1
|
Khandelwal D, Rana I, Mishra V, Ranjan KR, Singh P. Unveiling the impact of dyes on aquatic ecosystems through zebrafish - A comprehensive review. ENVIRONMENTAL RESEARCH 2024; 261:119684. [PMID: 39067802 DOI: 10.1016/j.envres.2024.119684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/20/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Dye industry plays an essential role in industrial development, contributing significantly to economic growth and progress. However, its rapid expansion has led to significant environmental concerns, especially water pollution and ecosystem degradation due to the discharge of untreated or inadequately treated dye effluents. The effluents introduce various harmful chemicals altering water quality, depleting oxygen levels, harming aquatic organisms, and disrupting food chains. Dye contamination can also persist in the environment for extended periods, leading to long-term ecological damage and threatening biodiversity. Therefore, the complex effects of dye pollutants on aquatic ecosystems have been comprehensively studied. Recently, zebrafish (Danio rerio) has proved to be an effective biomedical model for this study due to its transparent embryos allowing real-time observation of developmental processes and genetic proximity (approx. 87%) to humans for studying diverse biological responses. This review highlights the various toxicological effects of industrial dyes, including cardiovascular toxicity, neurotoxicity, genotoxicity, hepatotoxicity, and developmental toxicity. These effects have been observed at different developmental stages and dye concentrations in zebrafish. The review underscores that the structure, stability and chemical composition of dyes significantly influence toxicological impact, emphasizing the need for detailed investigation into dye degradation to better understand and mitigate the environmental and health risks posed by dye pollutants.
Collapse
Affiliation(s)
- Drishti Khandelwal
- Amity Institute of Click Chemistry Research and Studies, Amity University Uttar Pradesh, India; Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, New Delhi, India
| | - Ishika Rana
- Department of Chemistry, Amity Institute of Applied Sciences, Amity University Uttar Pradesh, Noida, India
| | - Vivek Mishra
- Amity Institute of Click Chemistry Research and Studies, Amity University Uttar Pradesh, India.
| | - Kumar Rakesh Ranjan
- Department of Chemistry, Amity Institute of Applied Sciences, Amity University Uttar Pradesh, Noida, India.
| | - Prashant Singh
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, New Delhi, India.
| |
Collapse
|
2
|
Abe FR, Dorta DJ, Gravato C, de Oliveira DP. Elucidating the effects of pure glyphosate and a commercial formulation on early life stages of zebrafish using a complete biomarker approach: All-or-nothing! THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170012. [PMID: 38246377 DOI: 10.1016/j.scitotenv.2024.170012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/12/2023] [Accepted: 01/06/2024] [Indexed: 01/23/2024]
Abstract
The search for new methods in the toxicology field has increased the use of early life stages of zebrafish (Danio rerio) as a versatile organism model. Here, we use early stages of zebrafish to evaluate glyphosate as pure active ingredient and within a commercial formulation in terms of oxidative stress. Biomarkers involved in the oxidative status were evaluated along with other markers of neurotoxicity, genotoxicity, cytotoxicity, energy balance and motor performance, and the selected tools were evaluated by its sensitivity in determining early-warning events. Zebrafish embryos exposed to glyphosate active ingredient and glyphosate-based formulation were under oxidative stress, but only the commercial formulation delayed the embryogenesis, affected the cholinergic neurotransmission and induced DNA damage. Both altered the motor performance of larvae at very low concentrations, becoming larvae hypoactive. The energy balance was also impaired, as embryos under oxidative stress had lower lipids reserves. Although data suggest that glyphosate-based formulation has higher toxicity than the active ingredient itself, the most sensitive biomarkers detected early-warning effects at very low concentrations of the active ingredient. Biochemical biomarkers of defense system and oxidative damage were the most sensitive tools, detecting pro-oxidant responses at very low concentrations, along with markers of motor performance that showed high sensitivity and high throughput, suitable for detecting early effects linked to neurotoxicity. Alterations on morphology during embryogenesis showed the lowest sensitivity, thus morphological alterations appeared after several alterations at biochemical levels. Tools evaluating DNA damage and cell proliferation showed mid-sensitivity, but low throughput, thus they could be used as complementary markers.
Collapse
Affiliation(s)
- Flavia Renata Abe
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, 14040-903 Ribeirão Preto, Brazil
| | - Daniel Junqueira Dorta
- Department of Chemistry, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, 14040-901 Ribeirão Preto, Brazil; Institute of Science and Technology for Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactive Substances (INCT-DATREM), Brazil
| | - Carlos Gravato
- Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisbon, Portugal
| | - Danielle Palma de Oliveira
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, 14040-903 Ribeirão Preto, Brazil; Institute of Science and Technology for Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactive Substances (INCT-DATREM), Brazil.
| |
Collapse
|
3
|
Rialto TCR, Marino RV, Abe FR, Dorta DJ, Oliveira DP. Comparative Assessment of the Toxicity of Brominated and Halogen-Free Flame Retardants to Zebrafish in Terms of Tail Coiling Activity, Biomarkers, and Locomotor Activity. TOXICS 2023; 11:732. [PMID: 37755743 PMCID: PMC10534375 DOI: 10.3390/toxics11090732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/28/2023]
Abstract
BDE-47, a flame retardant that is frequently detected in environmental compartments and human tissues, has been associated with various toxic effects. In turn, information about the effects of aluminum diethyl-phosphinate (ALPI), a halogen-free flame retardant from a newer generation, is limited. This study aims to assess and compare the toxicity of BDE-47 and ALPI to zebrafish by analyzing the tail coiling, locomotor, acetylcholinesterase activities, and oxidative stress biomarkers. At 3000 µg/L BDE-47, the coiling frequency increased at 26-27 h post-fertilization (hpf), but the burst activity (%) and mean burst duration (s) did not change significantly. Here, we considered that the increased coiling frequency is a slight neurotoxic effect because locomotor activity was impaired at 144 hpf and 300 µg/L BDE-47. Moreover, we hypothesized that oxidative stress could be involved in the BDE-47 toxicity mechanisms. In contrast, only at 30,000 µg/L did ALPI increase the catalase activity, while the motor behavior during different developmental stages remained unaffected. On the basis of these findings, BDE-47 is more toxic than ALPI.
Collapse
Affiliation(s)
- Taisa Carla Rizzi Rialto
- Department of Clinical, Toxicological and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-903, SP, Brazil; (T.C.R.R.); (F.R.A.)
| | - Renan Vieira Marino
- Department of Clinical, Toxicological and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-903, SP, Brazil; (T.C.R.R.); (F.R.A.)
| | - Flavia Renata Abe
- Department of Clinical, Toxicological and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-903, SP, Brazil; (T.C.R.R.); (F.R.A.)
| | - Daniel Junqueira Dorta
- Department of Chemistry, Faculty of Philosophy Science and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, SP, Brazil;
- National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Araraquara 14800-900, SP, Brazil
| | - Danielle Palma Oliveira
- Department of Clinical, Toxicological and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-903, SP, Brazil; (T.C.R.R.); (F.R.A.)
- National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Araraquara 14800-900, SP, Brazil
| |
Collapse
|
4
|
Pérez-Aranda M, Pajuelo E, Navarro-Torre S, Pérez-Palacios P, Begines B, Rodríguez-Llorente ID, Torres Y, Alcudia A. Antimicrobial and Antibiofilm Effect of 4,4'-Dihydroxy-azobenzene against Clinically Resistant Staphylococci. Antibiotics (Basel) 2022; 11:antibiotics11121800. [PMID: 36551456 PMCID: PMC9774766 DOI: 10.3390/antibiotics11121800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
The spread of antibiotic resistance among human and animal pathogens is one of the more significant public health concerns. Moreover, the restrictions on the use of particular antibiotics can limit the options for the treatment of infections in veterinary clinical practice. In this context, searching for alternative antimicrobial substances is crucial nowadays. In this study, 4,4'-dihydroxy-azobenzene (DHAB) was tested for its potential in vitro as an antimicrobial agent against two relevant human and animal pathogens, namely Staphylococcus aureus and Staphylococcus pseudintermedius. The values of minimal inhibitory concentration (MIC) were 64 and 32 mg/L respectively, and they comparable to other azo compounds of probed antimicrobial activity. In addition, the minimal bactericidal concentrations (MCB) were 256 and 64 mg/L. The mechanism by which DHAB produces toxicity in staphylococci has been investigated. DHAB caused membrane damage as revealed by the increase in thiobarbituric acid reactive substances (TBARS) such as malondialdehyde. Furthermore, differential induction of the enzymes peroxidases and superoxide dismutase in S. aureus and S. pseudintermedius suggested their prevalent role in ROS-scavenging due to the oxidative burst induced by this compound in either species. In addition, this substance was able to inhibit the formation of biofilms by both bacteria as observed by colorimetric tests and scanning electron microscopy. In order to assess the relevance of DHAB against clinical strains of MRSA, 10 clinical isolates resistant to either methicillin or daptomycin were assayed; 80% of them gave values of CMI and CMB similar to those of the control S. aureus strain. Finally, cutaneous plasters containing a composite formed by an agar base supplemented with DHAB were designed. These plasters were able to inhibit in vitro the growth of S. aureus and S. pseudintermedius, particularly the later, and this suggests that this substance could be a promising candidate as an alternative to antibiotics in the treatment of animal skin infections, as it has been proven that the toxicity of this substance is very low particularly at a dermal level.
Collapse
Affiliation(s)
- María Pérez-Aranda
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, c/Profesor García González, 2, 41012 Sevilla, Spain
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, c/Profesor García González, 2, 41012 Sevilla, Spain
| | - Eloísa Pajuelo
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, c/Profesor García González, 2, 41012 Sevilla, Spain
- Correspondence: (E.P.); (A.A.); Tel.: +34-954556924 (E.P.); +34-954556740 (A.A.)
| | - Salvadora Navarro-Torre
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, c/Profesor García González, 2, 41012 Sevilla, Spain
| | - Patricia Pérez-Palacios
- UGC Enfermedades Infecciosas, Microbiología Clínica y Medicina Preventiva, Instituto de Biomedicina de Sevilla IBIS, Hospital Universitario Virgen Macarena, CSIC, Universidad de Sevilla, 41009 Seville, Spain
| | - Belén Begines
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, c/Profesor García González, 2, 41012 Sevilla, Spain
| | - Ignacio D. Rodríguez-Llorente
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, c/Profesor García González, 2, 41012 Sevilla, Spain
| | - Yadir Torres
- Departamento de Ingeniería y Ciencia de los Materiales y del Transporte, Escuela Politécnica Superior, Universidad de Sevilla, Virgen de África 7, 41011 Sevilla, Spain
| | - Ana Alcudia
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, c/Profesor García González, 2, 41012 Sevilla, Spain
- Correspondence: (E.P.); (A.A.); Tel.: +34-954556924 (E.P.); +34-954556740 (A.A.)
| |
Collapse
|
5
|
Hu G, Wang H, Shi H, Wan Y, Zhu J, Li X, Wang Q, Wang Y. Mixture toxicity of cadmium and acetamiprid to the early life stages of zebrafish (Danio rerio). Chem Biol Interact 2022; 366:110150. [PMID: 36084721 DOI: 10.1016/j.cbi.2022.110150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/14/2022] [Accepted: 09/01/2022] [Indexed: 11/26/2022]
Abstract
Aquatic organisms are often exposed to contaminants that occur in the natural environment. Nevertheless, the toxic effects of chemical combinations on aquatic animals and their underlying toxic mechanisms for dealing with such exposures are still not fully understood. In this study, we investigated the combined effects of cadmium (Cd) and acetamiprid (ACE) on zebrafish (Danio rerio) using various endpoints. Cd exhibited a 96-h LC50 value of 4.77 mg a.i. L-1 against zebrafish embryos, which was lower than that of ACE (152.6 mg a.i. L-1). In contrast, the 96-h LC50 value of the mixture of Cd and ACE was 157.4 mg a.i. L-1. The mixture of Cd and ACE had a synergetic effect on the organisms. The activities of T-SOD, POD, and CarE were significantly changed in most exposures compared with the control group. In addition, five genes (TRα, crh, Tnf, IL, and P53) involved in oxidative stress, cellular apoptosis, the immune system, and the endocrine system exhibited more remarkable changes when exposed to chemical mixtures relative to their individual counterparts, demonstrating variations in the cellular and mRNA expression levels induced by the mixture exposure of ACE and Cd during the embryonic development of zebrafish. Therefore, these results indicated that the combined pollution of ACE and Cd could be a potentially hazardous factor, and further investigation is necessary for the safety evaluation and application of ACE. Moreover, further investigation on the combined toxicities of various chemicals must be performed to determine the chemical mixtures with synergistic responses.
Collapse
Affiliation(s)
- Guixian Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Hao Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Haiyan Shi
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, 210095, Jiangsu, China
| | - Yujie Wan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Jiahong Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Xue Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Qiang Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China.
| | - Yanhua Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China.
| |
Collapse
|
6
|
Costa G, Fernandes A, Santos T, Brito L, Rodrigues L, Valadares M, Felzenszwalb I, Ferraz E, Morais Leme D, Oliveira G. In vitro and in vivo cytotoxicity assessment of glyphosate and imazethapyr-based herbicides and their association. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2022; 85:481-493. [PMID: 35189772 DOI: 10.1080/15287394.2022.2036281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Resistance to glyphosate herbicide has initiated usage of combined application of herbicides as a weed control measure. Imazethapyr-based herbicides associated with glyphosate herbicide seem to be an alternative to suppress weed resistance. The aim of this study was to examine the adverse effects of Glyphosate Atanor 48® (ATN) and Imazethapyr Plus Nortox® (IMZT) formulations in both single forms and mixtures using HepG2 cells and zebrafish early-life stages models. Data demonstrated cytotoxicity due to exposure to ATN, IMZT for both models, as follows: (1) ATN (0.5 mg/L), IMZT (5 mg/L), and M3 (0.05 mg/L ATN + 5 mg/L IMZT) increased cytotoxicity by disturbing the mitochondrial activity of HepG2 cells 24 hr after exposure; (2) ATN and IMZT (5 mg/L), and M3 (0.05 mg/L ATN + 5 mg/L IMZT) also decreased the integrity of the membrane of HepG2 cells after 24 hr incubation; (3) only ATN and IMZT (5 mg/L) in their single forms diminished the mitochondrial potential of zebrafish; (4) ATN (single form) at 0.5 mg/L induced apoptosis in zebrafish larvae. In conclusion, these herbicides in their single forms appeared to produce greater cytotoxicity to HepG2 cells and zebrafish compared to the herbicide mixtures.
Collapse
Affiliation(s)
- Gessyca Costa
- Environmental Toxicology Research Laboratory (EnvTox), Faculty of Pharmacy, Federal University of Goiás (UFG), Goiânia, Brazil
| | - Andréia Fernandes
- Department of Biophysics and Biometry, Institute of Biology Roberto Alcantara Gomes, State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | - Thaís Santos
- Laboratory of Teaching and Research in Toxicology in Vitro (ToxIn), Faculty of Pharmacy, Federal University of Goiás (UFG), Goiânia, Brazil
| | - Lara Brito
- Environmental Toxicology Research Laboratory (EnvTox), Faculty of Pharmacy, Federal University of Goiás (UFG), Goiânia, Brazil
- Laboratory of Teaching and Research in Toxicology in Vitro (ToxIn), Faculty of Pharmacy, Federal University of Goiás (UFG), Goiânia, Brazil
| | - Laís Rodrigues
- Environmental Toxicology Research Laboratory (EnvTox), Faculty of Pharmacy, Federal University of Goiás (UFG), Goiânia, Brazil
| | - Marize Valadares
- Laboratory of Teaching and Research in Toxicology in Vitro (ToxIn), Faculty of Pharmacy, Federal University of Goiás (UFG), Goiânia, Brazil
| | - Israel Felzenszwalb
- Department of Biophysics and Biometry, Institute of Biology Roberto Alcantara Gomes, State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | - Elisa Ferraz
- Department of Pharmacy and Pharmaceutical Administration, Pharmacy College, Fluminense Federal University (UFF), Niterói, Brazil
- Institute of Chemistry, National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), UNESP, Araraquara, Brazil
| | - Daniela Morais Leme
- Institute of Chemistry, National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), UNESP, Araraquara, Brazil
- Departament of Genetics, Federal University of Paraná (UFPR), Curitiba, Brazil
| | - Gisele Oliveira
- Environmental Toxicology Research Laboratory (EnvTox), Faculty of Pharmacy, Federal University of Goiás (UFG), Goiânia, Brazil
- Institute of Chemistry, National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), UNESP, Araraquara, Brazil
| |
Collapse
|
7
|
Commercial Red Food Dyes Preparations Modulate the Oxidative State in Three Model Organisms (Cucumis sativus, Artemia salina, and Danio rerio). ENVIRONMENTS 2022. [DOI: 10.3390/environments9050063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The growing environmental spreading of food synthetic dyes and bio-colors have the potential for altering organisms’ redox states. Here, three model species for aquatic pollution trials, Cucumis sativus seeds, Artemia salina cysts, and Danio rerio embryos, were short-term exposed to a fixed concentration of the artificial red E124, and two red bio-colors, cochineal E120, and vegan red (VEGR). In the animal models, we evaluated the total reactive oxygen species (ROS) and the susceptibility to in vitro oxidative stress, and in C. sativus, H2O2 production and antioxidant capacity. We also measured organismal performance indices (routine oxygen consumption in the animal models, dark oxygen consumption, and photosynthetic efficiency in C. sativus). In C. sativus, only E124 increased ROS and affected dark oxygen consumption and photosynthetic efficiency, while all dyes enhanced the antioxidant defenses. In the A. salina nauplii, all dyes increased ROS, while E120 and E124 reduced the susceptibility to oxidative stress. In D. rerio, treatments did not affect ROS content, and reduced oxidative stress susceptibility. Our data show that red food dyes affect the redox state of the developing organisms, in which ROS plays a significant role. We suggest a potentially toxic role for red food dyes with environmentally relevant consequences.
Collapse
|
8
|
Wasel O, Thompson KM, Gao Y, Godfrey AE, Gao J, Mahapatra CT, Lee LS, Sepúlveda MS, Freeman JL. Comparison of zebrafish in vitro and in vivo developmental toxicity assessments of perfluoroalkyl acids (PFAAs). JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2021; 84:125-136. [PMID: 33143551 DOI: 10.1080/15287394.2020.1842272] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Perfluoroalkyl acids (PFAAs) are persistent environmental contaminants that are associated with various adverse health outcomes. Perfluorooctanoic acid (PFOA) is one of the most prominently detected PFAAs in the environment, which is now replaced with shorter chain carbon compounds including perfluorohexanoic acid (PFHxA) and perfluorobutyric acid (PFBA). The aim of this study was to compare the toxicity of four PFAAs as a function of chain length and head group (carboxylate versus sulfonate) with in vitro and in vivo zebrafish assessments, which were subsequently compared to other cell and aquatic models. Mortality rate increased with chain length (PFOA > PFHxA ≫ PFBA) in both whole embryo/larvae and embryonic cell models. The sulfonate group enhanced toxicity with perfluorobutane sulfonate (PFBS) showing higher toxicity than PFBA and PFHxA in both larvae and cells. Toxicity trends were similar among different aquatic models, but sensitivities varied. Discrepancies with other zebrafish studies were confirmed to be associated with a lack of neutralization of acidic pH of dosing solutions in these other investigations, demonstrating the need for rigor in reporting pH of exposure solutions in all experiments. The zebrafish embryonic cell line was also found to be similar to most other cell lines regardless of exposure length. Overall, results agree with findings in other cell lines and organisms where longer chain length and sulfonate group increase toxicity, except in investigations not neutralizing the exposure solutions for these acidic compounds.
Collapse
Affiliation(s)
- Ola Wasel
- School of Health Sciences, Purdue University , West Lafayette, IN, USA
| | | | - Yu Gao
- Department of Forestry and Natural Resources, Purdue University , West Lafayette, IN, USA
- College of Animal Science and Technology, Yunnan Agricultural University , Kunming, China
| | - Amy E Godfrey
- Department of Forestry and Natural Resources, Purdue University , West Lafayette, IN, USA
| | - Jiejun Gao
- Department of Forestry and Natural Resources, Purdue University , West Lafayette, IN, USA
| | - Cecon T Mahapatra
- Department of Forestry and Natural Resources, Purdue University , West Lafayette, IN, USA
| | - Linda S Lee
- Department of Agronomy, Purdue University , West Lafayette, IN, USA
| | - Maria S Sepúlveda
- Department of Forestry and Natural Resources, Purdue University , West Lafayette, IN, USA
| | | |
Collapse
|
9
|
Mini CA, Dorta DJ, Maria-Engler SS, Oliveira DP. Immortalized equivalent human epidermis as a platform to evaluation hair dyes toxicity: Efficiency comparison between 3D and monolayer culture. Chem Biol Interact 2020; 330:109227. [PMID: 32818478 DOI: 10.1016/j.cbi.2020.109227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/09/2020] [Accepted: 08/11/2020] [Indexed: 01/13/2023]
Abstract
The use of 3D models in various scientific applications is becoming more popular to replace traditional monolayers models. In this work, we used a three-dimensional in-house model of epidermis using HaCaT immortalized cells to evaluate the dermal toxicity induced by Basic Blue 99 and Basic Red 51, both present in commercial hair dye formulations. Our data show that cells cultured in the 3D model respond differently to those cultured in monolayer. Basic Red 51 dye induces apoptosis an DNA breaks in both models, however, these effects is more pronounced in cells cultured in monolayer. The toxic mode of action of Basic Blue 99 seems to be the induction of cell death, without genotoxic effects, but while the necrotic pathway is observed in HaCaT monolayer cell culture, was apoptosis seen in the Equivalent Human Epidermis (EHE) model. We could also confirm that cells in EHE model, an environment that could better mimic human effects, react differently to chemical stressors than the cells cultivated in 2D.
Collapse
Affiliation(s)
- C A Mini
- Faculty of Pharmaceutical Sciences of Ribeirão Preto- Laboratory of Ecotoxicology and Human Toxicology, University of São Paulo, Brazil
| | - D J Dorta
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto - Departamento de Química, Brazil
| | - S S Maria-Engler
- Faculty of Pharmaceutical Sciences- Laboratory of Skin Biology and Melanoma Group, University of São Paulo, Brazil
| | - D P Oliveira
- Faculty of Pharmaceutical Sciences of Ribeirão Preto- Laboratory of Ecotoxicology and Human Toxicology, University of São Paulo, Brazil.
| |
Collapse
|
10
|
Figueroa D, Signore A, Araneda O, Contreras HR, Concha M, García C. Toxicity and differential oxidative stress effects on zebrafish larvae following exposure to toxins from the okadaic acid group. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2020; 83:573-588. [PMID: 32686606 DOI: 10.1080/15287394.2020.1793046] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Okadaic acid-group (OA-group) is a set of lipophilic toxins produced only in seawater by species of the Dinophysis and Prorocentrum genera, and characterized globally by being associated with harmful algal blooms (HABs). The diarrhetic shellfish poisoning toxins okadaic acid (OA) and dinophysistoxin-1 (DTX-1) are the most prevalent toxic analogues making up the OA-group, which jeopardize environmental safety and human health through consumption of hydrobiological organisms contaminated with these toxins that produce diarrhetic shellfish poisoning (DSP) syndrome in humans. Consequently, a regulatory limit of 160 μg of OA-group/kg was established for marine resources (bivalves). The aim of this study was to investigate effects varying concentrations of 1-15 μg/ml OA or DTX-1 on toxicity, development, and oxidative damage in zebrafish larvae (Danio rerio). After determining the lethal concentration 50 (LC50) in zebrafish larvae of 10 and 7 μg/ml (24 h) and effective concentration 50 (EC50) of 8 and 6 μg/ml (24 h), different concentrations (5, 6.5, or 8 μg/ml of OA and 4, 4.5, or 6 μg/ml of DTX-1) were used to examine the effects of these toxins on oxidative damage to larvae at different time points between 24 and 120 hpf. Macroscopic evaluation during the exposure period showed alterations in zebrafish including pericardial edema, cyclopia, shortening in the anteroposterior axis, and developmental delay. The activity levels of biochemical biomarkers superoxide dismutase (SOD) and catalase (CAT) demonstrated a concentration-dependent decrease while glutathione peroxidase (GPx) and glutathione reductase (GR) were markedly elevated. In addition, increased levels of oxidative damage (malondialdehyde and carbonyl content) were detected following toxin exposure. Data demonstrate that high concentrations of OA and DTX-1produced pathological damage in the early stages of development <48 h post-fertilization (hpf) associated with oxidative damage.
Collapse
Affiliation(s)
- Diego Figueroa
- Laboratory of Marine Toxins, Physiology and Biophysics Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad De Chile , Santiago, Chile
| | - Ailen Signore
- Anatomy and Developmental Biology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad De Chile , Santiago, Chile
| | - Oscar Araneda
- Integrative Laboratory of Biomechanics and Physiology of Effort, Kinesiology School, Faculty of Medicine, Universidad De Los Andes , Santiago, Chile
| | - Héctor R Contreras
- Department of Basic and Clinical Oncology, Faculty of Medicine, Universidad De Chile , Santiago, Chile
| | - Miguel Concha
- Anatomy and Developmental Biology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad De Chile , Santiago, Chile
| | - Carlos García
- Laboratory of Marine Toxins, Physiology and Biophysics Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad De Chile , Santiago, Chile
| |
Collapse
|
11
|
The interaction methylene blue and glutathione-S-transferase purified from human erythrocytes. JPC-J PLANAR CHROMAT 2020. [DOI: 10.1007/s00764-020-00030-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
12
|
Abe FR, Machado AL, Soares AMVM, Oliveira DPD, Pestana JLT. Life history and behavior effects of synthetic and natural dyes on Daphnia magna. CHEMOSPHERE 2019; 236:124390. [PMID: 31344623 DOI: 10.1016/j.chemosphere.2019.124390] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/18/2019] [Accepted: 07/17/2019] [Indexed: 06/10/2023]
Abstract
Azo dyes are the largest class of dyes extensively used by industries despite their mutagenic potential for humans. As such, natural dyes have been reemerging as an important alternative to human safety. However, limited studies have focused on the effect of dyes on the environment, thus their ecotoxicological investigation is imperative. Here, we aimed to evaluate toxic effects induced by the synthetic azo dye Basic Red 51 (BR51) in comparison with natural dye erythrostominone (Ery) in the microcrustacean Daphnia magna, a standard organism used to assess the risk of chemicals to aquatic organisms. The colorless product formed after the photodegradation of Ery (DEry) was also evaluated, addressing an easy and low cost alternative for industrial effluent treatments. The results showed that both dyes are acutely toxic to D. magna. BR51 and Ery reduced the intrinsic rate of D. magna population increase, which generated fewer neonates per brood. BR51 also increased daphnids respiration rates. In contrast, DEry did not alter any of the analyzed parameters. No locomotor changes were observed when daphnids were exposed to sub-lethal concentrations of Ery or BR51. These results indicate that both dyes can induce deleterious consequences for daphnids including population level effects, but the natural dye Ery presents 100-fold lower toxicity in comparison with the azo dye BR51. Also, that photodegradation of Ery is an efficient method to reduce and prevent previously observed toxic effects, suggesting an inexpensive, fast and easy alternative for treatment of effluents containing this natural dye.
Collapse
Affiliation(s)
- Flavia R Abe
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, 14040-903, Ribeirão Preto, São Paulo, Brazil; Department of Biology and Centre of Environmental and Marine Studies, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Ana L Machado
- Department of Biology and Centre of Environmental and Marine Studies, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Amadeu M V M Soares
- Department of Biology and Centre of Environmental and Marine Studies, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Danielle P de Oliveira
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, 14040-903, Ribeirão Preto, São Paulo, Brazil.
| | - João L T Pestana
- Department of Biology and Centre of Environmental and Marine Studies, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
13
|
Elia AC, Prearo M, Dörr AJM, Pacini N, Magara G, Brizio P, Gasco L, Abete MC. Effects of astaxanthin and canthaxanthin on oxidative stress biomarkers in rainbow trout. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2019; 82:760-768. [PMID: 31370749 DOI: 10.1080/15287394.2019.1648346] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Farmed trout are commonly fed carotenoid-enriched diets during the finishing period to acquire typical red-to-pink flesh color in salmonid muscle. The aim of this study was to examine the effects of two xanthophylls, astaxanthin (Ax) or canthaxanthin (Cx), administered individually or in combination, on oxidative stress biomarkers in kidney and liver of rainbow trout. Specimens were fed Ax (75 mg/kg) or Cx (25 mg/kg) individually or in combination in the diets for 8 weeks. Changes in concentration of oxidative stress biomarkers, including total glutathione, superoxide dismutase, glutathione peroxidase, glutathione reductase, and glutathione S-transferase, were recorded in Ax- and Cx-dosed trout. These two carotenoids, predominantly Cx, initiated enzymatic responses in rainbow trout. It is noteworthy that lipid peroxidation processes were not apparent in all Ax or Cx-dosed trout. Further, both combined xanthophylls did not exert significant synergistic effects in liver and kidney. Biomarker responses were generally altered in both tissues through the 4 and 8 weeks suggesting that different time-dependent mechanisms led to enhanced antioxidant defense in Ax and/or Cx-fed trout. Data demonstrated that these two xanthophylls did not exert detrimental effects on rainbow trout.
Collapse
Affiliation(s)
- Antonia Concetta Elia
- Department of Chemistry, Biology and Biotechnology, University of Perugia , Perugia , Italy
| | - Marino Prearo
- Veterinary Medical Research Institute for Piedmont , Torino , Italy
| | | | - Nicole Pacini
- Department of Chemistry, Biology and Biotechnology, University of Perugia , Perugia , Italy
| | - Gabriele Magara
- Department of Chemistry, Biology and Biotechnology, University of Perugia , Perugia , Italy
| | - Paola Brizio
- Veterinary Medical Research Institute for Piedmont , Torino , Italy
| | - Laura Gasco
- Department of Agricultural, Forest and Food Sciences, University of Torino , Grugliasco , Italy
| | | |
Collapse
|
14
|
Electrochemical DNA Sensor Based on Carbon Black-Poly(Neutral Red) Composite for Detection of Oxidative DNA Damage. SENSORS 2018; 18:s18103489. [PMID: 30332841 PMCID: PMC6211002 DOI: 10.3390/s18103489] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 10/11/2018] [Accepted: 10/14/2018] [Indexed: 02/08/2023]
Abstract
Voltammetric DNA sensor has been proposed on the platform of glassy carbon electrode covered with carbon black with adsorbed pillar[5]arene molecules. Electropolymerization of Neutral Red performed in the presence of native or oxidatively damaged DNA resulted in formation of hybrid material which activity depended on the DNA conditions. The assembling of the surface layer was confirmed by scanning electron microscopy and electrochemical impedance spectroscopy. The influence of DNA and pillar[5]arene on redox activity of polymeric dye was investigated and a significant increase of the peak currents was found for DNA damaged by reactive oxygen species generated by Cu2+/H2O2 mixture. Pillar[5]arene improves the electron exchange conditions and increases the response and its reproducibility. The applicability of the DNA sensor developed was shown on the example of ascorbic acid as antioxidant. It decreases the current in the concentration range from 1.0 μM to 1.0 mM. The possibility to detect antioxidant activity was qualitatively confirmed by testing tera infusion. The DNA sensor developed can find application in testing of carcinogenic species and searching for new antitumor drugs.
Collapse
|
15
|
Brito LB, Garcia LF, Caetano MP, Lobón GS, Teles de Oliveira M, de Oliveira R, Sapateiro Torres IM, Yepez A, Vaz BG, Luque R, Grisolia CK, Valadares MC, de Souza Gil E, Rodrigues de Oliveira GA. Electrochemical remediation of amoxicillin: detoxification and reduction of antimicrobial activity. Chem Biol Interact 2018; 291:162-170. [PMID: 29920285 DOI: 10.1016/j.cbi.2018.06.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 05/18/2018] [Accepted: 06/13/2018] [Indexed: 11/24/2022]
Abstract
Amoxicillin (AMX) is one of the most commonly prescribed antibiotics around the world to treat and prevent several diseases in both human and veterinary medicine. Incomplete removal of AMX during wastewater treatment contributes to its presence in water bodies and drinking water. AMX is an emerging contaminant since its impact on the environment and human health remains uncertain. This contribution was aimed to evaluate the electrochemical oxidation (EO) of AMX using different anodes in tap water, NaCl or Na2SO4 solutions and to evaluate the potential toxicity of remaining AMX and its by-products on zebrafish early-life stages. Chemical intermediates generated after EO were determined by mass spectrometry and their resulting antimicrobial activity was evaluated. AMX did not induce significant mortality in zebrafish during extended exposure but affected zebrafish development (increased body length) from 6.25 mg/L to 25 mg/L and inhibited enzymatic biomarkers. Carbon modified with titanium oxide (TiO2@C) anode achieved complete AMX removal in just a few minutes and efficiency of the supported electrolytes occurred in the following order: 0.1 M NaCl > 0.1 M Na2SO4 > 0.01 M NaCl > tap water. The order of potential toxicity to zebrafish early life-stages related to lethal and sublethal effects was as follows: 0.1 M Na2SO4 > 0.1 M NaCl >0.01 M NaCl = tap water. Additionally, the EO of AMX using TiO2@C electrode with 0.01 M NaCl was able to inhibit the antimicrobial activity of AMX, reducing the possibility of developing bacterial resistance.
Collapse
Affiliation(s)
- Lara Barroso Brito
- Faculty of Pharmacy, Federal University of Goiás (UFG), Goiânia, Goiás, Brazil
| | | | | | - Germán Sanz Lobón
- Chemistry Institute, Federal University of Goiás, Goiânia, Goiás, Brazil
| | | | - Rhaul de Oliveira
- Faculty of Pharmaceutical Sciences, University of São Paulo, USP, São Paulo, SP, Brazil
| | | | - Alfonso Yepez
- Department of Organic Chemistry, University of Córdoba, Córdoba, Andaluzia, Spain
| | - Boniek Gontijo Vaz
- Chemistry Institute, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Rafael Luque
- Department of Organic Chemistry, University of Córdoba, Córdoba, Andaluzia, Spain
| | - Cesar Koppe Grisolia
- Biological Sciences Institute, University of Brasília (UnB), Brasília, Distrito Federal, Brazil
| | | | - Eric de Souza Gil
- Faculty of Pharmacy, Federal University of Goiás (UFG), Goiânia, Goiás, Brazil
| | - Gisele Augusto Rodrigues de Oliveira
- Faculty of Pharmacy, Federal University of Goiás (UFG), Goiânia, Goiás, Brazil; National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (CNPq: INCT-DATREM), UNESP, Institute of Chemistry, Araraquara, SP, Brazil.
| |
Collapse
|
16
|
Leme DM, Sehr A, Grummt T, Gonçalves JP, Jacomasso T, Winnischofer SMB, Potrich FB, Oliveira CCD, Trindade EDS, de Oliveira DP. In vitro characterization of cutaneous immunotoxicity of immortalized human keratinocytes (HaCaT) exposed to reactive and disperse textile dyes. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2018; 81:589-603. [PMID: 29714641 DOI: 10.1080/15287394.2018.1464981] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 04/11/2018] [Indexed: 06/08/2023]
Abstract
Several synthetic dyes are used by textile industry for supplying the market of colored clothes. However, these chemicals have been associated with a variety of adverse human health effects, including textile dermatitis. Thus, there is a growing concern to identify textile dyes potentially as skin immunotoxicants. The aim of this in vitro study was to characterize the immunotoxic potential of reactive (Reactive Green 19 [RG19], Reactive Blue 2 [RB2], Reactive Black 5 [RB5]) and disperse (Disperse Red 1 [DR1]) textile dyes using a dermal cell line. For this purpose, a cell-based approach was conducted with immortalized human keratinocytes (KC) (HaCaT) using selected biomarkers of cutaneous inflammation including modulation of matrix metalloproteinases (MMP), oxidative stress such as reactive oxygen species (ROS) generation, and inflammatory cytokine profile. DR1 was the only dye able to trigger an immune response such as release of IL-12 cytokine, a potent co-stimulator of T helper 1 cell, which may be considered as a skin immunotoxicant. The reactive dyes including RB5 that were previously reported as skin sensitizers failed to induce inflammatory reactions under the conditions tested. The reactive dyes studied may pose a risk to human KC by induction of effects related to modulation of MMP-2 (RB5) and -9 (RB5 and RB2) and generation of ROS (RG19 and RB2). Thus, all these dyes need to be used with caution to avoid undesirable effects to consumers who may be exposed dermally.
Collapse
Affiliation(s)
- Daniela Morais Leme
- a Departamento de Genética , Universidade Federal do Paraná , Curitiba , PR , Brasil
| | - Andrea Sehr
- b Federal Environment Agency, Section Drinking Water and Swimming Pool Water Toxicology , Federal Environment Agency (UBA), Bad Elster Branch , Bad Elster , Germany
| | - Tamara Grummt
- b Federal Environment Agency, Section Drinking Water and Swimming Pool Water Toxicology , Federal Environment Agency (UBA), Bad Elster Branch , Bad Elster , Germany
| | | | - Thiago Jacomasso
- d Departamento de Bioquímica , Universidade Federal do Paraná , Curitiba , PR , Brasil
| | | | | | | | | | - Danielle Palma de Oliveira
- e Faculdade de Ciências Farmacêuticas de Ribeirão Preto , Universidade de São Paulo , Ribeirão Preto , SP , Brasil
| |
Collapse
|
17
|
Abe FR, Soares AMVM, Oliveira DPD, Gravato C. Toxicity of dyes to zebrafish at the biochemical level: Cellular energy allocation and neurotoxicity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 235:255-262. [PMID: 29291525 DOI: 10.1016/j.envpol.2017.12.020] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 11/21/2017] [Accepted: 12/06/2017] [Indexed: 06/07/2023]
Abstract
Dyes are widely distributed worldwide, and can be found in wastewaters resulting from industrial or urban effluents. Dyes are of particular concern as contaminants of the aquatic environment, since their toxicity remain poorly understood. Thus, the current study was designed to assess the effects induced by the synthetic azo dye Basic Red 51 (BR51) and by the natural naphthoquinone dye erythrostominone (ERY) on zebrafish early life stages (Danio rerio) at different biological organization levels, i.e., studying how changes in biochemical parameters of important physiological functions (neurotransmission and cellular energy allocation) may be associated with behavior alterations (swimming activity). This approach was also used to assess the effects of ERY after its photodegradation resulting in a colorless product(s) (DERY). Results showed that after 96 h exposure to BR51 and Ery, zebrafish embryos consumed less energy (LOEC = 7.5 mg/L), despite the unaltered levels of available energy (carbohydrates, lipids and proteins). Hence, cellular energy allocation (CEA) was significantly increased. On the other hand, only ERY decreased the acetylcholinesterase activity (LOEC = 15 mg/L). Despite that, zebrafish larvae exposed to both dyes until 144 h were less active. In contrast, DERY did not affect any parameter measured. These results indicate an association between a decrease consumption of energy and decrease swimming activity resulting from an environmental stress condition, independently of the neurotoxicity of the dyes. Degradation of ERY by light prevented all toxic effects previously observed, suggesting a cheap, fast and easy alternative treatment of effluents containing this natural dye. All tools assessed in our current study were sensitive as early-warning endpoints of dyes toxicity on zebrafish early life stages, and suggest that the CEA assay might be useful to predict effects on locomotor activity when cholinergic damage is absent.
Collapse
Affiliation(s)
- Flavia R Abe
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, 14040-903, Ribeirão Preto, São Paulo, Brazil; Department of Biology and CESAM, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Amadeu M V M Soares
- Department of Biology and CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Danielle P de Oliveira
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, 14040-903, Ribeirão Preto, São Paulo, Brazil
| | - Carlos Gravato
- Faculty of Sciences and CESAM, University of Lisboa, 1749-016, Campo Alegre, Lisboa, Portugal
| |
Collapse
|
18
|
Nepal MR, Kang Y, Kang MJ, Nam DH, Jeong TC. A β-galactosidase-expressing E. coli culture as an alternative test to identify skin sensitizers and non-sensitizers. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2018; 81:288-301. [PMID: 29473800 DOI: 10.1080/15287394.2018.1440187] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Although the Organization for Economic Cooperation and Development (OECD) has adopted several in vitro methods with reasonable predictive capacity, alternative methods for identifying skin sensitizers and non-sensitizers with reliability and simplicity are still required for more efficient and economic prediction. The present study was to design an in vitro system with the use of a β-galactosidase-expressing E. coli culture for simpler but sufficiently accurate classification of skin sensitizers and non-sensitizers. A LacZ gene-containing E. coli strain that is capable of producing β-galactosidase enzyme was induced by isopropyl β-D-1-thiogalactopyranoside with concomitant treatment with test chemicals. After 6-hr incubation, cells were lysed and β-galactosidase enzyme activity was monitored colorimetrically by using O-nitrophenyl-D-galactopyranoside as a substrate. Following optimization of several experimental conditions, 22 skin sensitizers and 11 non-sensitizers were examined to assess predictive capacity of this method. The results indicated that predictivity was as follows: 90.9% sensitivity, 81.8% specificity, and 87.9% accuracy, when 17.3% of control activity was used as the cut-off value to separate sensitizers from non-sensitizers. Data suggested that the current bacterial system expressing β-galactosidase may serve as a useful alternative test for classifying skin sensitizers and non-sensitizers, without the utilization of animals or mammalian cell cultures.
Collapse
Affiliation(s)
- Mahesh Raj Nepal
- a College of Pharmacy , Yeungnam University , Gyeongsan , South Korea
| | - Youra Kang
- a College of Pharmacy , Yeungnam University , Gyeongsan , South Korea
| | - Mi Jeong Kang
- a College of Pharmacy , Yeungnam University , Gyeongsan , South Korea
| | - Doo Hyun Nam
- a College of Pharmacy , Yeungnam University , Gyeongsan , South Korea
| | - Tae Cheon Jeong
- a College of Pharmacy , Yeungnam University , Gyeongsan , South Korea
| |
Collapse
|
19
|
Sachett A, Bevilaqua F, Chitolina R, Garbinato C, Gasparetto H, Dal Magro J, Conterato GM, Siebel AM. Ractopamine hydrochloride induces behavioral alterations and oxidative status imbalance in zebrafish. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2018; 81:194-201. [PMID: 29405861 DOI: 10.1080/15287394.2018.1434848] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The occurrence of ractopamine (RAC) hydrochloride in water bodies is of significant concern due to its ecological impacts and toxicity to humans. RAC hydrochloride is a β-adrenergic agonist drug used as a feed additive to (1) improve feed efficiency, (2) rate of weight gain, and (3) increase carcass leanness in animals raised for their meat. This drug is excreted by animals in urine and introduced into the environment affecting nontarget organisms including fish. In wastewater released from farms, RAC concentrations were detected from 0.124 µg/L to 30.1 µg/L, and in levels ranging from 1.3 × 10-5 to 5.4 × 10-4 μg/L in watersheds. The aim of this study was to examine the effects of exposure to RAC at 0.1, 0.2, 0.85, 8.5, or 85 µg/L dissolved in water on behavior and oxidative status in adult zebrafish. At 0.85 µg/L, RAC treatment increased exploratory behavior of zebrafish; while at 8.5 µg/L, decreased locomotor and exploratory activities were noted. With respect to oxidative stress biomarkers, results showed that RAC at 0.2 µg/L induced lipid peroxidation and elevated total thiol content in zebrafish brain. All drug tested concentrations produced a fall in nonprotein thiol content. Finally, RAC at 0.85, 8.5, or 85 µg/L increased catalase enzyme activity. Our results demonstrated that the exposure to RAC induced behavioral alterations and oxidative stress in zebrafish.
Collapse
Affiliation(s)
- Adrieli Sachett
- a Laboratório de Genética e Ecotoxicologia Molecular, Programa de Pós-Graduação em Ciências Ambientais , Universidade Comunitária da Região de Chapecó , Chapecó , SC , Brazil
| | - Fernanda Bevilaqua
- a Laboratório de Genética e Ecotoxicologia Molecular, Programa de Pós-Graduação em Ciências Ambientais , Universidade Comunitária da Região de Chapecó , Chapecó , SC , Brazil
| | - Rafael Chitolina
- a Laboratório de Genética e Ecotoxicologia Molecular, Programa de Pós-Graduação em Ciências Ambientais , Universidade Comunitária da Região de Chapecó , Chapecó , SC , Brazil
| | - Cristiane Garbinato
- a Laboratório de Genética e Ecotoxicologia Molecular, Programa de Pós-Graduação em Ciências Ambientais , Universidade Comunitária da Região de Chapecó , Chapecó , SC , Brazil
| | - Henrique Gasparetto
- a Laboratório de Genética e Ecotoxicologia Molecular, Programa de Pós-Graduação em Ciências Ambientais , Universidade Comunitária da Região de Chapecó , Chapecó , SC , Brazil
| | - Jacir Dal Magro
- a Laboratório de Genética e Ecotoxicologia Molecular, Programa de Pós-Graduação em Ciências Ambientais , Universidade Comunitária da Região de Chapecó , Chapecó , SC , Brazil
| | - Greicy M Conterato
- b Programa de Pós-Graduação em Ecossistemas Agrícolas e Naturais , Universidade Federal de Santa Catarina, Campus de Curitibanos , Curitibanos , SC , Brazil
- c Programa de Pós-Graduação em Farmácia, UFSC , Campus Reitor João David Ferreira Lima , Florianópolis , SC , Brazil
| | - Anna M Siebel
- a Laboratório de Genética e Ecotoxicologia Molecular, Programa de Pós-Graduação em Ciências Ambientais , Universidade Comunitária da Região de Chapecó , Chapecó , SC , Brazil
| |
Collapse
|
20
|
Abstract
Chemical or environmental aggression often leads to oxidative stress and antioxidant responses in organisms in which are involved several components and enzymes. Catalase, glutathione-S-transferase, total glutathione and lipid peroxidation are key elements to understand the oxidative status of an organism and have been measured using spectrophotometric methods adapted to 96-well microtiter plates. In this work we describe the methodologies for analyses in pools of 96 h zebrafish (Danio rerio) embryos.
Collapse
Affiliation(s)
- Inês Domingues
- Department of Biology and Centre for Environmental and Marine Studies (CESAM), Universidade de Aveiro (UA), Aveiro, Portugal.
- Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal.
| | - Carlos Gravato
- Department of Biology and Centre for Environmental and Marine Studies (CESAM), Universidade de Aveiro (UA), Aveiro, Portugal
- Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|