1
|
Wijsman PC, Goorsenberg AWM, d'Hooghe JNS, Weersink EJM, Fenn DW, Maitland van der Zee AH, Annema JT, Brinkman P, Bonta PI. Exhaled breath analyses for bronchial thermoplasty in severe asthma patients. Respir Med 2024; 225:107583. [PMID: 38447787 DOI: 10.1016/j.rmed.2024.107583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 02/10/2024] [Accepted: 02/28/2024] [Indexed: 03/08/2024]
Abstract
BACKGROUND Bronchial thermoplasty (BT) is a bronchoscopic treatment for severe asthma. Although multiple trials have demonstrated clinical improvement after BT, optimal patient selection remains a challenge and the mechanism of action is incompletely understood. The aim of this study was to examine whether exhaled breath analysis can contribute to discriminate between BT-responders and non-responders at baseline and to explore pathophysiological insights of BT. METHODS Exhaled breath was collected from patients at baseline and six months post-BT. Patients were defined as responders or non-responders based on a half point increase in asthma quality of life questionnaire scores. Gas chromatography-mass spectrometry was used for volatile organic compounds (VOCs) detection and analyses. Analytical workflow consisted of: 1) detection of VOCs that differentiate between responders and non-responders and those that differ between baseline and six months post-BT, 2) identification of VOCs of interest and 3) explore correlations between clinical biomarkers and VOCs. RESULTS Data was available from 14 patients. Nonanal, 2-ethylhexanol and 3-thujol showed a significant difference in intensity between responders and non-responders at baseline (p = 0.04, p = 0.01 and p = 0.03, respectively). After BT, no difference was found in the compound intensity of these VOCs. A negative correlation was observed between nonanal and IgE and BALF eosinophils (r = -0.68, p < 0.01 and r = -0.61, p = 0.02 respectively) and 3-thujol with BALF neutrophils (r = -0.54, p = 0.04). CONCLUSIONS This explorative study identified discriminative VOCs in exhaled breath between BT responders and non-responders at baseline. Additionally, correlations were found between VOC's and inflammatory BALF cells. Once validated, these findings encourage research in breath analysis as a non-invasive easy to apply technique for identifying airway inflammatory profiles and eligibility for BT or immunotherapies in severe asthma.
Collapse
Affiliation(s)
- Pieta C Wijsman
- Amsterdam UMC, University of Amsterdam, Department of Pulmonary Medicine, Amsterdam, Netherlands
| | - Annika W M Goorsenberg
- Amsterdam UMC, University of Amsterdam, Department of Pulmonary Medicine, Amsterdam, Netherlands
| | - Julia N S d'Hooghe
- Amsterdam UMC, University of Amsterdam, Department of Pulmonary Medicine, Amsterdam, Netherlands
| | - Els J M Weersink
- Amsterdam UMC, University of Amsterdam, Department of Pulmonary Medicine, Amsterdam, Netherlands
| | - Dominic W Fenn
- Amsterdam UMC, University of Amsterdam, Department of Pulmonary Medicine, Amsterdam, Netherlands
| | | | - Jouke T Annema
- Amsterdam UMC, University of Amsterdam, Department of Pulmonary Medicine, Amsterdam, Netherlands
| | - Paul Brinkman
- Amsterdam UMC, University of Amsterdam, Department of Pulmonary Medicine, Amsterdam, Netherlands
| | - Peter I Bonta
- Amsterdam UMC, University of Amsterdam, Department of Pulmonary Medicine, Amsterdam, Netherlands.
| |
Collapse
|
2
|
Sivakumar RR, Chinnaiah Govindareddy D, Sahoo J, Bobby Z, Chinnakali P. Effect of daily zinc supplementation for 12 weeks on serum thyroid auto-antibody levels in children and adolescents with autoimmune thyroiditis - a randomized controlled trial. J Pediatr Endocrinol Metab 2024; 37:137-143. [PMID: 38154030 DOI: 10.1515/jpem-2023-0165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 12/07/2023] [Indexed: 12/30/2023]
Abstract
OBJECTIVES To assess the effect of daily zinc supplementation for 12 weeks on thyroid auto-antibodies - thyroid peroxidase antibody (TPOAb) and thyroglobulin antibody (TgAb), and oxidative stress in children with autoimmune thyroid disease (AITD) compared to standard therapy. METHODS This open-labeled, parallel, randomized controlled trial was done in a tertiary care teaching institute in south India. Children aged 3-18 years with AITD were randomized to receive 25 mg elemental zinc daily for 12 weeks or standard therapy alone. The change in thyroid function tests (thyroid stimulating hormone, free T3, free T4), thyroid auto-antibody (TPOAb, TgAb) titers, oxidative stress markers (glutathione peroxidase, malondialdehyde, superoxide dismutase, and total antioxidant capacity) were compared. RESULTS Forty children, 20 in each arm, were recruited in the study. We observed a female-to-male ratio of 7:1. Median duration of disease was 2 (0.25, 4.25) years. A total of 37 (92.5 %) children were hypothyroid, two hyperthyroid, and one euthyroid at enrolment. A total of 13 children (32.5 %) had associated co-morbidities, most commonly type 1 diabetes mellitus and systemic lupus erythematosus, three (7.5 %) each. We did not find any significant change in thyroid function tests, thyroid auto-antibody titers, and oxidative stress markers. However, the requirement of levothyroxine dose was significantly increased in the control arm, compared to the zinc group (p=0.03). Only four (20 %) children had minor adverse effects like nausea, metallic taste, and body ache. CONCLUSIONS Zinc supplementation did not have any effect on thyroid auto-antibodies and oxidative stress. Zinc-supplemented children did not require escalation in levothyroxine dose.
Collapse
Affiliation(s)
- Ramachandran Ramge Sivakumar
- Department of Pediatrics, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| | | | - Jayaprakash Sahoo
- Department of Endocrinology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| | - Zachariah Bobby
- Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| | - Palanivel Chinnakali
- Department of Preventive and Social Medicine, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| |
Collapse
|
3
|
Azeredo DBC, de Sousa Anselmo D, Soares P, Graceli JB, Magliano DC, Miranda-Alves L. Environmental Endocrinology: Parabens Hazardous Effects on Hypothalamic-Pituitary-Thyroid Axis. Int J Mol Sci 2023; 24:15246. [PMID: 37894927 PMCID: PMC10607526 DOI: 10.3390/ijms242015246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/28/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023] Open
Abstract
Parabens are classified as endocrine-disrupting chemicals (EDCs) capable of interfering with the normal functioning of the thyroid, affecting the proper regulation of the biosynthesis of thyroid hormones (THs), which is controlled by the hypothalamic-pituitary-thyroid axis (HPT). Given the crucial role of these hormones in health and the growing evidence of diseases related to thyroid dysfunction, this review looks at the effects of paraben exposure on the thyroid. In this study, we considered research carried out in vitro and in vivo and epidemiological studies published between 1951 and 2023, which demonstrated an association between exposure to parabens and dysfunctions of the HPT axis. In humans, exposure to parabens increases thyroid-stimulating hormone (TSH) levels, while exposure decreases TSH levels in rodents. The effects on THs levels are also poorly described, as well as peripheral metabolism. Regardless, recent studies have shown different actions between different subtypes of parabens on the HPT axis, which allows us to speculate that the mechanism of action of these parabens is different. Furthermore, studies of exposure to parabens are more evident in women than in men. Therefore, future studies are needed to clarify the effects of exposure to parabens and their mechanisms of action on this axis.
Collapse
Affiliation(s)
- Damáris Barcelos Cunha Azeredo
- Laboratory of Experimental Endocrinology-LEEx, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (D.B.C.A.); (D.d.S.A.); (D.C.M.)
- Postgraduate Program in Endocrinology, Faculty of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Denilson de Sousa Anselmo
- Laboratory of Experimental Endocrinology-LEEx, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (D.B.C.A.); (D.d.S.A.); (D.C.M.)
- Postgraduate Program in Endocrinology, Faculty of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Paula Soares
- Cellular Signaling and Metabolism Group, i3S—Institute for Research and Innovation in Health, University of Porto, 420-135 Porto, Portugal;
- Department of Pathology, Faculty of Medicine, University of Porto, 4200-139 Porto, Portugal
| | - Jones Bernardes Graceli
- Laboratory of Cellular Toxicology and Endocrinology, Department of Morphology, Federal University of Espírito Santo, Vitória 29047-105, Brazil;
| | - D’Angelo Carlo Magliano
- Laboratory of Experimental Endocrinology-LEEx, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (D.B.C.A.); (D.d.S.A.); (D.C.M.)
- Postgraduate Program in Endocrinology, Faculty of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Morphology and Metabolism Group, Federal University of Fluminense, Niteroi 24020-150, Brazil
| | - Leandro Miranda-Alves
- Laboratory of Experimental Endocrinology-LEEx, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (D.B.C.A.); (D.d.S.A.); (D.C.M.)
- Postgraduate Program in Endocrinology, Faculty of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Cellular Signaling and Metabolism Group, i3S—Institute for Research and Innovation in Health, University of Porto, 420-135 Porto, Portugal;
- Postgraduate Program in Pharmacology and Medicinal Chemistry, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Postgraduate Program in Morphological Sciences, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| |
Collapse
|
4
|
Hu Y, Lai S, Li Y, Wu X, Xing M, Li X, Xu D, Chen Y, Xiang J, Cheng P, Wang X, Chen Z, Ding H, Xu P, Lou X. Association of urinary bisphenols with thyroid function in the general population: a cross-sectional study of an industrial park in China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:107517-107532. [PMID: 37735335 DOI: 10.1007/s11356-023-29932-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/13/2023] [Indexed: 09/23/2023]
Abstract
Bisphenols (BPs) are potential thyroid disruptors that are widely used in many consumer products, leading to their widespread exposure in the general population. Current cross-sectional and case-control studies have found associations between exposure to BPs and serum thyroid function, but the results were contradictory. The objectives of this study are to describe demographic characteristics, BP exposure levels, and thyroid function measurements in potentially exposed and control districts and to investigate the association of urinary BPs with thyroid function. Data were collected from a general population aged 3-79 years (N = 281) recruited by the Zhejiang Human Biomonitoring Program (ZJHBP). The concentrations of 10 kinds of BPs in urine and serum free triiodothyronine (FT3), total triiodothyronine (TT3), free thyroxine (FT4), total thyroxine (TT4), thyroid-stimulating hormone (TSH), thyroglobulin (Tg), thyroglobulin antibodies (TgAb), thyroid peroxidase antibodies (TPOAb), and thyrotropin receptor antibody (TRAb) in serum were measured. Multiple linear regression and weighted quantile sum (WQS) regression were used to estimate the relationship between single and mixed exposure of BPs and thyroid function. Bisphenol A (BPA), bisphenol S (BPS), and bisphenol P (BPP) were detected, respectively, in 82.73%, 94.24%, and 55.40% of the population in the exposed area and 81.69%, 61.27%, and 43.66% of the population in the control area. Among adult females, serum TT3 was negatively associated with urinary BPA (β = -0.033, 95% CI = -0.071, -0.008, P = 0.021). Among minor females, FT4 and Tg levels were negatively associated with the urinary BPA (β = -0.026, 95% CI = -0.051, -0.002, P = 0.032 for FT4; β = -0.129, 95% CI = -0.248, -0.009, P = 0.035 for Tg), and TPOAb was positively associated with urinary BPA (β = 0.104, 95% CI = 0.006, 0.203, P = 0.039). In WQS models, BPs mixture was positively associated with FT3 (βWQS = 0.022, 95% CI = 0.002, 0.042) and TT3 (βWQS = 0.033, 95% CI = 0.004, 0.062), and negatively associated with FT4 (βWQS = -0.024, 95% CI = -0.044, 0.004). We found widespread exposure to BPA, BPS, and BPP in the general population of Zhejiang province and found an association between BPA and thyroid hormones. This association is gender- and age-dependent and needs to be confirmed in further studies.
Collapse
Affiliation(s)
- Yang Hu
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou, 310051, China
| | - Shiming Lai
- Quzhou Center for Disease Control and Prevention, 154 Xi'an Road, Ke Cheng District, Quzhou, 324000, China
| | - Ying Li
- Key Laboratory of Environmental Pollution Control Technology of Zhejiang Province, Hangzhou, 310007, China
- Environmental Science Research & Design Institute of Zhejiang Province, Zhejiang, 310007, Hangzhou, China
| | - Xiaodong Wu
- Key Laboratory of Environmental Pollution Control Technology of Zhejiang Province, Hangzhou, 310007, China
- Environmental Science Research & Design Institute of Zhejiang Province, Zhejiang, 310007, Hangzhou, China
| | - Mingluan Xing
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou, 310051, China
| | - Xueqing Li
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou, 310051, China
| | - Dandan Xu
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou, 310051, China
| | - Yuan Chen
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou, 310051, China
| | - Jie Xiang
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou, 310051, China
| | - Ping Cheng
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou, 310051, China
| | - Xiaofeng Wang
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou, 310051, China
| | - Zhijian Chen
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou, 310051, China
| | - Hao Ding
- Key Laboratory of Environmental Pollution Control Technology of Zhejiang Province, Hangzhou, 310007, China
- Environmental Science Research & Design Institute of Zhejiang Province, Zhejiang, 310007, Hangzhou, China
| | - Peiwei Xu
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou, 310051, China
| | - Xiaoming Lou
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou, 310051, China.
| |
Collapse
|
5
|
Huang RG, Li XB, Wang YY, Wu H, Li KD, Jin X, Du YJ, Wang H, Qian FY, Li BZ. Endocrine-disrupting chemicals and autoimmune diseases. ENVIRONMENTAL RESEARCH 2023; 231:116222. [PMID: 37224951 DOI: 10.1016/j.envres.2023.116222] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/10/2023] [Accepted: 05/21/2023] [Indexed: 05/26/2023]
Abstract
Endocrine-disrupting chemicals (EDCs) widely exist in people's production and life which have great potential to damage human and animal health. Over the past few decades, growing attention has been paid to the impact of EDCs on human health, as well as immune system. So far, researchers have proved that EDCs (such as bisphenol A (BPA), phthalate, tetrachlorodibenzodioxin (TCDD), etc.) affect human immune function and promotes the occurrence and development of autoimmune diseases (ADs). Therefore, in order to better understand how EDCs affect ADs, we summarized the current knowledge about the impact of EDCs on ADs, and elaborated the potential mechanism of the impact of EDCs on ADs in this review.
Collapse
Affiliation(s)
- Rong-Gui Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Xian-Bao Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Yi-Yu Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Hong Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Kai-Di Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Xue Jin
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Yu-Jie Du
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Hua Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | | | - Bao-Zhu Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China.
| |
Collapse
|
6
|
Akash MSH, Rasheed S, Rehman K, Imran M, Assiri MA. Toxicological evaluation of bisphenol analogues: preventive measures and therapeutic interventions. RSC Adv 2023; 13:21613-21628. [PMID: 37476040 PMCID: PMC10354593 DOI: 10.1039/d3ra04285e] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 07/12/2023] [Indexed: 07/22/2023] Open
Abstract
Bisphenol A (BPA) is a prominent endocrine-disrupting compound that shares structural similarities with estrogen. It is widely used, particularly in the production of food packaging, canned goods, and dental sealants. Of the eight bisphenol analogues, BPA is the most frequently utilized chemical in packaging food items, canned foods and dental sealants. However, chronic exposure to BPA can pose severe health risks, particularly in children. To ensure public safety, it is crucial to adopt proper precautionary measures to minimize BPA exposure. This article explores the toxic effects of bisphenols on various body systems and mechanisms, shedding light on their impact on the reproductive and endocrine system, obesity, albuminuria, and the generation of reactive oxygen species. Understanding the detrimental effects of bisphenols on these systems and mechanisms is vital for developing strategies to mitigate their harmful consequences. Furthermore, the article delves into the biotransformation processes of bisphenols, focusing on their occurrence in vertebrates, invertebrates, plants, and microorganisms. Investigating the biotransformation pathways provides valuable insights into the fate of bisphenols in various organisms and ecosystems. Lastly, the article emphasizes preventive measures to avoid bisphenol exposure and highlights the potential use of plant-based bioactive compounds for treatment strategies. By implementing effective preventive measures, such as utilizing BPA-free products and adopting safer alternatives, individuals can reduce their exposure to bisphenols. Additionally, exploring the potential of plant-based bioactive compounds as therapeutic agents offers promising avenues for addressing the adverse effects of bisphenols. The findings presented herein contribute to a better understanding of the novelty, significance, and potential implications of bisphenol research in the field, aiding in the development of safer practices and interventions to safeguard public health.
Collapse
Affiliation(s)
| | - Sumbal Rasheed
- Department of Pharmaceutical Chemistry, Government College University Faisalabad Pakistan
| | - Kanwal Rehman
- Department of Pharmacy, The Women University Multan Pakistan
| | - Muhammad Imran
- Research Center for Advanced Materials Science (RCAMS), King Khalid University Abha Saudi Arabia
- Department of Chemistry, Faculty of Science, King Khalid University Abha Saudi Arabia
| | - Mohammed A Assiri
- Research Center for Advanced Materials Science (RCAMS), King Khalid University Abha Saudi Arabia
- Department of Chemistry, Faculty of Science, King Khalid University Abha Saudi Arabia
| |
Collapse
|
7
|
Dufour P, Pirard C, Lebrethon MC, Charlier C. Associations between endocrine disruptor contamination and thyroid hormone homeostasis in Belgian type 1 diabetic children. Int Arch Occup Environ Health 2023:10.1007/s00420-023-01974-9. [PMID: 37071173 DOI: 10.1007/s00420-023-01974-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 04/05/2023] [Indexed: 04/19/2023]
Abstract
PURPOSE Humans are daily exposed to many environmental pollutants, some of which being suspected to be thyroid disruptors. Some populations could be particularly susceptible to thyroid disruption, such like diabetics due to the well-known relation between the thyroid function and the control of carbohydrate homeostasis by pancreas. Therefore, the aim of this study was to investigate the associations between the exposure to several persistent and non-persistent chemicals and thyroid hormones levels in children with type 1 diabetes. METHODS Blood and urine sample were collected from 54 children diagnosed for type 1 diabetes mellitus. The concentrations of 7 phthalate metabolites, 4 parabens, 7 bisphenols, benzophenone 3 and triclosan were measured in urine, while 15 organochlorine pesticides, 4 polychlorinated biphenyls (PCBs) and 7 perfluoroalkyl substances were analyzed in serum samples. In the same time, the blood levels of free thyroxine (fT4), thyroid stimulating hormone (TSH) and glycated hemoglobin (Hb1Ac) were determined. RESULTS We highlighted positive associations between serum perfluorohexane sulfonate and urinary monoethylphthalate levels, and TSH level in blood. We also found that PCB 138 was positively associated to fT4 while urinary levels of bisphenol F were negatively correlated to this hormone. Finally, we observed positive associations between Hb1Ac levels and the contamination by PCB 153 and two urinary phthalate metabolites: mono-2-ethyl-5-hydroxyhexyl phthalate and mono-2-ethyl-5-oxoxyhexyl phthalate. CONCLUSION Our results showed that our small cohort of children with type 1 diabetes mellitus is potentially susceptible to thyroid disruptions by some pollutants. Moreover, for these children, both di-(2-ethylhexyl) phthalate metabolites would potentially hamper the glucose homeostasis. Nevertheless, additional studies are mandatory to further explore these findings.
Collapse
Affiliation(s)
- Patrice Dufour
- Laboratory of Clinical, Forensic and Environmental Toxicology, University of Liege (ULiège), CHU (B35), 1, Avenue de L'Hôpital, 4000, Liege, Belgium.
- Center for Interdisciplinary Research On Medicines (C.I.R.M.), University of Liege (ULiège), CHU (B35), 4000, Liege, Belgium.
| | - Catherine Pirard
- Laboratory of Clinical, Forensic and Environmental Toxicology, University of Liege (ULiège), CHU (B35), 1, Avenue de L'Hôpital, 4000, Liege, Belgium
- Center for Interdisciplinary Research On Medicines (C.I.R.M.), University of Liege (ULiège), CHU (B35), 4000, Liege, Belgium
| | | | - Corinne Charlier
- Laboratory of Clinical, Forensic and Environmental Toxicology, University of Liege (ULiège), CHU (B35), 1, Avenue de L'Hôpital, 4000, Liege, Belgium
- Center for Interdisciplinary Research On Medicines (C.I.R.M.), University of Liege (ULiège), CHU (B35), 4000, Liege, Belgium
| |
Collapse
|
8
|
The Role of Selected Trace Elements in Oxidoreductive Homeostasis in Patients with Thyroid Diseases. Int J Mol Sci 2023; 24:ijms24054840. [PMID: 36902266 PMCID: PMC10003705 DOI: 10.3390/ijms24054840] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/26/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
Impaired levels of selenium (Se), zinc (Zn), copper (Cu), iron (Fe), manganese (Mn) and iodine (I) in the organism may adversely affect the thyroid endocrine system. These trace elements play a role in the fight against oxidative stress as components of enzymes. Oxidative-antioxidant imbalance is considered a possible factor in many pathological conditions, including various thyroid diseases. In the available literature, there are few scientific studies showing a direct correlation of the effect of supplementation of trace elements on slowing down or preventing the occurrence of thyroid diseases in combination with the improvement of the antioxidant profile, or through the action of these elements as antioxidants. Among the available studies, it has been shown that an increase in lipid peroxidation levels and a decrease in the overall antioxidant defense status occur during such thyroid diseases as thyroid cancer, Hashimoto's thyroiditis and dysthyroidism. In studies in which trace elements were supplemented, the following were observed: a decrease in the level of malondialdehyde after supplementation with Zn during hypothyroidism and reduction in the malondialdehyde level after Se supplementation with a simultaneous increase in the total activity status and activity of antioxidant defense enzymes in the course of autoimmune thyroiditis. This systematic review aimed to present the current state of knowledge about the relationship between trace elements and thyroid diseases in terms of oxidoreductive homeostasis.
Collapse
|
9
|
Yang Z, Shan D, Zhang T, Li L, Wang S, Du R, Li Y, Wu S, Jin L, Zhao Y, Shang X, Wang Q. Associations between exposure to phthalates and subclinical hypothyroidism in pregnant women during early pregnancy: A pilot case-control study in China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 320:121051. [PMID: 36642176 DOI: 10.1016/j.envpol.2023.121051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 01/06/2023] [Accepted: 01/07/2023] [Indexed: 06/17/2023]
Abstract
Phthalates are environmental endocrine disruptors with thyroid-disrupting properties; however, the association between phthalate exposure and subclinical hypothyroidism (SCH) during pregnancy is unknown. We recruited a study population from a cohort of pregnant women in Beijing, China, and conducted the present pilot case-control study of 42 SCH cases and 84 non-SCH controls matched with age and body mass index (BMI). Serum levels of thyroid peroxidase antibody, free thyroxine (FT4), thyroid-stimulating hormone (TSH), and urinary levels of ten phthalate metabolites during early pregnancy were measured. Urinary monoethyl phthalate (MEP) levels in SCH cases were observably higher than those in controls (p = 0.01). Conditional logistic regression analysis revealed that mono-(2-ethyl-5-carboxypentyl) phthalate (MECPP), MEP, mono-(2-ethyl-5-oxohexyl) phthalate (MEOHP), and di-(2-ethylhexyl) phthalate (ΣDEHP) were significantly associated with a higher risk of SCH during early pregnancy (adjusted odds ratios = 1.89, 1.42, 1.81, and 1.92, respectively). Concomitantly, multiple linear regression analysis showed that MECPP, MEOHP, and ΣDEHP were positively associated with TSH and FT4 × TSH in the entire study population. Bayesian kernel machine regression analysis and stratified analysis by BMI revealed upward tendencies in the serum levels of TSH and FT4 × TSH. In summary, exposure to phthalates, especially DEHP, may be associated with a higher risk of SCH during early pregnancy, and a possible mechanism is the disruption of the hypothalamus-pituitary-thyroid axis.
Collapse
Affiliation(s)
- Zheng Yang
- Department of Toxicology, School of Public Health, Peking University, Beijing, China
| | - Danping Shan
- Department of Toxicology, School of Public Health, Peking University, Beijing, China
| | - Tao Zhang
- Department of Toxicology, School of Public Health, Peking University, Beijing, China
| | - Ludi Li
- Department of Toxicology, School of Public Health, Peking University, Beijing, China
| | - Shuo Wang
- Department of Toxicology, School of Public Health, Peking University, Beijing, China
| | - Ruihu Du
- Department of Toxicology, School of Public Health, Peking University, Beijing, China
| | - Yingzi Li
- Department of Toxicology, School of Public Health, Peking University, Beijing, China
| | - Shaowei Wu
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Lei Jin
- Institute of Reproductive and Child Health, National Health Commission Key Laboratory of Reproductive Health, Peking University, Beijing, China
| | - Yi Zhao
- Haidian District Maternal and Child Health Care Hospital, Beijing, China
| | - Xuejun Shang
- Department of Andrology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Qi Wang
- Department of Toxicology, School of Public Health, Peking University, Beijing, China.
| |
Collapse
|
10
|
Influence of Home Indoor Dampness Exposure on Volatile Organic Compounds in Exhaled Breath of Mothers and Their Infants: The NELA Birth Cohort. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12146864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Currently, the effect of exposure to indoor air contaminants and the presence of dampness at home on respiratory/atopic health is of particular concern to physicians. The measurement of volatile organic compounds (VOCs) in exhaled breath is a useful approach for monitoring environmental exposures. A great advantage of this strategy is that it allows the study of the impact of pollutants on the metabolism through a non-invasive method. In this paper, the levels of nine VOCs (acetone, isoprene, toluene, p/m-xylene, o-xylene, styrene, benzaldehyde, naphthalene, and 2-ethyl-1-hexanol) in the exhaled breath of subjects exposed and not exposed to home dampness were assessed. Exhaled breath samples were collected from 337 mother–child pairs of a birth cohort and analysed by gas-chromatography–mass-spectrometry. It was observed that the levels of 2-ethyl-1-hexanol in the exhaled breath of the mothers were significantly influenced by exposure to household humidity. In the case of the infants, differences in some of the VOC levels related to home dampness exposure; however, they did not reach statistical significance. In addition, it was also found that the eosinophil counts of the mothers exposed to home dampness were significantly elevated compared to those of the non-exposed mothers. To our knowledge, these findings show, for the first time, that exposure to home dampness may influence VOC patterns in exhaled breath.
Collapse
|
11
|
Davcheva DM, Kirova GK, Miteva MZ, Tzvetkova TZ, Orbetzova MM, Nonchev BI, Simitchiev KK, Kmetov VJ. Serum selenium concentration in patients with autoimmune thyroid disease. Folia Med (Plovdiv) 2022; 64:443-449. [PMID: 35856106 DOI: 10.3897/folmed.64.e64997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/22/2021] [Indexed: 12/30/2022] Open
Abstract
Abstract.
Collapse
|
12
|
Yalçin SS, Erdal İ, Çetinkaya S, Oğuz B. Urinary levels of phthalate esters and heavy metals in adolescents with thyroid colloid cysts. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022; 32:1359-1372. [PMID: 33555204 DOI: 10.1080/09603123.2021.1883554] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 01/27/2021] [Indexed: 06/12/2023]
Abstract
We aimed to evaluate 14 urinary phthalate metabolites and 4 toxic metals in adolescents having thyroid colloid cyst (TCC) and compare with age and sex-matched others without TCC. Phthalate metabolites were analysed with UPLC-MS/MS and heavy metals with ICP-MS. TCC ratios in tertile subgroups of pollutants were compared with multiple logistic regression analysis after adjusting for age, sex, z-scores for body mass index and urinary creatinine values. Adolescents having the highest tertile of mono (2-ethylhexyl) phthalic acid and mercury had increased odds and those with the highest tertiles of monocarboxy-isononyl phthalate, mono (3-carboxypropyl) phthalate, monoisobutyl phthalate had lower odds for TCC than counterparts. The odds of TCC were lower for those in the second and the third tertiles. No differences in TCC ratios were detected with other pollutants. Given phthalate esters' and toxic metals' specific interactions on TCC, further studies were necessary to assess the influence of chemicals on TCC.
Collapse
Affiliation(s)
- S Songül Yalçin
- Unit of Social Pediatrics, Department of Pediatrics, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - İzzet Erdal
- Unit of Social Pediatrics, Department of Pediatrics, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Semra Çetinkaya
- TC Health Sciences University, Dr Sami Ulus Obstetrics and Gynecology, Children's Health and Disease, Health Implementation and Research Center, Ankara, Turkey
| | - Berna Oğuz
- Department of Radiology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| |
Collapse
|
13
|
Aversa T, Ruggeri RM, Corica D, Cristani MT, Pepe G, Vicchio TM, Alibrandi A, Trimarchi F, Cannavò S, Pajno GB, Wasniewska MG. Serum Levels of Soluble Receptor for Advanced Glycation End Products Are Reduced in Euthyroid Children with Newly Diagnosed Hashimoto's Thyroiditis: A Pilot Study. Horm Res Paediatr 2022; 94:144-150. [PMID: 34237741 DOI: 10.1159/000517341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 05/20/2021] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE No data are available on advanced glycation end products (AGEs) and their soluble receptor (sRAGE) in pediatric patients with Hashimoto's thyroiditis (HT). The present study was aimed to simultaneously evaluate serum levels of sRAGE, AGEs, and advanced oxidation protein products (AOPPs) and investigate the relationships between these oxidative stress markers and clinical and biochemical parameters of thyroid function in euthyroid children with HT. DESIGN This is a case-control study carried out in a single university hospital center. METHODS We enrolled 19 newly diagnosed euthyroid HT pediatric patients (3 M, 16 F; median age 12.44 years, range 6.54-15.81 years) and 16 age-, sex-, and BMI-matched healthy controls (5 M, 11 F; median age 12.83 years, range 5.68-15.07 years). None was on levothyroxine treatment. The exclusion criteria were autoimmune, inflammatory, and infection comorbidities. Patients did not differ significantly from controls with regard to lipid or for anthropometric parameters. RESULTS sRAGE levels were significantly lower in HT patients (median 414.30 pg/mL, range 307.30-850.30 pg/mL) than in controls (561.30, 273.20-1121.60 pg/mL; p = 0.034). No differences emerged between patients and controls with regard to serum AGEs (124.25 AU/g prot, 71.98-186.72 vs. 133.90, 94.06-200.78 AU/g prot, p = 0.707) and AOPPs (1.13 nmol/mL, 0.62-1.83 vs. 1.17, 0.76-1.42 nmol/mL, p = 0.545). CONCLUSIONS sRAGE levels were decreased in euthyroid children/adolescents at the onset of HT, suggesting that autoimmunity per se seems to play an important role in such a reduction of sRAGE, irrespective of any functional alteration. Children and adolescents suffering from HT may exhibit increased susceptibility to oxidative damage, even when in euthyroid status.
Collapse
Affiliation(s)
- Tommaso Aversa
- Department of Human Pathology in Adulthood and Childhood, University of Messina, Messina, Italy
| | - Rosaria Maddalena Ruggeri
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy.,Endocrine Unit at University Hospital AOU Policlinico "G. Martino", Messina, Italy
| | - Domenico Corica
- Department of Human Pathology in Adulthood and Childhood, University of Messina, Messina, Italy
| | - Maria Teresa Cristani
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Giorgia Pepe
- Department of Human Pathology in Adulthood and Childhood, University of Messina, Messina, Italy
| | | | - Angela Alibrandi
- Department of Economics, Unit of Statistical and Mathematical Sciences, University of Messina, Messina, Italy
| | | | - Salvatore Cannavò
- Department of Human Pathology in Adulthood and Childhood, University of Messina, Messina, Italy.,Endocrine Unit at University Hospital AOU Policlinico "G. Martino", Messina, Italy
| | - Giovanni Battista Pajno
- Department of Human Pathology in Adulthood and Childhood, University of Messina, Messina, Italy
| | | |
Collapse
|
14
|
Enehizena OO, Emokpae MA. Toxic Metal Concentrations in Drinking Water and Possible Effect on Sex Hormones among Men in Sabongida-Ora, Edo State, Nigeria. MEDICINES (BASEL, SWITZERLAND) 2022; 9:4. [PMID: 35049937 PMCID: PMC8780793 DOI: 10.3390/medicines9010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/22/2021] [Accepted: 01/03/2022] [Indexed: 12/07/2022]
Abstract
Drinking water can be a potential source of toxic metals, which are a known leading cause of infertility in men. This study determines the concentrations of lead (Pb), cadmium (Cd), zinc (Zn), copper (Cu) in drinking water (borehole, hand-dug well and treated water) and sex hormone levels (serum follicle stimulating hormone (FSH), luteinizing hormone (LH), prolactin (PROL), estradiol (E2), progesterone (PROG), and testosterone (T) in males who drink water mainly from these sources. The concentrations of Cd, and Pb in hand-dug wells were higher than the permissible limit recommended by the World Health Organization (WHO) while Zn and Cu were within the permissible levels in drinking water. Blood Cd and Pb levels were significantly higher (p < 0.001) among subjects who consumed hand-dug and borehole water than treated water, while serum Zn was significantly lower (p < 0.001) in hand-dug well and borehole water consumers than in control subjects. Also, serum FSH (p < 0.001), LH (p < 0.001), E2 (p < 0.002), PROG (p < 0.04) and T (p < 0.001) were significantly lower among hand-dug well and borehole water consumers than controls, while PROL (p < 0.001) was significantly higher in hand-dug well and borehole water consumers than controls. Blood Cd and Pb levels were significantly higher (p < 0.001) in hand-dug well water consumers than borehole water consumers. The consumption of water from hand-dug wells may have adverse reproductive sequelae among consumers.
Collapse
Affiliation(s)
- Osaro Ogie Enehizena
- Department of Medical Laboratory Science, School of Basic Medical Sciences, University of Benin, Benin 300283, Nigeria
| | - Mathias A Emokpae
- Department of Medical Laboratory Science, School of Basic Medical Sciences, University of Benin, Benin 300283, Nigeria
| |
Collapse
|
15
|
Koutaki D, Paltoglou G, Vourdoumpa A, Charmandari E. The Impact of Bisphenol A on Thyroid Function in Neonates and Children: A Systematic Review of the Literature. Nutrients 2021; 14:nu14010168. [PMID: 35011041 PMCID: PMC8746969 DOI: 10.3390/nu14010168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 01/23/2023] Open
Abstract
Background: Bisphenol A (BPA) is an endocrine-disrupting chemical widely used in plastic products that may have an adverse effect on several physiologic functions in children. The aim of this systematic review is to summarize the current knowledge of the impact of BPA concentrations on thyroid function in neonates, children, and adolescents. Methods: A systematic search of Medline, Scopus, Clinical Trials.gov, Cochrane Central Register of Controlled Trials CENTRAL, and Google Scholar databases according to PRISMA guidelines was performed. Only case–control, cross-sectional, and cohort studies that assessed the relationship between Bisphenol A and thyroid function in neonates and children aged <18 years were included. Initially, 102 articles were assessed, which were restricted to 73 articles after exclusion of duplicates. A total of 73 articles were assessed by two independent researchers based on the title/abstract and the predetermined inclusion and exclusion criteria. According to the eligibility criteria, 18 full-text articles were selected for further assessment. Finally, 12 full-text articles were included in the present systematic review. Results: The presented studies offer data that suggest a negative correlation of BPA concentrations with TSH in children, a gender-specific manner of action, and a potential effect on proper neurodevelopment. However, the results are inconclusive with respect to specific thyroid hormone concentrations and the effect on thyroid autoimmunity. Conclusion: The potential negative effect of BPA in the developing thyroid gland of children that may affect proper neurodevelopment, suggesting the need to focus future research on designing studies that elucidate the underlying mechanisms and the effects of BPA in thyroid function in early life.
Collapse
Affiliation(s)
- Diamanto Koutaki
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, ‘Aghia Sophia’ Children’s Hospital, 11527 Athens, Greece; (D.K.); (G.P.); (A.V.)
| | - George Paltoglou
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, ‘Aghia Sophia’ Children’s Hospital, 11527 Athens, Greece; (D.K.); (G.P.); (A.V.)
| | - Aikaterini Vourdoumpa
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, ‘Aghia Sophia’ Children’s Hospital, 11527 Athens, Greece; (D.K.); (G.P.); (A.V.)
| | - Evangelia Charmandari
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, ‘Aghia Sophia’ Children’s Hospital, 11527 Athens, Greece; (D.K.); (G.P.); (A.V.)
- Division of Endocrinology and Metabolism, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
- Correspondence: ; Tel./Fax: +30-213-2013-384
| |
Collapse
|
16
|
Guo C, Ren F, Jin J, Zhang H, Wang L, Zhang H, Chen J. Internal exposure of Chinese children from a typical coastal city to bisphenols and possible association with thyroid hormone levels. ENVIRONMENT INTERNATIONAL 2021; 156:106759. [PMID: 34265627 DOI: 10.1016/j.envint.2021.106759] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 06/13/2023]
Abstract
Bisphenols (BPs) are widely used in consumer products, and human exposure to BPs is nearly ubiquitous. However, human biomonitoring data are scarce, especially for children. In this study, we quantified eight BPs in the serum of 345 children from a typical coastal city in China. Bisphenol A (BPA), bisphenol F (BPF), and bisphenol S (BPS) were frequently detected (63% BPA, 68% BPF, 43% BPS), with geometric mean (GM) concentrations of 1.6, 0.08, and 0.04 ng/mL, respectively. The other five BPs had low detection frequencies (<5%). The distribution of BPA, BPF, and BPS in children's serum samples was independent of sex whereas the concentrations of BPS and BPF both significantly increased with age (P < 0.01). The GM values of estimated daily intake for BPA and BPS were 0.61 and 0.014 μg/kg body weight (bw)/day, respectively, indicating a relatively higher exposure risk of BPA in comparison with BPS. Compared with the population with euthyroid or nonhyperthyroid thyroid dysfunction, children with hyperthyroidism suffered higher exposure to BPA. By multiple linear regression analysis, thyroid-stimulating hormone showed a significantly negative relationship with log10-BPA concentration for euthyroid children (R2 = 0.477, P < 0.001), whereas a significantly positive correlation (R2 = 0.753, P = 0.033) was found for hyperthyroid children.
Collapse
Affiliation(s)
- Cuicui Guo
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feng Ren
- The Second Hospital of Dalian Medical University, Dalian 116023, China
| | - Jing Jin
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China.
| | - He Zhang
- Dalian Women and Children's Medical Group, Dalian 116011, China
| | - Longxing Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Haijun Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Jiping Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| |
Collapse
|
17
|
Sola-Martínez RA, Lozano-Terol G, Gallego-Jara J, Morales E, Cantero-Cano E, Sanchez-Solis M, García-Marcos L, Jiménez-Guerrero P, Noguera-Velasco JA, Cánovas Díaz M, de Diego Puente T. Exhaled volatilome analysis as a useful tool to discriminate asthma with other coexisting atopic diseases in women of childbearing age. Sci Rep 2021; 11:13823. [PMID: 34226570 PMCID: PMC8257728 DOI: 10.1038/s41598-021-92933-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/14/2021] [Indexed: 02/06/2023] Open
Abstract
The prevalence of asthma is considerably high among women of childbearing age. Most asthmatic women also often have other atopic disorders. Therefore, the differentiation between patients with atopic diseases without asthma and asthmatics with coexisting diseases is essential to avoid underdiagnosis of asthma and to design strategies to reduce symptom severity and improve quality of life of patients. Hence, we aimed for the first time to conduct an analysis of volatile organic compounds in exhaled breath of women of childbearing age as a new approach to discriminate between asthmatics with other coexisting atopic diseases and non-asthmatics (with or without atopic diseases), which could be a helpful tool for more accurate asthma detection and monitoring using a noninvasive technique in the near future. In this study, exhaled air samples of 336 women (training set (n = 211) and validation set (n = 125)) were collected and analyzed by thermal desorption coupled with gas chromatography-mass spectrometry. ASCA (ANOVA (analysis of variance) simultaneous component analysis) and LASSO + LS (least absolute shrinkage and selection operator + logistic regression) were employed for data analysis. Fifteen statistically significant models (p-value < 0.05 in permutation tests) that discriminated asthma with other coexisting atopic diseases in women of childbearing age were generated. Acetone, 2-ethyl-1-hexanol and a tetrahydroisoquinoline derivative were selected as discriminants of asthma with other coexisting atopic diseases. In addition, carbon disulfide, a tetrahydroisoquinoline derivative, 2-ethyl-1-hexanol and decane discriminated asthma disease among patients with other atopic disorders. Results of this study indicate that refined metabolomic analysis of exhaled breath allows asthma with other coexisting atopic diseases discrimination in women of reproductive age.
Collapse
Affiliation(s)
- Rosa A Sola-Martínez
- Department of Biochemistry and Molecular Biology B and Immunology, University of Murcia, Murcia, Spain
- Biomedical Research Institute of Murcia, IMIB-Arrixaca, Murcia, Spain
| | - Gema Lozano-Terol
- Department of Biochemistry and Molecular Biology B and Immunology, University of Murcia, Murcia, Spain
- Biomedical Research Institute of Murcia, IMIB-Arrixaca, Murcia, Spain
| | - Julia Gallego-Jara
- Department of Biochemistry and Molecular Biology B and Immunology, University of Murcia, Murcia, Spain
- Biomedical Research Institute of Murcia, IMIB-Arrixaca, Murcia, Spain
| | - Eva Morales
- Biomedical Research Institute of Murcia, IMIB-Arrixaca, Murcia, Spain
- Department of Public Health Sciences, University of Murcia, Murcia, Spain
| | | | - Manuel Sanchez-Solis
- Biomedical Research Institute of Murcia, IMIB-Arrixaca, Murcia, Spain
- Respiratory and Allergy Units, Arrixaca Children's University Hospital, University of Murcia, Murcia, Spain
- Department of Paediatrics, University of Murcia, Murcia, Spain
- Network of Asthma and Adverse and Allergy Reactions (ARADyAL), Health Institute Carlos III, Madrid, Spain
| | - Luis García-Marcos
- Biomedical Research Institute of Murcia, IMIB-Arrixaca, Murcia, Spain
- Respiratory and Allergy Units, Arrixaca Children's University Hospital, University of Murcia, Murcia, Spain
- Department of Paediatrics, University of Murcia, Murcia, Spain
- Network of Asthma and Adverse and Allergy Reactions (ARADyAL), Health Institute Carlos III, Madrid, Spain
| | - Pedro Jiménez-Guerrero
- Regional Atmospheric Modelling Group, Department of Physics, University of Murcia, Murcia, Spain
| | - José A Noguera-Velasco
- Department of Biochemistry and Molecular Biology B and Immunology, University of Murcia, Murcia, Spain
- Biomedical Research Institute of Murcia, IMIB-Arrixaca, Murcia, Spain
- Molecular Therapy and Biomarkers Research Group, Clinical Analysis Service, University Clinical Hospital "Virgen de la Arrixaca", University of Murcia, Murcia, Spain
| | - Manuel Cánovas Díaz
- Department of Biochemistry and Molecular Biology B and Immunology, University of Murcia, Murcia, Spain
- Biomedical Research Institute of Murcia, IMIB-Arrixaca, Murcia, Spain
| | - Teresa de Diego Puente
- Department of Biochemistry and Molecular Biology B and Immunology, University of Murcia, Murcia, Spain.
- Biomedical Research Institute of Murcia, IMIB-Arrixaca, Murcia, Spain.
| |
Collapse
|
18
|
Dwivedi S, Kushalan S, Paithankar JG, D'Souza LC, Hegde S, Sharma A. Environmental toxicants, oxidative stress and health adversities: interventions of phytochemicals. J Pharm Pharmacol 2021; 74:516-536. [PMID: 33822130 DOI: 10.1093/jpp/rgab044] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/17/2021] [Indexed: 12/17/2022]
Abstract
OBJECTIVES Oxidative stress is the most common factor mediating environmental chemical-induced health adversities. Recently, an exponential rise in the use of phytochemicals as an alternative therapeutics against oxidative stress-mediated diseases has been documented. Due to their free radical quenching property, plant-derived natural products have gained substantial attention as a therapeutic agent in environmental toxicology. The present review aimed to describe the therapeutic role of phytochemicals in mitigating environmental toxicant-mediated sub-cellular and organ toxicities via controlling cellular antioxidant response. METHODS The present review has covered the recently related studies, mainly focussing on the free radical scavenging role of phytochemicals in environmental toxicology. KEY FINDINGS In vitro and in vivo studies have reported that supplementation of antioxidant-rich compounds can ameliorate the toxicant-induced oxidative stress, thereby improving the health conditions. Improving the cellular antioxidant pool has been considered as a mode of action of phytochemicals. However, the other cellular targets of phytochemicals remain uncertain. CONCLUSIONS Knowing the therapeutic value of phytochemicals to mitigate the chemical-induced toxicity is an initial stage; mechanistic understanding needs to decipher for development as therapeutics. Moreover, examining the efficacy of phytochemicals against mixer toxicity and identifying the bioactive molecule are major challenges in the field.
Collapse
Affiliation(s)
- Shiwangi Dwivedi
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Environmental Health and Toxicology, Deralakatte, Mangaluru, India
| | - Sharanya Kushalan
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Bioresource and Biotechnology, Deralakatte, Mangaluru, India
| | - Jagdish Gopal Paithankar
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Environmental Health and Toxicology, Deralakatte, Mangaluru, India
| | - Leonard Clinton D'Souza
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Environmental Health and Toxicology, Deralakatte, Mangaluru, India
| | - Smitha Hegde
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Bioresource and Biotechnology, Deralakatte, Mangaluru, India
| | - Anurag Sharma
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Environmental Health and Toxicology, Deralakatte, Mangaluru, India
| |
Collapse
|
19
|
Romano RM, de Oliveira JM, de Oliveira VM, de Oliveira IM, Torres YR, Bargi-Souza P, Martino Andrade AJ, Romano MA. Could Glyphosate and Glyphosate-Based Herbicides Be Associated With Increased Thyroid Diseases Worldwide? Front Endocrinol (Lausanne) 2021; 12:627167. [PMID: 33815286 PMCID: PMC8018287 DOI: 10.3389/fendo.2021.627167] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 03/03/2021] [Indexed: 12/12/2022] Open
Abstract
The increased incidence of thyroid diseases raises a series of questions about what the main predisposing factors are nowadays. If dietary restriction of iodine was once a major global health concern, today, the processes of industrialization of food and high exposure to a wide variety of environmental chemicals may be affecting, directly or indirectly, thyroid function. The homeostasis of hypothalamus-pituitary-thyroid (HPT) axis is finely regulated through the negative feedback mechanism exerted by thyroid hormones. Allostatic mechanisms are triggered to adjust the physiology of HPT axis in chronic conditions. Glyphosate and glyphosate-based herbicides are pesticides with controversial endocrine disrupting activities and only few studies have approached their effects on HPT axis and thyroid function. However, glyphosate has an electrophilic and nucleophilic zwitterion chemical structure that may affect the mechanisms involved in iodide oxidation and organification, as well as the oxidative phosphorylation in the ATP synthesis. Thus, in this review, we aimed to: (1) discuss the critical points in the regulation of HPT axis and thyroid hormones levels balance, which may be susceptible to the toxic action of glyphosate and glyphosate-based herbicides, correlating the molecular mechanisms involved in glyphosate toxicity described in the literature that may, directly or indirectly, be associated to the higher incidence of thyroid diseases; and (2) present the literature regarding glyphosate toxicity in HPT axis.
Collapse
Affiliation(s)
| | | | | | | | | | - Paula Bargi-Souza
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | | |
Collapse
|
20
|
Sokal A, Jarmakiewicz-Czaja S, Tabarkiewicz J, Filip R. Dietary Intake of Endocrine Disrupting Substances Presents in Environment and Their Impact on Thyroid Function. Nutrients 2021; 13:867. [PMID: 33800806 PMCID: PMC7998837 DOI: 10.3390/nu13030867] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/28/2021] [Accepted: 03/03/2021] [Indexed: 12/11/2022] Open
Abstract
According to the available data, environmental pollution is a serious problem all over the world. Between 2015 and 2016, pollution was responsible for approximately nine million deaths worldwide. They also include endocrine disrupting chemicals (EDCs) that can interfere with the functioning of the thyroid gland. They are characterized by high persistence in the environment. These substances can enter the body through the gastrointestinal tract, respiratory system, as well as contact with the skin and overcome the placental barrier. EDC can be found in food, water, and personal care products. They can get into food from the environment and as a result of their migration to food products and cosmetics from packaging. EDCs can disrupt the functioning of the thyroid gland through a number of mechanisms, including disrupting the activation of thyroid receptors and the expression of genes that are related to the metabolism, synthesis, and transport of thyroid hormones (HT). There is a need to strengthen the food safety policy that aimed at the use of appropriate materials in direct contact with food. At the same time, an important action is to reduce the production of all waste and, when possible, use biodegradable packaging, which may contribute to the improvement of the quality of the entire ecosystem and the health of food, thus reducing the risk of developing thyroid diseases.
Collapse
Affiliation(s)
- Aneta Sokal
- Institute of Health Sciences, Medical College of Rzeszow University, 35-959 Rzeszow, Poland;
| | - Sara Jarmakiewicz-Czaja
- Institute of Health Sciences, Medical College of Rzeszow University, 35-959 Rzeszow, Poland;
| | - Jacek Tabarkiewicz
- Institute of Medicine, Medical College of Rzeszow University, 35-959 Rzeszow, Poland; (J.T.); (R.F.)
| | - Rafał Filip
- Institute of Medicine, Medical College of Rzeszow University, 35-959 Rzeszow, Poland; (J.T.); (R.F.)
- Department of Gastroenterology with IBD Unit, Clinical Hospital No. 2, 35-301 Rzeszow, Poland
| |
Collapse
|
21
|
Zhang M, Deng YL, Liu C, Chen PP, Luo Q, Miao Y, Cui FP, Wang LQ, Jiang M, Zeng Q. Urinary phthalate metabolite concentrations, oxidative stress and thyroid function biomarkers among patients with thyroid nodules. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 272:116416. [PMID: 33433341 DOI: 10.1016/j.envpol.2020.116416] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/04/2020] [Accepted: 12/29/2020] [Indexed: 06/12/2023]
Abstract
Prior human studies have explored effects of phthalate exposures on thyroid function, but the underlying biological mechanisms remain poorly unclear. We aimed to explore the associations between phthalate exposures and thyroid function among a potentially susceptible population such as patients with thyroid nodules, and further to assess the mediating role of oxidative stress. We measured eight phthalate metabolites, three oxidative stress biomarkers [8-hydroxy-2-deoxyguanosine (8-OHdG), 8-iso-prostaglandin F2α (8-isoPGF2α) and 4-hydroxy-2-nonenal-mercapturic acid (HNE-MA)] in urine and three thyroid function biomarkers [thyroid-stimulating hormone (TSH), free triiodothyronine (FT3) and free thyroxine (FT4)] in serum among 214 patients with thyroid nodules. Multivariate regression models were applied to assess the associations among urinary phthalate metabolites, oxidative stress and thyroid function biomarkers. The potential mediating role of oxidative stress was explored by mediation analysis. We observed that multiple urinary phthalate metabolites were associated with altered FT4 and increased oxidative stress biomarkers (all FDR-adjusted P ≤ 0.05). Meanwhile, we found that 8-isoPGF2α was negatively associated with FT3/FT4 among patients with benign thyroid nodules (FDR-adjusted P = 0.08). The mediation analysis indicated that 8-isoPGF2α mediated the associations of urinary MEHHP and %MEHP with FT3/FT4, with 55.6% and 32.6% proportion of the mediating effects, respectively. Our data suggest that lipid peroxidation may be an intermediate mechanism involved in the effects of certain phthalate exposures on altered thyroid function among patients with benign thyroid nodules.
Collapse
Affiliation(s)
- Min Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yan-Ling Deng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Chong Liu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Pan-Pan Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Qiong Luo
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yu Miao
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Fei-Peng Cui
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Long-Qiang Wang
- Department of Thyroid and Breast Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Ming Jiang
- Department of Thyroid and Breast Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Qiang Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Department of Epidemiology, School of Public Health, Brown University, Providence, RI, USA.
| |
Collapse
|
22
|
Jang Y, Choi YJ, Lim YH, Lee KS, Kim BN, Shin CH, Lee YA, Kim JI, Hong YC. Associations Between Thyroid Hormone Levels and Urinary Concentrations of Bisphenol A, F, and S in 6-Year-old Children in Korea. J Prev Med Public Health 2021; 54:37-45. [PMID: 33618498 PMCID: PMC7939752 DOI: 10.3961/jpmph.20.310] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/23/2020] [Indexed: 11/09/2022] Open
Abstract
OBJECTIVES Bisphenol A (BPA) is used in the electrical, mechanical, medical, and food industries. Previous studies have suggested that BPA is an endocrine disruptor. Regulation of BPA has led to increased use of bisphenol F (BPF) and bisphenol S (BPS). However, few studies have investigated the associations of BPF and BPS with thyroid dysfunction in children. Our study investigated the associations of prenatal BPA and early childhood BPA, BPF, and BPS exposure with thyroid function in 6-year-old children. METHODS Prenatal BPA concentrations were measured during the second trimester of pregnancy in an established prospective birth cohort. We measured urinary BPA, BPF, and BPS concentrations and thyroid hormone levels (thyroid-stimulating hormone, total T3, and free T4) in 6-year-old children (n=574). We examined the associations between urinary bisphenol concentrations and percentage change of thyroid hormone concentrations using multivariate linear regression. We also compared thyroid hormone levels by dividing the cohort according to BPA, BPF, and BPS concentrations. RESULTS The associations between prenatal BPA and total T3 levels were statistically significant in all models, except for girls when using a crude model. The associations between urinary BPA and BPS concentrations and levels of all thyroid hormones were not statistically significant. However, we observed that lower free T4 levels (-1.94%; 95% confidence interval, -3.82 to -0.03) were associated with higher urinary BPF concentrations in girls only. CONCLUSIONS Our findings identified significant associations between prenatal BPA exposure and total T3 levels in all children and between BPF exposure and free T4 levels in girls only.
Collapse
Affiliation(s)
- Yoonyoung Jang
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Korea.,Environmental Health Center, Seoul National University College of Medicine, Seoul, Korea
| | - Yoon-Jung Choi
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Korea.,Environmental Health Center, Seoul National University College of Medicine, Seoul, Korea
| | - Youn-Hee Lim
- Institute of Environmental Medicine, Seoul National University Medical Research Center, Seoul, Korea.,Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Kyung-Shin Lee
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Korea.,Environmental Health Center, Seoul National University College of Medicine, Seoul, Korea
| | - Bung-Nyun Kim
- Division of Child and Adolescent Psychiatry, Department of Psychiatry, Seoul National University College of Medicine, Seoul, Korea
| | - Choong Ho Shin
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| | - Young Ah Lee
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| | | | - Yun-Chul Hong
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Korea.,Environmental Health Center, Seoul National University College of Medicine, Seoul, Korea.,Institute of Environmental Medicine, Seoul National University Medical Research Center, Seoul, Korea
| |
Collapse
|
23
|
Pitto L, Gorini F, Bianchi F, Guzzolino E. New Insights into Mechanisms of Endocrine-Disrupting Chemicals in Thyroid Diseases: The Epigenetic Way. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17217787. [PMID: 33114343 PMCID: PMC7662297 DOI: 10.3390/ijerph17217787] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/18/2020] [Accepted: 10/22/2020] [Indexed: 12/26/2022]
Abstract
In recent years, the presence in the environment of chemical compounds with thyroid-disrupting effects is progressively increased. This phenomenon has risen concern for human health as the preservation of thyroid system homeostasis is essential for fetal development and for maintaining psychological and physiological wellbeing. An increasing number of studies explored the role of different classes of toxicants in the occurrence and severity of thyroid diseases, but large epidemiological studies are limited and only a few animal or in vitro studies have attempted to identify the mechanisms of chemical action. Recently, epigenetic changes such as alteration of methylation status or modification of non-coding RNAs have been suggested as correlated to possible deleterious effects leading to different thyroid disorders in susceptible individuals. This review aims to analyze the epigenetic alterations putatively induced by chemical exposures and involved in the onset of frequent thyroid diseases such as thyroid cancer, autoimmune thyroiditis and disruption of fetal thyroid homeostasis.
Collapse
Affiliation(s)
- Letizia Pitto
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy; (F.G.); (F.B.); (E.G.)
- Correspondence: ; Tel.: + 39-050-3153090
| | - Francesca Gorini
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy; (F.G.); (F.B.); (E.G.)
| | - Fabrizio Bianchi
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy; (F.G.); (F.B.); (E.G.)
| | - Elena Guzzolino
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy; (F.G.); (F.B.); (E.G.)
- Department of Biosciences, University of Milan, 20133 Milan, Italy
| |
Collapse
|
24
|
Gorini F, Bustaffa E, Coi A, Iervasi G, Bianchi F. Bisphenols as Environmental Triggers of Thyroid Dysfunction: Clues and Evidence. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E2654. [PMID: 32294918 PMCID: PMC7216215 DOI: 10.3390/ijerph17082654] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 12/25/2022]
Abstract
Bisphenols (BPs), and especially bisphenol A (BPA), are known endocrine disruptors (EDCs), capable of interfering with estrogen and androgen activities, as well as being suspected of other health outcomes. Given the crucial role of thyroid hormones and the increasing incidence of thyroid carcinoma in the last few decades, this review analyzes the effects of BPS on the thyroid, considering original research in vitro, in vivo, and in humans published from January 2000 to October 2019. Both in vitro and in vivo studies reported the ability of BPs to disrupt thyroid function through multiple mechanisms. The antagonism with thyroid receptors (TRs), which affects TR-mediated transcriptional activity, the direct action of BPs on gene expression at the thyroid and the pituitary level, the competitive binding with thyroid transport proteins, and the induction of toxicity in several cell lines are likely the main mechanisms leading to thyroid dysfunction. In humans, results are more contradictory, though some evidence suggests the potential of BPs in increasing the risk of thyroid nodules. A standardized methodology in toxicological studies and prospective epidemiological studies with individual exposure assessments are warranted to evaluate the pathophysiology resulting in the damage and to establish the temporal relationship between markers of exposure and long-term effects.
Collapse
|