1
|
Dey P, Das R, Chatterjee S, Paul R, Ghosh U. Combined effects of carbon ion radiation and PARP inhibitor on non-small cell lung carcinoma cells: Insights into DNA repair pathways and cell death mechanisms. DNA Repair (Amst) 2024; 144:103778. [PMID: 39486351 DOI: 10.1016/j.dnarep.2024.103778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/17/2024] [Accepted: 10/16/2024] [Indexed: 11/04/2024]
Abstract
The utilization of high linear energy transfer (LET) carbon ion (12C-ion) in radiotherapy has witnessed a notable rise in managing highly metastatic, recurrent, and chemo/radio-resistant human cancers. Non-small cell lung cancer (NSCLC) presents a formidable challenge due to its chemo-resistance and aggressive nature, resulting in poor prognosis and survival rates. In a previous study, we demonstrated that the combination of 12C-ion with the poly (ADP-ribose) polymerase (PARP) inhibitor (PARPi) olaparib significantly mitigated metastasis in A549 cells. Here, we delve into the underlying rationale behind the combined action of olaparib with 12C-ion, focusing on DNA repair pathways and cell death mechanisms in asynchronous NSCLC A549 cells following single and combined treatments. Evaluation included analysis of colony-forming ability, DNA damage assessed by γH2AX foci, expression profiling of key proteins involved in Homologous Recombination (HR) and Non-Homologous End Joining (NHEJ) repair pathways, caspase-3 activation, apoptotic body formation, and autophagic cell death. Our findings reveal that both PARPi olaparib and rucaparib sensitize A549 cells to 12C-ion exposure, with olaparib exhibiting superior sensitization. Moreover, 12C-ion exposure alone significantly downregulates both HR and NHEJ repair pathways by reducing the expression of MRE11--RAD51 and Ku70-Ku80 protein complexes at 24 h post-treatment. Notably, the combination of olaparib pre-treatment with 12C-ion markedly inhibits both HR and NHEJ pathways, culminating in DNA damage-induced apoptotic and autophagic cell death. Thus we are the first to demonstrate that olaparib sensitizes NSCLC cells to carbon ion by interfering with HR and NHEJ pathway. These insights underscore the promising therapeutic potential of combining PARP inhibition with carbon ion exposure for effective NSCLC management.
Collapse
Affiliation(s)
- Payel Dey
- Department of Biochemistry & Biophysics, University of Kalyani, Kalyani 741235, India
| | - Rima Das
- Department of Biochemistry & Biophysics, University of Kalyani, Kalyani 741235, India
| | - Sandipan Chatterjee
- Department of Biochemistry & Biophysics, University of Kalyani, Kalyani 741235, India
| | - Roni Paul
- Department of Biochemistry & Biophysics, University of Kalyani, Kalyani 741235, India
| | - Utpal Ghosh
- Department of Biochemistry & Biophysics, University of Kalyani, Kalyani 741235, India.
| |
Collapse
|
2
|
Ioannou M, Lalwani K, Ayanlaja AA, Chinnasamy V, Pratilas CA, Schreck KC. MEK Inhibition Enhances the Antitumor Effect of Radiotherapy in NF1-Deficient Glioblastoma. Mol Cancer Ther 2024; 23:1261-1272. [PMID: 38714355 PMCID: PMC11374499 DOI: 10.1158/1535-7163.mct-23-0510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 01/26/2024] [Accepted: 05/03/2024] [Indexed: 05/09/2024]
Abstract
Individuals with neurofibromatosis type 1, an autosomal dominant neurogenetic and tumor predisposition syndrome, are susceptible to developing low-grade glioma and less commonly high-grade glioma. These gliomas exhibit loss of the neurofibromin gene [neurofibromin type 1 (NF1)], and 10% to 15% of sporadic high-grade gliomas have somatic NF1 alterations. Loss of NF1 leads to hyperactive RAS signaling, creating opportunity given the established efficacy of MEK inhibitors in plexiform neurofibromas and some individuals with low-grade glioma. We observed that NF1-deficient glioblastoma neurospheres were sensitive to the combination of an MEK inhibitor (mirdametinib) with irradiation, as evidenced by synergistic inhibition of cell growth, colony formation, and increased cell death. In contrast, NF1-intact neurospheres were not sensitive to the combination, despite complete ERK pathway inhibition. No neurosphere lines exhibited enhanced sensitivity to temozolomide combined with mirdametinib. Mirdametinib decreased transcription of homologous recombination genes and RAD51 foci, associated with DNA damage repair, in sensitive models. Heterotopic xenograft models displayed synergistic growth inhibition to mirdametinib combined with irradiation in NF1-deficient glioma xenografts but not in those with intact NF1. In sensitive models, benefits were observed at least 3 weeks beyond the completion of treatment, including sustained phosphor-ERK inhibition on immunoblot and decreased Ki-67 expression. These observations demonstrate synergistic activity between mirdametinib and irradiation in NF1-deficient glioma models and may have clinical implications for patients with gliomas that harbor germline or somatic NF1 alterations.
Collapse
Affiliation(s)
- Maria Ioannou
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Kriti Lalwani
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Abiola A. Ayanlaja
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Viveka Chinnasamy
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Christine A. Pratilas
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Pediatric Oncology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Karisa C. Schreck
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
3
|
Li C, Sun S, Zhuang Y, Luo Z, Ji G, Liu Z. CTSB Nuclear Translocation Facilitates DNA Damage and Lysosomal Stress to Promote Retinoblastoma Cell Death. Mol Biotechnol 2024; 66:2583-2594. [PMID: 38159170 PMCID: PMC11424708 DOI: 10.1007/s12033-023-01042-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
Retinoblastoma (RB) is a pernicious tumor originating from photoreceptor precursor cells that often endangers the lives of children. The purpose of our study was to further investigate the influence of cathepsin B (CTSB) nuclear translocation on RB cell death. Y79 cells were injected into the vitreous cavity of nude mice at a dose of 4 µL/mouse to establish an animal model of RB. Real-time quantitative polymerase chain reaction (RT-qPCR), Western blot analysis, a comet assay, a Cell Counting Kit-8 (CCK-8) assay and flow cytometry were used to measure the levels of the interrelated genes and proteins and to evaluate alterations in autophagy, apoptosis, proliferation, DNA damage and cell cycle arrest. CTSB was found to be expressed at low levels in RB animal model samples and RB cell lines. Functionally, CTSB nuclear translocation promoted DNA damage, cell cycle arrest, ferroptosis and autophagy in Y79 cells and inhibited their proliferation. Downstream mechanistic studies showed that nuclear translocation of CTSB facilitates DNA damage and cell cycle arrest in RB cells by inhibiting breast cancer 1 protein (BRCA1) expression and also activates the signal transducer and activator of transcription 3/stimulator of interferon response cGAMP interactor 1 (STAT3/STING1) pathway to induce lysosomal stress, leading to ferroptosis and autophagy in Y79 cells and alleviating RB. Nuclear translocation of CTSB facilitates DNA damage and cell cycle arrest in RB cells by inhibiting BRCA1 expression and activating the STAT3/STING1 pathway and induces lysosomal stress, which eventually leads to ferroptosis and autophagy and mitigates RB.
Collapse
Affiliation(s)
- Cairui Li
- Department of Ophthalmology, Dali Prefecture People's Hospital (The Third Affiliated Hospital of Dali University), Dali, Yunnan, 671003, China.
| | - Shuguang Sun
- Department of Endocrine, The First Affiliated Hospital of Dali University, Dali, Yunnan, 671003, China
| | - Yanmei Zhuang
- Department of Ophthalmology, Weishan County People's Hospital, Weishan, Yunnan, 672400, China
| | - Zhaokui Luo
- Department of Ophthalmology, Jingdong County Hospital in Yunnan Province, Jingdong, Yunnan, 665700, China
| | - Guangquan Ji
- Department of Ophthalmology, Jingdong County Traditional Chinese Medicine Hospital in Yunnan Province, Jingdong, Yunnan, 665700, China
| | - Zhong Liu
- Department of Surgery, Weishan County People's Hospital, Weishan, Yunnan, 672400, China
| |
Collapse
|
4
|
Sun H, Zhu R, Guo X, Zhao P, Zhang R, Zhao Z, Zhou H. Exosome miR-101-3p derived from bone marrow mesenchymal stem cells promotes radiotherapy sensitivity in non-small cell lung cancer by regulating DNA damage repair and autophagy levels through EZH2. Pathol Res Pract 2024; 256:155271. [PMID: 38574630 DOI: 10.1016/j.prp.2024.155271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/13/2023] [Accepted: 03/24/2024] [Indexed: 04/06/2024]
Abstract
BACKGROUND AND OBJECTIVE The morbidity rate of non-small cell lung cancer (NSCLC) increases with age, highlighting that NSCLC is a serious threat to human health. The aim of this study was mainly to describe the role of exosomal miR-101-3p derived from bone marrow mesenchymal stem cells (BMSCs) in NSCLC. METHODS A549 or NCI-H1703 cells (1×105/mouse) were injected into nude mice to establish an NSCLC animal model. RTqPCR, Western blotting and comet assays were used to assess the changes in gene expression, proteins and DNA damage repair. RESULTS miR-101-3p and RAI2 were found to be expressed at low levels in NSCLC, while EZH2 was highly expressed. In terms of function, miR-101-3p downregulated EZH2. In addition, exosomal miR-101-3p derived from BMSCs promoted the expression of RAI2, inhibited DNA damage repair, and inhibited the activation of the PI3K/AKT/mTOR signaling pathway by inhibiting EZH2, thereby promoting autophagy and decreasing cell viability and finally enhancing the sensitivity of NSCLC to radiotherapy and inhibiting the malignant biological behavior of NSCLC. CONCLUSION Exosomal miR-101-3p derived from BMSCs can inhibit DNA damage repair, promote autophagy, enhance the radiosensitivity of NSCLC, and inhibit the progression of NSCLC by inhibiting EZH2.
Collapse
Affiliation(s)
- Hongwen Sun
- Department of Thoracic Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Runying Zhu
- Department of Oncology Radiotherapy, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Xijing Guo
- Department of Oncology Radiotherapy, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Peizhu Zhao
- Department of Oncology Radiotherapy, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Rui Zhang
- Department of Oncology Radiotherapy, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Zhongquan Zhao
- Department of Oncology Radiotherapy, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Hua Zhou
- Department of Oncology Radiotherapy, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China.
| |
Collapse
|
5
|
Huang G, Zhang W, Tian H. Evaluation of the radiosensitizing effect of MEK inhibitor KZ-001 on non-small cell lung cancer cells in vitro. ASIAN BIOMED 2023; 17:230-237. [PMID: 37899758 PMCID: PMC10602635 DOI: 10.2478/abm-2023-0064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Background Non-small cell lung cancer (NSCLC) has a poor prognosis and usually presents resistance against radiotherapy. MEK inhibitors have been proven to possess a radiosensitization effect. The compound KZ-001 as a particular MEK inhibitor is superior to the listed MEK inhibitor AZD6244. Objective To investigate whether KZ-001 could enhance the radiosensitivity of NSCLC cell lines in vitro. Methods MTT and colony formation assay were used to evaluate the radiosensitivity effect of KZ-001. Immunofluorescence, cell cycle, apoptosis staining, and western blot experiments were used to explore the radiosensitivity mechanism. Results KZ-001 significantly decreased A549 cell viability at 6 Gy and 8 Gy radiation doses and caused the radiosensitivity at 1 Gy, 4 Gy, and 6 Gy in colony formation experiments. The A549 apoptosis ratio induced by irradiation (IR) combined with KZ-001 increased significantly in comparison with that by IR monotherapy (10.57% vs. 6.23%, P = 0.0055). The anti-apoptosis marker Bcl-XL was found downregulated in KZ-001 and IR-treated A549/H460 cells, but apoptosis marker Bax was downregulated in H460. Extracellular regulated protein kinases (ERK1/2) phosphorylation of H460 cells could be blocked both by IR alone and IR combined with KZ-001. IR combined with KZ-001 is able to inhibit ERK activation of A549 cells apparently. KZ-001 increased the proportion of G2 phase in irradiated cells from 21.24% to 32.22%. KZ-001 could also significantly increase the double-strand break damage cell ratio to more than 30% compared to the irradiation alone group. Conclusions MEK1/2 inhibitor KZ-001 is a potential radiosensitizer for clinical applications.
Collapse
Affiliation(s)
- Gongchao Huang
- Department of Chemistry, School of Science, Tianjin University, Tianjin300072, China
| | - Wenqin Zhang
- Department of Chemistry, School of Science, Tianjin University, Tianjin300072, China
| | - Hongqi Tian
- Shanghai Kechow Pharma, Inc., Shanghai201203, China
| |
Collapse
|
6
|
Zhang H, Wang X, Ma Y, Zhang Q, Liu R, Luo H, Wang Z. Review of possible mechanisms of radiotherapy resistance in cervical cancer. Front Oncol 2023; 13:1164985. [PMID: 37692844 PMCID: PMC10484717 DOI: 10.3389/fonc.2023.1164985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/31/2023] [Indexed: 09/12/2023] Open
Abstract
Radiotherapy is one of the main treatments for cervical cancer. Early cervical cancer is usually considered postoperative radiotherapy alone. Radiotherapy combined with cisplatin is the standard treatment for locally advanced cervical cancer (LACC), but sometimes the disease will relapse within a short time after the end of treatment. Tumor recurrence is usually related to the inherent radiation resistance of the tumor, mainly involving cell proliferation, apoptosis, DNA repair, tumor microenvironment, tumor metabolism, and stem cells. In the past few decades, the mechanism of radiotherapy resistance of cervical cancer has been extensively studied, but due to its complex process, the specific mechanism of radiotherapy resistance of cervical cancer is still not fully understood. In this review, we discuss the current status of radiotherapy resistance in cervical cancer and the possible mechanisms of radiotherapy resistance, and provide favorable therapeutic targets for improving radiotherapy sensitivity. In conclusion, this article describes the importance of understanding the pathway and target of radioresistance for cervical cancer to promote the development of effective radiotherapy sensitizers.
Collapse
Affiliation(s)
- Hanqun Zhang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Department of Oncology, Guizhou Provincial People's Hospital, Guizhou, China
| | - Xiaohu Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Lanzhou Heavy Ion Hospital, Lanzhou, China
| | - Yan Ma
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Qiuning Zhang
- University of Chinese Academy of Sciences, Beijing, China
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Lanzhou Heavy Ion Hospital, Lanzhou, China
| | - Ruifeng Liu
- University of Chinese Academy of Sciences, Beijing, China
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Lanzhou Heavy Ion Hospital, Lanzhou, China
| | - Hongtao Luo
- University of Chinese Academy of Sciences, Beijing, China
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Lanzhou Heavy Ion Hospital, Lanzhou, China
| | - Zi Wang
- Department of Oncology, Guizhou Provincial People's Hospital, Guizhou, China
| |
Collapse
|
7
|
Stagg J, Golden E, Wennerberg E, Demaria S. The interplay between the DNA damage response and ectonucleotidases modulates tumor response to therapy. Sci Immunol 2023; 8:eabq3015. [PMID: 37418547 PMCID: PMC10394739 DOI: 10.1126/sciimmunol.abq3015] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 06/14/2023] [Indexed: 07/09/2023]
Abstract
The extracellular nucleoside adenosine reduces tissue inflammation and is generated by irreversible dephosphorylation of adenosine monophosphate (AMP) mediated by the ectonucleotidase CD73. The pro-inflammatory nucleotides adenosine triphosphate, nicotinamide adenine dinucleotide, and cyclic guanosine -monophosphate-AMP (cGAMP), which are produced in the tumor microenvironment (TME) during therapy-induced immunogenic cell death and activation of innate immune signaling, can be converted into AMP by ectonucleotidases CD39, CD38, and CD203a/ENPP1. Thus, ectonucleotidases shape the TME by converting immune-activating signals into an immunosuppressive one. Ectonucleotidases also hinder the ability of therapies including radiation therapy, which enhance the release of pro-inflammatory nucleotides in the extracellular milieu, to induce immune-mediated tumor rejection. Here, we review the immunosuppressive effects of adenosine and the role of different ectonucleotidases in modulating antitumor immune responses. We discuss emerging opportunities to target adenosine generation and/or its ability to signal via adenosine receptors expressed by immune and cancer cells in the context of combination immunotherapy and radiotherapy.
Collapse
Affiliation(s)
- John Stagg
- Centre de Recherche du Centre Hospitalier de
l’Université de Montréal, 900 St-Denis street, Montreal,
Quebec, Canada, H2X 0A9
| | - Encouse Golden
- Department of Radiation Oncology, Weill Cornell Medicine,
New York, NY 10065, USA
| | - Erik Wennerberg
- Division of Radiotherapy and Imaging, Institute of Cancer
Research, London SM2 5NG, UK
| | - Sandra Demaria
- Department of Radiation Oncology, Weill Cornell Medicine,
New York, NY 10065, USA
- Department of Pathology and Laboratory Medicine, Weill
Cornell Medicine, New York, NY, 10065, USA
| |
Collapse
|
8
|
Wu Y, Song Y, Wang R, Wang T. Molecular mechanisms of tumor resistance to radiotherapy. Mol Cancer 2023; 22:96. [PMID: 37322433 PMCID: PMC10268375 DOI: 10.1186/s12943-023-01801-2] [Citation(s) in RCA: 93] [Impact Index Per Article: 93.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 06/03/2023] [Indexed: 06/17/2023] Open
Abstract
BACKGROUND Cancer is the most prevalent cause of death globally, and radiotherapy is considered the standard of care for most solid tumors, including lung, breast, esophageal, and colorectal cancers and glioblastoma. Resistance to radiation can lead to local treatment failure and even cancer recurrence. MAIN BODY In this review, we have extensively discussed several crucial aspects that cause resistance of cancer to radiation therapy, including radiation-induced DNA damage repair, cell cycle arrest, apoptosis escape, abundance of cancer stem cells, modification of cancer cells and their microenvironment, presence of exosomal and non-coding RNA, metabolic reprogramming, and ferroptosis. We aim to focus on the molecular mechanisms of cancer radiotherapy resistance in relation to these aspects and to discuss possible targets to improve treatment outcomes. CONCLUSIONS Studying the molecular mechanisms responsible for radiotherapy resistance and its interactions with the tumor environment will help improve cancer responses to radiotherapy. Our review provides a foundation to identify and overcome the obstacles to effective radiotherapy.
Collapse
Affiliation(s)
- Yu Wu
- Department of Radiotherapy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, No.44 Xiaoheyan Road, Dadong District, Shenyang, 110042 Liaoning Province China
- School of Graduate, Dalian Medical University, Dalian, 116044 China
| | - Yingqiu Song
- Department of Radiotherapy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, No.44 Xiaoheyan Road, Dadong District, Shenyang, 110042 Liaoning Province China
| | - Runze Wang
- Department of Radiotherapy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, No.44 Xiaoheyan Road, Dadong District, Shenyang, 110042 Liaoning Province China
- School of Graduate, Dalian Medical University, Dalian, 116044 China
| | - Tianlu Wang
- Department of Radiotherapy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, No.44 Xiaoheyan Road, Dadong District, Shenyang, 110042 Liaoning Province China
- Faculty of Medicine, Dalian University of Technology, Dalian, 116024 China
| |
Collapse
|
9
|
Song Y, Cheng Y, Lan T, Bai Z, Liu Y, Bi Z, Alu A, Cheng D, Wei Y, Wei X. ERK inhibitor: A candidate enhancing therapeutic effects of conventional chemo-radiotherapy in esophageal squamous cell carcinoma. Cancer Lett 2023; 554:216012. [PMID: 36470544 DOI: 10.1016/j.canlet.2022.216012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/25/2022] [Accepted: 11/16/2022] [Indexed: 12/12/2022]
Abstract
For patients with esophageal squamous cell carcinoma (ESCC), standard therapeutic methods (cisplatin and radiotherapy) have been found to be ineffective and severely toxic. Targeted therapy emerges as a promising solution for this dilemma. It has been reported that targeted therapies are applied alone or in combination with standard conventional therapies for the treatment of a variety of cancers. To the best of our knowledge, in patients with ESCC, the combinational methods containing standard therapy and ERK-targeted therapy have yet to be explored. To analyze the prognostic role of p-ERK in ESCC patients, the Kaplan-Meier analysis and Cox regression model were used. To assess the effects of ERK-targeted therapy (GDC0994) on ESCC cells, in vitro studies including CCK-8 assay, colony formation assay, and scratch wound healing assay were conducted. In addition, the changes in cell cycle distribution and apoptosis were analyzed by flow cytometry. Besides, to assess the efficacy of different therapies in vivo, the xenograft tumor models were established by subcutaneously inoculating tumor cells into the flank/leg of mice. In patients with ESCC, a strong correlation between the high expression level of p-ERK and the poor prognosis (p < 0.01, Log-Rank test) has been identified. By analyzing the results from CCK-8 and scratch wound healing assays, we demonstrated that the ERK inhibitor repressed the viability and migration of ESCC cells. In addition, following the treatment of GDC0994, the volumes of xenograft tumors significantly decreased (p < 0.001, one-way ANOVA). Furthermore, blocking the mitogen-activated protein kinase (MAPK/ERK) pathway enhanced the therapeutic efficacy of both cisplatin and radiotherapy (p < 0.05). These findings imply the role of p-ERK in the prognosis of ESCC patients and the therapeutic value of ERK inhibitors in ESCC.
Collapse
Affiliation(s)
- Yanlin Song
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yuan Cheng
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Tianxia Lan
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ziyi Bai
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yu Liu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Zhenfei Bi
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Aqu Alu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Diou Cheng
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
10
|
Jin N, Xia Y, Gao Q. Combined PARP inhibitors and small molecular inhibitors in solid tumor treatment (Review). Int J Oncol 2023; 62:28. [PMID: 36601757 PMCID: PMC9851129 DOI: 10.3892/ijo.2023.5476] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 09/23/2022] [Indexed: 01/05/2023] Open
Abstract
With the development of precision medicine, targeted therapy has attracted extensive attention. Poly(ADP‑ribose) polymerase inhibitors (PARPi) are critical clinical drugs designed to induce cell death and are major antitumor targeted agents. However, preclinical and clinical data have revealed the limitations of PARPi monotherapy. Therefore, their combination with other targeted drugs has become a research hotspot in tumor treatment. Recent studies have demonstrated the critical role of small molecular inhibitors in multiple haematological cancers and solid tumors via cellular signalling modulation, exhibiting potential as a combined pharmacotherapy. In the present review, studies focused on small molecular inhibitors targeting the homologous recombination pathway were summarized and clinical trials evaluating the safety and efficacy of combined treatment were discussed.
Collapse
Affiliation(s)
- Ning Jin
- Key Laboratory of The Ministry of Education, Cancer Biology Research Center, Tongji Hospital, Wuhan, Hubei 430000, P.R. China
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, P.R. China
| | - Yu Xia
- Key Laboratory of The Ministry of Education, Cancer Biology Research Center, Tongji Hospital, Wuhan, Hubei 430000, P.R. China
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, P.R. China
| | - Qinglei Gao
- Key Laboratory of The Ministry of Education, Cancer Biology Research Center, Tongji Hospital, Wuhan, Hubei 430000, P.R. China
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, P.R. China
| |
Collapse
|
11
|
Shishido K, Reinders A, Asuthkar S. Epigenetic regulation of radioresistance: insights from preclinical and clinical studies. Expert Opin Investig Drugs 2022; 31:1359-1375. [PMID: 36524403 DOI: 10.1080/13543784.2022.2158810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Oftentimes, radiation therapy (RT) is ineffective due to the development of radioresistance (RR). However, studies have shown that targeting epigenetic modifiers to enhance radiosensitivity represents a promising direction of clinical investigation. AREAS COVERED This review discusses the mechanisms by which epigenetic modifiers alter radiosensitivity through dysregulation of MAPK-ERK and AKT-mTOR signaling. Finally, we discuss the clinical directions for targeting epigenetic modifiers and current radiology techniques used in the clinic. METHODOLOGY We searched PubMed and ScienceDirect databases from April 4th, 2022 to October 18th, 2022. We examined 226 papers related to radioresistance, epigenetics, MAPK, and PI3K/AKT/mTOR signaling. 194 papers were selected for this review. Keywords used for this search include, 'radioresistance,' 'radiosensitivity,' 'radiation,' 'radiotherapy,' 'particle radiation,' 'photon radiation,' 'epigenetic modifiers,' 'MAPK,' 'AKT,' 'mTOR,' 'cancer,' and 'PI3K.' We examined 41 papers related to clinical trials on the aforementioned topics. Outcomes of interest were safety, overall survival (OS), dose-limiting toxicities (DLT), progression-free survival (PFS), and maximum tolerated dose (MTD). EXPERT OPINION Current studies focusing on epigenetic mechanisms of RR strongly support the use of targeting epigenetic modifiers as adjuvants to standard cancer therapies. To further the success of such treatments and their clinical benefit , both preclinical and clinical studies are needed to broaden the scope of known radioresistant mechanisms.
Collapse
Affiliation(s)
- Katherine Shishido
- Department of Cancer Biology and Pharmacology and Department of Pediatrics, University of Illinois College of Medicine Peoria, Peoria, IL, United States of America
| | - Alexis Reinders
- Department of Cancer Biology and Pharmacology and Department of Pediatrics, University of Illinois College of Medicine Peoria, Peoria, IL, United States of America
| | - Swapna Asuthkar
- Department of Cancer Biology and Pharmacology and Department of Pediatrics, University of Illinois College of Medicine Peoria, Peoria, IL, United States of America
| |
Collapse
|
12
|
Gautam SK, Basu S, Aithal A, Dwivedi NV, Gulati M, Jain M. Regulation of pancreatic cancer therapy resistance by chemokines. Semin Cancer Biol 2022; 86:69-80. [PMID: 36064086 PMCID: PMC10370390 DOI: 10.1016/j.semcancer.2022.08.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 12/12/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy characterized by high resistance and poor response to chemotherapy. In addition, the poorly immunogenic pancreatic tumors constitute an immunosuppressive tumor microenvironment (TME) that render immunotherapy-based approaches ineffective. Understanding the mechanisms of therapy resistance, identifying new targets, and developing effective strategies to overcome resistance can significantly impact the management of PDAC patients. Chemokines are small soluble factors that are significantly deregulated during PDAC pathogenesis, contributing to tumor growth, metastasis, immune cell trafficking, and therapy resistance. Thus far, different chemokine pathways have been explored as therapeutic targets in PDAC, with some promising results in recent clinical trials. Particularly, immunotherapies such as immune check point blockade therapies and CAR-T cell therapies have shown promising results when combined with chemokine targeted therapies. Considering the emerging pathological and clinical significance of chemokines in PDAC, we reviewed major chemokine-regulated pathways leading to therapy resistance and the ongoing endeavors to target chemokine signaling in PDAC. This review discusses the role of chemokines in regulating therapy resistance in PDAC and highlights the continuing efforts to target chemokine-regulated pathways to improve the efficacy of various treatment modalities.
Collapse
Affiliation(s)
- Shailendra K Gautam
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Soumi Basu
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Abhijit Aithal
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Nidhi V Dwivedi
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Mansi Gulati
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA.
| |
Collapse
|
13
|
Toulany M. Targeting K-Ras-mediated DNA damage response in radiation oncology: Current status, challenges and future perspectives. Clin Transl Radiat Oncol 2022; 38:6-14. [PMID: 36313934 PMCID: PMC9596599 DOI: 10.1016/j.ctro.2022.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/06/2022] [Accepted: 10/08/2022] [Indexed: 11/06/2022] Open
Abstract
Approximately 60% of cancer patients receive curative or palliative radiation. Despite the significant role of radiotherapy (RT) as a curative approach for many solid tumors, tumor recurrence occurs, partially because of intrinsic radioresistance. Accumulating evidence indicates that the success of RT is hampered by activation of the DNA damage response (DDR). The intensity of DDR signaling is affected by multiple parameters, e.g., loss-of-function mutations in tumor suppressor genes, gain-of-function mutations in protooncogenes as well as radiation-induced alterations in signal-transduction pathways. Therefore, the response to irradiation differs in tumors of different types, which makes the individualization of RT as a rational but challenging goal. One contributor to tumor cell radiation survival is signaling through the Ras pathway. Three RAS genes encode 4 Ras isoforms: K-Ras4A, K-Ras4B, H-Ras, and N-Ras. RAS family members are found to be mutated in approximately 19% of human cancers. Mutations in RAS lead to constitutive activation of the gene product and activation of multiple Ras-dependent signal-transduction cascades. Preclinical studies have shown that the expression of mutant KRAS affects DDR and increases cell survival after irradiation. Approximately 70% of RAS mutations occur in KRAS. Thus, applying targeted therapies directly against K-Ras as well as K-Ras upstream activators and downstream effectors might be a tumor-specific approach to overcome K-Ras-mediated RT resistance. In this review, the role of K-Ras in the activation of DDR signaling will be summarized. Recent progress in targeting DDR in KRAS-mutated tumors in combination with radiochemotherapy will be discussed.
Collapse
|
14
|
Zhang W, Liu L, Zhao S, Chen L, Wei Y, Chen W, Ge F. Research progress on RNA‑binding proteins in breast cancer (Review). Oncol Lett 2022; 23:121. [PMID: 35261635 PMCID: PMC8867207 DOI: 10.3892/ol.2022.13241] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 02/03/2022] [Indexed: 11/28/2022] Open
Abstract
Breast cancer is the most common malignancy among women, and the abnormal regulation of gene expression serves an important role in its occurrence and development. However, the molecular mechanisms underlying gene expression are highly complex and heterogeneous, and RNA-binding proteins (RBPs) are among the key regulatory factors. RBPs bind targets in an environment-dependent or environment-independent manner to influence mRNA stability and the translation of genes involved in the formation, progression, metastasis and treatment of breast cancer. Due to the growing interest in these regulators, the present review summarizes the most influential studies concerning RBPs associated with breast cancer to elucidate the role of RBPs in breast cancer and to assess how they interact with other key pathways to provide new molecular targets for the diagnosis and treatment of breast cancer.
Collapse
Affiliation(s)
- Wenzhu Zhang
- Department of Breast Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Linlin Liu
- School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Shengdi Zhao
- Department of Breast Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Liang Chen
- Department of Breast Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Yuxian Wei
- Department of Endocrine Breast Surgery, First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Wenlin Chen
- Third Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650118, P.R. China
| | - Fei Ge
- Department of Breast Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| |
Collapse
|
15
|
Klomp JE, Lee YS, Goodwin CM, Papke B, Klomp JA, Waters AM, Stalnecker CA, DeLiberty JM, Drizyte-Miller K, Yang R, Diehl JN, Yin HH, Pierobon M, Baldelli E, Ryan MB, Li S, Peterson J, Smith AR, Neal JT, McCormick AK, Kuo CJ, Counter CM, Petricoin EF, Cox AD, Bryant KL, Der CJ. CHK1 protects oncogenic KRAS-expressing cells from DNA damage and is a target for pancreatic cancer treatment. Cell Rep 2021; 37:110060. [PMID: 34852220 PMCID: PMC8665414 DOI: 10.1016/j.celrep.2021.110060] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 09/09/2021] [Accepted: 11/03/2021] [Indexed: 12/17/2022] Open
Abstract
We apply genetic screens to delineate modulators of KRAS mutant pancreatic ductal adenocarcinoma (PDAC) sensitivity to ERK inhibitor treatment, and we identify components of the ATR-CHK1 DNA damage repair (DDR) pathway. Pharmacologic inhibition of CHK1 alone causes apoptotic growth suppression of both PDAC cell lines and organoids, which correlates with loss of MYC expression. CHK1 inhibition also activates ERK and AMPK and increases autophagy, providing a mechanistic basis for increased efficacy of concurrent CHK1 and ERK inhibition and/or autophagy inhibition with chloroquine. To assess how CHK1 inhibition-induced ERK activation promotes PDAC survival, we perform a CRISPR-Cas9 loss-of-function screen targeting direct/indirect ERK substrates and identify RIF1. A key component of non-homologous end joining repair, RIF1 suppression sensitizes PDAC cells to CHK1 inhibition-mediated apoptotic growth suppression. Furthermore, ERK inhibition alone decreases RIF1 expression and phenocopies RIF1 depletion. We conclude that concurrent DDR suppression enhances the efficacy of ERK and/or autophagy inhibitors in KRAS mutant PDAC.
Collapse
Affiliation(s)
- Jennifer E Klomp
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ye S Lee
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Craig M Goodwin
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Björn Papke
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jeff A Klomp
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Andrew M Waters
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Clint A Stalnecker
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jonathan M DeLiberty
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kristina Drizyte-Miller
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Runying Yang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - J Nathaniel Diehl
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Hongwei H Yin
- Departments of Cancer and Cell Biology, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Mariaelena Pierobon
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA 20110, USA
| | - Elisa Baldelli
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA 20110, USA
| | - Meagan B Ryan
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Siqi Li
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC
| | - Jackson Peterson
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC
| | - Amber R Smith
- Department of Medicine, Stanford University, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - James T Neal
- Department of Medicine, Stanford University, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Aaron K McCormick
- Department of Medicine, Stanford University, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Calvin J Kuo
- Department of Medicine, Stanford University, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Christopher M Counter
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC
| | - Emanuel F Petricoin
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA 20110, USA
| | - Adrienne D Cox
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Radiation Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kirsten L Bryant
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Channing J Der
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
16
|
Yang L, Shen C, Estrada-Bernal A, Robb R, Chatterjee M, Sebastian N, Webb A, Mo X, Chen W, Krishnan S, Williams TM. Oncogenic KRAS drives radioresistance through upregulation of NRF2-53BP1-mediated non-homologous end-joining repair. Nucleic Acids Res 2021; 49:11067-11082. [PMID: 34606602 PMCID: PMC8565339 DOI: 10.1093/nar/gkab871] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/03/2021] [Accepted: 09/30/2021] [Indexed: 02/07/2023] Open
Abstract
KRAS-activating mutations are oncogenic drivers and are correlated with radioresistance of multiple cancers, including colorectal cancer, but the underlying precise molecular mechanisms remain elusive. Herein we model the radiosensitivity of isogenic HCT116 and SW48 colorectal cancer cell lines bearing wild-type or various mutant KRAS isoforms. We demonstrate that KRAS mutations indeed lead to radioresistance accompanied by reduced radiotherapy-induced mitotic catastrophe and an accelerated release from G2/M arrest. Moreover, KRAS mutations result in increased DNA damage response and upregulation of 53BP1 with associated increased non-homologous end-joining (NHEJ) repair. Remarkably, KRAS mutations lead to activation of NRF2 antioxidant signaling to increase 53BP1 gene transcription. Furthermore, genetic silencing or pharmacological inhibition of KRAS, NRF2 or 53BP1 attenuates KRAS mutation-induced radioresistance, especially in G1 phase cells. These findings reveal an important role for a KRAS-induced NRF2-53BP1 axis in the DNA repair and survival of KRAS-mutant tumor cells after radiotherapy, and indicate that targeting NRF2, 53BP1 or NHEJ may represent novel strategies to selectively abrogate KRAS mutation-mediated radioresistance.
Collapse
Affiliation(s)
- Linlin Yang
- Department of Radiation Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Changxian Shen
- Department of Radiation Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Adriana Estrada-Bernal
- The Ohio State University Wexner Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, OH 43210, USA
| | - Ryan Robb
- The Ohio State University Wexner Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, OH 43210, USA
| | - Moumita Chatterjee
- The Ohio State University Wexner Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, OH 43210, USA
| | - Nikhil Sebastian
- The Ohio State University Wexner Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, OH 43210, USA
| | - Amy Webb
- The Ohio State University Wexner Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, OH 43210, USA
| | - Xiaokui Mo
- The Ohio State University Wexner Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, OH 43210, USA
| | - Wei Chen
- The Ohio State University Wexner Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, OH 43210, USA
| | | | - Terence M Williams
- Department of Radiation Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| |
Collapse
|
17
|
Chen G, Zeng H, Li X, Liu J, Li Z, Xu R, Ma Y, Liu C, Xue B. Activation of G protein coupled estrogen receptor prevents chemotherapy-induced intestinal mucositis by inhibiting the DNA damage in crypt cell in an extracellular signal-regulated kinase 1- and 2- dependent manner. Cell Death Dis 2021; 12:1034. [PMID: 34718327 PMCID: PMC8557214 DOI: 10.1038/s41419-021-04325-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 10/12/2021] [Accepted: 10/14/2021] [Indexed: 12/13/2022]
Abstract
Chemotherapy-induced intestinal mucositis (CIM) is a common adverse reaction to antineoplastic treatment with few appropriate, specific interventions. We aimed to identify the role of the G protein coupled estrogen receptor (GPER) in CIM and its mechanism. Adult male C57BL/6 mice were intraperitoneally injected with 5-fluorouracil to establish the CIM model. The selective GPER agonist G-1 significantly inhibited weight loss and histological damage in CIM mice and restored mucosal barrier dysfunction, including improving the expression of ZO-1, increasing the number of goblet cells, and decreasing mucosal permeability. Moreover, G-1 treatment did not alter the antitumor effect of 5-fluorouracil. In the CIM model, G-1 therapy reduced the expression of proapoptotic protein and cyclin D1 and cyclin B1, reversed the changes in the number of TUNEL+ cells, Ki67+ and bromodeoxyuridine+ cells in crypts. The selective GPER antagonist G15 eliminated all of the above effects caused by G-1 on CIM, and application of G15 alone increased the severity of CIM. GPER was predominantly expressed in ileal crypts, and G-1 inhibited the DNA damage induced by 5-fluorouracil in vivo and vitro, as confirmed by the decrease in the number of γH2AX+ cells in the crypts and the comet assay results. Referring to the data from GEO dataset we verified GPER activation restored ERK1/2 activity in CIM and 5-fluorouracil-treated IEC-6 cells. Once the effects of G-1 on ERK1/2 activity were abolished with the ERK1/2 inhibitor PD0325901, the effects of G-1 on DNA damage both in vivo and in vitro were eliminated. Correspondingly, all of the manifestations of G-1 protection against CIM were inhibited by PD0325901, such as body weight and histological changes, the mucosal barrier, the apoptosis and proliferation of crypt cells. In conclusion, GPER activation prevents CIM by inhibiting crypt cell DNA damage in an ERK1/2-dependent manner, suggesting GPER might be a target preventing CIM.
Collapse
Affiliation(s)
- Guanyu Chen
- Department of Physiology and Pathophysiology, School of basic medical science, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Honghui Zeng
- Department of Physiology and Pathophysiology, School of basic medical science, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xinyun Li
- The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital, Shandong University, Jinan, China
| | - Jianbo Liu
- Department of Physiology and Pathophysiology, School of basic medical science, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhao Li
- Department of Physiology and Pathophysiology, School of basic medical science, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Runze Xu
- Department of Physiology and Pathophysiology, School of basic medical science, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yuntao Ma
- Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Chuanyong Liu
- Department of Physiology and Pathophysiology, School of basic medical science, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Bing Xue
- Department of Physiology and Pathophysiology, School of basic medical science, Cheeloo College of Medicine, Shandong University, Jinan, China.
| |
Collapse
|
18
|
Hall WA, Kamgar M, Erickson BA, Ponce SB, Tsai S, Nevalainen MT, Christians KK, George B, Dua KS, Khan AH, Evans DB, Azmi AS. Updates and new directions in the use of radiation therapy for the treatment of pancreatic adenocarcinoma: dose, sensitization, and novel technology. Cancer Metastasis Rev 2021; 40:879-889. [PMID: 34611794 PMCID: PMC8767496 DOI: 10.1007/s10555-021-09993-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/09/2021] [Indexed: 10/20/2022]
Abstract
Panc reatic ductal adenocarcinoma (PDAC) is a devastating malignancy. There have been few advances that have substantially improved overall survival in the past several years. On its current trajectory, the deaths from PDAC are expected to cross that from all gastrointestinal cancers combined by 2030. Radiation therapy is a technically very complex modality that bridges multiple different treatment strategies. It represents a hybrid among advanced diagnostic imaging, local (often ablative) intervention, and heterogeneous biological mechanisms contributing to normal and oncologic cell kill. In this article, we bring an overview of the several promising strategies that are currently being investigated to improve outcomes using radiation therapy for patients with PDAC.
Collapse
Affiliation(s)
- William A Hall
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, USA.
- Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, USA.
- LaBahn Pancreatic Cancer Program at the Medical College of Wisconsin Cancer Center, Milwaukee, WI, USA.
| | - Mandana Kamgar
- Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, USA
- LaBahn Pancreatic Cancer Program at the Medical College of Wisconsin Cancer Center, Milwaukee, WI, USA
- Division of Medical Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Beth A Erickson
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, USA
- LaBahn Pancreatic Cancer Program at the Medical College of Wisconsin Cancer Center, Milwaukee, WI, USA
| | - Sara Beltrán Ponce
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Susan Tsai
- Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, USA
- LaBahn Pancreatic Cancer Program at the Medical College of Wisconsin Cancer Center, Milwaukee, WI, USA
| | - Marja T Nevalainen
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Kathleen K Christians
- Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, USA
- LaBahn Pancreatic Cancer Program at the Medical College of Wisconsin Cancer Center, Milwaukee, WI, USA
| | - Ben George
- LaBahn Pancreatic Cancer Program at the Medical College of Wisconsin Cancer Center, Milwaukee, WI, USA
- Division of Medical Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Kulwinder S Dua
- LaBahn Pancreatic Cancer Program at the Medical College of Wisconsin Cancer Center, Milwaukee, WI, USA
- Division of Gastroenterology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Abdul H Khan
- LaBahn Pancreatic Cancer Program at the Medical College of Wisconsin Cancer Center, Milwaukee, WI, USA
- Division of Gastroenterology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Douglas B Evans
- Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, USA
- LaBahn Pancreatic Cancer Program at the Medical College of Wisconsin Cancer Center, Milwaukee, WI, USA
| | - Asfar S Azmi
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
19
|
Hu B, Ma X, Huang R, Wu Z, Lu J, Guo Y, Tang J, Ma C, Ma J, Zhang L, Bai Y. Identification of Key Genes Mutations Associated With the Radiosensitivity by Whole Exome Sequencing in Pancreatic Cancer. Front Oncol 2021; 11:697308. [PMID: 34434896 PMCID: PMC8381198 DOI: 10.3389/fonc.2021.697308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/20/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Pancreatic cancer (PC) is one of the most lethal human cancers, and radiation therapy (RT) is an important treating option. Many patients diagnosed with PC do not achieve objective responses because of the existence of intrinsic and acquired radioresistance. Therefore, biomarkers, which predict radiotherapy benefit in PC, are eagerly needed to be identified. METHODS Whole-exome sequencing of six pancreatic ductal adenocarcinoma patients (PDAC) (three with a good response and three with a poor response) who had received radical surgery and then radiotherapy has been performed as standard of care treatment. Somatic and germline variants and the mutational signatures were analyzed with bioinformatics tools and public databases. Functional enrichment and pathway-based protein-protein interaction analyses were utilized to address the possibly mechanism in radioresistance. MTT, LDH, and colony formation assay were applied to evaluate cell growth and colony formation ability. RESULTS In the present study, somatic mutations located in 441 genes were detected to be radiosensitivity-related loci. Seventeen genes, including the Smad protein family members (SMAD3 and SMAD4), were identified to influence the radiosensitivity in PDAC. The SMAD3 and SMAD4 genes mutate differently between radiosensitive and radioresistant PDAC patients. Mutation of SMAD3 potentiates the effects of ionizing radiation (IR) on cell growth and colony formation in PDAC cells, whereas mutation of SMAD4 had the opposite effects. SMAD3 and SMAD4 regulate the radiosensitivity of PDAC, at least in part, by P21 and FOXO3a, respectively. CONCLUSIONS These results indicate that mutations of SMAD3 and SMAD4 likely cause the difference of response to radiotherapy in PDAC, which might be considered as the biomarkers and potential targets for the radiotherapy of pancreatic cancer.
Collapse
Affiliation(s)
- Bin Hu
- Department of Radiation Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiumei Ma
- Department of Radiation Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Renhua Huang
- Department of Radiation Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zheng Wu
- Department of Radiation Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Lu
- Department of Research, Medical Laboratory of Nantong Zhongke, Nantong, China
| | - Yuntao Guo
- Department of Bioinformatics, Medical Laboratory of Nantong Zhongke, Nantong, China
| | - Jianmin Tang
- Department of Radiation Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chunhui Ma
- Department of Orthopedic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Ma
- Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lei Zhang
- Department of Radiation Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yongrui Bai
- Department of Radiation Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
20
|
Huang R, Zhou PK. DNA damage repair: historical perspectives, mechanistic pathways and clinical translation for targeted cancer therapy. Signal Transduct Target Ther 2021; 6:254. [PMID: 34238917 PMCID: PMC8266832 DOI: 10.1038/s41392-021-00648-7] [Citation(s) in RCA: 310] [Impact Index Per Article: 103.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 04/28/2021] [Accepted: 05/13/2021] [Indexed: 02/06/2023] Open
Abstract
Genomic instability is the hallmark of various cancers with the increasing accumulation of DNA damage. The application of radiotherapy and chemotherapy in cancer treatment is typically based on this property of cancers. However, the adverse effects including normal tissues injury are also accompanied by the radiotherapy and chemotherapy. Targeted cancer therapy has the potential to suppress cancer cells' DNA damage response through tailoring therapy to cancer patients lacking specific DNA damage response functions. Obviously, understanding the broader role of DNA damage repair in cancers has became a basic and attractive strategy for targeted cancer therapy, in particular, raising novel hypothesis or theory in this field on the basis of previous scientists' findings would be important for future promising druggable emerging targets. In this review, we first illustrate the timeline steps for the understanding the roles of DNA damage repair in the promotion of cancer and cancer therapy developed, then we summarize the mechanisms regarding DNA damage repair associated with targeted cancer therapy, highlighting the specific proteins behind targeting DNA damage repair that initiate functioning abnormally duo to extrinsic harm by environmental DNA damage factors, also, the DNA damage baseline drift leads to the harmful intrinsic targeted cancer therapy. In addition, clinical therapeutic drugs for DNA damage and repair including therapeutic effects, as well as the strategy and scheme of relative clinical trials were intensive discussed. Based on this background, we suggest two hypotheses, namely "environmental gear selection" to describe DNA damage repair pathway evolution, and "DNA damage baseline drift", which may play a magnified role in mediating repair during cancer treatment. This two new hypothesis would shed new light on targeted cancer therapy, provide a much better or more comprehensive holistic view and also promote the development of new research direction and new overcoming strategies for patients.
Collapse
Affiliation(s)
- Ruixue Huang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Ping-Kun Zhou
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, AMMS, Beijing, China.
| |
Collapse
|
21
|
Taghvaei S, Sabouni F, Minuchehr Z. Evidence of Omics, Immune Infiltration, and Pharmacogenomic for SENP1 in the Pan-Cancer Cohort. Front Pharmacol 2021; 12:700454. [PMID: 34276383 PMCID: PMC8280523 DOI: 10.3389/fphar.2021.700454] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/14/2021] [Indexed: 12/20/2022] Open
Abstract
Sentrin specific-protease 1 (SENP1) is a protein involved in deSUMOylation that is almost overexpressed in cancer. SENP1 has a determinative role in the activation of transcription programs in the innate immune responses and the development B of and C lymphocytes. We found, SENP1 possibly plays a critical role in immune infiltration and acts as an expression marker in PAAD, ESCA, and THYM. CD4+ T cells, CD8+ T cells, and macrophages were more key-related immune cells, indicating that SENP1 might be introduced as a potential target for cancer immunotherapy. We further showed that dysregulation of SENP1 is powerfully associated with decreased patient survival and clinical stage. Total SENP1 protein also increases in cancer. SENP1 is also controlled by transcription factors (TFs) CREB1, KDM5A, REST, and YY1 that regulates apoptosis, cell cycle, cell proliferation, invasion, tumorigenesis, and metastasis. These TFs were in a positive correlation with SENP1. MiR-138-5p, miR-129-1-3p, and miR-129-2-3p also inhibit tumorigenesis through targeting of SENP1. The SENP1 expression level positively correlated with the expression levels of UBN1, SP3, SAP130, NUP98, NUP153 in 32 tumor types. SENP1 and correlated and binding genes: SAP130, NUP98, and NUP153 activated cell cycle. Consistent with this finding, drug analysis was indicated SENP1 is sensitive to cell cycle, apoptosis, and RTK signaling regulators. In the end, SENP1 and its expression-correlated and functional binding genes were enriched in cell cycle, apoptosis, cellular response to DNA damage stimulus. We found that the cell cycle is the main way for tumorigenesis by SENP1. SENP1 attenuates the effect of inhibitory drugs on the cell cycle. We also introduced effective FDA-Approved drugs that can inhibit SENP1. Therefore in the treatments in which these drugs are used, SENP1 inhibition is a suitable approach. This study supplies a wide analysis of the SENP1 across The Cancer Genome Atlas (CGA) cancer types. These results suggest the potential roles of SENP1 as a biomarker for cancer. Since these drugs and the drugs that cause to resistance are applied to cancer treatment, then these two class drugs can use to inhibition of SENP1.
Collapse
Affiliation(s)
- Somayye Taghvaei
- Department of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Farzaneh Sabouni
- Department of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Zarrin Minuchehr
- Department of Systems Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| |
Collapse
|
22
|
Russo M, Sogari A, Bardelli A. Adaptive Evolution: How Bacteria and Cancer Cells Survive Stressful Conditions and Drug Treatment. Cancer Discov 2021; 11:1886-1895. [PMID: 33952585 DOI: 10.1158/2159-8290.cd-20-1588] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cancer is characterized by loss of the regulatory mechanisms that preserve homeostasis in multicellular organisms, such as controlled proliferation, cell-cell adhesion, and tissue differentiation. The breakdown of multicellularity rules is accompanied by activation of "selfish," unicellular-like life features, which are linked to the increased adaptability to environmental changes displayed by cancer cells. Mechanisms of stress response, resembling those observed in unicellular organisms, are actively exploited by mammalian cancer cells to boost genetic diversity and increase chances of survival under unfavorable conditions, such as lack of oxygen/nutrients or exposure to drugs. Unicellular organisms under stressful conditions (e.g., antibiotic treatment) stop replicating or slowly divide and transiently increase their mutation rates to foster diversity, a process known as adaptive mutability. Analogously, tumor cells exposed to drugs enter a persister phenotype and can reduce DNA replication fidelity, which in turn fosters genetic diversity. The implications of adaptive evolution are of relevance to understand resistance to anticancer therapies.
Collapse
Affiliation(s)
- Mariangela Russo
- Department of Oncology, University of Torino, Candiolo 10060, Italy. Candiolo Cancer Institute, FPO-IRCCS, Candiolo 10060, Italy.
| | - Alberto Sogari
- Department of Oncology, University of Torino, Candiolo 10060, Italy. Candiolo Cancer Institute, FPO-IRCCS, Candiolo 10060, Italy
| | - Alberto Bardelli
- Department of Oncology, University of Torino, Candiolo 10060, Italy. Candiolo Cancer Institute, FPO-IRCCS, Candiolo 10060, Italy.
| |
Collapse
|
23
|
Osrodek M, Wozniak M. Targeting Genome Stability in Melanoma-A New Approach to an Old Field. Int J Mol Sci 2021; 22:3485. [PMID: 33800547 PMCID: PMC8036881 DOI: 10.3390/ijms22073485] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 02/07/2023] Open
Abstract
Despite recent groundbreaking advances in the treatment of cutaneous melanoma, it remains one of the most treatment-resistant malignancies. Due to resistance to conventional chemotherapy, the therapeutic focus has shifted away from aiming at melanoma genome stability in favor of molecularly targeted therapies. Inhibitors of the RAS/RAF/MEK/ERK (MAPK) pathway significantly slow disease progression. However, long-term clinical benefit is rare due to rapid development of drug resistance. In contrast, immune checkpoint inhibitors provide exceptionally durable responses, but only in a limited number of patients. It has been increasingly recognized that melanoma cells rely on efficient DNA repair for survival upon drug treatment, and that genome instability increases the efficacy of both MAPK inhibitors and immunotherapy. In this review, we discuss recent developments in the field of melanoma research which indicate that targeting genome stability of melanoma cells may serve as a powerful strategy to maximize the efficacy of currently available therapeutics.
Collapse
Affiliation(s)
| | - Michal Wozniak
- Department of Molecular Biology of Cancer, Medical University of Lodz, 92-215 Lodz, Poland;
| |
Collapse
|
24
|
Huang W, Zhang L, Yang M, Wu X, Wang X, Huang W, Yuan L, Pan H, Wang Y, Wang Z, Wu Y, Huang J, Liang H, Li S, Liao L, Liu L, Guan J. Cancer-associated fibroblasts promote the survival of irradiated nasopharyngeal carcinoma cells via the NF-κB pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:87. [PMID: 33648530 PMCID: PMC7923322 DOI: 10.1186/s13046-021-01878-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 02/14/2021] [Indexed: 01/06/2023]
Abstract
Background Irradiation has emerged as a valid tool for nasopharyngeal carcinoma (NPC) in situ treatment; however, NPC derived from tissues treated with irradiation is a main cause cancer-related death. The purpose of this study is to uncover the underlying mechanism regarding tumor growth after irradiation and provided potential therapeutic strategy. Methods Fibroblasts were extracted from fresh NPC tissue and normal nasopharyngeal mucosa. Immunohistochemistry was conducted to measure the expression of α-SMA and FAP. Cytokines were detected by protein array chip and identified by real-time PCR. CCK-8 assay was used to detect cell proliferation. Radiation-resistant (IRR) 5-8F cell line was established and colony assay was performed to evaluate tumor cell growth after irradiation. Signaling pathways were acquired via gene set enrichment analysis (GSEA). Comet assay and γ-H2AX foci assay were used to measure DNA damage level. Protein expression was detected by western blot assay. In vivo experiment was performed subcutaneously. Results We found that radiation-resistant NPC tissues were constantly infiltrated with a greater number of cancer-associated fibroblasts (CAFs) compared to radiosensitive NPC tissues. Further research revealed that CAFs induced the formation of radioresistance and promoted NPC cell survival following irradiation via the IL-8/NF-κB pathway to reduce irradiation-induced DNA damage. Treatment with Tranilast, a CAF inhibitor, restricted the survival of CAF-induced NPC cells and attenuated the of radioresistance properties. Conclusions Together, these data demonstrate that CAFs can promote the survival of irradiated NPC cells via the NF-κB pathway and induce radioresistance that can be interrupted by Tranilast, suggesting the potential value of Tranilast in sensitizing NPC cells to irradiation. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-01878-x.
Collapse
Affiliation(s)
- Weiqiang Huang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Longshan Zhang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Mi Yang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xixi Wu
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaoqing Wang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Wenqi Huang
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Lu Yuan
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Hua Pan
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yin Wang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zici Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yuting Wu
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jihong Huang
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Huazhen Liang
- Department of Oncology, Maoming People's Hospital, Maoming, Guangdong, China
| | - Shaoqun Li
- Department of Radiation Oncology, Guangdong 999 Brain Hospital, Guangzhou, Guangdong, China
| | - Liwei Liao
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Laiyu Liu
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| | - Jian Guan
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
25
|
Rieunier G, Wu X, Harris LE, Mills JV, Nandakumar A, Colling L, Seraia E, Hatch SB, Ebner DV, Folkes LK, Weyer-Czernilofsky U, Bogenrieder T, Ryan AJ, Macaulay VM. Targeting IGF Perturbs Global Replication through Ribonucleotide Reductase Dysfunction. Cancer Res 2021; 81:2128-2141. [PMID: 33509941 DOI: 10.1158/0008-5472.can-20-2860] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 12/17/2020] [Accepted: 01/22/2021] [Indexed: 11/16/2022]
Abstract
Inhibition of IGF receptor (IGF1R) delays repair of radiation-induced DNA double-strand breaks (DSB), prompting us to investigate whether IGF1R influences endogenous DNA damage. Here we demonstrate that IGF1R inhibition generates endogenous DNA lesions protected by 53BP1 bodies, indicating under-replicated DNA. In cancer cells, inhibition or depletion of IGF1R delayed replication fork progression accompanied by activation of ATR-CHK1 signaling and the intra-S-phase checkpoint. This phenotype reflected unanticipated regulation of global replication by IGF1 mediated via AKT, MEK/ERK, and JUN to influence expression of ribonucleotide reductase (RNR) subunit RRM2. Consequently, inhibition or depletion of IGF1R downregulated RRM2, compromising RNR function and perturbing dNTP supply. The resulting delay in fork progression and hallmarks of replication stress were rescued by RRM2 overexpression, confirming RRM2 as the critical factor through which IGF1 regulates replication. Suspecting existence of a backup pathway protecting from toxic sequelae of replication stress, targeted compound screens in breast cancer cells identified synergy between IGF inhibition and ATM loss. Reciprocal screens of ATM-proficient/deficient fibroblasts identified an IGF1R inhibitor as the top hit. IGF inhibition selectively compromised growth of ATM-null cells and spheroids and caused regression of ATM-null xenografts. This synthetic-lethal effect reflected conversion of single-stranded lesions in IGF-inhibited cells into toxic DSBs upon ATM inhibition. Overall, these data implicate IGF1R in alleviating replication stress, and the reciprocal IGF:ATM codependence we identify provides an approach to exploit this effect in ATM-deficient cancers. SIGNIFICANCE: This study identifies regulation of ribonucleotide reductase function and dNTP supply by IGFs and demonstrates that IGF axis blockade induces replication stress and reciprocal codependence on ATM. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/8/2128/F1.large.jpg.
Collapse
Affiliation(s)
| | - Xiaoning Wu
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Letitia E Harris
- CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Jack V Mills
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Ashwin Nandakumar
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Laura Colling
- Department of Oncology, Weatherall Institute of Molecular Medicine, Oxford, United Kingdom
| | - Elena Seraia
- Target Discovery Institute, University of Oxford, Oxford, United Kingdom
| | - Stephanie B Hatch
- Target Discovery Institute, University of Oxford, Oxford, United Kingdom
| | - Daniel V Ebner
- Target Discovery Institute, University of Oxford, Oxford, United Kingdom
| | - Lisa K Folkes
- CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | | | - Thomas Bogenrieder
- AMAL Therapeutics, Geneva, Switzerland
- Department of Urology, University Hospital Grosshadern, Ludwig-Maximilians-University, Munich, Germany
| | - Anderson J Ryan
- CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Valentine M Macaulay
- Department of Oncology, University of Oxford, Oxford, United Kingdom.
- Oxford Cancer and Haematology Centre, Oxford University Hospitals NHS Foundation Trust, Churchill Hospital, Oxford, United Kingdom
| |
Collapse
|
26
|
Zheng S, Tao W. Targeting Cullin-RING E3 Ligases for Radiosensitization: From NEDDylation Inhibition to PROTACs. Front Oncol 2020; 10:1517. [PMID: 32983997 PMCID: PMC7475704 DOI: 10.3389/fonc.2020.01517] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 07/15/2020] [Indexed: 12/24/2022] Open
Abstract
As a dynamic regulator for short-lived protein degradation and turnover, the ubiquitin-proteasome system (UPS) plays important roles in various biological processes, including response to cellular stress, regulation of cell cycle progression, and carcinogenesis. Over the past decade, research on targeting the cullin-RING (really interesting new gene) E3 ligases (CRLs) in the UPS has gained great momentum with the entry of late-phase clinical trials of its novel inhibitors MLN4924 (pevonedistat) and TAS4464. Several preclinical studies have demonstrated the efficacy of MLN4924 as a radiosensitizer, mainly due to its unique cytotoxic properties, including induction of DNA damage response, cell cycle checkpoints dysregulation, and inhibition of NF-κB and mTOR pathways. Recently, the PROteolysis TArgeting Chimeras (PROTACs) technology was developed to recruit the target proteins for CRL-mediated polyubiquitination, overcoming the resistance that develops inevitably with traditional targeted therapies. First-in-class cell-permeable PROTACs against critical radioresistance conferring proteins, including the epidermal growth factor receptor (EGFR), androgen receptor (AR) and estrogen receptor (ER), cyclin-dependent kinases (CDKs), MAP kinase kinase 1 (MEK1), and MEK2, have emerged in the past 5 years. In this review article, we will summarize the most important research findings of targeting CRLs for radiosensitization.
Collapse
Affiliation(s)
- Shuhua Zheng
- College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Wensi Tao
- Department of Radiation Oncology, University of Miami-Miller School of Medicine, Coral Gables, FL, United States
| |
Collapse
|
27
|
Yang L, Shen C, Pettit CJ, Li T, Hu AJ, Miller ED, Zhang J, Lin SH, Williams TM. Wee1 Kinase Inhibitor AZD1775 Effectively Sensitizes Esophageal Cancer to Radiotherapy. Clin Cancer Res 2020; 26:3740-3750. [PMID: 32220892 PMCID: PMC7367716 DOI: 10.1158/1078-0432.ccr-19-3373] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 02/20/2020] [Accepted: 03/24/2020] [Indexed: 12/31/2022]
Abstract
PURPOSE Esophageal cancer is a deadly malignancy with a 5-year survival rate of only 5% to 20%, which has remained unchanged for decades. Esophageal cancer possesses a high frequency of TP53 mutations leading to dysfunctional G1 cell-cycle checkpoint, which likely makes esophageal cancer cells highly reliant upon G2-M checkpoint for adaptation to DNA replication stress and DNA damage after radiation. We aim to explore whether targeting Wee1 kinase to abolish G2-M checkpoint sensitizes esophageal cancer cells to radiotherapy. EXPERIMENTAL DESIGN Cell viability was assessed by cytotoxicity and colony-forming assays, cell-cycle distribution was analyzed by flow cytometry, and mitotic catastrophe was assessed by immunofluorescence staining. Human esophageal cancer xenografts were generated to explore the radiosensitizing effect of AZD1775 in vivo. RESULTS The IC50 concentrations of AZD1775 on esophageal cancer cell lines were between 300 and 600 nmol/L. AZD1775 (100 nmol/L) as monotherapy did not alter the viability of esophageal cancer cells, but significantly radiosensitized esophageal cancer cells. AZD1775 significantly abrogated radiation-induced G2-M phase arrest and attenuation of p-CDK1-Y15. Moreover, AZD1775 increased radiation-induced mitotic catastrophe, which was accompanied by increased γH2AX levels, and subsequently reduced survival after radiation. Importantly, AZD1775 in combination with radiotherapy resulted in marked tumor regression of esophageal cancer tumor xenografts. CONCLUSIONS Abrogation of G2-M checkpoint by targeting Wee1 kinase with AZD1775 sensitizes esophageal cancer cells to radiotherapy in vitro and in mouse xenografts. Our findings suggest that inhibition of Wee1 by AZD1775 is an effective strategy for radiosensitization in esophageal cancer and warrants clinical testing.
Collapse
Affiliation(s)
- Linlin Yang
- The Ohio State University Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, Ohio
| | - Changxian Shen
- The Ohio State University Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, Ohio
| | - Cory J Pettit
- The Ohio State University Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, Ohio
| | - Tianyun Li
- The Ohio State University Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, Ohio
| | - Andrew J Hu
- The Ohio State University Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, Ohio
| | - Eric D Miller
- The Ohio State University Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, Ohio
| | - Junran Zhang
- The Ohio State University Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, Ohio
| | - Steven H Lin
- The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Terence M Williams
- The Ohio State University Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, Ohio.
| |
Collapse
|
28
|
Targeting Rad51 as a strategy for the treatment of melanoma cells resistant to MAPK pathway inhibition. Cell Death Dis 2020; 11:581. [PMID: 32719412 PMCID: PMC7385107 DOI: 10.1038/s41419-020-2702-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 06/16/2020] [Accepted: 06/18/2020] [Indexed: 11/09/2022]
Abstract
Rad51 is an essential factor of the homologous recombination DNA repair pathway and therefore plays an important role in maintaining genomic stability. We show that RAD51 and other homologous recombination repair genes are overexpressed in metastatic melanoma cell lines and in melanoma patient samples, which correlates with reduced survival of melanoma patients. In addition, Rad51 expression in melanoma cells was regulated on a transcriptional level by the MAPK signaling pathway with Elk1 as the main downstream transcriptional effector. Most strikingly, melanoma cells which developed resistance towards MAPK inhibitors could be efficiently targeted by Rad51 inhibitors similar to their sensitive counterparts, leading to DNA damage, G2/M arrest and apoptosis. Furthermore, the treatment of MAPK inhibitor resistant cells with Rad51 inhibitors enhances the susceptibility of these cells for MAPK inhibitor treatment in vitro and in vivo. These data indicate that Rad51 plays a critical role in the survival of metastatic melanoma cells and is a promising target for the therapy of melanoma irrespective of its MAPK inhibitor resistance status.
Collapse
|
29
|
Abstract
OPINION STATEMENT Metastatic (and locally advanced) pancreatic adenocarcinoma (mPDA) represents a major challenge for the oncology community given the rising mortality burden from the disease and the preponderance of patients diagnosed with unresectable disease. Although systemic therapies have become more potent with the development of fluorouracil, irinotecan, and oxaliplatin (FOLFIRINOX) and gemcitabine plus nab-paclitaxel as first-line treatments, the median overall survival for patients treated with either of these regimens remains just above 1 year. A significant need exists to build upon the effectiveness of first-line regimens, incorporate tolerable maintenance treatments, and add effective later-line options for patients with this disease. We believe every newly diagnosed mPDA patient should undergo next-generation sequencing (NGS) testing, preferably from tumor tissue, to assess for the presence of DNA damage repair (DDR) defects, microsatellite instability, and other possible actionable molecular alterations (such as neurotrophic tropomysin receptor kinase (NTRK) fusions, anaplastic lymphoma kinase (ALK) rearrangements, or human epidermal growth factor receptor 2 (HER2) amplification). Existing clinical data suggests that patients, whose tumors harbor DDR defects, benefit from treatment with platinum-based chemotherapy and poly (ADP-ribose) polymerase (PARP) inhibitors. Preclinically, inhibitors of other critical players in DDR such as ataxia-telangiectasia and Rad3 related (ATR), ataxia-telangiectasia mutated (ATM), DNA-dependent protein kinase (DNA-PK), and WEE1 have demonstrated promising anti-tumor activity in PDA cell lines and xenografts. How to move forward the preclinical promise of these newer DDR-targeting therapies into rational clinical trial combinations and sequence PARP inhibitors in relation to platinum chemotherapy remain areas of tremendous clinical research interest. We believe clinical trials should be considered early for mPDA patients, in all treatment lines, so that novel therapies may be added to the treatment armamentarium for patients with this disease. Beyond NGS testing from tumor tissue, we believe it is important to consider germline genetic testing for all patients diagnosed with PDA given recent data suggesting a much stronger hereditary component of the disease than previously understood, and the potential screening implications for family members.
Collapse
Affiliation(s)
- Satya Das
- Department of Medicine, Division of Hematology Oncology, Vanderbilt University Medical Center, 777 Preston Research Building, 2220 Pierce Avenue, Nashville, TN, 37232, USA.
| | - Dana Cardin
- Department of Medicine, Division of Hematology Oncology, Vanderbilt University Medical Center, 777 Preston Research Building, 2220 Pierce Avenue, Nashville, TN, 37232, USA
| |
Collapse
|
30
|
Lu Y, Liu B, Liu Y, Yu X, Cheng G. Dual effects of active ERK in cancer: A potential target for enhancing radiosensitivity. Oncol Lett 2020; 20:993-1000. [PMID: 32724338 PMCID: PMC7377092 DOI: 10.3892/ol.2020.11684] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 04/20/2020] [Indexed: 12/20/2022] Open
Abstract
Ionizing radiation (IR) is an important cancer treatment approach. However, radioresistance eventually occurs, resulting in poor outcomes in patients with cancer. Radioresistance is associated with multiple signaling pathways, particularly pro-survival signaling pathways. The extracellular signal-regulated kinase 1/2 (ERK1/2) cascade is an important signaling pathway that initiates several cellular processes and is regulated by various stimuli, including IR. Although numerous studies have demonstrated the pro-survival effects of active ERK, activation of ERK has also been associated with cell death, indicating that radiosensitization may occur by ERK stimulation. In this context, the present review describes the associations between ERK signaling, cancer and IR, and discusses the association between ERK and its pro-survival function in cancer cells, including stimuli, molecular mechanisms, clinical use of inhibitors and underlying limitations. Additionally, the present review introduces the view that active ERK may induce cell death, and describes the potential factors associated with this process. This review describes the various outcomes induced by active ERK to prompt future studies to aim to enhance radiosensitivity in the treatment of cancer.
Collapse
Affiliation(s)
- Yinliang Lu
- Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Baocai Liu
- Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Ying Liu
- Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Xinyue Yu
- Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Guanghui Cheng
- Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| |
Collapse
|
31
|
Huang RX, Zhou PK. DNA damage response signaling pathways and targets for radiotherapy sensitization in cancer. Signal Transduct Target Ther 2020; 5:60. [PMID: 32355263 PMCID: PMC7192953 DOI: 10.1038/s41392-020-0150-x] [Citation(s) in RCA: 531] [Impact Index Per Article: 132.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/20/2020] [Accepted: 03/16/2020] [Indexed: 12/19/2022] Open
Abstract
Radiotherapy is one of the most common countermeasures for treating a wide range of tumors. However, the radioresistance of cancer cells is still a major limitation for radiotherapy applications. Efforts are continuously ongoing to explore sensitizing targets and develop radiosensitizers for improving the outcomes of radiotherapy. DNA double-strand breaks are the most lethal lesions induced by ionizing radiation and can trigger a series of cellular DNA damage responses (DDRs), including those helping cells recover from radiation injuries, such as the activation of DNA damage sensing and early transduction pathways, cell cycle arrest, and DNA repair. Obviously, these protective DDRs confer tumor radioresistance. Targeting DDR signaling pathways has become an attractive strategy for overcoming tumor radioresistance, and some important advances and breakthroughs have already been achieved in recent years. On the basis of comprehensively reviewing the DDR signal pathways, we provide an update on the novel and promising druggable targets emerging from DDR pathways that can be exploited for radiosensitization. We further discuss recent advances identified from preclinical studies, current clinical trials, and clinical application of chemical inhibitors targeting key DDR proteins, including DNA-PKcs (DNA-dependent protein kinase, catalytic subunit), ATM/ATR (ataxia-telangiectasia mutated and Rad3-related), the MRN (MRE11-RAD50-NBS1) complex, the PARP (poly[ADP-ribose] polymerase) family, MDC1, Wee1, LIG4 (ligase IV), CDK1, BRCA1 (BRCA1 C terminal), CHK1, and HIF-1 (hypoxia-inducible factor-1). Challenges for ionizing radiation-induced signal transduction and targeted therapy are also discussed based on recent achievements in the biological field of radiotherapy.
Collapse
Affiliation(s)
- Rui-Xue Huang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, 410078, Changsha, People's Republic of China
| | - Ping-Kun Zhou
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, AMMS, 100850, Beijing, People's Republic of China.
- Institute for Chemical Carcinogenesis, State Key Laboratory of Respiratory, Guangzhou Medical University, 511436, Guangzhou, People's Republic of China.
| |
Collapse
|
32
|
Buckley AM, Lynam-Lennon N, O'Neill H, O'Sullivan J. Targeting hallmarks of cancer to enhance radiosensitivity in gastrointestinal cancers. Nat Rev Gastroenterol Hepatol 2020; 17:298-313. [PMID: 32005946 DOI: 10.1038/s41575-019-0247-2] [Citation(s) in RCA: 156] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/26/2019] [Indexed: 12/19/2022]
Abstract
Radiotherapy is used in the treatment of approximately 50% of all malignancies including gastrointestinal cancers. Radiation can be given prior to surgery (neoadjuvant radiotherapy) to shrink the tumour or after surgery to kill any remaining cancer cells. Radiotherapy aims to maximize damage to cancer cells, while minimizing damage to healthy cells. However, only 10-30% of patients with rectal cancer or oesophageal cancer have a pathological complete response to neoadjuvant chemoradiation therapy, with the rest suffering the negative consequences of toxicities and delays to surgery with no clinical benefit. Furthermore, in pancreatic cancer, neoadjuvant chemoradiation therapy results in a pathological complete response in only 4% of patients and a partial pathological response in only 31%. Resistance to radiation therapy is polymodal and associated with a number of biological alterations both within the tumour itself and in the surrounding microenvironment including the following: altered cell cycle; repopulation by cancer stem cells; hypoxia; altered management of oxidative stress; evasion of apoptosis; altered DNA damage response and enhanced DNA repair; inflammation; and altered mitochondrial function and cellular energetics. Radiosensitizers are needed to improve treatment response to radiation, which will directly influence patient outcomes in gastrointestinal cancers. This article reviews the literature to identify strategies - including DNA-targeting agents, antimetabolic agents, antiangiogenics and novel immunotherapies - being used to enhance radiosensitivity in gastrointestinal cancers according to the hallmarks of cancer. Evidence from radiosensitizers from in vitro and in vivo models is documented and the action of radiosensitizers through clinical trial data is assessed.
Collapse
Affiliation(s)
- Amy M Buckley
- Department of Surgery, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland
| | - Niamh Lynam-Lennon
- Department of Surgery, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland
| | - Hazel O'Neill
- Department of Surgery, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland
| | - Jacintha O'Sullivan
- Department of Surgery, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
33
|
Wu C, Williams TM, Robb R, Webb A, Wei L, Chen W, Mikhail S, Ciombor KK, Cardin DB, Timmers C, Krishna SG, Arnold M, Harzman A, Abdel-Misih S, Roychowdhury S, Bekaii-Saab T, Wuthrick E. Phase I Trial of Trametinib with Neoadjuvant Chemoradiation in Patients with Locally Advanced Rectal Cancer. Clin Cancer Res 2020; 26:3117-3125. [PMID: 32253228 DOI: 10.1158/1078-0432.ccr-19-4193] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/25/2020] [Accepted: 04/01/2020] [Indexed: 12/18/2022]
Abstract
PURPOSE The RAS/RAF/MEK/ERK signaling pathway is critical to the development of colorectal cancers, and KRAS, NRAS, and BRAF mutations foster resistance to radiation. We performed a phase I trial to determine the safety of trametinib, a potent MEK1/2 inhibitor, with 5-fluorouracil (5-FU) chemoradiation therapy (CRT) in patients with locally advanced rectal cancer (LARC). PATIENTS AND METHODS Patients with stage II/III rectal cancer were enrolled on a phase I study with 3+3 study design, with an expansion cohort of 9 patients at the MTD. Following a 5-day trametinib lead-in, with pre- and posttreatment tumor biopsies, patients received trametinib and CRT, surgery, and adjuvant chemotherapy. Trametinib was given orally daily at 3 dose levels: 0.5 mg, 1 mg, and 2 mg. CRT consisted of infusional 5-FU 225 mg/m2/day and radiation dose of 28 daily fractions of 1.8 Gy (total 50.4 Gy). The primary endpoint was to identify the MTD and recommended phase II dose. IHC staining for phosphorylated ERK (pERK) and genomic profiling was performed on the tumor samples. RESULTS Patients were enrolled to all dose levels, and 18 patients were evaluable for toxicities and responses. Treatment was well tolerated, and there was one dose-limiting toxicity of diarrhea, which was attributed to CRT rather than trametinib. At the 2 mg dose level, 25% had pathologic complete response. IHC staining confirmed dose-dependent decrease in pERK with increasing trametinib doses. CONCLUSIONS The combination of trametinib with 5-FU CRT is safe and well tolerated, and may warrant additional study in a phase II trial, perhaps in a RAS/RAF-mutant selected population.
Collapse
Affiliation(s)
- Christina Wu
- Emory University, Winship Cancer Institute, Atlanta, Georgia.
| | | | - Ryan Robb
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Amy Webb
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Lai Wei
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Wei Chen
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | | | | | - Dana B Cardin
- Vanderbilt-Ingram Cancer Center, Nashville, Tennessee
| | - Cynthia Timmers
- Medical University of South Carolina, Charleston, South Carolina
| | | | - Mark Arnold
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Alan Harzman
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | | | | | | | | |
Collapse
|
34
|
Konings K, Vandevoorde C, Baselet B, Baatout S, Moreels M. Combination Therapy With Charged Particles and Molecular Targeting: A Promising Avenue to Overcome Radioresistance. Front Oncol 2020; 10:128. [PMID: 32117774 PMCID: PMC7033551 DOI: 10.3389/fonc.2020.00128] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/24/2020] [Indexed: 12/13/2022] Open
Abstract
Radiotherapy plays a central role in the treatment of cancer patients. Over the past decades, remarkable technological progress has been made in the field of conventional radiotherapy. In addition, the use of charged particles (e.g., protons and carbon ions) makes it possible to further improve dose deposition to the tumor, while sparing the surrounding healthy tissues. Despite these improvements, radioresistance and tumor recurrence are still observed. Although the mechanisms underlying resistance to conventional radiotherapy are well-studied, scientific evidence on the impact of charged particle therapy on cancer cell radioresistance is restricted. The purpose of this review is to discuss the potential role that charged particles could play to overcome radioresistance. This review will focus on hypoxia, cancer stem cells, and specific signaling pathways of EGFR, NFκB, and Hedgehog as well as DNA damage signaling involving PARP, as mechanisms of radioresistance for which pharmacological targets have been identified. Finally, new lines of future research will be proposed, with a focus on novel molecular inhibitors that could be used in combination with charged particle therapy as a novel treatment option for radioresistant tumors.
Collapse
Affiliation(s)
- Katrien Konings
- Radiobiology Unit, Belgian Nuclear Research Center (SCK•CEN), Mol, Belgium
| | - Charlot Vandevoorde
- Radiobiology, Radiation Biophysics Division, Department of Nuclear Medicine, iThemba LABS, Cape Town, South Africa
| | - Bjorn Baselet
- Radiobiology Unit, Belgian Nuclear Research Center (SCK•CEN), Mol, Belgium
| | - Sarah Baatout
- Radiobiology Unit, Belgian Nuclear Research Center (SCK•CEN), Mol, Belgium.,Department of Molecular Biotechnology, Ghent University, Ghent, Belgium
| | - Marjan Moreels
- Radiobiology Unit, Belgian Nuclear Research Center (SCK•CEN), Mol, Belgium
| |
Collapse
|
35
|
Role of Rad51 and DNA repair in cancer: A molecular perspective. Pharmacol Ther 2020; 208:107492. [PMID: 32001312 DOI: 10.1016/j.pharmthera.2020.107492] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/13/2020] [Accepted: 01/22/2020] [Indexed: 12/24/2022]
Abstract
The maintenance of genome integrity is essential for any organism survival and for the inheritance of traits to offspring. To the purpose, cells have developed a complex DNA repair system to defend the genetic information against both endogenous and exogenous sources of damage. Accordingly, multiple repair pathways can be aroused from the diverse forms of DNA lesions, which can be effective per se or via crosstalk with others to complete the whole DNA repair process. Deficiencies in DNA healing resulting in faulty repair and/or prolonged DNA damage can lead to genes mutations, chromosome rearrangements, genomic instability, and finally carcinogenesis and/or cancer progression. Although it might seem paradoxical, at the same time such defects in DNA repair pathways may have therapeutic implications for potential clinical practice. Here we provide an overview of the main DNA repair pathways, with special focus on the role played by homologous repair and the RAD51 recombinase protein in the cellular DNA damage response. We next discuss the recombinase structure and function per se and in combination with all its principal mediators and regulators. Finally, we conclude with an analysis of the manifold roles that RAD51 plays in carcinogenesis, cancer progression and anticancer drug resistance, and conclude this work with a survey of the most promising therapeutic strategies aimed at targeting RAD51 in experimental oncology.
Collapse
|
36
|
Broustas CG, Duval AJ, Chaudhary KR, Friedman RA, Virk RK, Lieberman HB. Targeting MEK5 impairs nonhomologous end-joining repair and sensitizes prostate cancer to DNA damaging agents. Oncogene 2020; 39:2467-2477. [PMID: 31980741 PMCID: PMC7085449 DOI: 10.1038/s41388-020-1163-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 12/13/2019] [Accepted: 01/15/2020] [Indexed: 12/23/2022]
Abstract
Radiotherapy is commonly used to treat a variety of solid human tumors, including localized prostate cancer. However, treatment failure often ensues due to tumor intrinsic or acquired radioresistance. Here we find that the MEK5/ERK5 signaling pathway is associated with resistance to genotoxic stress in aggressive prostate cancer cells. MEK5 knockdown by RNA interference sensitizes prostate cancer cells to ionizing radiation (IR) and etoposide treatment, as assessed by clonogenic survival and short-term proliferation assays. Mechanistically, MEK5 downregulation impairs phosphorylation of the catalytic subunit of DNA-PK at serine 2056 in response to IR or etoposide treatment. Although MEK5 knockdown does not influence the initial appearance of radiation- and etoposide-induced γH2AX and 53BP1 foci, it markedly delays their resolution, indicating a DNA repair defect. A cell-based assay shows that non-homologous end joining (NHEJ) is compromised in cells with ablated MEK5 protein expression. Finally, MEK5 silencing combined with focal irradiation causes strong inhibition of tumor growth in mouse xenografts, compared with MEK5 depletion or radiation alone. These findings reveal a convergence between MEK5 signaling and DNA repair by NHEJ in conferring resistance to genotoxic stress in advanced prostate cancer and suggest targeting MEK5 as an effective therapeutic intervention in the management of this disease.
Collapse
Affiliation(s)
- Constantinos G Broustas
- Center for Radiological Research, Columbia University Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA.
| | - Axel J Duval
- Center for Radiological Research, Columbia University Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Kunal R Chaudhary
- Center for Radiological Research, Columbia University Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Richard A Friedman
- Biomedical Informatics Shared Resource, Herbert Irving Comprehensive Cancer Center and Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY, USA
| | - Renu K Virk
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Howard B Lieberman
- Center for Radiological Research, Columbia University Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA.,Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| |
Collapse
|
37
|
George TJ, Franke AJ, Chakravarthy AB, Das P, Dasari A, El-Rayes BF, Hong TS, Kinsella TJ, Landry JC, Lee JJ, Monjazeb AM, Jacobs SA, Raben D, Rahma OE, Williams TM, Wu C, Coleman CN, Vikram B, Ahmed MM. National Cancer Institute (NCI) state of the science: Targeted radiosensitizers in colorectal cancer. Cancer 2019; 125:2732-2746. [PMID: 31017664 PMCID: PMC6663584 DOI: 10.1002/cncr.32150] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/03/2019] [Accepted: 03/07/2019] [Indexed: 12/13/2022]
Abstract
Colorectal cancer (CRC) represents a major public health problem as the second leading cause of cancer-related mortality in the United States. Of an estimated 140,000 newly diagnosed CRC cases in 2018, roughly one-third of these patients will have a primary tumor located in the distal large bowel or rectum. The current standard-of-care approach includes curative-intent surgery, often after preoperative (neoadjuvant) radiotherapy (RT), to increase rates of tumor down-staging, clinical and pathologic response, as well as improving surgical resection quality. However, despite advancements in surgical techniques, as well as sharpened precision of dosimetry offered by contemporary RT delivery platforms, the oncology community continues to face challenges related to disease relapse. Ongoing investigations are aimed at testing novel radiosensitizing agents and treatments that might exploit the systemic antitumor effects of RT using immunotherapies. If successful, these treatments may usher in a new curative paradigm for rectal cancers, such that surgical interventions may be avoided. Importantly, this disease offers an opportunity to correlate matched paired biopsies, radiographic response, and molecular mechanisms of treatment sensitivity and resistance with clinical outcomes. Herein, the authors highlight the available evidence from preclinical models and early-phase studies, with an emphasis on promising developmental therapeutics undergoing prospective validation in larger scale clinical trials. This review by the National Cancer Institute's Radiation Research Program Colorectal Cancer Working Group provides an updated, comprehensive examination of the continuously evolving state of the science regarding radiosensitizer drug development in the curative treatment of CRC.
Collapse
Affiliation(s)
- Thomas J George
- Division of Hematology and Oncology, Department of Medicine, University of Florida, Gainesville, Florida
| | - Aaron J Franke
- Division of Hematology and Oncology, Department of Medicine, University of Florida, Gainesville, Florida
| | - A Bapsi Chakravarthy
- Department of Radiation Oncology, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Prajnan Das
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Arvind Dasari
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Bassel F El-Rayes
- Department of Hematology and Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Theodore S Hong
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard, Boston, Massachusetts
| | - Timothy J Kinsella
- Department of Radiation Oncology, Rhode Island Hospital-Brown University Alpert Medical School, Providence, Rhode Island
| | - Jerome C Landry
- Department of Hematology and Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - James J Lee
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh Medical Center, Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Arta M Monjazeb
- Division of Radiation Oncology, University of California Davis Comprehensive Cancer Center, Sacramento, California
| | - Samuel A Jacobs
- National Adjuvant Surgical and Bowel Project Foundation/NRG Oncology, Pittsburg, Pennsylvania
| | - David Raben
- Department of Radiation Oncology, University of Colorado Denver School of Medicine, Aurora, Colorado
| | - Osama E Rahma
- Center for Immuno-Oncology, Department of Medical Oncology, Dana Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Terence M Williams
- Department of Radiation Oncology, The Ohio State University, Columbus, Ohio
| | - Christina Wu
- Department of Hematology and Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - C Norman Coleman
- Clinical Radiation Oncology Branch, Radiation Research Program, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Bhadrasain Vikram
- Clinical Radiation Oncology Branch, Radiation Research Program, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Mansoor M Ahmed
- Clinical Radiation Oncology Branch, Radiation Research Program, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
38
|
Zhao H, Zheng G, Li G, Xin L, Wang Y, Chen Y, Zheng X. Long noncoding RNA LINC00958 regulates cell sensitivity to radiotherapy through RRM2 by binding to microRNA‐5095 in cervical cancer. J Cell Physiol 2019; 234:23349-23359. [PMID: 31169309 DOI: 10.1002/jcp.28902] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 05/09/2019] [Accepted: 05/09/2019] [Indexed: 12/23/2022]
Affiliation(s)
- Hui Zhao
- Department of Obstetrics and Gynecology Linyi People's Hospital Linyi P.R. China
| | - Guang‐Hong Zheng
- Department of Obstetrics and Gynecology Linyi People's Hospital Linyi P.R. China
| | - Guang‐Cai Li
- Department of Obstetrics and Gynecology Linyi People's Hospital Linyi P.R. China
| | - Li Xin
- Sense Control Office Economic and Technological Development Zone People's Hospital of Linyi Linyi P.R. China
| | - Yong‐Sheng Wang
- Department of Obstetrics and Gynecology Linyi People's Hospital Linyi P.R. China
| | - Ying Chen
- Department of Obstetrics and Gynecology Linyi People's Hospital Linyi P.R. China
| | - Xue‐Mei Zheng
- Department of Obstetrics and Gynecology Linyi People's Hospital Linyi P.R. China
| |
Collapse
|
39
|
Biological Rationale for Targeting MEK/ERK Pathways in Anti-Cancer Therapy and to Potentiate Tumour Responses to Radiation. Int J Mol Sci 2019; 20:ijms20102530. [PMID: 31126017 PMCID: PMC6567863 DOI: 10.3390/ijms20102530] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/16/2019] [Accepted: 05/21/2019] [Indexed: 02/07/2023] Open
Abstract
ERK1 and ERK2 (ERKs), two extracellular regulated kinases (ERK1/2), are evolutionary-conserved and ubiquitous serine-threonine kinases involved in regulating cell signalling in normal and pathological tissues. The expression levels of these kinases are almost always different, with ERK2 being the more prominent. ERK1/2 activation is fundamental for the development and progression of cancer. Since their discovery, much research has been dedicated to their role in mitogen-activated protein kinases (MAPK) pathway signalling and in their activation by mitogens and mutated RAF or RAS in cancer cells. In order to gain a better understanding of the role of ERK1/2 in MAPK pathway signalling, many studies have been aimed at characterizing ERK1/2 splicing isoforms, mutants, substrates and partners. In this review, we highlight the differences between ERK1 and ERK2 without completely discarding the hypothesis that ERK1 and ERK2 exhibit functional redundancy. The main goal of this review is to shed light on the role of ERK1/2 in targeted therapy and radiotherapy and highlight the importance of identifying ERK inhibitors that may overcome acquired resistance. This is a highly relevant therapeutic issue that needs to be addressed to combat tumours that rely on constitutively active RAF and RAS mutants and the MAPK pathway.
Collapse
|
40
|
Robb R, Yang L, Shen C, Wolfe AR, Webb A, Zhang X, Vedaie M, Saji M, Jhiang S, Ringel MD, Williams TM. Inhibiting BRAF Oncogene-Mediated Radioresistance Effectively Radiosensitizes BRAF V600E-Mutant Thyroid Cancer Cells by Constraining DNA Double-Strand Break Repair. Clin Cancer Res 2019; 25:4749-4760. [PMID: 31097454 DOI: 10.1158/1078-0432.ccr-18-3625] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 04/01/2019] [Accepted: 05/14/2019] [Indexed: 01/22/2023]
Abstract
PURPOSE Activating BRAF mutations, most commonly BRAFV600E, are a major oncogenic driver of many cancers. We explored whether BRAFV600E promotes radiation resistance and whether selectively targeting BRAFV600E with a BRAF inhibitor (vemurafenib, BRAFi) sensitizes BRAFV600E thyroid cancer cells to radiotherapy. EXPERIMENTAL DESIGN Immunoblotting, neutral comet, immunocytochemistry, functional reporter, and clonogenic assays were used to analyze the outcome and molecular characteristics following radiotherapy with or without BRAFV600E or vemurafenib in thyroid cancer cells. RESULTS BRAFV600E thyroid cancer cell lines were associated with resistance to ionizing radiation (IR), and expression of BRAFV600E into wild-type BRAF thyroid cancer cells led to IR resistance. BRAFi inhibited ERK signaling in BRAFV600E mutants, but not BRAF wild-type thyroid cancer cell lines. BRAFi selectively radiosensitized and delayed resolution of IR-induced γH2AX nuclear foci in BRAFV600E cells. Moreover, BRAFi impaired global DNA repair and altered the resolution of 53BP1 and RAD51 nuclear foci in BRAFV600E cells following IR. BRAFV600E mutants displayed enhanced nonhomologous end-joining (NHEJ) repair activity, which was abolished by BRAFi. Intriguingly, BRAFV600E mutation led to upregulation of XLF, a component of NHEJ, which was prevented by BRAFi. Importantly, BRAFi in combination with radiotherapy resulted in marked and sustained tumor regression of BRAFV600E thyroid tumor xenografts. CONCLUSIONS BRAFV600E mutation promotes NHEJ activity leading to radioresistance and BRAFi selectively radiosensitizes BRAFV600E thyroid cancer cells through inhibiting NHEJ. Our findings suggest that combining BRAFi and radiation may improve the therapeutic outcome of patients with BRAFV600E-mutant thyroid cancer.
Collapse
Affiliation(s)
- Ryan Robb
- Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, The Ohio State University Medical Center, Columbus, Ohio
| | - Linlin Yang
- Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, The Ohio State University Medical Center, Columbus, Ohio
| | - Changxian Shen
- Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, The Ohio State University Medical Center, Columbus, Ohio
| | - Adam R Wolfe
- Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, The Ohio State University Medical Center, Columbus, Ohio
| | - Amy Webb
- Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, The Ohio State University Medical Center, Columbus, Ohio
| | - Xiaoli Zhang
- Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, The Ohio State University Medical Center, Columbus, Ohio
| | - Marall Vedaie
- Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, The Ohio State University Medical Center, Columbus, Ohio
| | - Motoyasu Saji
- Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, The Ohio State University Medical Center, Columbus, Ohio
| | - Sissy Jhiang
- Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, The Ohio State University Medical Center, Columbus, Ohio
| | - Matthew D Ringel
- Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, The Ohio State University Medical Center, Columbus, Ohio
| | - Terence M Williams
- Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, The Ohio State University Medical Center, Columbus, Ohio.
| |
Collapse
|
41
|
Blas K, Wilson TG, Tonlaar N, Galoforo S, Hana A, Marples B, Wilson GD. Dual blockade of PI3K and MEK in combination with radiation in head and neck cancer. Clin Transl Radiat Oncol 2018; 11:1-10. [PMID: 30014041 PMCID: PMC6019866 DOI: 10.1016/j.ctro.2018.04.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 04/16/2018] [Accepted: 04/20/2018] [Indexed: 02/07/2023] Open
Abstract
Background and purpose In this study we have combined fractionated radiation treatment (RT) with two molecular targeted agents active against key deregulated signaling pathways in head and neck cancer. Materials and methods We used two molecularly characterized, low passage HNSCC cell lines of differing biological characteristics to study the effects of binimetinib and buparlisib in combination with radiation in vitro and in vivo. Results Buparlisib was active against both cell lines in vitro whereas binimetinib was more toxic to UT-SCC-14. Neither agent modified radiation sensitivity in vitro. Buparlisib significantly inhibited growth of UT-SSC-15 alone or in combination with RT but was ineffective in UT-SCC-14. Binimetinib did cause a significant delay with RT in UT-SCC-14 and it significantly reduced growth of the UT-SCC-15 tumors both alone and with RT. The tri-modality treatment was not as effective as RT with a single effective agent. Conclusions No significant benefit was gained by the combined use of the two agents with RT even though each was efficacious when used alone.
Collapse
Affiliation(s)
- Kevin Blas
- Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, MI, United States
| | - Thomas G Wilson
- Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, MI, United States
| | - Nathan Tonlaar
- Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, MI, United States
| | - Sandra Galoforo
- Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, MI, United States
| | - Alaa Hana
- Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, MI, United States
| | - Brian Marples
- Department of Radiation Oncology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - George D Wilson
- Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, MI, United States.,Beaumont BioBank, William Beaumont Hospital, Royal Oak, MI, United States
| |
Collapse
|
42
|
Xiong H, Zhao W, Wang J, Seifer BJ, Ye C, Chen Y, Jia Y, Chen C, Shen J, Wang L, Sui X, Zhou J. Oncogenic mechanisms of Lin28 in breast cancer: new functions and therapeutic opportunities. Oncotarget 2018; 8:25721-25735. [PMID: 28147339 PMCID: PMC5421965 DOI: 10.18632/oncotarget.14891] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 01/11/2017] [Indexed: 12/25/2022] Open
Abstract
The RNA binding protein Lin28 is best known for the critical role in cell development, recent researches also have implied its oncogenic function in various human cancers, including breast cancer. Specifically, aberrant Lin28 participates in multiple pathological processes, such as proliferation, metastasis, radiotherapy and chemotherapy resistance, metabolism, immunity and inflammation as well as stemness. In this review, we summarize the let-7-dependent and let-7-independent mechanism regulated by Lin28, focusing on its relation with tumor hallmarks in breast cancer, and subsequently discuss our present knowledge of Lin28 to develop a molecular-based therapeutic strategy against breast cancer.
Collapse
Affiliation(s)
- Hanchu Xiong
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang, China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Wenhe Zhao
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang, China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Ji Wang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang, China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | | | - Chenyang Ye
- Cancer Institute (Key Laboratory of Cancer Prevention & Intervention, National Ministry of Education), Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yongxia Chen
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang, China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yunlu Jia
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang, China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Cong Chen
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang, China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jianguo Shen
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang, China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Linbo Wang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang, China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Xinbing Sui
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, China.,Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jichun Zhou
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang, China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, China
| |
Collapse
|
43
|
Vena F, Jia R, Esfandiari A, Garcia-Gomez JJ, Rodriguez-Justo M, Ma J, Syed S, Crowley L, Elenbaas B, Goodstal S, Hartley JA, Hochhauser D. MEK inhibition leads to BRCA2 downregulation and sensitization to DNA damaging agents in pancreas and ovarian cancer models. Oncotarget 2018; 9:11592-11603. [PMID: 29545922 PMCID: PMC5837749 DOI: 10.18632/oncotarget.24294] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 01/15/2018] [Indexed: 12/24/2022] Open
Abstract
Targeting the DNA damage response (DDR) in tumors with defective DNA repair is a clinically successful strategy. The RAS/RAF/MEK/ERK signalling pathway is frequently deregulated in human cancers. In this study, we explored the effects of MEK inhibition on the homologous recombination pathway and explored the potential for combination therapy of MEK inhibitors with DDR inhibitors and a hypoxia-activated prodrug. We studied effects of combining pimasertib, a selective allosteric inhibitor of MEK1/2, with olaparib, a small molecule inhibitor of poly (adenosine diphosphate [ADP]-ribose) polymerases (PARP), and with the hypoxia-activated prodrug evofosfamide in ovarian and pancreatic cancer cell lines. Apoptosis was assessed by Caspase 3/7 assay and protein expression was detected by immunoblotting. DNA damage response was monitored with γH2AX and RAD51 immunofluorescence staining. In vivo antitumor activity of pimasertib with evofosfamide were assessed in pancreatic cancer xenografts. We found that BRCA2 protein expression was downregulated following pimasertib treatment under hypoxic conditions. This translated into reduced homologous recombination repair demonstrated by levels of RAD51 foci. MEK inhibition was sufficient to induce formation of γH2AX foci, suggesting that inhibition of this pathway would impair DNA repair. When combined with olaparib or evofosfamide, pimasertib treatment enhanced DNA damage and increased apoptosis. The combination of pimasertib with evofosfamide demonstrated increased anti-tumor activity in BRCA wild-type Mia-PaCa-2 xenograft model, but not in the BRCA mutated BxPC3 model. Our data suggest that targeted MEK inhibition leads to impaired homologous recombination DNA damage repair and increased PARP inhibition sensitivity in BRCA-2 proficient cancers.
Collapse
Affiliation(s)
- Francesca Vena
- Cancer Research UK Drug-DNA Interactions Research Group, UCL Cancer Institute, Paul O’Gorman Building, University College London, London WC1E 6DD, UK
| | - Ruochen Jia
- Cancer Research UK Drug-DNA Interactions Research Group, UCL Cancer Institute, Paul O’Gorman Building, University College London, London WC1E 6DD, UK
| | - Arman Esfandiari
- Cancer Research UK Drug-DNA Interactions Research Group, UCL Cancer Institute, Paul O’Gorman Building, University College London, London WC1E 6DD, UK
| | - Juan J. Garcia-Gomez
- Cancer Research UK Drug-DNA Interactions Research Group, UCL Cancer Institute, Paul O’Gorman Building, University College London, London WC1E 6DD, UK
| | | | - Jianguo Ma
- EMD Serono Research and Development Institute, Billerica 01821, MA, USA
| | - Sakeena Syed
- EMD Serono Research and Development Institute, Billerica 01821, MA, USA
| | - Lindsey Crowley
- EMD Serono Research and Development Institute, Billerica 01821, MA, USA
| | - Brian Elenbaas
- EMD Serono Research and Development Institute, Billerica 01821, MA, USA
| | - Samantha Goodstal
- EMD Serono Research and Development Institute, Billerica 01821, MA, USA
| | - John A. Hartley
- Cancer Research UK Drug-DNA Interactions Research Group, UCL Cancer Institute, Paul O’Gorman Building, University College London, London WC1E 6DD, UK
| | - Daniel Hochhauser
- Cancer Research UK Drug-DNA Interactions Research Group, UCL Cancer Institute, Paul O’Gorman Building, University College London, London WC1E 6DD, UK
| |
Collapse
|
44
|
Abstract
Radiation induced fibrosis (RIF) is a common morbidity in patients being treated for cancer with radiation. Off-target effects result in intense inflammatory responses which ultimately results in the generation of extracellular matrix (ECM) producing myofibroblasts which mediate a progressive fibrosis resulting in scarring and organ and tissue dysfunction. Unfortunately, currently, there are no effective therapies to block the excess accumulation of ECM. We have previously reported on the use of trametinib, a MEK inhibitor, to essentially block the formation of abdominal adhesions in a mouse model of cecal abrasion. Using this drug in the mouse model, the complete trans-differentiation of precursor cells into ECM-producing myofibroblasts was blocked. Trametinib is a potentially powerful drug to thwart organ and tissue fibrosis in RIF because it has a potential dual function in that it may block RIF as well as prevent radiation-resistance. Given the intractability of RIF, trametinib should be considered for more extensive testing.
Collapse
Affiliation(s)
- Edward J Macarak
- The Joan and Joel Rosenbloom Research Center for Fibrotic Diseases, Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Joel Rosenbloom
- The Joan and Joel Rosenbloom Research Center for Fibrotic Diseases, Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
45
|
Fowler TL, Fisher MM, Bailey AM, Bednarz BP, Kimple RJ. Biological characterization of a novel in vitro cell irradiator. PLoS One 2017; 12:e0189494. [PMID: 29232400 PMCID: PMC5726654 DOI: 10.1371/journal.pone.0189494] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 11/27/2017] [Indexed: 01/05/2023] Open
Abstract
To evaluate the overall robustness of a novel cellular irradiator we performed a series of well-characterized, dose-responsive assays to assess the consequences of DNA damage. We used a previously described novel irradiation system and a traditional 137Cs source to irradiate a cell line. The generation of reactive oxygen species was assessed using chloromethyl-H2DCFDA dye, the induction of DNA DSBs was observed using the comet assay, and the initiation of DNA break repair was assessed through γH2AX image cytometry. A high correlation between physical absorbed dose and biologic dose was seen for the production of intracellular reactive oxygen species, physical DNA double strand breaks, and modulation of the cellular double stand break pathway. The results compared favorably to irradiation with a traditional 137Cs source. The rapid, straightforward tests described form a reasonable approach for biologic characterization of novel irradiators. These additional testing metrics go beyond standard physics testing such as Monte Carlo simulation and thermo-luminescent dosimeter evaluation to confirm that a novel irradiator can produce the desired dose effects in vitro. Further, assessment of these biological metrics confirms that the physical handling of the cells during the irradiation process results in biologic effects that scale appropriately with dose.
Collapse
Affiliation(s)
- Tyler L. Fowler
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, University of Wisconsin, Madison, WI, United States of America
| | - Michael M. Fisher
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin, Madison, WI, United States of America
| | - Alison M. Bailey
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin, Madison, WI, United States of America
| | - Bryan P. Bednarz
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, University of Wisconsin, Madison, WI, United States of America
- University of Wisconsin Carbone Comprehensive Cancer Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin, Madison, WI, United States of America
| | - Randall J. Kimple
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, University of Wisconsin, Madison, WI, United States of America
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin, Madison, WI, United States of America
- University of Wisconsin Carbone Comprehensive Cancer Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin, Madison, WI, United States of America
- * E-mail:
| |
Collapse
|
46
|
Seshacharyulu P, Baine MJ, Souchek JJ, Menning M, Kaur S, Yan Y, Ouellette MM, Jain M, Lin C, Batra SK. Biological determinants of radioresistance and their remediation in pancreatic cancer. Biochim Biophys Acta Rev Cancer 2017; 1868:69-92. [PMID: 28249796 PMCID: PMC5548591 DOI: 10.1016/j.bbcan.2017.02.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/16/2017] [Accepted: 02/17/2017] [Indexed: 12/17/2022]
Abstract
Despite recent advances in radiotherapy, a majority of patients diagnosed with pancreatic cancer (PC) do not achieve objective responses due to the existence of intrinsic and acquired radioresistance. Identification of molecular mechanisms that compromise the efficacy of radiation therapy and targeting these pathways is paramount for improving radiation response in PC patients. In this review, we have summarized molecular mechanisms associated with the radio-resistant phenotype of PC. Briefly, we discuss the reversible and irreversible biological consequences of radiotherapy, such as DNA damage and DNA repair, mechanisms of cancer cell survival and radiation-induced apoptosis following radiotherapy. We further describe various small molecule inhibitors and molecular targeting agents currently being tested in preclinical and clinical studies as potential radiosensitizers for PC. Notably, we draw attention towards the confounding effects of cancer stem cells, immune system, and the tumor microenvironment in the context of PC radioresistance and radiosensitization. Finally, we discuss the need for examining selective radioprotectors in light of the emerging evidence on radiation toxicity to non-target tissue associated with PC radiotherapy.
Collapse
Affiliation(s)
- Parthasarathy Seshacharyulu
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Michael J Baine
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Joshua J Souchek
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Melanie Menning
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Sukhwinder Kaur
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Ying Yan
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Michel M. Ouellette
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Chi Lin
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Surinder K. Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| |
Collapse
|
47
|
Sun B, Xue J, Li J, Luo F, Chen X, Liu Y, Wang Q, Qi C, Zou Z, Zhang A, Liu Q. Circulating miRNAs and their target genes associated with arsenism caused by coal-burning. Toxicol Res (Camb) 2017; 6:162-172. [PMID: 30090486 PMCID: PMC6062399 DOI: 10.1039/c6tx00428h] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 01/20/2017] [Indexed: 12/26/2022] Open
Abstract
Endemic arsenism, caused by burning coal containing high levels of arsenic, is found only in the Guizhou and Shanxi Provinces of China. Dysregulated microRNAs (miRNAs), detected in the blood, are emerging as promising biomarkers. At present, little is known about the change and clinical efficacy of circulating miRNAs in patients with endemic arsenism produced by burning of coal. Here, we determined, by using TaqMan Human miRNA Array Chips, the differential expression of plasma miRNAs between patients with arsenism caused by coal-burning and a control group. Four increased miRNAs (miR-21, miR-145, miR-155, and miR-191) were verified in a larger sample by quantitative real-time PCR. Furthermore, bioinformatics and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were used to associate changes in plasma levels of the miRNAs with their functions and their effects on various pathways. The results of chip array assays show that the levels of miR-21, miR-141, miR-148a, miR-145, miR-155, miR-191, miR-218, and miR-491 were most prominently increased and that the levels of miR-200b, miR-200c, miR-26, and miR-34c were decreased. The qRT-PCR results confirm that the circulating levels of miR-21, miR-145, miR-155, and miR-191 are increased in patients with arsenism caused by coal-burning. KEGG analyses show that these miRNAs inhibit the target genes of pathways related to immune inflammation, oxidative stress, and DNA damage repair. Therefore, the four miRNAs may be biomarkers of endemic arsenism caused by coal-burning. Further studies with larger samples should be performed to confirm these findings and to elucidate the underlying mechanisms.
Collapse
Affiliation(s)
- Baofei Sun
- Key Laboratory of Environmental Pollution Monitoring and Disease Control , Ministry of Education , Department of Toxicology , School of Public Health , Guizhou Medical University , Guiyang 550025 , Guizhou , China .
| | - Junchao Xue
- Institute of Toxicology , School of Public Health , Nanjing Medical University , Nanjing 211166 , Jiangsu , China . ; ; Tel: +86-25-8686-8424
| | - Jun Li
- Key Laboratory of Environmental Pollution Monitoring and Disease Control , Ministry of Education , Department of Toxicology , School of Public Health , Guizhou Medical University , Guiyang 550025 , Guizhou , China .
| | - Fei Luo
- Institute of Toxicology , School of Public Health , Nanjing Medical University , Nanjing 211166 , Jiangsu , China . ; ; Tel: +86-25-8686-8424
| | - Xiong Chen
- Key Laboratory of Environmental Pollution Monitoring and Disease Control , Ministry of Education , Department of Toxicology , School of Public Health , Guizhou Medical University , Guiyang 550025 , Guizhou , China .
| | - Yonglian Liu
- Key Laboratory of Environmental Pollution Monitoring and Disease Control , Ministry of Education , Department of Toxicology , School of Public Health , Guizhou Medical University , Guiyang 550025 , Guizhou , China .
| | - Qingling Wang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control , Ministry of Education , Department of Toxicology , School of Public Health , Guizhou Medical University , Guiyang 550025 , Guizhou , China .
| | - Caihua Qi
- Key Laboratory of Environmental Pollution Monitoring and Disease Control , Ministry of Education , Department of Toxicology , School of Public Health , Guizhou Medical University , Guiyang 550025 , Guizhou , China .
| | - Zhonglan Zou
- Key Laboratory of Environmental Pollution Monitoring and Disease Control , Ministry of Education , Department of Toxicology , School of Public Health , Guizhou Medical University , Guiyang 550025 , Guizhou , China .
| | - Aihua Zhang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control , Ministry of Education , Department of Toxicology , School of Public Health , Guizhou Medical University , Guiyang 550025 , Guizhou , China .
| | - Qizhan Liu
- Institute of Toxicology , School of Public Health , Nanjing Medical University , Nanjing 211166 , Jiangsu , China . ; ; Tel: +86-25-8686-8424
| |
Collapse
|
48
|
Chien MN, Yang PS, Lee JJ, Wang TY, Hsu YC, Cheng SP. Recurrence-associated genes in papillary thyroid cancer: An analysis of data from The Cancer Genome Atlas. Surgery 2017; 161:1642-1650. [PMID: 28237646 DOI: 10.1016/j.surg.2016.12.039] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 12/18/2016] [Accepted: 12/29/2016] [Indexed: 10/20/2022]
Abstract
BACKGROUND Recurrence of papillary thyroid cancer is not uncommon, but incorporating clinicopathologic parameters to predict recurrence is suboptimal. The aim of this study was to identify systemically recurrence-associated genes using The Cancer Genome Atlas RNA sequencing database. METHODS A total of 504 patients with transcriptome sequencing data of the primary neoplasm were included in this study. High and low levels of expression of each gene were defined by median splits. Differences in recurrence-free survival were compared using Kaplan-Meier curves and log-rank tests. Recurrence-associated genes were subjected to functional enrichment analyses with Kyoto Encyclopedia of Genes and Genomes annotation databases and Ingenuity Pathway Analysis. RESULTS We found that 1,807 genes were associated with recurrence-free survival. There were 676 genes of which high expression was associated with a greater risk of recurrence. These genes were enriched in pathways involved in cell cycle regulation and DNA repair. Among 1,131 genes of which low expression was associated with recurrence, Kyoto Encyclopedia of Genes and Genomes-annotated functions were metabolism, calcium signaling, glycan biosynthesis, and the Notch signaling pathway. Canonical pathways identified by Ingenuity Pathway Analysis included RXR function, nitric oxide signaling, interleukin-8 signaling, and nutrient sensing. In addition, low expression of the majority of thyroid differentiation genes was associated with a significantly less recurrence-free survival. CONCLUSION Upregulation of cell cycle-regulating and DNA repair genes appears to have a negative impact on recurrence-free survival in patients with papillary thyroid cancer. Furthermore, recurrence is associated with thyroid dedifferentiation.
Collapse
Affiliation(s)
- Ming-Nan Chien
- Division of Endocrinology and Metabolism, Department of Internal Medicine, MacKay Memorial Hospital and Mackay Medical College, Taipei, Taiwan
| | - Po-Sheng Yang
- Department of Surgery, MacKay Memorial Hospital and Mackay Medical College, Taipei, Taiwan; Graduate Institute of Medical Sciences and Department of Pharmacology, Taipei Medical University, Taipei, Taiwan
| | - Jie-Jen Lee
- Department of Surgery, MacKay Memorial Hospital and Mackay Medical College, Taipei, Taiwan; Graduate Institute of Medical Sciences and Department of Pharmacology, Taipei Medical University, Taipei, Taiwan
| | - Tao-Yeuan Wang
- Department of Pathology, MacKay Memorial Hospital and Mackay Medical College, Taipei, Taiwan
| | - Yi-Chiung Hsu
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan City, Taiwan; Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Shih-Ping Cheng
- Department of Surgery, MacKay Memorial Hospital and Mackay Medical College, Taipei, Taiwan; Graduate Institute of Medical Sciences and Department of Pharmacology, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
49
|
Fatkhutdinov N, Sproesser K, Krepler C, Liu Q, Brafford PA, Herlyn M, Aird KM, Zhang R. Targeting RRM2 and Mutant BRAF Is a Novel Combinatorial Strategy for Melanoma. Mol Cancer Res 2016; 14:767-75. [PMID: 27297629 DOI: 10.1158/1541-7786.mcr-16-0099] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 06/06/2016] [Indexed: 12/13/2022]
Abstract
UNLABELLED The majority of patients with melanoma harbor mutations in the BRAF oncogene, thus making it a clinically relevant target. However, response to mutant BRAF inhibitors (BRAFi) is relatively short-lived with progression-free survival of only 6 to 7 months. Previously, we reported high expression of ribonucleotide reductase M2 (RRM2), which is rate-limiting for de novo dNTP synthesis, as a poor prognostic factor in patients with mutant BRAF melanoma. In this study, the notion that targeting de novo dNTP synthesis through knockdown of RRM2 could prolong the response of melanoma cells to BRAFi was investigated. Knockdown of RRM2 in combination with the mutant BRAFi PLX4720 (an analog of the FDA-approved drug vemurafenib) inhibited melanoma cell proliferation to a greater extent than either treatment alone. This occurred in vitro in multiple mutant BRAF cell lines and in a novel patient-derived xenograft (PDX) model system. Mechanistically, the combination increased DNA damage accumulation, which correlated with a global decrease in DNA damage repair (DDR) gene expression and increased apoptotic markers. After discontinuing PLX4720 treatment, cells showed marked recurrence. However, knockdown of RRM2 attenuated this rebound growth both in vitro and in vivo, which correlated with maintenance of the senescence-associated cell-cycle arrest. IMPLICATIONS Inhibition of RRM2 converts the transient response of melanoma cells to BRAFi to a stable response and may be a novel combinatorial strategy to prolong therapeutic response of patients with melanoma. Mol Cancer Res; 14(9); 767-75. ©2016 AACR.
Collapse
Affiliation(s)
- Nail Fatkhutdinov
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, Pennsylvania. Kazan Federal University, Kazan, Russia
| | - Katrin Sproesser
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, Pennsylvania
| | - Clemens Krepler
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, Pennsylvania
| | - Qin Liu
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, Pennsylvania
| | - Patricia A Brafford
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, Pennsylvania
| | - Meenhard Herlyn
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, Pennsylvania
| | - Katherine M Aird
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, Pennsylvania.
| | - Rugang Zhang
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, Pennsylvania
| |
Collapse
|