystem Research, Department of Microbiology and Ecosystem Science, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria.
| |
Collapse
|
18
|
Sharma S, Singh B, Manchanda VK. Phytoremediation: role of terrestrial plants and aquatic macrophytes in the remediation of radionuclides and heavy metal contaminated soil and water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:946-62. [PMID: 25277712 DOI: 10.1007/s11356-014-3635-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Accepted: 09/19/2014] [Indexed: 05/20/2023]
Abstract
Nuclear power reactors are operating in 31 countries around the world. Along with reactor operations, activities like mining, fuel fabrication, fuel reprocessing and military operations are the major contributors to the nuclear waste. The presence of a large number of fission products along with multiple oxidation state long-lived radionuclides such as neptunium ((237)Np), plutonium ((239)Pu), americium ((241/243)Am) and curium ((245)Cm) make the waste streams a potential radiological threat to the environment. Commonly high concentrations of cesium ((137)Cs) and strontium ((90)Sr) are found in a nuclear waste. These radionuclides are capable enough to produce potential health threat due to their long half-lives and effortless translocation into the human body. Besides the radionuclides, heavy metal contamination is also a serious issue. Heavy metals occur naturally in the earth crust and in low concentration, are also essential for the metabolism of living beings. Bioaccumulation of these heavy metals causes hazardous effects. These pollutants enter the human body directly via contaminated drinking water or through the food chain. This issue has drawn the attention of scientists throughout the world to device eco-friendly treatments to remediate the soil and water resources. Various physical and chemical treatments are being applied to clean the waste, but these techniques are quite expensive, complicated and comprise various side effects. One of the promising techniques, which has been pursued vigorously to overcome these demerits, is phytoremediation. The process is very effective, eco-friendly, easy and affordable. This technique utilizes the plants and its associated microbes to decontaminate the low and moderately contaminated sites efficiently. Many plant species are successfully used for remediation of contaminated soil and water systems. Remediation of these systems turns into a serious problem due to various anthropogenic activities that have significantly raised the amount of heavy metals and radionuclides in it. Also, these activities are continuously increasing the area of the contaminated sites. In this context, an attempt has been made to review different modes of the phytoremediation and various terrestrial and aquatic plants which are being used to remediate the heavy metals and radionuclide-contaminated soil and aquatic systems. Natural and synthetic enhancers, those hasten the process of metal adsorption/absorption by plants, are also discussed. The article includes 216 references.
Collapse
Affiliation(s)
- Sunita Sharma
- Natural Plant Products Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176 061, Himachal Pradesh, India
| | | | | |
Collapse
|
19
|
Luo K, Ma T, Liu H, Wu L, Ren J, Nai F, Li R, Chen L, Luo Y, Christie P. Efficiency of repeated phytoextraction of cadmium and zinc from an agricultural soil contaminated with sewage sludge. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2015; 17:575-82. [PMID: 25747245 DOI: 10.1080/15226514.2014.935286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Long-term application of sewage sludge resulted in soil cadmium (Cd) and zinc (Zn) contamination in a pot experiment conducted to phytoextract Cd/Zn repeatedly using Sedum plumbizincicola and Apium graceolens in monoculture or intercropping mode eight times. Shoot yields and soil physicochemical properties changed markedly with increasing number of remediation crops when the two plant species were intercropped compared with the unplanted control soil and the two monoculture treatments. Changes in soil microbial indices such as average well colour development, soil enzyme activity and soil microbial counts were also significantly affected by the growth of the remediation plants, especially intercropping with S. plumbizincicola and A. graveolens. The higher yields and amounts of Cd taken up indicated that intercropping of the hyperaccumulator and the vegetable species may be suitable for simultaneous agricultural production and soil remediation, with larger crop yields and higher phytoremediation efficiencies than under monoculture conditions.
Collapse
Affiliation(s)
- Kai Luo
- a Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science , Chinese Academy of Sciences , Nanjing , China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Xu T, Xie F, Wei Z, Zeng S, Wu QT. Phytoremediation of sewage sludge and use of its leachate for crop production. ENVIRONMENTAL TECHNOLOGY 2014; 36:3000-3007. [PMID: 25205245 DOI: 10.1080/09593330.2014.955061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The land application of sewage sludge has the potential risk of transferring heavy metals to soil or groundwater. The agricultural reuse of sludge leachate could be a cost-effective way to decrease metal contamination. Sludge leachate collected during the phytoremediation of sludge by co-cropping with Sedum alfredii and Zea mays was used for irrigating vegetables in a field experiment. Results indicate that the concentrations of Cu, Zn, Pb, and Cd in sludge leachates complied with the National Standards for agricultural irrigation water in China. For the vegetable crop Ipomoea aquatica, nutrients obtained only from the sludge leachate were not sufficient to support growth. For the second crop, Brassica parachinensis, no differences in biomass were observed between the treatment with leachate plus a half dose of inorganic fertilizer and the treatment with a full dose of inorganic fertilizers. The concentrations of heavy metals in I. aquatica and B. parachinensis were not significantly affected by the application of sludge leachates. Compared with initial values, there were no significant differences in Zn, Cd, Cu, and Pb concentrations in soil following treatment with sludge leachate. This study indicates that on range lands, sludge phytoremediation can be conducted at the upper level, and the generated sludge leachate can be safely and easily used in crop production at the lower level.
Collapse
Affiliation(s)
- Tianfen Xu
- a Key Laboratory of Soil Environment and Waste Reuse in Agriculture of Guangdong Higher Education Institutes , College of Natural Resources and Environment, South China Agricultural University , Guangzhou 510642 , People's Republic of China
- b Department of Basic Biology , Guangzhou Medical University , Guangzhou 510182 , People's Republic of China
| | - Fangwen Xie
- a Key Laboratory of Soil Environment and Waste Reuse in Agriculture of Guangdong Higher Education Institutes , College of Natural Resources and Environment, South China Agricultural University , Guangzhou 510642 , People's Republic of China
| | - Zebin Wei
- a Key Laboratory of Soil Environment and Waste Reuse in Agriculture of Guangdong Higher Education Institutes , College of Natural Resources and Environment, South China Agricultural University , Guangzhou 510642 , People's Republic of China
| | - Shucai Zeng
- a Key Laboratory of Soil Environment and Waste Reuse in Agriculture of Guangdong Higher Education Institutes , College of Natural Resources and Environment, South China Agricultural University , Guangzhou 510642 , People's Republic of China
| | - Qi-Tang Wu
- a Key Laboratory of Soil Environment and Waste Reuse in Agriculture of Guangdong Higher Education Institutes , College of Natural Resources and Environment, South China Agricultural University , Guangzhou 510642 , People's Republic of China
| |
Collapse
|