1
|
Zhang Z, Shan X, Li S, Chang J, Zhang Z, Dong Y, Wang L, Liang F. Retinal light damage: From mechanisms to protective strategies. Surv Ophthalmol 2024; 69:905-915. [PMID: 39053594 DOI: 10.1016/j.survophthal.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/09/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
Visible light serves as a crucial medium for vision formation.;however, prolonged or excessive exposure to light is recognized as a significant etiological factor contributing to retinal degenerative diseases. The retina, with its unique structure and adaptability, relies on the homeostasis of cellular functions to maintain visual health. Under normal conditions, the retina can mount adaptive responses to various insults, including light-induced damage. Unfortunately, exposure to intense and excessive light triggers a cascade of pathological alterations in retinal photoreceptor cells, pigment epithelial cells, ganglion cells, and glial cells. These alterations encompass disruption of intracellular REDOX and Ca²⁺ homeostasis, pyroptosis, endoplasmic reticulum stress, autophagy, and the release of inflammatory cytokines, culminating in irreversible retinal damage. We first delineate the mechanisms of retinal light damage through 4 main avenues: mitochondria function, endoplasmic reticulum stress, cell autophagy, and inflammation. Subsequently, we discuss protective strategies against retinal light damage, aiming to guide research toward the prevention and treatment of light-induced retinal conditions.
Collapse
Affiliation(s)
- Zhao Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Xiaoqian Shan
- Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Shujiao Li
- Eye Hospital, China Academy of Chinese Medical Sciences, Beijing 100040, China
| | - Jun Chang
- Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Zhenhua Zhang
- Tongliang District Hospital of Traditional Chinese Medicine, Chongqing 402560, China
| | - Yang Dong
- Ji'nan Hospital of Traditional Chinese Medicine, Jinan, 250002, China
| | - Li Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Fengming Liang
- Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
| |
Collapse
|
2
|
Wan Z, Wu Y, Shen T, Hu C, Lin R, Ren C, Yu D, Li T, Zhu M, Cai W, Yu J. Evaluation of inflammatory hyperreflective foci and plasma EPA as diagnostic and predictive markers for age-related macular degeneration. Front Neurosci 2024; 18:1401101. [PMID: 39450123 PMCID: PMC11499227 DOI: 10.3389/fnins.2024.1401101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/16/2024] [Indexed: 10/26/2024] Open
Abstract
Objectives To detect the plasma polyunsaturated fatty acids (PUFAs) concentrations in age-related macular degeneration (AMD) patients and healthy controls. Additionally, advanced studies were conducted to investigate the relationship between PUFAs concentrations and ophthalmological characteristics, including hyperreflective foci (HRF), visual acuity, and anti-vascular endothelial growth factor (anti-VEGF) response in patients with AMD. Methods This prospective, single-site study recruited a total of 315 participants, consisting of 105 individuals with dry AMD (early-stage AMD group), 105 individuals with neovascular AMD (late-stage AMD group), and 105 elderly individuals without any fundus diseases (healthy controls). The levels of omega-3 and omega-6 PUFAs in plasma were detected using gas chromatography. Retinal thickness, choroidal thickness, and macular volume were quantified using optical coherence tomography angiography (OCTA) scan with a 6 × 6 mm macular area, and the amounts of HRF were analyzed with OCTA scanning data. Results Compared to the control group, AMD patients exhibited significantly lower plasma concentrations of eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) and alpha linolenic acid. HRF were observed in various retinal layers of AMD patients, particularly those with late-stage AMD. The correlation coefficient matrix and multiple linear regression models demonstrated that HRF played a crucial role in best corrected visual acuity for both early (p < 0.001) and late-stage AMD patients (p = 0.006), while EPA had an inverse effect on the logarithm of the minimum angle of resolution (logMAR) value in patients with early-stage AMD (p < 0.001). As compared to patients with good responses to anti-VEGF therapy, those with poor responses had significantly lower baseline logMAR (p < 0.001), central retina thickness (p = 0.002), macular volume (p = 0.027), HRF (p = 0.024), and plasma EPA (p < 0.001). This study used a ROC curve analysis to identify the combination of HRF and EPA as a potential biomarker for predicting the response to anti-VEGF treatment in late-stage AMD patients, with an area under the curve (AUC) value of 0.775. Conclusions Reduced plasma EPA was detected in AMD cases and the lower EPA concentration was related to poorer visual acuity. Additionally, the quantity of HRF combined with concentration of plasma EPA may serve as the prognostic indicator for predicting the effect of anti-VEGF treatment in late-stage AMD patients.
Collapse
Affiliation(s)
- Zhongqi Wan
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yan Wu
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Tianyi Shen
- Department of Ophthalmology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chengyu Hu
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ruoyi Lin
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Chengda Ren
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Donghui Yu
- Department of Ophthalmology, Shanghai First People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Tingting Li
- Department of Ophthalmology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Meijiang Zhu
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wenting Cai
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jing Yu
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Ophthalmology, The Third People's Hospital of Bengbu, Bengbu, China
| |
Collapse
|
3
|
Yang Y, Zhang T, Li Q, Ling Y, Ma Y, Tao S. SQSTM1 improves acute lung injury via inhibiting airway epithelium ferroptosis in a vitamin D receptor/autophagy-mediated manner. Free Radic Biol Med 2024; 222:588-600. [PMID: 38996820 DOI: 10.1016/j.freeradbiomed.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 07/06/2024] [Accepted: 07/08/2024] [Indexed: 07/14/2024]
Abstract
Emerging evidence has reported that acute lung injury (ALI), characterized by inflammation and oxidative stress in airway epithelium, is regulated by programmed cell death. Ferroptosis, a regulated form of cell death spurred by uncontrolled lipid peroxidation, has been proven to implicate various diseases. Inhibiting ferroptosis represents a feasible strategy for ALI through the suppression of lipid peroxidation, while the mechanism remains to be further elucidated. Here, we identified Sequestosome 1 (SQSTM1) as a negative regulator of airway epithelium ferroptosis during ALI. SQSTM1 knockdown cells manifested higher sensitivity to ferroptosis. Mechanistically, SQSTM1 was found to directly interact with vitamin D receptor (VDR) through its nuclear receptor (NR) box motif, facilitating its nuclear translocation and initiating autophagy at the transcriptional level. To further validate these findings, an in vivo preventive model utilizing spermidine, a proven inducer of SQSTM1 was established. The results consistently demonstrated that spermidine supplementation significantly induced SQSTM1 and ameliorated ALI by mitigating airway epithelial ferroptosis. Notably, these effects were abrogated in the absence of SQSTM1. Taken together, this study identified SQSTM1 as a negative regulator of airway epithelium ferroptosis in a VDR-mediated autophagy manner, making it a potential therapeutic target for the treatment of ALI.
Collapse
Affiliation(s)
- Youjing Yang
- Chongqing Emergency Medical Center, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing, China; Chongqing Key Laboratory of Emergency Medicine, Chongqing, China.
| | - Tao Zhang
- Chongqing Emergency Medical Center, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing, China; Chongqing Key Laboratory of Emergency Medicine, Chongqing, China
| | - Qianmin Li
- Chongqing Emergency Medical Center, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Yi Ling
- School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Yu Ma
- Chongqing Emergency Medical Center, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing, China; Chongqing Key Laboratory of Emergency Medicine, Chongqing, China
| | - Shasha Tao
- Chongqing Emergency Medical Center, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing, China; Chongqing Key Laboratory of Emergency Medicine, Chongqing, China.
| |
Collapse
|
4
|
Zhang Z, Liang F, Chang J, Shan X, Yin Z, Wang L, Li S. Autophagy in dry AMD: A promising therapeutic strategy for retinal pigment epithelial cell damage. Exp Eye Res 2024; 242:109889. [PMID: 38593971 DOI: 10.1016/j.exer.2024.109889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/11/2024]
Abstract
Dry age-related macular degeneration (AMD) is a prevalent clinical condition that leads to permanent damage to central vision and poses a significant threat to patients' visual health. Although the pathogenesis of dry AMD remains unclear, there is consensus on the role of retinal pigment epithelium (RPE) damage. Oxidative stress and chronic inflammation are major contributors to RPE cell damage, and the NOD-like receptor thermoprotein structural domain-associated protein 3 (NLRP3) inflammasome mediates the inflammatory response leading to apoptosis in RPE cells. Furthermore, lipofuscin accumulation results in oxidative stress, NLRP3 activation, and the development of vitelliform lesions, a hallmark of dry AMD, all of which may contribute to RPE dysfunction. The process of autophagy, involving the encapsulation, recognition, and transport of accumulated proteins and dead cells to the lysosome for degradation, is recognized as a significant pathway for cellular self-protection and homeostasis maintenance. Recently, RPE cell autophagy has been discovered to be closely linked to the development of macular degeneration, positioning autophagy as a cutting-edge research area in the realm of dry AMD. In this review, we present an overview of how lipofuscin, oxidative stress, and the NLRP3 inflammasome damage the RPE through their respective causal mechanisms. We summarized the connection between autophagy, oxidative stress, and NLRP3 inflammatory cytokines. Our findings suggest that targeting autophagy improves RPE function and sustains visual health, offering new perspectives for understanding the pathogenesis and clinical management of dry AMD.
Collapse
Affiliation(s)
- Zhao Zhang
- Tianjin University of Chinese Medicine, Tianjin, 300193, China; The First Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center of Traditional Chinese Medicine and Acupuncture and Moxibustion, Tianjin, 300193, China
| | - Fengming Liang
- The First Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center of Traditional Chinese Medicine and Acupuncture and Moxibustion, Tianjin, 300193, China.
| | - Jun Chang
- Tianjin University of Chinese Medicine, Tianjin, 300193, China; The First Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center of Traditional Chinese Medicine and Acupuncture and Moxibustion, Tianjin, 300193, China
| | - Xiaoqian Shan
- Tianjin University of Chinese Medicine, Tianjin, 300193, China; The First Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center of Traditional Chinese Medicine and Acupuncture and Moxibustion, Tianjin, 300193, China
| | - Zhixian Yin
- Hebei University of Technology, School of Electronics and Information Engineering, Tianjin, 300401, China
| | - Li Wang
- The First Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center of Traditional Chinese Medicine and Acupuncture and Moxibustion, Tianjin, 300193, China
| | - Shujiao Li
- Eye Hospital, China Academy of Chinese Medical Sciences, Beijing, 100040, China
| |
Collapse
|
5
|
Koçyiğit E, Gövez NE, Arslan S, Ağagündüz D. A narrative review on dietary components and patterns and age-related macular degeneration. Nutr Res Rev 2024:1-28. [PMID: 38221852 DOI: 10.1017/s0954422424000015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Age-related macular degeneration (AMD) is one of the most prevalent eye diseases among the ageing population worldwide. It is a leading cause of blindness in individuals over 55, particularly in industrialised Western countries. The prevalence of AMD increases with age, and genetic factors and environmental influences are believed to contribute to its development. Among the environmental factors, diet plays a significant role in AMD. This review explores the association between dietary components, dietary patterns and AMD. Various nutrients, non-nutrient substances and dietary models that have the potential to counteract oxidative stress and inflammation, which are underlying mechanisms of AMD, are discussed. Consuming fruits, vegetables, fish and seafood, whole grains, olive oil, nuts and low-glycaemic-index foods has been highlighted as beneficial for reducing the risk of AMD. Adhering to the Mediterranean diet, which encompasses these elements, can be recommended as a dietary pattern for AMD. Furthermore, the modulation of the gut microbiota through dietary interventions and probiotics has shown promise in managing AMD.
Collapse
Affiliation(s)
- Emine Koçyiğit
- Department of Nutrition and Dietetics, Ordu University, Ordu, Türkiye
| | - Nazlıcan Erdoğan Gövez
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, Ankara, Türkiye
| | - Sabriye Arslan
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, Ankara, Türkiye
| | - Duygu Ağagündüz
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, Ankara, Türkiye
| |
Collapse
|
6
|
Neiteler A, Palakkan AA, Gallagher KM, Ross JA. Oxidative stress and docosahexaenoic acid injury lead to increased necroptosis and ferroptosis in retinal pigment epithelium. Sci Rep 2023; 13:21143. [PMID: 38036571 PMCID: PMC10689458 DOI: 10.1038/s41598-023-47721-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 11/17/2023] [Indexed: 12/02/2023] Open
Abstract
Age-related macular degeneration (AMD) is a complex disease caused by different genetic and environmental risk factors leading to loss of cells in the central part of the retina. Oxidative stress appears to be an important environmental risk factor that contributes to both the initiation and progression of AMD. Retinal pigment epithelium (RPE) plays an important role in regulating oxidative stress in the retina and is one of the main retinal cell types affected in AMD. A main function of RPE is to phagocytose photoreceptor outer segments (POS) which are rich in the polyunsaturated fatty acid (PUFA) docosahexaenoic acid (DHA), making this cell type potentially more susceptible to oxidative stress-induced lipid peroxidation which can lead to cell death. RPE is known to undergo necrotic cell death in response to oxidative stress. The aim of this study was to determine if DHA in POS can increase oxidative damage to RPE. It was found that RPE undergo increased lipid peroxidation and decreased cell viability when stressed with hydrogen peroxide in combination with DHA or POS. H2O2-induced oxidative stress was found to cause both ferroptosis and necroptosis. However, the ferroptosis regulator acyl-CoA synthetase long-chain family member 4 (ACSL4) was found to be downregulated in RPE exposed to H2O2 and this effect was exacerbated when the RPE cells were simultaneously treated with DHA. Together, these results show a response of RPE when stressed which will likely be overwhelmed under disease conditions such as AMD resulting in cell death.
Collapse
Affiliation(s)
- Almar Neiteler
- Tissue Injury and Repair Group, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK.
| | - Anwar A Palakkan
- Immunology and Stem Cell Biology, Aravind Medical Research Foundation, Anna Nagar, Madurai, 625020, India
| | - Kevin M Gallagher
- Tissue Injury and Repair Group, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
| | - James A Ross
- Tissue Injury and Repair Group, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
| |
Collapse
|
7
|
Bhattacharya S, Yin J, Huo W, Chaum E. Loss of Prom1 impairs autophagy and promotes epithelial-mesenchymal transition in mouse retinal pigment epithelial cells. J Cell Physiol 2023; 238:2373-2389. [PMID: 37610047 DOI: 10.1002/jcp.31094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 07/15/2023] [Accepted: 07/20/2023] [Indexed: 08/24/2023]
Abstract
Mutations in the Prominin-1 (Prom1) gene disrupt photoreceptor disk morphogenesis, leading to macular dystrophies. We have shown that human retinal pigment epithelial (RPE) homeostasis is under the control of Prom1-dependent autophagy, demonstrating that Prom1 plays different roles in the photoreceptors and RPE. It is unclear if retinal and macular degeneration caused by the loss of Prom1 function is a cell-autonomous feature of the RPE or a generalized disease of photoreceptor degeneration. In this study, we investigated whether Prom1 is required for mouse RPE (mRPE) autophagy and phagocytosis, which are cellular processes essential for photoreceptor survival. We found that Prom1-KO decreases autophagy flux, activates mTORC1, and concomitantly decreases transcription factor EB (TFEB) and Cathepsin-D activities in mRPE cells. In addition, Prom1-KO reduces the clearance of bovine photoreceptor outer segments in mRPE cells due to increased mTORC1 and reduced TFEB activities. Dysfunction of Prom1-dependent autophagy correlates with both a decrease in ZO-1 and E-cadherin and a concomitant increase in Vimentin, SNAI1, and ZEB1 levels, consistent with induction of epithelial-mesenchymal transition (EMT) in Prom1-KO mRPE cells. Our results demonstrate that Prom1-mTORC1-TFEB signaling is a central driver of cell-autonomous mRPE homeostasis. We show that Prom1-KO in mRPE leads to RPE defects similar to that seen in atrophic age-related macular degeneration and opens new avenues of investigation targeting Prom1 in retinal degenerative diseases.
Collapse
Affiliation(s)
- Sujoy Bhattacharya
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jinggang Yin
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Weihong Huo
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Edward Chaum
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
8
|
Si Z, Zheng Y, Zhao J. The Role of Retinal Pigment Epithelial Cells in Age-Related Macular Degeneration: Phagocytosis and Autophagy. Biomolecules 2023; 13:901. [PMID: 37371481 DOI: 10.3390/biom13060901] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/11/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Age-related macular degeneration (AMD) causes vision loss in the elderly population. Dry AMD leads to the formation of Drusen, while wet AMD is characterized by cell proliferation and choroidal angiogenesis. The retinal pigment epithelium (RPE) plays a key role in AMD pathogenesis. In particular, helioreceptor renewal depends on outer segment phagocytosis of RPE cells, while RPE autophagy can protect cells from oxidative stress damage. However, when the oxidative stress burden is too high and homeostasis is disturbed, the phagocytosis and autophagy functions of RPE become damaged, leading to AMD development and progression. Hence, characterizing the roles of RPE cell phagocytosis and autophagy in the pathogenesis of AMD can inform the development of potential therapeutic targets to prevent irreversible RPE and photoreceptor cell death, thus protecting against AMD.
Collapse
Affiliation(s)
- Zhibo Si
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun 130000, China
| | - Yajuan Zheng
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun 130000, China
| | - Jing Zhao
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun 130000, China
| |
Collapse
|
9
|
Tolue Ghasaban F, Maharati A, Akhlaghipour I, Moghbeli M. MicroRNAs as the critical regulators of autophagy-mediated cisplatin response in tumor cells. Cancer Cell Int 2023; 23:80. [PMID: 37098542 PMCID: PMC10127417 DOI: 10.1186/s12935-023-02925-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/12/2023] [Indexed: 04/27/2023] Open
Abstract
Chemotherapy is one of the most common therapeutic methods in advanced and metastatic tumors. Cisplatin (CDDP) is considered as one of the main first-line chemotherapy drugs in solid tumors. However, there is a high rate of CDDP resistance in cancer patients. Multi-drug resistance (MDR) as one of the main therapeutic challenges in cancer patients is associated with various cellular processes such as drug efflux, DNA repair, and autophagy. Autophagy is a cellular mechanism that protects the tumor cells toward the chemotherapeutic drugs. Therefore, autophagy regulatory factors can increase or decrease the chemotherapy response in tumor cells. MicroRNAs (miRNAs) have a pivotal role in regulation of autophagy in normal and tumor cells. Therefore, in the present review, we discussed the role of miRNAs in CDDP response through the regulation of autophagy. It has been reported that miRNAs mainly increased the CDDP sensitivity in tumor cells by inhibition of autophagy. PI3K/AKT signaling pathway and autophagy-related genes (ATGs) were the main targets of miRNAs in the regulation of autophagy-mediated CDDP response in tumor cells. This review can be an effective step to introduce the miRNAs as efficient therapeutic options to increase autophagy-mediated CDDP sensitivity in tumor cells.
Collapse
Affiliation(s)
- Faezeh Tolue Ghasaban
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhosein Maharati
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Iman Akhlaghipour
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
10
|
Xu J, Ni B, Ma C, Rong S, Gao H, Zhang L, Xiang X, Huang Q, Deng Q, Huang F. Docosahexaenoic acid enhances hippocampal insulin sensitivity to promote cognitive function of aged rats on a high-fat diet. J Adv Res 2023; 45:31-42. [PMID: 35618634 PMCID: PMC10006543 DOI: 10.1016/j.jare.2022.04.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 03/18/2022] [Accepted: 04/24/2022] [Indexed: 01/14/2023] Open
Abstract
INTRODUCTION Diminished brain insulin sensitivity is associated with reduced cognitive function. Docosahexaenoic acid (DHA) is known to maintain normal brain function. OBJECTIVES This study aimed to determine whether DHA impacts hippocampal insulin sensitivity and cognitive function in aged rats fed a high-fat diet (HFD). METHODS Eight-month-old female Sprague-Dawley rats were randomly divided into three groups (n = 50 each). Rats in the aged group, HFD group, and DHA treatment group received standard diet (10 kcal% fat), HFD (45 kcal% fat), and DHA-enriched HFD (45 kcal% fat, 1% DHA, W/W) for 10 months, respectively. Four-month-old female rats (n = 40) that received a standard diet served as young controls. Neuroinflammation, oxidative stress, amyloid formation, and tau phosphorylation in the hippocampus, as well as systemic glucose homeostasis and cognitive function, were tested. RESULTS DHA treatment relieved a block in the insulin signaling pathway and consequently protected aged rats against HFD-induced hippocampal insulin resistance. The beneficial effects were explained by a DHA-induced decrease in systemic glucose homeostasis dysregulation, hippocampal neuroinflammation and oxidative stress. In addition, DHA treatment broke the reciprocal cycle of hippocampal insulin resistance, Aβ burden, and tau hyperphosphorylation. Importantly, treatment of model rats with DHA significantly increased their cognitive capacity, as evidenced by their increased hippocampal-dependent learning and memory, restored neuron morphology, enhanced cholinergic activity, and activated cyclic AMP-response element-binding protein. CONCLUSION DHA improves cognitive function by enhancing hippocampal insulin sensitivity.
Collapse
Affiliation(s)
- Jiqu Xu
- Department of Nutriology, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, 2 Xudong Second Road, Wuhan 430062, P.R. China; Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, 2 Xudong Second Road, Wuhan 430062, P.R. China
| | - Ben Ni
- Department of Nutriology, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, 2 Xudong Second Road, Wuhan 430062, P.R. China; Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, 2 Xudong Second Road, Wuhan 430062, P.R. China
| | - Congcong Ma
- Department of Nutriology, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, 2 Xudong Second Road, Wuhan 430062, P.R. China; Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, 2 Xudong Second Road, Wuhan 430062, P.R. China
| | - Shuang Rong
- Department of Nutrition and Food Hygiene, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, P.R. China
| | - Hui Gao
- Department of Clinical Nutrition, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, P.R. China
| | - Li Zhang
- Department of Neurology, Hubei Provincial Hospital of Integrated Chinese & Western Medicine, No. 11, Lingjiaohu Road, Wuhan 430015, P.R. China
| | - Xia Xiang
- Department of Nutriology, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, 2 Xudong Second Road, Wuhan 430062, P.R. China; Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, 2 Xudong Second Road, Wuhan 430062, P.R. China
| | - Qingde Huang
- Department of Nutriology, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, 2 Xudong Second Road, Wuhan 430062, P.R. China; Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, 2 Xudong Second Road, Wuhan 430062, P.R. China
| | - Qianchun Deng
- Department of Nutriology, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, 2 Xudong Second Road, Wuhan 430062, P.R. China; Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, 2 Xudong Second Road, Wuhan 430062, P.R. China
| | - Fenghong Huang
- Department of Nutriology, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, 2 Xudong Second Road, Wuhan 430062, P.R. China; Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, 2 Xudong Second Road, Wuhan 430062, P.R. China.
| |
Collapse
|
11
|
Wu KY, Kulbay M, Toameh D, Xu AQ, Kalevar A, Tran SD. Retinitis Pigmentosa: Novel Therapeutic Targets and Drug Development. Pharmaceutics 2023; 15:685. [PMID: 36840007 PMCID: PMC9963330 DOI: 10.3390/pharmaceutics15020685] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/12/2023] [Accepted: 02/16/2023] [Indexed: 02/19/2023] Open
Abstract
Retinitis pigmentosa (RP) is a heterogeneous group of hereditary diseases characterized by progressive degeneration of retinal photoreceptors leading to progressive visual decline. It is the most common type of inherited retinal dystrophy and has a high burden on both patients and society. This condition causes gradual loss of vision, with its typical manifestations including nyctalopia, concentric visual field loss, and ultimately bilateral central vision loss. It is one of the leading causes of visual disability and blindness in people under 60 years old and affects over 1.5 million people worldwide. There is currently no curative treatment for people with RP, and only a small group of patients with confirmed RPE65 mutations are eligible to receive the only gene therapy on the market: voretigene neparvovec. The current therapeutic armamentarium is limited to retinoids, vitamin A supplements, protection from sunlight, visual aids, and medical and surgical interventions to treat ophthalmic comorbidities, which only aim to slow down the progression of the disease. Considering such a limited therapeutic landscape, there is an urgent need for developing new and individualized therapeutic modalities targeting retinal degeneration. Although the heterogeneity of gene mutations involved in RP makes its target treatment development difficult, recent fundamental studies showed promising progress in elucidation of the photoreceptor degeneration mechanism. The discovery of novel molecule therapeutics that can selectively target specific receptors or specific pathways will serve as a solid foundation for advanced drug development. This article is a review of recent progress in novel treatment of RP focusing on preclinical stage fundamental research on molecular targets, which will serve as a starting point for advanced drug development. We will review the alterations in the molecular pathways involved in the development of RP, mainly those regarding endoplasmic reticulum (ER) stress and apoptotic pathways, maintenance of the redox balance, and genomic stability. We will then discuss the therapeutic approaches under development, such as gene and cell therapy, as well as the recent literature identifying novel potential drug targets for RP.
Collapse
Affiliation(s)
- Kevin Y. Wu
- Division of Ophthalmology, Department of Surgery, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada
| | - Merve Kulbay
- Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Dana Toameh
- Faculty of Medicine, McGill University, Montreal, QC H3G 2M1, Canada
| | - An Qi Xu
- Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Ananda Kalevar
- Division of Ophthalmology, Department of Surgery, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada
| | - Simon D. Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| |
Collapse
|
12
|
Kaarniranta K, Blasiak J, Liton P, Boulton M, Klionsky DJ, Sinha D. Autophagy in age-related macular degeneration. Autophagy 2023; 19:388-400. [PMID: 35468037 PMCID: PMC9851256 DOI: 10.1080/15548627.2022.2069437] [Citation(s) in RCA: 89] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/11/2022] [Accepted: 04/19/2022] [Indexed: 01/22/2023] Open
Abstract
Age-related macular degeneration (AMD) is the leading cause of visual impairment in the aging population with limited understanding of its pathogenesis and a lack of effective treatment. The progression of AMD is initially characterized by atrophic alterations in the retinal pigment epithelium, as well as the formation of lysosomal lipofuscin and extracellular drusen deposits. Damage caused by chronic oxidative stress, protein aggregation and inflammatory processes may lead to geographic atrophy and/or choroidal neovascularization and fibrosis. The role of macroautophagy/autophagy in AMD pathology is steadily emerging. This review describes selective and secretory autophagy and their role in drusen biogenesis, senescence-associated secretory phenotype, inflammation and epithelial-mesenchymal transition in the pathogenesis of AMD.Abbreviations: Aβ: amyloid-beta; AMBRA1: autophagy and beclin 1 regulator 1; AMD: age-related macular degeneration; ATF6: activating transcription factor 6; ATG: autophagy related; BACE1: beta-secretase 1; BHLHE40: basic helix-loop-helix family member e40; BNIP3: BCL2 interacting protein 3; BNIP3L/NIX: BCL2 interacting protein 3 like; C: complement; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; CARD: caspase recruitment domain; CDKN2A/p16: cyclin dependent kinase inhibitor 2A; CFB: complement factor B; DELEC1/Dec1; deleted in esophageal cancer 1; EIF2AK3/PERK: eukaryotic translation initiation factor 2 alpha kinase 3; EMT: epithelial-mesenchymal transition; ER: endoplasmic reticulum; ERN1/IRE1: endoplasmic reticulum to nucleus signaling 1; FUNDC1: FUN14 domain containing 1; GABARAP: GABA type A receptor-associated protein; HMGB1: high mobility group box 1; IL: interleukin; KEAP1: kelch like ECH associated protein 1; LAP: LC3-associated phagocytosis; LAMP2: lysosomal associated membrane protein 2; LIR: LC3-interacting region; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MTOR: mechanistic target of rapamycin kinase; NFE2L2: NFE2 like bZIP transcription factor 2; NLRP3; NLR family pyrin domain containing 3; NFKB/NFκB: nuclear factor kappa B; OPTN: optineurin; PARL: presenilin associated rhomboid like; PGAM5: PGAM family member 5, mitochondrial serine/threonine protein phosphatase; PINK1: PTEN induced kinase 1; POS: photoreceptor outer segment; PPARGC1A: PPARG coactivator 1 alpha; PRKN: parkin RBR E3 ubiquitin protein ligase; PYCARD/ASC: PYD and CARD domain containing; ROS: reactive oxygen species; RPE: retinal pigment epithelium; SA: secretory autophagy; SASP: senescence-associated secretory phenotype; SEC22B: SEC22 homolog B, vesicle trafficking protein; SNAP: synaptosome associated protein; SNARE: soluble N-ethylmaleimide-sensitive factor attachment protein receptor; SQSTM1/p62: sequestosome 1; STX: syntaxin; TGFB2: transforming growth factor beta 2; TRIM16: tripartite motif containing 16; TWIST: twist family bHLH transcription factor; Ub: ubiquitin; ULK: unc-51 like autophagy activating kinase; UPR: unfolded protein response; UPS: ubiquitin-proteasome system; V-ATPase: vacuolar-type H+-translocating ATPase; VIM: vimentin.
Collapse
Affiliation(s)
- Kai Kaarniranta
- Department of Ophthalmology, University of Eastern Finland, Kuopio, Finland
- Department of Ophthalmology, Kuopio University Hospital, Kuopio, Finland
| | - Janusz Blasiak
- Department of Molecular Genetics, University of Lodz, Lodz, Poland
| | - Paloma Liton
- Duke University, Department of Ophthalmology, Durham, NC, USA
| | - Michael Boulton
- University of Alabama at Birmingham, Department of Ophthalmology and Visual Sciences, Birmingham, AL, USA
| | - Daniel J. Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Debasish Sinha
- University of Pittsburgh School of Medicine, Departments of Ophthalmology, Cell Biology, and Developmental Biology, Pittsburgh, PA, USA
- The Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
13
|
Zheng HL, Li MT, Zhou T, Wang YY, Shang EX, Hua YQ, Duan JA, Zhu Y. Protective effects of Lycium barbarum L. berry extracts against oxidative stress-induced damage of the retina of aging mouse and ARPE-19 cells. Food Funct 2023; 14:399-412. [PMID: 36512065 DOI: 10.1039/d2fo02788g] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In this study, we investigated the preventive effect of Lycium barbarum L. berry extract on age-related macular degeneration (AMD) and the main components responsible for its antioxidant activity. An AMD mouse model was developed by feeding 18-month-old mice with a 1% hydroquinone diet. Meanwhile, the model mice were treated with water extract (LBW) and alcohol extract (LBE) of L. barbarum berries respectively for 3 months. It was found that the retinal structural abnormalities were improved and the oxidation stress and inflammatory imbalance were both attenuated in model mice treated with the extracts of L. barbarum berries. According to the metabolomics analysis of the serum of model mice, LBW regulated the metabolism of unsaturated fatty acids and sphingolipids, while LBE extracts tended to regulate taurine metabolism. On sodium iodate induced oxidative injury of ARPE-19 cells, water extracts of L. barbarum berries eluted with 95% ethanol (LBW-95E) on AB-8 macroporous resin significantly improved the cell viability and attenuated oxidative stress by increasing the superoxide dismutase (SOD) activity and glutathione (GSH) content, decreasing the reactive oxygen species (ROS) content, promoting the entry of nuclear factor erythroid-derived 2-like 2 (Nrf2) into the nucleus and up-regulating the heme oxygenase-1 (HO-1) expression. Scopoletin, N-trans-feruloyltyramine and perlolyrine were identified as the main components of LBW-95E. These results demonstrated that L. barbarum berry extracts protected the retina of aging AMD model mice from degeneration and LBW-95E was the vital antioxidant activity fraction of LBW. These findings suggest that L. barbarum berry extracts might be an excellent natural source for the development of retinal protection-related drugs or dietary supplements.
Collapse
Affiliation(s)
- Hui-Li Zheng
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Meng-Ting Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Tong Zhou
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Ying-Yi Wang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Er-Xin Shang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Yong-Qing Hua
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Yue Zhu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
14
|
Dátilo MN, Formigari GP, de Faria JBL, de Faria JML. AMP kinase activation by Omega-3 polyunsaturated fatty acid protects the retina against ischemic insult: An in vitro and in vivo study. Exp Eye Res 2023; 226:109345. [PMID: 36509164 DOI: 10.1016/j.exer.2022.109345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/07/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
PURPOSE To investigate the possible beneficial effects of omega-3 polyunsaturated fatty acids (ω3-PUFAs) in ischemic retinal angiogenesis and whether AMP-activated protein kinase (AMPK) is involved. METHODS Human retinal microvascular endothelial cells (hRMECs) were exposed to dimethyloxalylglycine (DMOG), a hypoxia-inducible factor hydroxylase inhibitor, in the presence or absence of docosahexaenoic acid (DHA) and small interfering RNA (siRNA) for AMPKα for 24 h. Ischemic factors, endothelial mesenchymal transition marker, endothelial barrier integrity, cell migration, and tube formation were evaluated. Neonatal AMPKα2-/- and control wild-type (WT) mice were submitted to an oxygen-induced retinopathy (OIR) protocol; their nursing mother mice were either fed ω3-PUFAs or not. In the end, ischemic markers and endothelial cell proliferation were evaluated in neonatal mouse retinal tissue through immunohistochemical or immunofluorescent assays among all studied groups. RESULTS Cells exposed to DMOG displayed increased expressions of hypoxic and endothelial mesenchymal transition (vimentin) markers and barrier disarrangement of Zonula Occludens-1 compared to the control, accompanied by increased cellular migration and tube formation (p < 0.05). AMPK activity was significantly decreased. Supplementation with DHA restored the mentioned alterations compared to DMOG (p<0.05). In siRNAAMPKα-treated cells, the beneficial effects observed with DHA were abolished. DHA upregulated G-protein receptor-120 (GPR120), which promptly increased intracellular levels of calcium (p ≤ 0.001), which consequently increased Calcium/calmodulin-dependent protein kinase kinase β expression (CaMKKβ) thus phosphorylating AMPKThr172. AMPKα2-/- and wild-type (WT) OIR mice exhibited similar retinal ischemic changes, and the oral supplementation with ω3-PUFA efficiently prevented the noticed ischemic alterations only in WT mice, suggesting that AMPKα2 is pivotal in the protective effects of ω3-PUFA. CONCLUSIONS ω3-PUFAs protect the retina from the effects of ischemic conditions, and this effect occurs via the GPR120-CaMKKβ-AMPK axis. A better understanding of this mechanism might improve the control of pathological angiogenesis in retinal ischemic diseases.
Collapse
Affiliation(s)
- Marcella N Dátilo
- Renal Pathophysiology Laboratory, Investigation on Diabetes Complications, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Guilherme P Formigari
- Renal Pathophysiology Laboratory, Investigation on Diabetes Complications, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - José B Lopes de Faria
- Renal Pathophysiology Laboratory, Investigation on Diabetes Complications, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Jacqueline M Lopes de Faria
- Renal Pathophysiology Laboratory, Investigation on Diabetes Complications, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, SP, Brazil.
| |
Collapse
|
15
|
Potential Properties of Natural Nutraceuticals and Antioxidants in Age-Related Eye Disorders. LIFE (BASEL, SWITZERLAND) 2022; 13:life13010077. [PMID: 36676026 PMCID: PMC9863869 DOI: 10.3390/life13010077] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 12/23/2022] [Accepted: 12/25/2022] [Indexed: 12/29/2022]
Abstract
Eye health is crucial, and the onset of diseases can reduce vision and affect the quality of life of patients. The main causes of progressive and irreversible vision loss include various pathologies, such as cataracts, ocular atrophy, corneal opacity, age-related macular degeneration, uncorrected refractive error, posterior capsular opacification, uveitis, glaucoma, diabetic retinopathy, retinal detachment, undetermined disease and other disorders involving oxidative stress and inflammation. The eyes are constantly exposed to the external environment and, for this reason, must be protected from damage from the outside. Many drugs, including cortisonics and antinflammatory drugs have widely been used to counteract eye disorders. However, recent advances have been obtained via supplementation with natural antioxidants and nutraceuticals for patients. In particular, evidence has accumulated that polyphenols (mostly deriving from Citrus Bergamia) represent a reliable source of antioxidants able to counteract oxidative stress accompanying early stages of eye diseases. Luteolin in particular has been found to protect photoreceptors, thereby improving vision in many disease states. Moreover, a consistent anti-inflammatory response was found to occur when curcumin is used alone or in combination with other nutraceuticals. Additionally, Coenzyme Q10 has been demonstrated to produce a consistent effect in reducing ocular pressure, thereby leading to protection in patients undergoing glaucoma. Finally, both grape seed extract, rich in anthocyanosides, and polynsatured fatty acids seem to contribute to the prevention of retinal disorders. Thus, a combination of nutraceuticals and antioxidants may represent the right solution for a multi-action activity in eye protection, in association with current drug therapies, and this will be of potential interest in early stages of eye disorders.
Collapse
|
16
|
Giorgianni F, Beranova-Giorgianni S. Oxidized low-density lipoprotein causes ribosome reduction and inhibition of protein synthesis in retinal pigment epithelial cells. Biochem Biophys Rep 2022; 32:101345. [PMID: 36204727 PMCID: PMC9530482 DOI: 10.1016/j.bbrep.2022.101345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/27/2022] [Accepted: 09/07/2022] [Indexed: 11/29/2022] Open
Abstract
Retinal pigment epithelium (RPE) are specialized multifunctional cells indispensable for maintenance of vision. Dysfunction and death of the RPE cells is implicated in the genesis and progression of age-related macular degeneration (AMD). Oxidative stress and resulting cellular damage plays a critical mechanistic role in AMD pathogenesis. Oxidized low-density lipoprotein (oxLDL), derived from LDL in a pro-oxidative environment, is found adjacent to the RPE as part of drusen, extracellular deposits that are a characteristic clinical feature of AMD. OxLDL is cytotoxic and oxLDL-induced oxidative damage may contribute to functional impairment of the RPE. Therefore, knowledge of how the RPE respond to oxLDL exposure is important to understand the mechanisms underlying RPE dysfunction and death associated with AMD. The objective of this study was to characterize alterations in the RPE proteome triggered by exposure to non-cytotoxic levels of oxLDL. Protein identification and quantification were performed with a high -resolution LC-MS/MS-based proteomics workflow. In total, out of the ca 3000 RPE proteins quantified, oxLDL treatment caused expression changes of 303 proteins. As revealed by protein functional analysis, oxLDL uptake caused a multifaceted molecular response that involved numerous biological pathways. This response included up-regulation of anti-oxidative stress proteins whose expression is mediated by the transcription factor nuclear factor erythroid 2-related factor 2 (NRF2), confirming results of transcriptomics studies previously published by us and others. Significantly, and previously unreported, the oxLDL treatment induced down-regulation of ribosomal and translation initiation proteins, and up-regulation of proteins involved in autophagy, thus suggesting that a major cellular mechanism through which the RPE mitigate oxLDL-induced damage involves inhibition of protein synthesis and removal of misfolded proteins. OxLDL causes oxidative stress in the RPE. The proteome of the RPE is impacted by non-lethal doses of OxLDL. Differentially expressed proteins include oxidative stress response and proteins involved in protein synthesis and autophagy. Protein synthesis reduction and increase in autophagy suggest presence of misfolded proteins as a result of OxLDL exposure.
Collapse
|
17
|
Ardourel M, Ranchon-Cole I, Pâris A, Felgerolle C, Acar N, Lesne F, Briault S, Perche O. FMR protein: Evidence of an emerging role in retinal aging? Exp Eye Res 2022; 225:109282. [PMID: 36265576 DOI: 10.1016/j.exer.2022.109282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/05/2022] [Accepted: 10/11/2022] [Indexed: 12/29/2022]
Abstract
Aging is a multifactorial process that affects the entire organism by cumulative alterations. Visual function impairments that go along with aging are commonly observed, causing lower visual acuity, lower contrast sensitivity, and impaired dark adaptation. Electroretinogram analysis revealed that the amplitudes of rod- and cone-mediated responses are reduced in aged mice and humans. Reports suggested that age-related changes observed in both rod and cone photoreceptor functionality were linked to oxidative stress regulation or free radical production homeostasis. Interestingly, several recent reports linked the fragile X mental retardation protein (FMRP) cellular activity with oxidative stress regulation in several tissue including brain tissue where FMRP participates to the response to stress via protein translation in neurite or is involved in free radical production and abnormal glutathione homeostasis. Based on these recent literatures, we raised the question about the effect of FMRP absence in the aging retina of Fmr1-/y compared to their WT littermates. Indeed, up to now, only young or adult mice (<6 months) were investigated and have shown a specific retinal phenotype. Herein, we demonstrated that Fmr1-/y mice do not present the aging effect on retinal function observed in WT littermates since ERG a- and b-waves amplitudes as well as oscillatory potentials amplitudes were not collapsed with age (12/18 months old). Absence of FMRP and its consequences seem to protect the retina against aging effect, rising a pivotal role of FMRP in retinal aging process.
Collapse
Affiliation(s)
- M Ardourel
- UMR7355, CNRS, Orléans, France; Experimental and Molecular Immunology and Neurogenetics, University of Orléans, 3b rue de la Ferollerie, 45071, Orléans, Cedex 2, France
| | - I Ranchon-Cole
- Université Clermont Auvergne, CHU Clermont-Ferrand, Inserm, Neuro-Dol, F-63000, Clermont-Ferrand, France
| | - A Pâris
- UMR7355, CNRS, Orléans, France; Experimental and Molecular Immunology and Neurogenetics, University of Orléans, 3b rue de la Ferollerie, 45071, Orléans, Cedex 2, France
| | - C Felgerolle
- UMR7355, CNRS, Orléans, France; Experimental and Molecular Immunology and Neurogenetics, University of Orléans, 3b rue de la Ferollerie, 45071, Orléans, Cedex 2, France
| | - N Acar
- Eye and Nutrition Research Group, Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université Bourgogne Franche-Comté, 21000, Dijon, France
| | - F Lesne
- Genetic Department, Regional Hospital, 14 Avenue de l'hôpital, 45100, Orléans, France
| | - S Briault
- UMR7355, CNRS, Orléans, France; Experimental and Molecular Immunology and Neurogenetics, University of Orléans, 3b rue de la Ferollerie, 45071, Orléans, Cedex 2, France; Genetic Department, Regional Hospital, 14 Avenue de l'hôpital, 45100, Orléans, France
| | - O Perche
- UMR7355, CNRS, Orléans, France; Experimental and Molecular Immunology and Neurogenetics, University of Orléans, 3b rue de la Ferollerie, 45071, Orléans, Cedex 2, France; Genetic Department, Regional Hospital, 14 Avenue de l'hôpital, 45100, Orléans, France.
| |
Collapse
|
18
|
Lin F, Xie M, Sheng X, Guo L, Jia J, Wang Y. Research trends in the field of retinitis pigmentosa from 2002 to 2021: a 20 years bibliometric analysis. Int Ophthalmol 2022; 43:1825-1833. [DOI: 10.1007/s10792-022-02581-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 11/12/2022] [Indexed: 11/21/2022]
|
19
|
Gillespie TC, Kim ES, Grogan T, Tsui I, Chu A, Calkins KL. Decreased Levels of Erythrocyte Membrane Arachidonic and Docosahexaenoic Acids Are Associated With Retinopathy of Prematurity. Invest Ophthalmol Vis Sci 2022; 63:23. [PMID: 36383353 PMCID: PMC9680586 DOI: 10.1167/iovs.63.12.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Purpose Retinopathy of prematurity (ROP) can lead to blindness. Arachidonic acid (ARA) and docosahexaenoic acid (DHA) regulate retinal inflammation and angiogenesis. The aim of this study was to investigate red blood cell membrane (RBCM) ARA and DHA in preterm infants. Methods This prospective observational study divided infants into groups by ROP severity and RBCM ARA and DHA means and terciles. Results Although the mean ± SD RBCM ARA was different between groups (no ROP, 17.9% ± 0.7%, vs. type 2 ROP, 17.4% ± 0.8%, vs. type 1 ROP, 16.7% ± 1.0%; P < 0.001), the mean RBCM DHA was similar (P = 0.161). Infants with type 1 ROP were more likely to be in the lowest ARA and DHA terciles than in the highest (ARA, 44% vs. 5.6%; DHA, 22% vs. 5.6%). ARA and DHA declined over the first month of life in all ROP groups. At week 1, ARA was lower in the type 1 and type 2 ROP groups compared with the no-ROP group (18% ± 2% and 19% ± 3% vs. 21% ± 2%, respectively; P < 0.05 for all). At week 2, DHA and ARA were lower in the type I ROP group compared with the no-ROP group (3% ± 1% vs. 4% ± 1%, P = 0.03 and 16% ± 1% vs. 19% ± 1%, respectively; P < 0.01). A RBCM ARA% ≥ 17 was associated with a 45% reduction in any ROP. As the estimated 4-week ARA% mean increased by 1%, the odds of ROP decreased by 70% (odds ratio = 0.30; 95% confidence interval, 0.1-0.7). Conclusions Infants with severe ROP have lower ARA and DHA levels than infants without ROP. ARA and DHA may act synergistically to protect against ROP.
Collapse
Affiliation(s)
- Tessa C. Gillespie
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States
| | - Esther S. Kim
- Department of Pediatrics, Neonatal Research Center of the UCLA Children's Discovery and Innovation Institute, David Geffen School of Medicine, University of California, Los Angeles, and UCLA Mattel Children's Hospital, Los Angeles, California, United States
| | - Tristan Grogan
- Division of General Internal Medicine and Health Services Research, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States
| | - Irena Tsui
- Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, and UCLA Mattel Children's Hospital, Los Angeles, California, United States
| | - Alison Chu
- Department of Pediatrics, Neonatal Research Center of the UCLA Children's Discovery and Innovation Institute, David Geffen School of Medicine, University of California, Los Angeles, and UCLA Mattel Children's Hospital, Los Angeles, California, United States
| | - Kara L. Calkins
- Department of Pediatrics, Neonatal Research Center of the UCLA Children's Discovery and Innovation Institute, David Geffen School of Medicine, University of California, Los Angeles, and UCLA Mattel Children's Hospital, Los Angeles, California, United States
| |
Collapse
|
20
|
Comparative efficacy of omega-3 polyunsaturated fatty acids on major cardiovascular events: A network meta-analysis of randomized controlled trials. Prog Lipid Res 2022; 88:101196. [PMID: 36341839 DOI: 10.1016/j.plipres.2022.101196] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 10/23/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
Abstract
The role of omega-3 polyunsaturated fatty acids (PUFAs) in primary and secondary prevention on major cardiovascular events (MCE) is inconclusive due to the potential heterogeneity in study designs of formulas, dosages, and ratios of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) from the findings of previous randomized controlled trials (RCTs). Here we conducted a comprehensive narrative review of pre-clinical studies and updated a network meta-analysis (NMA) to determine the comparative efficacy against MCE with different EPA/DHA dosages and formulas. We found that pure EPA was ranked the best option in the secondary prevention (hazard ratio: 0.72, 95% confidence interval: 0.65 to 0.81) from the NMA of 39 RCTs with 88,359 participants. There was no evidence of omega-3 PUFAs' efficacy in primary prevention. The mechanisms of omega-3 PUFAs' cardiovascular protection might link to the effects of anti-inflammation and stabilization of endothelial function from PUFA's derivatives including eicosanoids and the special pre-resolving mediators (SPMs).
Collapse
|
21
|
Nature-Inspired Hybrids (NIH) Improve Proteostasis by Activating Nrf2-Mediated Protective Pathways in Retinal Pigment Epithelial Cells. Antioxidants (Basel) 2022; 11:antiox11071385. [PMID: 35883876 PMCID: PMC9312215 DOI: 10.3390/antiox11071385] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/29/2022] [Accepted: 07/14/2022] [Indexed: 02/06/2023] Open
Abstract
Antioxidant systems play key roles in many elderly diseases, including age-related macular degeneration (AMD). Oxidative stress, autophagy impairment and inflammation are well-described in AMD, especially in retinal pigment epithelial (RPE) cells. The master regulator of antioxidant defense Nrf2 has been linked to AMD, autophagy and inflammation. In this study, in human ARPE-19 cells, some nature-inspired hybrids (NIH1–3) previously shown to induce Nrf2-mediated protection against oxidative stress were further investigated for their potential against cellular stress caused by dysfunction of protein homeostasis. NIH1–3 compounds increased the expression of two Nrf2-target genes coding defense proteins, HO-1 and SQSTM1/p62, in turn exerting beneficial effects on intracellular redox balance without modification of the autophagy flux. NIH1–3 treatments predisposed ARPE-19 cells to a better response to following exposure to proteasome and autophagy inhibitors, as revealed by the increase in cell survival and decreased secretion of the pro-inflammatory IL-8 compared to NIH-untreated cells. Interestingly, NIH4 compound, through an Nrf2-independent pathway, also increased cell viability and decreased IL-8 secretion, although to a lesser extent than NIH1–3, suggesting that all NIHs are worthy of further investigation into their cytoprotective properties. This study confirms Nrf2 as a valuable pharmacological target in contexts characterized by oxidative stress, such as AMD.
Collapse
|
22
|
Shan K, Feng N, Zhu D, Qu H, Fu G, Li J, Cui J, Chen H, Wang R, Qi Y, Chen YQ. Free docosahexaenoic acid promotes ferroptotic cell death via lipoxygenase dependent and independent pathways in cancer cells. Eur J Nutr 2022; 61:4059-4075. [PMID: 35804267 DOI: 10.1007/s00394-022-02940-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 06/15/2022] [Indexed: 02/07/2023]
Abstract
PURPOSE Ferroptosis is a form of regulated cell death that has the potential to be targeted as a cancer therapeutic strategy. But cancer cells have a wide range of sensitivities to ferroptosis, which limits its therapeutic potential. Accumulation of lipid peroxides determines the occurrence of ferroptosis. However, the type of lipid involved in peroxidation and the mechanism of lipid peroxide accumulation are less studied. METHODS The effects of fatty acids (10 μM) with different carbon chain length and unsaturation on ferroptosis were evaluated by MTT and LDH release assay in cell lines derived from prostate cancer (PC3, 22RV1, DU145 and LNCaP), colorectal cancer (HT-29), cervical cancer (HeLa) and liver cancer (HepG2). Inhibitors of apoptosis, necroptosis, autophagy and ferroptosis were used to determine the type of cell death. Then the regulation of reactive oxygen species (ROS) and lipid peroxidation by docosahexaenoic acid (DHA) was measured by HPLC-MS and flow cytometry. The avtive form of DHA was determined by siRNA mediated gene silencing. The role of lipoxygenases was checked by inhibitors and gene silencing. Finally, the effect of DHA on ferroptosis-mediated tumor killing was verified in xenografts. RESULTS The sensitivity of ferroptosis was positively correlated with the unsaturation of exogenously added fatty acid. DHA (22:6 n-3) sensitized cancer cells to ferroptosis-inducing reagents (FINs) at the highest level in vitro and in vivo. In this process, DHA increased ROS accumulation, lipid peroxidation and protein oxidation independent of its membrane receptor, GPR120. Inhibition of long chain fatty acid-CoA ligases and lysophosphatidylcholine acyltransferases didn't affect the role of DHA. DHA-involved ferroptosis can be induced in both arachidonate lipoxygenase 5 (ALOX5) negative and positive cells. Down regulation of ALOX5 inhibited ferroptosis, while overexpression of ALOX5 promoted ferroptosis. CONCLUSION DHA can effectively promote ferroptosis-mediated tumor killing by increasing intracellular lipid peroxidation. Both ALOX5 dependent and independent pathways are involved in DHA-FIN induced ferroptosis. And during this process, free DHA plays an important role.
Collapse
Affiliation(s)
- Kai Shan
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu Province, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu Province, China
| | - Ninghan Feng
- Department of Urology, Wuxi No. 2 People's Hospital, Wuxi, 214000, Jiangsu Province, China
| | - Doudou Zhu
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu Province, China
| | - Hongyan Qu
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu Province, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu Province, China
| | - Guoling Fu
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu Province, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu Province, China
| | - Jiaqi Li
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu Province, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu Province, China
| | - Jing Cui
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu Province, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu Province, China
| | - Heyan Chen
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu Province, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu Province, China
| | - Rong Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu Province, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu Province, China
| | - Yumin Qi
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu Province, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu Province, China
| | - Yong Q Chen
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu Province, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu Province, China.
| |
Collapse
|
23
|
Kalkman HO. Potential Suicide Prophylactic Activity by the Fish Oil Metabolite, 4-Hydroxyhexenal. Int J Mol Sci 2022; 23:ijms23136953. [PMID: 35805959 PMCID: PMC9266565 DOI: 10.3390/ijms23136953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 02/05/2023] Open
Abstract
Low levels of n-3 poly-unsaturated fatty acids (n-3 PUFAs) and high levels of n-6 PUFAs in the blood circulation are associated with an increased risk for suicide. Clinical studies indicate that docosahexaenoic acid (DHA, a n-3 PUFA found in fish-oil) displays protective effects against suicide. It has recently been proposed that the activation of the transcription factor NRF2 might be the pharmacological activity that is common to current anti-suicidal medications. Oxidation products from fish oil, including those from DHA, are electrophiles that reversibly bind to a protein ‘KEAP1’, which acts as the molecular inhibitor of NRF2 and so indirectly promotes NRF2-transcriptional activity. In the majority of publications, the NRF2-stimulant effect of DHA is ascribed to the metabolite 4-hydroxyhexenal (4HHE). It is suggested to investigate whether 4HHE will display a therapeutically useful anti-suicidal efficacy.
Collapse
|
24
|
Liu W, Liu S, Li P, Yao K. Retinitis Pigmentosa: Progress in Molecular Pathology and Biotherapeutical Strategies. Int J Mol Sci 2022; 23:ijms23094883. [PMID: 35563274 PMCID: PMC9101511 DOI: 10.3390/ijms23094883] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 12/13/2022] Open
Abstract
Retinitis pigmentosa (RP) is genetically heterogeneous retinopathy caused by photoreceptor cell death and retinal pigment epithelial atrophy that eventually results in blindness in bilateral eyes. Various photoreceptor cell death types and pathological phenotypic changes that have been disclosed in RP demand in-depth research of its pathogenic mechanism that may account for inter-patient heterogeneous responses to mainstream drug treatment. As the primary method for studying the genetic characteristics of RP, molecular biology has been widely used in disease diagnosis and clinical trials. Current technology iterations, such as gene therapy, stem cell therapy, and optogenetics, are advancing towards precise diagnosis and clinical applications. Specifically, technologies, such as effective delivery vectors, CRISPR/Cas9 technology, and iPSC-based cell transplantation, hasten the pace of personalized precision medicine in RP. The combination of conventional therapy and state-of-the-art medication is promising in revolutionizing RP treatment strategies. This article provides an overview of the latest research on the pathogenesis, diagnosis, and treatment of retinitis pigmentosa, aiming for a convenient reference of what has been achieved so far.
Collapse
|
25
|
Tatsumi Y, Kato A, Niimi N, Yako H, Himeno T, Kondo M, Tsunekawa S, Kato Y, Kamiya H, Nakamura J, Higai K, Sango K, Kato K. Docosahexaenoic Acid Suppresses Oxidative Stress-Induced Autophagy and Cell Death via the AMPK-Dependent Signaling Pathway in Immortalized Fischer Rat Schwann Cells 1. Int J Mol Sci 2022; 23:ijms23084405. [PMID: 35457223 PMCID: PMC9027959 DOI: 10.3390/ijms23084405] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 04/05/2022] [Accepted: 04/14/2022] [Indexed: 01/27/2023] Open
Abstract
Autophagy is the process by which intracellular components are degraded by lysosomes. It is also activated by oxidative stress; hence, autophagy is thought to be closely related to oxidative stress, one of the major causes of diabetic neuropathy. We previously reported that docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) induced antioxidant enzymes and protected Schwann cells from oxidative stress. However, the relationship between autophagy and oxidative stress-induced cell death in diabetic neuropathy has not been elucidated. Treatment with tert-butyl hydroperoxide (tBHP) decreased the cell survival rate, as measured by an MTT assay in immortalized Fischer rat Schwann cells 1 (IFRS1). A DHA pretreatment significantly prevented tBHP-induced cytotoxicity. tBHP increased autophagy, which was revealed by the ratio of the initiation markers, AMP-activated protein kinase, and UNC51-like kinase phosphorylation. Conversely, the DHA pretreatment suppressed excessive tBHP-induced autophagy signaling. Autophagosomes induced by tBHP in IFRS1 cells were decreased to control levels by the DHA pretreatment whereas autolysosomes were only partially decreased. These results suggest that DHA attenuated excessive autophagy induced by oxidative stress in Schwann cells and may be useful to prevent or reduce cell death in vitro. However, its potentiality to treat diabetic neuropathy must be validated in in vivo studies.
Collapse
Affiliation(s)
- Yasuaki Tatsumi
- Laboratory of Medicine, Aichi Gakuin University School of Pharmacy, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan; (Y.T.); (A.K.)
- Department of Medical Biochemistry, Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi 274-8510, Japan;
| | - Ayako Kato
- Laboratory of Medicine, Aichi Gakuin University School of Pharmacy, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan; (Y.T.); (A.K.)
| | - Naoko Niimi
- Diabetic Neuropathy Project, Department of Diseases and Infection, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya, Tokyo 156-8506, Japan; (N.N.); (H.Y.); (K.S.)
| | - Hideji Yako
- Diabetic Neuropathy Project, Department of Diseases and Infection, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya, Tokyo 156-8506, Japan; (N.N.); (H.Y.); (K.S.)
| | - Tatsuhito Himeno
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, 1-1 Yazakokarimate, Nagakute 480-1195, Japan; (T.H.); (M.K.); (S.T.); (Y.K.); (H.K.); (J.N.)
| | - Masaki Kondo
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, 1-1 Yazakokarimate, Nagakute 480-1195, Japan; (T.H.); (M.K.); (S.T.); (Y.K.); (H.K.); (J.N.)
| | - Shin Tsunekawa
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, 1-1 Yazakokarimate, Nagakute 480-1195, Japan; (T.H.); (M.K.); (S.T.); (Y.K.); (H.K.); (J.N.)
| | - Yoshiro Kato
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, 1-1 Yazakokarimate, Nagakute 480-1195, Japan; (T.H.); (M.K.); (S.T.); (Y.K.); (H.K.); (J.N.)
| | - Hideki Kamiya
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, 1-1 Yazakokarimate, Nagakute 480-1195, Japan; (T.H.); (M.K.); (S.T.); (Y.K.); (H.K.); (J.N.)
| | - Jiro Nakamura
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, 1-1 Yazakokarimate, Nagakute 480-1195, Japan; (T.H.); (M.K.); (S.T.); (Y.K.); (H.K.); (J.N.)
| | - Koji Higai
- Department of Medical Biochemistry, Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi 274-8510, Japan;
| | - Kazunori Sango
- Diabetic Neuropathy Project, Department of Diseases and Infection, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya, Tokyo 156-8506, Japan; (N.N.); (H.Y.); (K.S.)
| | - Koichi Kato
- Laboratory of Medicine, Aichi Gakuin University School of Pharmacy, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan; (Y.T.); (A.K.)
- Correspondence: ; Tel.: +81-52-757-6778
| |
Collapse
|
26
|
Chang R, Sun X, Jia H, Xu Q, Dong Z, Tang Y, Luo S, Jiang Q, Loor JJ, Xu C. Inhibiting nuclear factor erythroid 2 related factor 2-mediated autophagy in bovine mammary epithelial cells induces oxidative stress in response to exogenous fatty acids. J Anim Sci Biotechnol 2022; 13:48. [PMID: 35397612 PMCID: PMC8994900 DOI: 10.1186/s40104-022-00695-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 02/20/2022] [Indexed: 12/16/2022] Open
Abstract
Abstract
Background
In early lactation, bovine mammary epithelial cells undergo serious metabolic challenges and oxidative stress both of which could be alleviated by activation of autophagy. Nuclear factor erythroid 2 related factor 2 (NFE2L2), a master regulator of cellular redox homeostasis, plays an important role in the regulation of autophagy and oxidative stress. Thus, the objective of this study was to investigate the role of NFE2L2-mediated autophagy on oxidative stress of bovine mammary epithelial cells in response to exogenous free fatty acids (FFA).
Results
Exogenous FFA induced linear and quadratic decreases in activities of glutathione peroxidase (GSH-Px), catalase (CAT), and superoxide dismutase (SOD), and increases in the contents of reactive oxygen species (ROS) and malondialdehyde (MDA). Protein abundance of LC3-phosphatidylethanolamine conjugate (LC3-II) and the number of autophagosomes and autolysosomes decreased in a dose-dependent manner, while protein abundance of p62 increased in cells challenged with FFA. Activation of autophagy via pre-treatment with Rap attenuated the FFA-induced ROS accumulation. Importantly, FFA inhibited protein abundance of NFE2L2 and the translocation of NFE2L2 into the nucleus. Knockdown of NFE2L2 by siRNA decreased protein abundance of LC3-II, while it increased protein abundance of p62. Furthermore, sulforaphane (SFN) pre-treatment attenuated the FFA-induced oxidative stress by activating NFE2L2-mediated autophagy.
Conclusions
The data suggested that NFE2L2-mediated autophagy is an important antioxidant mechanism in bovine mammary epithelial cells experiencing increased FFA loads.
Collapse
|
27
|
Ming-Mu-Di-Huang-Pill Activates SQSTM1 via AMPK-Mediated Autophagic KEAP1 Degradation and Protects RPE Cells from Oxidative Damage. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5851315. [PMID: 35378824 PMCID: PMC8976466 DOI: 10.1155/2022/5851315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 01/30/2022] [Accepted: 02/24/2022] [Indexed: 11/18/2022]
Abstract
Oxidative stress and diminished autophagy in the retinal pigment epithelium (RPE) play crucial roles in the pathogenesis of age-related macular degeneration (AMD). Enhancing autophagy has recently been identified as an important strategy to protect RPE cells from oxidative damage. Ming-Mu-Di-Huang-Pill (MMDH pill) is a traditional herbal medicine used to treat AMD, and its molecular mechanism is not well understood. The aim of the present study was to investigate whether the MMDH pill relieved acute oxidative damage by activating autophagy in an in vitro and in vivo model of sodium iodate (NaIO3). The results showed that NaIO3 induced cell death and inhibited proliferation. The MMDH pill increased cell viability, restored the activities of antioxidant enzymes, and reduced reactive oxygen species (ROS) fluorescence intensity. The MMDH pill mediated Kelch-like ECH-associated protein 1 (Keap1) degradation and decreased oxidative damage, which was blocked in autophagy inhibitor (chloroquine) or sequestosome-1 (SQSTM1) siRNA-treated RPE cells. Furthermore, we indicated that the MMDH pill could promote adenosine monophosphate-activated protein kinase (AMPK) phosphorylation and autophagy adaptor-SQSTM1 expression, which could stimulate autophagic degradation of Keap1. In addition, the MMDH pill increased nuclear factor (erythroid-derived 2)-like 2 (Nrf2) nuclear translocation in a SQSTM1-dependent manner and induced the expression of the downstream antioxidant factors heme oxygenase-1 (HO-1) and nicotinamide adenine dinucleotide phosphate quinone dehydrogenase 1 (NQO1). In conclusion, MMDH pill plays a protective role in relieving NaIO3-induced oxidative stress by activating the AMPK/SQSTM1/Keap1 pathway. The MMDH pill may be useful to treat AMD by maintaining redox homeostasis and autophagy.
Collapse
|
28
|
Wang C, Tang Z, Zhang Z, Liu T, Zhang J, Huang H, Li Y. MiR-7-5p suppresses invasion via downregulation of the autophagy-related gene ATG7 and increases chemoresistance to cisplatin in BCa. Bioengineered 2022; 13:7328-7339. [PMID: 35300572 PMCID: PMC9278970 DOI: 10.1080/21655979.2022.2037323] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 12/15/2022] Open
Abstract
Bladder cancer (BCa) is one of the most common cancers in men and is a major threat to the lives and health of older men. Many studies have shown that miR-7, as an important tumor suppressor gene, could directly inhibit some pathways involved in the development of cancer. MiR-7-5p, which was assessed in this study, consists of one arm of miR-7 and acts as a cancer suppressor gene in multiple cancer types. Autophagy, as a common biological process, plays dual roles in the process of cancer. Chemotherapy resistance is a problem in the treatment of BCa. In this study, the data showed that miR-7-5p was obviously down-regulated in BCa tissues and cells compared to their respective controls. In addition, miR-7-5p mimic effectively inhibited migration, invasion and autophagy both in vitro and in vivo. In the mechanistic study, miR-7-5p targeted autophagy-related gene ATG7 to inhibit its expression, which in turn inhibited autophagy. Finally, the migration of BCa cells was inhibited, and chemosensitivity was improved. Overall, our results provide evidence of the role of miR-7-5p as a cancer suppressor gene in BCa and provide new opportunities for the treatment of BCa.
Collapse
Affiliation(s)
- Chong Wang
- Department of Urology, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
- Key Laboratory of Non-coding Rna Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, People’s Republic of China
| | - Zhao Tang
- Department of Urology, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Ze Zhang
- Department of Urology, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
- Key Laboratory of Non-coding Rna Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, People’s Republic of China
| | - Tiantian Liu
- Department of Urology, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
- Key Laboratory of Non-coding Rna Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, People’s Republic of China
| | - Jingwei Zhang
- Department of Urology, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Houbao Huang
- Department of Urology, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Yawei Li
- CONTACT Yawei Li Department of Urology, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China
| |
Collapse
|
29
|
Potential mechanisms of macular degeneration protection by fatty fish consumption. Curr Opin Pharmacol 2022; 63:102186. [PMID: 35217394 DOI: 10.1016/j.coph.2022.102186] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 01/15/2022] [Accepted: 01/15/2022] [Indexed: 01/13/2023]
Abstract
Age-related macular degeneration (AMD) is a progressive retinal disease that is a leading cause of visual impairment and severe vision loss. The number of people affected by AMD is increasing and constitutes a huge worldwide health problem. The beneficial effects of fish consumption on AMD have been revealed over the past decades, and in this review, we summarizes the beneficial effects of fatty fish on AMD and its mechanism of action. Fatty fish affects the development of AMD by inhibiting neovascularization, interacting with retinal pigment epithelial (RPE) cells, displacing Omega-6, and inducing cellular responses. It is recommended that people at high risk or with moderate or more severe AMD should consider eating more fatty fish in addition to maintaining a healthy lifestyle of weight control and smoking cessation and the need to promote new models of personalized AMD prevention and treatment.
Collapse
|
30
|
Red blood cell fatty acids and age-related macular degeneration in postmenopausal women. Eur J Nutr 2022; 61:1585-1594. [PMID: 34988653 DOI: 10.1007/s00394-021-02746-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/16/2021] [Indexed: 11/04/2022]
Abstract
PURPOSE To evaluate the relationship between red blood cell (RBC) polyunsaturated fatty acid (PUFA) levels, and dietary PUFA and fish intake, with prevalent and incident age-related macular degeneration (AMD) in a US cohort of postmenopausal women. METHODS This analysis included 1456 postmenopausal women from the Women's Health Initiative (WHI) Clinical Trials. RBC PUFAs were measured from fasting serum samples collected at WHI baseline. Dietary PUFAs and fish intake were assessed via food frequency questionnaires at baseline. There were 240 women who had prevalent AMD and 138 who self-reported AMD development over 9.5 years. Adjusted odds ratios and 95% confidence intervals were estimated for prevalent AMD by RBC PUFA levels, dietary PUFA intake, and frequency of fish consumption. Adjusted hazard ratios and 95% confidence intervals were estimated for incident AMD. A p-for-trend was estimated for continuous measures of dietary PUFA and fish intake. RESULTS No significant association was found between prevalent or incident AMD and RBC docosahexaenoic acid (DHA) + eicosapentaenoic acid (EPA), EPA, DHA, alpha-linolenic acid (ALA), linoleic acid (LA), or arachidonic acid (AA). A positive association was found between dietary intake of AA and odds of prevalent AMD (p-for-trend for continuous AA intake = 0.02) and between intake of LA/ALA and incident AMD (p-for-trend for continuous ratio of LA/ALA intake = 0.03). No statistically significant associations were found between AMD and dietary intake of PUFAs or fish. CONCLUSIONS RBC PUFAs were not associated with AMD in this cohort. Overall, dietary analyses of PUFAs supported this, excepting dietary AA intake and intake of LA in proportion to ALA of which there were trends of increased risk.
Collapse
|
31
|
Qin X, Zhang K, Qiu J, Wang N, Qu K, Cui Y, Huang J, Luo L, Zhong Y, Tian T, Wu W, Wang Y, Wang G. Uptake of oxidative stress-mediated extracellular vesicles by vascular endothelial cells under low magnitude shear stress. Bioact Mater 2021; 9:397-410. [PMID: 34820579 PMCID: PMC8586717 DOI: 10.1016/j.bioactmat.2021.10.038] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/11/2021] [Accepted: 10/20/2021] [Indexed: 11/17/2022] Open
Abstract
Extracellular vesicles (EVs) are increasingly used as delivery vehicles for drugs and bioactive molecules, which usually require intravascular administration. The endothelial cells covering the inner surface of blood vessels are susceptible to the shear stress of blood flow. Few studies demonstrate the interplay of red blood cell-derived EVs (RBCEVs) and endothelial cells. Thus, the phagocytosis of EVs by vascular endothelial cells during blood flow needs to be elucidated. In this study, red blood cell-derived extracellular vesicles (RBCEVs) were constructed to investigate endothelial cell phagocytosis in vitro and animal models. Results showed that low magnitude shear stress including low shear stress (LSS) and oscillatory shear stress (OSS) could promote the uptake of RBCEVs by endothelial cells in vitro. In addition, in zebrafish and mouse models, RBCEVs tend to be internalized by endothelial cells under LSS or OSS. Moreover, RBCEVs are easily engulfed by endothelial cells in atherosclerotic plaques exposed to LSS or OSS. In terms of mechanism, oxidative stress induced by LSS is part of the reason for the increased uptake of endothelial cells. Overall, this study shows that vascular endothelial cells can easily engulf EVs in areas of low magnitude shear stress, which will provide a theoretical basis for the development and utilization of EVs-based nano-drug delivery systems in vivo. We recently reported that endothelial cells were amateur phagocytic cells for RBCEVs engulfment. Low magnitude shear stress (LSS and OSS) can increase the uptake of RBCEVs by endothelial cells in vitro and in vivo. ROS induced by low magnitude shear stress acts as an accelerator to enhance endothelial cells uptake of RBCEVs.
Collapse
Affiliation(s)
- Xian Qin
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Kun Zhang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Juhui Qiu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Nan Wang
- The Nanoscience Centre, University of Cambridge, Cambridge, CB3 0FF, UK
| | - Kai Qu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Yuliang Cui
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Junli Huang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Li Luo
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Yuan Zhong
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Tian Tian
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Wei Wu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Yi Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| |
Collapse
|
32
|
Upadhyay A. Natural compounds in the regulation of proteostatic pathways: An invincible artillery against stress, ageing, and diseases. Acta Pharm Sin B 2021; 11:2995-3014. [PMID: 34729300 PMCID: PMC8546668 DOI: 10.1016/j.apsb.2021.01.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/12/2020] [Accepted: 11/03/2020] [Indexed: 01/13/2023] Open
Abstract
Cells have different sets of molecules for performing an array of physiological functions. Nucleic acids have stored and carried the information throughout evolution, whereas proteins have been attributed to performing most of the cellular functions. To perform these functions, proteins need to have a unique conformation and a definite lifespan. These attributes are achieved by a highly coordinated protein quality control (PQC) system comprising chaperones to fold the proteins in a proper three-dimensional structure, ubiquitin-proteasome system for selective degradation of proteins, and autophagy for bulk clearance of cell debris. Many kinds of stresses and perturbations may lead to the weakening of these protective cellular machinery, leading to the unfolding and aggregation of cellular proteins and the occurrence of numerous pathological conditions. However, modulating the expression and functional efficiency of molecular chaperones, E3 ubiquitin ligases, and autophagic proteins may diminish cellular proteotoxic load and mitigate various pathological effects. Natural medicine and small molecule-based therapies have been well-documented for their effectiveness in modulating these pathways and reestablishing the lost proteostasis inside the cells to combat disease conditions. The present article summarizes various similar reports and highlights the importance of the molecules obtained from natural sources in disease therapeutics.
Collapse
Key Words
- 17-AAG, 17-allylamino-geldanamycin
- APC, anaphase-promoting complex
- Ageing
- Autophagy
- BAG, BCL2-associated athanogene
- CAP, chaperone-assisted proteasomal degradation
- CASA, chaperone-assisted selective autophagy
- CHIP, carboxy-terminus of HSC70 interacting protein
- CMA, chaperone-mediated autophagy
- Cancer
- Chaperones
- DUBs, deubiquitinases
- Drug discovery
- EGCG, epigallocatechin-3-gallate
- ESCRT, endosomal sorting complexes required for transport
- HECT, homologous to the E6-AP carboxyl terminus
- HSC70, heat shock cognate 70
- HSF1, heat shock factor 1
- HSP, heat shock protein
- KFERQ, lysine-phenylalanine-glutamate-arginine-glutamine
- LAMP2a, lysosome-associated membrane protein 2a
- LC3, light chain 3
- NBR1, next to BRCA1 gene 1
- Natural molecules
- Neurodegeneration
- PQC, protein quality control
- Proteinopathies
- Proteostasis
- RING, really interesting new gene
- UPS, ubiquitin–proteasome system
- Ub, ubiquitin
- Ubiquitin proteasome system
Collapse
Affiliation(s)
- Arun Upadhyay
- Department of Biochemistry, Central University of Rajasthan, Bandar Sindari, Kishangarh, Ajmer, Rajasthan 305817, India
| |
Collapse
|
33
|
Tsai CH, Lii CK, Wang TS, Liu KL, Chen HW, Huang CS, Li CC. Docosahexaenoic acid promotes the formation of autophagosomes in MCF-7 breast cancer cells through oxidative stress-induced growth inhibitor 1 mediated activation of AMPK/mTOR pathway. Food Chem Toxicol 2021; 154:112318. [PMID: 34116103 DOI: 10.1016/j.fct.2021.112318] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/13/2021] [Accepted: 05/29/2021] [Indexed: 11/18/2022]
Abstract
Docosahexaenoic acid (DHA) is known to regulate autophagy in cancer cells. We explored whether oxidative stress-induced growth inhibitor 1 (OSGIN1) is involved in the regulation of autophagy by DHA in breast cancer cells and the possible mechanisms involved. DHA upregulated the levels of OSGIN1, LC3-II and SQSTM1/p62. By contrast, DHA dose-dependently decreased the levels of mTOR and p-mTORS2448 expression. Using GFP/RFP-LC3 fluorescence staining, we showed that cells treated with DHA showed a dose-dependent response in autophagic signals. OSGIN1 Overexpression mimicked DHA treatment in that LC3-II and GFP/RFP-LC3 signals as well as the expression of p-AMPKαT172 and p-RaptorS792 were significantly increased, whereas mTOR, p-mTORS2448, and p-ULK1S757 expression were decreased. With knockdown of OSGIN1 expression, these outcomes were reversed. Moreover, OSGIN1 overexpression transiently elevated the accumulation of OSGIN1 and reactive oxygen species (ROS) in the mitochondrial fraction and subsequently increased p-AMPKαT172 and p-RaptorS792 expression. Upon pretreatment with Mito-TEMPO, a scavenger of mitochondrial ROS, these outcomes were reversed. Taken together, these results suggest that DHA can transiently elevate the generation of ROS in mitochondria and promote autophagosome formation through activation of the p-AMPKαT172/p-Raptor S792 and inactivation of the p-mTORS2448/p-ULK1Ser757 signaling pathways, and these effects depend on OSGIN1 protein in MCF-7 cells.
Collapse
Affiliation(s)
- Chia-Han Tsai
- Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan
| | - Chong-Kuei Lii
- Department of Nutrition, China Medical University, Taichung, Taiwan; Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| | - Tsu-Shing Wang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Kai-Li Liu
- Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan; Department of Nutrition, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Haw-Wen Chen
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Chin-Shiu Huang
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| | - Chien-Chun Li
- Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan; Department of Nutrition, Chung Shan Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
34
|
Zhao T, Guo X, Sun Y. Iron Accumulation and Lipid Peroxidation in the Aging Retina: Implication of Ferroptosis in Age-Related Macular Degeneration. Aging Dis 2021; 12:529-551. [PMID: 33815881 PMCID: PMC7990372 DOI: 10.14336/ad.2020.0912] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 09/12/2020] [Indexed: 01/19/2023] Open
Abstract
Iron is an essential component in many biological processes in the human body. It is critical for the visual phototransduction cascade in the retina. However, excess iron can be toxic. Iron accumulation and reduced efficiency of intracellular antioxidative defense systems predispose the aging retina to oxidative stress-induced cell death. Age-related macular degeneration (AMD) is characterized by retinal iron accumulation and lipid peroxidation. The mechanisms underlying AMD include oxidative stress-mediated death of retinal pigment epithelium (RPE) cells and subsequent death of retinal photoreceptors. Understanding the mechanism of the disruption of iron and redox homeostasis in the aging retina and AMD is crucial to decipher these mechanisms of cell death and AMD pathogenesis. The mechanisms of retinal cell death in AMD are an area of active investigation; previous studies have proposed several types of cell death as major mechanisms. Ferroptosis, a newly discovered programmed cell death pathway, has been associated with the pathogenesis of several neurodegenerative diseases. Ferroptosis is initiated by lipid peroxidation and is characterized by iron-dependent accumulation. In this review, we provide an overview of the mechanisms of iron accumulation and lipid peroxidation in the aging retina and AMD, with an emphasis on ferroptosis.
Collapse
Affiliation(s)
- Tantai Zhao
- 1Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,2Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Xiaojian Guo
- 1Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,2Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Yun Sun
- 1Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,2Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| |
Collapse
|
35
|
Potilinski MC, Tate PS, Lorenc VE, Gallo JE. New insights into oxidative stress and immune mechanisms involved in age-related macular degeneration tackled by novel therapies. Neuropharmacology 2021; 188:108513. [PMID: 33662390 DOI: 10.1016/j.neuropharm.2021.108513] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 02/14/2021] [Accepted: 02/22/2021] [Indexed: 12/20/2022]
Abstract
The prevalence of age-related macular degeneration (AMD) has increased in the last years. Although anti-VEGF agents have improved the prognosis of exudative AMD, dry AMD has still devastating effects on elderly people vision. Oxidative stress and inflammation are mechanisms involved in AMD pathogenesis and its progression. Molecular pathways involving epidermal growth factor receptor (EGFR), bone morphogenetic protein (BMP4) and the nuclear erythroid related factor 2 (Nrf2) are behind oxidative stress in AMD due to their participation in antioxidant cellular pathways. As a consequence of the disbalance produced in the antioxidant mechanisms, there is an activation of innate and adaptative immune response with cell recruitment, changes in complement factors expression, and modification of cellular milieu. Different therapies are being studied to treat dry AMD based on the possible effects on antioxidant molecular pathways or their action on the immune response. There is a wide range of treatments presented in this review, from natural antioxidant compounds to cell and gene therapy, based on their mechanisms. Finally, we hypothesize that alpha-1-antitrypsin (AAT), an anti-inflammatory and immunomodulatory molecule that can also modulate antioxidant cellular defenses, could be a good candidate for testing in AMD. This article is part of the special ssue on 'The Quest for Disease-Modifying Therapies for Neurodegenerative Disorders'.
Collapse
Affiliation(s)
- María Constanza Potilinski
- Nanomedicine & Vision Lab, Instituto de Investigaciones en Medicina Translacional, Universidad Austral, CONICET, Pilar, Buenos Aires, Argentina
| | - Pablo S Tate
- Laboratorio de Enfermedades Neurodegenerativas, Instituto de Investigaciones en Medicina Translacional, Universidad Austral, CONICET, Pilar, Buenos Aires, Argentina
| | - Valeria E Lorenc
- Nanomedicine & Vision Lab, Instituto de Investigaciones en Medicina Translacional, Universidad Austral, CONICET, Pilar, Buenos Aires, Argentina
| | - Juan E Gallo
- Nanomedicine & Vision Lab, Instituto de Investigaciones en Medicina Translacional, Universidad Austral, CONICET, Pilar, Buenos Aires, Argentina; Departamento de Oftalmología, Hospital Universitario Austral, Pilar, Buenos Aires, Argentina.
| |
Collapse
|
36
|
The Role of Autophagy in Eye Diseases. Life (Basel) 2021; 11:life11030189. [PMID: 33673657 PMCID: PMC7997177 DOI: 10.3390/life11030189] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 12/18/2022] Open
Abstract
Autophagy is a catabolic process that ensures homeostasis in the cells of our organism. It plays a crucial role in protecting eye cells against oxidative damage and external stress factors. Ocular pathologies of high incidence, such as age-related macular degeneration, cataracts, glaucoma, and diabetic retinopathy are of multifactorial origin and are associated with genetic, environmental factors, age, and oxidative stress, among others; the latter factor is one of the most influential in ocular diseases, directly affecting the processes of autophagy activity. Alteration of the normal functioning of autophagy processes can interrupt organelle turnover, leading to the accumulation of cellular debris and causing physiological dysfunction of the eye. The aim of this study is to review research on the role of autophagy processes in the main ocular pathologies, which have a high incidence and result in high costs for the health system. Considering the role of autophagy processes in cell homeostasis and cell viability, the control and modulation of autophagy processes in ocular pathologies could constitute a new therapeutic approach.
Collapse
|
37
|
Moine E, Boukhallat M, Cia D, Jacquemot N, Guillou L, Durand T, Vercauteren J, Brabet P, Crauste C. New lipophenols prevent carbonyl and oxidative stresses involved in macular degeneration. Free Radic Biol Med 2021; 162:367-382. [PMID: 33129975 DOI: 10.1016/j.freeradbiomed.2020.10.316] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 12/17/2022]
Abstract
Dry age-related macular degeneration and Stargardt disease undergo a known toxic mechanism caused by carbonyl and oxidative stresses (COS). This is responsible for accumulation in the retinal pigment epithelium (RPE) of A2E, a main toxic pyridinium bis-retinoid lipofuscin component. Previous studies have shown that carbonyl stress in retinal cells could be reduced by an alkyl-phloroglucinol-DHA conjugate (lipophenol). Here, we performed a rational design of different families of lipophenols to conserve anti-carbonyl stress activities and improve antioxidant properties. Five synthetic pathways leading to alkyl-(poly)phenol derivatives, with phloroglucinol, resveratrol, catechin and quercetin as the main backbone, linked to poly-unsaturated fatty acid, are presented. These lipophenols were evaluated in ARPE-19 cell line for their anti-COS properties and a structure-activity relationship study is proposed. Protection of ARPE-19 cells against A2E toxicity was assessed for the four best candidates. Finally, interesting anti-COS properties of the most promising quercetin lipophenol were confirmed in primary RPE cells.
Collapse
Affiliation(s)
- Espérance Moine
- Institut des Biomolécules Max Mousseron (IBMM), Université de Montpellier, CNRS, ENSCM, Montpellier, 34093, France.
| | - Manel Boukhallat
- Institut des Biomolécules Max Mousseron (IBMM), Université de Montpellier, CNRS, ENSCM, Montpellier, 34093, France
| | - David Cia
- Laboratoire de Biophysique Neurosensorielle, UMR INSERM 1107, Facultés de Médecine et de Pharmacie, Clermont-Ferrand, 63000, France
| | - Nathalie Jacquemot
- Laboratoire de Biophysique Neurosensorielle, UMR INSERM 1107, Facultés de Médecine et de Pharmacie, Clermont-Ferrand, 63000, France
| | - Laurent Guillou
- Institut des Neurosciences de Montpellier, INSERM U1051, Université de Montpellier, Montpellier, 34091, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron (IBMM), Université de Montpellier, CNRS, ENSCM, Montpellier, 34093, France
| | - Joseph Vercauteren
- Institut des Biomolécules Max Mousseron (IBMM), Université de Montpellier, CNRS, ENSCM, Montpellier, 34093, France
| | - Philippe Brabet
- Institut des Neurosciences de Montpellier, INSERM U1051, Université de Montpellier, Montpellier, 34091, France
| | - Céline Crauste
- Institut des Biomolécules Max Mousseron (IBMM), Université de Montpellier, CNRS, ENSCM, Montpellier, 34093, France.
| |
Collapse
|
38
|
Kang GJ, Kim EJ, Lee CH. Therapeutic Effects of Specialized Pro-Resolving Lipids Mediators on Cardiac Fibrosis via NRF2 Activation. Antioxidants (Basel) 2020; 9:antiox9121259. [PMID: 33321955 PMCID: PMC7764646 DOI: 10.3390/antiox9121259] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/09/2020] [Accepted: 12/09/2020] [Indexed: 12/19/2022] Open
Abstract
Heart disease is the number one mortality disease in the world. In particular, cardiac fibrosis is considered as a major factor causing myocardial infarction and heart failure. In particular, oxidative stress is a major cause of heart fibrosis. In order to control such oxidative stress, the importance of nuclear factor erythropoietin 2 related factor 2 (NRF2) has recently been highlighted. In this review, we will discuss the activation of NRF2 by docosahexanoic acid (DHA), eicosapentaenoic acid (EPA), and the specialized pro-resolving lipid mediators (SPMs) derived from polyunsaturated lipids, including DHA and EPA. Additionally, we will discuss their effects on cardiac fibrosis via NRF2 activation.
Collapse
Affiliation(s)
- Gyeoung Jin Kang
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA; (G.J.K.); (E.J.K.)
| | - Eun Ji Kim
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA; (G.J.K.); (E.J.K.)
- College of Pharmacy, Dongguk University, Seoul 04620, Korea
| | - Chang Hoon Lee
- College of Pharmacy, Dongguk University, Seoul 04620, Korea
- Correspondence: ; Tel.: +82-31-961-5213
| |
Collapse
|
39
|
Kaarniranta K, Uusitalo H, Blasiak J, Felszeghy S, Kannan R, Kauppinen A, Salminen A, Sinha D, Ferrington D. Mechanisms of mitochondrial dysfunction and their impact on age-related macular degeneration. Prog Retin Eye Res 2020; 79:100858. [PMID: 32298788 PMCID: PMC7650008 DOI: 10.1016/j.preteyeres.2020.100858] [Citation(s) in RCA: 285] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 12/21/2022]
Abstract
Oxidative stress-induced damage to the retinal pigment epithelium (RPE) is considered to be a key factor in age-related macular degeneration (AMD) pathology. RPE cells are constantly exposed to oxidative stress that may lead to the accumulation of damaged cellular proteins, lipids, nucleic acids, and cellular organelles, including mitochondria. The ubiquitin-proteasome and the lysosomal/autophagy pathways are the two major proteolytic systems to remove damaged proteins and organelles. There is increasing evidence that proteostasis is disturbed in RPE as evidenced by lysosomal lipofuscin and extracellular drusen accumulation in AMD. Nuclear factor-erythroid 2-related factor-2 (NFE2L2) and peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) are master transcription factors in the regulation of antioxidant enzymes, clearance systems, and biogenesis of mitochondria. The precise cause of RPE degeneration and the onset and progression of AMD are not fully understood. However, mitochondria dysfunction, increased reactive oxygen species (ROS) production, and mitochondrial DNA (mtDNA) damage are observed together with increased protein aggregation and inflammation in AMD. In contrast, functional mitochondria prevent RPE cells damage and suppress inflammation. Here, we will discuss the role of mitochondria in RPE degeneration and AMD pathology focused on mtDNA damage and repair, autophagy/mitophagy signaling, and regulation of inflammation. Mitochondria are putative therapeutic targets to prevent or treat AMD.
Collapse
Affiliation(s)
- Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland and Kuopio University Hospital, P.O. Box 1627, FI-70211, Kuopio, Finland.
| | - Hannu Uusitalo
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland and Tays Eye Centre, Tampere University Hospital, P.O.Box 2000, 33521 Tampere, Finland
| | - Janusz Blasiak
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236, Lodz, Poland
| | - Szabolcs Felszeghy
- Department of Biomedicine, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Ram Kannan
- The Stephen J. Ryan Initiative for Macular Research (RIMR), Doheny Eye Institute, 1355 San Pablo St, Los Angeles, CA, 90033, USA
| | - Anu Kauppinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Debasish Sinha
- Glia Research Laboratory, Department of Ophthalmology, University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, PA 15224, USA; Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Room M035 Robert and Clarice Smith Bldg, 400 N Broadway, Baltimore, MD, 21287, USA
| | - Deborah Ferrington
- Department of Ophthalmology and Visual Neurosciences, 2001 6th St SE, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
40
|
Modulatory role of dietary polyunsaturated fatty acids in Nrf2-mediated redox homeostasis. Prog Lipid Res 2020; 80:101066. [DOI: 10.1016/j.plipres.2020.101066] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 02/07/2023]
|
41
|
Autophagy in Age-Related Macular Degeneration: A Regulatory Mechanism of Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:2896036. [PMID: 32831993 PMCID: PMC7429811 DOI: 10.1155/2020/2896036] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/18/2020] [Indexed: 02/06/2023]
Abstract
Age-related macular degeneration (AMD) is a leading cause of severe visual loss and irreversible blindness in the elderly population worldwide. Retinal pigment epithelial (RPE) cells are the major site of pathological alterations in AMD. They are responsible for the phagocytosis of shed photoreceptor outer segments (POSs) and clearance of cellular waste under physiological conditions. Age-related, cumulative oxidative stimuli contribute to the pathogenesis of AMD. Excessive oxidative stress induces RPE cell degeneration and incomplete digestion of POSs, leading to the continuous accumulation of cellular waste (such as lipofuscin). Autophagy is a major system of degradation of damaged or unnecessary proteins. However, degenerative RPE cells in AMD patients cannot perform autophagy sufficiently to resist oxidative damage. Increasing evidence supports the idea that enhancing the autophagic process can properly alleviate oxidative injury in AMD and protect RPE and photoreceptor cells from degeneration and death, although overactivated autophagy may lead to cell death at early stages of retinal degenerative diseases. The crosstalk among the NFE2L2, PGC-1, p62, AMPK, and PI3K/Akt/mTOR pathways may play a crucial role in improving disturbed autophagy and mitigating the progression of AMD. In this review, we discuss how autophagy prevents oxidative damage in AMD, summarize potential neuroprotective strategies for therapeutic interventions, and provide an overview of these neuroprotective mechanisms.
Collapse
|
42
|
Yang B, Zhou Y, Wu M, Li X, Mai K, Ai Q. ω-6 Polyunsaturated fatty acids (linoleic acid) activate both autophagy and antioxidation in a synergistic feedback loop via TOR-dependent and TOR-independent signaling pathways. Cell Death Dis 2020; 11:607. [PMID: 32732901 PMCID: PMC7393504 DOI: 10.1038/s41419-020-02750-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 02/07/2023]
Abstract
ω-6 Polyunsaturated fatty acids (PUFAs) are essential fatty acids that participate in macroautophagy (hereafter referred to as autophagy) and the Kelch ECH-associating protein 1 (Keap1)—nuclear factor erythroid 2-related factor 2 (Nrf2) antioxidant system in organisms. However, the molecular mechanisms by which ω-6 PUFAs (linoleic acid) regulate autophagy and Keap1–Nrf2 antioxidant system are not completely understood. Therefore, the purposes of this study were to explore the molecular mechanisms by which ω-6 PUFAs (linoleic acid) regulate autophagy and antioxidant system and to investigate the potential relationship between autophagy and antioxidant system through transcriptomic analysis, quantitative real-time polymerase chain reaction (RT-qPCR), western blot analysis, coimmunoprecipitation (Co-IP) and electrophoretic mobility shift assays (EMSAs) in vivo and in vitro. The results of the present study indicated that ω-6 PUFAs in diets induced autophagy but decrease antioxidant ability in vivo. However, the results also provided evidence, for the first time, that ω-6 PUFAs (linoleic acid) induced autophagy and increased antioxidant ability through the adenosine monophosphate-activated protein kinase (AMPK) signaling pathway and the AMPK-target of rapamycin (TOR) signaling pathway in hepatocytes in vitro. Interestingly, the findings revealed a ω-6 PUFA-induced synergistic feedback loop between autophagy and antioxidant system, which are connected with each other through the P62 and Keap1 complex. These results suggested that ω-6 PUFAs (linoleic acid) could be useful for activating a synergistic feedback loop between autophagy and antioxidant system and could greatly aid in the prevention and treatment of multiple pathologies.
Collapse
Affiliation(s)
- Bo Yang
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) & Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, People's Republic of China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, 266237, Qingdao, Shandong, People's Republic of China
| | - Yan Zhou
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) & Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, People's Republic of China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, 266237, Qingdao, Shandong, People's Republic of China
| | - Mengjiao Wu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) & Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, People's Republic of China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, 266237, Qingdao, Shandong, People's Republic of China
| | - Xueshan Li
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) & Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, People's Republic of China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, 266237, Qingdao, Shandong, People's Republic of China
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) & Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, People's Republic of China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, 266237, Qingdao, Shandong, People's Republic of China
| | - Qinghui Ai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) & Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, People's Republic of China. .,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, 266237, Qingdao, Shandong, People's Republic of China.
| |
Collapse
|
43
|
Lim Y, Kim S, Kim S, Kim DI, Kang KW, Hong SH, Lee SM, Koh HR, Seo YJ. n-3 Polyunsaturated Fatty Acids Impede the TCR Mobility and the TCR-pMHC Interaction of Anti-Viral CD8+ T Cells. Viruses 2020; 12:v12060639. [PMID: 32545480 PMCID: PMC7354506 DOI: 10.3390/v12060639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 12/27/2022] Open
Abstract
The immune-suppressive effects of omega-3 (n-3) polyunsaturated fatty acids (PUFAs) on T cells have been observed via multiple in vitro and in vivo models. However, the precise mechanism that causes these effects is still undefined. In this study, we investigated whether n-3 PUFAs regulated T cell receptor (TCR) and peptide-major histocompatibility complex (pMHC) interactions. The expansion of anti-viral CD8+ T cells that endogenously synthesize n-3 PUFAs (FAT-1) dramatically decreased upon lymphocytic choriomeningitis virus (LCMV) infection in vivo. This decrease was not caused by the considerable reduction of TCR expression or the impaired chemotactic activity of T cells. Interestingly, a highly inclined and laminated optical sheet (HILO) microscopic analysis revealed that the TCR motility was notably reduced on the surface of the FAT-1 CD8+ T cells compared to the wild type (WT) CD8+ T cells. Importantly, the adhesion strength of the FAT-1 CD8+ T cells to the peptide-MHC was significantly lower than that of the WT CD8+T cells. Consistent with this result, treatment with docosahexaenoic acid (DHA), one type of n-3 PUFA, significantly decreased CD8+ T cell adhesion to the pMHC. Collectively, our results reveal a novel mechanism through which n-3 PUFAs decrease TCR-pMHC interactions by modulating TCR mobility on CD8+ T cell surfaces.
Collapse
Affiliation(s)
- Younghyun Lim
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea; (Y.L.); (S.K.); (D.-I.K.)
| | - Seyoung Kim
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea; (Y.L.); (S.K.); (D.-I.K.)
| | - Sehoon Kim
- Department of Chemistry, Chung-Ang University, Seoul 06974, Korea;
| | - Dong-In Kim
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea; (Y.L.); (S.K.); (D.-I.K.)
| | - Kyung Won Kang
- Division of Biotechnology, College of Environmental and Bioresources, Jeonbuk National University, Iksan 54596, Korea; (K.W.K.); (S.-M.L.)
| | - So-Hee Hong
- Department of Biotechnology, the Catholic University of Korea, Bucheon 14662, Korea;
| | - Sang-Myeong Lee
- Division of Biotechnology, College of Environmental and Bioresources, Jeonbuk National University, Iksan 54596, Korea; (K.W.K.); (S.-M.L.)
| | - Hye Ran Koh
- Department of Chemistry, Chung-Ang University, Seoul 06974, Korea;
- Correspondence: (H.R.K.); (Y.-J.S.)
| | - Young-Jin Seo
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea; (Y.L.); (S.K.); (D.-I.K.)
- Correspondence: (H.R.K.); (Y.-J.S.)
| |
Collapse
|
44
|
Montero ML, Liu JW, Orozco J, Casiano CA, De Leon M. Docosahexaenoic acid protection against palmitic acid-induced lipotoxicity in NGF-differentiated PC12 cells involves enhancement of autophagy and inhibition of apoptosis and necroptosis. J Neurochem 2020; 155:559-576. [PMID: 32379343 PMCID: PMC7754135 DOI: 10.1111/jnc.15038] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 04/20/2020] [Accepted: 04/30/2020] [Indexed: 12/11/2022]
Abstract
Lipotoxicity (LTx) leads to cellular dysfunction and cell death and has been proposed to be an underlying process during traumatic and hypoxic injuries and neurodegenerative conditions in the nervous system. This study examines cellular mechanisms responsible for docosahexaenoic acid (DHA 22:6 n‐3) protection in nerve growth factor‐differentiated pheochromocytoma (NGFDPC12) cells from palmitic acid (PAM)‐mediated lipotoxicity (PAM‐LTx). NGFDPC12 cells exposed to PAM show a significant lipotoxicity demonstrated by a robust loss of cell viability, apoptosis, and increased HIF‐1α and BCL2/adenovirus E1B 19 kDa protein‐interacting protein 3 gene expression. Treatment of NGFDPC12 cells undergoing PAM‐LTx with the pan‐caspase inhibitor ZVAD did not protect, but shifted the process from apoptosis to necroptosis. This shift in cell death mechanism was evident by the appearance of the signature necroptotic Topo I protein cleavage fragments, phosphorylation of mixed lineage kinase domain‐like, and inhibition with necrostatin‐1. Cultures exposed to PAM and co‐treated with necrostatin‐1 (necroptosis inhibitor) and rapamycin (autophagy promoter), showed a significant protection against PAM‐LTx compared to necrostatin‐1 alone. In addition, co‐treatment with DHA, as well as 20:5 n‐3, 20:4 n‐6, and 22:5 n‐3, in the presence of PAM protected NGFDPC12 cells against LTx. DHA‐induced neuroprotection includes restoring normal levels of HIF‐1α and BCL2/adenovirus E1B 19 kDa protein‐interacting protein 3 transcripts and caspase 8 and caspase 3 activity, phosphorylation of beclin‐1, de‐phosphorylation of mixed lineage kinase domain‐like, increase in LC3‐II, and up‐regulation of Atg7 and Atg12 genes, suggesting activation of autophagy and inhibition of necroptosis. Furthermore, DHA‐induced protection was suppressed by the lysosomotropic agent chloroquine, an inhibitor of autophagy. We conclude that DHA elicits neuroprotection by regulating multiple cell death pathways including enhancement of autophagy and inhibiting apoptosis and necroptosis. ![]()
Collapse
Affiliation(s)
- Manuel L Montero
- Center for Health Disparities and Molecular Medicine and Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Jo-Wen Liu
- Center for Health Disparities and Molecular Medicine and Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - José Orozco
- Center for Health Disparities and Molecular Medicine and Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Carlos A Casiano
- Center for Health Disparities and Molecular Medicine and Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Marino De Leon
- Center for Health Disparities and Molecular Medicine and Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| |
Collapse
|
45
|
Trehalose for Ocular Surface Health. Biomolecules 2020; 10:biom10050809. [PMID: 32466265 PMCID: PMC7277924 DOI: 10.3390/biom10050809] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/14/2020] [Accepted: 05/21/2020] [Indexed: 12/14/2022] Open
Abstract
Trehalose is a natural disaccharide synthesized in various life forms, but not found in vertebrates. An increasing body of evidence demonstrates exceptional bioprotective characteristics of trehalose. This review discusses the scientific findings on potential functions of trehalose in oxidative stress, protein clearance, and inflammation, with an emphasis on animal models and clinical trials in ophthalmology. The main objective is to help understand the beneficial effects of trehalose in clinical trials and practice, especially in patients suffering from ocular surface disease. The discussion is supplemented with an overview of patents for the use of trehalose in dry eye and with prospects for the 2020s.
Collapse
|
46
|
Apigenin Protects Mouse Retina against Oxidative Damage by Regulating the Nrf2 Pathway and Autophagy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:9420704. [PMID: 32509154 PMCID: PMC7244986 DOI: 10.1155/2020/9420704] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 04/29/2020] [Indexed: 02/07/2023]
Abstract
Oxidative stress is a critical factor in the pathology of age-related macular degeneration (AMD). Apigenin (AP) is a flavonoid with an outstanding antioxidant activity. We had previously observed that AP protected APRE-19 cells against oxidative injury in vitro. However, AP has poor water and fat solubility, which determines its low oral bioavailability. In this study, we prepared the solid dispersion of apigenin (AP-SD). The solubility and dissolution of AP-SD was significantly better than that of the original drug, so the oral bioavailability in rats was better than that of the original drug. Then, the effects of AP-SD on the retina of a model mouse with dry AMD were assessed by fundus autofluorescence (FAF), optical coherence tomography (OCT), and electron microscopy; the results revealed that AP-SD alleviated retinopathy. Further research found that AP-SD promoted the nuclear translocation of Nrf2 and increased expression levels of the Nrf2 and target genes HO-1 and NQO-1. AP-SD enhanced the activities of SOD and GSH-Px and decreased the levels of ROS and MDA. Furthermore, AP-SD upregulated the expressions of p62 and LC3II in an Nrf2-dependent manner. However, these effects of AP-SD were observed only in the retina of Nrf2 WT mice, not in Nrf2 KO mice. In addition, the therapeutic effect of AP-SD was dose dependent, and AP did not work. In conclusion, AP-SD significantly enhanced the bioavailability of the original drug and reduced retinal oxidative injury in the model mouse of dry AMD in vivo. The results of the underlying mechanism showed that AP-SD upregulated the expression of antioxidant enzymes through the Nrf2 pathway and upregulated autophagy, thus inhibiting retinal oxidative damage. AP-SD may be a potential compound for the treatment of dry AMD.
Collapse
|
47
|
Takanezawa Y, Nakamura R, Kusaka T, Ohshiro Y, Uraguchi S, Kiyono M. Significant contribution of autophagy in mitigating cytotoxicity of gadolinium ions. Biochem Biophys Res Commun 2020; 526:206-212. [PMID: 32201079 DOI: 10.1016/j.bbrc.2020.03.080] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 03/13/2020] [Indexed: 12/11/2022]
Abstract
Gadolinium-based contrast agents (GBCAs) are widely used in clinical magnetic resonance imaging (MRI). Free gadolinium ions (Gd3+) released from GBCAs potentially increase the risk of GBCA-related toxicity. However, the cellular responses to Gd3+ and the underlying mechanisms responsible for protection against Gd3+ remain poorly understood. Recently, autophagy has been considered a cell survival mechanism against various toxic metals. Here, we investigated the relationship between Gd3+ and autophagy, as well as the effect of autophagy inhibition on the survival of cells exposed to Gd3+. We found that the increased expression of microtubule-associated protein 1 light chain 3 (LC3)-II, a marker protein of autophagy, in Gd3+-exposed human embryonic kidney 293 (HEK293) cells. Moreover, we found a greater accumulation of LC3-II after exposure to an autophagy inhibitor, chloroquine (CQ), combined with Gd3+ than that after exposure to CQ alone, suggesting that Gd3+ activated autophagy in HEK293 cells. Furthermore, we found that Gd3+ reduced cell viability, which was more pronounced after CQ treatment. Our findings indicated that autophagy exerted a cytoprotective effect against Gd3+ toxicity, suggesting a potential link between autophagy and GBCA-associated adverse events.
Collapse
Affiliation(s)
- Yasukazu Takanezawa
- Department of Public Health, School of Pharmacy, Kitasato University, Tokyo, Japan, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Ryosuke Nakamura
- Department of Public Health, School of Pharmacy, Kitasato University, Tokyo, Japan, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Tomoya Kusaka
- Department of Public Health, School of Pharmacy, Kitasato University, Tokyo, Japan, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Yuka Ohshiro
- Department of Public Health, School of Pharmacy, Kitasato University, Tokyo, Japan, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Shimpei Uraguchi
- Department of Public Health, School of Pharmacy, Kitasato University, Tokyo, Japan, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Masako Kiyono
- Department of Public Health, School of Pharmacy, Kitasato University, Tokyo, Japan, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan.
| |
Collapse
|
48
|
Obradovic M, Essack M, Zafirovic S, Sudar‐Milovanovic E, Bajic VP, Van Neste C, Trpkovic A, Stanimirovic J, Bajic VB, Isenovic ER. Redox control of vascular biology. Biofactors 2020; 46:246-262. [PMID: 31483915 PMCID: PMC7187163 DOI: 10.1002/biof.1559] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 08/14/2019] [Indexed: 12/12/2022]
Abstract
Redox control is lost when the antioxidant defense system cannot remove abnormally high concentrations of signaling molecules, such as reactive oxygen species (ROS). Chronically elevated levels of ROS cause oxidative stress that may eventually lead to cancer and cardiovascular and neurodegenerative diseases. In this review, we focus on redox effects in the vascular system. We pay close attention to the subcompartments of the vascular system (endothelium, smooth muscle cell layer) and give an overview of how redox changes influence those different compartments. We also review the core aspects of redox biology, cardiovascular physiology, and pathophysiology. Moreover, the topic-specific knowledgebase DES-RedoxVasc was used to develop two case studies, one focused on endothelial cells and the other on the vascular smooth muscle cells, as a starting point to possibly extend our knowledge of redox control in vascular biology.
Collapse
Affiliation(s)
- Milan Obradovic
- Laboratory of Radiobiology and Molecular GeneticsVinca Institute of Nuclear Sciences, University of BelgradeBelgradeSerbia
| | - Magbubah Essack
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE)ThuwalKingdom of Saudi Arabia
| | - Sonja Zafirovic
- Laboratory of Radiobiology and Molecular GeneticsVinca Institute of Nuclear Sciences, University of BelgradeBelgradeSerbia
| | - Emina Sudar‐Milovanovic
- Laboratory of Radiobiology and Molecular GeneticsVinca Institute of Nuclear Sciences, University of BelgradeBelgradeSerbia
| | - Vladan P. Bajic
- Laboratory of Radiobiology and Molecular GeneticsVinca Institute of Nuclear Sciences, University of BelgradeBelgradeSerbia
| | - Christophe Van Neste
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE)ThuwalKingdom of Saudi Arabia
| | - Andreja Trpkovic
- Laboratory of Radiobiology and Molecular GeneticsVinca Institute of Nuclear Sciences, University of BelgradeBelgradeSerbia
| | - Julijana Stanimirovic
- Laboratory of Radiobiology and Molecular GeneticsVinca Institute of Nuclear Sciences, University of BelgradeBelgradeSerbia
| | - Vladimir B. Bajic
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE)ThuwalKingdom of Saudi Arabia
| | - Esma R. Isenovic
- Laboratory of Radiobiology and Molecular GeneticsVinca Institute of Nuclear Sciences, University of BelgradeBelgradeSerbia
| |
Collapse
|
49
|
Combination of Lutein and Zeaxanthin, and DHA Regulated Polyunsaturated Fatty Acid Oxidation in H 2O 2-Stressed Retinal Cells. Neurochem Res 2020; 45:1007-1019. [PMID: 32088804 DOI: 10.1007/s11064-020-02994-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/21/2020] [Accepted: 02/17/2020] [Indexed: 02/06/2023]
Abstract
Photochemical and oxidative damages in retinal pigment epithelial (RPE) cells are key events in the pathogenesis of age-related macular degeneration. Polyunsaturated fatty acids (PUFA) and carotenoids are rich in retinal cells, and under oxidative stress leads to oxidation and release lipid mediators. We evaluated the impact of carotenoids (lutein, zeaxanthin) and docosahexaenoic acid (DHA) supplementation on RPE cells under oxidative stress. ARPE-19 cells were exposed to H2O2 after pre-treatment with lutein, zeaxanthin, DHA, lutein + zeaxanthin or lutein + zeaxanthin with DHA. The data showed H2O2 reduced cell viability and DHA content, while promoted catalase activity and certain oxidized PUFA products. Treatment with DHA enhanced omega-3 PUFA enzymatic oxidation namely, anti-inflammatory mediators such as hydroxy-DHA, resolvins and neuroprotection compared to control; the effects were not influenced by the carotenoids. Omega-6 PUFA oxidation, namely pro-inflammatory HETE (5-, 9-, 12 and 20-HETE), and isoprostanes (5- and 15-F2t-IsoP and 4-F3t-IsoP) were reduced by lutein + zeaxanthin while the addition of DHA did not further reduce these effects. We observed transcriptional regulation of 5-lipoxygenase by DHA and GPx1 and NEFEL2 by the carotenoids that potentially resulted in decreased HETEs and glutathione respectively. 4-HNE was not affected by the treatments but 4-HHE was reduced by lutein + zeaxanthin with and without DHA. To conclude, carotenoids and DHA appeared to regulate inflammatory lipid mediators while the carotenoids also showed benefits in reducing non-enzymatic oxidation of omega-6 PUFA.
Collapse
|
50
|
Hyttinen JMT, Kannan R, Felszeghy S, Niittykoski M, Salminen A, Kaarniranta K. The Regulation of NFE2L2 (NRF2) Signalling and Epithelial-to-Mesenchymal Transition in Age-Related Macular Degeneration Pathology. Int J Mol Sci 2019; 20:ijms20225800. [PMID: 31752195 PMCID: PMC6888570 DOI: 10.3390/ijms20225800] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/14/2019] [Accepted: 11/14/2019] [Indexed: 12/19/2022] Open
Abstract
Age-related macular degeneration (AMD) is a mounting cause of loss of sight in the elderly in the developed countries, a trend enhanced by the continual ageing of the population. AMD is a multifactorial and only partly understood, malady. Unfortunately, there is no effective treatment for most AMD patients. It is known that oxidative stress (OS) damages the retinal pigment epithelium (RPE) and contributes to the progression of AMD. We review here the potential importance of two OS-related cellular systems in relation to AMD. First, the nuclear factor erythroid 2-related factor 2 (NFE2L2; NRF2)-mediated OS response signalling pathway is important in the prevention of oxidative damage and a failure of this system could be critical in the development of AMD. Second, epithelial-to-mesenchymal transition (EMT) represents a change in the cellular phenotype, which ultimately leads to the fibrosis encountered in RPE, a characteristic of AMD. Many of the pathways triggering EMT are promoted by OS. The possible interconnections between these two signalling routes are discussed here. From a broader perspective, the control of NFE2L2 and EMT as ways of preventing OS-derived cellular damage could be potentially valuable in the therapy of AMD.
Collapse
Affiliation(s)
- Juha M. T. Hyttinen
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland;
- Correspondence:
| | - Ram Kannan
- The Stephen J. Ryan Initiative for Macular Research (RIMR), Doheny Eye Institute, DVRC 203, 1355 San Pablo Street, Los Angeles, CA 90033, USA
| | - Szabolcs Felszeghy
- Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland;
- Institute of Dentistry, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Minna Niittykoski
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland;
| | - Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland;
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland;
- Department of Ophthalmology, Kuopio University Hospital, P.O. Box 100, 70029 KYS Kuopio, Finland
| |
Collapse
|