1
|
Ning N, Tian Z, Feng H, Feng X. Lnc NEAT1 facilitates the progression of melanoma by targeting the miR-152-3p/CDK6 axis: An observational study. Medicine (Baltimore) 2024; 103:e40379. [PMID: 39495991 PMCID: PMC11537649 DOI: 10.1097/md.0000000000040379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 10/16/2024] [Indexed: 11/06/2024] Open
Abstract
Long noncoding (Lnc) RNAs are novel regulators in melanoma. Lnc nuclear enriched autosomal transcript 1 (NEAT1) was reportedly upregulated in melanoma; however, the functional roles and mechanisms of Lnc NEAT1 need further investigation. Therefore, we used quantitative real-time PCR to determine the mRNA levels of Lnc NEAT1, miR-152-3p, and cyclin-dependent protein kinase 6 (CDK6). The protein level of CDK6 was determined by Western blot. Cell counting kit 8 and colony formation assays were used to assess cell proliferation. Cell migration was measured by wound healing and Transwell assays. Direct binding of the indicated molecules was verified by an RNA-binding protein immunoprecipitation assay and a dual luciferase reporter assay. The results revealed that Lnc NEAT1 and CDK6 were elevated, while miR-152-3p was downregulated in melanoma. Furthermore, Lnc NEAT1 was positively correlated with CDK6 expression and negatively correlated with miR-152-3p level. Furthermore, Lnc NEAT1 facilitated proliferation, migration, and invasion of melanoma cells. The underlying mechanism is that Lnc NEAT1 serves as a sponge for miR-152-3p to suppress the inhibitory effect of miR-152-3p on CDK6. Furthermore, the miR-152-3p/ CDK6 axis was implicated in the progression of melanoma accelerated by Lnc NEAT1. Taken together, Lnc NEAT1 may promote melanoma development by serving as an endogenous sponge of miR-152-3p, increasing CDK6 expression, and identifying a new target for the treatment of melanoma.
Collapse
Affiliation(s)
- Ning Ning
- Department of Medical Equipment, Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Hunan, China
| | - Zeyu Tian
- Department of General Surgery, Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Hunan, China
| | - Hao Feng
- Department of Dermatology, Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Hunan, China
| | - Xing Feng
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Hunan, China
| |
Collapse
|
2
|
Sharma A, Becker F, Tao X, Baddela VS, Koczan D, Ludwig C, Vanselow J. Hyperplastic ovarian stromal cells express genes associated to tumor progression: a case study. BMC Vet Res 2024; 20:439. [PMID: 39342193 PMCID: PMC11438404 DOI: 10.1186/s12917-024-04275-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 09/10/2024] [Indexed: 10/01/2024] Open
Abstract
The current study presents the analysis of stromal cells obtained from an hyperplastic left-ovary of a Holstein cow. Cultured hyperplastic stromal cells displayed a fibroblast-like morphology and ceased proliferation after the 8th passage. The non-cancerous nature of stromal cells was confirmed by in vitro cell proliferation and migration assays. Negligible amounts of E2 were detected in the spent media of cultured stromal cells, which suggests that stromal cells were non-estradiol synthesizing cells. As revealed in immunofluorescence and gene expression analysis, the hyperplastic stromal cells explicitly expressed vimentin in their cytoskeleton. Upon hematoxylin staining, a highly dense population of stromal cells was observed in the stromal tissue of the hyperplastic ovary. To explore genome-wide alterations, mRNA microarray analysis was performed using Affymetrix Bovine Gene 1.0ST Arrays compared to normal ovarian derived stromal cells. The microarray identified 1396 differentially expressed genes, of which 733 were up- and 663 down-regulated in hyperplastic stromal cells. Importantly, asporin (ASPN) and vascular cell adhesion molecule 1 (VCAM1) were among the highly up-regulated genes. Higher expression of ASPN was also confirmed by immunohistochemistry and RT-qPCR analysis. Ingenuity pathway analysis (IPA) identified about 98 significantly enriched (-log (p value ≥ 1.3) canonical pathways, importantly of which the "Sirutin Signaling Pathway" and "Mitochondrial Dysfunction" were highly activated while "Oxidative phosphorylation" was inhibited. Additionally, higher proportion of hyperplastic stromal cells in the S-phase of cell cycle, could be attributed to higher expression levels of cell proliferation genes such as CCND2 and CDK6.
Collapse
Affiliation(s)
- Arpna Sharma
- Forschungsinstitut für Nutztierbiologie (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany.
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, USA.
| | - Frank Becker
- Forschungsinstitut für Nutztierbiologie (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Xuelian Tao
- Forschungsinstitut für Nutztierbiologie (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Vijay Simha Baddela
- Forschungsinstitut für Nutztierbiologie (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Dirk Koczan
- Institut für Immunologie, Universität Rostock, 18055, Rostock, Germany
| | - Carolin Ludwig
- Forschungsinstitut für Nutztierbiologie (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Jens Vanselow
- Forschungsinstitut für Nutztierbiologie (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| |
Collapse
|
3
|
Krakisha FMA, Othman DIA, El Husseiny WM, Nasr MNA. New pyridopyrimidine derivatives as dual EGFR and CDK4/cyclin D1 inhibitors: synthesis, biological screening and molecular modeling. Future Med Chem 2024; 16:1633-1648. [PMID: 39023284 PMCID: PMC11370904 DOI: 10.1080/17568919.2024.2366147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/03/2024] [Indexed: 07/20/2024] Open
Abstract
Aim: A series of pyridopyrimidine derivatives 5-20 was designed, synthesized and examined for antitumor activity using four types of malignant cells.Materials & methods: Cervical cancer (HeLa), hepatic cancer (HepG-2), breast cancer (MCF-7) and colon cancer (HCT-166) cells, as well as normal human lung fibroblast cells (WI-38) were used to determine the cytotoxicity.Results: Pyrazol-1-yl pyridopyrimidine derivative 5 was found to be the most active compound against three malignant cells Hela, MCF-7 and HepG-2 with IC50 values of 9.27, 7.69 and 5.91 μM, respectively, related to standard Doxorubicin. Moreover, compounds 5 and 10 showed good inhibition against cyclin dependent kinase (CDK4/cyclin D1) and epidermal growth factor (EGFR) enzymes.
Collapse
Affiliation(s)
- Fatma MA Krakisha
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura35516, Egypt
- Pharmacy Center of Scientific Excellence, Faculty of Pharmacy, Mansoura University, Mansoura35516, Egypt
| | - Dina IA Othman
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura35516, Egypt
- Pharmacy Center of Scientific Excellence, Faculty of Pharmacy, Mansoura University, Mansoura35516, Egypt
| | - Walaa M El Husseiny
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura35516, Egypt
- Pharmacy Center of Scientific Excellence, Faculty of Pharmacy, Mansoura University, Mansoura35516, Egypt
| | - Magda NA Nasr
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura35516, Egypt
| |
Collapse
|
4
|
Paredes de la Fuente R, Sucre S, Ponce C, Rattani AAA, Peters MLB. Somatic Mutation Profile as a Predictor of Treatment Response and Survival in Unresectable Pancreatic Ductal Adenocarcinoma Treated with FOLFIRINOX and Gemcitabine Nab-Paclitaxel. Cancers (Basel) 2024; 16:2734. [PMID: 39123462 PMCID: PMC11312283 DOI: 10.3390/cancers16152734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
(1) Background: Pancreatic ductal adenocarcinoma (PDAC) has low survival rates despite treatment advancements. Aim: This study aims to show how molecular profiling could possibly guide personalized treatment strategies, which may help improve survival outcomes in patients with PDAC. (2) Materials and Methods: A retrospective analysis of 142 PDAC patients from a single academic center was conducted. Patients underwent chemotherapy and next-generation sequencing for molecular profiling. Key oncogenic pathways were identified using the Reactome pathway database. Survival analysis was performed using Kaplan-Meier curves and Cox Proportional Hazards Regression. (3) Results: Patients mainly received FOLFIRINOX (n = 62) or gemcitabine nab-paclitaxel (n = 62) as initial chemotherapy. The median OS was 13.6 months. Longer median OS was noted in patients with NOTCH (15 vs. 12.3 months, p = 0.007) and KIT pathway mutations (21.3 vs. 12.12 months, p = 0.04). Combinatorial pathway analysis indicated potential synergistic effects on survival. In the PFS, PI3K pathway (6.6 vs. 5.7 months, p = 0.03) and KIT pathway (10.3 vs. 6.2 months, p = 0.03) mutations correlated with improved PFS within the gemcitabine nab-paclitaxel subgroup. (4) Conclusions: Molecular profiling could play a role in PDAC for predicting outcomes and responses to therapies like FOLFIRINOX and gemcitabine nab-paclitaxel. Integrating genomic data into clinical decision-making can benefit PDAC treatment, though further validation is needed to fully utilize precision oncology in PDAC management.
Collapse
Affiliation(s)
| | - Santiago Sucre
- Division of Medical Oncology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA (A.A.A.R.)
| | - Cristina Ponce
- Division of Medical Oncology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA (A.A.A.R.)
| | - Ahmed Anwer Ali Rattani
- Division of Medical Oncology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA (A.A.A.R.)
| | - Mary Linton B. Peters
- Division of Medical Oncology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA (A.A.A.R.)
| |
Collapse
|
5
|
Sun L, Yuan C, An X, Kong L, Zhang D, Chen B, Lu Z, Liu J. Delta-like noncanonical notch ligand 2 regulates the proliferation and differentiation of sheep myoblasts through the Wnt/β-catenin signaling pathway. J Cell Physiol 2024:e31385. [PMID: 39030845 DOI: 10.1002/jcp.31385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/25/2024] [Accepted: 07/05/2024] [Indexed: 07/22/2024]
Abstract
This study delved into the role of delta-like noncanonical notch ligand 2 (DLK2) in the cell cycle, proliferation, apoptosis, and differentiation of myoblasts, as well as its interaction with the classical Wnt/β-catenin signaling pathway in regulating myoblast function. The research revealed that upregulation of DLK2 in myoblasts during the proliferation phase enhanced myoblast proliferation, facilitated cell cycle progression, and reduced apoptosis. Conversely, downregulation of DLK2 expression using siRNA during the differentiation phase promoted myoblast hypertrophy and fusion, suppressed the expression of muscle fiber degradation factors, and expedited the differentiation process. DLK2 regulates myoblasts function by influencing the expression of various factors associated with the Wnt/β-catenin signaling pathway, including CTNNB1, FZD1, FZD6, RSPO1, RSPO4, WNT4, WNT5A, and adenomatous polyposis coli. In essence, DLK2, with the involvement of the Wnt/β-catenin signaling pathway, plays a crucial regulatory role in the cell cycle, proliferation, apoptosis, and differentiation of myoblasts.
Collapse
Affiliation(s)
- Lixia Sun
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Chao Yuan
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xuejiao An
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Lingying Kong
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Dan Zhang
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Bowen Chen
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zengkui Lu
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jianbin Liu
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
6
|
Sun C, Jiang C, Wang X, Ma S, Zhang D, Jia W. MR-Based Radiomics Predicts CDK6 Expression and Prognostic Value in High-grade Glioma. Acad Radiol 2024:S1076-6332(24)00364-7. [PMID: 38964985 DOI: 10.1016/j.acra.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/28/2024] [Accepted: 06/03/2024] [Indexed: 07/06/2024]
Abstract
RATIONALE AND OBJECTIVES This study aims to assess the prognostic value of Cyclin-dependent kinases 6 (CDK6) expression levels and establish a machine learning-based radiomics model for predicting the expression levels of CDK6 in high-grade gliomas (HGG). MATERIALS AND METHODS Clinical parameters and genomic data were extracted from 310 HGG patients in the Cancer Genome Atlas (TCGA) database and 27 patients in the Repository of Molecular Brain Neoplasia Data (REMBRANDT) database. Univariate and multivariate Cox regression, as well as Kaplan-Meier analysis, were performed for prognosis analysis. The correlation between immune cell Infiltration with CDK6 was assessed using spearman correlation analysis. Radiomic features were extracted from contrast-enhanced magnetic resonance imaging (CE-MRI) in the Cancer Imaging Archive (TCIA) database (n = 82) and REMBRANDT database (n = 27). Logistic regression (LR) and support vector machine (SVM) were employed to establish the radiomics model for predicting CDK6 expression. Receiver operating characteristic curve (ROC), calibration curve, and decision curve analysis (DCA) were utilized to assess the predictive performance of the radiomics model. Generate radiomic scores (RS) based on the LR model. An RS-based nomogram was constructed to predict the prognosis of HGG. RESULTS CDK6 was significantly overexpressed in HGG tissues and was related to lower overall survival. A significant elevation in infiltrating M0 macrophages was observed in the CDK6 high group (P < 0.001). The LR radiomics model for the prediction of CDK6 expression levels (AUC=0.810 in the training cohort, AUC = 0.784 after cross-validation, AUC=0.750 in the testing cohort) was established utilizing three radiomic features. The predictive efficiencies of the RS-based nomogram, as measured by AUC, were 0.769 for 1-year, 0.815 for 3-year, and 0.780 for 5-year, respectively. CONCLUSION The expression level of CDK6 can impact the prognosis of patients with HGG. The expression level of HGG can be noninvasively prognosticated utilizing a radiomics model.
Collapse
Affiliation(s)
- Chen Sun
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 West Road, South Fourth Ring Road, Beijing, China
| | - Chenggang Jiang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 West Road, South Fourth Ring Road, Beijing, China
| | - Xi Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 West Road, South Fourth Ring Road, Beijing, China
| | - Shunchang Ma
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 West Road, South Fourth Ring Road, Beijing, China
| | - Dainan Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 West Road, South Fourth Ring Road, Beijing, China
| | - Wang Jia
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 West Road, South Fourth Ring Road, Beijing, China.
| |
Collapse
|
7
|
Yan KN, Nie YQ, Wang JY, Yin GL, Liu Q, Hu H, Sun X, Chen XH. Accelerating PROTACs Discovery Through a Direct-to-Biology Platform Enabled by Modular Photoclick Chemistry. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400594. [PMID: 38689503 PMCID: PMC11234393 DOI: 10.1002/advs.202400594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/02/2024] [Indexed: 05/02/2024]
Abstract
Proteolysis targeting chimeras (PROTACs) have emerged as a promising strategy for drug discovery and exploring protein functions, offering a revolutionary therapeutic modality. Currently, the predominant approach to PROTACs discovery mainly relies on an empirical design-synthesis-evaluation process involving numerous cycles of labor-intensive synthesis-purification and bioassay data collection. Therefore, the development of innovative methods to expedite PROTAC synthesis and exploration of chemical space remains highly desired. Here, a direct-to-biology strategy is reported to streamline the synthesis of PROTAC libraries on plates, enabling the seamless transfer of reaction products to cell-based bioassays without the need for additional purification. By integrating amide coupling and light-induced primary amines and o-nitrobenzyl alcohols cyclization (PANAC) photoclick chemistry into a plate-based synthetic process, this strategy produces PROTAC libraries with high efficiency and structural diversity. Moreover, by employing this platform for PROTACs screening, we smoothly found potent PROTACs effectively inhibit triple-negative breast cancer (TNBC) cell growth and induce rapid, selective targeted degradation of cyclin-dependent kinase 9 (CDK9). The study introduces a versatile platform for assembling PROTACs on plates, followed by direct biological evaluation. This approach provides a promising opportunity for high-throughput synthesis of PROTAC libraries, thereby enhancing the efficiency of exploring chemical space and accelerating the discovery of PROTACs.
Collapse
Affiliation(s)
- Ke-Nian Yan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yong-Qiang Nie
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Jia-Yu Wang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Guang-Liang Yin
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qia Liu
- University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Hao Hu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xiaoxia Sun
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Xiao-Hua Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| |
Collapse
|
8
|
Royet C, Diot S, Onofre M, Lecki L, Pastore M, Reynes C, Lorcy F, Lacheretzszablewski V, Serre I, Morris MC. Multiplexed Profiling of CDK Kinase Activities in Tumor Biopsies with Fluorescent Peptide Biosensors. ACS Sens 2024; 9:2964-2978. [PMID: 38863434 DOI: 10.1021/acssensors.4c00139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Detection of disease biomarkers constitutes a major challenge for the development of personalized and predictive diagnostics as well as companion assays. Protein kinases (PKs) involved in the coordination of cell cycle progression and proliferation that are hyperactivated in human cancers constitute attractive pharmacological targets and relevant biomarkers. Although it is relatively straightforward to assess the relative abundance of PKs in a biological sample, there is not always a direct correlation with enzymatic activity, which is regulated by several posttranslational mechanisms. Studies of relative abundance therefore convey limited information, and the lack of selective, sensitive, and standardized tools together with the inherent complexity of biological samples makes it difficult to quantify PK activities in physio-pathological tissues. To address this challenge, we have developed a toolbox of fluorescent biosensors that report on CDK activities in a sensitive, selective, dose-dependent, and quantitative fashion, which we have implemented to profile CDK activity signatures in cancer cell lines and biopsies from human tumors. In this study, we report on a standardized and calibrated biosensing approach to quantify CDK1,2,4, and 6 activities simultaneously through a combination of four different biosensors in a panel of 40 lung adenocarcinoma and 40 follicular lymphoma samples. CDK activity profiling highlighted two major patterns which were further correlated with age, sex of patients, tumor size, grade, and genetic and immunohistochemical features of the biopsies. Multiplex CDKACT biosensing technology provides new and complementary information relative to current genetic and immunohistochemical characterization of tumor biopsies, which will be useful for diagnostic purposes, potentially guiding therapeutic decision. These fluorescent peptide biosensors offer promise for personalized diagnostics based on kinase activity profiling.
Collapse
Affiliation(s)
- Chloé Royet
- Institut des Biomolécules Max Mousseron, CNRS, UMR 5247, Montpellier University, 1919 Route de Mende, 34293 Montpellier, France
| | - Sébastien Diot
- Institut des Biomolécules Max Mousseron, CNRS, UMR 5247, Montpellier University, 1919 Route de Mende, 34293 Montpellier, France
| | - Mélanie Onofre
- Institut des Biomolécules Max Mousseron, CNRS, UMR 5247, Montpellier University, 1919 Route de Mende, 34293 Montpellier, France
| | - Lennard Lecki
- Institut des Biomolécules Max Mousseron, CNRS, UMR 5247, Montpellier University, 1919 Route de Mende, 34293 Montpellier, France
| | - Manuela Pastore
- StatABio Facility─Biocampus, UAR 3426 CNRS─US 09 INSERM, Montpellier University, 141 rue de la Cardonille, 34094 Montpellier Cedex 05, France
| | - Christelle Reynes
- StatABio Facility─Biocampus, UAR 3426 CNRS─US 09 INSERM, Montpellier University, 141 rue de la Cardonille, 34094 Montpellier Cedex 05, France
| | - Frederique Lorcy
- University Hospital Centre Montpellier, 80 Av. Augustin Fliche, 34295 Montpellier, France
| | | | - Isabelle Serre
- University Hospital Centre Montpellier, 80 Av. Augustin Fliche, 34295 Montpellier, France
| | - May C Morris
- Institut des Biomolécules Max Mousseron, CNRS, UMR 5247, Montpellier University, 1919 Route de Mende, 34293 Montpellier, France
| |
Collapse
|
9
|
Zhao L, Wang J, Yang W, Zhao K, Sun Q, Chen J. Unveiling Conformational States of CDK6 Caused by Binding of Vcyclin Protein and Inhibitor by Combining Gaussian Accelerated Molecular Dynamics and Deep Learning. Molecules 2024; 29:2681. [PMID: 38893554 PMCID: PMC11174096 DOI: 10.3390/molecules29112681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
CDK6 plays a key role in the regulation of the cell cycle and is considered a crucial target for cancer therapy. In this work, conformational transitions of CDK6 were identified by using Gaussian accelerated molecular dynamics (GaMD), deep learning (DL), and free energy landscapes (FELs). DL finds that the binding pocket as well as the T-loop binding to the Vcyclin protein are involved in obvious differences of conformation contacts. This result suggests that the binding pocket of inhibitors (LQQ and AP9) and the binding interface of CDK6 to the Vcyclin protein play a key role in the function of CDK6. The analyses of FELs reveal that the binding pocket and the T-loop of CDK6 have disordered states. The results from principal component analysis (PCA) indicate that the binding of the Vcyclin protein affects the fluctuation behavior of the T-loop in CDK6. Our QM/MM-GBSA calculations suggest that the binding ability of LQQ to CDK6 is stronger than AP9 with or without the binding of the Vcyclin protein. Interaction networks of inhibitors with CDK6 were analyzed and the results reveal that LQQ contributes more hydrogen binding interactions (HBIs) and hot interaction spots with CDK6. In addition, the binding pocket endures flexibility changes from opening to closing states and the Vcyclin protein plays an important role in the stabilizing conformation of the T-loop. We anticipate that this work could provide useful information for further understanding the function of CDK6 and developing new promising inhibitors targeting CDK6.
Collapse
Affiliation(s)
- Lu Zhao
- School of Science, Shandong Jiaotong University, Jinan 250357, China; (J.W.); (W.Y.); (K.Z.); (Q.S.)
| | | | | | | | | | - Jianzhong Chen
- School of Science, Shandong Jiaotong University, Jinan 250357, China; (J.W.); (W.Y.); (K.Z.); (Q.S.)
| |
Collapse
|
10
|
Lin CHT, Tariq MJ, Ullah F, Sannareddy A, Khalid F, Abbas H, Bader A, Samaras C, Valent J, Khouri J, Anwer F, Raza S, Dima D. Current Novel Targeted Therapeutic Strategies in Multiple Myeloma. Int J Mol Sci 2024; 25:6192. [PMID: 38892379 PMCID: PMC11172591 DOI: 10.3390/ijms25116192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Multiple myeloma (MM) is a hematologic malignancy caused by the clonal expansion of immunoglobulin-producing plasma cells in the bone marrow and/or extramedullary sites. Common manifestations of MM include anemia, renal dysfunction, infection, bone pain, hypercalcemia, and fatigue. Despite numerous recent advancements in the MM treatment paradigm, current therapies demonstrate limited long-term effectiveness and eventual disease relapse remains exceedingly common. Myeloma cells often develop drug resistance through clonal evolution and alterations of cellular signaling pathways. Therefore, continued research of new targets in MM is crucial to circumvent cumulative drug resistance, overcome treatment-limiting toxicities, and improve outcomes in this incurable disease. This article provides a comprehensive overview of the landscape of novel treatments and emerging therapies for MM grouped by molecular target. Molecular targets outlined include BCMA, GPRC5D, FcRH5, CD38, SLAMF7, BCL-2, kinesin spindle protein, protein disulfide isomerase 1, peptidylprolyl isomerase A, Sec61 translocon, and cyclin-dependent kinase 6. Immunomodulatory drugs, NK cell therapy, and proteolysis-targeting chimera are described as well.
Collapse
Affiliation(s)
- Cindy Hsin-Ti Lin
- Department of Internal Medicine, Case Western Reserve University, MetroHealth Campus, Cleveland, OH 44109, USA
| | - Muhammad Junaid Tariq
- Department of Hematology-Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA;
| | - Fauzia Ullah
- Department of Hematology-Oncology, Cleveland Clinic, Taussig Cancer Institute, Cleveland, OH 44195, USA; (F.U.); (C.S.); (J.V.); (J.K.); (F.A.); (S.R.); (D.D.)
| | | | - Farhan Khalid
- Department of Internal Medicine, Monmouth Medical Center, Long Branch, NJ 07740, USA;
| | - Hasan Abbas
- Medical College of Wisconsin, Milwaukee, WI 53226, USA;
| | - Abbas Bader
- School of Medicine, University of Missouri–Kansas City, Kansas City, MO 64110, USA;
| | - Christy Samaras
- Department of Hematology-Oncology, Cleveland Clinic, Taussig Cancer Institute, Cleveland, OH 44195, USA; (F.U.); (C.S.); (J.V.); (J.K.); (F.A.); (S.R.); (D.D.)
| | - Jason Valent
- Department of Hematology-Oncology, Cleveland Clinic, Taussig Cancer Institute, Cleveland, OH 44195, USA; (F.U.); (C.S.); (J.V.); (J.K.); (F.A.); (S.R.); (D.D.)
| | - Jack Khouri
- Department of Hematology-Oncology, Cleveland Clinic, Taussig Cancer Institute, Cleveland, OH 44195, USA; (F.U.); (C.S.); (J.V.); (J.K.); (F.A.); (S.R.); (D.D.)
| | - Faiz Anwer
- Department of Hematology-Oncology, Cleveland Clinic, Taussig Cancer Institute, Cleveland, OH 44195, USA; (F.U.); (C.S.); (J.V.); (J.K.); (F.A.); (S.R.); (D.D.)
| | - Shahzad Raza
- Department of Hematology-Oncology, Cleveland Clinic, Taussig Cancer Institute, Cleveland, OH 44195, USA; (F.U.); (C.S.); (J.V.); (J.K.); (F.A.); (S.R.); (D.D.)
| | - Danai Dima
- Department of Hematology-Oncology, Cleveland Clinic, Taussig Cancer Institute, Cleveland, OH 44195, USA; (F.U.); (C.S.); (J.V.); (J.K.); (F.A.); (S.R.); (D.D.)
- Fred Hutchinson Cancer Center, University of Washington, Seattle, WA 98109, USA
| |
Collapse
|
11
|
Liu Y, Jiang H, Hu K, Zou H, Zhang W, Liu J, Jian X. CircPRMT5 promotes progression of osteosarcoma by recruiting CNBP to regulate the translation and stability of CDK6 mRNA. PLoS One 2024; 19:e0298947. [PMID: 38626179 PMCID: PMC11020494 DOI: 10.1371/journal.pone.0298947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 02/01/2024] [Indexed: 04/18/2024] Open
Abstract
Research has demonstrated that circular RNAs (circRNAs) exert critical functions in the occurrence and progression of numerous malignant tumors. CircPRMT5 was recently reported to be involved in the pathogenesis of cancers. However, the potential role of circPRMT5 in osteosarcoma needs further investigation. In present study, our results suggested that circPRMT5 was highly upregulated in osteosarcoma cells and mainly localizes in the cytoplasm. CircPRMT5 promoted the proliferation, migration and invasion capacities of osteosarcoma cells, and suppressed cell apoptosis. Knockdown of circPRMT5 exerted the opposite effects. Mechanically, circPRMT5 promoted the binding of CNBP to CDK6 mRNA, which enhanced the stability of CDK6 mRNA and facilitated its translation, thereby promoting the progression of osteosarcoma. Knockdown of CDK6 reversed the promoting effect of circPRMT5 on osteosarcoma cells. These findings suggest that circPRMT5 promotes osteosarcoma cell malignant activity by recruiting CNBP to regulate the translation and stability of CDK6 mRNA. Thus, circPRMT5 may represent a promising therapeutic target for osteosarcoma.
Collapse
Affiliation(s)
- Yunlu Liu
- Department of Orthopedics, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Hongyan Jiang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Keli Hu
- Department of Orthopedics, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Hui Zou
- Department of Orthopedics, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Weiguo Zhang
- Department of Orthopedics, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Jiangtao Liu
- Department of Orthopedics, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Xiaofei Jian
- Department of Orthopedics, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| |
Collapse
|
12
|
Mohanan NK, Shaji F, Sudheesh AP, Bangalore Prabhashankar A, Sundaresan NR, Laishram RS. Star-PAP controls oncogene expression through primary miRNA 3'-end formation to regulate cellular proliferation and tumour formation. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167080. [PMID: 38364942 DOI: 10.1016/j.bbadis.2024.167080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/04/2024] [Accepted: 02/10/2024] [Indexed: 02/18/2024]
Abstract
Star-PAP is a non-canonical poly(A) polymerase that is down regulated in breast cancer. While Star-PAP down regulation impairs target mRNA polyadenylation, paradoxically, we see up regulation of a large number of oncogenes on Star-PAP knockdown. Using two breast cancer cells (MCF7 with high Star-PAP, and MDA-MB-231 with negligible Star-PAP level), we discover that Star-PAP negatively regulates oncogene expression and subsequently cellular proliferation. This regulation is compromised with Star-PAP mutant of 3'-end processing function (serine 6 to alanine, S6A phospho-mutation). Concomitantly, xenograft mice model using MDA-MB-231 cells reveals a reduction in the tumour formation on ectopic Star-PAP expression that is ameliorated by S6A mutation. We find that Star-PAP control of target oncogene expression is independent of Star-PAP-mediated alternative polyadenylation or target mRNA 3'-end formation. We demonstrate that Star-PAP regulates target oncogenes through cellular miRNAs (miR-421, miR-335, miR-424, miR-543, miR-205, miR-34a, and miR-26a) that are down regulated in breast cancer. Analysis of various steps in miRNA biogenesis pathway reveals that Star-PAP regulates 3'-end formation and synthesis of primary miRNA (host) transcripts that is dependent on S6 phosphorylation thus controlling mature miRNA generation. Using mimics and inhibitors of two target miRNAs (miR-421 and miR-424) after Star-PAP depletion in MCF7 or ectopic expression in MDA-MB-231 cells, we demonstrate that Star-PAP controls oncogene expression and cellular proliferation through targeting miRNAs that regulates tumour formation. Our study establishes a novel mechanism of oncogene expression independent of alternative polyadenylation through Star-PAP-mediated miRNA host transcript polyadenylation that regulates breast cancer progression.
Collapse
Affiliation(s)
- Neeraja K Mohanan
- Cardiovascular and Diabetes Biology Group, Rajiv Gandhi Centre for Biotechnology, Trivandrum 695014, India; Manipal Academy of Higher Education, Manipal 576104, India
| | - Feba Shaji
- Cardiovascular and Diabetes Biology Group, Rajiv Gandhi Centre for Biotechnology, Trivandrum 695014, India; Regional Centre for Biotechnology, Faridabad 121001, India
| | - A P Sudheesh
- Cardiovascular and Diabetes Biology Group, Rajiv Gandhi Centre for Biotechnology, Trivandrum 695014, India
| | | | - Nagalingam R Sundaresan
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Rakesh S Laishram
- Cardiovascular and Diabetes Biology Group, Rajiv Gandhi Centre for Biotechnology, Trivandrum 695014, India.
| |
Collapse
|
13
|
Ebrahimi K, Bagheri R, Gholamhosseinian H, Keramati MR, Rafatpanah H, Iranshahi M, Rassouli FB. Umbelliprenin improved anti-proliferative effects of ionizing radiation on adult T-cell leukemia/lymphoma cells via interaction with CDK6; an in vitro and in silico study. Int J Immunopathol Pharmacol 2024; 38:3946320241287873. [PMID: 39313767 PMCID: PMC11437583 DOI: 10.1177/03946320241287873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024] Open
Abstract
Adult T-cell leukemia/lymphoma (ATL) is an aggressive malignancy with poor survival rates. The efficacy of radiotherapy in ATL needs enhancement with radiosensitizing agents. This study investigated whether umbelliprenin (UMB) could improve the therapeutic effects of ionizing radiation (IR) in ATL cells. UMB, a naturally occurring prenylated coumarin, exhibits anticancer properties and has shown synergistic effects when combined with chemotherapeutic drugs. Despite this promising profile, there is a notable lack of research on its potential combinatorial effects with IR, particularly for ATL treatment. UMB was extracted from Ferula persica using thin layer chromatography. MT-2 cells were treated with UMB alone and in combination with various doses of IR, and cell proliferation was assessed via alamarBlue assay. Flow cytometry with annexin V and PI staining was conducted, and candidate gene expression was analyzed by qPCR. In silico analysis involved identifying pathogenic targets of ATL, constructing protein-protein interaction (PPI) networks, and evaluating CDK6 expression in MT-2 cells. Molecular docking was used to determine the interaction between UMB and CDK6. The alamarBlue assay and flow cytometry showed that pretreating ATL cells with UMB significantly (p < .0001) enhanced anti-proliferative effects of IR. The combination index indicated a synergistic effect between UMB and IR. qPCR revealed significant (p < .0001) downregulation of CD44, CDK6, c-MYC, and cFLIPL, and overexpression of cFLIPS. Computational analysis identified CDK6 as a hub gene in the PPI network, and CDK6 overexpression was confirmed in MT-2 cells. Molecular docking revealed a favorable binding interaction between UMB and the ATP-binding site of CDK6, with a JAMDA score of -2.131, surpassing the control selonsertib. The current study provides evidence that UMB enhances the anti-proliferative effects of IR on ATL cells, and highlights the significance of targeting CDK6 in combinatorial approaches.
Collapse
Affiliation(s)
- Keyhan Ebrahimi
- Cancer Molecular Pathology Research Center, Department of Hematology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ramin Bagheri
- Cancer Molecular Pathology Research Center, Department of Hematology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Gholamhosseinian
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Keramati
- Cancer Molecular Pathology Research Center, Department of Hematology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Houshang Rafatpanah
- Immunology Research Center, Inflammation and inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehrdad Iranshahi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh B Rassouli
- Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
14
|
Basnet R, Amissah OB, Basnet BB, Huang R, Sun Y, de Dieu Habimana J, Li Z. Potential Target of CDK6 Signaling Pathway for Cancer Treatment. Curr Drug Targets 2024; 25:724-739. [PMID: 39039674 DOI: 10.2174/0113894501313781240627062206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 07/24/2024]
Abstract
BACKGROUND Cancer involves uncontrolled cell growth due to genetic mutations. Tumors can form when CDK6, a gene essential for controlling cell growth, isn't working correctly. Researchers are investigating drugs that inhibit CDK6; some of them appear promising. Nevertheless, CDK6 is advantageous and harmful to cancer because it controls other cellular processes. By inhibiting CDK6 and CDK4, CDK4/6 inhibitors offer a novel therapeutic strategy that stops cell proliferation. The study investigates the function of CDK6 in cancer, the difficulties in targeting CDK6, and possible remedies. OBJECTIVE Scientists have developed drugs designed to block CDK6 and prevent it from altering other proteins. These drugs, also known as CDK6 inhibitors, help treat cancer. Finding the best drugs for CDK6 is still tricky, though. The drugs' selectivity, potency, and cost are some difficulties. These factors depend on CDK6's structure and interactions with other proteins. The structure of CDK6 and how it influences its function and regulation are explained in this review. It also describes CDK6's function in cancer and its interaction with other molecules and proteins, which is crucial for cell division. This review also discusses the present and upcoming therapies that target CDK6, as well as how CDK6 interacts with drugs that block it. CONCLUSION This review presents the structure, current research, and overview of CDK6. It also reviews the role of CDK6 in cancer, function, and regulation. Additionally, it explores its role in cancer signaling networks and its interaction with CDK6 inhibitors. Lastly, it discusses the current status and prospects of therapies targeting CDK6.
Collapse
Affiliation(s)
- Rajesh Basnet
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Obed Boadi Amissah
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan District, Beijing 100049, China
| | | | - Rongqi Huang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Yirong Sun
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Jean de Dieu Habimana
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Zhiyuan Li
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan District, Beijing 100049, China
| |
Collapse
|
15
|
Khatoon Z, Khalid M, Alqarni MH, Foudah AI, Annadurai S, Wahab S, Abdullah Almoyad MA. Targeting CDK6 in hormone receptor-positive breast cancer: inhibitor discovery for precision oncology through dynamics study. J Biomol Struct Dyn 2023:1-13. [PMID: 38127416 DOI: 10.1080/07391102.2023.2294375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023]
Abstract
CDK6 is a critical protein involved in the regulation of the cell cycle, playing an important role in the progression from the G1 to S phase. In breast cancer, dysregulation of this protein is involved in tumour development and progression, particularly in hormone receptor-positive (HR+) breast cancers. The upregulation of CDK6 have been observed in a subset of breast cancers, leading to uncontrolled progression of the cell cycle and increased proliferation of cells. The purpose of this abstract is to provide an outline of CDK6's role. In breast cancer and the therapeutic strategies targeting CDK6 using specific selected inhibitors. To discover viable therapeutic candidates after competitive inhibition of CDK6 with a small molecular drug complex, high throughput screening and docking studies were used. Further, we carried the compounds based on ADMET properties and prediction of activity spectra for substances analysis. Finally, two different compounds were selected to carry out MD simulations. CDK6-IMPHY002642 and CDK6-IMPHY005260 are the two compounds that were identified. Overall, our results suggest that the CDK6-IMPHY002642 and CDK6-IMPHY005260 complex was relatively stable during the simulation. The compounds that have been found can also be further examined as potential therapeutic possibilities. The combined findings suggest that CDK6, together with their genetic changes, can be investigated in therapeutic interventions for precision oncology, leveraging early diagnostics and target-driven therapy.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Mohammad Khalid
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Mohammed H Alqarni
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Ahmed I Foudah
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Sivakumar Annadurai
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Mohammad Ali Abdullah Almoyad
- Department of Basic Medical Sciences, College of Applied Medical Sciences in Khamis Mushyt, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
16
|
Golmohammadi M, Zamanian MY, Jalal SM, Noraldeen SAM, Ramírez‐Coronel AA, Oudaha KH, Obaid RF, Almulla AF, Bazmandegan G, Kamiab Z. A comprehensive review on Ellagic acid in breast cancer treatment: From cellular effects to molecular mechanisms of action. Food Sci Nutr 2023; 11:7458-7468. [PMID: 38107139 PMCID: PMC10724635 DOI: 10.1002/fsn3.3699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/30/2023] [Accepted: 09/04/2023] [Indexed: 10/16/2023] Open
Abstract
Globally, breast cancer (BC) is the leading cause of cancer-related deaths in women. Hence, developing a therapeutic plan to overcome the disease is crucial. Numerous factors such as endogenous hormones and environmental factors may play a role in the pathophysiology of BC. Regarding the multi-modality treatment of BC, natural compounds like ellagic acid (EA) received has received increased interest in antitumor efficacy with lower adverse effects. Based on the results of this comprehensive review, EA has multiple effects on BC cells including (1) suppresses the growth of BC cells by arresting the cell cycle in the G0/G1 phase, (2) suppresses migration, invasion, and metastatic, (3) stimulates apoptosis in MCF-7 cells via TGF-β/Smad3 signaling axis, (4) inhibits CDK6 that is important in cell cycle regulation, (5) binds to ACTN4 and induces its degradation via the ubiquitin-proteasome pathway, inducing decreased cell motility and invasion in BC cells, (6) inhibits the PI3K/AKT pathway, and (7) inhibits angiogenesis-associated activities including proliferation (reduces VEGFR-2 tyrosine kinase activity). In conclusion, EA exhibits anticancer activity through various molecular mechanisms that influence key cellular processes like apoptosis, cell cycle, angiogenesis, and metastasis in BC. However, further researches are essential to fully elucidate its molecular targets and implications for clinical applications.
Collapse
Affiliation(s)
| | - Mohammad Yasin Zamanian
- Department of Physiology, School of MedicineHamadan University of Medical SciencesHamadanIran
- Department of Pharmacology and Toxicology, School of PharmacyHamadan University of Medical SciencesHamadanIran
| | | | | | - Andrés Alexis Ramírez‐Coronel
- Research Group in Educational StatisticsNational University of Education (UNAE)AzoguesEcuador
- Epidemiology and Biostatistics Research GroupCES UniversityMedellínColombia
| | - Khulood H. Oudaha
- Pharmaceutical Chemistry Department, College of PharmacyAl‐Ayen UniversityThi‐OarIraq
| | - Rasha Fadhel Obaid
- Department of Biomedical EngineeringAl‐Mustaqbal University CollegeBabylonIraq
| | - Abbas F. Almulla
- Department of Medical Laboratory Technology, College of Medical TechnologyIslamic UniversityNajafIraq
| | - Gholamreza Bazmandegan
- Physiology‐Pharmacology Research Center, Research Institute of Basic Medical SciencesRafsanjan University of Medical SciencesRafsanjanIran
- Department of Physiology and Pharmacology, School of MedicineRafsanjan University of Medical SciencesRafsanjanIran
| | - Zahra Kamiab
- Clinical Research Development Unit, Ali‐Ibn Abi‐Talib HospitalRafsanjan University of Medical SciencesRafsanjanIran
- Department of Community Medicine, School of MedicineRafsanjan University of Medical SciencesRafsanjanIran
| |
Collapse
|
17
|
Li GS, Huang ZG, Li DM, Tang YL, Zheng JH, Yang L, Feng Y, Peng JX, Li JX, Tang YX, Zeng NY, Jin MH, Tian J, Liu J, Zhou HF, Chen G, Chen F. CDK6 is a novel predictive and prognosis biomarker correlated with immune infiltrates in multiple human neoplasms, including small cell lung carcinoma. Funct Integr Genomics 2023; 23:332. [PMID: 37950078 DOI: 10.1007/s10142-023-01253-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 11/12/2023]
Abstract
The roles of cyclin-dependent kinase 6 (CDK6) in various cancers, including small cell lung carcinoma (SCLC), remain unclear. Here, 111,54 multi-center samples were investigated to determine the expression, clinical significance, and underlying mechanisms of CDK6 in 34 cancers. The area under the curve (AUC), Cox regression analysis, and the Kaplan-Meier curves were used to explore the clinical value of CDK6 in cancers. Gene set enrichment analysis and correlation analysis were performed to detect potential CDK6 mechanisms. CDK6 expression was essential in 24 cancer cell types. Abnormal CDK6 expression was observed in 14 cancer types (e.g., downregulated in breast invasive carcinoma; p < 0.05). CDK6 allowed six cancers to be distinguished from their controls (AUC > 0.750). CDK6 expression was a prognosis marker for 13 cancers (e.g., adrenocortical carcinoma; p < 0.05). CDK6 was correlated with several immune-related signaling pathways and the infiltration levels of certain immune cells (e.g., CD8+ T cells; p < 0.05). Downregulated CDK6 mRNA and protein levels were observed in SCLC (p < 0.05, SMD = - 0.90). CDK6 allowed the identification of SCLC status (AUC = 0.91) and predicted a favorable prognosis for SCLC patients (p < 0.05). CDK6 may be a novel biomarker for the prediction and prognosis of several cancers, including SCLC.
Collapse
Affiliation(s)
- Guo-Sheng Li
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, P. R. China
| | - Zhi-Guang Huang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, P. R. China
| | - Dong-Ming Li
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, P. R. China
| | - Yu-Lu Tang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, P. R. China
| | - Jin-Hua Zheng
- Department of Pathology, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, P. R. China
| | - Lin Yang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, P. R. China
| | - Yue Feng
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, P. R. China
| | - Jun-Xi Peng
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, P. R. China
| | - Jing-Xiao Li
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, P. R. China
| | - Yu-Xing Tang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, P. R. China
| | - Neng-Yong Zeng
- Department of Respiratory and Critical Care Medicine, The Second People's Hospital of Qinzhou, Qinzhou, 535009, P. R. China
| | - Mei-Hua Jin
- Department of Pathology, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, P. R. China
| | - Jia Tian
- Department of Pathology, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, P. R. China
| | - Jun Liu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, P. R. China
| | - Hua-Fu Zhou
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, P. R. China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, P. R. China
| | - Feng Chen
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, P. R. China.
| |
Collapse
|
18
|
Tang H, Yeo D, De Souza K, Ahmad O, Shafiq T, Ofor O, Anand A, Karim S, Khan S, Madhusudan S. Clinical Impact of CDK4/6 Inhibitors in De Novo or PR- or Very Elderly Post-Menopausal ER+/HER2- Advanced Breast Cancers. Cancers (Basel) 2023; 15:5164. [PMID: 37958338 PMCID: PMC10647609 DOI: 10.3390/cancers15215164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
The CDK4/6 inhibitors significantly increase progression-free survival (PFS) in ER+/HER2- advanced breast cancer patients. In clinical trials, overall survival (OS) improvement has been demonstrated for ribociclib and abemaciclib but not for palbociclib. We undertook a real-world evaluation of PFS and OS in 227 post-menopausal patients who received first-line CDK4/6 inhibitors. There is no significant difference in median PFS (27.5 months vs. 25.7 months, p = 0.3) or median OS (49.5 months vs. 50.2 months, p = 0.67) in patients who received either palbociclib or ribociclib, respectively. De novo disease is significantly associated with prolonged median PFS and median OS compared with recurrence disease (47.1 months vs. 20.3 months (p = 0.0002) and 77.4 months vs. 37.3 months (p = 0.0003), respectively). PR- tumours have significantly reduced median PFS and OS compared with PR+ disease (19.2 months vs. 38 months (p = 0.003) and 34.3 months vs. 62.6 months (p = 0.02), respectively). In the very elderly (>80 years), median PFS and OS are significantly shorter compared with patients who are 65 years or below (14.5 months vs. 30.2 months (p = 0.01), and 77.4 months vs. 29.6 months (p = 0.009), respectively) in the palbociclib group. Our data suggest that the benefit in the very elderly is limited, and PR+/de novo disease obtains the maximum survival benefit.
Collapse
Affiliation(s)
- Hiu Tang
- Department of Oncology, Nottingham University Hospitals NHS Trust, Nottingham NG5 1PB, UK (S.K.)
| | - Daniel Yeo
- Department of Oncology, Nottingham University Hospitals NHS Trust, Nottingham NG5 1PB, UK (S.K.)
| | - Karen De Souza
- Department of Oncology, University College London Hospitals NHS Foundation Trust, London NW1 2PG, UK
| | - Omar Ahmad
- Department of Oncology, Nottingham University Hospitals NHS Trust, Nottingham NG5 1PB, UK (S.K.)
| | - Tahir Shafiq
- Department of Oncology, Nottingham University Hospitals NHS Trust, Nottingham NG5 1PB, UK (S.K.)
| | - Okezie Ofor
- Department of Oncology, Nottingham University Hospitals NHS Trust, Nottingham NG5 1PB, UK (S.K.)
| | - Anjana Anand
- Department of Oncology, Nottingham University Hospitals NHS Trust, Nottingham NG5 1PB, UK (S.K.)
| | - Syed Karim
- Department of Oncology, Nottingham University Hospitals NHS Trust, Nottingham NG5 1PB, UK (S.K.)
| | - Sarah Khan
- Department of Oncology, Nottingham University Hospitals NHS Trust, Nottingham NG5 1PB, UK (S.K.)
| | - Srinivasan Madhusudan
- Department of Oncology, Nottingham University Hospitals NHS Trust, Nottingham NG5 1PB, UK (S.K.)
- Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham NG7 3RD, UK
| |
Collapse
|
19
|
Kinose Y, Xu H, Kim H, Kumar S, Shan X, George E, Wang X, Medvedev S, Ferman B, Gitto SB, Whicker M, D’Andrea K, Wubbenhorst B, Hallberg D, O’Connor M, Schwartz LE, Hwang WT, Nathanson KL, Mills GB, Velculescu VE, Wang TL, Brown EJ, Drapkin R, Simpkins F. Dual blockade of BRD4 and ATR/WEE1 pathways exploits ARID1A loss in clear cell ovarian cancer. RESEARCH SQUARE 2023:rs.3.rs-3314138. [PMID: 37841875 PMCID: PMC10571599 DOI: 10.21203/rs.3.rs-3314138/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
ARID1A, an epigenetic tumor suppressor, is the most common gene mutation in clear-cell ovarian cancers (CCOCs). CCOCs are often resistant to standard chemotherapy and lack effective therapies. We hypothesized that ARID1A loss would increase CCOC cell dependency on chromatin remodeling and DNA repair pathways for survival. We demonstrate that combining BRD4 inhibitor (BRD4i) with DNA damage response inhibitors (ATR or WEE1 inhibitors; e.g. BRD4i-ATRi) was synergistic at low doses leading to decreased survival, and colony formation in CCOC in an ARID1A dependent manner. BRD4i-ATRi caused significant tumor regression and increased overall survival in ARID1AMUT but not ARID1AWT patient-derived xenografts. Combination BRD4i-ATRi significantly increased γH2AX, and decreased RAD51 foci and BRCA1 expression, suggesting decreased ability to repair DNA double-strand-breaks (DSBs) by homologous-recombination in ARID1AMUT cells, and these effects were greater than monotherapies. These studies demonstrate BRD4i-ATRi is an effective treatment strategy that capitalizes on synthetic lethality with ARID1A loss in CCOC.
Collapse
Affiliation(s)
- Yasuto Kinose
- Penn Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Haineng Xu
- Penn Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Hyoung Kim
- Penn Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Sushil Kumar
- Penn Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Xiaoyin Shan
- Penn Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Erin George
- Penn Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Xiaolei Wang
- Penn Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Sergey Medvedev
- Penn Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Benjamin Ferman
- Penn Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Sarah B. Gitto
- Penn Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA
- Department of Pathology and Laboratory Medicine, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Margaret Whicker
- Penn Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Kurt D’Andrea
- Department of Medicine, Division of Translational Medicine and Human Genetics, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bradley Wubbenhorst
- Department of Medicine, Division of Translational Medicine and Human Genetics, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Dorothy Hallberg
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Mark O’Connor
- AstraZeneca, R&D Oncology, Cambridge, United Kingdom
| | - Lauren E. Schwartz
- Department of Pathology, Hospital of the University of Pennsylvania, Philadelphia, PA 19104
| | - Wei-Ting Hwang
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Katherine L Nathanson
- Department of Medicine, Division of Translational Medicine and Human Genetics, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gordon B. Mills
- Division of Oncological Sciences Knight Cancer Institute, Oregon Health and Science University, Portland, OR
| | - Victor E. Velculescu
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Tian-Li Wang
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Eric J. Brown
- Department of Cancer Biology and the Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ronny Drapkin
- Penn Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Fiona Simpkins
- Penn Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
20
|
Alimohammadi M, Gholinezhad Y, Mousavi V, Kahkesh S, Rezaee M, Yaghoobi A, Mafi A, Araghi M. Circular RNAs: novel actors of Wnt signaling pathway in lung cancer progression. EXCLI JOURNAL 2023; 22:645-669. [PMID: 37636026 PMCID: PMC10450211 DOI: 10.17179/excli2023-6209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 06/20/2023] [Indexed: 08/29/2023]
Abstract
Circular RNAs (CircRNAs) are a class of regulatory RNA transcripts, which are ubiquitously expressed in eukaryotes. CircRNA dysregulation has been shown to disrupt the interaction of the Wnt/β-catenin pathway, which regulates several biological processes involved in tumorigenesis, thereby contributing to the development and progression of cancer. Interactions of tumor-derived circRNAs with the Wnt/β-catenin signaling pathway provide both clinical diagnostic biomarkers and promising therapeutic targets. In this review, we outlined current evidence on the roles of circRNAs associated with the Wnt/β-catenin pathway in regulating lung cancer formation and development. We believe that our findings will assist in the advancement or establishment of circRNA-based lung cancer therapeutic approaches.
Collapse
Affiliation(s)
- Mina Alimohammadi
- Student Research Committee, Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yasaman Gholinezhad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahide Mousavi
- School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Samaneh Kahkesh
- Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Malihe Rezaee
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Yaghoobi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Mafi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahmood Araghi
- Department of Pathology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
21
|
de Joode K, van de Geer WS, van Leenders GJLH, Hamberg P, Westgeest HM, Beeker A, Oosting SF, van Rooijen JM, Beerepoot LV, Labots M, Mathijssen RHJ, Lolkema MP, Cuppen E, Sleijfer S, van de Werken HJG, van der Veldt AAM. The genomic and transcriptomic landscape of advanced renal cell cancer for individualized treatment strategies. Sci Rep 2023; 13:10720. [PMID: 37400554 DOI: 10.1038/s41598-023-37764-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 06/27/2023] [Indexed: 07/05/2023] Open
Abstract
Differences in the clinical course and treatment responses in individual patients with advanced renal cell carcinoma (RCC) can largely be explained by the different genomics of this disease. To improve the personalized treatment strategy and survival outcomes for patients with advanced RCC, the genomic make-up in patients with advanced RCC was investigated to identify putative actionable variants and signatures. In this prospective multicenter study (NCT01855477), whole-genome sequencing (WGS) data of locally advanced and metastatic tissue biopsies and matched whole-blood samples were collected from 91 patients with histopathologically confirmed RCC. WGS data were analyzed for small somatic variants, copy-number alterations and structural variants. For a subgroup of patients, RNA sequencing (RNA-Seq) data could be analyzed. RNA-Seq data were clustered on immunogenic and angiogenic gene expression patterns according to a previously developed angio-immunogenic gene signature. In all patients with papillary and clear cell RCC, putative actionable drug targets were detected by WGS, of which 94% were on-label available. RNA-Seq data of clear cell and papillary RCC were clustered using a previously developed angio-immunogenic gene signature. Analyses of driver mutations and RNA-Seq data revealed clear differences among different RCC subtypes, showing the added value of WGS and RNA-Seq over clinicopathological data. By improving both histological subtyping and the selection of treatment according to actionable targets and immune signatures, WGS and RNA-Seq may improve therapeutic decision making for most patients with advanced RCC, including patients with non-clear cell RCC for whom no standard treatment is available to data. Prospective clinical trials are needed to evaluate the impact of genomic and transcriptomic diagnostics on survival outcome for advanced RCC patients.
Collapse
Affiliation(s)
- K de Joode
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - W S van de Geer
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
- Cancer Computational Biology Center, Erasmus MC Cancer Institute, University Medical Center, Internal Postal Address NA-1218, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | | | - P Hamberg
- Department of Internal Medicine, Franciscus Gasthuis & Vlietland, Rotterdam, The Netherlands
| | - H M Westgeest
- Department of Internal Medicine, Amphia Hospital, Breda, The Netherlands
| | - A Beeker
- Department of Internal Medicine, Spaarne Gasthuis, Hoofddorp, The Netherlands
| | - S F Oosting
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - J M van Rooijen
- Department of Internal Medicine, Martini Hospital, Groningen, The Netherlands
| | - L V Beerepoot
- Department of Internal Medicine, Elisabeth-Tweesteden Hospital, Tilburg, The Netherlands
| | - M Labots
- Department of Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - R H J Mathijssen
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - M P Lolkema
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
- Center for Personalized Cancer Treatment, Rotterdam, The Netherlands
| | - E Cuppen
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, Utrecht, The Netherlands
- Hartwig Medical Foundation, Amsterdam, The Netherlands
| | - S Sleijfer
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
- Center for Personalized Cancer Treatment, Rotterdam, The Netherlands
| | - H J G van de Werken
- Cancer Computational Biology Center, Erasmus MC Cancer Institute, University Medical Center, Internal Postal Address NA-1218, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.
- Department of Urology, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, The Netherlands.
- Department of Immunology, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, The Netherlands.
| | - A A M van der Veldt
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands.
- Departments of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands.
| |
Collapse
|
22
|
Zhang X, Zhao L, Xiao J, Wang Y, Li Y, Zhu C, Zhang H, Zhang Y, Zhu X, Dong Y. 5-Demethylnobiletin mediates cell cycle arrest and apoptosis via the ERK1/2/AKT/STAT3 signaling pathways in glioblastoma cells. Front Oncol 2023; 13:1143664. [PMID: 37139163 PMCID: PMC10149914 DOI: 10.3389/fonc.2023.1143664] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/04/2023] [Indexed: 05/05/2023] Open
Abstract
5-Demethylnobiletin is the active ingredient in citrus polymethoxyflavones that could inhibit the proliferation of several tumor cells. However, the anti-tumor effect of 5-Demethylnobiletin on glioblastoma and the underlying molecular mechanisms are remains unknown. In our study, 5-Demethylnobiletin markedly inhibited the viability, migration and invasion of glioblastoma U87-MG, A172 and U251 cells. Further research revealed that 5-Demethylnobiletin induces cell cycle arrest at the G0/G1 phase in glioblastoma cells by downregulating Cyclin D1 and CDK6 expression levels. Furthermore, 5-Demethylnobiletin significantly induced glioblastoma cells apoptosis by upregulating the protein levels of Bax and downregulating the protein level of Bcl-2, subsequently increasing the expression of cleaved caspase-3 and cleaved caspase-9. Mechanically, 5-Demethylnobiletin trigged G0/G1 phase arrest and apoptosis by inhibiting the ERK1/2, AKT and STAT3 signaling pathway. Furthermore, 5-Demethylnobiletin inhibition of U87-MG cell growth was reproducible in vivo model. Therefore, 5-Demethylnobiletin is a promising bioactive agent that might be used as glioblastoma treatment drug.
Collapse
Affiliation(s)
- Xuehua Zhang
- Department of Immunology, Binzhou Medical University, Yantai, China
| | - Leilei Zhao
- Department of Immunology, Binzhou Medical University, Yantai, China
| | - Jinlong Xiao
- Department of Immunology, Binzhou Medical University, Yantai, China
| | - Yudi Wang
- Department of Immunology, Binzhou Medical University, Yantai, China
| | - Yunmeng Li
- Department of Immunology, Binzhou Medical University, Yantai, China
| | - Chaoqun Zhu
- School of Computer and Control Engineering, Yantai University, Yantai, China
| | - He Zhang
- Department of Immunology, Qiqihar Medical University, Qiqihar, China
| | - Yurui Zhang
- Department of Immunology, Binzhou Medical University, Yantai, China
| | - Xiao Zhu
- School of Computer and Control Engineering, Yantai University, Yantai, China
| | - Yucui Dong
- Department of Immunology, Binzhou Medical University, Yantai, China
| |
Collapse
|
23
|
Watson NW, Shatzel JJ, Al-Samkari H. Cyclin-dependent kinase 4/6 inhibitor-associated thromboembolism: a critical evaluation of the current evidence. J Thromb Haemost 2023; 21:758-770. [PMID: 36696184 PMCID: PMC10065951 DOI: 10.1016/j.jtha.2022.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/07/2022] [Accepted: 12/01/2022] [Indexed: 01/09/2023]
Abstract
Cyclin-dependent kinase 4/6 (CDK 4/6) inhibitors are an essential treatment modality for hormone receptor-positive breast cancer. As the rates of breast cancer continue to rise globally and the indications for CDK 4/6 inhibitors now extend beyond metastatic disease, more patients than ever are receiving these agents. Thrombosis is an emerging clinical concern with this class of agents, particularly venous thromboembolism. Although venous thromboembolism initially emerged as an adverse effect of interest in early trials, more recent studies have demonstrated even higher incidences of thrombosis in real-world clinical practice. In this review, we summarize the evidence to date that has informed the thrombosis risk for these agents both in clinical trials and real-world studies. We review data describing the venous and arterial thromboembolic risks in clinical trials of CDK 4/6 inhibitors as well as the now rather extensive real-world evidence available, including a comparison of risk for each of the 3 agents approved for use in breast cancer: palcociclib, ribociclib, and abemaciclib. As the role of prophylactic anticoagulation continues to remain unknown in women receiving CDK 4/6 inhibitors, future efforts directed at carefully investigating the risks and benefits of thromboprophylaxis may lead to improved outcomes in these patients.
Collapse
Affiliation(s)
| | - Joseph J Shatzel
- Knight Cancer Institute, Oregon Health and Sciences University, Portland, Oregon, USA; Division of Biomedical Engineering, Oregon Health and Sciences University, Portland, Oregon, USA
| | - Hanny Al-Samkari
- Harvard Medical School, Boston, Massachusetts, USA; Division of Hematology and Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA.
| |
Collapse
|
24
|
Li K, Ma R, Meng L, Wang Q, Cao J, Yuan D, Sun T, Kang L, Hao N, Wang H, Zhu K. XTP1 facilitates the growth and development of gastric cancer by activating CDK6. ANNALS OF TRANSLATIONAL MEDICINE 2023; 11:97. [PMID: 36819538 PMCID: PMC9929835 DOI: 10.21037/atm-22-5933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/05/2023] [Indexed: 02/03/2023]
Abstract
Background Hepatitis B virus X protein (XTP1) is overexpressed in tumor tissues and regulates cancer progression. However, the molecular mechanism of XTP1 in gastric cancer (GC) is poorly understood. Hence, we aimed to dissect the underlying role of XTP1 in the development of GC. Methods Lentiviruses were constructed and transfected into GC cells to upregulate or downregulate gene expression. The expressions of proteins in GC cells or tumor tissues were assessed by quantitative reverse transcription polymerase chain reaction (RT-qPCR), Western blotting, immunohistochemistry (IHC) assay, or the Gene Expression Profiling Interactive Analysis (GEPIA) database. Cell proliferation was assessed via methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay, Celigo cell counting assay, cell cycle analysis, and colony formation assay. Cell apoptosis was assessed by flow cytometry. The apoptosis-related proteins were evaluated using the human apoptosis antibody array. GC cell migration was detected by scratch wound-healing assays and Transwell migration assays. Potential downstream molecules were identified by the human GeneChip assay combined with bioinformatics analysis. Results We found that XTP1 is overexpressed in GC tissues and is positively related to its pathological grade. XTP1 knockdown restrained the growth and migration of GC cells, while XTP1 overexpression promoted cell proliferation and suppressed apoptosis. A mechanistic study indicated that XTP1 knockdown inhibited cyclin-dependent kinase 6 (CDK6) expression and that CDK6 might be a potential downstream molecule of XTP1. Further study confirmed that CDK6 depletion also suppressed GC cell proliferation and migration and increased GC cell apoptosis. Moreover, rescue experiments verified that CDK6 knockdown abated the promotion of XTP1 overexpression on GC progression. Conclusions XTP1 facilitated the development and progression of GC cells by activating CDK6. Therefore, the XTP1-CDK6 axis might be a potential therapeutic target for GC.
Collapse
Affiliation(s)
- Kang Li
- Department of Surgical Oncology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Rulan Ma
- Department of Surgical Oncology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Lei Meng
- Department of Surgical Oncology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Qing Wang
- Department of Surgery, University of Virginia, Charlottesville, VA, USA
| | - Jun Cao
- Department of Surgical Oncology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Dawei Yuan
- Department of Surgical Oncology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Tuanhe Sun
- Department of Surgical Oncology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Li Kang
- Department of Thoracic Surgery, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Nan Hao
- Department of Surgical Oncology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Haonan Wang
- Department of Surgical Oncology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Kun Zhu
- Department of Surgical Oncology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
25
|
Design, synthesis and anticancer evaluation of selective 2,4-disubstituted pyrimidine CDK9 inhibitors. Eur J Med Chem 2022; 244:114875. [DOI: 10.1016/j.ejmech.2022.114875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/16/2022] [Accepted: 10/20/2022] [Indexed: 11/30/2022]
|
26
|
Abo-Elghiet F, Ibrahim MH, El Hassab MA, Bader A, Abdallah QMA, Temraz A. LC/MS analysis of Viscum cruciatum Sieber ex Boiss. extract with anti-proliferative activity against MCF-7 cell line via G0/G1 cell cycle arrest: An in-silico and in-vitro study. JOURNAL OF ETHNOPHARMACOLOGY 2022; 295:115439. [PMID: 35667581 DOI: 10.1016/j.jep.2022.115439] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/30/2022] [Accepted: 06/02/2022] [Indexed: 05/26/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Viscum cruciatum Sieb is a well-known medicinal plant in Jordan containing various secondary metabolites. It has traditionally been used to treat many ailments, most notably cancer. However, there is a significant gap between scientific research and its value in traditional medicine. AIM OF THE WORK To evaluate the antiproliferative activity of different V. cruciatum extracts against MCF-7 breast cancer cell lines and recognize the affected cell cycle phase. Besides, identifying the bioactive components present in the active extract using LC/MS technique. Also, to determine the possible mechanism of action by in silico and in-vitro study. MATERIALS AND METHODS V. cruciatum was extracted using solvents with increasing polarity. The antiproliferative effects of the extracts against MCF-7 cell lines were evaluated using SRB assay. Further, flow cytometry was used to identify the inhibited phase of the cell cycle, while LC/MS-MS technique was used to analyze the chemical composition of the most active extract. After that, the putative mechanism of action was investigated through in-silico docking, molecular dynamic simulation for compounds with the highest docking scores, and Western blot analysis of cyclin-dependent kinases (CDK2/4/6). RESULTS The chloroform/methanol 90/10 (ChMe) extract showed the most potent antiproliferative effect against MCF-7 cells (IC50 = 23.8 μg/mL), and cell cycle arrest at the G0/G1phase. Furthermore, LC-MS/MS analysis revealed the presence of several polyphenolics belonging to the flavonoids and phenolic acids classes. Additionally, quercetin-4'-glucoside, 3, 5, 7-trihydroxy-4'-methoxy flavone, and hesperetin-7-O-neohesperidoside demonstrated the highest docking binding scores and stable complexes against CDK2 and CDK4/6. Moreover, RMSD (root-mean-square deviation), RMSF (root-mean-square fluctuation), Rg (radius of gyration), and energy analysis during molecular dynamic simulation indicated the stable binding of the studied complexes. These results were supported by Western blot analysis, which revealed the downregulation of CDK2, CDK4, and CDK6 protein expression in MCF-7 cell lines. CONCLUSION These findings emphasized the potential breast anticancer activity of the V. cruciatum ChMe extract by arresting the G0/G1 phase of the cell cycle, which could be related to its flavonoid content. Moreover, the results provided experimental support for the traditional anticancer activity of V. cruciatum, and its ChMe extract might be a source of chemoprotective or chemotherapeutic isolates.
Collapse
Affiliation(s)
- Fatma Abo-Elghiet
- Department of Pharmacognosy, Faculty of Pharmacy for Girls, Al-Azhar University, Nasr City, Cairo, Egypt.
| | - Mona H Ibrahim
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy for Girls, Al-Azhar University, Nasr City, Cairo, Egypt.
| | - Mahmoud A El Hassab
- Department of Medicinal Chemistry, Faculty of Pharmacy, King Salman International University (KSIU), South Sinai, Egypt.
| | - Ammar Bader
- Department of Pharmacognosy, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia.
| | - Qasem M A Abdallah
- Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan.
| | - Abeer Temraz
- Department of Pharmacognosy, Faculty of Pharmacy for Girls, Al-Azhar University, Nasr City, Cairo, Egypt.
| |
Collapse
|
27
|
Yousuf M, Shamsi A, Khan S, Khan P, Shahwan M, Elasbali AM, Haque QMR, Hassan MI. Naringenin as a potential inhibitor of human cyclin-dependent kinase 6: Molecular and structural insights into anti-cancer therapeutics. Int J Biol Macromol 2022; 213:944-954. [PMID: 35690164 DOI: 10.1016/j.ijbiomac.2022.06.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/28/2022] [Accepted: 06/05/2022] [Indexed: 12/13/2022]
Abstract
Cancer is one of the major causes of global deaths and needs immediate therapeutic development. So far, several strategies have been undertaken to prevent cancer, including kinase targeting by small-molecule inhibitors. Cyclin dependent kinase 6 (CDK6) plays an essential role in cancer progression and development as its overexpression is associated with tumor development and progression. The present study demonstrated that Naringenin (NAG) binds strongly to CDK6 with a binding affinity of -7.51 kcal/mol. ATPase assay of CDK6 in the presence of NAG shows that it inhibits CDK6 with an IC50 = 3.13 μM. Fluorescence and isothermal titration calorimetry studies demonstrated that NAG binds to CDK6 with the binding constant (K) values of 3.55 × 106 M-1 and 7.06 ± 2.70 × 106 M-1, respectively. The cell-based functional studies showed that NAG decreases the cell viability of human cancer cell lines, induces apoptosis, and reduces their colonization ability. Outcomes of the present in silico and in vitro studies highlighted the significance of NAG for the development of anti-cancer leads in terms of CDK6 inhibitors and provided future implications for combinatorial anti-cancer therapies.
Collapse
Affiliation(s)
- Mohd Yousuf
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, India
| | - Anas Shamsi
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Shama Khan
- Vaccines and Infectious Disease Analytics (VIDA), University of the Witwatersrand, Johannesburg, South Africa
| | - Parvez Khan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Moyad Shahwan
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, United Arab Emirates
| | - Abdelbaset Mohamed Elasbali
- Department of Clinical Laboratory Science, College of Applied Sciences-Qurayyat, Jouf University, Sakaka, Saudi Arabia; Department of Pathology, Faculty of Medicine, University of Benghazi, Benghazi-Libya.
| | | | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
28
|
Wang L, Wang Y, Bi J. In silico development and experimental validation of a novel 7-gene signature based on PI3K pathway-related genes in bladder cancer. Funct Integr Genomics 2022; 22:797-811. [PMID: 35896848 PMCID: PMC9550739 DOI: 10.1007/s10142-022-00884-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/11/2022] [Accepted: 07/11/2022] [Indexed: 11/04/2022]
Abstract
Although bladder cancer (BLCA) is the 10th most common tumor worldwide, particularly practical markers and prognostic models that might guide therapy are needed. We used a non-negative matrix factorization algorithm to classify PI3K pathway-related genes into molecular subtypes. A weighted gene co-expression network analysis (WGCNA) was generated to identify co-expression modules. Univariate Cox regression, least absolute shrinkage sum selection operator-Cox regression, and multivariate Cox regression were utilized to develop a prognostic score model. Kaplan-Meier analysis and receiver operating characteristics were utilized to measure the model's effectiveness. A nomogram was constructed to improve the predictive ability of the model based on clinical parameters and risk. Decision curve analysis (DCA) was used to evaluate the nomogram. To evaluate the immune microenvironment, an estimate algorithm was used. Drug sensitivity was identified using the R package "pRRophetic." UM-UC-3 cell line was used to measure the effect of CDK6 in Western blotting, proliferation assay, and 5-ethynyl-20-deoxyuridine assay. Based on PI3K pathway-related genes, The Cancer Genome Atlas (TCGA)-BLCA and GSE32894 patients were divided into two subtypes. Twenty-five co-expression modules were established using the WGCNA algorithm. A seven-gene signature (CDK6, EGFR, IGF1, ITGB7, PDGFRA, RPS6, and VWF) demonstrated robustness in TCGA and GSE32894 datasets. Expression levels of CDK6 and risk positively correlated with M2 macrophages and IgG. Cisplatin, gemcitabine, methotrexate, mitomycin C, paclitaxel, and vinblastine are sensitive to different groups based on the expression of CDK6 and risk. Functional experiments suggested that CDK6 promotes the proliferation of UM-UC-3 cells. We constructed a seven-gene prognostic signature as an effective marker to predict the outcomes of BLCA patients and guide individual treatment.
Collapse
Affiliation(s)
- Linhui Wang
- Department of Urology, China Medical University, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yutao Wang
- Department of Urology, China Medical University, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jianbin Bi
- Department of Urology, China Medical University, The First Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
29
|
Yousuf M, Alam M, Shamsi A, Khan P, Hasan GM, Rizwanul Haque QM, Hassan MI. Structure-guided design and development of cyclin-dependent kinase 4/6 inhibitors: A review on therapeutic implications. Int J Biol Macromol 2022; 218:394-408. [PMID: 35878668 DOI: 10.1016/j.ijbiomac.2022.07.156] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 07/01/2022] [Accepted: 07/19/2022] [Indexed: 11/29/2022]
Abstract
Cyclin-dependent kinase 6 (EC 2.7.11.22) play significant roles in numerous biological processes and triggers cell cycle events. CDK6 controlled the transcriptional regulation. A dysregulated function of CDK6 is linked with the development of progression of multiple tumor types. Thus, it is considered as an effective drug target for cancer therapy. Based on the direct roles of CDK4/6 in tumor development, numerous inhibitors developed as promising anti-cancer agents. CDK4/6 inhibitors regulate the G1 to S transition by preventing Rb phosphorylation and E2F liberation, showing potent anti-cancer activity in several tumors, including HR+/HER2- breast cancer. CDK4/6 inhibitors such as abemaciclib, palbociclib, and ribociclib, control cell cycle, provoke cell senescence, and induces tumor cell disturbance in pre-clinical studies. Here, we discuss the roles of CDK6 in cancer along with the present status of CDK4/6 inhibitors in cancer therapy. We further discussed, how structural features of CDK4/6 could be implicated in the design and development of potential anti-cancer agents. In addition, the therapeutic potential and limitations of available CDK4/6 inhibitors are described in detail. Recent pre-clinical and clinical information for CDK4/6 inhibitors are highlighted. In addition, combination of CDK4/6 inhibitors with other drugs for the therapeutic management of cancer are discussed.
Collapse
Affiliation(s)
- Mohd Yousuf
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, India
| | - Manzar Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Anas Shamsi
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Parvez Khan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Gulam Mustafa Hasan
- Department of Biochemistry, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | | | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
30
|
Defining the molecular underpinnings controlling cardiomyocyte proliferation. Clin Sci (Lond) 2022; 136:911-934. [PMID: 35723259 DOI: 10.1042/cs20211180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 05/27/2022] [Accepted: 05/31/2022] [Indexed: 12/11/2022]
Abstract
Shortly after birth, mammalian cardiomyocytes (CM) exit the cell cycle and cease to proliferate. The inability of adult CM to replicate renders the heart particularly vulnerable to injury. Restoration of CM proliferation would be an attractive clinical target for regenerative therapies that can preserve contractile function and thus prevent the development of heart failure. Our review focuses on recent progress in understanding the tight regulation of signaling pathways and their downstream molecular mechanisms that underly the inability of CM to proliferate in vivo. In this review, we describe the temporal expression of cell cycle activators e.g., cyclin/Cdk complexes and their inhibitors including p16, p21, p27 and members of the retinoblastoma gene family during gestation and postnatal life. The differential impact of members of the E2f transcription factor family and microRNAs on the regulation of positive and negative cell cycle factors is discussed. This review also highlights seminal studies that identified the coordination of signaling mechanisms that can potently activate CM cell cycle re-entry including the Wnt/Ctnnb1, Hippo, Pi3K-Akt and Nrg1-Erbb2/4 pathways. We also present an up-to-date account of landmark studies analyzing the effect of various genes such as Argin, Dystrophin, Fstl1, Meis1, Pitx2 and Pkm2 that are responsible for either inhibition or activation of CM cell division. All these reports describe bona fide therapeutically targets that could guide future clinical studies toward cardiac repair.
Collapse
|
31
|
Baig MH, Yousuf M, Khan MI, Khan I, Ahmad I, Alshahrani MY, Hassan MI, Dong JJ. Investigating the Mechanism of Inhibition of Cyclin-Dependent Kinase 6 Inhibitory Potential by Selonsertib: Newer Insights Into Drug Repurposing. Front Oncol 2022; 12:865454. [PMID: 35720007 PMCID: PMC9204300 DOI: 10.3389/fonc.2022.865454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/06/2022] [Indexed: 12/23/2022] Open
Abstract
Cyclin-dependent kinases (CDKs) play significant roles in numerous physiological, and are considered an attractive drug target for cancer, neurodegenerative, and inflammatory diseases. In the present study, we have aimed to investigate the binding affinity and inhibitory potential of selonsertib toward CDK6. Using the drug repurposing approach, we performed molecular docking of selonsertib with CDK6 and observed a significant binding affinity. To ascertain, we further performed essential dynamics analysis and free energy calculation, which suggested the formation of a stable selonsertib-CDK6 complex. The in-silico findings were further experimentally validated. The recombinant CDK6 was expressed, purified, and treated with selonsertib. The binding affinity of selonsertib to CDK6 was estimated by fluorescence binding studies and enzyme inhibition assay. The results indicated an appreciable binding of selonsertib against CDK6, which subsequently inhibits its activity with a commendable IC50 value (9.8 μM). We concluded that targeting CDK6 by selonsertib can be an efficient therapeutic approach to cancer and other CDK6-related diseases. These observations provide a promising opportunity to utilize selonsertib to address CDK6-related human pathologies.
Collapse
Affiliation(s)
- Mohammad Hassan Baig
- Department of Family Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Mohd. Yousuf
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Mohd. Imran Khan
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Imran Khan
- Department of Molecular Biology, Beykoz Institute of Life Sciences and Biotechnology, BezmialemVakif University, Istanbul, Turkey
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Mohammad Y. Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Jae-June Dong
- Department of Family Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
32
|
Liu S, Li Y. LncRNA HAND2-AS1 attenuates glioma cell proliferation, invasion and migration by targeting CDK6. Neurol Res 2022; 44:677-683. [PMID: 35548927 DOI: 10.1080/01616412.2022.2035620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVE Long non-coding RNA (lncRNA) HAND2-AS1 has been indicated to play biological roles in several cancers. However, whether HAND2-AS1 could exert its role in glioma remains unknown. We aimed to investigate the function of HAND2-AS1 in the proliferation, invasion and migration and to explore its underlying molecular mechanism in glioma cells. METHODS Reverse transcription-quantitative polymerase chain reaction analysis was conducted to determine the expression of HAND2-AS1 and cyclin-dependent kinases 6 (CDK6) in tissues or cells. Western blot analysis was used to detect the CDK6 protein expression. CCK-8 assay was adopted to determine the proliferation in glioma cell lines. Transwell assay was taken to evaluate the invasion and migration in glioma cell lines. RESULTS Our results revealed that HAND2-AS1 expression was significantly downregulated in the glioma tissues and cell lines. Moreover, overexpression of HAND2-AS1 attenuated the proliferation, invasion, and migration in glioma cell lines. However, overexpression of CDK6 could partially block the inhibitory role of HAND2-AS1 on cell proliferation as well as cell invasion and migration in glioma cell lines. CONCLUSION LncRNA HAND2-AS1 may play a critical anti-tumorigenic role in glioma by negatively regulating CDK6 expression.
Collapse
Affiliation(s)
- Songlin Liu
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Yifeng Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
33
|
Oubella A, Laamari Y, Hachim ME, Byadi S, Auhmani A, Morjani H, Riahi A, Podlipnik C, Rohand T, Van Meervelt L, Ait Itto MY. New gem‑dichlorocyclopropane-pyrazole hybrids with monoterpenic skeleton: Synthesis, crystal structure, cytotoxic evaluation, molecular dynamics and theoretical study. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
34
|
Wei C, Zhao Y, Ji T, Sun Y, Cai X, Peng X. Cyclin-Dependent Kinase 6 Identified as the Target Protein in the Antitumor Activity of Tetrastigma hemsleyanum. Front Oncol 2022; 12:865409. [PMID: 35480115 PMCID: PMC9035993 DOI: 10.3389/fonc.2022.865409] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/29/2022] [Indexed: 01/23/2023] Open
Abstract
Background Tetrastigma hemsleyanum (T. hemsleyanum) is widely used as an adjuvant drug for tumor therapy but its antitumor therapeutic targets and molecular mechanisms have remained unclear. The prediction and analysis of natural products has previously used only network pharmacology methods to identify potential target proteins from public databases. In this study, we use comprehensive bioinformatics analysis and experimental verification to determine the antitumor mechanism of T. hemsleyanum. Methods Network pharmacology analysis was used to predict the potential in vivo target proteins of T. hemsleyanum. The expression matrix and clinical data to perform an analysis of hub genes were collected from the TCGA and GTEx databases, specifically the analysis of expression, prognosis, tumor immune cell infiltration analysis, immune checkpoint genes, microsatellite instability, tumor mutational burden, tumor neoantigen, and immune microenvironment, which identify the roles and biological functions of the hub genes in pan-cancer. Finally, gene set enrichment analysis was used to verify the biological processes and signaling pathways involved in the pan-cancer expression profile. Results We found 124 potential in vivo target proteins of T. hemsleyanum through network pharmacological analysis, and five hub genes (AKR1C1, MET, PTK2, PIK3R1, and CDK6) were then screened by protein-protein interaction (PPI) network analysis and molecular complex detection analysis (MCODE). Experimental intervention with an aqueous extract of T. hemsleyanum verified that these hub genes are the target proteins involved in the regulation of T. hemsleyanum in cells. A pan-cancer analysis then confirmed that CDK6 and MET are potential targets upon which T. hemsleyanum may exert antitumor action, especially in ACC, CESC, LGG, and PAAD. The CDK6 protein targeted by T. hemsleyanum is also involved in the immune and mutation process of pan-cancer, especially in the regulation of immune cell infiltration, immune checkpoint gene expression, microsatellite instability, tumor mutation burdens, and tumor neoantigens. Together, these analyses show that T. hemsleyanum affects tumor immune regulation and genomic stability. Finally, a gene set enrichment analysis confirmed that T. hemsleyanum regulates the cell cycle checkpoint. Conclusions We found that T. hemsleyanum can behave as an antitumor agent by acting as a potential cell cycle checkpoint inhibitor in CDK6-driven tumors, such as ACC, CESC, LGG, and PAAD, and that it acts as a tyrosine kinase receptor inhibitor that inhibits the expression of the proto-oncogene MET. Combined with an analysis of immune and mutation correlations in pan-cancer, we determined that T. hemsleyanum may function biologically as an immune regulator and interfere with the stability of the tumor genome, which is worthy of further study.
Collapse
Affiliation(s)
- Chaoguang Wei
- Ningbo Municipal Hospital of TCM, Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo, China
- United New Drug Research and Development Center, Biotrans Technology Co., Ltd, Ningbo, China
| | - Yuxiang Zhao
- Ningbo Municipal Hospital of TCM, Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo, China
- United New Drug Research and Development Center, Biotrans Technology Co., Ltd, Ningbo, China
| | - Tao Ji
- Ningbo Municipal Hospital of TCM, Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo, China
| | - Yong Sun
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Xudong Cai
- Ningbo Municipal Hospital of TCM, Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo, China
| | - Xin Peng
- Ningbo Municipal Hospital of TCM, Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo, China
| |
Collapse
|
35
|
Sun R, Wang X, Zhang L, Gu Y, Yang S, Wang L, Wang X. CDK6 Immunophenotype Implicates Potential Therapeutic Application of CDK4/6 Inhibitors in Urothelial Carcinoma. Front Oncol 2022; 12:819003. [PMID: 35463324 PMCID: PMC9024172 DOI: 10.3389/fonc.2022.819003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 01/26/2022] [Indexed: 11/13/2022] Open
Abstract
Background Infiltrating bladder urothelial carcinoma is the most common bladder malignancy with limited therapeutic options and poor prognosis. Identifying new therapeutic targets or strategies has important clinical significance. The data from public sources indicate poor prognosis in urothelial carcinoma cases with high CDK6 mRNA levels. Furthermore, studies have shown that CDK6 expression is elevated in urothelial carcinoma tissue compared to the surrounding urothelium, thus presenting a case for performing CDK4/6 inhibitor targeted research in urothelial carcinoma. However, a phase II trial showed that CDK4/6 inhibitors are not effective for advanced urothelial carcinoma, suggesting that case screening is important for targeted therapy. Objective Immunohistochemistry (IHC) is simple and easy to perform and can be used to screen urothelial carcinoma cases with high CDK6 expression in clinical practice. The aim of this study was to determine the CDK6 expression threshold for positive cases. Methods We evaluated the correlation between the H-score of CDK6 protein expression and survival or CDK6 mRNA level using RNA sequencing. The effects of different CDK4/6 inhibitors were tested on bladder carcinoma cell lines with different CDK6 expression levels. Results The H-score, which predicts poor prognosis and reflects a high CDK6 mRNA level, was determined as the selection criterion for positive cases. Furthermore, we found that urothelial carcinoma cell lines with higher CDK6 expression levels displayed greater sensitivity to CDK4/6 inhibitors than cells with lower expression levels. Conclusions IHC staining for CDK6 protein in urothelial carcinoma is proposed as a promising screening platform for CDK4/6 inhibitor targeted therapy.
Collapse
Affiliation(s)
- Ran Sun
- Center for Reproductive Medicine, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Xuemei Wang
- Department of Pathology, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Leichao Zhang
- Department of Pathology, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Yu Gu
- Department of Pathology, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Shaojuan Yang
- Department of Pathology, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Liping Wang
- Department of Pathology, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Xueju Wang
- Department of Pathology, China-Japan Union Hospital, Jilin University, Changchun, China
- *Correspondence: Xueju Wang,
| |
Collapse
|
36
|
Population-based Targeted RNA Sequencing Reveals Novel Disease-related Gene Fusions in pediatric and adult T-ALL. Leuk Res 2022; 116:106825. [DOI: 10.1016/j.leukres.2022.106825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 03/04/2022] [Accepted: 03/10/2022] [Indexed: 11/21/2022]
|
37
|
An Orally Bioavailable and Highly Efficacious Inhibitor of CDK9/FLT3 for the Treatment of Acute Myeloid Leukemia. Cancers (Basel) 2022; 14:cancers14051113. [PMID: 35267421 PMCID: PMC8909834 DOI: 10.3390/cancers14051113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 01/27/2023] Open
Abstract
Mutations in FMS-like tyrosine kinase 3 (FLT3) occur in approximately one-third of AML patients and are associated with a particularly poor prognosis. The most common mutation, FLT3-ITD, is a self-activating internal tandem duplication (ITD) in the FLT3 juxtamembrane domain. Many FLT3 inhibitors have shown encouraging results in clinical trials, but the rapid emergence of resistance has severely limited sustainable efficacy. Co-targeting of CDK9 and FLT3 is a promising two-pronged strategy to overcome resistance as the former plays a role in the transcription of cancer cell-survival genes. Most prominently, MCL-1 is known to be associated with AML tumorigenesis and drug resistance and can be down-regulated by CDK9 inhibition. We have developed CDDD11-8 as a potent CDK9 inhibitor co-targeting FLT3-ITD with Ki values of 8 and 13 nM, respectively. The kinome selectivity has been confirmed when the compound was tested in a panel of 369 human kinases. CDDD11-8 displayed antiproliferative activity against leukemia cell lines, and particularly potent effects were observed against MV4-11 and MOLM-13 cells, which are known to harbor the FLT3-ITD mutation and mixed lineage leukemia (MLL) fusion proteins. The mode of action was consistent with inhibition of CDK9 and FLT3-ITD. Most importantly, CDDD11-8 caused a robust tumor growth inhibition by oral administration in animal xenografts. At 125 mg/kg, CDDD11-8 induced tumor regression, and this was translated to an improved survival of animals. The study demonstrates the potential of CDDD11-8 towards the future development of a novel AML treatment.
Collapse
|
38
|
Salah RA, Nasr MA, El-Derby AM, Abd Elkodous M, Mohamed RH, El-Ekiaby N, Osama A, Elshenawy SE, Hamad MHM, Magdeldin S, Gabr MM, Abdelaziz AI, El-Badri NS. Hepatocellular carcinoma cell line-microenvironment induced cancer-associated phenotype, genotype and functionality in mesenchymal stem cells. Life Sci 2022; 288:120168. [PMID: 34826437 DOI: 10.1016/j.lfs.2021.120168] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/08/2021] [Accepted: 11/18/2021] [Indexed: 12/21/2022]
Abstract
Mesenchymal stromal cells (MSCs) have shown promise in liver cancer treatment. However, when MSCs are recruited to hepatic site of injury, they acquire cancerous promoting phenotype. AIMS To assess the influence of Hepatocellular carcinoma (HCC) microenvironment on human adipose MSCs (hA-MSCs) and predict hA-MSCs intracellular miRNAs role. MATERIALS AND METHODS After indirect co-culturing with Huh-7 cells, hA-MSCs were characterized via cell cycle profile, proliferation and migration potentials by MTT and scratch assays respectively. Functional enrichment analysis of deregulated proteins and miRNA targets was also analyzed. KEY FINDINGS Co-cultured hA-MSCs could acquire a cancer-associated phenotype as shown by upregulation of CAF, cancer markers, and downregulation of differentiation markers. Migration of these cancer-associated cells was increased concomitantly with upregulation of adhesion molecules, but not epithelial to mesenchymal transition markers. Co-cultured cells showed increased proliferation confirmed by downregulation in cell percentage in G0/G1, G2/M and upregulation in S phases of cell cycle. Upregulation of miR-17-5p and 615-5p in co-cultured hA-MSCs was also observed. Functional enrichment analysis of dysregulated proteins in co-cultured hA-MSCs, including our selected miRNAs targets, showed their involvement in development of cancer-associated characteristics. SIGNIFICANCE This study suggests an interaction between tumor cells and surrounding stromal components to generate cancer associated phenotype of some CAF-like characteristics, known to favor cancer progression. This sheds the light on the use of hA-MSCs in HCC therapy. hA-MSCs modulation may be partially achieved via dysregulation of intracellular miR17-5P and 615-5p expression, suggesting an important role for miRNAs in HCC pathogenesis, and as a possible therapeutic candidate.
Collapse
Affiliation(s)
- Radwa Ayman Salah
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Egypt
| | - Mohamed A Nasr
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Egypt
| | - Azza M El-Derby
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Egypt
| | - M Abd Elkodous
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Egypt
| | - Rania Hassan Mohamed
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Nada El-Ekiaby
- School of Medicine NewGiza University (NGU), Cairo, Egypt
| | - Aya Osama
- Proteomics and metabolomics Research Program, Basic Research Department, Children Cancer Hospital Egypt, 57357 Cairo, Egypt
| | - Shimaa E Elshenawy
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Egypt
| | | | - Sameh Magdeldin
- Proteomics and metabolomics Research Program, Basic Research Department, Children Cancer Hospital Egypt, 57357 Cairo, Egypt; Department of Physiology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Mahmoud M Gabr
- Urology and Nephrology Center, Mansoura University, Mansoura, Egypt
| | | | - Nagwa S El-Badri
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Egypt.
| |
Collapse
|
39
|
Luo Z, Yin Y, Tan X, Liu K, Chao Z, Xia H. Circ_SEC61A1 contributes to the progression of multiple myeloma cells via regulating miR-660-5p/CDK6 axis. Leuk Res 2021; 113:106774. [PMID: 35030455 DOI: 10.1016/j.leukres.2021.106774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 12/16/2021] [Accepted: 12/30/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Circular RNAs (circRNAs) have been reported to play critical roles in the malignant progression of diverse human cancers, including multiple myeloma (MM). This study aimed to explore the functional role and underlying mechanism of circ_SEC61A1 in MM progression. METHODS Quantitative real-time polymerase chain reaction (qRT-PCR) assay was performed to detect the expression levels of circ_SEC61A1, microRNA (miR)-660-5p and cyclin-dependent kinase 6 (CDK6) mRNA. The localization of circ_SEC61A1 in MM cells was tested by the subcellular fractionation location assay. Actinomycin D assay was conducted to determine the characteristics of circ_SEC61A1. Cell proliferation was evaluated by colony formation assay, 5-ethynyl-2'-deoxyuridine (EdU) incorporation assay and 3-(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. Western blot assay was exploited to examine the expression of proteins. Cell migration and invasion were tested via transwell assay, and cell apoptosis was measured by flow cytometry analysis. Dual-luciferase reporter assay was utilized to confirm the interaction between miR-660-5p and circ_SEC61A1 or CDK6. RESULTS Circ_SEC61A1 level was increased in MM tissues and cells. Circ_SEC61A1 was a stable circRNA and mainly located in cytoplasm. Circ_SEC61A1 silence restrained the proliferation, metastasis and expedited the apoptosis in MM cells. CDK6 was identified as the target of miR-660-5p, and circ_SEC61A1 sponged miR-660-5p to positively regulate CDK6 expression. The inhibitory impacts of circ_SEC61A1 knockdown on the progression of MM cells were mitigated by miR-660-5p inhibition. MiR-660-5p overexpression blocked the malignant phenotypes of MM cells by targeting CDK6. CONCLUSION Our study manifested that circ_SEC61A1 could accelerate MM progression at least partially through modulating miR-660-5p/CDK6 axis.
Collapse
Affiliation(s)
- Zimian Luo
- Department of Hematology, Central Hospital of XiangTan, China
| | - Yafei Yin
- Department of Hematology, Central Hospital of XiangTan, China
| | - Xiaojun Tan
- Fertility & Genetic Center, Central Hospital of XiangTan, China
| | - Kang Liu
- Department of Hematology, Central Hospital of XiangTan, China
| | - Zhi Chao
- Department of Hematology, Central Hospital of XiangTan, China
| | - Hong Xia
- Epartment of Orthopedics, Central Hospital of XiangTan, China.
| |
Collapse
|
40
|
Varna D, Geromichalou E, Papachristou E, Papi R, Hatzidimitriou AG, Panteris E, Psomas G, Geromichalos GD, Aslanidis P, Choli-Papadopoulou T, Angaridis PA. Biocompatible silver(I) complexes with heterocyclic thioamide ligands for selective killing of cancer cells and high antimicrobial activity - A combined in vitro and in silico study. J Inorg Biochem 2021; 228:111695. [PMID: 35007963 DOI: 10.1016/j.jinorgbio.2021.111695] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/02/2021] [Accepted: 12/23/2021] [Indexed: 12/11/2022]
Abstract
A series of heteroleptic Ag(I) complexes bearing 4,6-dimethyl-2-pyrimidinethiol (dmp2SH), i.e., [AgCl(dmp2SH)(PPh3)2] (1), [Ag(dmp2SH)(PPh3)2]NO3 (2), [Ag(dmp2SΗ)(xantphos)]NO3 (3), [Ag(μ-dmp2S)(PPh3)]2 (4), [Ag(dmp2S)(xantphos)] (5), [Ag(μ-dmp2S)(DPEphos)]2 (6) (xantphos = 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene and DPEPhos = bis[(2-diphenylphosphino)phenyl]ether) were synthesized. The complexes display systematic variation of particular structural characteristics which were proved to have a significant impact on their in vitro cytotoxicity and antimicrobial properties. A moderate-to-high potential for bacteria growth inhibition was observed for all complexes, with 2, 3 and 5 being particularly effective against Gram-(+) bacteria (IC50 = 1.6-4.5 μM). The three complexes exhibit high in vitro cytotoxicity against HeLa and MCF-7 cancer cells (IC50 = 0.32-3.00 μΜ), suggesting the importance of coordination unsaturation and cationic charge for effective bioactivity. A very low cytotoxicity against HDFa normal cells was observed, revealing a high degree of selectivity (selectivity index ~10) and, hence, biocompatibility. Fluorescence microscopy using 2 showed effective targeting on the membrane of the HeLa cancer cells, subsequently inducing cell death. Binding of the complexes to serum albumin proteins is reasonably strong for potential uptake and subsequent release to target sites. A moderate in vitro antioxidant capacity for free radicals scavenging was observed and a low potential to destroy the double-strand structure of calf-thymus DNA by intercalation, suggesting likely implication of these properties in the bioactivity mechanisms of these complexes. Further insight into possible mechanisms of bioactivity was obtained by molecular modeling calculations, by exploring their ability to act as potential inhibitors of DNA-gyrase, human estrogen receptor alpha, human cyclin-dependent kinase 6, and human papillomavirus E6 oncoprotein.
Collapse
Affiliation(s)
- Despoina Varna
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Elena Geromichalou
- Laboratory of Pharmacology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Athens 11527, Greece
| | - Eleni Papachristou
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Rigini Papi
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Antonios G Hatzidimitriou
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Emmanuel Panteris
- Laboratory of Botany, Department of Biology, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - George Psomas
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - George D Geromichalos
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Paraskevas Aslanidis
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Theodora Choli-Papadopoulou
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece.
| | - Panagiotis A Angaridis
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece.
| |
Collapse
|
41
|
Zhang X, Zhu H, Qu X, Yu Z, Zhang J. Suppressing LncRNA HOXA-AS3 by CRISPR-dCas9 inhibits pancreatic cancer development. J Cancer 2021; 12:6439-6444. [PMID: 34659534 PMCID: PMC8489150 DOI: 10.7150/jca.62631] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/18/2021] [Indexed: 12/24/2022] Open
Abstract
The lncRNA HOXA-AS3 has been reported as a potential oncogene in tumors. Nevertheless, the molecular mechanism of HOXA-AS3 in pancreatic cancer (PC) progression remains unknown. We performed quantitative real-time (qRT) PCR assay to detect the expression levels of HOXA-AS3, miR-29c in PC specimens. Then, we transfected sgRNA-HOXA-AS3, miR-29c mimics, miR-29c inhibitors, or vector-CDK6 plasmids into PC cell lines to regulate the expression levels of HOXA-AS3, miR-29c or CDK6. Luciferase reporter assay was performed to identify the correlations among miR-29c, HOXA-AS3 and 3' UTR of CDK6.The ability of cell proliferation was assessed by cell counting and subcutaneous tumor growth assay. HOXA-AS3 level was upregulated in PC, and its knockdown suppressed PC cells proliferation, whereas miR-29c antagonized the regulatory effect of HOXA-AS3 knockdown by directly binding to HOXA-AS3.Moreover, CDK6 was a target of miR-29c and miR-29c exerted anti-proliferation effects through inhibiting CDK6. HOXA-AS3 could accelerate the growth of PC cells partially by regulating the miR-29c/CDK6 axis, which could be used as a potential therapeutic target in CRISPR-mediated PC treatment.
Collapse
Affiliation(s)
- Xiaoli Zhang
- The First Affiliated Hospital, Department of Pathology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Hongbo Zhu
- The First Affiliated Hospital, Department of Pathology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Xiaoguang Qu
- The First Affiliated Hospital, Department of Pathology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Ziying Yu
- The First Affiliated Hospital, Department of Pathology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Jing Zhang
- The First Affiliated Hospital, Department of Pathology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| |
Collapse
|
42
|
A Preclinical Investigation of GBM-N019 as a Potential Inhibitor of Glioblastoma via Exosomal mTOR/CDK6/STAT3 Signaling. Cells 2021; 10:cells10092391. [PMID: 34572040 PMCID: PMC8471927 DOI: 10.3390/cells10092391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/09/2021] [Accepted: 09/09/2021] [Indexed: 12/21/2022] Open
Abstract
Glioblastoma (GBM) is one of the most aggressive brain malignancies with high incidences of developing treatment resistance, resulting in poor prognoses. Glioma stem cell (GSC)-derived exosomes are important players that contribute to GBM tumorigenesis and aggressive properties. Herein, we investigated the inhibitory roles of GBM-N019, a novel small molecule on the transfer of aggressive and invasive properties through the delivery of oncogene-loaded exosomes from GSCs to naïve and non-GSCs. Our results indicated that GBM-N019 significantly downregulated the expressions of the mammalian target of rapamycin (mTOR), signal transducer and activator of transcription 3 (STAT3), and cyclin-dependent kinase 6 (CDK6) signaling networks with concomitant inhibitory activities against viability, clonogenicity, and migratory abilities of U251 and U87MG cells. Treatments with GBM-N019 halted the exosomal transfer of protein kinase B (Akt), mTOR, p-mTOR, and Ras-related protein RAB27A to the naïve U251 and U87MG cells, and rescued the cells from invasive and stemness properties that were associated with activation of these oncogenes. GBM-N019 also synergized with and enhanced the anti-GBM activities of palbociclib in vitro and in vivo. In conclusion, our results suggested that GBM-N019 possesses good translational relevance as a potential anti-glioblastoma drug candidate worthy of consideration for clinical trials against recurrent glioblastomas.
Collapse
|
43
|
Karami M, Entezari M, Miri SR, Hashemi M, Pourhoseini SM. Investigation of expression level of hsa-circ-0001724 and the target gene, CDK6 in patients with gastric cancer. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
44
|
Gurung AB, Ali MA, Lee J, Farah MA, Al-Anazi KM. Molecular docking and dynamics simulation study of bioactive compounds from Ficus carica L. with important anticancer drug targets. PLoS One 2021; 16:e0254035. [PMID: 34260631 PMCID: PMC8279321 DOI: 10.1371/journal.pone.0254035] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/17/2021] [Indexed: 01/08/2023] Open
Abstract
Ficus carica L., commonly known as fig, has been used in traditional medicine for metabolic disorders, cardiovascular diseases, respiratory diseases and cancer. Various bioactive compounds have been previously isolated from the leaves, fruit, and bark, which have different pharmacological properties, but the anticancer mechanisms of this plant are not known. In the current study we focused on understanding the probable mechanisms underlying the anticancer activity of F. carica plant extracts by molecular docking and dynamic simulation approaches. We evaluated the drug-likeness of the active constituents of the plant and explored its binding affinity with selected anticancer drug target receptors such as cyclin-dependent kinase 2 (CDK-2), cyclin-dependent kinase 6 (CDK-6), topoisomerase-I (Topo I), topoisomerase-II (Topo II), B-cell lymphoma 2 (Bcl-2), and vascular endothelial growth factor receptor 2 (VEGFR-2). In silico toxicity studies revealed that thirteen molecules out of sixty-eight major active compounds in the plant extract have acceptable drug-like properties. Compound 37 (β-bourbonene) has a good binding affinity with the majority of drug targets, as revealed by molecular docking studies. The complexes of the lead molecules with the drug receptors were stable in terms of molecular dynamics simulation derived parameters such as root mean square deviation and radius of gyration. The top ten residues contributing significantly to the binding free energies were deciphered through analysis of molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) and molecular mechanics generalized Born surface area (MM-GBSA). Thus, the results of our studies unravel the potential of F. carica bioactive compounds as anticancer candidate molecules against selected macromolecular receptors.
Collapse
Affiliation(s)
- Arun Bahadur Gurung
- Department of Basic Sciences and Social Sciences, North-Eastern Hill University, Shillong, Meghalaya, India
| | - Mohammad Ajmal Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Joongku Lee
- Department of Environment and Forest Resources, Chungnam National University, Yuseong-gu, Daejeon, Republic of Korea
| | - Mohammad Abul Farah
- Genetics Laboratory, Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Khalid Mashay Al-Anazi
- Genetics Laboratory, Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
45
|
He M, Lv W, Rao Y. Opportunities and Challenges of Small Molecule Induced Targeted Protein Degradation. Front Cell Dev Biol 2021; 9:685106. [PMID: 34249939 PMCID: PMC8261656 DOI: 10.3389/fcell.2021.685106] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/24/2021] [Indexed: 12/21/2022] Open
Abstract
Proteolysis targeting chimeras (PROTAC) represents a new type of small molecule induced protein degradation technology that has emerged in recent years. PROTAC uses bifunctional small molecules to induce ubiquitination of target proteins and utilizes intracellular proteasomes for chemical knockdown. It complements the gene editing and RNA interference for protein knockdown. Compared with small molecule inhibitors, PROTAC has shown great advantages in overcoming tumor resistance, affecting the non-enzymatic function of target proteins, degrading undruggable targets, and providing new rapid and reversible chemical knockout tools. At the same time, its challenges and problems also need to be resolved as a fast-developing newchemical biology technology.
Collapse
Affiliation(s)
- Ming He
- MOE Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, China
| | - Wenxing Lv
- MOE Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, China
| | - Yu Rao
- MOE Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, China
| |
Collapse
|
46
|
Pack LR, Daigh LH, Chung M, Meyer T. Clinical CDK4/6 inhibitors induce selective and immediate dissociation of p21 from cyclin D-CDK4 to inhibit CDK2. Nat Commun 2021; 12:3356. [PMID: 34099663 PMCID: PMC8184839 DOI: 10.1038/s41467-021-23612-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 05/06/2021] [Indexed: 12/11/2022] Open
Abstract
Since their discovery as drivers of proliferation, cyclin-dependent kinases (CDKs) have been considered therapeutic targets. Small molecule inhibitors of CDK4/6 are used and tested in clinical trials to treat multiple cancer types. Despite their clinical importance, little is known about how CDK4/6 inhibitors affect the stability of CDK4/6 complexes, which bind cyclins and inhibitory proteins such as p21. We develop an assay to monitor CDK complex stability inside the nucleus. Unexpectedly, treatment with CDK4/6 inhibitors-palbociclib, ribociclib, or abemaciclib-immediately dissociates p21 selectively from CDK4 but not CDK6 complexes. This effect mediates indirect inhibition of CDK2 activity by p21 but not p27 redistribution. Our work shows that CDK4/6 inhibitors have two roles: non-catalytic inhibition of CDK2 via p21 displacement from CDK4 complexes, and catalytic inhibition of CDK4/6 independent of p21. By broadening the non-catalytic displacement to p27 and CDK6 containing complexes, next-generation CDK4/6 inhibitors may have improved efficacy and overcome resistance mechanisms.
Collapse
Affiliation(s)
- Lindsey R Pack
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
| | - Leighton H Daigh
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
| | - Mingyu Chung
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
| | - Tobias Meyer
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
47
|
Yang XY, Wang GB, Le YJ, Liu WT, He QY. Quantitative Proteomics Reveals the Antitumor Effects of Sodium New Houttuyfonate on Non-small Cell Lung Cancer. JOURNAL OF EXPLORATORY RESEARCH IN PHARMACOLOGY 2021; 000:000-000. [DOI: 10.14218/jerp.2021.00007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
48
|
Belal A. 3D-Pharmacophore Modeling, Molecular Docking, and Virtual Screening for Discovery of Novel CDK4/6 Selective Inhibitors. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1068162021330013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
49
|
Chen Y, Hou C, Zhao LX, Cai QC, Zhang Y, Li DL, Tang Y, Liu HY, Liu YY, Zhang YY, Yang YK, Gao CW, Yao Q, Zhu QS, Cao CH. The Association of microRNA-34a With High Incidence and Metastasis of Lung Cancer in Gejiu and Xuanwei Yunnan. Front Oncol 2021; 11:619346. [PMID: 33796457 PMCID: PMC8008071 DOI: 10.3389/fonc.2021.619346] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/19/2021] [Indexed: 01/22/2023] Open
Abstract
The incidence and associated mortality of lung cancer in tin miners in Gejiu County and farmers in Xuanwei Country, Yunnan Province have been very high in the world. Current published literatures on the molecular mechanisms of lung cancer initiation and progression in Gejiu and Xuanwei County are still controversial. Studies confirmed that microRNA-34a (miR-34a) functioned as a vital tumor suppressor in tumorigenesis and progression. However, the role and precise mechanisms of miR-34a and its regulatory gene network in initiation and progression of lung cancer in Gejiu and Xuanwei County, Yunnan Province, have not been elucidated. In the current study, we first found that miR-34a was downregulated in Gejiu lung squamous carcinoma YTMLC-90, Xuanwei lung adenocarcinoma XWLC-05, and other non-small cell lung carcinoma (NSCLC) cell lines, and miR-34a overexpression inhibited cell proliferation, migration and invasion, as well as induced cell apoptosis in YTMLC-90 and XWLC-05 cells. Our findings revealed that miR-34a is critical and cannot be considered as the area-specific non-coding RNA in initiation and progression of lung cancer in Gejiu and Xuanwei County. Next we revealed that miR-34a overexpression suppressed lung cancer growth and metastasis partially via increasing PTEN but reducing CDK6 expression that might lead to subsequent inactivation of PI3K/AKT pathway. Furthermore, our findings demonstrated that YY1 functioned as a tumor suppressor gene in initiation and progression of lung cancer in Gejiu and Xuanwei County. In conclusion, our findings in the study confirmed that miR-34a overexpression could simultaneously suppress tumor growth and metastasis and play a vital role in tumorigenesis and progression of NSCLC via increasing PTEN and YY1 expression, but decreasing CDK6. Most interestingly, our findings also raised doubts about the current ideas about these area-specific diseases.
Collapse
Affiliation(s)
- Yan Chen
- School of Life Sciences, Yunnan University, Kunming, China.,Yunnan Cancer Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Chun Hou
- School of Life Sciences, Yunnan University, Kunming, China
| | - Liu-Xin Zhao
- School of Life Sciences, Yunnan University, Kunming, China
| | - Qiu-Chen Cai
- School of Life Sciences, Yunnan University, Kunming, China.,Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, China
| | - Ying Zhang
- School of Life Sciences, Yunnan University, Kunming, China
| | - Da-Lun Li
- School of Life Sciences, Yunnan University, Kunming, China
| | - Yao Tang
- School of Life Sciences, Yunnan University, Kunming, China
| | - Hong-Yu Liu
- School of Life Sciences, Yunnan University, Kunming, China
| | - Yun-Yi Liu
- School of Life Sciences, Yunnan University, Kunming, China
| | - Yue-Yan Zhang
- School of Life Sciences, Yunnan University, Kunming, China
| | - Ya-Kun Yang
- School of Life Sciences, Yunnan University, Kunming, China
| | - Cheng-Wei Gao
- School of Chemical Science and Technology, Yunnan University, Kunming, China
| | - Qian Yao
- Yunnan Cancer Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Qi-Shun Zhu
- School of Life Sciences, Yunnan University, Kunming, China.,Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, China
| | - Chuan-Hai Cao
- Taneja College of Pharmacy, University of South Florida, Tampa, FL, United States
| |
Collapse
|
50
|
Huang C, Chen Z, He Y, He Z, Ban Z, Zhu Y, Ding L, Yang C, Jeong JH, Yuan W, Yang L. EphA2 promotes tumorigenicity of cervical cancer by up-regulating CDK6. J Cell Mol Med 2021; 25:2967-2975. [PMID: 33586348 PMCID: PMC7957165 DOI: 10.1111/jcmm.16337] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 09/22/2020] [Accepted: 01/09/2021] [Indexed: 12/18/2022] Open
Abstract
Erythropoietin‐producing hepatocellular receptor A2 (EphA2) receptor tyrosine kinase plays an important role in tissue organization and homeostasis in normal organs. EphA2 is overexpressed in a variety of types of solid tumours with oncogenic functions. However, the role of EphA2 in cervical cancer (CC) is still needed to be further explored. Here, we examined the role of EphA2 by establishing a stable EphA2 knock‐down CC cell lines or a stable EphA2‐overexpressed CC cells lines. Overexpression of EphA2 increased cell proliferation and migration of CC while EphA2 knock‐down decreased the CC tumorigenicity. In addition, EphA2 knock‐down suppressed CC tumour development in the xenograft mouse model. Inhibition of EphA2 by AWL‐II‐41‐27, EphA2‐specific tyrosine kinase inhibitor, or knock‐down of EphA2 decreased mRNA and protein expression of cyclin‐dependent kinase (CDK) 6 in CC cells, which increased cellular susceptibility to epirubicin (EPI), an anti‐cancer chemotherapy drug. A clinicopathological study of EphA2 was conducted on a cohort of 158 human CC patients. EphA2 protein expression was positively correlated with CDK6 protein expression, invasion depth, lymph node metastasis and clinicopathological stage (P < .05). This study demonstrates the oncogenic activity of EphA2 in vitro and in vivo, which provides insights into the relevant mechanisms that might lead to novel treatments for CC.
Collapse
Affiliation(s)
- Changhao Huang
- Hunan Key Laboratory of Precise Diagnosis and Treatment of Gastrointestinal Tumor, Xiangya Hospital, Central South University, Changsha, China
| | - Zihua Chen
- Hunan Key Laboratory of Precise Diagnosis and Treatment of Gastrointestinal Tumor, Xiangya Hospital, Central South University, Changsha, China.,Department of Gastrointestinal Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Yihong He
- Hunan Key Laboratory of Precise Diagnosis and Treatment of Gastrointestinal Tumor, Xiangya Hospital, Central South University, Changsha, China
| | - Zhengxi He
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhenying Ban
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuanhang Zhu
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Leilei Ding
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chen Yang
- Hunan Key Laboratory of Precise Diagnosis and Treatment of Gastrointestinal Tumor, Xiangya Hospital, Central South University, Changsha, China.,Department of Gastrointestinal Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Ji-Hak Jeong
- Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Korea
| | - Weijie Yuan
- Hunan Key Laboratory of Precise Diagnosis and Treatment of Gastrointestinal Tumor, Xiangya Hospital, Central South University, Changsha, China.,Department of Gastrointestinal Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Li Yang
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|