1
|
Peng X, Liu Y, Peng F, Wang T, Cheng Z, Chen Q, Li M, Xu L, Man Y, Zhang Z, Tan Y, Liu Z. Aptamer-controlled stimuli-responsive drug release. Int J Biol Macromol 2024; 279:135353. [PMID: 39245104 DOI: 10.1016/j.ijbiomac.2024.135353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/10/2024]
Abstract
Aptamers have been widely researched and applied in nanomedicine due to their programmable, activatable, and switchable properties. However, there are few reviews on aptamer-controlled stimuli-responsive drug delivery. This article highlights the mechanisms and advantages of aptamers in the construction of stimuli-responsive drug delivery systems. We summarize the assembly/reconfiguration mechanisms of aptamers in controlled release systems. The assembly and drug release strategies of drug delivery systems are illustrated. Specifically, we focus on the binding mechanisms to the target and the factors that induce/inhibit the binding to the stimuli, such as strand, pH, light, and temperature. The applications of aptamer-based stimuli-responsive drug release are elaborated. The challenges are discussed, and the future directions are proposed.
Collapse
Affiliation(s)
- Xingxing Peng
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, PR China
| | - Yanfei Liu
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan Province, PR China
| | - Feicheng Peng
- Hunan Institute for Drug Control, Changsha 410001, Hunan Province, PR China
| | - Ting Wang
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, PR China
| | - Zhongyu Cheng
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, PR China
| | - Qiwen Chen
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan Province, PR China
| | - Mingfeng Li
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, PR China
| | - Lishang Xu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, PR China
| | - Yunqi Man
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, PR China
| | - Zhirou Zhang
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, PR China
| | - Yifu Tan
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, PR China
| | - Zhenbao Liu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, PR China; Molecular Imaging Research Center of Central South University, Changsha 410008, Hunan, PR China.
| |
Collapse
|
2
|
Shaukat A, Chrouda A, Sadaf S, Alhamlan F, Eissa S, Zourob M. Cell-SELEX for aptamer discovery and its utilization in constructing electrochemical biosensor for rapid and highly sensitive detection of Legionella pneumophila serogroup 1. Sci Rep 2024; 14:14132. [PMID: 38898115 PMCID: PMC11187191 DOI: 10.1038/s41598-024-65075-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/17/2024] [Indexed: 06/21/2024] Open
Abstract
This study introduces an innovative electrochemical aptasensor designed for the highly sensitive and rapid detection of Legionella pneumophila serogroup 1 (L. pneumophila SG1), a particularly virulent strain associated with Legionellosis. Employing a rigorous selection process utilizing cell-based systematic evolution of ligands by exponential enrichment (cell-SELEX), we identified new high-affinity aptamers specifically tailored for L. pneumophila SG1. The selection process encompassed ten rounds of cell-SELEX cycles with live L. pneumophila, including multiple counter-selection steps against the closely related Legionella sub-species. The dissociation constant (Kd) of the highest affinity sequence to L. pneumophila SG1 was measured at 14.2 nM, representing a ten-fold increase in affinity in comparison with the previously reported aptamers. For the development of electrochemical aptasensor, a gold electrode was modified with the selected aptamer through the formation of self-assembled monolayers (SAMs). The newly developed aptasensor exhibited exceptional sensitivity, and specificity in detecting and differentiating various Legionella sp., with a detection limit of 5 colony forming units (CFU)/mL and an insignificant/negligible cross-reactivity with closely related sub-species. Furthermore, the aptasensor effectively detected L. pneumophila SG1 in spiked water samples, demonstrating an appreciable recovery percentage. This study shows the potential of our aptamer-based electrochemical biosensor as a promising approach for detecting L. pneumophila SG1 in diverse environments.
Collapse
Affiliation(s)
- Aysha Shaukat
- Department of Chemistry, Alfaisal University, 11533, Riyadh, Kingdom of Saudi Arabia
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, Pakistan
| | - Amani Chrouda
- Department of Chemistry, Alfaisal University, 11533, Riyadh, Kingdom of Saudi Arabia
| | - Saima Sadaf
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, Pakistan
| | - Fatimah Alhamlan
- King Faisal Specialist Hospital and Research Center, Riyadh, Kingdom of Saudi Arabia
| | - Shimaa Eissa
- Department of Chemistry, Khalifa University of Science and Technology, 127788, Abu Dhabi, United Arab Emirates
- Center for Catalysis and Separations, Khalifa University of Science and Technology, 127788, Abu Dhabi, United Arab Emirates
| | - Mohammed Zourob
- Department of Chemistry, Alfaisal University, 11533, Riyadh, Kingdom of Saudi Arabia.
| |
Collapse
|
3
|
Chen Z, Sun Q, Yang Y, Nie X, Xiang W, Ren Y, Le T. Aptamer-based diagnostic and therapeutic approaches for animal viruses: A review. Int J Biol Macromol 2024; 257:128677. [PMID: 38072350 DOI: 10.1016/j.ijbiomac.2023.128677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/28/2023] [Accepted: 12/06/2023] [Indexed: 01/27/2024]
Abstract
Animal diseases often have significant consequences due to the unclear and time-consuming diagnosis process. Furthermore, the emergence of new viral infections and drug-resistant pathogens has further complicated the diagnosis and treatment of viral diseases. Aptamers, which are obtained through systematic evolution of ligands by exponential enrichment (SELEX) technology, provide a promising solution as they enable specific identification and binding to targets, facilitating pathogen detection and the development of novel therapeutics. This review presented an overview of aptasensors for animal virus detection, discussed the antiviral activity and mechanisms of aptamers, and highlighted advancements in aptamer-based antiviral research following the COVID-19 pandemic. Additionally, the challenges and prospects of aptamer-based virus diagnosis and treatment research were explored. Although this review was not exhaustive, it offered valuable insights into the progress of aptamer-based antiviral drug research, target mechanisms, as well as the development of novel antiviral drugs and biosensors.
Collapse
Affiliation(s)
- Zhuoer Chen
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China
| | - Qi Sun
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China
| | - Ying Yang
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China
| | - Xunqing Nie
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China
| | - Wenyu Xiang
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China
| | - Yueyang Ren
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China
| | - Tao Le
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China.
| |
Collapse
|
4
|
Doherty C, Wilbanks B, Khatua S, Maher LJ. Aptamers in neuro-oncology: An emerging therapeutic modality. Neuro Oncol 2024; 26:38-54. [PMID: 37619244 PMCID: PMC10768989 DOI: 10.1093/neuonc/noad156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Indexed: 08/26/2023] Open
Abstract
Despite recent advances in the understanding of brain tumor pathophysiology, challenges associated with tumor location and characteristics have prevented significant improvement in neuro-oncology therapies. Aptamers are short, single-stranded DNA or RNA oligonucleotides that fold into sequence-specific, 3-dimensional shapes that, like protein antibodies, interact with targeted ligands with high affinity and specificity. Aptamer technology has recently been applied to neuro-oncology as a potential approach to innovative therapy. Preclinical research has demonstrated the ability of aptamers to overcome some obstacles that have traditionally rendered neuro-oncology therapies ineffective. Potential aptamer advantages include their small size, ability in some cases to penetrate the blood-brain barrier, inherent lack of immunogenicity, and applicability for discovering novel biomarkers. Herein, we review recent reports of aptamer applications in neuro-oncology including aptamers found by cell- and in vivo- Systematic Evolution of Ligands by Exponential Enrichment approaches, aptamer-targeted therapeutic delivery modalities, and aptamers in diagnostics and imaging. We further identify crucial future directions for the field that will be important to advance aptamer-based drugs or tools to clinical application in neuro-oncology.
Collapse
Affiliation(s)
- Caroline Doherty
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
- Medical Scientist Training Program, Mayo Clinic Graduate School of Biomedical Sciences and Mayo Clinic Alix School of Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| | - Brandon Wilbanks
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
- Biochemistry and Molecular Biology Track, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| | - Soumen Khatua
- Department of Pediatric Hematology/Oncology, Section of Neuro-Oncology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| | - Louis James Maher
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| |
Collapse
|
5
|
Zhdanov G, Gambaryan A, Akhmetova A, Yaminsky I, Kukushkin V, Zavyalova E. Nanoisland SERS-Substrates for Specific Detection and Quantification of Influenza A Virus. BIOSENSORS 2023; 14:20. [PMID: 38248397 PMCID: PMC10813417 DOI: 10.3390/bios14010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/26/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024]
Abstract
Surface-enhanced Raman spectroscopy (SERS)-based aptasensors for virus determination have attracted a lot of interest recently. This approach provides both specificity due to an aptamer component and a low limit of detection due to signal enhancement by a SERS substrate. The most successful SERS-based aptasensors have a limit of detection (LoD) of 10-100 viral particles per mL (VP/mL) that is advantageous compared to polymerase chain reactions. These characteristics of the sensors require the use of complex substrates. Previously, we described silver nanoisland SERS-substrate with a reproducible and uniform surface, demonstrating high potency for industrial production and a suboptimal LoD of 4 × 105 VP/mL of influenza A virus. Here we describe a study of the sensor morphology, revealing an unexpected mechanism of signal enhancement through the distortion of the nanoisland layer. A novel modification of the aptasensor was proposed with chromium-enhanced adhesion of silver nanoparticles to the surface as well as elimination of the buffer-dependent distortion-triggering steps. As a result, the LoD of the Influenza A virus was decreased to 190 VP/mL, placing the nanoisland SERS-based aptasensors in the rank of the most powerful sensors for viral detection.
Collapse
Affiliation(s)
- Gleb Zhdanov
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia; (G.Z.); (E.Z.)
- Moscow Institute of Physics and Technology, Institute of Quantum Technologies, 141700 Dolgoprudny, Russia
| | - Alexandra Gambaryan
- Chumakov Federal Scientific Centre for Research and Development of Immune and Biological Products RAS, 108819 Moscow, Russia
| | - Assel Akhmetova
- Physics Department, Lomonosov Moscow State University, 119991 Moscow, Russia; (A.A.); (I.Y.)
| | - Igor Yaminsky
- Physics Department, Lomonosov Moscow State University, 119991 Moscow, Russia; (A.A.); (I.Y.)
| | - Vladimir Kukushkin
- Osipyan Institute of Solid State Physics of the Russian Academy of Science, 142432 Chernogolovka, Russia;
| | - Elena Zavyalova
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia; (G.Z.); (E.Z.)
- Moscow Institute of Physics and Technology, Institute of Quantum Technologies, 141700 Dolgoprudny, Russia
| |
Collapse
|
6
|
Mohanty P, Panda P, Acharya RK, Pande B, Bhaskar LVKS, Verma HK. Emerging perspectives on RNA virus-mediated infections: from pathogenesis to therapeutic interventions. World J Virol 2023; 12:242-255. [PMID: 38187500 PMCID: PMC10768389 DOI: 10.5501/wjv.v12.i5.242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/07/2023] [Accepted: 11/29/2023] [Indexed: 12/25/2023] Open
Abstract
RNA viruses continue to pose significant threats to global public health, necessitating a profound understanding of their pathogenic mechanisms and the development of effective therapeutic interventions. This manuscript provides a comprehensive overview of emerging perspectives on RNA virus-mediated infections, spanning from the intricate intricacies of viral pathogenesis to the forefront of innovative therapeutic strategies. A critical exploration of antiviral drugs sets the stage, highlighting the diverse classes of compounds that target various stages of the viral life cycle, underscoring the ongoing efforts to combat viral infections. Central to this discussion is the exploration of RNA-based therapeutics, with a spotlight on messenger RNA (mRNA)-based approaches that have revolutionized the landscape of antiviral interventions. Furthermore, the manuscript delves into the intricate world of delivery systems, exploring inno-vative technologies designed to enhance the efficiency and safety of mRNA vaccines. By analyzing the challenges and advancements in delivery mechanisms, this review offers a roadmap for future research and development in this critical area. Beyond conventional infectious diseases, the document explores the expanding applications of mRNA vaccines, including their promising roles in cancer immunotherapy and personalized medicine approaches. This manuscript serves as a valuable resource for researchers, clinicians, and policymakers alike, offering a nuanced perspective on RNA virus pathogenesis and the cutting-edge therapeutic interventions. By synthesizing the latest advancements and challenges, this review contributes significantly to the ongoing discourse in the field, driving the development of novel strategies to combat RNA virus-mediated infections effectively.
Collapse
Affiliation(s)
- Pratik Mohanty
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Guwahati 781039, Assam, India
| | - Poojarani Panda
- Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Rakesh Kumar Acharya
- Department of Zoology, Guru Ghasidas Vishwavidyalaya, Bilaspur, Bilaspur 495009, Chhattisgarh, India
| | - Babita Pande
- Department of Physiology, All India Institute of Medical Science, Raipur 492001, chhattisgarh, India
| | - LVKS Bhaskar
- Department of Zoology, Guru Ghasidas Vishwavidyalaya, Bilaspur, Bilaspur 495009, Chhattisgarh, India
| | - Henu Kumar Verma
- Lung Health and Immunity, Helmholtz Zentrum Munich, Munich 85764, Bayren, Germany
| |
Collapse
|
7
|
Kundu N, McCloskey CM, Hajjar M, Chaput JC. Parameterizing the Binding Properties of XNA Aptamers Isolated from a Low Stringency Selection. Biochemistry 2023; 62:3245-3254. [PMID: 37932217 DOI: 10.1021/acs.biochem.3c00352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Machine learning offers a guided approach to aptamer discovery, but more information is needed to develop algorithms that can intelligently identify high-performing aptamers to a broad array of targets. Critical to this effort is the need to experimentally parameterize the difference between low and high affinity binders to a given target. Although classical selection experiments help define the upper limit by converging on a small number of tight binding sequences, very little is known about the lower limit of binding that defines the boundary between binders and nonbinders. Here, we apply a quantitative approach to explore the diversity of aptamers isolated from two identical in vitro selections performed under low stringency conditions. Starting from a library of 1 trillion unique threose nucleic acid (TNA) sequences, 7 rounds of selection were performed to enrich binders to a known aptagenic target. High density sequencing of each round of selection followed by a detailed kinetic analysis of 136 TNA aptamers yielded a narrow range of equilibrium dissociation constants (KD = ∼ 1-15 nM) that were consistent between two experimental replicates. These findings offer insights into the lower limit of binding that may be expected for aptamers generated against aptagenic targets and could provide useful constraints for evaluating the results of experimental and computational approaches.
Collapse
Affiliation(s)
- Nandini Kundu
- Department of Pharmaceutical Sciences, University of California, Irvine, California 92697-3958, United States
| | - Cailen M McCloskey
- Department of Pharmaceutical Sciences, University of California, Irvine, California 92697-3958, United States
| | - Mohammad Hajjar
- Department of Pharmaceutical Sciences, University of California, Irvine, California 92697-3958, United States
| | - John C Chaput
- Department of Pharmaceutical Sciences, University of California, Irvine, California 92697-3958, United States
- Department of Chemistry, University of California, Irvine, California 92697-3958, United States
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697-3958, United States
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, California 92697-3958, United States
| |
Collapse
|
8
|
Borase H, Shukla D. The Interplay of Genital Herpes with Cellular Processes: A Pathogenesis and Therapeutic Perspective. Viruses 2023; 15:2195. [PMID: 38005873 PMCID: PMC10675801 DOI: 10.3390/v15112195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/21/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
Genital herpes, primarily caused by herpes simplex virus-2 (HSV-2), remains a pressing global health concern. Its remarkable ability to intertwine with cellular processes, from harnessing host machinery for replication to subverting antiviral defenses like autophagy and programmed cell death, exemplifies the intricate interplay at the heart of its pathogenesis. While the biomedical community has extensively researched antiviral interventions, the efficiency of these strategies in managing HSV-2 remains suboptimal. Recognizing this, attention has shifted toward leveraging host cellular components to regulate HSV-2 replication and influence the cell cycle. Furthermore, innovative interventional strategies-including drug repurposing, microbivacs, connecting the host microbiome, and exploiting natural secondary metabolites-are emerging as potential game changers. This review summarizes the key steps in HSV-2 pathogenesis and newly discovered cellular interactions, presenting the latest developments in the field, highlighting existing challenges, and offering a fresh perspective on HSV-2's pathogenesis and the potential avenues for its treatment by targeting cellular proteins and pathways.
Collapse
Affiliation(s)
- Hemant Borase
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA;
| | - Deepak Shukla
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA;
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
9
|
Zhao X, Wu X, Wang H, Lai S, Wang J. Targeted therapy for cisplatin-resistant lung cancer via aptamer-guided nano-zinc carriers containing USP14 siRNA. MedComm (Beijing) 2023; 4:e237. [PMID: 37035133 PMCID: PMC10077057 DOI: 10.1002/mco2.237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 04/11/2023] Open
Abstract
Cisplatin (DDP) is a common therapeutic option for non-small cell lung carcinoma (NSCLC). However, some patients fail to respond to the DDP chemotherapy. Therefore, identifying novel biomarkers to improve the diagnosis and treatment of NSCLC is important. Ubiquitin-specific protease (USP14) is involved in various pathological conditions including cancer; however, the role of USP14 in NSCLC remains elusive. The SELEX technology was used to identify aptamers that specifically recognize DDP-resistant lung cancer cells and couple them with nano-zinc (zinc hydroxide, Zn(OH)2) carriers. USP14 levels were higher in DDP-resistant lung cancer compared to DDP-sensitive lung cancer. The survival rate of lung cancer patients with increased USP14 expression was significantly lower than the survival rate of patients with low USP14 expression. Silencing USP14 increased the tumor antagonistic action of DDP in A549 cisplatin-resistant (A549/DDP) cells, while USP14 overexpression decreased the antagonist effects. Aptamer-targeted nano-zinc carriers were loaded with USP14 siRNA to target DDP-resistant lung cancer cells. Aptamer-targeted nano-zinc carriers containing USP14 siRNA increased the antitumor effects of DDP in A549/DDP cells and mice bearing A549/DDP cells. These results indicate that aptamer-guided nano-zinc carriers may be a potent carrier for the precise treatment of drug-resistant tumors.
Collapse
Affiliation(s)
- Xinmin Zhao
- Department of Thoracic Medical OncologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
| | - Xianghua Wu
- Department of Thoracic Medical OncologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
| | - Huijie Wang
- Department of Thoracic Medical OncologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
| | - Songtao Lai
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
- Department of Radiation OncologyFudan University Shanghai Cancer CenterShanghaiChina
- Shanghai Key Laboratory of Radiation OncologyShanghaiChina
| | - Jialei Wang
- Department of Thoracic Medical OncologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
| |
Collapse
|
10
|
Chen MJ, Gatignol A, Scarborough RJ. The discovery and development of RNA-based therapies for treatment of HIV-1 infection. Expert Opin Drug Discov 2023; 18:163-179. [PMID: 36004505 DOI: 10.1080/17460441.2022.2117296] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Long-term control of HIV-1 infection can potentially be achieved using autologous stem cell transplants with gene-modified cells. Non-coding RNAs represent a diverse class of therapeutic agents including ribozymes, RNA aptamers and decoys, small interfering RNAs, short hairpin RNAs, and U1 interference RNAs that can be designed to inhibit HIV-1 replication. They have been engineered for delivery as drugs to complement current HIV-1 therapies and as gene therapies for a potential HIV-1 functional cure. AREAS COVERED This review surveys the past three decades of development of these RNA technologies with a focus on their efficacy and safety for treating HIV-1 infections. We describe the mechanisms of each RNA-based agent, targets they have been developed against, efforts to enhance their stability and efficacy, and we evaluate their performance in past and ongoing preclinical and clinical trials. EXPERT OPINION RNA-based technologies are among the top candidates for gene therapies where they can be stably expressed for long-term suppression of HIV-1. Advances in both gene and drug delivery strategies and improvements to non-coding RNA stability and antiviral properties will cooperatively drive forward progress in improving drug therapy and engineering HIV-1 resistant cells.
Collapse
Affiliation(s)
- Michelle J Chen
- Lady Davis Institute for Medical Research, Montréal, Québec, Canada.,Department of Medicine, Division of Experimental Medicine, McGill University, Montréal, Québec, Canada
| | - Anne Gatignol
- Lady Davis Institute for Medical Research, Montréal, Québec, Canada.,Department of Medicine, Division of Experimental Medicine, McGill University, Montréal, Québec, Canada.,Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada
| | - Robert J Scarborough
- Lady Davis Institute for Medical Research, Montréal, Québec, Canada.,Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada
| |
Collapse
|
11
|
Serumula W, Nkambule B, Parboosing R. Novel Aptamers for the Reactivation of Latent HIV. Curr HIV Res 2023; 21:279-289. [PMID: 37881079 DOI: 10.2174/011570162x248488230926045852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 06/29/2023] [Accepted: 07/30/2023] [Indexed: 10/27/2023]
Abstract
INTRODUCTION A "Shock and Kill" strategy has been proposed to eradicate the HIV latent viral reservoir. Effective Latency Reversal Agents (LRA) are a key requirement for this strategy. The search for LRAs with a novel mechanism of action is ongoing. This is the first study to propose aptamers for the reactivation of HIV. OBJECTIVE The purpose of this study was to identify an aptamer that potentially reactivates HIV via the NF-κβ pathway, specifically by binding to IkB and releasing NF-κβ. METHODS Aptamer selection was performed at Aptus Biotech (www.aptusbiotech.es), using ikB human recombinant protein with His tag bound to Ni-NTA agarose resin using the SELEX procedure. Activation of NF-κβ was measured by SEAP Assay. HIV reactivation was measured in JLat cells using a BD FACS-Canto™ II flow cytometer. All flow cytometry data were analyzed using Kaluza analyzing software. RESULTS Clones that had equivalent or greater activation than the positive control in the SEAP assay were regarded as potential reactivators of the NF-κβ pathway and were sequenced. The three ikb clones namely R6-1F, R6-2F, and R6-3F were found to potentially activate the NF-κβ pathway. Toxicity was determined by exposing lymphocytes to serial dilutions of the aptamers; the highest concentration of the aptamers that did not decrease viability by > 20% was used for the reactivation experiments. The three novel aptamers R6-1F, R6-2F, and R6-3F resulted in 4,07%, 6,72% and 3,42% HIV reactivation, respectively, while the untreated control showed minimal (<0.18%) fluorescence detection. CONCLUSION This study demonstrated the reactivation of latent HIV by aptamers that act via the NF-κβ pathway. Although the effect was modest and unlikely to be of clinical benefit, future studies are warranted to explore ways of enhancing reactivation.
Collapse
Affiliation(s)
- William Serumula
- Department of Virology, National Health Laboratory Service/University of KwaZulu-Natal, c/o Inkosi Albert Luthuli Central Hospital, 5th Floor Laboratory Building, 800 Bellair Road, Mayville, Durban4091, South Africa
| | - Bongani Nkambule
- School of Laboratory Medicine and Medical Sciences (SLMMS), College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Raveen Parboosing
- National Health Laboratory Service/University of Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
12
|
Le Dortz LL, Rouxel C, Leroy Q, Brosseau N, Boulouis HJ, Haddad N, Lagrée AC, Deshuillers PL. Optimized Lambda Exonuclease Digestion or Purification Using Streptavidin-Coated Beads: Which One Is Best for Successful DNA Aptamer Selection? Methods Protoc 2022; 5:mps5060089. [PMID: 36412811 PMCID: PMC9680285 DOI: 10.3390/mps5060089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 12/14/2022] Open
Abstract
The high failure rate of the in vitro aptamer selection process by SELEX (Systematic Evolution of Ligands by EXponential enrichment) limits the production of these innovative oligonucleotides and, consequently, limits their potential applications. The generation of single-stranded DNA (ssDNA) is a critical step of SELEX, directly affecting the enrichment and the selection of potential binding sequences. The main goal of this study was to confirm the best method for generating ssDNA by comparing the purification of ssDNA, using streptavidin-coated beads, and lambda exonuclease digestion, and by improving ssDNA recovery through protocol improvements. In addition, three techniques for quantifying the ssDNA generated (Qubit vs. NanodropTM vs. gel quantification) were compared, and these demonstrated the accuracy of the gel-based quantification method. Lambda exonuclease digestion was found to be more efficient for ssDNA recovery than purification using streptavidin-coated beads, both quantitatively and qualitatively. In conclusion, this work provides a detailed and rigorous protocol for generating ssDNA, improving the chances of a successful aptamer selection process.
Collapse
|
13
|
Gautam V, Kumar R, Jain VK, Nagpal S. An overview of advancement in aptasensors for influenza detection. Expert Rev Mol Diagn 2022; 22:705-724. [PMID: 35994712 DOI: 10.1080/14737159.2022.2116276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The platforms for early identification of infectious diseases such as influenza has seen a surge in recent years as delayed diagnosis of such infections can lead to dreadful effects causing large numbers of deaths. The time taken in detection of an infectious disease may vary from a few days to a few weeks depending upon the choice of the techniques. So, there is an urgent need for advanced methodologies for early diagnosis of the influenza. AREAS COVERED The emergence of "Aptasensor" synergistically with biosensors for diagnosis has opened a new era for sensitive, selective and early detection approaches. This review described various conventional as well as advanced methods based on artificial immunogenic nucleotide sequences complementing a part of the virus, i.e., aptamers based aptasensors for influenza diagnosis and the challenges faced in their commercialization. EXPERT OPINION Although numerous traditional methods are available for influenza detection but mostly associated with low sensitivity, specificity, high cost, trained personnel, and animals required for virus culture/ antibody raising as the major drawbacks. Aptamers can be manufactured invitro as 'chemical antibodies' at commercial level, no animal required. Following these advantages, aptamers can pave the way for an efficient diagnostic technique as compared to other existing conventional methods..
Collapse
Affiliation(s)
- Varsha Gautam
- Amity Institute for Advanced Research and Studies (Materials & Devices), Amity University, Noida India, India
| | - Ramesh Kumar
- Department of Biotechnology, Indira Gandhi University, Meerpur, India
| | - Vinod Kumar Jain
- Amity Institute for Advanced Research and Studies (Materials & Devices), Amity University, Noida India, India
| | - Suman Nagpal
- Department of Environmental sciences, Indira Gandhi University, Meerpur, India
| |
Collapse
|
14
|
A Polyclonal Aptamer Library for the Specific Binding of the Gut Bacterium Roseburia intestinalis in Mixtures with Other Gut Microbiome Bacteria and Human Stool Samples. Int J Mol Sci 2022; 23:ijms23147744. [PMID: 35887092 PMCID: PMC9317077 DOI: 10.3390/ijms23147744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/11/2022] [Accepted: 07/11/2022] [Indexed: 02/07/2023] Open
Abstract
Roseburia intestinalis has received attention as a potential probiotic bacterium. Recent studies have demonstrated that changes in its intestinal abundance can cause various diseases, such as obesity, enteritis and atherosclerosis. Probiotic administration or fecal transplantation alter the structure of the intestinal flora, offering possibilities for the prevention and treatment of these diseases. However, current monitoring methods, such as 16S rRNA sequencing, are complex and costly and require specialized personnel to perform the tests, making it difficult to continuously monitor patients during treatment. Hence, the rapid and cost-effective quantification of intestinal bacteria has become an urgent problem to be solved. Aptamers are of emerging interest because their stability, low immunogenicity and ease of modification are attractive properties for a variety of applications. We report a FluCell-SELEX polyclonal aptamer library specific for R. intestinalis isolated after seven evolution rounds, that can bind and label this organism for fluorescence microscopy and binding assays. Moreover, R. intestinalis can be distinguished from other major intestinal bacteria in complex defined mixtures and in human stool samples. We believe that this preliminary evidence opens new avenues towards aptamer-based electronic biosensors as new powerful and inexpensive diagnostic tools for the relative quantitative monitoring of R. intestinalis in gut microbiomes.
Collapse
|
15
|
Ning Y, Wang X, Chen P, Liu S, Hu J, Xiao R, Li L, Lu F. Targeted inhibition of methicillin-resistant Staphylococcus aureus biofilm formation by a graphene oxide-loaded aptamer/berberine bifunctional complex. Drug Deliv 2022; 29:1675-1683. [PMID: 35616277 PMCID: PMC9154759 DOI: 10.1080/10717544.2022.2079768] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Biofilm formation is known to promote drug resistance in methicillin-resistant Staphylococcus aureus (MRSA), which is closely related to persistent infections in hospital settings. In this study, a DNA aptamer specific to penicillin-binding protein 2a (PBP2a) with a dissociation constant (Kd) of 82.97 ± 8.86 nM was obtained after 14 cycles of systematic evolution of ligands by exponential enrichment (SELEX). Next, a bifunctional complex containing the aptamer intercalated by berberine into the double-strand region was prepared and adsorbed onto the surface of graphene oxide (GO) by π-stacking interactions. The GO-loaded aptamer/berberine bifunctional complex showed significantly higher inhibition of MRSA biofilm formation than the control. Furthermore, this study shows that the complex possesses anti-biofilm activity, which can be attributed to the ability of the aptamer to reduce cell-surface attachment by blocking the function of PBP2a and berberine to attenuate the level of the accessory gene regulator (agr) system, which plays an important role in mediating MRSA biofilm formation. Therefore, the simultaneous delivery of berberine and PBP2a-targted aptamer using GO may have potential for the treatment of chronic infections caused by MRSA biofilms. It also provides a new avenue for multitarget treatment of bacterial biofilms.
Collapse
Affiliation(s)
- Yi Ning
- Department of Microbiology, The Medicine School of Hunan University of Chinese Medicine, Changsha, Hunan, People's Republic of China
| | - Xiaoqi Wang
- Department of Microbiology, The Medicine School of Hunan University of Chinese Medicine, Changsha, Hunan, People's Republic of China
| | - Pingan Chen
- Department of Microbiology, The Medicine School of Hunan University of Chinese Medicine, Changsha, Hunan, People's Republic of China
| | - Shiwu Liu
- Department of Microbiology, The Medicine School of Hunan University of Chinese Medicine, Changsha, Hunan, People's Republic of China
| | - Jue Hu
- Department of Microbiology, The Medicine School of Hunan University of Chinese Medicine, Changsha, Hunan, People's Republic of China
| | - Rong Xiao
- Department of Microbiology, The Medicine School of Hunan University of Chinese Medicine, Changsha, Hunan, People's Republic of China
| | - Ling Li
- Experimental Center of Molecular Biology, The Chinese Medicine School of Hunan University of Chinese Medicine, Changsha, Hunan, People's Republic of China
| | - Fangguo Lu
- Department of Microbiology, The Medicine School of Hunan University of Chinese Medicine, Changsha, Hunan, People's Republic of China
| |
Collapse
|
16
|
Troyano-Hernáez P, Reinosa R, Holguín Á. HIV Capsid Protein Genetic Diversity Across HIV-1 Variants and Impact on New Capsid-Inhibitor Lenacapavir. Front Microbiol 2022; 13:854974. [PMID: 35495642 PMCID: PMC9039614 DOI: 10.3389/fmicb.2022.854974] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/09/2022] [Indexed: 12/17/2022] Open
Abstract
The HIV p24 capsid protein has an essential, structural, and functional role in the viral replication cycle, being an interesting target for vaccine design, diagnostic tests, and new antiretroviral drugs (ARVs). The HIV-1 variability poses a challenge for the accuracy and efficiency of diagnostic and treatment tools. This study analyzes p24 diversity among HIV-1 variants and within its secondary structure in HIV-1 M, O, P, and N groups. All available HIV-1 p24 nucleotide sequences were downloaded from the Los Alamos HIV Sequence Database, selecting 23,671 sequences belonging to groups O, N, P, and M (9 subtypes, 7 sub-sub types, and 109 circulating recombinant forms or CRFs). Using a bioinformatics tool developed in our laboratory (EpiMolBio program), we analyzed the amino acid conservation compared to the HXB2 subtype B reference sequence and the V-markers, or amino acid changes that were specific for each variant with at least 10 available sequences. We inferred the p24 consensus sequence for HIV-1 and for each group to analyze the overall conservation in p24 main structural regions, reporting the percentage of substitutions per variant affecting the capsid assembly and molecule-binding, including those associated with resistance to the new capsid-inhibitor lenacapavir, and the key residues involved in lenacapavir-p24 interaction, according to the bibliography. Although the overall structure of p24 was highly conserved, the conservation in the secondary structure varied between HIV-1 variants and the type of secondary structure. All HIV-1 variants presented >80% amino acid conservation vs. HXB2 reference sequence, except for group M sub-subtype F1 (69.27%). Mutants affecting the capsid assembly or lenacapavir capsid-binding were found in <1% of the p24 consensus sequence. Our study reports the HIV-1 variants carrying 14 unique single V-markers in 9/38 group M variants and the level of p24 conservation in each secondary structure region among the 4 HIV-1 groups and group M variants, revealing no natural resistance to lenacapavir in any HIV-1 variant. We present a thorough analysis of p24 variability among all HIV-1 variants circulating to date. Since p24 genetic variability can impact the viral replication cycle and the efficacy of new p24-based diagnostic, therapeutic, and vaccine strategies, conservation studies must consider all HIV-1 variants circulating worldwide.
Collapse
Affiliation(s)
- Paloma Troyano-Hernáez
- HIV-1 Molecular Epidemiology Laboratory, Department of Microbiology, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Universitario Ramón y Cajal, CIBER en Epidemiología y Salud Pública (CIBERESP), Red en Investigación Translacional en Infecciones Pediátricas (RITIP), Madrid, Spain
| | - Roberto Reinosa
- HIV-1 Molecular Epidemiology Laboratory, Department of Microbiology, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Universitario Ramón y Cajal, CIBER en Epidemiología y Salud Pública (CIBERESP), Red en Investigación Translacional en Infecciones Pediátricas (RITIP), Madrid, Spain
| | - África Holguín
- HIV-1 Molecular Epidemiology Laboratory, Department of Microbiology, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Universitario Ramón y Cajal, CIBER en Epidemiología y Salud Pública (CIBERESP), Red en Investigación Translacional en Infecciones Pediátricas (RITIP), Madrid, Spain
| |
Collapse
|
17
|
Muturi E, Meng F, Liu H, Jiang M, Wei H, Yang H. Comprehensive Analysis of G-Quadruplexes in African Swine Fever Virus Genome Reveals Potential Antiviral Targets by G-Quadruplex Stabilizers. Front Microbiol 2022; 12:798431. [PMID: 34975822 PMCID: PMC8718096 DOI: 10.3389/fmicb.2021.798431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/11/2021] [Indexed: 12/24/2022] Open
Abstract
African Swine Fever Virus (ASFV), a lethal hemorrhagic fever of the swine, poses a major threat to the world's swine population and has so far resulted in devastating socio-economic consequences. The situation is further compounded by the lack of an approved vaccine or antiviral drug. Herein, we investigated a novel anti-ASFV approach by targeting G-Quadruplexes (G4s) in the viral genome. Bioinformatics analysis of putative G-quadruplex-forming sequences (PQSs) in the genome of ASFV BA71V strain revealed 317 PQSs on the forward strand and 322 PQSs on the reverse strand of the viral genome, translating to a density of 3.82 PQSs/kb covering 9.52% of the entire genome, which means that 85% of genes in the ASFV genome have at least 1 PQS on either strand. Biochemical characterization showed that 8 out of 13 conserved PQSs could form stable G4s in the presence of K+, and 4 of them could be stabilized by G4 ligands, N-Methyl Mesoporphyrin (NMM), and pyridostatin (PDS) in vitro. An enhanced green fluorescent protein (EGFP)-based reporter system revealed that the expression of two G4-containing genes, i.e., P1192R and D117L, could be significantly suppressed by NMM and PDS in 293T cells. In addition, a virus infection model showed that NMM could inhibit the replication of ASFV in Porcine Alveolar Macrophages (PAM) cells with an EC50 value of 1.16 μM. Altogether, the present study showed that functional PQSs existent in the promoters, CDS, 3' and 5' UTRs of the ASFV genome could be stabilized by G4 ligands, such as NMM and PDS, and could serve as potential targets for antivirals.
Collapse
Affiliation(s)
- Elishiba Muturi
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Fei Meng
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Huan Liu
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Mengwei Jiang
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Hongping Wei
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Hang Yang
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
18
|
Biophysical Characterization of Novel DNA Aptamers against K103N/Y181C Double Mutant HIV-1 Reverse Transcriptase. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27010285. [PMID: 35011517 PMCID: PMC8746315 DOI: 10.3390/molecules27010285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 02/07/2023]
Abstract
The human immunodeficiency virus type-1 Reverse Transcriptase (HIV-1 RT) plays a pivotal role in essential viral replication and is the main target for antiviral therapy. The anti-HIV-1 RT drugs address resistance-associated mutations. This research focused on isolating the potential specific DNA aptamers against K103N/Y181C double mutant HIV-1 RT. Five DNA aptamers showed low IC50 values against both the KY-mutant HIV-1 RT and wildtype (WT) HIV-1 RT. The kinetic binding affinity forms surface plasmon resonance of both KY-mutant and WT HIV-1 RTs in the range of 0.06–2 μM and 0.15–2 μM, respectively. Among these aptamers, the KY44 aptamer was chosen to study the interaction of HIV-1 RTs-DNA aptamer complex by NMR experiments. The NMR results indicate that the aptamer could interact with both WT and KY-mutant HIV-1 RT at the NNRTI drug binding pocket by inducing a chemical shift at methionine residues. Furthermore, KY44 could inhibit pseudo-HIV particle infection in HEK293 cells with nearly 80% inhibition and showed low cytotoxicity on HEK293 cells. These together indicated that the KY44 aptamer could be a potential inhibitor of both WT and KY-mutant HIV-RT.
Collapse
|
19
|
Haberland A, Müller J. Aptamers Against COVID-19: An Untested Opportunity. Mini Rev Med Chem 2022; 22:1708-1715. [PMID: 35023454 PMCID: PMC9896377 DOI: 10.2174/1389557522666220112094951] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/22/2021] [Accepted: 11/08/2021] [Indexed: 11/22/2022]
Abstract
Given the lack of success in the development of effective drugs to treat COVID-19, which show "game-changing" potential, it is necessary to explore drugs with different modes of action. Single mode-of-action drugs have not been succeeded in curing COVID-19, which is a highly complex disease. This is the case for direct antivirals and anti-inflammatory drugs, both of which treat different phases of the disease. Aptamers are molecules that deliver different modes of action, allowing their effects to be bundled, which, when combined, support their therapeutic efficacy. In this minireview, we summarise the current activities in the development of aptamers for the treatment of COVID-19 and long-COVID. A special emphasis is placed on the capability of their multiple modes of action, which is a promising approach for treating complex diseases such as COVID-19.
Collapse
Affiliation(s)
- Annekathrin Haberland
- Berlin Cures GmbH, Robert-Rössle-Str. 10, 13125 Berlin, Germany;,Address correspondence to this author at the Berlin Cures GmbH, Robert-Rössle-Str. 10, 13125 Berlin, Germany; E-mail:
| | - Johannes Müller
- Berlin Cures GmbH, Knesebeckstr. 59-61, 10719 Berlin, Germany
| |
Collapse
|
20
|
Qu N, Ying Y, Qin J, Chen AK. Rational design of self-assembled RNA nanostructures for HIV-1 virus assembly blockade. Nucleic Acids Res 2021; 50:e44. [PMID: 34967412 PMCID: PMC9071489 DOI: 10.1093/nar/gkab1282] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/16/2021] [Accepted: 12/15/2021] [Indexed: 11/14/2022] Open
Abstract
Many pathological processes are driven by RNA-protein interactions, making such interactions promising targets for molecular interventions. HIV-1 assembly is one such process, in which the viral genomic RNA interacts with the viral Gag protein and serves as a scaffold to drive Gag multimerization that ultimately leads to formation of a virus particle. Here, we develop self-assembled RNA nanostructures that can inhibit HIV-1 virus assembly, achieved through hybridization of multiple artificial small RNAs with a stem-loop structure (STL) that we identify as a prominent ligand of Gag that can inhibit virus particle production via STL-Gag interactions. The resulting STL-decorated nanostructures (double and triple stem-loop structures denoted as Dumbbell and Tribell, respectively) can elicit more pronounced viral blockade than their building blocks, with the inhibition arising as a result of nanostructures interfering with Gag multimerization. These findings could open up new avenues for RNA-based therapy.
Collapse
Affiliation(s)
- Na Qu
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
| | - Yachen Ying
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China.,Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China.,National Biomedical Imaging Center, Peking University, Beijing 100871, China
| | - Jinshan Qin
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China.,Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China.,National Biomedical Imaging Center, Peking University, Beijing 100871, China
| | - Antony K Chen
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China.,National Biomedical Imaging Center, Peking University, Beijing 100871, China
| |
Collapse
|
21
|
Ajamgard M, Sardroodi JJ, Ebrahimzadeh AR, Kamelabad MR. Molecular dynamics simulation study of gold nanosheet as drug delivery vehicles for anti-HIV-1 aptamers. Comput Biol Chem 2021; 95:107595. [PMID: 34739903 DOI: 10.1016/j.compbiolchem.2021.107595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/25/2021] [Accepted: 10/21/2021] [Indexed: 11/15/2022]
Abstract
The adsorption process of three aptamers with gold nanosheet (GNS) as a drug carrier has been investigated with the help of molecular dynamics simulations. The sequencing of the considered aptamers are as (CUUCAUUGUAACUUCUCAUAAUUUCCCGAGGCUUUUACUUUCGGGGUCCU) and (CCGGGUCGUCCCCUACGGGGACUAAAGACUGUGUCCAACCGCCCUCGCCU) for AP1 and AP2, respectively. AP3 is a muted version of AP1 in which nucleotide positions 4, 6, 18, 28 and 39 have C4A, U6G, A18G, G28A, and U39C mutations. At positions 24, and 40, a deletion mutation is seen to eliminate U24 and U40 bases. These aptamers are inhibitors for HIV-1 protease and can be candidates as potential pharmaceutics for treatment of AIDS in the future. The interactions between considered aptamers and GNS have been analyzed in detail with help of structural and energetic properties. These analyses showed that all three aptamers could well adsorb on GNS. Overall, the final results show that the adsorption of AP2 on the GNS is more favorable than other considered ones and consequently GNS can be considered as a device in order to immobilize these aptamers.
Collapse
Affiliation(s)
- Marzieh Ajamgard
- Molecular Simulation Laboratory (MSL), Azarbaijan Shahid Madani University, Tabriz, Iran; Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran; Molecular Sciences and Engineering Research Group (MSERG), Iran
| | - Jaber Jahanbin Sardroodi
- Molecular Simulation Laboratory (MSL), Azarbaijan Shahid Madani University, Tabriz, Iran; Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran; Molecular Sciences and Engineering Research Group (MSERG), Iran.
| | - Alireza Rastkar Ebrahimzadeh
- Molecular Simulation Laboratory (MSL), Azarbaijan Shahid Madani University, Tabriz, Iran; Department of Physics, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran; Molecular Sciences and Engineering Research Group (MSERG), Iran
| | - Mahrokh Rezaei Kamelabad
- Molecular Simulation Laboratory (MSL), Azarbaijan Shahid Madani University, Tabriz, Iran; Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran; Molecular Sciences and Engineering Research Group (MSERG), Iran
| |
Collapse
|
22
|
Cen Y, Wang Z, Ke P, Zhu W, Yuan Z, Feng S, Chen Y, Lin C, Liu X, Li Y, Yan P. Development of a novel ssDNA aptamer targeting cardiac troponin I and its clinical applications. Anal Bioanal Chem 2021; 413:7043-7053. [PMID: 34673993 DOI: 10.1007/s00216-021-03667-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/30/2021] [Accepted: 09/14/2021] [Indexed: 10/20/2022]
Abstract
Cardiac troponin I (cTnI) is a specific biomarker of acute myocardial infarction (AMI). However, cTnI detection kits prepared with antibodies have many defects. Nucleic acid aptamers are sequences of single-strand DNA or RNA that can overcome the deficiency of antibodies. Herein, sandwich ELONA methods were established based on aptamers. Two selected ssDNA aptamers (Apt3 and Apt6) showed high binding affinity and sensibility (Apt3: Kd = 1.01 ± 0.07 nM, Apt6: k = 0.68 ± 0.05) and did not bind to the same domain of cTnI. Therefore, these two aptamers can be applied to the ELONA methods. The detection range of cTnI using the dual-aptamer sandwich ELONA method was 0.05-200 ng/mL, and the bioanalytical method verification results can meet the national standard of Chinese Pharmacopoeia (2020 Edition). There was no difference between results of the dual-aptamer sandwich ELONA method and the diagnostic results of serum obtained from 243 people (P = 0.39, P ˃ 0.05). The sensitivity and specificity of the ELONA with cTnI in serum were 96.46% and 93.85%, respectively. Compared with the FICA kit, which is clinically used, the consequences of ELONA method are closer to the diagnostic results. This study suggests that the aptamers Apt3 and Apt6 have high affinity and strong specificity and that the dual-aptamer sandwich ELONA method has a wide detection range and can be used to determine cTnI in serum, with potential applications in the diagnosis of AMIs.
Collapse
Affiliation(s)
- Yi Cen
- Department of Pharmacy, Biomedicine Research Center, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhongping Wang
- Tongpeng Zhongxu Pharmaceutical Technology Company, Guangzhou, Guangdong, China
| | - Peixiong Ke
- Department of Pharmacology, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wenting Zhu
- Department of Pharmacy, Biomedicine Research Center, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhongwen Yuan
- Department of Pharmacy, Biomedicine Research Center, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Senling Feng
- Department of Pharmacy, Biomedicine Research Center, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yiqing Chen
- Tongpeng Zhongxu Pharmaceutical Technology Company, Guangzhou, Guangdong, China
| | - Caiyan Lin
- Tongpeng Zhongxu Pharmaceutical Technology Company, Guangzhou, Guangdong, China
| | - Xiaomin Liu
- Department of Pharmacy, Biomedicine Research Center, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yuting Li
- Department of Pharmacy, Biomedicine Research Center, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Pengke Yan
- Department of Pharmacy, Biomedicine Research Center, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
23
|
Gogola JL, Martins G, Gevaerd A, Blanes L, Cardoso J, Marchini FK, Banks CE, Bergamini MF, Marcolino-Junior LH. Label-free aptasensor for p24-HIV protein detection based on graphene quantum dots as an electrochemical signal amplifier. Anal Chim Acta 2021; 1166:338548. [PMID: 34022998 DOI: 10.1016/j.aca.2021.338548] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 02/06/2023]
Abstract
Human immunodeficiency virus (HIV) is still considered a pandemic, and the detection of p24-HIV protein has an important role in the early diagnosis of HIV in adults and newborns. The accessibility of these trials depends on the price and execution difficulty of the method, which can be reduced using electrochemical methods by using enzymeless approaches, disposable and accurate devices. In this work, graphene quantum dots were acquired by a simple synthesis and employed as an electrochemical signal amplifier and support for the aptamer immobilization through a feasible and stable modification of disposable screen-printed electrodes. The device has been easily assembled and used to detect p24-HIV protein without the interference of similar proteins or sample matrix. Using the best set of experimental conditions, a linear correlation between analytical signal and log of p24-HIV concentration from 0.93 ng mL-1 to 93 μg mL-1 and a limit of detection of 51.7 pg mL-1 were observed. The developed device was applied to p24 determination in spiked human serum and provided distinct levels of signal for positive and negative samples, successfully identifying real samples with the target protein. This sensor is a step towards the development of point-of-care devices and the popularization of electrochemical methods for trials and diagnostics of relevant diseases.
Collapse
Affiliation(s)
- Jeferson L Gogola
- Laboratório de Sensores Eletroquímicos (LabSensE), Departamento de Química, Universidade Federal Do Paraná (UFPR), CP 19032, CEP, 81531-990 Curitiba, PR, Brazil
| | - Gustavo Martins
- Laboratório de Sensores Eletroquímicos (LabSensE), Departamento de Química, Universidade Federal Do Paraná (UFPR), CP 19032, CEP, 81531-990 Curitiba, PR, Brazil
| | - Ava Gevaerd
- Laboratório de Sensores Eletroquímicos (LabSensE), Departamento de Química, Universidade Federal Do Paraná (UFPR), CP 19032, CEP, 81531-990 Curitiba, PR, Brazil
| | - Lucas Blanes
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Curitiba, Brazil
| | | | - Fabricio Klerynton Marchini
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Curitiba, Brazil
| | - Craig E Banks
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street Manchester M1 5GD, UK
| | - Márcio F Bergamini
- Laboratório de Sensores Eletroquímicos (LabSensE), Departamento de Química, Universidade Federal Do Paraná (UFPR), CP 19032, CEP, 81531-990 Curitiba, PR, Brazil
| | - Luiz H Marcolino-Junior
- Laboratório de Sensores Eletroquímicos (LabSensE), Departamento de Química, Universidade Federal Do Paraná (UFPR), CP 19032, CEP, 81531-990 Curitiba, PR, Brazil.
| |
Collapse
|
24
|
Recent Progress and Opportunities for Nucleic Acid Aptamers. Life (Basel) 2021; 11:life11030193. [PMID: 33671039 PMCID: PMC7997341 DOI: 10.3390/life11030193] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/20/2021] [Accepted: 02/25/2021] [Indexed: 02/06/2023] Open
Abstract
Coined three decades ago, the term aptamer and directed evolution have now reached their maturity. The concept that nucleic acid could modulate the activity of target protein as ligand emerged from basic science studies of viruses. Aptamers are short nucleic acid sequences capable of specific, high-affinity molecular binding, which allow for therapeutic and diagnostic applications. Compared to traditional antibodies, aptamers have several advantages, including small size, flexible structure, good biocompatibility, and low immunogenicity. In vitro selection method is used to isolate aptamers that are specific for a desired target from a randomized oligonucleotide library. The first aptamer drug, Macugen, was approved by FDA in 2004, which was accompanied by many studies and clinical investigations on various targets and diseases. Despite much promise, most aptamers have failed to meet the requisite safety and efficacy standards in human clinical trials. Amid these setbacks, the emergence of novel technologies and recent advances in aptamer and systematic evolution of ligands by exponential enrichment (SELEX) design are fueling hope in this field. The unique properties of aptamer are gaining renewed interest in an era of COVID-19. The binding performance of an aptamer and reproducibility are still the key issues in tackling current hurdles in clinical translation. A thorough analysis of the aptamer binding under varying conditions and the conformational dynamics is warranted. Here, the challenges and opportunities of aptamers are reviewed with recent progress.
Collapse
|
25
|
Li HY, Jia WN, Li XY, Zhang L, Liu C, Wu J. Advances in detection of infectious agents by aptamer-based technologies. Emerg Microbes Infect 2020; 9:1671-1681. [PMID: 32623963 PMCID: PMC7473197 DOI: 10.1080/22221751.2020.1792352] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 07/01/2020] [Indexed: 02/07/2023]
Abstract
Infectious diseases still remain one of the biggest challenges for human health. Accurate and early detection of infectious pathogens are crucial for transmission control, clinical diagnosis, and therapy. For a traditional reason, most immunological and microbiological laboratories are equipped with instruments designated for antibody-based assays in detection of infectious pathogens or clinical diagnosis. Emerging aptamer-based technologies have pushed a shift from antibody-based to aptamer-based assays due to equal specificity, even better sensitivity, lower manufacturing cost and more flexibility in amending for chemiluminescent, electrochemical or fluorescent detection in a multifaceted and high throughput fashion in comparison of aptamer-based to antibody-based assays. The nature of aptamer-based technologies is particularly suitable for point-of-care testing in remote areas at warm or hot atmosphere, and mass screening for potential infection in pandemic of emerging infectious agents, such as SARS-CoV or SARS-CoV-2 in an epicentre or other regions. This review intends to summarize currently available aptamer-based technologies in detection of bacterial, viral, and protozoan pathogens for research and clinical application. It is anticipated that potential technologies will be further optimized and validated for clinical translation in meeting increasing demands for prompt, precise, and reliable detection of specific pathogens in various atmospheric conditions.
Collapse
Affiliation(s)
- Hui-Yan Li
- Department of Medical Microbiology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, People’s Republic of China
| | - Wan-Nan Jia
- Department of Medical Microbiology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, People’s Republic of China
| | - Xin-Yi Li
- Department of Medical Microbiology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, People’s Republic of China
| | - Li Zhang
- Department of Medical Microbiology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, People’s Republic of China
| | - Chang Liu
- Department of Medical Microbiology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, People’s Republic of China
| | - Jian Wu
- Department of Medical Microbiology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, People’s Republic of China
- Department of Gastroenterology & Hepatology, Zhongshan Hospital of Fudan University, Shanghai, People’s Republic of China
- Shanghai Institute of Liver Diseases, Fudan University Shanghai Medical College, Shanghai, People’s Republic of China
| |
Collapse
|
26
|
Ma R, He J, Xu B, Zhao C, Zhang Y, Li X, Sun S, Zhang Q. Nomogram prediction of surgical site infection of HIV-infected patients following orthopedic surgery: a retrospective study. BMC Infect Dis 2020; 20:896. [PMID: 33243159 PMCID: PMC7690143 DOI: 10.1186/s12879-020-05613-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 11/11/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Surgical site infection (SSI) is a devastating complication of orthopedic surgery, related with increased morbidity and mortality. This study was performed with the aim to compare the SSI rate in human immunodeficiency virus HIV-positive patients, to identify other risk factors for SSI and to establish a nomogram model to predict the risk of SSI. METHODS A total of 101 HIV-positive individuals following orthopedic surgery patients admitted to Beijing Ditan Hospital. Their characteristics were gathered. The univariate and multiple logistic regression analysis were performed to explore the risk factors of SSI. And the Nomogram prediction model was constructed and verified. RESULTS The independent predictive factors of SSI included CD4 (Odds ratio [OR], 0.041; P = 0.040), erythrocyte sedimentation rate (ESR) (OR, 89.773; P = 0.030), and procalcitonin (PCT) (OR, 220.746; P = 0.006). The scoring nomogram model was as follows: Logit (SSI) = - 2.63589-0.00314*CD4 < 430.75 = 1) + 0.04695*(ESR < 17.46 = 1) + 2.93694*(PCT < 0.22 = 1). The area under the Receiver Operating Characteristic (ROC) curve was 0.946. The cutoff score was - 2.1026 with a sensitivity of 93.33% and a specificity of 84.88%. CONCLUSIONS CD4, ESR, PCT might affect the occurrence of SSI after orthopedic surgery. The nomogram model constructed in this study is helpful for predicting the probability of SSI.
Collapse
Affiliation(s)
- Rui Ma
- Department of Orthopaedics, Beijing Ditan Hospital, Capital Medical University, No. 8 Jingshun East Street, Chaoyang District, Beijing, 100015, China
| | - Jie He
- Department of Orthopaedics, Beijing Ditan Hospital, Capital Medical University, No. 8 Jingshun East Street, Chaoyang District, Beijing, 100015, China
| | - Biao Xu
- Department of Orthopaedics, Beijing Ditan Hospital, Capital Medical University, No. 8 Jingshun East Street, Chaoyang District, Beijing, 100015, China
| | - Changsong Zhao
- Department of Orthopaedics, Beijing Ditan Hospital, Capital Medical University, No. 8 Jingshun East Street, Chaoyang District, Beijing, 100015, China
| | - Yao Zhang
- Department of Orthopaedics, Beijing Ditan Hospital, Capital Medical University, No. 8 Jingshun East Street, Chaoyang District, Beijing, 100015, China
| | - Xin Li
- Department of Orthopaedics, Beijing Ditan Hospital, Capital Medical University, No. 8 Jingshun East Street, Chaoyang District, Beijing, 100015, China
| | - Sheng Sun
- Department of Orthopaedics, Beijing Ditan Hospital, Capital Medical University, No. 8 Jingshun East Street, Chaoyang District, Beijing, 100015, China
| | - Qiang Zhang
- Department of Orthopaedics, Beijing Ditan Hospital, Capital Medical University, No. 8 Jingshun East Street, Chaoyang District, Beijing, 100015, China.
| |
Collapse
|
27
|
Riccardi C, Napolitano E, Musumeci D, Montesarchio D. Dimeric and Multimeric DNA Aptamers for Highly Effective Protein Recognition. Molecules 2020; 25:E5227. [PMID: 33182593 PMCID: PMC7698228 DOI: 10.3390/molecules25225227] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/06/2020] [Accepted: 11/08/2020] [Indexed: 12/14/2022] Open
Abstract
Multivalent interactions frequently occur in biological systems and typically provide higher binding affinity and selectivity in target recognition than when only monovalent interactions are operative. Thus, taking inspiration by nature, bivalent or multivalent nucleic acid aptamers recognizing a specific biological target have been extensively studied in the last decades. Indeed, oligonucleotide-based aptamers are suitable building blocks for the development of highly efficient multivalent systems since they can be easily modified and assembled exploiting proper connecting linkers of different nature. Thus, substantial research efforts have been put in the construction of dimeric/multimeric versions of effective aptamers with various degrees of success in target binding affinity or therapeutic activity enhancement. The present review summarizes recent advances in the design and development of dimeric and multimeric DNA-based aptamers, including those forming G-quadruplex (G4) structures, recognizing different key proteins in relevant pathological processes. Most of the designed constructs have shown improved performance in terms of binding affinity or therapeutic activity as anti-inflammatory, antiviral, anticoagulant, and anticancer agents and their number is certainly bound to grow in the next future.
Collapse
Affiliation(s)
- Claudia Riccardi
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy; (E.N.); (D.M.); (D.M.)
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania Luigi Vanvitelli, via Sergio Pansini, 5, I-80131 Naples, Italy
| | - Ettore Napolitano
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy; (E.N.); (D.M.); (D.M.)
| | - Domenica Musumeci
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy; (E.N.); (D.M.); (D.M.)
- Institute of Biostructures and Bioimages, CNR, via Mezzocannone 16, I-80134 Naples, Italy
| | - Daniela Montesarchio
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy; (E.N.); (D.M.); (D.M.)
| |
Collapse
|
28
|
A Molecular Dynamics Study Proposing the Existence of Structural Interaction Between Cancer Cell Receptor and RNA Aptamer. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-020-01740-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Fellows T, Ho L, Flanagan S, Fogel R, Ojo D, Limson J. Gold nanoparticle-streptavidin conjugates for rapid and efficient screening of aptamer function in lateral flow sensors using novel CD4-binding aptamers identified through Crossover-SELEX. Analyst 2020; 145:5180-5193. [PMID: 32567629 DOI: 10.1039/d0an00634c] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
To decrease the burden of laborious and reagent-intensive screening of modified aptamers, their binding function requires assessment in assay formats compatible with the end diagnostic application. Here, we report on the use of an alternative and cost-effective approach: a rapid lateral flow assay (LFA) utilising streptavidin-conjugated gold nanoparticles (AuNP) as reporter molecules to screen novel ssDNA aptamers for their ability to detect CD4. Crossover-SELEX was employed to identify CD4-targeting aptamers from a ssDNA library enriched against a recombinant human CD4 protein (hCD4) conjugated to magnetic-beads and to endogenous CD4 expressed by U937 cells. Counter-selection with IgG-conjugated beads and CD4-negative Ramos RA-1 cells was employed. Following SELEX, four sequences (U4, U14, U20 and U26) were selected for candidate screening. Fluorescence confocal microscopy showed comparable localization of the Cy5-labeled aptamer U26, compared to antibodies binding CD4's cytoplasmic domain. Aptamer-hCD4 binding kinetics were evaluated by a qPCR-based magnetic-bead binding assay to unmodified aptamers. U26 exhibited the highest binding affinity (Kd = 2.93 ± 1.03 nM) to hCD4-conjugated beads. Citrate-stabilized gold nanoparticles (mean particle diameter, 10.59 ± 1.81 nm) were functionalized with streptavidin to allow immobilization of biotin-labeled aptamers. Except for U4, the aptamer-gold nanoparticle conjugates (Apt-AuNP) remained stable under physiological conditions with their size (approx. 15 nm) appropriate for use in the LFAs. Lateral-flow based screening was used to evaluate the suitability of the Apt-AuNPs as CD4-detecting reporter molecules by immobilizing hCD4 and flowing the nanoparticle conjugates across the LFA. Using this approach, two novel sequences were identified as being suitable for the detection of hCD4: visual detection at 9 min was obtained using U20 or U26. After 20 min, equivalent colorimetric hCD4 responses were observed between anti-CD4 monoclonal antibody (ΔI = 94.19 ± 3.71), an existing CD4 aptamer F1-62 (ΔI = 90.31 ± 19.31) and U26 (ΔI = 100.14 ± 14.61) LFA's, each demonstrating high specificity to hCD4 compared to IgG. From the above, Crossover-SELEX allowed for the successful identification of ssDNA aptamers able to detect hCD4. Streptavidin-conjugated AuNPs, when bound to candidate aptamers, show potential application here as screening tools for the rapid evaluation of aptamer performance in low-cost lateral flow diagnostics.
Collapse
Affiliation(s)
- Tamika Fellows
- Rhodes University Biotechnology Innovation Centre, Grahamstown, Eastern Cape, South Africa.
| | | | | | | | | | | |
Collapse
|
30
|
Aptamers Against Live Targets: Is In Vivo SELEX Finally Coming to the Edge? MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 21:192-204. [PMID: 32585627 PMCID: PMC7321788 DOI: 10.1016/j.omtn.2020.05.025] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 04/18/2020] [Accepted: 05/20/2020] [Indexed: 12/14/2022]
Abstract
Targeted therapeutics underwent a revolution with the entry of monoclonal antibodies in the medical toolkit. Oligonucleotide aptamers form another family of target agents that have been lagging behind in reaching the clinical arena in spite of their potential clinical translation. Some of the reasons for this might be related to the challenge in identifying aptamers with optimal in vivo specificity, and the nature of their pharmacokinetics. Aptamers usually show exquisite specificity, but they are also molecules that display dynamic structures subject to changing environments. Temperature, ion atmosphere, pH, and other variables are factors that could determine the affinity and specificity of aptamers. Thus, it is important to tune the aptamer selection process to the conditions in which you want your final aptamer to function; ideally, for in vivo applications, aptamers should be selected in an in vivo-like system or, ultimately, in a whole in vivo organism. In this review we recapitulate the implementations in systematic evolution of ligands by exponential enrichment (SELEX) to obtain aptamers with the best in vivo activity.
Collapse
|
31
|
Dunn MR, McCloskey CM, Buckley P, Rhea K, Chaput JC. Generating Biologically Stable TNA Aptamers that Function with High Affinity and Thermal Stability. J Am Chem Soc 2020; 142:7721-7724. [PMID: 32298104 DOI: 10.1021/jacs.0c00641] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Aptamers are often prone to nuclease digestion, which limits their utility in many biomedical applications. Here we describe a xeno-nucleic acid system based on α-l-threofuranosyl nucleic acid (TNA) that is completely refractory to nuclease digestion. The use of an engineered TNA polymerase permitted the isolation of functional TNA aptamers that bind to HIV reverse transcriptase (HIV RT) with KD's of ∼0.4-4.0 nM. The aptamers were identified using a display strategy that provides a powerful genotype-phenotype linkage. The TNA aptamers remain active in the presence of nuclease and exhibit markedly higher thermal stability than monoclonal antibodies. The combined properties of biological stability, high binding affinity, and thermal stability make TNA aptamers a powerful system for the development of diagnostic and therapeutic agents.
Collapse
Affiliation(s)
| | | | - Patricia Buckley
- U.S. Army CCDC Chemical Biological Center, APG, Maryland 21010, United States
| | - Katherine Rhea
- Excet, Inc., 8001 Braddock Road, Ste. 303, Springfield, Virginia 22151, United States
| | | |
Collapse
|
32
|
Xiang W, Lv Q, Shi H, Xie B, Gao L. Aptamer-based biosensor for detecting carcinoembryonic antigen. Talanta 2020; 214:120716. [PMID: 32278406 DOI: 10.1016/j.talanta.2020.120716] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 12/30/2019] [Accepted: 01/03/2020] [Indexed: 02/07/2023]
Abstract
Carcinoembryonic antigen (CEA), as one of the common tumor markers, is a human glycoprotein involved in cell adhesion and is expressed during human fetal development. Since the birth of human, CEA expression is largely inhibited, with only low levels in the plasma of healthy adults. Generally, CEA will overexpressed in many cancers, including gastric, breast, ovarian, lung, and pancreatic cancers, especially colorectal cancer. As one of the important tumor markers, the detection of CEA has great significance in differential diagnosis, condition monitoring and therapeutic evaluation of diseases. Conventional CEA testing typically uses immunoassay methods. However, immunoassay methods require complex and expensive instruments and professional personnel to operate. Moreover, radioactive element may cause certain damage to the human body, which limits their wide application. In the past few years, biosensors, especially aptamer-based biosensors, have attracted extensive attention due to their high sensitivity, good selectivity, high accuracy, fast response and low cost. This review briefly classifies and describes the advance in optical and electrochemical aptamer biosensors for CEA detection, also explains and compares their advantages and disadvantages.
Collapse
Affiliation(s)
- Wenwen Xiang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, 212013, PR China
| | - Qiuxiang Lv
- Institute of Life Sciences, Jiangsu University, Zhenjiang, 212013, PR China
| | - Haixia Shi
- P. E. Department of Jiangsu University, Zhenjiang, 212013, PR China
| | - Bing Xie
- Department of Obstetrics and Gynecology, The Fourth People's Hospital of Zhenjiang, Zhenjiang, 212000, PR China
| | - Li Gao
- Institute of Life Sciences, Jiangsu University, Zhenjiang, 212013, PR China.
| |
Collapse
|
33
|
Dutta RK, Chinnapaiyan S, Unwalla H. Aberrant MicroRNAomics in Pulmonary Complications: Implications in Lung Health and Diseases. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 18:413-431. [PMID: 31655261 PMCID: PMC6831837 DOI: 10.1016/j.omtn.2019.09.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 09/09/2019] [Accepted: 09/11/2019] [Indexed: 02/07/2023]
Abstract
Over the last few decades, evolutionarily conserved molecular networks have emerged as important regulators in the expression and function of eukaryotic genomes. Recently, miRNAs (miRNAs), a large family of small, non-coding regulatory RNAs were identified in these networks as regulators of endogenous genes by exerting post-transcriptional gene regulation activity in a broad range of eukaryotic species. Dysregulation of miRNA expression correlates with aberrant gene expression and can play an essential role in human health and disease. In the context of the lung, miRNAs have been implicated in organogenesis programming, such as proliferation, differentiation, and morphogenesis. Gain- or loss-of-function studies revealed their pivotal roles as regulators of disease development, potential therapeutic candidates/targets, and clinical biomarkers. An altered microRNAome has been attributed to several pulmonary diseases, such as asthma, chronic pulmonary obstructive disease, cystic fibrosis, lung cancer, and idiopathic pulmonary fibrosis. Considering the relevant roles and functions of miRNAs under physiological and pathological conditions, they may lead to the invention of new diagnostic and therapeutic tools. This review will focus on recent advances in understanding the role of miRNAs in lung development, lung health, and diseases, while also exploring the progress and prospects of their application as therapeutic leads or as biomarkers.
Collapse
Affiliation(s)
- Rajib Kumar Dutta
- Department of Immunology and Nano-medicine, Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Srinivasan Chinnapaiyan
- Department of Immunology and Nano-medicine, Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Hoshang Unwalla
- Department of Immunology and Nano-medicine, Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA.
| |
Collapse
|
34
|
Computer-designed orthogonal RNA aptamers programmed to recognize Ebola virus glycoproteins. BIOSAFETY AND HEALTH 2019. [DOI: 10.1016/j.bsheal.2019.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
35
|
Olson A, Basukala B, Wong WW, Henderson AJ. Targeting HIV-1 proviral transcription. Curr Opin Virol 2019; 38:89-96. [PMID: 31473372 DOI: 10.1016/j.coviro.2019.07.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 12/13/2022]
Abstract
Despite the success of antiretroviral therapies, there is no cure for HIV-1 infection due to the establishment of a long-lived latent reservoir that fuels viral rebound upon treatment interruption. 'Shock-and-kill' strategies to diminish the latent reservoir have had modest impact on the reservoir leading to considerations of alternative approaches to target HIV-1 proviruses. This review explores approaches to target HIV-1 transcription as a way to block the provirus expression.
Collapse
Affiliation(s)
- Alex Olson
- Department of Medicine, Section of Infectious Diseases, Boston University School of Medicine, United States
| | - Binita Basukala
- Cell & Molecular Biology, Biology, Boston University, United States
| | - Wilson W Wong
- Biomedical Engineering, Boston University, United States
| | - Andrew J Henderson
- Department of Medicine, Section of Infectious Diseases, Boston University School of Medicine, United States.
| |
Collapse
|
36
|
The Boron Nitride Nanotube, an Ideal Host Structure for Efficient Immobilization and Delivery of RNA Aptamer: Classical Molecular Dynamics Simulation. J Inorg Organomet Polym Mater 2019. [DOI: 10.1007/s10904-019-01220-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
37
|
Habibzadeh Mashatooki M, Abbasi A, Jahanbin Sardroodi J. In silico studies of the interaction of the colon cancer receptor and RNA aptamer adsorbed on (1 0 1) facet of TiO2 nanoparticle investigated by molecular dynamics simulation. ADSORPTION 2019. [DOI: 10.1007/s10450-019-00126-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
38
|
Habibzadeh Mashatooki M, Rastkar Ebrahimzadeh A, Jahanbin Sardroodi J, Abbasi A. Investigation of TiO2 anatase (1 0 1), (1 0 0) and (1 1 0) facets as immobilizer for a potential anticancer RNA aptamer: a classical molecular dynamics simulation. MOLECULAR SIMULATION 2019. [DOI: 10.1080/08927022.2019.1605601] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Mohaddeseh Habibzadeh Mashatooki
- Molecular Simulation laboratory (MSL), Azarbaijan Shahid Madani University, Tabriz, Iran
- Computational Nanomaterials Research Group (CNRG), Azarbaijan Shahid Madani University, Tabriz, Iran
- Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Alireza Rastkar Ebrahimzadeh
- Molecular Simulation laboratory (MSL), Azarbaijan Shahid Madani University, Tabriz, Iran
- Computational Nanomaterials Research Group (CNRG), Azarbaijan Shahid Madani University, Tabriz, Iran
- Department of Physics, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Jaber Jahanbin Sardroodi
- Molecular Simulation laboratory (MSL), Azarbaijan Shahid Madani University, Tabriz, Iran
- Computational Nanomaterials Research Group (CNRG), Azarbaijan Shahid Madani University, Tabriz, Iran
- Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Amirali Abbasi
- Molecular Simulation laboratory (MSL), Azarbaijan Shahid Madani University, Tabriz, Iran
- Computational Nanomaterials Research Group (CNRG), Azarbaijan Shahid Madani University, Tabriz, Iran
- Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| |
Collapse
|
39
|
Molecular Dynamics Investigation of the Interactions Between RNA Aptamer and Graphene-Monoxide/Boron-Nitride Surfaces: Applications to Novel Drug Delivery Systems. J Inorg Organomet Polym Mater 2019. [DOI: 10.1007/s10904-019-01089-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|