1
|
Soulen BK, Divine LM, Venables BJ, Roberts AP. Persistent organic pollutant exposure and associations with gene expression in northern fur seals (Callorhinus ursinus) from St. Paul Island, Alaska. MARINE ENVIRONMENTAL RESEARCH 2022; 182:105789. [PMID: 36332419 DOI: 10.1016/j.marenvres.2022.105789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 10/20/2022] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
Persistent organic pollutants (POPs) are highly lipophilic compounds that accumulate at increased concentrations in high tropic level organisms like marine mammals. Marine mammals' reliance on blubber makes them susceptible to accumulating POPs at potentially toxic concentrations. In this study, we analyzed POP concentrations, (polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), polybrominated diphenyl ethers (PBDEs), and methoxylated-BDE (MeOBDE), in the blubber of 16 subsistence harvested sub-adult, male northern fur seals as well as assessed changes in mRNA gene expression of nine relevant biomarkers including the aryl hydrocarbon receptor, thyroid receptor-α, and adiponectin. PBDE and MeOBDE concentrations were significantly lower than PCB and OCP concentrations. A negative relationship was observed between percent lipid in the blubber and contaminant concentrations, both individual and sum. Expression changes in eight biomarkers were correlated with individual and sum contaminant concentrations. This study shows that contaminant concentrations measured are correlated to changes in expression of genes from different physiological systems, metabolism and endocrine, that are important for the regulation of blubber metabolism. Northern fur seals are reliant on blubber as an energy source during times of low food intake. Potential contaminant induced changes in blubber metabolism pathways could have significant impacts on the health of individuals during critical periods.
Collapse
Affiliation(s)
- Brianne K Soulen
- Department of Biological Sciences, Advanced Environmental Research Institute, University of North Texas, Denton, TX, 76201, USA.
| | - Lauren M Divine
- Aleut Community of St. Paul Island Ecosystem Conservation Office, St. Paul, Pribilof Islands, Alaska, USA
| | - Barney J Venables
- Department of Biological Sciences, Advanced Environmental Research Institute, University of North Texas, Denton, TX, 76201, USA
| | - Aaron P Roberts
- Department of Biological Sciences, Advanced Environmental Research Institute, University of North Texas, Denton, TX, 76201, USA
| |
Collapse
|
2
|
Bourque J, Desforges JP, Levin M, Atwood TC, Sonne C, Dietz R, Jensen TH, Curry E, McKinney MA. Climate-associated drivers of plasma cytokines and contaminant concentrations in Beaufort Sea polar bears (Ursus maritimus). THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 745:140978. [PMID: 32738684 DOI: 10.1016/j.scitotenv.2020.140978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/08/2020] [Accepted: 07/13/2020] [Indexed: 06/11/2023]
Abstract
Assessing polar bear (Ursus maritimus) immune function in relation to environmental stressors, including habitat change, nutritional stress, pathogen prevalence, and pollution, has been identified as critical for improved understanding of the species' health. The objectives of this study were two-fold: 1) to assess the role of climate-associated factors (habitat use, body condition) in explaining the plasma concentrations of contaminants in southern Beaufort Sea (SB) polar bears, and 2) to investigate how climate-associated factors, contaminant concentrations, and pathogen sero-prevalence influence the plasma concentrations of immune-signaling proteins called cytokines. A commercially available multiplex canine cytokine panel was validated for the quantification of five pro- and anti-inflammatory cytokines in polar bear plasma: tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6), IL-8, IL-10, and interferon gamma-induced protein 10 (IP-10). This panel was then used to measure cytokine concentrations in 49 SB polar bears sampled in the springs of 2013 and 2014. Mean ∑PCBs (plasma), ∑OCs (plasma), and THg (hair) were 13.01 ± 1.52 ng g-1 w.w. (range: 0.17-52.63), 19.46 ± 1.17 ng g-1 w.w. (range: 6.63-45.82), and 0.49 μg g-1 d.w. (range: 0.99-15.18), respectively. Top models explaining variation in concentrations of plasma PCBs, plasma OC pesticides, and hair THg in SB polar bears included body mass index and/or habitat use (onshore versus offshore), with higher contaminant concentrations in leaner and/or offshore bears. Plasma cytokine concentrations were influenced most strongly by plasma PCBs and age, with little to no influence found for plasma OCs or hair THg concentrations, habitat use, or pathogen sero-prevalence. The lack of association between cytokines and these latter variables is likely due to a temporal disconnect between measured endpoints. The change of polar bear habitat use, feeding ecology, and body condition with ongoing climate warming is affecting exposure to contaminants and pathogens, with potential adverse consequences on a well-balanced immune system.
Collapse
Affiliation(s)
- Jennifer Bourque
- Wildlife and Fisheries Conservation Center, Department of Natural Resources and the Environment and Center for Environmental Sciences and Engineering, University of Connecticut, Storrs, CT, USA
| | - Jean-Pierre Desforges
- Department of Natural Resource Sciences, McGill University, Ste-Anne-de-Bellevue, QC, Canada
| | - Milton Levin
- Department of Pathobiology and Veterinary Sciences, University of Connecticut, Storrs, CT, USA
| | - Todd C Atwood
- US Geological Survey, Alaska Science Center, Anchorage, AK, USA
| | - Christian Sonne
- Department of Bioscience, Arctic Research Centre, Aarhus University, Roskilde 4000, Denmark
| | - Rune Dietz
- Department of Bioscience, Arctic Research Centre, Aarhus University, Roskilde 4000, Denmark
| | - Trine H Jensen
- Aalborg Zoo/Aalborg University, Mølleparkvej 63, 9000 Aalborg, Denmark
| | - Erin Curry
- Center for Conservation & Research of Endangered Wildlife, Cincinnati Zoo & Botanical Garden, Cincinnati, OH, USA
| | - Melissa A McKinney
- Wildlife and Fisheries Conservation Center, Department of Natural Resources and the Environment and Center for Environmental Sciences and Engineering, University of Connecticut, Storrs, CT, USA; Department of Natural Resource Sciences, McGill University, Ste-Anne-de-Bellevue, QC, Canada.
| |
Collapse
|
3
|
Levin M, Jasperse L, Desforges JP, O'Hara T, Rea L, Castellini JM, Maniscalco JM, Fadely B, Keogh M. Methyl mercury (MeHg) in vitro exposure alters mitogen-induced lymphocyte proliferation and cytokine expression in Steller sea lion (Eumetopias jubatus) pups. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 725:138308. [PMID: 32302832 DOI: 10.1016/j.scitotenv.2020.138308] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/23/2020] [Accepted: 03/28/2020] [Indexed: 06/11/2023]
Abstract
Steller sea lions (Eumetopias jubatus, SSLs) are managed as two distinct population segments within U.S. waters: the endangered western distinct population segment and the recently delisted eastern distinct population segment. Recent studies reported concentrations of mercury in several tissues collected from young SSLs in the Aleutian Islands that were at or above concentrations found to negatively impact health in other fish-eating mammals. However, there are limited studies which have investigated the range of mercury concentrations that may negatively influence the SSL immune system. This study assessed relationships between methyl mercury (MeHg+) concentrations and two immune functions, lymphocyte proliferation and cytokine expression. Peripheral blood mononuclear cells (PBMCs) were isolated and cryopreserved from pups on three rookeries within the western distinct population segment: Chiswell Island, Ulak, and Agattu Islands. Lymphocyte proliferation and cytokine expression were assessed in vitro using thawed PBMCs with exposure to MeHg+ (unexposed control, 0.001, 0.01, and 0.1 μg/ml). Lymphocyte proliferation was measured without and with stimulation with a T cell mitogen (ConA) and B cell mitogen (LPS) and the concentration of cytokines was measured in the cell culture supernatant (with and without ConA or LPS). Spontaneous lymphocyte proliferation was significantly increased at 0.01 and 0.1 μg/ml. T lymphocyte proliferation was significantly increased at 0.001 μg/ml and 0.1 μg/ml, while B lymphocyte proliferation was decreased at 0.1 μg/ml. Cytokine concentrations for INFγ, IL-10, IL-6, and TNFα were reduced at 0.1 μg/ml upon either T or B cell mitogen stimulation, with the exception for IL-10, where 0.1 μg/ml reduced IL-10 concentration compared to unstimulated cells. These data suggest immune functions were affected by MeHg+ exposure requiring in vivo follow up investigations. The observed modulation of immune functions is of concern as any toxicant-induced modulation may adversely affect the health of individuals, particularly younger animals undergoing periods of critical development.
Collapse
Affiliation(s)
- Milton Levin
- University of Connecticut, Department of Pathobiology and Veterinary Science, 61 N. Eagleville Road U-3089, Storrs, CT 06269, United States of America.
| | - Lindsay Jasperse
- University of Connecticut, Department of Pathobiology and Veterinary Science, 61 N. Eagleville Road U-3089, Storrs, CT 06269, United States of America
| | - Jean-Pierre Desforges
- Department of Bioscience, Arctic Research Centre, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Todd O'Hara
- Department of Veterinary Medicine, University of Alaska Fairbanks, Fairbanks, AK 99775-5910, United States of America; Veterinary Integrative Biosciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, 4458 TAMU, College Station, TX 77843, United States of America
| | - Lorrie Rea
- Institute of Northern Engineering, University of Alaska Fairbanks, Fairbanks, AK 99775-5910, United States of America
| | - J Margaret Castellini
- Department of Veterinary Medicine, University of Alaska Fairbanks, Fairbanks, AK 99775-5910, United States of America
| | - John M Maniscalco
- Alaska SeaLife Center, P.O. Box 1329, Seward, AK 99664, United States of America
| | - Brian Fadely
- Marine Mammal Laboratory, Alaska Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 7600 Sand Point Way NE, Seattle, WA 98115, United States of America
| | - Mandy Keogh
- Alaska Department of Fish and Game, Marine Mammal Program. 1300 College Rd., Fairbanks, AK 99701, United States of America
| |
Collapse
|
4
|
Wise JP, Croom-Perez TJ, Meaza I, Aboueissa AM, López Montalvo CA, Martin-Bras M, Speer RM, Bonilla-Garzón A, Urbán R J, Perkins C, Wise JP. A whale of a tale: A One Environmental Health approach to study metal pollution in the Sea of Cortez. Toxicol Appl Pharmacol 2019; 376:58-69. [PMID: 31078588 PMCID: PMC6602082 DOI: 10.1016/j.taap.2019.05.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 04/30/2019] [Accepted: 05/07/2019] [Indexed: 01/03/2023]
Abstract
Marine metal pollution is an emerging concern for human, animal, and ecosystem health. We considered metal pollution in the Sea of Cortez, which is a relatively isolated sea rich in biodiversity. Here there are potentially significant anthropogenic inputs of pollution from agriculture and metal mining. We considered the levels of 23 heavy metals and selenium in seven distinct cetacean species found in the area. Our efforts considered two different periods of time: 1999 and 2016/17. We considered the metal levels in relation to (1) all species together across years, (2) differences between suborders Odontoceti and Mysticeti, (3) each species individually across years, and (4) gender differences for each of these comparisons. We further compared metal levels found in sperm whale skin samples collected during these voyages to a previous voyage in 1999, to assess changes in metal levels over a longer timescale. The metals Mg, Fe, Al, and Zn were found at the highest concentrations across all species and all years. For sperm whales, we observed decreased metal levels from 1999 to 2016/2017, except for iron (Fe), nickel (Ni), and chromium (Cr), which either increased or did not change during this time period. These results indicate a recent change in the metal input to the Sea of Cortez, which may indicate a decreased concern for human, animal, and ecosystem health for some metals, but raises concern for the genotoxic metals Cr and Ni. This work was supported by NIEHS grant ES016893 (J.P.W.) and numerous donors to the Wise Laboratory.
Collapse
Affiliation(s)
- John Pierce Wise
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, 500 S Preston St, Rm 1422, Louisville, KY, USA
| | - Tayler J Croom-Perez
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, 500 S Preston St, Rm 1422, Louisville, KY, USA
| | - Idoia Meaza
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, 500 S Preston St, Rm 1422, Louisville, KY, USA
| | | | - Carlos A López Montalvo
- Departamento de Ciencias Marinas y Costeras, Universidad Autónoma de Baja California Sur. La Paz, BCS, México
| | - Mark Martin-Bras
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, 500 S Preston St, Rm 1422, Louisville, KY, USA
| | - Rachel M Speer
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, 500 S Preston St, Rm 1422, Louisville, KY, USA
| | - Andrea Bonilla-Garzón
- Departamento de Ciencias Marinas y Costeras, Universidad Autónoma de Baja California Sur. La Paz, BCS, México
| | - Jorge Urbán R
- Departamento de Ciencias Marinas y Costeras, Universidad Autónoma de Baja California Sur. La Paz, BCS, México
| | - Christopher Perkins
- Center for Environmental Sciences and Engineering, University of Connecticut, Storrs, CT, USA
| | - John Pierce Wise
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, 500 S Preston St, Rm 1422, Louisville, KY, USA.
| |
Collapse
|
5
|
Centelleghe C, Da Dalt L, Marsili L, Zanetti R, Fernandez A, Arbelo M, Sierra E, Castagnaro M, Di Guardo G, Mazzariol S. Insights Into Dolphins' Immunology: Immuno-Phenotypic Study on Mediterranean and Atlantic Stranded Cetaceans. Front Immunol 2019; 10:888. [PMID: 31110505 PMCID: PMC6499212 DOI: 10.3389/fimmu.2019.00888] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 04/05/2019] [Indexed: 01/10/2023] Open
Abstract
Immunology of marine mammals is a relatively understudied field and its monitoring plays an important role in the individual and group management of these animals, along with an increasing value as an environmental health indicator. This study was aimed at implementing the knowledge on the immune response in cetaceans stranded along the Italian coastline to provide a baseline useful for assessing the immune status of bottlenose (Tursiops truncatus) and striped (Stenella coeruleoalba) dolphins. In particular, since the Mediterranean Sea is considered a heavily polluted basin, a comparison with animals living in open waters such as the Atlantic Ocean was made. Formalin-fixed, paraffin-embedded spleen, thymus, and lymph node tissues from 16 animals stranded along Italian and 11 cetaceans from the Canary Island shores were sampled within 48 h from death. Information regarding stranding sites, gender, and age as well as virologic, microbiological, and parasitological investigations, and the cause and/or the death mechanism were also collected in order to carry out statistical analyses. Selected tissues were routinely stained with hematoxylin-eosin (H&E) and with immunohistochemical techniques (IHC). For IHC analysis, anti-human CD5 monoclonal mouse antibody to identify T lymphocytes, CD20 monoclonal mouse antibody for the identification of mature B lymphocytes and HLA-DR antigen (alpha-chain) monoclonal mouse antibody for the identification of the major histocompatibility complex type II were previously validated for both species by Western-blotting technique. T-test method applied to quantitative evaluation of IHC positive cells showed a significant relationship between the number of (expression) of CD20 stained lymphocytes and normal and hypoplastic lymph nodes, respectively. No other significant correlations were noticed. Analyses for organochlorines (OC) compounds were performed in animals (n°5) having frozen blubber tissue available. A simple linear regression was calculated to predict if the amount of OCs could influence the number of inflammatory cell subpopulations and a moderate negative correlation was found between the presence of high quantity of contaminants and the number of T lymphocytes. Future analysis should be aimed to understand the effect of the major immunomodulatory pathogens on sub-populations of B and T cells.
Collapse
Affiliation(s)
- Cinzia Centelleghe
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, Italy
| | - Laura Da Dalt
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, Italy
| | - Letizia Marsili
- Department of Physical Sciences, Earth and Environment, University of Siena, Siena, Italy
| | - Rossella Zanetti
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, Italy
| | - Antonio Fernandez
- Institute of Animal Health and Food Safety, Universitad de Las Palmas de Gran Canaria, Las Palmas, Spain
| | - Manuel Arbelo
- Institute of Animal Health and Food Safety, Universitad de Las Palmas de Gran Canaria, Las Palmas, Spain
| | - Eva Sierra
- Institute of Animal Health and Food Safety, Universitad de Las Palmas de Gran Canaria, Las Palmas, Spain
| | - Massimo Castagnaro
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, Italy
| | | | - Sandro Mazzariol
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, Italy
| |
Collapse
|
6
|
Peñín I, Figueroa-Cabañas ME, Guerrero-de la Rosa F, Soto-García LA, Álvarez-Martínez R, Flores-Morán A, Acevedo-Whitehouse K. Transcriptional Profiles of California Sea Lion Peripheral NK and CD +8 T Cells Reflect Ecological Regionalization and Infection by Oncogenic Viruses. Front Immunol 2019; 10:413. [PMID: 30915075 PMCID: PMC6422979 DOI: 10.3389/fimmu.2019.00413] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 02/15/2019] [Indexed: 12/12/2022] Open
Abstract
The California sea lion is one of the few wild mammals prone to develop cancer, particularly urogenital carcinoma (UGC), whose prevalence is currently estimated at 25% of dead adult sea lions stranded along the California coastline. Genetic factors, viruses and organochlorines have been identified as factors that increase the risk of occurrence of this pathology. Given that no cases of UGC have as yet been reported for the species along its distribution in Mexican waters, the potential relevance of contaminants for the development of urogenital carcinoma is highlighted even more as blubber levels of organochlorines are more than two orders of magnitude lower in the Gulf of California and Mexican Pacific than in California. In vitro studies have shown that organochlorines can modulate anti-viral and tumor-surveillance activities of NK and cytotoxic T-cells of marine mammals, but little is known about the activity of these effectors in live, free-living sea lions. Here, we examine leukocyte transcriptional profiles of free-ranging adult California sea lions for eight genes (Eomes, Granzyme B, Perforin, Ly49, STAT1, Tbx21, GATA3, and FoxP3) selected for their key role in anti-viral and tumor-surveillance, and investigate patterns of transcription that could be indicative of differences in ecological variables and exposure to two oncogenic viruses: sea lion type one gammaherpesvirus (OtHV-1) and sea lion papillomavirus type 1 (ZcPV-1) and systemic inflammation. We observed regional differences in the expression of genes related to Th1 responses and immune modulation, and detected clear patterns of differential regulation of gene expression in sea lions infected by genital papillomavirus compared to those infected by genital gammaherpesvirus or for simultaneous infections, similar to what is known about herpesvirus and papillomavirus infections in humans. Our study is a first approach to profile the transcriptional patterns of key immune effectors of free-ranging California sea lions and their association with ecological regions and oncogenic viruses. The observed results add insight to our understanding of immune competence of marine mammals, and may help elucidate the marked difference in the number of cases of urogenital carcinoma in sea lions from US waters and other areas of their distribution.
Collapse
Affiliation(s)
- Ignacio Peñín
- Unit for Basic and Applied Microbiology, School of Natural Sciences, Autonomous University of Queretaro, Santiago de Queretaro, Mexico
| | - Mónica E Figueroa-Cabañas
- Unit for Basic and Applied Microbiology, School of Natural Sciences, Autonomous University of Queretaro, Santiago de Queretaro, Mexico
| | - Fabiola Guerrero-de la Rosa
- Unit for Basic and Applied Microbiology, School of Natural Sciences, Autonomous University of Queretaro, Santiago de Queretaro, Mexico
| | - Luis A Soto-García
- Unit for Basic and Applied Microbiology, School of Natural Sciences, Autonomous University of Queretaro, Santiago de Queretaro, Mexico
| | - Roberto Álvarez-Martínez
- Unit for Basic and Applied Microbiology, School of Natural Sciences, Autonomous University of Queretaro, Santiago de Queretaro, Mexico
| | - Adriana Flores-Morán
- Unit for Basic and Applied Microbiology, School of Natural Sciences, Autonomous University of Queretaro, Santiago de Queretaro, Mexico
| | - Karina Acevedo-Whitehouse
- Unit for Basic and Applied Microbiology, School of Natural Sciences, Autonomous University of Queretaro, Santiago de Queretaro, Mexico.,The Marine Mammal Center, Sausalito, CA, United States
| |
Collapse
|
7
|
Knudsen AKS, Long M, Pedersen HS, Bonefeld-Jørgensen EC. Persistent organic pollutants and haematological markers in Greenlandic pregnant women: the ACCEPT sub-study. Int J Circumpolar Health 2019; 77:1456303. [PMID: 29595373 PMCID: PMC5912198 DOI: 10.1080/22423982.2018.1456303] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The Arctic populations have high blood concentrations of persistent organic pollutants (POPs). Exposure to POPs was related to adverse health effects e.g. immune, neurological and reproductive systems. This study investigates associations between serum POP levels and haematological markers in Greenlandic pregnant women. This cross-sectional study included 189 women enrolled in 2010–2011 at the Greenlandic West coast by the inclusion criteria ≥18 years of age and had lived for 50% or more of their life in Greenland. The associations between the sum of the POP variables polychlorinated biphenyls (sumPCBs), organochlorine pesticides (sumOCPs), perfluoroalkylated substances (sumPFASs) and 24 haematological markers were analysed using linear regression adjusted for age, pre-pregnancy BMI, parity, gestation week, plasma-cotinine and alcohol intake. It showed a significantly inverse association between several haematological markers (eosinophil, lymphocyte, neutrophil and white blood cells) and sumPCBs, sumOCPs and sumPFASs. In addition, the monocyte, mean corpuscular haemoglobin concentration, plateletcrit and platelet count markers were significantly inversely associated with sumPFASs, but the haematocrit and mean erythrocyte corpuscular volume were positively associated with sumPFASs. In conclusion, exposure to POPs influenced several haematological markers, especially cell count parameters, suggesting immunosuppressive potential of POPs in Greenlandic pregnant women. The data need further investigations.
Collapse
Affiliation(s)
- Ane-Kersti Skaarup Knudsen
- a Centre for Arctic Health & Molecular Epidemiology, Department of Public Health , Aarhus University , Aarhus , Denmark.,b Emergency Department , Regional Hospital of Randers , Randers , Denmark
| | - Manhai Long
- a Centre for Arctic Health & Molecular Epidemiology, Department of Public Health , Aarhus University , Aarhus , Denmark
| | | | - Eva Cecilie Bonefeld-Jørgensen
- a Centre for Arctic Health & Molecular Epidemiology, Department of Public Health , Aarhus University , Aarhus , Denmark.,d Greenland Center for Health Research , University of Greenland , Nuuk , Greenland
| |
Collapse
|
8
|
Burkard M, Bengtson Nash S, Gambaro G, Whitworth D, Schirmer K. Lifetime extension of humpback whale skin fibroblasts and their response to lipopolysaccharide (LPS) and a mixture of polychlorinated biphenyls (Aroclor). Cell Biol Toxicol 2019; 35:387-398. [PMID: 30627956 PMCID: PMC6757015 DOI: 10.1007/s10565-018-09457-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 12/18/2018] [Indexed: 01/02/2023]
Abstract
Marine mammals, such as whales, have a high proportion of body fat and so are susceptible to the accumulation, and associated detrimental health effects, of lipophilic environmental contaminants. Recently, we developed a wild-type cell line from humpback whale fibroblasts (HuWa). Extensive molecular assessments with mammalian wild-type cells are typically constrained by a finite life span, with cells eventually becoming senescent. Thus, the present work explored the possibility of preventing senescence in the HuWa cell line by transfection with plasmids encoding the simian virus large T antigen (SV40T) or telomerase reverse transcriptase (TERT). No stable expression was achieved upon SV40 transfection. Transfection with TERT, on the other hand, activated the expression of telomerase in HuWa cells. At the time of manuscript preparation, the transfected HuWa cells (HuWaTERT) have been stable for at least 59 passages post-transfection. HuWaTERT proliferate rapidly and maintain initial cell characteristics, such as morphology and chromosomal stability. The response of HuWaTERT cells to an immune stimulant (lipopolysaccharide (LPS)) and an immunotoxicant (Aroclor1254) was assessed by measurement of intracellular levels of the pro-inflammatory cytokines interleukin (IL)-6, IL-1β and tumour necrosis factor (TNF)-α. HuWaTERT cells constitutively express IL-6, IL-1β and TNFα. Exposure to neither LPS nor Aroclor1254 had an effect on the levels of these cytokines. Overall, this work supports the diverse applicability of HuWa cell lines in that they display reliable long-term preservation, susceptibility to exogenous gene transfer and enable the study of humpback whale-specific cellular response mechanisms.
Collapse
Affiliation(s)
- Michael Burkard
- School of Environment and Science, Griffith University, Brisbane, QLD, Australia.,Swiss Federal Institute of Aquatic Science and Technology (Eawag), Überlandstrasse 133, CH-8600, Dübendorf, Switzerland
| | - Susan Bengtson Nash
- School of Environment and Science, Griffith University, Brisbane, QLD, Australia
| | - Gessica Gambaro
- Swiss Federal Institute of Aquatic Science and Technology (Eawag), Überlandstrasse 133, CH-8600, Dübendorf, Switzerland
| | - Deanne Whitworth
- School of Veterinary Science, The University of Queensland, Gatton, QLD, Australia.,Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, Australia
| | - Kristin Schirmer
- Swiss Federal Institute of Aquatic Science and Technology (Eawag), Überlandstrasse 133, CH-8600, Dübendorf, Switzerland. .,Institute of Biogechemistry and Pollutant Dynamics, ETH Zürich, Zürich, Switzerland. .,School of Architecture, Civil and Environmental Engineering, EPF Lausanne, Lausanne, Switzerland.
| |
Collapse
|
9
|
Peñín I, Levin M, Acevedo-Whitehouse K, Jasperse L, Gebhard E, Gulland FMD, De Guise S. Effects of polychlorinated biphenyls (PCB) on California sea lion (Zalophus californianus) lymphocyte functions upon in vitro exposure. ENVIRONMENTAL RESEARCH 2018; 167:708-717. [PMID: 30236520 DOI: 10.1016/j.envres.2018.08.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 08/22/2018] [Accepted: 08/23/2018] [Indexed: 06/08/2023]
Abstract
Polychorinated biphenyl (PCB) congeners are a cause for concern due to their persistence in the environment, their lipophilic properties that cause them to bio-accumulate in top predators, and their adverse effects on mammalian health. For example, the common urogenital carcinoma reported in California sea lions (Zalophus californianus) (CSL) is associated with high tissue levels of PCBs, but the mechanisms responsible for this association are unknown. This study investigated the effect of exposure to six PCB congeners and a congener mix at low and environmentally relevant concentrations on NK cell-like and T cell activity using in vitro assays on cryopreserved lymph node mononuclear cells isolated from dead CSL. Non dioxin-like congeners 153 and 180 increased lymphocyte proliferation at 5 and 10 ppm, while congener 138 decreased proliferation by up to 43% at 15 ppm. Dioxin-like PCBs 118 and 169 did not affect lymphocyte proliferation, while the effects of congener 105 depended on the mitogen concentration; these did not correlate with their predicted toxic equivalent factors. NK cell-like activity was affected only by the highest concentration of PCBs tested; it was increased by non-dioxin-like congeners 138 and 153, and decreased by dioxin-like congener 169. The PCB congener mix suggested that the effects of PCB congeners were not simply additive. Our results concur with effects of PCBs reported for other pinniped's lymphocytes and add further experimental support to the observation that dioxin-like PCBs are not the most toxic congeners for marine mammals, contrary to effects in other species. This is the first evidence of in vitro suppression of NK cell-like cytotoxicity by a dioxin-like congener in a pinniped. More importantly, the observed results suggest that PCBs can modulate the CSL immune system, increasing exposed individuals' susceptibility to viral and oncogenic challenges.
Collapse
Affiliation(s)
- I Peñín
- Laboratory of Immune Plasticity and Molecular Ecoepidemiology, Unit for Basic and Applied Microbiology, Autonomous University of Queretaro, 76230, Mexico
| | - M Levin
- Department of Pathobiology and Veterinary Science, University of Connecticut, 61 North Eagleville Road, Storrs, CT 06269, USA
| | - K Acevedo-Whitehouse
- Laboratory of Immune Plasticity and Molecular Ecoepidemiology, Unit for Basic and Applied Microbiology, Autonomous University of Queretaro, 76230, Mexico; The Marine Mammal Center, 2000 Bunker Road, Sausalito, CA 94965, USA
| | - L Jasperse
- Department of Pathobiology and Veterinary Science, University of Connecticut, 61 North Eagleville Road, Storrs, CT 06269, USA
| | - E Gebhard
- Department of Pathobiology and Veterinary Science, University of Connecticut, 61 North Eagleville Road, Storrs, CT 06269, USA
| | - F M D Gulland
- The Marine Mammal Center, 2000 Bunker Road, Sausalito, CA 94965, USA
| | - S De Guise
- Department of Pathobiology and Veterinary Science, University of Connecticut, 61 North Eagleville Road, Storrs, CT 06269, USA.
| |
Collapse
|
10
|
Desforges JP, Levin M, Jasperse L, De Guise S, Eulaers I, Letcher RJ, Acquarone M, Nordøy E, Folkow LP, Hammer Jensen T, Grøndahl C, Bertelsen MF, St Leger J, Almunia J, Sonne C, Dietz R. Effects of Polar Bear and Killer Whale Derived Contaminant Cocktails on Marine Mammal Immunity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:11431-11439. [PMID: 28876915 DOI: 10.1021/acs.est.7b03532] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Most controlled toxicity studies use single chemical exposures that do not represent the real world situation of complex mixtures of known and unknown natural and anthropogenic substances. In the present study, complex contaminant cocktails derived from the blubber of polar bears (PB; Ursus maritimus) and killer whales (KW; Orcinus orca) were used for in vitro concentration-response experiments with PB, cetacean and seal spp. immune cells to evaluate the effect of realistic contaminant mixtures on various immune functions. Cytotoxic effects of the PB cocktail occurred at lower concentrations than the KW cocktail (1 vs 16 μg/mL), likely due to differences in contaminant profiles in the mixtures derived from the adipose of each species. Similarly, significant reduction of lymphocyte proliferation occurred at much lower exposures in the PB cocktail (EC50: 0.94 vs 6.06 μg/mL; P < 0.01), whereas the KW cocktail caused a much faster decline in proliferation (slope: 2.9 vs 1.7; P = 0.04). Only the KW cocktail modulated natural killer (NK) cell activity and neutrophil and monocyte phagocytosis in a concentration- and species-dependent manner. No clear sensitivity differences emerged when comparing cetaceans, seals and PB. Our results showing lower effect levels for complex mixtures relative to single compounds suggest that previous risk assessments underestimate the effects of real world contaminant exposure on immunity. Our results using blubber-derived contaminant cocktails add realism to in vitro exposure experiments and confirm the immunotoxic risk marine mammals face from exposure to complex mixtures of environmental contaminants.
Collapse
Affiliation(s)
- Jean-Pierre Desforges
- Department of Bioscience, Arctic Research Centre, Aarhus University , Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark
| | - Milton Levin
- Department of Pathobiology and Veterinary Science, University of Connecticut , 61 North Eagleville Road, Storrs, Connecticut 06269-3089, United States of America
| | - Lindsay Jasperse
- Department of Pathobiology and Veterinary Science, University of Connecticut , 61 North Eagleville Road, Storrs, Connecticut 06269-3089, United States of America
| | - Sylvain De Guise
- Department of Pathobiology and Veterinary Science, University of Connecticut , 61 North Eagleville Road, Storrs, Connecticut 06269-3089, United States of America
| | - Igor Eulaers
- Department of Bioscience, Arctic Research Centre, Aarhus University , Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark
| | - Robert J Letcher
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University , Ottawa, Ontario Canada K1A 0H3
| | - Mario Acquarone
- Department of Arctic and Marine Biology, University of Tromsø - the Arctic University of Norway , Breivika, 9037 Tromsø, Norway
| | - Erling Nordøy
- Department of Arctic and Marine Biology, University of Tromsø - the Arctic University of Norway , Breivika, 9037 Tromsø, Norway
| | - Lars P Folkow
- Department of Arctic and Marine Biology, University of Tromsø - the Arctic University of Norway , Breivika, 9037 Tromsø, Norway
| | | | - Carsten Grøndahl
- Copenhagen ZOO, Roskildevej 38, PO Box 7, DK-2000 Frederiksberg, Denmark
| | - Mads F Bertelsen
- Copenhagen ZOO, Roskildevej 38, PO Box 7, DK-2000 Frederiksberg, Denmark
| | - Judy St Leger
- SeaWorld Parks and Entertainment, 500 SeaWorld Drive, San Diego, California 92109, United States of America
| | - Javier Almunia
- Loro Parque Fundación, Avda. Loro Parque, s/n 38400 Puerto de la Cruz, Tenerife Spain
| | - Christian Sonne
- Department of Bioscience, Arctic Research Centre, Aarhus University , Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark
| | - Rune Dietz
- Department of Bioscience, Arctic Research Centre, Aarhus University , Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark
| |
Collapse
|
11
|
Nouri-Shirazi M, Bible BF, Zeng M, Tamjidi S, Bossart GD. Phenotyping and comparing the immune cell populations of free-ranging Atlantic bottlenose dolphins (Tursiops truncatus) and dolphins under human care. BMC Vet Res 2017; 13:78. [PMID: 28347312 PMCID: PMC5369205 DOI: 10.1186/s12917-017-0998-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 03/22/2017] [Indexed: 11/28/2022] Open
Abstract
Background Studies suggest that free-ranging bottlenose dolphins exhibit a suppressed immune system because of exposure to contaminants or microorganisms. However, due to a lack of commercially available antibodies specific to marine mammal immune cell surface markers, the research has been indecisive. The purpose of this study was to identify cross-reactive terrestrial-specific antibodies in order to assess the changes in the immune cell populations of dolphins under human care and free-ranging dolphins. The blood and PBMC fraction of blood samples from human care and free-ranging dolphins were characterized by H&E staining of cytospin slides and flow cytometry using a panel of terrestrial-specific antibodies. Results In this study, we show that out of 65 terrestrial-specific antibodies tested, 11 were cross-reactive and identified dolphin immune cell populations within their peripheral blood. Using these antibodies, we found significant differences in the absolute number of cells expressing specific markers within their lymphocyte and monocyte fractions. Interestingly, the peripheral blood mononuclear cell profile of free-ranging dolphins retained an additional population of cells that divided them into two groups showing a low (<27%) or high (>56%) percentage of smaller cells resembling granulocytes. Conclusions We found that the cross-reactive antibodies not only identified specific changes in the immune cells of free-ranging dolphins, but also opened the possibility to investigate the causal relationship between immunosuppression and mortality seen in free-ranging dolphins.
Collapse
Affiliation(s)
- Mahyar Nouri-Shirazi
- Charles E. Schmidt College of Medicine, Integrated Medical Science Department, Florida Atlantic University, 777 Glades Road, PO Box 3091, Boca Raton, FL, 33431, USA.
| | - Brittany F Bible
- Charles E. Schmidt College of Medicine, Integrated Medical Science Department, Florida Atlantic University, 777 Glades Road, PO Box 3091, Boca Raton, FL, 33431, USA
| | - Menghua Zeng
- Charles E. Schmidt College of Medicine, Integrated Medical Science Department, Florida Atlantic University, 777 Glades Road, PO Box 3091, Boca Raton, FL, 33431, USA.,Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Saba Tamjidi
- Charles E. Schmidt College of Medicine, Integrated Medical Science Department, Florida Atlantic University, 777 Glades Road, PO Box 3091, Boca Raton, FL, 33431, USA
| | - Gregory D Bossart
- Georgia Aquarium, 225 Baker Street, NW, Atlanta, GA, S, USA.,Division of Comparative Pathology, Miller School of Medicine, University of Miami, PO Box 016960 (R-46), Miami, FL, 33101, USA
| |
Collapse
|
12
|
Levin M, Gebhard E, Jasperse L, Desforges JP, Dietz R, Sonne C, Eulaers I, Covaci A, Bossi R, De Guise S. Immunomodulatory effects of exposure to polychlorinated biphenyls and perfluoroalkyl acids in East Greenland ringed seals (Pusa hispida). ENVIRONMENTAL RESEARCH 2016; 151:244-250. [PMID: 27504872 DOI: 10.1016/j.envres.2016.07.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 07/08/2016] [Accepted: 07/11/2016] [Indexed: 06/06/2023]
Abstract
To better elucidate the potential immune-related health effects of exposure to environmentally persistent organic pollutants (POP), such as polychlorinated biphenyls (PCBs) and perfluoroalkyl substances (PFASs), in ringed seals (Pusa hispida), a sentinel Arctic species, we assessed 1) associations between mitogen-induced lymphocyte proliferation and in vivo tissue contaminant burdens, and 2) the concentration-response effects of in vitro exposure to PFASs and PCB congeners on mitogen-induced lymphocyte proliferation. Upon in vitro contaminant exposure, the non-coplanar PCB congeners CB 138, 153, and 180, but not the coplanar CB 169, significantly reduced lymphocyte proliferation between 10 and 20µgg-1 ww. The respective in vitro EC50 values for these congeners were 13.3, 20.7, 20.8, and 54.6µgg-1 ww. No modulation of lymphocyte proliferation was observed upon in vitro exposure to two individual PFASs, perfluorooctane sulphonic acid (PFOS) and perfluorooctanoic acid (PFOA), at concentrations up to 1000ngg-1. In addition, no significant correlations were found between lymphocyte proliferation and any blood or blubber contaminant measured. Taken together, these data suggest this population of ringed seals is not currently at high risk of altered lymphocyte proliferation from exposure to the POPs or PFASs in this study.
Collapse
Affiliation(s)
- Milton Levin
- Department of Pathobiology and Veterinary Science, University of Connecticut, 61 North Eagleville Road, Storrs, CT 06269-3089, United States.
| | - Erika Gebhard
- Department of Pathobiology and Veterinary Science, University of Connecticut, 61 North Eagleville Road, Storrs, CT 06269-3089, United States
| | - Lindsay Jasperse
- Department of Pathobiology and Veterinary Science, University of Connecticut, 61 North Eagleville Road, Storrs, CT 06269-3089, United States
| | - Jean-Pierre Desforges
- Department of Bioscience, Arctic Research Centre (ARC), Aarhus University, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark
| | - Rune Dietz
- Department of Bioscience, Arctic Research Centre (ARC), Aarhus University, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark
| | - Christian Sonne
- Department of Bioscience, Arctic Research Centre (ARC), Aarhus University, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark
| | - Igor Eulaers
- Department of Bioscience, Arctic Research Centre (ARC), Aarhus University, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark
| | - Adrian Covaci
- Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, BE-2610 Wilrijk, Belgium
| | - Rossana Bossi
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark
| | - Sylvain De Guise
- Department of Pathobiology and Veterinary Science, University of Connecticut, 61 North Eagleville Road, Storrs, CT 06269-3089, United States
| |
Collapse
|
13
|
Desforges JPW, Sonne C, Levin M, Siebert U, De Guise S, Dietz R. Immunotoxic effects of environmental pollutants in marine mammals. ENVIRONMENT INTERNATIONAL 2016; 86:126-139. [PMID: 26590481 DOI: 10.1016/j.envint.2015.10.007] [Citation(s) in RCA: 232] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Revised: 09/04/2015] [Accepted: 10/13/2015] [Indexed: 06/05/2023]
Abstract
Due to their marine ecology and life-history, marine mammals accumulate some of the highest levels of environmental contaminants of all wildlife. Given the increasing prevalence and severity of diseases in marine wildlife, it is imperative to understand how pollutants affect the immune system and consequently disease susceptibility. Advancements and adaptations of analytical techniques have facilitated marine mammal immunotoxicology research. Field studies, captive-feeding experiments and in vitro laboratory studies with marine mammals have associated exposure to environmental pollutants, most notable polychlorinated biphenyls (PCBs), organochlorine pesticides and heavy metals, to alterations of both the innate and adaptive arms of immune systems, which include aspects of cellular and humoral immunity. For marine mammals, reported immunotoxicology endpoints fell into several major categories: immune tissue histopathology, haematology/circulating immune cell populations, functional immune assays (lymphocyte proliferation, phagocytosis, respiratory burst, and natural killer cell activity), immunoglobulin production, and cytokine gene expression. Lymphocyte proliferation is by far the most commonly used immune assay, with studies using different organic pollutants and metals predominantly reporting immunosuppressive effects despite the many differences in study design and animal life history. Using combined field and laboratory data, we determined effect threshold levels for suppression of lymphocyte proliferation to be between b0.001-10 ppm for PCBs, 0.002-1.3 ppm for Hg, 0.009-0.06 for MeHg, and 0.1-2.4 for cadmium in polar bears and several pinniped and cetacean species. Similarly, thresholds for suppression of phagocytosis were 0.6-1.4 and 0.08-1.9 ppm for PCBs and mercury, respectively. Although data are lacking for many important immune endpoints and mechanisms of specific immune alterations are not well understood, this review revealed a systemic suppression of immune function in marine mammals exposed to environmental contaminants. Exposure to immunotoxic contaminants may have significant population level consequences as a contributing factor to increasing anthropogenic stress in wildlife and infectious disease outbreaks.
Collapse
Affiliation(s)
- Jean-Pierre W Desforges
- Department of Bioscience, Arctic Research Centre, Aarhus University, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark.
| | - Christian Sonne
- Department of Bioscience, Arctic Research Centre, Aarhus University, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark
| | - Milton Levin
- Department of Pathobiology and Veterinary Science, University of Connecticut, 61 North Eagleville Road, Storrs, CT 06269-3089, United States
| | - Ursula Siebert
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, Werftstrasse 6, 25761 Buesum, Germany
| | - Sylvain De Guise
- Department of Pathobiology and Veterinary Science, University of Connecticut, 61 North Eagleville Road, Storrs, CT 06269-3089, United States
| | - Rune Dietz
- Department of Bioscience, Arctic Research Centre, Aarhus University, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark
| |
Collapse
|
14
|
Fossi MC, Panti C, Marsili L, Maltese S, Coppola D, Jimenez B, Muñoz-Arnanz J, Finoia MG, Rojas-Bracho L, Urban RJ. Could feeding habit and migratory behaviour be the causes of different toxicological hazard to cetaceans of Gulf of California (Mexico)? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:13353-66. [PMID: 24510600 DOI: 10.1007/s11356-014-2574-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 01/20/2014] [Indexed: 05/27/2023]
Abstract
In this work, a suite of diagnostic biomarkers was applied to seven cetacean species to evaluate the role of the feeding habits and migratory behavior in the toxicological status of these species from the Gulf of California, Mexico. We investigate the interspecific differences in cytochrome P450 1A1 and 2B (CYP1A1 and CYP2B, respectively), aryl hydrocarbon receptor and E2F transcription factor 1 and the contaminants levels [organochlorine compounds, polybrominated diphenyl ethers (PBDEs) and polycyclic aromatic hydrocarbons (PAHs)] in four odontocete species (common bottlenose dolphin, long-beaked common dolphin, sperm whale and killer whale) and three mysticete species (blue whale, fin whale, and Bryde's whale) using skin biopsy. Differences in contaminant levels and molecular biomarker responses between the odontocete and mysticete species have been pointed out. The canonical discriminant analysis on principal component analysis factors, performed to reveal clustering variables, shows that odontocete are characterised by the highest levels of lipophilic contaminants compared to the mysticete, with the highest levels of polychlorinated biphenyls, dichlorodiphenyltrichloroethanes and PBDEs detected in killer whale and the lowest levels in Bryde's whale. The biomarker data show interspecific differences amongst the seven species, revealing highest CYP1A and CYP2B protein levels in the mysticete fish-eating species (Bryde's whale). In conclusion, three main factors seem to regulate the biomarker responses in these species: (a) the inductive ability of persistent organic pollutants and PAHs; (b) the different evolutionary process of the two CYPs related to the different feeding habits of the species; (c) the migratory/resident behaviour of the mysticete species in this area.
Collapse
Affiliation(s)
- M C Fossi
- Department of Environmental, Physical and Earth Sciences, University of Siena, Via Mattioli 4, Siena, Italy,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Gascon M, Morales E, Sunyer J, Vrijheid M. Effects of persistent organic pollutants on the developing respiratory and immune systems: a systematic review. ENVIRONMENT INTERNATIONAL 2013; 52:51-65. [PMID: 23291098 DOI: 10.1016/j.envint.2012.11.005] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 11/07/2012] [Accepted: 11/09/2012] [Indexed: 05/21/2023]
Abstract
BACKGROUND Disruption of developing immune and respiratory systems by early-life exposure to persistent organic pollutants (POPs) could result into reduced capacity to fight infections and increased risk to develop allergic manifestations later in life. OBJECTIVES To systematically review the epidemiologic literature on the adverse effects of early-life exposure to POPs on respiratory health, allergy and the immune system in infancy, childhood and adolescence. METHODS Based on published guidelines for systematic reviews, two independent researchers searched for published articles in MEDLINE and SCOPUS using defined keywords on POPs and respiratory health, immune function and allergy. Study eligibility criteria were defined to select the articles. RESULTS This review of 41 studies finds limited evidence for prenatal exposure to DDE, PCBs and dioxins and risk of respiratory infections. Evidence was limited also for postnatal exposure to PCBs, specifically ndl-PCBs, and reduced immune response after vaccination in childhood. The review indicates lack of association between postnatal exposure to PCBs/ndl-PCBs and risk of asthma-related symptoms. For the other exposure-outcome associations reviewed evidence was inadequate. DISCUSSION AND CONCLUSION Current epidemiological evidence suggests that early-life exposure to POPs can adversely influence immune and respiratory systems development. Heterogeneity between studies in exposure and outcome assessment and the small number of studies for any given exposure-outcome relationship currently make comparisons difficult and meta-analyses impossible. Also, mechanisms remain largely unexplored. Recommendations for significantly improving our understanding thus include harmonization of exposure and outcome assessment between studies, conduct of larger studies, long-term assessment of respiratory infections and asthma symptoms in order to identify critical periods of susceptibility, integration of the potential immunotoxic mechanisms of POPs, and use of new statistical tools to detangle the role of multiple exposures on multiple outcomes.
Collapse
Affiliation(s)
- Mireia Gascon
- Centre for Research in Environmental Epidemiology (CREAL), Dr. Aiguader 88, Barcelona, Catalonia, Spain.
| | | | | | | |
Collapse
|
16
|
Abstract
The long-term consequences of climate change and potential environmental degradation are likely to include aspects of disease emergence in marine plants and animals. In turn, these emerging diseases may have epizootic potential, zoonotic implications, and a complex pathogenesis involving other cofactors such as anthropogenic contaminant burden, genetics, and immunologic dysfunction. The concept of marine sentinel organisms provides one approach to evaluating aquatic ecosystem health. Such sentinels are barometers for current or potential negative impacts on individual- and population-level animal health. In turn, using marine sentinels permits better characterization and management of impacts that ultimately affect animal and human health associated with the oceans. Marine mammals are prime sentinel species because many species have long life spans, are long-term coastal residents, feed at a high trophic level, and have unique fat stores that can serve as depots for anthropogenic toxins. Marine mammals may be exposed to environmental stressors such as chemical pollutants, harmful algal biotoxins, and emerging or resurging pathogens. Since many marine mammal species share the coastal environment with humans and consume the same food, they also may serve as effective sentinels for public health problems. Finally, marine mammals are charismatic megafauna that typically stimulate an exaggerated human behavioral response and are thus more likely to be observed.
Collapse
|
17
|
Duffy-Whritenour JE, Kurtzman RZ, Kennedy S, Zelikoff JT. Non-coplanar polychlorinated biphenyl (PCB)-induced immunotoxicity is coincident with alterations in the serotonergic system. J Immunotoxicol 2010; 7:318-26. [PMID: 20843273 DOI: 10.3109/1547691x.2010.512277] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Attention to non-coplanar polychlorinated biphenyl (PCB) congeners in immunotoxicological research is increasing. However, the exact mechanism by which these congeners may induce immune dysfunction is still undefined. Because the serotonergic nervous system has been shown to be involved in the regulation of some immune responses, and also serves as a sensitive target for PCBs, the relationship (if any) between non-coplanar PCB exposure, immune responsiveness and the neurotransmitter serotonin (5-HT) was examined. Using bluegill sunfish (Lepomis macrochirus) as a model, changes in brain 5-HT levels, 5-HT synthesis and metabolism, and innate and cell-mediated immune parameters were evaluated following a single intraperitoneal injection of PCB 153 (5.0 or 50 μg/g body weight). Results revealed that 3 d following administration, PCB exposure decreased brain 5-HT levels (in the absence of effects on some enzymes involved in 5-HT synthesis and metabolism), increased oxyradical production by kidney phagocytes, and reduced splenic T- and B-lymphocyte proliferation. In vivo treatment of PCB-exposed fish with 5-hydroxy-L-tryptophan (the immediate precursor to 5-HT) ameliorated the observed PCB-induced immunotoxicity; in vitro treatment of immune cells from PCB-exposed fish with 5-HT failed to reverse the effects. Taken together, results from this study could suggest a link between PCB-induced alterations of brain 5-HT levels and subsequent immune dysfunction. These studies highlight the importance of indirect mechanisms of immunotoxicity, and, specifically, suggest a role for the neuroimmune axis in non-coplanar PCB-induced immune alterations.
Collapse
|
18
|
Yordy JE, Wells RS, Balmer BC, Schwacke LH, Rowles TK, Kucklick JR. Life history as a source of variation for persistent organic pollutant (POP) patterns in a community of common bottlenose dolphins (Tursiops truncatus) resident to Sarasota Bay, FL. THE SCIENCE OF THE TOTAL ENVIRONMENT 2010; 408:2163-2172. [PMID: 20163825 DOI: 10.1016/j.scitotenv.2010.01.032] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Revised: 01/19/2010] [Accepted: 01/20/2010] [Indexed: 05/27/2023]
Abstract
As apex predators within coastal ecosystems, bottlenose dolphins (Tursiops truncatus) are prone to accumulate complex mixtures of persistent organic pollutants (POPs). While substantial variations in POP patterns have been previously observed in dolphin populations separated across regional- and fine-scale geographic ranges, less is known regarding the factors influencing contaminant patterns within localized populations. To assess the variation of POP mixtures that occurs among individuals of a population, polychlorinated biphenyl (PCB), organochlorine pesticide (OCP) and polybrominated diphenyl ether (PBDE) concentrations were measured in blubber and milk of bottlenose dolphins resident to Sarasota Bay, FL, and principal components analysis (PCA) was used to explain mixture variations in relation to age, sex and reproductive maturity. PCA demonstrated significant variations in contaminant mixtures within the resident dolphin community. POP patterns in juvenile dolphins resembled patterns in milk, the primary diet source, and were dominated by lower-halogenated PCBs and PBDEs. A significant correlation between principal component 2 (PC2) and age in male dolphins indicated that juvenile contaminant patterns gradually shifted away from the milk-like pattern over time. Metabolically-refractory PCBs significantly increased with age in male dolphins, whereas PCBs subject to cytochrome p450 1A1 metabolism did not, suggesting that changes in male POP patterns likely resulted from the selective accumulation of persistent POP congeners. Changes to POP patterns were gradual for juvenile females, but changed dramatically at reproductive maturity and gradually shifted back towards pre-parturient profiles thereafter. Congener-specific blubber/milk partition coefficients indicated that lower-halogenated POPs were selectively offloaded into milk and changes in adult female contaminant profiles likely resulted from the offloading of these compounds during the first reproductive event and their gradual re-accumulation thereafter. Overall, these results indicate that significant variations in contaminant mixtures can exist within localized populations of bottlenose dolphins, with life history factors such as age and sex driving individual differences.
Collapse
Affiliation(s)
- Jennifer E Yordy
- Marine Biomedicine and Environmental Sciences Program, Medical University of South Carolina, 221 Fort Johnson Road, Charleston, SC 29412, USA.
| | | | | | | | | | | |
Collapse
|
19
|
Mori C, Fukata H. Comparison of the blood levels of PCBs between fetuses and infants with longer lactational period in Japan. Toxicol Lett 2009. [DOI: 10.1016/j.toxlet.2009.06.617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
20
|
Beineke A, Siebert U, Wohlsein P, Baumgärtner W. Immunology of whales and dolphins. Vet Immunol Immunopathol 2009; 133:81-94. [PMID: 19700205 DOI: 10.1016/j.vetimm.2009.06.019] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Revised: 05/08/2009] [Accepted: 06/22/2009] [Indexed: 11/25/2022]
Abstract
The increasing disease susceptibility in different whale and dolphin populations has led to speculation about a possible negative influence of environmental contaminants on the immune system and therefore on the health status of marine mammals. Despite current efforts in the immunology of marine mammals several aspects of immune functions in aquatic mammals remain unknown. However, assays for evaluating cellular immune responses, such as lymphocyte proliferation, respiratory burst as well as phagocytic and cytotoxic activity of leukocytes and humoral immune responses have been established for different cetacean species. Additionally, immunological and molecular techniques enable the detection and quantification of pro- and anti-inflammatory cytokines in lymphoid cells during inflammation or immune responses, respectively. Different T and B cell subsets as well as antigen-presenting cells can be detected by flow cytometry and immunohistochemistry. Despite great homologies between marine and terrestrial mammal lymphoid organs, some unique anatomical structures, particularly the complex lymphoepithelial laryngeal glands in cetaceans represent an adaptation to the marine environment. Additionally, physiological changes, such as age-related thymic atrophy and cystic degeneration of the "anal tonsil" of whales have to be taken into account when investigating these lymphoid structures. Systemic morbillivirus infections lead to fatalities in cetaceans associated with generalized lymphoid depletion. Similarly, chronic diseases and starvation are associated with a loss of functional lymphoid cells and decreased resistance against opportunistic infections. There is growing evidence for an immunotoxic effect of different environmental contaminants in whales and dolphins, as demonstrated in field studies. Furthermore, immunomodulatory properties of different persistent xenobiotics have been confirmed in cetacean lymphoid cells in vitro as well as in animal models in vivo. However, species-specific differences of the immune system and detoxification of xenobiotics between cetaceans and laboratory rodents have to be considered when interpreting these toxicological data for risk assessment in whales and dolphins.
Collapse
Affiliation(s)
- Andreas Beineke
- Department of Pathology, University of Veterinary Medicine, Bünteweg 17, 30559 Hannover, Germany
| | | | | | | |
Collapse
|
21
|
Balakrishna S, Lomnicki S, McAvey KM, Cole RB, Dellinger B, Cormier SA. Environmentally persistent free radicals amplify ultrafine particle mediated cellular oxidative stress and cytotoxicity. Part Fibre Toxicol 2009; 6:11. [PMID: 19374750 PMCID: PMC2676242 DOI: 10.1186/1743-8977-6-11] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Accepted: 04/17/2009] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Combustion generated particulate matter is deposited in the respiratory tract and pose a hazard to the lungs through their potential to cause oxidative stress and inflammation. We have previously shown that combustion of fuels and chlorinated hydrocarbons produce semiquinone-type radicals that are stabilized on particle surfaces (i.e. environmentally persistent free radicals; EPFRs). Because the composition and properties of actual combustion-generated particles are complex, heterogeneous in origin, and vary from day-to-day, we have chosen to use surrogate particle systems. In particular, we have chosen to use the radical of 2-monochlorophenol (MCP230) as the EPFR because we have previously shown that it forms a EPFR on Cu(II)O surfaces and catalyzes formation of PCDD/F. To understand the physicochemical properties responsible for the adverse pulmonary effects of combustion by-products, we have exposed human bronchial epithelial cells (BEAS-2B) to MCP230 or the CuO/silica substrate. Our general hypothesis was that the EPFR-containing particle would have greater toxicity than the substrate species. RESULTS Exposure of BEAS-2B cells to our combustion generated particle systems significantly increased reactive oxygen species (ROS) generation and decreased cellular antioxidants resulting in cell death. Resveratrol treatment reversed the decline in cellular glutathione (GSH), glutathione peroxidase (GPx), and superoxide dismutase (SOD) levels for both types of combustion-generated particle systems. CONCLUSION The enhanced cytotoxicity upon exposure to MCP230 correlated with its ability to generate more cellular oxidative stress and concurrently reduce the antioxidant defenses of the epithelial cells (i.e. reduced GSH, SOD activity, and GPx). The EPFRs in MCP230 also seem to be of greater biological concern due to their ability to induce lipid peroxidation. These results are consistent with the oxidizing nature of the CuO/silica ultrafine particles and the reducing nature and prolonged environmental and biological lifetimes of the EPFRs in MCP230.
Collapse
Affiliation(s)
- Shrilatha Balakrishna
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Slawo Lomnicki
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Kevin M McAvey
- Department of Chemistry, University of New Orleans, New Orleans, Louisiana, USA
| | - Richard B Cole
- Department of Chemistry, University of New Orleans, New Orleans, Louisiana, USA
| | - Barry Dellinger
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Stephania A Cormier
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| |
Collapse
|