1
|
Xia W, Ghouri F, Zhong M, Bukhari SAH, Ali S, Shahid MQ. Rice and heavy metals: A review of cadmium impact and potential remediation techniques. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177403. [PMID: 39510291 DOI: 10.1016/j.scitotenv.2024.177403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/25/2024] [Accepted: 11/03/2024] [Indexed: 11/15/2024]
Abstract
In recent decades, the menace of heavy metals to food security and human health has become a serious concern. Given its status as the primary provider of food globally, significant research has been done to ensure the safe cultivation of rice, particularly concerning the mitigation of heavy metal contamination. Therefore, this article focuses on the effects and poisoning mechanism of heavy metals, primarily cadmium, on rice. Here, we have discussed the absorption, translocation, and toxicity mechanism of cadmium in rice and the external factors, such as soil pH, organic matter, microorganisms, and climate change, associated with this pollution. It also discusses in detail the sources of heavy metal pollution and the countermeasures against their effects on rice, such as the use of nanoparticles, biochar, plant growth regulators, nutrient management, molecular approaches, tolerant genotypes, and associated genes/proteins. Lastly, a number of significant research prospects concerning heavy metals in rice fields were suggested for future investigation. This review serves as a crucial reference for addressing the issue of heavy metal contamination in paddy fields, ensuring the safe cultivation of rice, promoting environmentally friendly fish farming practices, and safeguarding future food security and human health.
Collapse
Affiliation(s)
- Weiwei Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Fozia Ghouri
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Minghui Zhong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | | | - Shafaqat Ali
- Department of Environmental Sciences, Government College University, Faisalabad 38000, Pakistan; Department of Biological Sciences and Technology, China Medical University, Taichung 40402, Taiwan.
| | - Muhammad Qasim Shahid
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
2
|
de Paula Correia DV, Rodak BW, Machado HA, Lopes G, Freitas DS. Beneficial or detrimental? How nickel application alters the ionome of soybean plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 349:112274. [PMID: 39343061 DOI: 10.1016/j.plantsci.2024.112274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 09/22/2024] [Accepted: 09/24/2024] [Indexed: 10/01/2024]
Abstract
The use of nickel (Ni) in agriculture may represent one of the most significant cases of plant hormesis ever reported, as plants exhibit both positive and negative responses depending on the level of exposure to this element. For a more comprehensive understanding of this effect, the next step is to conduct studies on the dynamics of pre-existing chemical elements in the system (ionomic profile), especially when introducing Ni as a novel nutrient for the plants. This micronutrient is of particular interest to the fertilization of leguminous plants, such as the soybean, due to its additional effects on the biological nitrogen fixation process. This study thus evaluated the influence of five doses of Ni (0.0, 0.5, 1.0, 3.0, and 9.0 mg of Ni kg-1) on the ionomic profile of soybean genotypes using modern quantification techniques. The results revealed that the addition of Ni reduced the concentration of cationic micronutrients manganese (Mn), iron (Fe), zinc (Zn), and copper (Cu), while it increased the concentration of macronutrients nitrogen (N) and magnesium (Mg). The application of Ni also resulted in a reduction of the potentially toxic element aluminum (Al). Correlations were also observed for these elements, indicating that Ni could be a controlling agent in elemental absorption and translocation. The ionome of the leaf tissues exhibited the most significant alterations, followed by the grains, nodules, and roots. Exogenous agronomic doses of Ni proved beneficial for the growth and production of soybean plants, although a genotypic effect was observed. The treatment with 9.0 mg of Ni kg-1, resulted in a new ionomic profile related to toxicity, demonstrating suboptimal plant development. Thus, the application of Ni in appropriate doses had a significant impact on the ionomic profile of soybeans, improving plant development and implying resistance to potentially toxic elements such as Al.
Collapse
Affiliation(s)
| | - Bruna Wurr Rodak
- Department of Agronomy, Paraná Federal Institute of Education, Science and Technology, Palmas, Paraná 85690-740, Brazil.
| | - Henrique Amorim Machado
- Department of Agricultural and Natural Science, State University of Minas Gerais, Ituiutaba, Minas Gerais 38302-192, Brazil.
| | - Guilherme Lopes
- Department of Soil Science, Federal University of Lavras, Lavras, Minas Gerais 37200-000, Brazil.
| | - Douglas Siqueira Freitas
- Department of Agricultural and Natural Science, State University of Minas Gerais, Ituiutaba, Minas Gerais 38302-192, Brazil.
| |
Collapse
|
3
|
Ma C, Nong X, Xu F, Zhu Z, Nong P, Luo F, Tang S, Zhang L, Kang Z, Zhu Y. Dissolution and solubility of the calcium-nickel carbonate solid solutions [(Ca 1-xNi x)CO 3] at 25 °C. GEOCHEMICAL TRANSACTIONS 2024; 25:13. [PMID: 39612076 DOI: 10.1186/s12932-024-00096-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 11/22/2024] [Indexed: 11/30/2024]
Abstract
A series of the calcium-nickel carbonate solid solutions [(Ca1-xNix)CO3] were synthesized and their dissolution in N2-degassed water (NDW) and CO2-saturated water (CSW) at 25 °C was experimentally investigated. During dissolution of the synthetic solids (Ni-bearing calcite, amorphous Ca-bearing NiCO3 and their mixtures), the Ni-calcite and the Ca-NiCO3 dissolved first followed by the formation of the Ni-bearing aragonite-structure phases. After 240-300 days of dissolution in NDW, the water solutions achieved the stable Ca and Ni concentrations of 0.592-0.665 and 0.073-0.290 mmol/L for the solids with lower Ni/(Ca + Ni) mol ratios (XNi), or 0.608-0.721 and 0.273-0.430 mmol/L for the solids with higher XNi, respectively. After 240-300 days of dissolution in CSW, the water solutions achieved the stable Ca and Ni concentrations of 1.094-3.738 and 0.831-4.300 mmol/L, respectively. For dissolution in NDW and CSW, the mean values of log IAP (Ion activity products) in the final stable state (≈ log Ksp, Solubility product constants) were determined to be - 8.65 ± 0.04 and - 8.16 ± 0.11 for calcite [CaCO3], respectively; - 8.50 ± 0.02 and - 7.69 ± 0.03 for the synthetical nickel carbonates [NiCO3], respectively. In respect to the bulk composition of the (Ca1-xNix)CO3 solid solutions, the final log IAP showed the highest value when XNi = 0.10-0.30. Mostly, the mean values of log IAP increased with the increasing XNi in respect to the Ni-calcite, the Ni-aragonite and the amorphous Ca-Ni carbonate. The plotting of the experimental data on the Lippmann diagram for the (Ca1-xNix)CO3 solid solution using the predicted Guggenheim parameters of a0 = 2.14 and a1 = - 0.128 from a miscibility gap of XNi = 0.238 to 0.690 indicated that the solids dissolved incongruently and the final Ca and Ni concentrations in the water solutions were simultaneously limited by the minimum stoichiometric saturation curves for the Ni-calcite, Ni-aragonite and the amorphous Ca-Ni carbonate. During dissolution in NDW, the Ni2+ preferred to dissolve into the water solution and Ca2+ preferred to remain in the solid, while during dissolution in CSW for the solids with higher XNi, the Ca2+ preferred to dissolve into the water solution and Ni2+ preferred to remain in the solid. These findings provide valuable insights into understanding the mechanisms governing Ni geochemical cycle in natural environments.
Collapse
Affiliation(s)
- Chengyou Ma
- College of Earth Sciences, Guilin University of Technology, Guilin, 541006, Guangxi, China
| | - Xiaoke Nong
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541006, China
| | - Fan Xu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541006, China
| | - Zongqiang Zhu
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541006, China.
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541006, China.
| | - Peijie Nong
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541006, China
| | - Fei Luo
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541006, China
| | - Shen Tang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541006, China
| | - Lihao Zhang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541006, China
| | - Zhiqiang Kang
- College of Earth Sciences, Guilin University of Technology, Guilin, 541006, Guangxi, China
| | - Yinian Zhu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541006, China.
| |
Collapse
|
4
|
Arthi R, Parameswari E, Dhevagi P, Janaki P, Parimaladevi R. Microbial alchemists: unveiling the hidden potentials of halophilic organisms for soil restoration. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-33949-9. [PMID: 38877191 DOI: 10.1007/s11356-024-33949-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 06/05/2024] [Indexed: 06/16/2024]
Abstract
Salinity, resulting from various contaminants, is a major concern to global crop cultivation. Soil salinity results in increased osmotic stress, oxidative stress, specific ion toxicity, nutrient deficiency in plants, groundwater contamination, and negative impacts on biogeochemical cycles. Leaching, the prevailing remediation method, is expensive, energy-intensive, demands more fresh water, and also causes nutrient loss which leads to infertile cropland and eutrophication of water bodies. Moreover, in soils co-contaminated with persistent organic pollutants, heavy metals, and textile dyes, leaching techniques may not be effective. It promotes the adoption of microbial remediation as an effective and eco-friendly method. Common microbes such as Pseudomonas, Trichoderma, and Bacillus often struggle to survive in high-saline conditions due to osmotic stress, ion imbalance, and protein denaturation. Halophiles, capable of withstanding high-saline conditions, exhibit a remarkable ability to utilize a broad spectrum of organic pollutants as carbon sources and restore the polluted environment. Furthermore, halophiles can enhance plant growth under stress conditions and produce vital bio-enzymes. Halophilic microorganisms can contribute to increasing soil microbial diversity, pollutant degradation, stabilizing soil structure, participating in nutrient dynamics, bio-geochemical cycles, enhancing soil fertility, and crop growth. This review provides an in-depth analysis of pollutant degradation, salt-tolerating mechanisms, and plant-soil-microbe interaction and offers a holistic perspective on their potential for soil restoration.
Collapse
Affiliation(s)
- Ravichandran Arthi
- Department of Environmental Science, Tamil Nadu Agricultural University, Coimbatore, India
| | | | - Periyasamy Dhevagi
- Department of Environmental Science, Tamil Nadu Agricultural University, Coimbatore, India
| | - Ponnusamy Janaki
- Nammazhvar Organic Farming Research Centre, Tamil Nadu Agricultural University, Coimbatore, India
| | - Rathinasamy Parimaladevi
- Department of Bioenergy, Agrl. Engineering College & Research Institute, Tamil Nadu Agricultural University, Coimbatore, India
| |
Collapse
|
5
|
Rizwan M, Usman K, Alsafran M. Ecological impacts and potential hazards of nickel on soil microbes, plants, and human health. CHEMOSPHERE 2024; 357:142028. [PMID: 38621494 DOI: 10.1016/j.chemosphere.2024.142028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/25/2024] [Accepted: 04/10/2024] [Indexed: 04/17/2024]
Abstract
Nickel (Ni) contamination poses a serious environmental concern, particularly in developing countries: where, anthropogenic activities significantly contributes to Ni accumulations in soils and waters. The contamination of agricultural soils with Ni, increases risks of its entry to terrestrial ecosystems and food production systems posing a threat to both food security and safety. We examined the existing published articles regarding the origin, source, accumulation, and transport of Ni in soil environments. Particularly, we reviewed the bioavailability and toxic effects of Ni to soil invertebrates and microbes, as well as its impact on soil-plant interactions including seed germination, nutrient uptake, photosynthesis, oxidative stress, antioxidant enzyme activity, and biomass production. Moreover, it underscores the potential health hazards associated with consuming crops cultivated in Ni-contaminated soils and elucidates the pathways through which Ni enters the food chain. The published literature suggests that chronic Ni exposure may have long-term implications for the food supply chain and the health of the public. Therefore, an aggressive effort is required for interdisciplinary collaboration for assessing and mitigating the ecological and health risks associated with Ni contamination. It also argues that these measures are necessary in light of the increasing level of Ni pollution in soil ecosystems and the potential impacts on public health and the environment.
Collapse
Affiliation(s)
- Muhammad Rizwan
- Agricultural Research Station, Office of VP for Research & Graduate Studies, Qatar University, Doha, 2713, Qatar
| | - Kamal Usman
- Agricultural Research Station, Office of VP for Research & Graduate Studies, Qatar University, Doha, 2713, Qatar
| | - Mohammed Alsafran
- Agricultural Research Station, Office of VP for Research & Graduate Studies, Qatar University, Doha, 2713, Qatar.
| |
Collapse
|
6
|
Shahzad A, Aslam U, Ferdous S, Qin M, Siddique A, Billah M, Naeem M, Mahmood Z, Kayani S. Combined effect of endophytic Bacillus mycoides and rock phosphate on the amelioration of heavy metal stress in wheat plants. BMC PLANT BIOLOGY 2024; 24:125. [PMID: 38373884 PMCID: PMC10877812 DOI: 10.1186/s12870-024-04812-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 02/09/2024] [Indexed: 02/21/2024]
Abstract
BACKGROUND Zinc (Zn) and nickel (Ni) are nutrients that are crucial for plant growth; however, when they are present at higher concentrations, they can cause toxicity in plants. The present study aimed to isolate plant growth promoting endophytic bacteria from Viburnum grandiflorum and assess its plant and defense promoting potential alone and in combination with RP in zinc (Zn) and nickel (Ni) toxic soil. The isolated endophytic bacteria were identified using 16s rRNA gene sequencing. For the experiment, twelve different treatments were applied using Zn, Ni, isolated endophytic Bacillus mycoides (Accession # MW979613), and rock phosphate (RP). The Ni, Zn and RP were used at the rate of (100 mg/kg) and (0.2 g/kg) respectively. A pot experiment with three replicates of each treatment was conducted using a complete randomized design (CRD). RESULTS The results indicated that Ni (T5 = seed + 100 mg/kg Ni and T9 = seed + 100 mg/kg Zn) and Zn concentrations inhibited plant growth, but the intensity of growth inhibition was higher in Ni-contaminated soil. Bacillus mycoides and RP at 100 mg/Kg Zn (T12 = inoculated seed + 100 mg/kg Zn + RP0.2 g/kg.) increased the shoot length, leaf width, protein and sugar content by 57%, 13%, 20% and 34%, respectively, compared to the control. The antioxidant enzymes superoxide dismutases (SOD), peroxidase (POD) were decreased in contaminated soil. Furthermore, Ni and Zn accumulation was inhibited in T11 (seed + 100 mg/kg Zn + RP0.2 g/Kg) and T12 (inoculated seed + 100 mg/kg Zn + RP0.2 g/Kg) by 62 and 63% respectively. The Cu, Ca, and K, contents increased by 128, 219 and 85, Mn, Na, and K by 326, 449, and 84% in (T3 = inoculated seed) and (T4 = inoculated seed + RP 0.2 g/Kg) respectively. CONCLUSIONS Ni was more toxic to plants than Zn, but endophytic bacteria isolated from Viburnum grandiflorum, helped wheat (Triticum aestivum) plants and reduced the toxic effects of Ni and Zn. The effect of Bacillus mycoides was more prominent in combination with RP which promoted and suppressed heavy-metal toxicity. The reported combination of Bacillus mycoides and RP may be useful for improving plant growth and overcoming metal stress.
Collapse
Affiliation(s)
- Asim Shahzad
- The College of Geography and Environmental Sciences, Henan University, Jinming ave, Kaifeng, China.
- Department of Botany, Mohi-Ud-Din Islamic University, Nerian Sharif, Azad Jammu and Kashmir, Pakistan.
| | - Uzma Aslam
- Department of Botany, Mohi-Ud-Din Islamic University, Nerian Sharif, Azad Jammu and Kashmir, Pakistan
| | - Shazia Ferdous
- Department of Botany, Mohi-Ud-Din Islamic University, Nerian Sharif, Azad Jammu and Kashmir, Pakistan
| | - Mingzhou Qin
- The College of Geography and Environmental Sciences, Henan University, Jinming ave, Kaifeng, China.
| | - Anam Siddique
- Department of Botany, Mohi-Ud-Din Islamic University, Nerian Sharif, Azad Jammu and Kashmir, Pakistan
| | - Motsim Billah
- Directorate of ORIC, Rawalpindi Women University, Rawalpindi, Pakistan
| | - Muhammad Naeem
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, China
| | - Zahid Mahmood
- Crop Sciences institute, National Agricultural Research Centre, Islamabad, Pakistan
| | - Sadaf Kayani
- Department of Botany, Mohi-Ud-Din Islamic University, Nerian Sharif, Azad Jammu and Kashmir, Pakistan
| |
Collapse
|
7
|
Medison RG, Jiang J, Medison MB, Tan LT, Kayange CD, Sun Z, Zhou Y. Evaluating the potential of Bacillus licheniformis YZCUO202005 isolated from lichens in maize growth promotion and biocontrol. Heliyon 2023; 9:e20204. [PMID: 37767471 PMCID: PMC10520788 DOI: 10.1016/j.heliyon.2023.e20204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 09/08/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Lichens exist in an organismal organization of mycobiont, photobiont, and non-photoautotrophic bacteria. These organisms contribute to the growth of lichens even in poor nutrition substrates. However, studies on the isolation and application of non-photoautotrophic bacteria in plant growth and biocontrol are scanty. Therefore, a study was conducted to isolate and evaluate the potential of non-photoautotrophic bacteria from lichen tissues in maize plant growth promotion and biocontrol of plant pathogens (fungi and bacteria). Five bacterial strains were isolated and tested for their ability to produce indole-3-Acetic Acid (IAA). One bacterium named YZCUO202005 produced IAA, siderophores and biofilms, solubilized phosphate and potassium and exhibited extracellular enzymes (cellulases, proteases, amylase, and β -1,3-Glucanase). Based on the 16S rRNA sequence analysis results, YZCUO202005 was identified as Bacillus licheniformis. The strain inhibited the growth of five pathogenic fungi with an inhibition percent of between 58.7% and 71.7% and two pathogenic bacteria. Under greenhouse conditions, YZCUO202005 was tested for its abilities to enhance maize seed germination, and vegetative growth. Compared with the control treatment, the strain significantly enhanced the growth of stem length (i.e. 18 ± 0.64 cm, 78 ± 0.92 cm), leaf length (i.e. 10 ± 0.36 cm, 57 ± 1.42 cm), leaf chlorophyll levels (i.e., 13 ± 0.40, 40 ± 0.43 SPAD), and root length (i.e, 9.8 ± 2.25 cm, 22.5 ± 6.59 cm). Our results demonstrated that B. licheniformis YZCUO202005 from lichens has the potential to promote plant growth and reduce fungal and bacterial pathogens' growth. Furthermore, the results suggest that lichens are naturally rich sources of plant growth promotion and biocontrol agents that would be used in agriculture.
Collapse
Affiliation(s)
- Rudoviko Galileya Medison
- Department of Plant Protection, College of Agriculture, Yangtze University, 266 Jingmi Road, Jingzhou City, Hubei Province, 434025, China
| | - Jianwei Jiang
- Department of Plant Protection, College of Agriculture, Yangtze University, 266 Jingmi Road, Jingzhou City, Hubei Province, 434025, China
| | - Milca Banda Medison
- Department of Plant Protection, College of Agriculture, Yangtze University, 266 Jingmi Road, Jingzhou City, Hubei Province, 434025, China
| | - Li-Tao Tan
- Department of Plant Protection, College of Agriculture, Yangtze University, 266 Jingmi Road, Jingzhou City, Hubei Province, 434025, China
| | - Chicco D.M. Kayange
- Department of Land Resources Conservation, Mulanje District Agriculture Office, P.O. Box 49, Mulanje, Malawi
| | - Zhengxiang Sun
- Department of Plant Protection, College of Agriculture, Yangtze University, 266 Jingmi Road, Jingzhou City, Hubei Province, 434025, China
| | - Yi Zhou
- Department of Plant Protection, College of Agriculture, Yangtze University, 266 Jingmi Road, Jingzhou City, Hubei Province, 434025, China
| |
Collapse
|
8
|
Mustafa A, Zulfiqar U, Mumtaz MZ, Radziemska M, Haider FU, Holatko J, Hammershmiedt T, Naveed M, Ali H, Kintl A, Saeed Q, Kucerik J, Brtnicky M. Nickel (Ni) phytotoxicity and detoxification mechanisms: A review. CHEMOSPHERE 2023; 328:138574. [PMID: 37019403 DOI: 10.1016/j.chemosphere.2023.138574] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 06/19/2023]
Abstract
Scientists studying the environment, physiology, and biology have been particularly interested in nickel (Ni) because of its dual effects (essentiality and toxicity) on terrestrial biota. It has been reported in some studies that without an adequate supply of Ni, plants are unable to finish their life cycle. The safest Ni limit for plants is 1.5 μg g-1, while the limit for soil is between 75 and 150 μg g-1. Ni at lethal levels harms plants by interfering with a variety of physiological functions, including enzyme activity, root development, photosynthesis, and mineral uptake. This review focuses on the occurrence and phytotoxicity of Ni with respect to growth, physiological and biochemical aspects. It also delves into advanced Ni detoxification mechanisms such as cellular modifications, organic acids, and chelation of Ni by plant roots, and emphasizes the role of genes involved in Ni detoxification. The discussion has been carried out on the current state of using soil amendments and plant-microbe interactions to successfully remediate Ni from contaminated sites. This review has identified potential drawbacks and difficulties of various strategies for Ni remediation, discussed the importance of these findings for environmental authorities and decision-makers, and concluded by noting the sustainability concerns and future research needs regarding Ni remediation.
Collapse
Affiliation(s)
- Adnan Mustafa
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00, Brno, Czech Republic; Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, Brno, 61300, Brno, Czech Republic; Institute for Environmental Studies, Faculty of Science, Charles University in Prague, Benatska 2, CZ12800, Praha, Czech Republic.
| | - Usman Zulfiqar
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Muhammad Zahid Mumtaz
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Main Campus, Defense Road, Lahore, 54000, Pakistan
| | - Maja Radziemska
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, Brno, 61300, Brno, Czech Republic; Institute of Environmental Engineering, Warsaw University of Life Sciences, 159 Nowoursynowska,02-776, Warsaw, Poland
| | - Fasih Ullah Haider
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, 510650, Guangzhou, China
| | - Jiri Holatko
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, Brno, 61300, Brno, Czech Republic; Agrovyzkum Rapotin, Ltd., Vyzkumniku 267, 788 13, Rapotin, Czech Republic
| | - Tereza Hammershmiedt
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, Brno, 61300, Brno, Czech Republic
| | - Muhammad Naveed
- Institute of Soil and Environmental Science, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Hassan Ali
- Institute of Soil and Environmental Science, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Antonin Kintl
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, Brno, 61300, Brno, Czech Republic; Agricultural Research, Ltd., 664 4, Troubsko, Czech Republic
| | - Qudsia Saeed
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00, Brno, Czech Republic
| | - Jiri Kucerik
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00, Brno, Czech Republic
| | - Martin Brtnicky
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00, Brno, Czech Republic; Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, Brno, 61300, Brno, Czech Republic.
| |
Collapse
|
9
|
Majhi S, Sikdar (née Bhakta) M. How heavy metal stress affects the growth and development of pulse crops: insights into germination and physiological processes. 3 Biotech 2023; 13:155. [PMID: 37138782 PMCID: PMC10149436 DOI: 10.1007/s13205-023-03585-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 04/23/2023] [Indexed: 05/05/2023] Open
Abstract
The current work is an extensive review addressing the effects of heavy metals in major pulse crops such as Chickpea (Cicer arietinum L.), Pea (Pisum sativum L.), Pigeonpea (Cajanus cajan L.), Mung bean (Vigna radiata L.), Black gram (Vigna mungo L.) and Lentil (Lens culinaris Medik.). Pulses are important contributors to the global food supply in the world, due to their vast beneficial properties in providing protein, nutritional value and health benefits to the human population. Several studies have reported that heavy metals are injurious to plants causing inhibition in plant germination, a decrease in the root and shoot length, reduction in respiration rate and photosynthesis. Properly disposing of heavy metal wastes has become an increasingly difficult task to solve in developed countries. Heavy metals pose one of the substantial constraints to pulse crops growth and productivity even at low concentrations. This article attempts to present the morphological, biochemical and various physiological changes induced on the pulse crops grown under various heavy metal stress such as As, Cd, Cr, Cu, Pb, and Ni.
Collapse
Affiliation(s)
- Sudipta Majhi
- Microbiology, Nutrition and Dietetics Laboratory, Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, West Bengal 700073 India
| | - Mausumi Sikdar (née Bhakta)
- Microbiology, Nutrition and Dietetics Laboratory, Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, West Bengal 700073 India
| |
Collapse
|
10
|
Younas H, Nazir A, Bareen FE. Application of microbe-impregnated tannery solid waste biochar in soil enhances growth performance of sunflower. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:57669-57687. [PMID: 35355176 DOI: 10.1007/s11356-022-19913-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
Synergistic effect of biochar and microbes in soil enhances performance of plants. Hazardous tannery solid waste can be reduced by one-third in volume by conversion to biochar. A greenhouse trial was set up with soil having different doses of metal resistant microbe-impregnated biochar (MIBC) prepared from tannery solid waste. Consortia of autochthonous strains of Trichoderma and Bacillus were inoculated on BC and the behavior and fate of metals were evaluated for their bioavailability to sunflower. Sunflower was grown in pots for 80 days having six different amendments of tannery solid waste biochar (0-10% w/w) with and without Trichoderma and Bacillus consortia and its morphological and biochemical attributes as well as metal uptake were observed. The results illustrated that application of BC at 2% rate without inoculation increased the shoot length and dry biomass by 19.8% and 77.4%, respectively, while plant growth and performance were reduced at higher amendments of BC. However, application of MIBC with Trichoderma or/and Bacillus consortium significantly improved the plant attributes at all levels of amendment. The results indicated that MIBC having Trichoderma and Bacillus consortia at 10% rate increased shoot length and dry biomass by 65.3% and 516% compared to control without BC. Application of BC without inoculation reduced the uptake of Cu, Fe, and Ni and increased the mobilization of all other metals for uptake in sunflower. Mobilization and uptake of Cd, Cr, Cu, Ni, Pb, and Zn decreased with MIBC having Trichoderma and Bacillus consortia whereas that of Fe and Mg were noted. A considerable decrease in proline and total phenolic content was demonstrated by MIBC-grown sunflower. The data of metal fractionation in BC also supported the above findings. Therefore, MIBC can be used as a promising option for enhancing growth performance and ensuring the physiological safety of sunflower as an energy crop.
Collapse
Affiliation(s)
- Hajira Younas
- Institute of Botany, University of the Punjab, Lahore, 54590, Pakistan
| | - Aisha Nazir
- Institute of Botany, University of the Punjab, Lahore, 54590, Pakistan
| | - Firdaus-E Bareen
- Institute of Botany, University of the Punjab, Lahore, 54590, Pakistan.
- Institute of Molecular Biology and Biotechnology, University of Lahore, Lahore, 54000, Pakistan.
| |
Collapse
|
11
|
Elbagory M, El-Nahrawy S, Omara AED. Synergistic Interaction between Symbiotic N 2 Fixing Bacteria and Bacillus strains to Improve Growth, Physiological Parameters, Antioxidant Enzymes and Ni Accumulation in Faba Bean Plants ( Vicia faba) under Nickel Stress. PLANTS (BASEL, SWITZERLAND) 2022; 11:1812. [PMID: 35890447 PMCID: PMC9322151 DOI: 10.3390/plants11141812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/29/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Several activities in the agriculture sector lead to the accumulation of Nickel (Ni) in soil. Therefore, effective and economical ways to reduce soil bioavailability of Ni must be identified. Five isolates of Rhizobium leguminosarum biovar Viceae (ICARDA 441, ICARDA 36, ICARDA 39, TAL−1148, and ARC−207) and three bacterial strains (Bacillus subtilis, B. circulance, and B. coagulans) were evaluated for tolerance and biosorption of different levels of Ni (0, 20, 40, 60, and 80 mg L−1). Pot experiments were conducted during the 2019/2020 and 2020/2021 seasons using four inoculation treatments (inoculation with the most tolerant Rhizobium (TAL−1148), inoculation with the most tolerant Rhizobium (TAL−1148) + B. subtilis, inoculation with the most tolerant Rhizobium (TAL−1148) + B. circulance, and inoculation with the most tolerant Rhizobium (TAL−1148) + B. coagulans) under different levels of Ni (0, 200, 400, and 600 mg kg−1), and their effects on growth, physiological characteristics, antioxidant enzymes, and Ni accumulation in faba bean plants (Vicia faba C.V. Nobaria 1) were determined. The results showed that Rhizobium (TAL−1148) and B. subtilis were the most tolerant of Ni. In pot trials, inoculation with the most tolerant Rhizobium TAL−1148 + B. subtilis treatment was shown to be more effective in terms of growth parameters (dry weight of plant, plant height, number of nodules, and N2 content), and this was reflected in physiological characteristics and antioxidant enzymes under 600 mg kg−1 Ni compared to the other treatments in the 2019/2020 season. In the second season, 2020/2021, a similar pattern was observed. Additionally, lower concentrations of Ni were found in faba bean plants (roots and shoots). Therefore, a combination of the most tolerant Rhizobium (TAL−1148) + B. subtilis treatment might be used to reduce Ni toxicity.
Collapse
Affiliation(s)
- Mohssen Elbagory
- Department of Biology, Faculty of Science and Arts, King Khalid University, Mohail 61321, Assir, Saudi Arabia;
- Agricultural Research Center, Department of Microbiology, Soils, Water and Environment Research Institute, Giza 12112, Egypt;
| | - Sahar El-Nahrawy
- Agricultural Research Center, Department of Microbiology, Soils, Water and Environment Research Institute, Giza 12112, Egypt;
| | - Alaa El-Dein Omara
- Agricultural Research Center, Department of Microbiology, Soils, Water and Environment Research Institute, Giza 12112, Egypt;
| |
Collapse
|
12
|
Duan Y, Li Q, Zhang L, Huang Z, Zhao Z, Zhao H, Du J, Zhou J. Toxic Metals in a Paddy Field System: A Review. TOXICS 2022; 10:toxics10050249. [PMID: 35622662 PMCID: PMC9148070 DOI: 10.3390/toxics10050249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/30/2022] [Accepted: 05/13/2022] [Indexed: 02/06/2023]
Abstract
The threat of toxic metals to food security and human health has become a high-priority issue in recent decades. As the world’s main food crop source, the safe cultivation of rice has been the focus of much research, particularly the restoration of toxic metals in paddy fields. Therefore, in this paper, we focus on the effects of toxic metals on rice, as well as the removal or repair methods of toxic metals in paddy fields. We also provide a detailed discussion of the sources and monitoring methods of toxic metals pollution, the current toxic metal removal, and remediation methods in paddy fields. Finally, several important research issues related to toxic metals in paddy field systems are proposed for future work. The review has an important guiding role for the future of heavy metal remediation in paddy fields, safe production of rice, green ecological fish culture, and human food security and health.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jian Zhou
- Correspondence: ; Tel./Fax: +86-028-87955015
| |
Collapse
|
13
|
Okoroafor PU, Mann L, Amin Ngu K, Zaffar N, Monei NL, Boldt C, Reitz T, Heilmeier H, Wiche O. Impact of Soil Inoculation with Bacillus amyloliquefaciens FZB42 on the Phytoaccumulation of Germanium, Rare Earth Elements, and Potentially Toxic Elements. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11030341. [PMID: 35161323 PMCID: PMC8838376 DOI: 10.3390/plants11030341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 05/21/2023]
Abstract
Bioaugmentation promises benefits for agricultural production as well as for remediation and phytomining approaches. Thus, this study investigated the effect of soil inoculation with the commercially available product RhizoVital®42, which contains Bacillus amyloliquefaciens FZB42, on nutrient uptake and plant biomass production as well as on the phytoaccumulation of potentially toxic elements, germanium, and rare earth elements (REEs). Zea mays and Fagopyrum esculentum were selected as model plants, and after harvest, the element uptake was compared between plants grown on inoculated versus reference soil. The results indicate an enrichment of B. amyloliquefaciens in inoculated soils as well as no significant impact on the inherent bacterial community composition. For F. esculentum, inoculation increased the accumulation of most nutrients and As, Cu, Pb, Co, and REEs (significant for Ca, Cu, and Co with 40%, 2042%, and 383%, respectively), while it slightly decreased the uptake of Ge, Cr, and Fe. For Z. mays, soil inoculation decreased the accumulation of Cr, Pb, Co, Ge, and REEs (significant for Co with 57%) but showed an insignificant increased uptake of Cu, As, and nutrient elements. Summarily, the results suggest that bioaugmentation with B. amyloliquefaciens is safe and has the potential to enhance/reduce the phytoaccumulation of some elements and the effects of inoculation are plant specific.
Collapse
Affiliation(s)
- Precious Uchenna Okoroafor
- Institute of Biosciences, Interdisciplinary Environmental Research Centre, Technische Universität Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany; (L.M.); (K.A.N.); (N.Z.); (N.L.M.); (C.B.); (H.H.); (O.W.)
- Correspondence:
| | - Lotte Mann
- Institute of Biosciences, Interdisciplinary Environmental Research Centre, Technische Universität Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany; (L.M.); (K.A.N.); (N.Z.); (N.L.M.); (C.B.); (H.H.); (O.W.)
| | - Kerian Amin Ngu
- Institute of Biosciences, Interdisciplinary Environmental Research Centre, Technische Universität Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany; (L.M.); (K.A.N.); (N.Z.); (N.L.M.); (C.B.); (H.H.); (O.W.)
| | - Nazia Zaffar
- Institute of Biosciences, Interdisciplinary Environmental Research Centre, Technische Universität Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany; (L.M.); (K.A.N.); (N.Z.); (N.L.M.); (C.B.); (H.H.); (O.W.)
| | - Nthati Lillian Monei
- Institute of Biosciences, Interdisciplinary Environmental Research Centre, Technische Universität Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany; (L.M.); (K.A.N.); (N.Z.); (N.L.M.); (C.B.); (H.H.); (O.W.)
- Mining Department, Geology Institute, Tallinn University of Technology, 19086 Tallin, Estonia
| | - Christin Boldt
- Institute of Biosciences, Interdisciplinary Environmental Research Centre, Technische Universität Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany; (L.M.); (K.A.N.); (N.Z.); (N.L.M.); (C.B.); (H.H.); (O.W.)
| | - Thomas Reitz
- Department of Soil Ecology, Helmholtz Centre for Environmental Research–UFZ, Theodor–Lieser Str. 4, 06120 Halle, Germany;
| | - Hermann Heilmeier
- Institute of Biosciences, Interdisciplinary Environmental Research Centre, Technische Universität Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany; (L.M.); (K.A.N.); (N.Z.); (N.L.M.); (C.B.); (H.H.); (O.W.)
| | - Oliver Wiche
- Institute of Biosciences, Interdisciplinary Environmental Research Centre, Technische Universität Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany; (L.M.); (K.A.N.); (N.Z.); (N.L.M.); (C.B.); (H.H.); (O.W.)
| |
Collapse
|
14
|
Innovative Culturomic Approaches and Predictive Functional Metagenomic Analysis: The Isolation of Hydrocarbonoclastic Bacteria with Plant Growth Promoting Capacity. WATER 2022. [DOI: 10.3390/w14020142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Innovative culturomic approaches were adopted to isolate hydrocarbonoclastic bacteria capable of degrading diesel oil, bitumen and a selection of polycyclic aromatic hydrocarbons (PAH), e.g., pyrene, anthracene, and dibenzothiophene, from a soil historically contaminated by total petroleum hydrocarbons (TPH) (10,347 ± 98 mg TPH/kg). The culturomic approach focussed on the isolation of saprophytic microorganisms and specialist bacteria utilising the contaminants as sole carbon sources. Bacterial isolates belonging to Pseudomonas, Arthrobacter, Achromobacter, Bacillus, Lysinibacillus, Microbacterium sps. were isolated for their capacity to utilise diesel oil, bitumen, pyrene, anthracene, dibenzothiphene, and their mixture as sole carbon sources. Pseudomonas, Arthrobacter, Achromobacter and Microbacterium sps. showed plant growth promoting activity, producing indole-3-acetic acid and expressing 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase activity. In parallel to the culturomic approach, in the microbial community of interest, bacterial community metabarcoding and predictive functional metagenomic analysis were adopted to confirm the potentiality of the isolates in terms of their functional representativeness. The combination of isolation and molecular approaches for the characterisation of a TPH contaminated soil microbial community is proposed as an instrument for the construction of an artificial hydrocarbonoclastic microbiota for environmental restoration.
Collapse
|
15
|
Bacillus pumilus induced tolerance of Maize (Zea mays L.) against Cadmium (Cd) stress. Sci Rep 2021; 11:17196. [PMID: 34433897 PMCID: PMC8387377 DOI: 10.1038/s41598-021-96786-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/19/2021] [Indexed: 02/07/2023] Open
Abstract
Heavy metals contaminate the soil that alters the properties of soil and negatively affect plants growth. Using microorganism and plant can remove these pollutants from soil. The present investigation was designed to evaluate the induced effect of Bacillus pumilus on maize plant in Cadmium (Cd) contaminated soil. Three different concentrations of Cd (i.e. 0.25, 0.50 and 0.75 mg kg-1) were applied in soil under which maize plants were grown. The germination percentage, shoot length, leaf length, number of leaves, root length, fresh weight and nutrient uptake by maize plant were determined. The experiment was conducted by using complete randomized design (CRD) with three replicates. The result indicated that germination percentage, Shoot length, leaf length, root length, number of leaves, and plant fresh weight were reduced by 37, 39, 39, 32 and 59% respectively at 0.75 mg kg-1 of CdSO4 concentration but when maize seeds inoculated with Bacillus pumilus significantly increased the germination percentage, shoot length, leaf length, number of leaves, plant fresh weight at different concentrations of CdSO4. Moreover, the plant protein were significantly increased by 60% in T6 (0.25 mg kg-1 of CdSO4 + inoculated seed) and Peroxidase dismutase (POD) was also significantly higher by 346% in T6 (0.25 mg kg-1 of CdSO4 + inoculated seed), however, the Superoxide dismutase (SOD) was significantly higher in T5 (0.75 mg kg-1 of CdSO4 + uninoculated seed) and was 769% higher as compared to control. The Cd contents in Bacillus pumilus inoculated maize roots and shoots were decreased. The present investigations indicated that the inoculation of maize plant with Bacillus pumilus can help maize plants to withstand Cd stress but higher concentration of Cd can harm the plant. The Bacillus pumilus has good potential to remediate Cd from soil, and also have potential to reduce the phyto availability and toxicity of Cd.
Collapse
|
16
|
Kumar A, Jigyasu DK, Kumar A, Subrahmanyam G, Mondal R, Shabnam AA, Cabral-Pinto MMS, Malyan SK, Chaturvedi AK, Gupta DK, Fagodiya RK, Khan SA, Bhatia A. Nickel in terrestrial biota: Comprehensive review on contamination, toxicity, tolerance and its remediation approaches. CHEMOSPHERE 2021; 275:129996. [PMID: 33647680 DOI: 10.1016/j.chemosphere.2021.129996] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/12/2021] [Accepted: 02/15/2021] [Indexed: 06/12/2023]
Abstract
Nickel (Ni) has been a subject of interest for environmental, physiological, biological scientists due to its dual effect (toxicity and essentiality) in terrestrial biota. In general, the safer limit of Ni is 1.5 μg g-1 in plants and 75-150 μg g-1 in soil. Litreature review indicates that Ni concentrations have been estimated up to 26 g kg-1 in terrestrial, and 0.2 mg L-1 in aquatic resources. In case of vegetables and fruits, mean Ni content has been reported in the range of 0.08-0.26 and 0.03-0.16 mg kg-1. Considering, Ni toxicity and its potential health hazards, there is an urgent need to find out the suitable remedial approaches. Plant vascular (>80%) and cortical (<20%) tissues are the major sequestration site (cation exchange) of absorbed Ni. Deciphering molecular mechanisms in transgenic plants have immense potential for enhancing Ni phytoremediation and microbial remediation efficiency. Further, it has been suggested that integrated bioremediation approaches have a potential futuristic path for Ni decontamination in natural resources. This systematic review provides insight on Ni effects on terrestrial biota including human and further explores its transportation, bioaccumulation through food chain contamination, human health hazards, and possible Ni remediation approaches.
Collapse
Affiliation(s)
- Amit Kumar
- School of Hydrology and Water Resources, Nanjing University of Information Science and Technology, Nanjing, Jiangsu, 210044, China
| | - Dharmendra K Jigyasu
- Central Muga Eri Research and Training Institute, Central Silk Board, Jorhat, Assam, 785700, India.
| | - Amit Kumar
- Central Muga Eri Research and Training Institute, Central Silk Board, Jorhat, Assam, 785700, India.
| | - Gangavarapu Subrahmanyam
- Central Muga Eri Research and Training Institute, Central Silk Board, Jorhat, Assam, 785700, India.
| | - Raju Mondal
- Central Sericultural Germplasm Resources Centre (CSGRC), Central Silk Board, Ministry of Textiles, Thally Road, Hosur, Tamil Nadu, 635109, India.
| | - Aftab A Shabnam
- Central Muga Eri Research and Training Institute, Central Silk Board, Jorhat, Assam, 785700, India.
| | - M M S Cabral-Pinto
- Department of Geosciences, Geobiotec Research Centre, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Sandeep K Malyan
- Research Management and Outreach Division, National Institute of Hydrology, Jalvigyan Bhawan, Roorkee, Uttarakhand, 247667, India.
| | - Ashish K Chaturvedi
- Land and Water Management Research Group, Centre for Water Resources Development and Management, Kozhikode, Kerala, 673571, India.
| | - Dipak Kumar Gupta
- ICAR-Central Arid Zone Research Institute Regional Research Station Pali Marwar, Rajasthan, 342003, India.
| | - Ram Kishor Fagodiya
- Division of Irrigation and Drainage Engineering, ICAR-Central Soil Salinity Research Institute, Karnal, Haryana, 132001, India.
| | - Shakeel A Khan
- Centre for Environment Science and Climate Resilient Agriculture, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Arti Bhatia
- Centre for Environment Science and Climate Resilient Agriculture, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| |
Collapse
|
17
|
Edulamudi P, Antony Masilamani AJ, Vanga UR, Divi VRSG, Konada VM. Nickel tolerance and biosorption potential of rhizobia associated with horse gram [ Macrotyloma uniflorum (Lam.) Verdc.]. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2021; 23:1184-1190. [PMID: 33599156 DOI: 10.1080/15226514.2021.1884182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The rhizobia isolated from root nodules of horse gram were screened for nickel (Ni) tolerance in vitro. The strain HGR-4 could tolerate 1000 µg g-1 of Ni. It was also observed that horse gram plants associated with HGR-4 have shown Ni stress tolerance in Ni amended soils up to a concentration of 100 µg g-1. In another experiment, the plants associated with HGR-4 have shown higher nodulation, nitrogen level, and leghaemoglobin content at 80 µg g-1 of Ni than control plants without HGR-4 inoculation. Analysis of biosorption potential of Ni in horse gram plants inoculated by the strain HGR-4 was done using atomic absorption spectroscopy revealed maximum biosorption in bacterial root nodules. Besides, there was a reduction in the content of the heavy metal in the soil samples which demonstrates a fair amount of heavy metal extraction and accumulation of Ni by rhizobia associated root nodules of the horse gram. This study demonstrates that the strain HGR-4 (GQ483457 Rhizobium sp. ATCC BAA-2335) could be a potential source for phytoextraction of Ni contaminated soils upon its association with horse gram. The study could be of use in phytoremediation of metal (Ni) contaminated soils in the future. Novelty statement: The phytoremediation of nickel (Ni) using of rhizobia associated with horse gram remains unevaluated till now. Horse gram associated with rhizobia could produce nodules and fix nitrogen even in Ni amended soils. The biosorption potential of the rhizobial strains was analyzed from both root nodules and soil. These findings imply that horse gram plants associated with these rhizobial strains could be used to remediate Ni metal in contaminated soils.
Collapse
Affiliation(s)
- Prabhavati Edulamudi
- Department of Botany and Microbiology, Acharya Nagarjuna University, Guntur, India
| | | | | | | | | |
Collapse
|
18
|
Muras A, Romero M, Mayer C, Otero A. Biotechnological applications of Bacillus licheniformis. Crit Rev Biotechnol 2021; 41:609-627. [PMID: 33593221 DOI: 10.1080/07388551.2021.1873239] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bacillus licheniformis is a Gram positive spore-forming bacterial species of high biotechnological interest with numerous present and potential uses, including the production of bioactive compounds that are applied in a wide range of fields, such as aquaculture, agriculture, food, biomedicine, and pharmaceutical industries. Its use as an expression vector for the production of enzymes and other bioproducts is also gaining interest due to the availability of novel genetic manipulation tools. Furthermore, besides its widespread use as a probiotic, other biotechnological applications of B. licheniformis strains include: bioflocculation, biomineralization, biofuel production, bioremediation, and anti-biofilm activity. Although authorities have approved the use of B. licheniformis as a feed additive worldwide due to the absence of toxigenic potential, some probiotics containing this bacterium are considered unsafe due to the possible transference of antibiotic resistance genes. The wide variability in biological activities and genetic characteristics of this species makes it necessary to establish an exact protocol for describing the novel strains, in order to evaluate its biotechnological potential.
Collapse
Affiliation(s)
- Andrea Muras
- Departmento de Microbioloxía e Parasitoloxía, Facultade de Bioloxía-CIBUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Manuel Romero
- School of Life Sciences, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, UK
| | - Celia Mayer
- Departmento de Microbioloxía e Parasitoloxía, Facultade de Bioloxía-CIBUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Ana Otero
- Departmento de Microbioloxía e Parasitoloxía, Facultade de Bioloxía-CIBUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
19
|
Plant Growth-Promoting Rhizobacteria (PGPR): Current and Future Prospects for Crop Improvement. ENVIRONMENTAL AND MICROBIAL BIOTECHNOLOGY 2021. [DOI: 10.1007/978-981-15-6949-4_9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
20
|
Garg N, Saroy K. Interactive effects of polyamines and arbuscular mycorrhiza in modulating plant biomass, N 2 fixation, ureide, and trehalose metabolism in Cajanus cajan (L.) Millsp. genotypes under nickel stress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:3043-3064. [PMID: 31838702 DOI: 10.1007/s11356-019-07300-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 12/04/2019] [Indexed: 05/27/2023]
Abstract
Nickel (Ni) is an essential micronutrient but considered toxic for plant growth when present in excess in the soil. Polyamines (PAs) and arbuscular mycorrhiza (AM) play key roles in alleviating metal toxicity in plants. Present study compared the roles of AM and PAs in improving rhizobial symbiosis, ureide, and trehalose (Tre) metabolism under Ni stress in Cajanus cajan (pigeon pea) genotypes (Pusa 2001, AL 201). The results documented significant negative impacts of Ni on plant biomass, especially roots, more in AL 201 than Pusa 2001. Symbiotic efficiency with Rhizobium and AM declined under Ni stress, resulting in reduced AM colonization, N2 fixation, and ureide biosynthesis. This decline was proportionate to increased Ni uptake in roots and nodules. Put-reduced Ni uptake improved plant growth and functional efficiency of nodules and ureides synthesis, with higher positive effects than other PAs. However, AM inoculations were most effective in enhancing nodulation, nitrogen fixing potential, and Tre synthesis under Ni toxicity. Combined applications of AM with respective PAs, especially +Put+AM, were highly beneficial in alleviating Ni-induced nodule senescence by arresting leghemoglobin degradation and improving functional efficiency of nodules by boosting Tre metabolism, especially in Pusa 2001. The study suggested use of Put along with AM as a promising approach in imparting Ni tolerance to pigeon pea plants.
Collapse
Affiliation(s)
- Neera Garg
- Department of Botany, Panjab University, Chandigarh, 160014, India.
| | - Kiran Saroy
- Department of Botany, Panjab University, Chandigarh, 160014, India
| |
Collapse
|
21
|
Zhao A, Gao L, Chen B, Feng L. Phytoremediation potential of Miscanthus sinensis for mercury-polluted sites and its impacts on soil microbial community. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:34818-34829. [PMID: 31654309 DOI: 10.1007/s11356-019-06563-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 09/20/2019] [Indexed: 05/04/2023]
Abstract
Phytoremediation potential of Miscanthus sinensis and its impacts on soil microbial community and nutrients were evaluated by pot experiment at soil mercury concentration from 1.48 to 706 mg kg-1. The changes in biomass yield in dry mass, chlorophyll content, and SOD activity indicated Miscanthus sinensis was tolerant to higher levels of soil mercury exposure, and could grow even if at soil mercury up to 706 mg kg-1. Mercury bioconcentration and translocation factors were close to or greater than 1 when exposed to soil mercury up to 183 mg kg-1, demonstrating Miscanthus sinensis a potential phytoremediator for mercury-polluted soils. Miscanthus sinensis planting could significantly improve the diversity and abundance of soil microbial community, but might cause potential loss of soil nitrogen and phosphorus in the early and middle of its growth. In a word, the study indicated Miscanthus sinensis was a promising energy crop linking biofuel production and phytoremediation of mercury-contaminated sites.
Collapse
Affiliation(s)
- Anqi Zhao
- Department of Environmental Sciences and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Lingyun Gao
- Environmental Convention Implementation Technical Center, Ministry of Ecological Environment, Beijing, 100035, People's Republic of China
| | - Buqing Chen
- Department of Environmental Sciences and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Liu Feng
- Department of Environmental Sciences and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| |
Collapse
|
22
|
Masmoudi F, Abdelmalek N, Tounsi S, Dunlap CA, Trigui M. Abiotic stress resistance, plant growth promotion and antifungal potential of halotolerant bacteria from a Tunisian solar saltern. Microbiol Res 2019; 229:126331. [PMID: 31521945 DOI: 10.1016/j.micres.2019.126331] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 08/26/2019] [Accepted: 09/06/2019] [Indexed: 11/29/2022]
Abstract
The uses of halotolerant bacteria isolated from naturally saline habitats have the potential to be useful crop protection agents for plants in stressful conditions. These beneficial microbes generate several plant growth regulators and bioactive molecules, which enhance plant protection from adversities, such as plant pathogens, salts and metals stresses. In this study, 15 halotolerant bacterial strains endowed with important antimicrobial activities were isolated from Sfax solar saltern (Tunisia). All of these strains were characterized by biochemical and molecular tools aiming to investigate their in-vitro and in-vivo antifungal potentialities, plant growth promotion capabilities and metal tolerance abilities under saline stress condition. The 16S rRNA gene sequencing showed that the isolated strains were affiliated to different phylum and three species were described for the first time as plant growth promoting strains (Idiomarina zobelli FMH6v, Nesterenkonia halotolerans FMH10 and Halomonas janggokensis FMH54). The tested strains exhibited several potentialities: to tolerate high salt and heavy metal concentrations, to produce biosurfactants, exopolysaccharides and extracellular hydrolytic enzymes, to form biofilms and to liberate plant promoting substances. Eight strains were able to protect tomatoes fruits from the proliferation of the fungal disease caused by Botrytis cinerea and six strains improved plant vigor indexes. Principal component analysis showed an important correlation between in-vitro and in-vivo potentialities and two strains Bacillus velezensis FMH2 and Bacillus subtilis subsp. spizizenii FMH45 were statistically considered as the most effective strains in protecting plants from fungal pathogens attack and promoting the growth of tomatoes seedlings under saline and multi heavy-metals stress conditions.
Collapse
Affiliation(s)
- Fatma Masmoudi
- Laboratory of Biopesticides (LBPES), Center of Biotechnology of Sfax, Sfax University, Sfax, Tunisia.
| | - Nouha Abdelmalek
- Laboratory of Biopesticides (LBPES), Center of Biotechnology of Sfax, Sfax University, Sfax, Tunisia
| | - Slim Tounsi
- Laboratory of Biopesticides (LBPES), Center of Biotechnology of Sfax, Sfax University, Sfax, Tunisia
| | - Christopher A Dunlap
- Crop Bioprotection Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, United States Department of Agriculture, Peoria, IL, USA
| | - Mohamed Trigui
- Laboratory of Biopesticides (LBPES), Center of Biotechnology of Sfax, Sfax University, Sfax, Tunisia; Laboratory of Environmental Sciences and Sustainable Development (LASED), Sfax Preparatory Engineering Institute, BP 1172-3018, University of Sfax, Tunisia
| |
Collapse
|
23
|
Jan M, Shah G, Masood S, Iqbal Shinwari K, Hameed R, Rha ES, Jamil M. Bacillus Cereus Enhanced Phytoremediation Ability of Rice Seedlings under Cadmium Toxicity. BIOMED RESEARCH INTERNATIONAL 2019; 2019:8134651. [PMID: 31428647 PMCID: PMC6681586 DOI: 10.1155/2019/8134651] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 03/10/2019] [Accepted: 03/25/2019] [Indexed: 11/18/2022]
Abstract
Cadmium (Cd+2) is a highly toxic metal, which significantly alters different biochemical and metabolic processes in plants. Massive amounts of Cd+2 is being released into the environment by different anthropogenic activities. In the present study, plant growth promoting activities of bacterial strain Bacillus cereus was evaluated under Cd+2 stress in two rice cultivars Basmati-385 and Shaheen Basmati. Cd+2 stress significantly decreased plant growth and biomass production in both cultivars. However, with the inoculation of B. cereus under Cd+2 treatments, reduced Cd+2 uptake and increased antioxidant enzymes activities in rice cultivars lead to enhanced plant growth, biomass production, photosynthetic pigments, micronutrients, and lowered electrolytes leakage. This study suggests that B. cereus has the ability to alleviating Cd toxicity and increased phytoremediation efficiency of rice seedling under Cd stress.
Collapse
Affiliation(s)
- Mehmood Jan
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Department of Biotechnology & Genetic Engineering, Kohat University of Science & Technology, Kohat 26000, Pakistan
| | - Gulmeena Shah
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Department of Biotechnology & Genetic Engineering, Kohat University of Science & Technology, Kohat 26000, Pakistan
| | - Sadaf Masood
- Department of Biotechnology & Genetic Engineering, Kohat University of Science & Technology, Kohat 26000, Pakistan
| | - Kamran Iqbal Shinwari
- Department of Biotechnology & Genetic Engineering, Kohat University of Science & Technology, Kohat 26000, Pakistan
| | - Rashida Hameed
- Department of Environmental Science, Zhejiang University, Hangzhou, China
| | - E. S. Rha
- College of Agriculture and Life Sciences, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Muhammad Jamil
- Department of Biotechnology & Genetic Engineering, Kohat University of Science & Technology, Kohat 26000, Pakistan
| |
Collapse
|
24
|
Asad SA, Farooq M, Afzal A, West H. Integrated phytobial heavy metal remediation strategies for a sustainable clean environment - A review. CHEMOSPHERE 2019; 217:925-941. [PMID: 30586789 DOI: 10.1016/j.chemosphere.2018.11.021] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 10/01/2018] [Accepted: 11/02/2018] [Indexed: 06/09/2023]
Abstract
Heavy metal contamination in the environment is a global threat which accelerated after the industrial revolution. Remediation of these noxious elements has been widely investigated and multifarious technologies have been practiced for many decades. Phytoremediation has attracted much attention from researchers. Under this technology, heavy metal hyperaccumulator plants have been extensively employed to extract extraordinary concentrations of heavy metals but slow growth, limited biomass and stresses caused by heavy metals imperil the efficiency of hyperaccumulators. Plant growth promoting rhizobacteria (PGPR) can help overcome/lessen heavy metal-induced adversities. PGPR produce several metabolites, including growth hormones, siderophores and organic acids, which aid in solubilization and provision of essential nutrients (e.g. Fe and Mg) to the plant. Hyperaccumulator plants may be employed to remediate metal contaminated sites. Use of PGPR to enhance growth of hyperaccumulator plant species may enhance their metal accumulating capacity by increasing metal availability and also by alleviating plant stress induced by the heavy metals. Combined use of hyperaccumulator plants and PGPR may prove to be a cost effective and environmentally friendly technology to clean heavy metal contaminated sites on a sustainable basis. This review discusses the current status of PGPR in improving the growth and development of hyperaccumulator plants growing in metal contaminated environments. The mechanisms used by these rhizosphere bacteria in increasing the availability of heavy metals to plants and coping with heavy metal stresses are also described.
Collapse
Affiliation(s)
- Saeed Ahmad Asad
- Centre for Climate Research and Development, COMSATS University, Park Road, Chak Shahzad Islamabad 45550, Pakistan.
| | - Muhammad Farooq
- Department of Crop Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khoud 123, Oman; Department of Agronomy, University of Agriculture Faisalabad, Pakistan
| | - Aftab Afzal
- Department of Botany, Hazara University Mansehra, Mansehra, Pakistan
| | - Helen West
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, United Kingdom
| |
Collapse
|
25
|
Shahzad B, Tanveer M, Rehman A, Cheema SA, Fahad S, Rehman S, Sharma A. Nickel; whether toxic or essential for plants and environment - A review. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 132:641-651. [PMID: 30340176 DOI: 10.1016/j.plaphy.2018.10.014] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/15/2018] [Accepted: 10/10/2018] [Indexed: 05/03/2023]
Abstract
Nickel (Ni) is becoming a toxic pollutant in agricultural environments. Due to its diverse uses from a range of common household items to industrial applications, it is essential to examine Ni bioavailability in soil and plants. Ni occurs in the environment (soil, water and air) in very small concentrations and eventually taken up by plants through roots once it becomes available in soil. It is an essential nutrient for normal plant growth and development and required for the activation of several enzymes such as urease, and glyoxalase-I. Ni plays important roles in a wide range of physiological processes including seed germination, vegetative and reproductive growth, photosynthesis as well as in nitrogen metabolism. Therefore, plants cannot endure their life cycle without adequate Ni supply. However, excessive Ni concentration can lead to induce ROS production affecting numerous physiological and biochemical processes such as photosynthesis, transpiration, as well as mineral nutrition and causes phytotoxicity in plants. ROS production intensifies the disintegration of plasma membranes and deactivates functioning of vital enzymes through lipid peroxidation. This review article explores the essential roles of Ni in the life cycle of plant as well as its toxic effects in details. In conclusion, we have proposed different viable approaches for remediation of Ni-contaminated soils.
Collapse
Affiliation(s)
- Babar Shahzad
- School of Land and Food, University of Tasmania, Hobart, TAS, Australia.
| | - Mohsin Tanveer
- School of Land and Food, University of Tasmania, Hobart, TAS, Australia.
| | - Abdul Rehman
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | | | - Shah Fahad
- College of Plant Science and Technology, Huazhong Agricultural University, Hubei, China
| | - Shamsur Rehman
- National Maize Key Laboratory, Department of Crop Biotechnology, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Anket Sharma
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| |
Collapse
|
26
|
Lopes R, Tsui S, Gonçalves PJRO, de Queiroz MV. A look into a multifunctional toolbox: endophytic Bacillus species provide broad and underexploited benefits for plants. World J Microbiol Biotechnol 2018; 34:94. [PMID: 29900507 DOI: 10.1007/s11274-018-2479-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 06/12/2018] [Indexed: 12/12/2022]
Abstract
One of the major challenges of agriculture currently is to obtain higher crop yield. Environmental conditions, cultivar quality, and plant diseases greatly affect plant productivity. On the other hand, several endophytic Bacillus species have emerged as a complementary, efficient, and safe alternative to current crop management practices. The ability of Bacillus species to form spores, which resist adverse conditions, is an advantage of the genus for use in formulations. Endophytic Bacillus species provide plants with a wide range of benefits, including protection against phytopathogenic microorganisms, insects, and nematodes, eliciting resistance, and promoting plant growth, without causing damage to the environment. Bacillus thuringiensis, B. subtilis, B. amyloliquefaciens, B. velezensis, B. cereus, B. pumilus, and B. licheniformis are the most studied Bacillus species for application in agriculture, although other species within the genus have also shown great potential. Due to the increasing number of whole-genome sequenced endophytic Bacillus spp. strains, various bioactive compounds have been predicted. These data reveal endophytic Bacillus species as an underexploited source of novel molecules of biotechnological interest. In this review, we discuss how endophytic Bacillus species are a valuable multifunctional toolbox to be integrated with crop management practices for achieving higher crop yield.
Collapse
Affiliation(s)
- Ralf Lopes
- Department of Microbiology, Institute of Biomedical Sciences, Universidade de São Paulo, 1374 Professor Lineu Prestes Avenue, São Paulo, SP, 05508-000, Brazil
| | - Sarina Tsui
- Department of Microbiology, Institute of Biomedical Sciences, Universidade de São Paulo, 1374 Professor Lineu Prestes Avenue, São Paulo, SP, 05508-000, Brazil
| | - Priscila J R O Gonçalves
- Department of Microbiology, Institute of Biomedical Sciences, Universidade de São Paulo, 1374 Professor Lineu Prestes Avenue, São Paulo, SP, 05508-000, Brazil
| | - Marisa Vieira de Queiroz
- Department of Microbiology, Institute of Biotechnology Applied to Agriculture, Universidade Federal de Viçosa, P. H. Rolfs Avenue, Viçosa, MG, 36570-900, Brazil.
| |
Collapse
|
27
|
Khan WU, Yasin NA, Ahmad SR, Ali A, Ahmad A, Akram W, Faisal M. Role of Burkholderia cepacia CS8 in Cd-stress alleviation and phytoremediation by Catharanthus roseus. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2018; 20:581-592. [PMID: 29688047 DOI: 10.1080/15226514.2017.1405378] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The current study was performed to assess the effect of Burkholderia cepacia CS8 on the phytoremediation of cadmium (Cd) by Catharanthus roseus grown in Cd-contaminated soil. The plants cultivated in Cd amended soil showed reduced growth, dry mass, gas-exchange capacity, and chlorophyll contents. Furthermore, the plants exhibited elevated levels of malondialdehyde (MDA) and hydrogen peroxide (H2O2) under Cd stress. The bacterized plants showed higher shoot length, root length; fresh and dry weight. The improved stress tolerance in inoculated plants was attributed to the reduced quantity of MDA and H2O2, enhanced synthesis of protein, proline, phenols, flavonoids, and improved activity of antioxidant enzymes including peroxidase, superoxide dismutase, ascorbate peroxidase, and catalase. Similarly, the 1-aminocyclopropane-1-carboxylate deaminase activity, phosphate solubilization, auxin, and siderophore production capability of B. cepacia CS8 improved growth and stress alleviation in treated plants. The bacterial inoculation enhanced the amount of water extractable Cd from soil. Furthermore, the inoculated plants showed higher bioconcentration factor and translocation factor. The current study exhibits that B. cepacia CS8 improves stress alleviation and phytoextraction potential of C. roseus plants growing under Cd stress.
Collapse
Affiliation(s)
- Waheed Ullah Khan
- a College of Earth and Environmental Sciences , University of the Punjab , Lahore , Pakistan
| | - Nasim Ahmad Yasin
- b Senior Superintendent Garden, RO-II Office , University of the Punjab , Lahore , Pakistan
| | - Sajid Rashid Ahmad
- a College of Earth and Environmental Sciences , University of the Punjab , Lahore , Pakistan
| | - Aamir Ali
- c Department of Botany , University of Sargodha , Sargodha , Pakistan
| | - Aqeel Ahmad
- d Research Scholar , Institute for Medicinal Plants, College of Plant Science and Technology, Huazhong Agricultural University , Wuhan , China
| | - Waheed Akram
- d Research Scholar , Institute for Medicinal Plants, College of Plant Science and Technology, Huazhong Agricultural University , Wuhan , China
| | - Muhammad Faisal
- e Department of Microbiology and Molecular Genetics , University of the Punjab , Lahore , Pakistan
| |
Collapse
|
28
|
Khan N, Bano A. Effects of exogenously applied salicylic acid and putrescine alone and in combination with rhizobacteria on the phytoremediation of heavy metals and chickpea growth in sandy soil. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2018; 20:405-414. [PMID: 28933563 DOI: 10.1080/15226514.2017.1381940] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The present attempt was made to study the role of exogenously applied salicylic acid (SA) and putrescine (Put) on the phytoremediation of heavy metals and on the growth parameters of chickpea grown in sandy soil. The SA and Put were applied alone as well as in combination with plant growth promoting rhizobacteria (PGPR). The PGPRs, isolated from the rhizosphere of chickpea, were characterized on the basis of colony morphology and biochemical traits through gram staining, catalase and oxidase tests, and identified by 16S-rRNA gene sequencing as Bacillus subtilis, Bacillus thuringiensis and Bacillus megaterium. The chickpea seeds were soaked in 24 h old fresh cultures of isolates for 2-3 h prior to sowing. The growth regulators (PGRs), SA and Put (150 mg/L), were applied to the seedlings as foliar spray at three-leaf stage. The result revealed that plants treated with SA and Put alone or in combination with PGPRs, significantly enhanced the accumulation of heavy metals in plant shoot. PGPR induces Ni accumulation in sensitive variety and Pb in both the varieties, the PGR in combination augment the bioremediation effects of PGPR and both sensitive and tolerant variety showed significant accumulation of Ni, Cd, and Pb. SA was more effective in accumulating Ni and Cd whereas, significant accumulation of Pb was recorded in Put. PGPRs further augmented the PGRs induced accumulation of heavy metals and macronutrients in chickpea shoot and in rhizosphere. SA increased the proline content of tolerant variety while decreasing the lipid peroxidation and proline content of the sensitive variety but decreased the stimulating effect of PGPR in proline production. Interactive effects of PGPR and PGRs are recommended for inducing phytoremediation in chickpea plants under drought stress.
Collapse
Affiliation(s)
- Naeem Khan
- a Phytohormone lab, Department of Plant Sciences , Quaid-i-Azam University , Islamabad , Pakistan
| | - Asghari Bano
- b Department of Biosciences , University of Wah , Wah Cantt , Pakistan
| |
Collapse
|
29
|
Tiwari S, Lata C. Heavy Metal Stress, Signaling, and Tolerance Due to Plant-Associated Microbes: An Overview. FRONTIERS IN PLANT SCIENCE 2018; 9:452. [PMID: 29681916 PMCID: PMC5897519 DOI: 10.3389/fpls.2018.00452] [Citation(s) in RCA: 166] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 03/22/2018] [Indexed: 05/19/2023]
Abstract
Several anthropogenic activities including mining, modern agricultural practices, and industrialization have long-term detrimental effect on our environment. All these factors lead to increase in heavy metal concentration in soil, water, and air. Soil contamination with heavy metals cause several environmental problems and imparts toxic effect on plant as well as animals. In response to these adverse conditions, plants evolve complex molecular and physiological mechanisms for better adaptability, tolerance, and survival. Nowadays conventional breeding and transgenic technology are being used for development of metal stress resistant varieties which, however, are time consuming and labor intensive. Interestingly the use of microbes as an alternate technology for improving metal tolerance of plants is gaining momentum recently. The use of these beneficial microorganisms is considered as one of the most promising methods for safe crop-management practices. Interaction of plants with soil microorganisms can play a vital role in acclimatizing plants to metalliferous environments, and can thus be explored to improve microbe-assisted metal tolerance. Plant-associated microbes decrease metal accumulation in plant tissues and also help to reduce metal bioavailability in soil through various mechanisms. Nowadays, a novel phytobacterial strategy, i.e., genetically transformed bacteria has been used to increase remediation of heavy metals and stress tolerance in plants. This review takes into account our current state of knowledge of the harmful effects of heavy metal stress, the signaling responses to metal stress, and the role of plant-associated microbes in metal stress tolerance. The review also highlights the challenges and opportunities in this continued area of research on plant-microbe-metal interaction.
Collapse
Affiliation(s)
| | - Charu Lata
- CSIR-National Botanical Research Institute, Lucknow, India
| |
Collapse
|
30
|
Romeh AA, Hendawi MY. Biochemical interactions between Glycine max L. silicon dioxide (SiO 2) and plant growth-promoting bacteria (PGPR) for improving phytoremediation of soil contaminated with fenamiphos and its degradation products. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2017; 142:32-43. [PMID: 29107245 DOI: 10.1016/j.pestbp.2017.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 12/24/2016] [Accepted: 01/02/2017] [Indexed: 06/07/2023]
Abstract
Fenamiphos is a systematic nematicide-insecticide used extensively for the control of soil nematodes. Fenamiphos and oxidation products have been known to induce water pollution, soil pollution and ecotoxicological effects on aquatic organisms, as well as heath issues. This contaminant can be removed by phytoremediation. Herein, we tested several strategies to improve the effectiveness of this technology. A combination of G. max plus Pseudomonas fluorescens was more efficient than G. max plus Serratia marcescens or G. max alone in degrading fenamiphos to other metabolites. Three major metabolites, namely fenamiphos sulfoxide (FSO), fenamiphos sulfone (FSO2) and fenamiphos phenol (F-phenol), were detected in roots and leaves in which G. max amended with P. fluorescens or amended with S. marcescens produced a significant accumulation of FSO and FSO2 with higher amounts than for G. max alone. Leaf concentrations of FSO were always higher than in the roots, while FSO2 accumulated significantly more in G. max roots than in G. max leaves. In soil treated with fenamiphos, G. max roots and leaves alone, and in combined effects of plant and microorganisms, resulted in the disappearance of fenamiphos and the appearance of F-SO, F-SO2 and F-phenol, which in turn caused toxic stress in G. max and the resulting production of reactive oxygen species such as H2O2 with higher content and an increase in antioxidant GPX activity. Although a batch equilibrium technique showed that use of SiO2 resulted in the efficient removal of fenamiphos when compared with other treatments for removing adsorbed fenamiphos from soil, a fewer amount of fenamiphos was removed by G. max L. with SiO2. H2O2 content and GPX activity increased in G. max under fenamiphos treatment and its degradation products, while amended G. max with SiO2 or Argal led to a decrease in GPX activity and H2O2 content.
Collapse
Affiliation(s)
- Ahmed Ali Romeh
- Plant Production Department, Faculty of Technology and Development, Zagazig University, Zagazig, Egypt
| | - Mohamed Yousef Hendawi
- Plant Protection Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt.
| |
Collapse
|
31
|
Radhakrishnan R, Hashem A, Abd_Allah EF. Bacillus: A Biological Tool for Crop Improvement through Bio-Molecular Changes in Adverse Environments. Front Physiol 2017; 8:667. [PMID: 28932199 PMCID: PMC5592640 DOI: 10.3389/fphys.2017.00667] [Citation(s) in RCA: 264] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 08/22/2017] [Indexed: 02/05/2023] Open
Abstract
Crop productivity is affected by environmental and genetic factors. Microbes that are beneficial to plants are used to enhance the crop yield and are alternatives to chemical fertilizers and pesticides. Pseudomonas and Bacillus species are the predominant plant growth-promoting bacteria. The spore-forming ability of Bacillus is distinguished from that of Pseudomonas. Members of this genus also survive for a long time under unfavorable environmental conditions. Bacillus spp. secrete several metabolites that trigger plant growth and prevent pathogen infection. Limited studies have been conducted to understand the physiological changes that occur in crops in response to Bacillus spp. to provide protection against adverse environmental conditions. This review describes the current understanding of Bacillus-induced physiological changes in plants as an adaptation to abiotic and biotic stresses. During water scarcity, salinity and heavy metal accumulate in soil, Bacillus spp. produce exopolysaccharides and siderophores, which prevent the movement of toxic ions and adjust the ionic balance and water transport in plant tissues while controlling the pathogenic microbial population. In addition, the synthesis of indole-3-acetic acid, gibberellic acid and1-aminocyclopropane-1-carboxylate (ACC) deaminase by Bacillus regulates the intracellular phytohormone metabolism and increases plant stress tolerance. Cell-wall-degrading substances, such as chitosanase, protease, cellulase, glucanase, lipopeptides and hydrogen cyanide from Bacillus spp. damage the pathogenic bacteria, fungi, nematodes, viruses and pests to control their populations in plants and agricultural lands. The normal plant metabolism is affected by unfavorable environmental stimuli, which suppress crop growth and yield. Abiotic and biotic stress factors that have detrimental effects on crops are mitigated by Bacillus-induced physiological changes, including the regulation of water transport, nutrient up-take and the activation of the antioxidant and defense systems. Bacillus association stimulates plant immunity against stresses by altering stress-responsive genes, proteins, phytohormones and related metabolites. This review describes the beneficial effect of Bacillus spp. on crop plants, which improves plant productivity under unfavorable climatic conditions, and the current understanding of the mitigation mechanism of Bacillus spp. in stress-tolerant and/or stress-resistant plants.
Collapse
Affiliation(s)
| | - Abeer Hashem
- Botany and Microbiology Department, College of Science, King Saud UniversityRiyadh, Saudi Arabia
- Mycology and Plant Disease Survey Department, Plant Pathology Research InstituteGiza, Egypt
| | - Elsayed F. Abd_Allah
- Plant Production Department, College of Food and Agricultural Sciences, King Saud UniversityRiyadh, Saudi Arabia
| |
Collapse
|
32
|
Khan WU, Ahmad SR, Yasin NA, Ali A, Ahmad A, Akram W. Application of Bacillus megaterium MCR-8 improved phytoextraction and stress alleviation of nickel in Vinca rosea. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2017; 19:813-824. [PMID: 28699781 DOI: 10.1080/15226514.2017.1290580] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The current research was performed to evaluate the effect of Bacillus megaterium MCR-8 on mitigation of nickel (Ni) stress in Vinca rosea grown on Ni-contaminated soil (50, 100, and 200 mg Ni kg-1 soil). The treated plants exhibited reduced growth, biomass, gas exchange capacity, and chlorophyll (Chl) content under Ni stress. The inoculated plants growing in Ni-contaminated media exhibited relatively higher growth, total soluble protein, and proline contents. Similarly, bacterial inoculation improved the activity of antioxidant enzymes including superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), and ascorbate peroxidase (APX) under Ni stress. The Ni stress alleviation in inoculated plants was attributed to the reduced level of malondialdehyde (MDA) and hydrogen peroxide (H2O2), enhanced synthesis of protein, proline, phenols, and flavonides in conjunction with improved activity of antioxidant enzymes. The growth-promoting characteristics of microbe such as 1-aminocyclopropane-1-carboxylate deaminase (ACCD) and phosphate solubilization activity, siderophore, and auxin production capability also improved the growth and stress mitigation in inoculated plants. Furthermore, the inoculated plants exhibited higher value for bioconcentration factor (BCF), translocation factor (TF), and resulted in higher loss of Ni content from soil. The current results exhibited the beneficial role of B. megaterium MCR-8 regarding stress alleviation and Ni phytoextraction by V. rosea.
Collapse
Affiliation(s)
- Waheed Ullah Khan
- a College of Earth and Environmental Sciences , University of the Punjab , Lahore , Pakistan
| | - Sajid Rashid Ahmad
- a College of Earth and Environmental Sciences , University of the Punjab , Lahore , Pakistan
| | - Nasim Ahmad Yasin
- a College of Earth and Environmental Sciences , University of the Punjab , Lahore , Pakistan
| | - Aamir Ali
- b Department of Botany , University of Sargodha , Sargodha , Pakistan
| | - Aqeel Ahmad
- c Institute for Medicinal Plants, College of Plant Science and Technology, Huazhong Agricultural University , Wuhan , China
| | - Waheed Akram
- c Institute for Medicinal Plants, College of Plant Science and Technology, Huazhong Agricultural University , Wuhan , China
| |
Collapse
|
33
|
Kamran MA, Eqani SAMAS, Bibi S, Xu RK, Monis MFH, Katsoyiannis A, Bokhari H, Chaudhary HJ. Bioaccumulation of nickel by E. sativa and role of plant growth promoting rhizobacteria (PGPRs) under nickel stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 126:256-263. [PMID: 26773835 DOI: 10.1016/j.ecoenv.2016.01.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 01/01/2016] [Accepted: 01/04/2016] [Indexed: 06/05/2023]
Abstract
Phytoremediation potential of plants can be enhanced in association with microbes. Further, many plant growth-promoting rhizobacteria can improve growth under stress. The present study was conducted to investigate the effect of Pseudomonas putida (P. putida) on nickel (Ni) uptake and on growth of Eruca sativa (E. sativa). Three different levels of Ni (low; 150 ug/g, medium; 250 ug/g and high; 500 ug/g) were applied to the soil containing E. sativa seedlings, with or without P. putida. Ni-toxicity was measured by metamorphic parameters including shoot length, root length, biomass, chlorophyll and proline and Ni contents. Inoculation with P. putida increased 34% and 41% in root and shoot length and 38% and 24% in fresh, dry weight respectively, as compared to non-inoculated plants. Similarly, Ni uptake increased by up to 46% following P. putida inoculation as compared to non-inoculated plants. Indole acetic acid, siderophore and 1-aminocyclopropane-1-carboxylate deaminase (ACCD) activity in the growing media enhanced growth and Ni uptake in E. sativa. The present results offer insight on Plant Growth Promoting Rhizobacteria (PGPR), such as P. putida, for the potential to enhance the plant growth by inhibiting the adverse effects of Ni in E. sativa.
Collapse
Affiliation(s)
- Muhammad Aqeel Kamran
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| | | | - Sadia Bibi
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Ren-Kou Xu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, PR China
| | | | - Athanasios Katsoyiannis
- Norwegian Institute for Air Research, FRAM - High North Research, Centre on Climate and the Environment, NO-9296 Tromsø, Norway
| | - Habib Bokhari
- Department of Biosciences, COMSATS Institute of Information and Technology, Islamabad, Pakistan
| | - Hassan Javed Chaudhary
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| |
Collapse
|
34
|
Shternshis MV, Belyaev AA, Matchenko NS, Shpatova TV, Lelyak AA. Possibility of biological control of primocane fruiting raspberry disease caused by Fusarium sambucinum. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:15656-15662. [PMID: 26018288 DOI: 10.1007/s11356-015-4763-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 05/19/2015] [Indexed: 06/04/2023]
Abstract
Biological control agents are a promising alternative to chemical pesticides for plant disease suppression. The main advantage of the natural biocontrol agents, such as antagonistic bacteria compared with chemicals, includes environmental pollution prevention and a decrease of chemical residues in fruits. This study is aimed to evaluate the impact of three Bacillus strains on disease of primocane fruiting raspberry canes caused by Fusarium sambucinum under controlled infection load and uncontrolled environmental factors. Bacillus subtilis, Bacillus licheniformis, and Bacillus amyloliquefaciens were used for biocontrol of plant disease in 2013 and 2014 which differed by environmental conditions. The test suspensions were 10(5) CFU/ml for each bacterial strain. To estimate the effect of biological agents on Fusarium disease, canes were cut at the end of vegetation, and the area of outer and internal lesions was measured. In addition to antagonistic effect, the strains revealed the ability to induce plant resistance comparable with chitosan-based formulation. Under variable ways of cane treatment by bacterial strains, the more effective were B. subtilis and B. licheniformis demonstrating dual biocontrol effect. However, environmental factors were shown to impact the strain biocontrol ability; changes in air temperature and humidity led to the enhanced activity of B. amyloliquefaciens. For the first time, the possibility of replacing chemicals with environmentally benign biological agents for ecologically safe control of the raspberry primocane fruiting disease was shown.
Collapse
Affiliation(s)
- Margarita V Shternshis
- Department of Plant Protection, Novosibirsk State Agrarian University, Dobrolubov 160, Novosibirsk, Russia, 630039.
| | - Anatoly A Belyaev
- Department of Plant Protection, Novosibirsk State Agrarian University, Dobrolubov 160, Novosibirsk, Russia, 630039
| | - Nina S Matchenko
- Department of Plant Protection, Novosibirsk State Agrarian University, Dobrolubov 160, Novosibirsk, Russia, 630039
| | - Tatyana V Shpatova
- Department of Plant Protection, Novosibirsk State Agrarian University, Dobrolubov 160, Novosibirsk, Russia, 630039
| | - Anastasya A Lelyak
- Department of Plant Protection, Novosibirsk State Agrarian University, Dobrolubov 160, Novosibirsk, Russia, 630039
| |
Collapse
|
35
|
Hattab N, Motelica-Heino M, Faure O, Bouchardon JL. Effect of fresh and mature organic amendments on the phytoremediation of technosols contaminated with high concentrations of trace elements. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2015; 159:37-47. [PMID: 26042630 DOI: 10.1016/j.jenvman.2015.05.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 05/07/2015] [Accepted: 05/10/2015] [Indexed: 05/22/2023]
Abstract
Organic compounds resulting from the decomposition of organic amendments are used in the remediation of trace element (TE) contaminated soils. The mobility, phytoavailability and soil exposure intensity of molybdenum (Mo), chromium (Cr), zinc (Zn), copper (Cu), Cobalt (Co) and Arsenic (As) were evaluated in the phytoremediation of contaminated technosols after the addition of two organic matter types, fresh ramial chipped wood (RCW) and composted sewage sludge (CSS). The experiment consisted of nine main treatment blocks: (A) 3X unamended soil (NE), (B) 3X soil amended with RCW and (C) 3X soil amended with mature CSS. Total dissolved TE concentrations were determined in soil pore water (SPW) sampled by Rhizon samplers. The soil exposure intensity was assessed by standard Chelex 100 DGT (diffusive gradient in thin films) probes. TE phytoavailability was characterized by growing dwarf beans on potted soils and analyzing their foliar TE concentrations. The results of the present study indicate that the addition of fresh RCW and CSS has a positive effect on contaminated technosols. RCW decreased the mobility of all the studied TE in the SPW, whereas CSS reduced the mobility of Mo, Cr and Co, while it increased the mobility of Zn, Cu and As compared with the NE soil. The Zn soil exposure intensity assessed by DGT was not significantly changed by the addition of RCW and CSS, while the Cr soil exposure intensity was significantly decreased after RCW addition compared with the soil treated with CSS and the NE soil. In contrast Cu and Co were non labile in the three soils. Both RCW and CSS decreased the foliar concentration and the mineral mass of Mo, Zn, Cr, As and Co in the bean leaves but increased the foliar Cu concentration.
Collapse
Affiliation(s)
- Nour Hattab
- ISTO, UMR 7327 - CNRS/Université d'Orléans, Campus Géosciences, 1A, Rue de la Férollerie, 45071 Orléans Cedex 2, France; Université d'Orléans, UFR-Faculté des Sciences, Laboratoire de Biologie des Ligneux et des Grandes Cultures, UPRES EA 1207, Rue de Chartres, BP 6759, F-45067 Orléans Cedex 02, France.
| | - Mikael Motelica-Heino
- ISTO, UMR 7327 - CNRS/Université d'Orléans, Campus Géosciences, 1A, Rue de la Férollerie, 45071 Orléans Cedex 2, France
| | - Olivier Faure
- Ecole Nationale Supérieure des Mines de Saint-Etienne, Département SPIN, Laboratoire GéoSciences & Environnement, 158 Cours Fauriel, F-42023 Saint Etienne Cedex 2, France
| | - Jean-Luc Bouchardon
- Ecole Nationale Supérieure des Mines de Saint-Etienne, Département SPIN, Laboratoire GéoSciences & Environnement, 158 Cours Fauriel, F-42023 Saint Etienne Cedex 2, France
| |
Collapse
|
36
|
Xun F, Xie B, Liu S, Guo C. Effect of plant growth-promoting bacteria (PGPR) and arbuscular mycorrhizal fungi (AMF) inoculation on oats in saline-alkali soil contaminated by petroleum to enhance phytoremediation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:598-608. [PMID: 25091168 DOI: 10.1007/s11356-014-3396-4] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Accepted: 07/28/2014] [Indexed: 05/13/2023]
Abstract
To investigate the effect of plant growth-promoting bacteria (PGPR) and arbuscular mycorrhizal fungi (AMF) on phytoremediation in saline-alkali soil contaminated by petroleum, saline-alkali soil samples were artificially mixed with different amount of oil, 5 and 10 g/kg, respectively. Pot experiments with oat plants (Avena sativa) were conducted under greenhouse condition for 60 days. Plant biomass, physiological parameters in leaves, soil enzymes, and degradation rate of total petroleum hydrocarbon were measured. The result demonstrated that petroleum inhibited the growth of the plant; however, inoculation with PGPR in combination with AMF resulted in an increase in dry weight and stem height compared with noninoculated controls. Petroleum stress increased the accumulation of malondialdehyde (MDA) and free proline and the activities of the antioxidant enzyme such as superoxide dismutase, catalase, and peroxidase. Application of PGPR and AMF augmented the activities of three enzymes compared to their respective uninoculated controls, but decreased the MDA and free proline contents, indicating that PGPR and AMF could make the plants more tolerant to harmful hydrocarbon contaminants. It also improved the soil quality by increasing the activities of soil enzyme such as urease, sucrase, and dehydrogenase. In addition, the degradation rate of total petroleum hydrocarbon during treatment with PGPR and AMF in moderately contaminated soil reached a maximum of 49.73%. Therefore, we concluded the plants treated with a combination of PGPR and AMF had a high potential to contribute to remediation of saline-alkali soil contaminated with petroleum.
Collapse
Affiliation(s)
- Feifei Xun
- Key Laboratory of Molecular and Cytogenetics, Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China
| | | | | | | |
Collapse
|
37
|
Masood S, Syed JH, Munis MFH, Chaudhary HJ. Phyto-Extraction of Nickel by Linum usitatissimum in Association with Glomus intraradices. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2015; 17:981-7. [PMID: 25763643 DOI: 10.1080/15226514.2014.989311] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Plants show enhanced phytoremediation of heavy metal contaminated soils particularly in response to fungal inoculation. Present study was conducted to find out the influence of Nickel (Ni) toxicity on plant biomass, growth, chlorophyll content, proline production and metal accumulation by L. usitatissimum (flax) in the presence of Glomus intraradices. Flax seedlings of both inoculated with G. intraradices and non-inoculated were exposed to different concentrations i.e., 250, 350 and 500 ppm of Ni at different time intervals. Analysis of physiological parameters revealed that Ni depressed the growth and photosynthetic activity of plants. However, the inoculation of plants with arbuscular mycorrhizae (G. intraradices) partially helped in the alleviation of Ni toxicity as indicated by improved plant growth under Ni stress. Ni uptake of non- mycorrhizal flax plants was increased by 98% as compared to control conditions whereas inoculated plants showed 19% more uptake when compared with the non-inoculated plants. Mycorrhizal plants exhibited increasing capacity to remediate contaminated soils along with improved growth. Thus, AM assisted phytoremediation helps in the accumulation of Ni in plants to reclaim Ni toxic soils. Based on our findings, it can be concluded that the role of flax plants and mycorrhizal fungi is extremely important in phytoremediation.
Collapse
|
38
|
Guarino C, Conte B, Spada V, Arena S, Sciarrillo R, Scaloni A. Proteomic analysis of eucalyptus leaves unveils putative mechanisms involved in the plant response to a real condition of soil contamination by multiple heavy metals in the presence or absence of mycorrhizal/rhizobacterial additives. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:11487-11496. [PMID: 25203592 DOI: 10.1021/es502070m] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Here we report on the growth, accumulation performances of, and leaf proteomic changes in Eucalyptus camaldulensis plants harvested for different periods of time in an industrial, heavy metals (HMs)-contaminated site in the presence or absence of soil microorganism (AMs/PGPRs) additives. Data were compared to those of control counterparts grown in a neighboring nonpolluted district. Plants harvested in the contaminated areas grew well and accumulated HMs in their leaves. The addition of AMs/PGPRs to the polluted soil determined plant growth and metal accumulation performances that surpassed those observed in the control. Comparative proteomics suggested molecular mechanisms underlying plant adaptation to the HMs challenge. Similarly to what was observed in laboratory-scale investigations on other metal hyperaccumulators but not on HMs-sensitive plants, eucalyptus grown in the contaminated areas showed an over-representation of enzymes involved in photosynthesis and the Calvin cycle. AMs/PGPRs addition to the soil increased the activation of these energetic pathways, suggesting the existence of signaling mechanisms that address the energy/reductive power requirement associated with augmented growth performances. HMs-exposed plants presented an over-representation of antioxidant enzymes, chaperones, and proteins involved in glutathione metabolism. While some antioxidant enzymes/chaperones returned to almost normal expression values in the presence of AMs/PGPRs or in plants exposed to HMs for prolonged periods, proteins guaranteeing elevated glutathione levels were constantly over-represented. These data suggest that glutathione (and related phytochelatins) could act as key molecules for ensuring the effective formation of HMs-chelating complexes that are possibly responsible for the observed plant tolerance to metal stresses. Overall, these results suggest potential genetic traits for further selection of phytoremediating plants based on dedicated cloning or breeding programs.
Collapse
Affiliation(s)
- Carmine Guarino
- Department of Sciences and Technologies, University of Sannio , 82100 Benevento, Italy
| | | | | | | | | | | |
Collapse
|