1
|
Wang Z, Guo P, Hu L, Hua G, Yang Y, Zheng H, Fang H, Xia Q, Zhao P. Fibroinase plays a vital role in silk gland degeneration by regulating autophagy and apoptosis in the silkworm, Bombyx mori. Int J Biol Macromol 2024; 277:134312. [PMID: 39084448 DOI: 10.1016/j.ijbiomac.2024.134312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/28/2024] [Accepted: 07/28/2024] [Indexed: 08/02/2024]
Abstract
The silkworm is an incredibly valuable insect that produces silk through its silk gland. Within this organ, Fibroinase has been identified and named due to its ability to fibroin degradation. The expression of Fibroinase in the silk gland significantly increases during the larval-pupal stage, which might be associated with the degeneration of the silk gland. In this study, Fibroinase was overexpressed and knocked down specifically both in the middle and posterior silk glands, respectively, using transgenic technology. The investigation of silk gland development in these transgenic silkworms showed that Fibroinase plays a direct role in accelerating silk gland degeneration. The staining analyses performed in the silk glands of transgenic silkworms suggest that Fibroinase is involved in the processes of autophagy and apoptosis during silk gland degeneration. Further experiments demonstrated that Fibroinase, acting as a lysosomal regulator, negatively regulates autophagy via the mTOR (mechanistic target of rapamycin) pathway. Moreover, during apoptosis, Fibroinase could activate Caspase3 by increasing the activity of BmCaspase1, ultimately accelerating the apoptosis process. These findings enhance our understanding of the physiological role of Fibroinase in promoting silk gland degeneration, which plays a role in breaking down proteins in the silk gland and coordinating the regulation of autophagy and apoptosis.
Collapse
Affiliation(s)
- Zhan Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Pengchao Guo
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Lan Hu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Guosheng Hua
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Yuanyuan Yang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Haogang Zheng
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Huan Fang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Qingyou Xia
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Ping Zhao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China.
| |
Collapse
|
2
|
Connacher RP, Roden RT, Huang KL, Korte AJ, Yeruva S, Dittbenner N, DesMarais AJ, Weidmann CA, Randall TA, Williams J, Hall TMT, Wagner EJ, Goldstrohm AC. The TRIM-NHL RNA-binding protein Brain Tumor coordinately regulates expression of the glycolytic pathway and vacuolar ATPase complex. Nucleic Acids Res 2024:gkae810. [PMID: 39351871 DOI: 10.1093/nar/gkae810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 08/29/2024] [Accepted: 09/08/2024] [Indexed: 10/03/2024] Open
Abstract
The essential Drosophila RNA-binding protein Brain Tumor (Brat) represses specific genes to control embryogenesis and differentiation of stem cells. In the brain, Brat functions as a tumor suppressor that diminishes neural stem cell proliferation while promoting differentiation. Though important Brat-regulated target mRNAs have been identified in these contexts, the full impact of Brat on gene expression remains to be discovered. Here, we identify the network of Brat-regulated mRNAs by performing RNA sequencing (RNA-seq) following depletion of Brat from cultured cells. We identify 158 mRNAs, with high confidence, that are repressed by Brat. De novo motif analysis identified a functionally enriched RNA motif in the 3' untranslated regions (UTRs) of Brat-repressed mRNAs that matches the biochemically defined Brat binding site. Integrative data analysis revealed a high-confidence list of Brat-repressed and Brat-bound mRNAs containing 3'UTR Brat binding motifs. Our RNA-seq and reporter assays show that multiple 3'UTR motifs promote the strength of Brat repression, whereas motifs in the 5'UTR are not functional. Strikingly, we find that Brat regulates expression of glycolytic enzymes and the vacuolar ATPase complex, providing new insight into its role as a tumor suppressor and the coordination of metabolism and intracellular pH.
Collapse
Affiliation(s)
- Robert P Connacher
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 1214A 6-155 Jackson Hall, 321 Church Street S.E., Minneapolis, MN 55455, USA
| | - Richard T Roden
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 1214A 6-155 Jackson Hall, 321 Church Street S.E., Minneapolis, MN 55455, USA
| | - Kai-Lieh Huang
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, 575 Elmwood Avenue, Rochester, NY 14642, USA
| | - Amanda J Korte
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 1214A 6-155 Jackson Hall, 321 Church Street S.E., Minneapolis, MN 55455, USA
| | - Saathvika Yeruva
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 1214A 6-155 Jackson Hall, 321 Church Street S.E., Minneapolis, MN 55455, USA
| | - Noel Dittbenner
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 1214A 6-155 Jackson Hall, 321 Church Street S.E., Minneapolis, MN 55455, USA
| | - Anna J DesMarais
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 1214A 6-155 Jackson Hall, 321 Church Street S.E., Minneapolis, MN 55455, USA
| | - Chase A Weidmann
- Department of Biological Chemistry, Center for RNA Biomedicine, University of Michigan Medical School, 1150 West Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Thomas A Randall
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences (NIEHS), 111 TW Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Jason Williams
- Epigenetics & Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences (NIEHS), 111 TW Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Traci M Tanaka Hall
- Epigenetics & Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences (NIEHS), 111 TW Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Eric J Wagner
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, 575 Elmwood Avenue, Rochester, NY 14642, USA
| | - Aaron C Goldstrohm
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 1214A 6-155 Jackson Hall, 321 Church Street S.E., Minneapolis, MN 55455, USA
| |
Collapse
|
3
|
Colino-Lage H, Guerrero-Gómez D, Gómez-Orte E, González X, Martina JA, Dansen TB, Ayuso C, Askjaer P, Puertollano R, Irazoqui JE, Cabello J, Miranda-Vizuete A. Regulation of Caenorhabditis elegans HLH-30 subcellular localization dynamics: Evidence for a redox-dependent mechanism. Free Radic Biol Med 2024; 223:369-383. [PMID: 39059513 DOI: 10.1016/j.freeradbiomed.2024.07.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Basic Helix-Loop-Helix (bHLH) transcription factors TFEB/TFE3 and HLH-30 are key regulators of autophagy induction and lysosomal biogenesis in mammals and C. elegans, respectively. While much is known about the regulation of TFEB/TFE3, how HLH-30 subcellular dynamics and transactivation are modulated are yet poorly understood. Thus, elucidating the regulation of C. elegans HLH-30 will provide evolutionary insight into the mechanisms governing the function of bHLH transcription factor family. We report here that HLH-30 is retained in the cytoplasm mainly through its conserved Ser201 residue and that HLH-30 physically interacts with the 14-3-3 protein FTT-2 in this location. The FoxO transcription factor DAF-16 is not required for HLH-30 nuclear translocation upon stress, despite that both proteins partner to form a complex that coordinately regulates several organismal responses. Similar as described for DAF-16, the importin IMB-2 assists HLH-30 nuclear translocation, but constitutive HLH-30 nuclear localization is not sufficient to trigger its distinctive transcriptional response. Furthermore, we identify FTT-2 as the target of diethyl maleate (DEM), a GSH depletor that causes a transient nuclear translocation of HLH-30. Together, our work demonstrates that the regulation of TFEB/TFE3 and HLH-30 family members is evolutionarily conserved and that, in addition to a direct redox regulation through its conserved single cysteine residue, HLH-30 can also be indirectly regulated by a redox-dependent mechanism, probably through FTT-2 oxidation.
Collapse
Affiliation(s)
- Hildegard Colino-Lage
- Redox Homeostasis Group, Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - David Guerrero-Gómez
- Redox Homeostasis Group, Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Eva Gómez-Orte
- Centro de Investigación Biomédica de la Rioja (CIBIR), Logroño, La Rioja, Spain
| | - Xavier González
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, MA, USA
| | - José A Martina
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tobias B Dansen
- Center for Molecular Medicine, University Medical Center Utrecht, CG Utrecht, the Netherlands
| | - Cristina Ayuso
- Andalusian Centre for Developmental Biology, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Pablo de Olavide, Junta de Andalucía, Seville, Spain
| | - Peter Askjaer
- Andalusian Centre for Developmental Biology, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Pablo de Olavide, Junta de Andalucía, Seville, Spain
| | - Rosa Puertollano
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Javier E Irazoqui
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, MA, USA
| | - Juan Cabello
- Centro de Investigación Biomédica de la Rioja (CIBIR), Logroño, La Rioja, Spain.
| | - Antonio Miranda-Vizuete
- Redox Homeostasis Group, Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.
| |
Collapse
|
4
|
Zhang T, Zhou Q, Jusić N, Lu W, Pignoni F, Neal SJ. Mitf, with Yki and STRIPAK-PP2A, is a key determinant of form and fate in the progenitor epithelium of the Drosophila eye. Eur J Cell Biol 2024; 103:151421. [PMID: 38776620 PMCID: PMC11229422 DOI: 10.1016/j.ejcb.2024.151421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/30/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
The Microphthalmia-associated Transcription Factor (MITF) governs numerous cellular and developmental processes. In mice, it promotes specification and differentiation of the retinal pigmented epithelium (RPE), and in humans, some mutations in MITF induce congenital eye malformations. Herein, we explore the function and regulation of Mitf in Drosophila eye development and uncover two roles. We find that knockdown of Mitf results in retinal displacement (RDis), a phenotype associated with abnormal eye formation. Mitf functions in the peripodial epithelium (PE), a retinal support tissue akin to the RPE, to suppress RDis, via the Hippo pathway effector Yorkie (Yki). Yki physically interacts with Mitf and can modify its transcriptional activity in vitro. Severe loss of Mitf, instead, results in the de-repression of retinogenesis in the PE, precluding its development. This activity of Mitf requires the protein phosphatase 2 A holoenzyme STRIPAK-PP2A, but not Yki; Mitf transcriptional activity is potentiated by STRIPAK-PP2A in vitro and in vivo. Knockdown of STRIPAK-PP2A results in cytoplasmic retention of Mitf in vivo and in its decreased stability in vitro, highlighting two potential mechanisms for the control of Mitf function by STRIPAK-PP2A. Thus, Mitf functions in a context-dependent manner as a key determinant of form and fate in the Drosophila eye progenitor epithelium.
Collapse
Affiliation(s)
- Tianyi Zhang
- Department of Neuroscience & Physiology, Upstate Medical University, 505 Irving Avenue, NRB 4601, Syracuse, NY 13210, USA
| | - Qingxiang Zhou
- Department of Neuroscience & Physiology, Upstate Medical University, 505 Irving Avenue, NRB 4601, Syracuse, NY 13210, USA
| | - Nisveta Jusić
- Department of Neuroscience & Physiology, Upstate Medical University, 505 Irving Avenue, NRB 4601, Syracuse, NY 13210, USA
| | - Wenwen Lu
- Department of Neuroscience & Physiology, Upstate Medical University, 505 Irving Avenue, NRB 4601, Syracuse, NY 13210, USA
| | - Francesca Pignoni
- Department of Neuroscience & Physiology, Upstate Medical University, 505 Irving Avenue, NRB 4601, Syracuse, NY 13210, USA; Department of Ophthalmology and Visual Sciences; Department of Biochemistry and Molecular Biology; Department of Cell and Developmental Biology, USA.
| | - Scott J Neal
- Department of Neuroscience & Physiology, Upstate Medical University, 505 Irving Avenue, NRB 4601, Syracuse, NY 13210, USA.
| |
Collapse
|
5
|
Yang S, Ting CY, Lilly MA. The GATOR2 complex maintains lysosomal-autophagic function by inhibiting the protein degradation of MiT/TFEs. Mol Cell 2024; 84:727-743.e8. [PMID: 38325378 PMCID: PMC10940221 DOI: 10.1016/j.molcel.2024.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 07/31/2023] [Accepted: 01/17/2024] [Indexed: 02/09/2024]
Abstract
Lysosomes are central to metabolic homeostasis. The microphthalmia bHLH-LZ transcription factors (MiT/TFEs) family members MITF, TFEB, and TFE3 promote the transcription of lysosomal and autophagic genes and are often deregulated in cancer. Here, we show that the GATOR2 complex, an activator of the metabolic regulator TORC1, maintains lysosomal function by protecting MiT/TFEs from proteasomal degradation independent of TORC1, GATOR1, and the RAG GTPase. We determine that in GATOR2 knockout HeLa cells, members of the MiT/TFEs family are ubiquitylated by a trio of E3 ligases and are degraded, resulting in lysosome dysfunction. Additionally, we demonstrate that GATOR2 protects MiT/TFE proteins in pancreatic ductal adenocarcinoma and Xp11 translocation renal cell carcinoma, two cancers that are driven by MiT/TFE hyperactivation. In summary, we find that the GATOR2 complex has independent roles in TORC1 regulation and MiT/TFE protein protection and thus is central to coordinating cellular metabolism with control of the lysosomal-autophagic system.
Collapse
Affiliation(s)
- Shu Yang
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chun-Yuan Ting
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mary A Lilly
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
6
|
Smeele PH, Cesare G, Vaccari T. ALS' Perfect Storm: C9orf72-Associated Toxic Dipeptide Repeats as Potential Multipotent Disruptors of Protein Homeostasis. Cells 2024; 13:178. [PMID: 38247869 PMCID: PMC10813877 DOI: 10.3390/cells13020178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
Protein homeostasis is essential for neuron longevity, requiring a balanced regulation between protein synthesis and degradation. The clearance of misfolded and aggregated proteins, mediated by autophagy and the ubiquitin-proteasome systems, maintains protein homeostasis in neurons, which are post-mitotic and thus cannot use cell division to diminish the burden of misfolded proteins. When protein clearance pathways are overwhelmed or otherwise disrupted, the accumulation of misfolded or aggregated proteins can lead to the activation of ER stress and the formation of stress granules, which predominantly attempt to restore the homeostasis by suppressing global protein translation. Alterations in these processes have been widely reported among studies investigating the toxic function of dipeptide repeats (DPRs) produced by G4C2 expansion in the C9orf72 gene of patients with amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). In this review, we outline the modalities of DPR-induced disruptions in protein homeostasis observed in a wide range of models of C9orf72-linked ALS/FTD. We also discuss the relative importance of each DPR for toxicity, possible synergies between DPRs, and discuss the possible functional relevance of DPR aggregation to disease pathogenesis. Finally, we highlight the interdependencies of the observed effects and reflect on the importance of feedback and feedforward mechanisms in their contribution to disease progression. A better understanding of DPR-associated disease pathogenesis discussed in this review might shed light on disease vulnerabilities that may be amenable with therapeutic interventions.
Collapse
Affiliation(s)
| | | | - Thomas Vaccari
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy
| |
Collapse
|
7
|
Shao J, Lang Y, Ding M, Yin X, Cui L. Transcription Factor EB: A Promising Therapeutic Target for Ischemic Stroke. Curr Neuropharmacol 2024; 22:170-190. [PMID: 37491856 PMCID: PMC10788889 DOI: 10.2174/1570159x21666230724095558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 07/27/2023] Open
Abstract
Transcription factor EB (TFEB) is an important endogenous defensive protein that responds to ischemic stimuli. Acute ischemic stroke is a growing concern due to its high morbidity and mortality. Most survivors suffer from disabilities such as numbness or weakness in an arm or leg, facial droop, difficulty speaking or understanding speech, confusion, impaired balance or coordination, or loss of vision. Although TFEB plays a neuroprotective role, its potential effect on ischemic stroke remains unclear. This article describes the basic structure, regulation of transcriptional activity, and biological roles of TFEB relevant to ischemic stroke. Additionally, we explore the effects of TFEB on the various pathological processes underlying ischemic stroke and current therapeutic approaches. The information compiled here may inform clinical and basic studies on TFEB, which may be an effective therapeutic drug target for ischemic stroke.
Collapse
Affiliation(s)
- Jie Shao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Yue Lang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Manqiu Ding
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Xiang Yin
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Li Cui
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| |
Collapse
|
8
|
Wang B, Martini-Stoica H, Qi C, Lu TC, Wang S, Xiong W, Qi Y, Xu Y, Sardiello M, Li H, Zheng H. TFEB-vacuolar ATPase signaling regulates lysosomal function and microglial activation in tauopathy. Nat Neurosci 2024; 27:48-62. [PMID: 37985800 DOI: 10.1038/s41593-023-01494-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 10/13/2023] [Indexed: 11/22/2023]
Abstract
Transcription factor EB (TFEB) mediates gene expression through binding to the coordinated lysosome expression and regulation (CLEAR) sequence. TFEB targets include subunits of the vacuolar ATPase (v-ATPase), which are essential for lysosome acidification. Single-nucleus RNA sequencing of wild-type and PS19 (Tau) transgenic mice expressing the P301S mutant tau identified three unique microglia subclusters in Tau mice that were associated with heightened lysosome and immune pathway genes. To explore the lysosome-immune relationship, we specifically disrupted the TFEB-v-ATPase signaling by creating a knock-in mouse line in which the CLEAR sequence of one of the v-ATPase subunits, Atp6v1h, was mutated. CLEAR mutant exhibited a muted response to TFEB, resulting in impaired lysosomal acidification and activity. Crossing the CLEAR mutant with Tau mice led to higher tau pathology but diminished microglia response. These microglia were enriched in a subcluster low in mTOR and HIF-1 pathways and were locked in a homeostatic state. Our studies demonstrate a physiological function of TFEB-v-ATPase signaling in maintaining lysosomal homeostasis and a critical role of the lysosome in mounting a microglia and immune response in tauopathy and Alzheimer's disease.
Collapse
Affiliation(s)
- Baiping Wang
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Heidi Martini-Stoica
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, USA
- Department of Otolaryngology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Chuangye Qi
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
| | - Tzu-Chiao Lu
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
| | - Shuo Wang
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
| | - Wen Xiong
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
| | - Yanyan Qi
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
| | - Yin Xu
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
- School of Mental Health and Psychological Sciences, Anhui Medical University, Anhui, China
| | - Marco Sardiello
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Dan and Jan Duncan Neurological Research Institute, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Washington University School of Medicine, St Louis, MO, USA
| | - Hongjie Li
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Hui Zheng
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA.
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
9
|
Tan JX, Finkel T. Lysosomes in senescence and aging. EMBO Rep 2023; 24:e57265. [PMID: 37811693 PMCID: PMC10626421 DOI: 10.15252/embr.202357265] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/08/2023] [Accepted: 09/21/2023] [Indexed: 10/10/2023] Open
Abstract
Dysfunction of lysosomes, the primary hydrolytic organelles in animal cells, is frequently associated with aging and age-related diseases. At the cellular level, lysosomal dysfunction is strongly linked to cellular senescence or the induction of cell death pathways. However, the precise mechanisms by which lysosomal dysfunction participates in these various cellular or organismal phenotypes have remained elusive. The ability of lysosomes to degrade diverse macromolecules including damaged proteins and organelles puts lysosomes at the center of multiple cellular stress responses. Lysosomal activity is tightly regulated by many coordinated cellular processes including pathways that function inside and outside of the organelle. Here, we collectively classify these coordinated pathways as the lysosomal processing and adaptation system (LYPAS). We review evidence that the LYPAS is upregulated by diverse cellular stresses, its adaptability regulates senescence and cell death decisions, and it can form the basis for therapeutic manipulation for a wide range of age-related diseases and potentially for aging itself.
Collapse
Affiliation(s)
- Jay Xiaojun Tan
- Aging InstituteUniversity of Pittsburgh School of Medicine/University of Pittsburgh Medical CenterPittsburghPAUSA
- Department of Cell BiologyUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Toren Finkel
- Aging InstituteUniversity of Pittsburgh School of Medicine/University of Pittsburgh Medical CenterPittsburghPAUSA
- Department of MedicineUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| |
Collapse
|
10
|
Takla M, Keshri S, Rubinsztein DC. The post-translational regulation of transcription factor EB (TFEB) in health and disease. EMBO Rep 2023; 24:e57574. [PMID: 37728021 PMCID: PMC10626434 DOI: 10.15252/embr.202357574] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/10/2023] [Accepted: 08/25/2023] [Indexed: 09/21/2023] Open
Abstract
Transcription factor EB (TFEB) is a basic helix-loop-helix leucine zipper transcription factor that acts as a master regulator of lysosomal biogenesis, lysosomal exocytosis, and macro-autophagy. TFEB contributes to a wide range of physiological functions, including mitochondrial biogenesis and innate and adaptive immunity. As such, TFEB is an essential component of cellular adaptation to stressors, ranging from nutrient deprivation to pathogenic invasion. The activity of TFEB depends on its subcellular localisation, turnover, and DNA-binding capacity, all of which are regulated at the post-translational level. Pathological states are characterised by a specific set of stressors, which elicit post-translational modifications that promote gain or loss of TFEB function in the affected tissue. In turn, the resulting increase or decrease in survival of the tissue in which TFEB is more or less active, respectively, may either benefit or harm the organism as a whole. In this way, the post-translational modifications of TFEB account for its otherwise paradoxical protective and deleterious effects on organismal fitness in diseases ranging from neurodegeneration to cancer. In this review, we describe how the intracellular environment characteristic of different diseases alters the post-translational modification profile of TFEB, enabling cellular adaptation to a particular pathological state.
Collapse
Affiliation(s)
- Michael Takla
- Department of Medical Genetics, Cambridge Institute for Medical Research (CIMR)University of CambridgeCambridgeUK
- UK Dementia Research Institute, Cambridge Institute for Medical Research (CIMR)University of CambridgeCambridgeUK
| | - Swati Keshri
- Department of Medical Genetics, Cambridge Institute for Medical Research (CIMR)University of CambridgeCambridgeUK
- UK Dementia Research Institute, Cambridge Institute for Medical Research (CIMR)University of CambridgeCambridgeUK
| | - David C Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research (CIMR)University of CambridgeCambridgeUK
- UK Dementia Research Institute, Cambridge Institute for Medical Research (CIMR)University of CambridgeCambridgeUK
| |
Collapse
|
11
|
Neophytou C, Soteriou E, Pitsouli C. The Sterol Transporter Npc2c Controls Intestinal Stem Cell Mitosis and Host-Microbiome Interactions in Drosophila. Metabolites 2023; 13:1084. [PMID: 37887409 PMCID: PMC10609107 DOI: 10.3390/metabo13101084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/05/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023] Open
Abstract
Cholesterol is necessary for all cells to function. The intracellular cholesterol transporters Npc1 and Npc2 control sterol trafficking and their malfunction leads to Neimann-Pick Type C disease, a rare disorder affecting the nervous system and the intestine. Unlike humans that encode single Npc1 and Npc2 transporters, flies encompass two Npc1 (Npc1a-1b) and eight Npc2 (Npc2a-2h) members, and most of the Npc2 family genes remain unexplored. Here, we focus on the intestinal function of Npc2c in the adult. We find that Npc2c is necessary for intestinal stem cell (ISC) mitosis, maintenance of the ISC lineage, survival upon pathogenic infection, as well as tumor growth. Impaired mitosis of Npc2c-silenced midguts is accompanied by reduced expression of Cyclin genes, and genes encoding ISC regulators, such as Delta, unpaired1 and Socs36E. ISC-specific Npc2c silencing induces Attacin-A expression, a phenotype reminiscent of Gram-negative bacteria overabundance. Metagenomic analysis of Npc2c-depleted midguts indicates intestinal dysbiosis, whereby decreased commensal complexity is accompanied by increased gamma-proteobacteria. ISC-specific Npc2c silencing also results in increased cholesterol aggregation. Interestingly, administration of the non-steroidal ecdysone receptor agonist, RH5849, rescues mitosis of Npc2c-silenced midguts and increases expression of the ecdysone response gene Broad, underscoring the role of Npc2c and sterols in ecdysone signaling. Assessment of additional Npc2 family members indicates potential redundant roles with Npc2c in ISC control and response to ecdysone signaling. Our results highlight a previously unidentified essential role of Npc2c in ISC mitosis, as well as an important role in ecdysone signaling and microbiome composition in the Drosophila midgut.
Collapse
Affiliation(s)
| | | | - Chrysoula Pitsouli
- Department of Biological Sciences, University of Cyprus, 1 University Avenue, 2109 Aglantzia, Cyprus; (C.N.); (E.S.)
| |
Collapse
|
12
|
Voss PA, Gornik SG, Jacobovitz MR, Rupp S, Dörr M, Maegele I, Guse A. Host nutrient sensing is mediated by mTOR signaling in cnidarian-dinoflagellate symbiosis. Curr Biol 2023; 33:3634-3647.e5. [PMID: 37572664 DOI: 10.1016/j.cub.2023.07.038] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/31/2023] [Accepted: 07/20/2023] [Indexed: 08/14/2023]
Abstract
To survive in the nutrient-poor waters of the tropics, reef-building corals rely on intracellular, photosynthetic dinoflagellate symbionts. Photosynthates produced by the symbiont are translocated to the host, and this enables corals to form the structural foundation of the most biodiverse of all marine ecosystems. Although the regulation of nutrient exchange between partners is critical for ecosystem stability and health, the mechanisms governing how nutrients are sensed, transferred, and integrated into host cell processes are largely unknown. Ubiquitous among eukaryotes, the mechanistic target of the rapamycin (mTOR) signaling pathway integrates intracellular and extracellular stimuli to influence cell growth and cell-cycle progression and to balance metabolic processes. A functional role of mTOR in the integration of host and symbiont was demonstrated in various nutritional symbioses, and a similar role of mTOR was proposed for coral-algal symbioses. Using the endosymbiosis model Aiptasia, we examined the role of mTOR signaling in both larvae and adult polyps across various stages of symbiosis. We found that symbiosis enhances cell proliferation, and using an Aiptasia-specific antibody, we localized mTOR to symbiosome membranes. We found that mTOR signaling is activated by symbiosis, while inhibition of mTOR signaling disrupts intracellular niche establishment and symbiosis altogether. Additionally, we observed that dysbiosis was a conserved response to mTOR inhibition in the larvae of a reef-building coral species. Our data confim that mTOR signaling plays a pivotal role in integrating symbiont-derived nutrients into host metabolism and symbiosis stability, ultimately allowing symbiotic cnidarians to thrive in challenging environments.
Collapse
Affiliation(s)
- Philipp A Voss
- Centre for Organismal Studies, Heidelberg University, Im Neuenheimer Feld 230, Heidelberg 69120 Germany
| | - Sebastian G Gornik
- Centre for Organismal Studies, Heidelberg University, Im Neuenheimer Feld 230, Heidelberg 69120 Germany
| | - Marie R Jacobovitz
- Centre for Organismal Studies, Heidelberg University, Im Neuenheimer Feld 230, Heidelberg 69120 Germany
| | - Sebastian Rupp
- Centre for Organismal Studies, Heidelberg University, Im Neuenheimer Feld 230, Heidelberg 69120 Germany
| | - Melanie Dörr
- Centre for Organismal Studies, Heidelberg University, Im Neuenheimer Feld 230, Heidelberg 69120 Germany
| | - Ira Maegele
- Centre for Organismal Studies, Heidelberg University, Im Neuenheimer Feld 230, Heidelberg 69120 Germany
| | - Annika Guse
- Centre for Organismal Studies, Heidelberg University, Im Neuenheimer Feld 230, Heidelberg 69120 Germany.
| |
Collapse
|
13
|
Xu D, Vincent A, González-Gutiérrez A, Aleyakpo B, Anoar S, Giblin A, Atilano ML, Adams M, Shen D, Thoeng A, Tsintzas E, Maeland M, Isaacs AM, Sierralta J, Niccoli T. A monocarboxylate transporter rescues frontotemporal dementia and Alzheimer's disease models. PLoS Genet 2023; 19:e1010893. [PMID: 37733679 PMCID: PMC10513295 DOI: 10.1371/journal.pgen.1010893] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 07/29/2023] [Indexed: 09/23/2023] Open
Abstract
Brains are highly metabolically active organs, consuming 20% of a person's energy at resting state. A decline in glucose metabolism is a common feature across a number of neurodegenerative diseases. Another common feature is the progressive accumulation of insoluble protein deposits, it's unclear if the two are linked. Glucose metabolism in the brain is highly coupled between neurons and glia, with glucose taken up by glia and metabolised to lactate, which is then shuttled via transporters to neurons, where it is converted back to pyruvate and fed into the TCA cycle for ATP production. Monocarboxylates are also involved in signalling, and play broad ranging roles in brain homeostasis and metabolic reprogramming. However, the role of monocarboxylates in dementia has not been tested. Here, we find that increasing pyruvate import in Drosophila neurons by over-expression of the transporter bumpel, leads to a rescue of lifespan and behavioural phenotypes in fly models of both frontotemporal dementia and Alzheimer's disease. The rescue is linked to a clearance of late stage autolysosomes, leading to degradation of toxic peptides associated with disease. We propose upregulation of pyruvate import into neurons as potentially a broad-scope therapeutic approach to increase neuronal autophagy, which could be beneficial for multiple dementias.
Collapse
Affiliation(s)
- Dongwei Xu
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College London, London, United Kingdom
| | - Alec Vincent
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College London, London, United Kingdom
| | - Andrés González-Gutiérrez
- Department of Neuroscience and Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Benjamin Aleyakpo
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College London, London, United Kingdom
| | - Sharifah Anoar
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College London, London, United Kingdom
| | - Ashling Giblin
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College London, London, United Kingdom
- UK Dementia Research Institute at UCL, Cruciform Building, London, United Kingdom
| | - Magda L. Atilano
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College London, London, United Kingdom
- UK Dementia Research Institute at UCL, Cruciform Building, London, United Kingdom
| | - Mirjam Adams
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College London, London, United Kingdom
| | - Dunxin Shen
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College London, London, United Kingdom
| | - Annora Thoeng
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College London, London, United Kingdom
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Elli Tsintzas
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College London, London, United Kingdom
| | - Marie Maeland
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College London, London, United Kingdom
| | - Adrian M. Isaacs
- UK Dementia Research Institute at UCL, Cruciform Building, London, United Kingdom
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Jimena Sierralta
- Department of Neuroscience and Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Teresa Niccoli
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College London, London, United Kingdom
| |
Collapse
|
14
|
Lovero D, Porcelli D, Giordano L, Lo Giudice C, Picardi E, Pesole G, Pignataro E, Palazzo A, Marsano RM. Structural and Comparative Analyses of Insects Suggest the Presence of an Ultra-Conserved Regulatory Element of the Genes Encoding Vacuolar-Type ATPase Subunits and Assembly Factors. BIOLOGY 2023; 12:1127. [PMID: 37627011 PMCID: PMC10452791 DOI: 10.3390/biology12081127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/28/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023]
Abstract
Gene and genome comparison represent an invaluable tool to identify evolutionarily conserved sequences with possible functional significance. In this work, we have analyzed orthologous genes encoding subunits and assembly factors of the V-ATPase complex, an important enzymatic complex of the vacuolar and lysosomal compartments of the eukaryotic cell with storage and recycling functions, respectively, as well as the main pump in the plasma membrane that energizes the epithelial transport in insects. This study involves 70 insect species belonging to eight insect orders. We highlighted the conservation of a short sequence in the genes encoding subunits of the V-ATPase complex and their assembly factors analyzed with respect to their exon-intron organization of those genes. This study offers the possibility to study ultra-conserved regulatory elements under an evolutionary perspective, with the aim of expanding our knowledge on the regulation of complex gene networks at the basis of organellar biogenesis and cellular organization.
Collapse
Affiliation(s)
- Domenica Lovero
- Dipartimento di Bioscienze Biotecnologie e Ambiente, Università Degli Studi di Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy; (D.L.); (D.P.); (E.P.); (G.P.); (E.P.); (A.P.)
- MASMEC Biomed S.p.A., Via Delle Violette 14, 70026 Modugno, Italy
| | - Damiano Porcelli
- Dipartimento di Bioscienze Biotecnologie e Ambiente, Università Degli Studi di Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy; (D.L.); (D.P.); (E.P.); (G.P.); (E.P.); (A.P.)
- METALABS S.R.L., Corso A. De Gasperi 381/1, 70125 Bari, Italy
| | - Luca Giordano
- Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Aulweg 130, 35392 Giessen, Germany;
| | - Claudio Lo Giudice
- Istituto di Tecnologie Biomediche (ITB), Consiglio Nazionale Delle Ricerche, Via Giovanni Amendola, 122, 70126 Bari, Italy;
| | - Ernesto Picardi
- Dipartimento di Bioscienze Biotecnologie e Ambiente, Università Degli Studi di Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy; (D.L.); (D.P.); (E.P.); (G.P.); (E.P.); (A.P.)
| | - Graziano Pesole
- Dipartimento di Bioscienze Biotecnologie e Ambiente, Università Degli Studi di Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy; (D.L.); (D.P.); (E.P.); (G.P.); (E.P.); (A.P.)
| | - Eugenia Pignataro
- Dipartimento di Bioscienze Biotecnologie e Ambiente, Università Degli Studi di Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy; (D.L.); (D.P.); (E.P.); (G.P.); (E.P.); (A.P.)
| | - Antonio Palazzo
- Dipartimento di Bioscienze Biotecnologie e Ambiente, Università Degli Studi di Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy; (D.L.); (D.P.); (E.P.); (G.P.); (E.P.); (A.P.)
| | - René Massimiliano Marsano
- Dipartimento di Bioscienze Biotecnologie e Ambiente, Università Degli Studi di Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy; (D.L.); (D.P.); (E.P.); (G.P.); (E.P.); (A.P.)
| |
Collapse
|
15
|
Guo Y, Zeng Q, Brooks D, Geisbrecht ER. A conserved STRIPAK complex is required for autophagy in muscle tissue. Mol Biol Cell 2023; 34:ar91. [PMID: 37379167 PMCID: PMC10398890 DOI: 10.1091/mbc.e23-01-0006] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 06/15/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023] Open
Abstract
Autophagy is important for cellular homeostasis and to prevent the abnormal accumulation of proteins. While many proteins that comprise the canonical autophagy pathway have been characterized, the identification of new regulators may help understand tissue and/or stress-specific responses. Using an in-silico approach, we identified Striatin interacting protein (Strip), MOB kinase activator 4, and fibroblast growth factor receptor 1 oncogene partner 2 as conserved mediators of muscle tissue maintenance. We performed affinity purification-mass spectrometry (AP-MS) experiments with Drosophila melanogaster Strip as a bait protein and copurified additional Striatin-interacting phosphatase and kinase (STRIPAK) complex members from larval muscle tissue. NUAK family kinase 1 (NUAK) and Starvin (Stv) also emerged as Strip-binding proteins and these physical interactions were verified in vivo using proximity ligation assays. To understand the functional significance of the STRIPAK-NUAK-Stv complex, we employed a sensitized genetic assay combined with RNA interference (RNAi) to demonstrate that both NUAK and stv function in the same biological process with genes that encode for STRIPAK complex proteins. RNAi-directed knockdown of Strip in muscle tissue led to the accumulation of ubiquitinated cargo, p62, and Autophagy-related 8a, consistent with a block in autophagy. Indeed, autophagic flux was decreased in Strip RNAi muscles, while lysosome biogenesis and activity were unaffected. Our results support a model whereby the STRIPAK-NUAK-Stv complex coordinately regulates autophagy in muscle tissue.
Collapse
Affiliation(s)
- Yungui Guo
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506
| | - Qiling Zeng
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506
| | - David Brooks
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506
| | - Erika R. Geisbrecht
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506
| |
Collapse
|
16
|
Zhou Y, Guan J, Meng G, Fan W, Ge C, Niu C, Cheng Y, Fu Y, Lu Y, Wei Y. The RagA GTPase protects young egg chambers in Drosophila. Cell Rep 2023; 42:112631. [PMID: 37302067 DOI: 10.1016/j.celrep.2023.112631] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/18/2023] [Accepted: 05/24/2023] [Indexed: 06/13/2023] Open
Abstract
The preservation of female fertility under unfavorable conditions is essential for animal reproduction. Inhibition of the target of rapamycin complex 1 (TORC1) is indispensable for Drosophila young egg chamber maintenance under nutrient starvation. Here, we show that knockdown of RagA results in young egg chamber death independent of TORC1 hyperactivity. RagA RNAi ovaries have autolysosomal acidification and degradation defects, which make the young egg chambers sensitive to autophagosome augmentation. Meanwhile, RagA RNAi ovaries have nuclear-localized Mitf, which promotes autophagic degradation and protects young egg chambers under stress. Interestingly, GDP-bound RagA rescues autolysosome defects, while GTP-bound RagA rescues Mitf nuclear localization in RagA RNAi young egg chambers. Moreover, Rag GTPase activity, rather than TORC1 activity, controls Mitf cellular localization in the Drosophila germ line. Our work suggests that RagA separately controls autolysosomal acidification and Mitf activity in the Drosophila young egg chambers.
Collapse
Affiliation(s)
- Ying Zhou
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Jianwen Guan
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Guoqiang Meng
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Weikang Fan
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Churui Ge
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Chunmei Niu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Yang Cheng
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Yuanyuan Fu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Yingying Lu
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Youheng Wei
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China; Institute of Reproduction and Metabolism, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
17
|
Yu M, Ye H, De-Paula RB, Mangleburg CG, Wu T, Lee TV, Li Y, Duong D, Phillips B, Cruchaga C, Allen GI, Seyfried NT, Al-Ramahi I, Botas J, Shulman JM. Functional screening of lysosomal storage disorder genes identifies modifiers of alpha-synuclein neurotoxicity. PLoS Genet 2023; 19:e1010760. [PMID: 37200393 DOI: 10.1371/journal.pgen.1010760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 05/31/2023] [Accepted: 04/25/2023] [Indexed: 05/20/2023] Open
Abstract
Heterozygous variants in the glucocerebrosidase (GBA) gene are common and potent risk factors for Parkinson's disease (PD). GBA also causes the autosomal recessive lysosomal storage disorder (LSD), Gaucher disease, and emerging evidence from human genetics implicates many other LSD genes in PD susceptibility. We have systemically tested 86 conserved fly homologs of 37 human LSD genes for requirements in the aging adult Drosophila brain and for potential genetic interactions with neurodegeneration caused by α-synuclein (αSyn), which forms Lewy body pathology in PD. Our screen identifies 15 genetic enhancers of αSyn-induced progressive locomotor dysfunction, including knockdown of fly homologs of GBA and other LSD genes with independent support as PD susceptibility factors from human genetics (SCARB2, SMPD1, CTSD, GNPTAB, SLC17A5). For several genes, results from multiple alleles suggest dose-sensitivity and context-dependent pleiotropy in the presence or absence of αSyn. Homologs of two genes causing cholesterol storage disorders, Npc1a / NPC1 and Lip4 / LIPA, were independently confirmed as loss-of-function enhancers of αSyn-induced retinal degeneration. The enzymes encoded by several modifier genes are upregulated in αSyn transgenic flies, based on unbiased proteomics, revealing a possible, albeit ineffective, compensatory response. Overall, our results reinforce the important role of lysosomal genes in brain health and PD pathogenesis, and implicate several metabolic pathways, including cholesterol homeostasis, in αSyn-mediated neurotoxicity.
Collapse
Affiliation(s)
- Meigen Yu
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
| | - Hui Ye
- Department of Neurology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Ruth B De-Paula
- Quantitative and Computational Biology Program, Baylor College of Medicine, Houston, Texas, United States of America
| | - Carl Grant Mangleburg
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas, United States of America
| | - Timothy Wu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas, United States of America
| | - Tom V Lee
- Department of Neurology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Yarong Li
- Department of Neurology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Duc Duong
- Departments of Biochemistry and Neurology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Bridget Phillips
- Department of Psychiatry, Washington University, St. Louis, Missouri, United States of America
- NeuroGenomics and Informatics, Washington University, St. Louis, Missouri, United States of America
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University, St. Louis, Missouri, United States of America
- NeuroGenomics and Informatics, Washington University, St. Louis, Missouri, United States of America
| | - Genevera I Allen
- Departments of Electrical and Computer Engineering, Computer Science, and Statistics, Rice University, Houston, Texas, United States of America
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, United States of America
| | - Nicholas T Seyfried
- Departments of Biochemistry and Neurology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Ismael Al-Ramahi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, United States of America
- Center for Alzheimer's and Neurodegenerative Diseases, Baylor College of Medicine, Houston, Texas, United States of America
| | - Juan Botas
- Quantitative and Computational Biology Program, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, United States of America
- Center for Alzheimer's and Neurodegenerative Diseases, Baylor College of Medicine, Houston, Texas, United States of America
| | - Joshua M Shulman
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Neurology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, United States of America
- Center for Alzheimer's and Neurodegenerative Diseases, Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|
18
|
Santarelli S, Londero C, Soldano A, Candelaresi C, Todeschini L, Vernizzi L, Bellosta P. Drosophila melanogaster as a model to study autophagy in neurodegenerative diseases induced by proteinopathies. Front Neurosci 2023; 17:1082047. [PMID: 37274187 PMCID: PMC10232775 DOI: 10.3389/fnins.2023.1082047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 04/14/2023] [Indexed: 06/06/2023] Open
Abstract
Proteinopathies are a large group of neurodegenerative diseases caused by both genetic and sporadic mutations in particular genes which can lead to alterations of the protein structure and to the formation of aggregates, especially toxic for neurons. Autophagy is a key mechanism for clearing those aggregates and its function has been strongly associated with the ubiquitin-proteasome system (UPS), hence mutations in both pathways have been associated with the onset of neurodegenerative diseases, particularly those induced by protein misfolding and accumulation of aggregates. Many crucial discoveries regarding the molecular and cellular events underlying the role of autophagy in these diseases have come from studies using Drosophila models. Indeed, despite the physiological and morphological differences between the fly and the human brain, most of the biochemical and molecular aspects regulating protein homeostasis, including autophagy, are conserved between the two species.In this review, we will provide an overview of the most common neurodegenerative proteinopathies, which include PolyQ diseases (Huntington's disease, Spinocerebellar ataxia 1, 2, and 3), Amyotrophic Lateral Sclerosis (C9orf72, SOD1, TDP-43, FUS), Alzheimer's disease (APP, Tau) Parkinson's disease (a-syn, parkin and PINK1, LRRK2) and prion diseases, highlighting the studies using Drosophila that have contributed to understanding the conserved mechanisms and elucidating the role of autophagy in these diseases.
Collapse
Affiliation(s)
- Stefania Santarelli
- Department of Cellular, Computational and Integrative Biology (CiBiO), University of Trento, Trento, Italy
| | - Chiara Londero
- Department of Cellular, Computational and Integrative Biology (CiBiO), University of Trento, Trento, Italy
| | - Alessia Soldano
- Department of Cellular, Computational and Integrative Biology (CiBiO), University of Trento, Trento, Italy
- Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Carlotta Candelaresi
- Department of Cellular, Computational and Integrative Biology (CiBiO), University of Trento, Trento, Italy
| | - Leonardo Todeschini
- Department of Cellular, Computational and Integrative Biology (CiBiO), University of Trento, Trento, Italy
| | - Luisa Vernizzi
- Institute of Molecular Life Sciences, University of Zurich, Zürich, Switzerland
| | - Paola Bellosta
- Department of Cellular, Computational and Integrative Biology (CiBiO), University of Trento, Trento, Italy
- Department of Medicine, NYU Langone Medical Center, New York, NY, United States
| |
Collapse
|
19
|
Wang B, Martini-Stoica H, Qi C, Lu TC, Wang S, Xiong W, Qi Y, Xu Y, Sardiello M, Li H, Zheng H. TFEB-vacuolar ATPase signaling regulates lysosomal function and microglial activation in tauopathy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.06.527293. [PMID: 36798205 PMCID: PMC9934527 DOI: 10.1101/2023.02.06.527293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Transcription factor EB (TFEB) mediates gene expression through binding to the Coordinated Lysosome Expression And Regulation (CLEAR) sequence. TFEB targets include subunits of the vacuolar ATPase (v-ATPase) essential for lysosome acidification. Single nucleus RNA-sequencing (snRNA-seq) of wild-type and PS19 (Tau) transgenic mice identified three unique microglia subclusters in Tau mice that were associated with heightened lysosome and immune pathway genes. To explore the lysosome-immune relationship, we specifically disrupted the TFEB-v-ATPase signaling by creating a knock-in mouse line in which the CLEAR sequence of one of the v-ATPase subunits, Atp6v1h, was mutated. We show that the CLEAR mutant exhibited a muted response to TFEB, resulting in impaired lysosomal acidification and activity. Crossing the CLEAR mutant with Tau mice led to higher tau pathology but diminished microglia response. These microglia were enriched in a subcluster low in mTOR and HIF-1 pathways and was locked in a homeostatic state. Our studies demonstrate a physiological function of TFEB-v-ATPase signaling in maintaining lysosomal homoeostasis and a critical role of the lysosome in mounting a microglia and immune response in tauopathy and Alzheimer's disease.
Collapse
Affiliation(s)
- Baiping Wang
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Heidi Martini-Stoica
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, USA
| | - Chuangye Qi
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
| | - Tzu-Chiao Lu
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
| | - Shuo Wang
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
| | - Wen Xiong
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
| | - Yanyan Qi
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
| | - Yin Xu
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
| | - Marco Sardiello
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Dan and Jan Duncan Neurological Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Hongjie Li
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Hui Zheng
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
20
|
Raus AM, Fuller TD, Nelson NE, Valientes DA, Bayat A, Ivy AS. Early-life exercise primes the murine neural epigenome to facilitate gene expression and hippocampal memory consolidation. Commun Biol 2023; 6:18. [PMID: 36611093 PMCID: PMC9825372 DOI: 10.1038/s42003-022-04393-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 12/20/2022] [Indexed: 01/09/2023] Open
Abstract
Aerobic exercise is well known to promote neuroplasticity and hippocampal memory. In the developing brain, early-life exercise (ELE) can lead to persistent improvements in hippocampal function, yet molecular mechanisms underlying this phenomenon have not been fully explored. In this study, transgenic mice harboring the "NuTRAP" (Nuclear tagging and Translating Ribosome Affinity Purification) cassette in Emx1 expressing neurons ("Emx1-NuTRAP" mice) undergo ELE during adolescence. We then simultaneously isolate and sequence translating mRNA and nuclear chromatin from single hippocampal homogenates containing Emx1-expressing neurons. This approach allowed us to couple translatomic with epigenomic sequencing data to evaluate the influence of histone modifications H4K8ac and H3K27me3 on translating mRNA after ELE. A subset of ELE mice underwent a hippocampal learning task to determine the gene expression and epigenetic underpinnings of ELE's contribution to improved hippocampal memory performance. From this experiment, we discover gene expression - histone modification relationships that may play a critical role in facilitated memory after ELE. Our data reveal candidate gene-histone modification interactions and implicate gene regulatory pathways involved in ELE's impact on hippocampal memory.
Collapse
Affiliation(s)
- Anthony M Raus
- Physiology/Biophysics, Anatomy/Neurobiology, University of California- Irvine School of Medicine, Irvine, CA, USA
| | - Tyson D Fuller
- Pediatrics, University of California- Irvine School of Medicine, Irvine, CA, USA
| | - Nellie E Nelson
- Physiology/Biophysics, Anatomy/Neurobiology, University of California- Irvine School of Medicine, Irvine, CA, USA
| | - David A Valientes
- Pediatrics, University of California- Irvine School of Medicine, Irvine, CA, USA
| | - Anita Bayat
- Pediatrics, University of California- Irvine School of Medicine, Irvine, CA, USA
| | - Autumn S Ivy
- Physiology/Biophysics, Anatomy/Neurobiology, University of California- Irvine School of Medicine, Irvine, CA, USA.
- Pediatrics, University of California- Irvine School of Medicine, Irvine, CA, USA.
- Neurobiology/Behavior, University of California- Irvine School of Biological Sciences, Irvine, CA, USA.
- Anatomy/Neurobiology, University of California- Irvine School of Medicine, Irvine, CA, USA.
- Division of Neurology, Children's Hospital Orange County, Orange, CA, USA.
| |
Collapse
|
21
|
Luo Z, Cheng J, Wang Y. Effects of the genetic variants of alcohol-metabolizing enzymes on lipid levels in Asian populations: a systematic review and meta-analysis. Nutr Rev 2022:6960646. [PMID: 36565468 DOI: 10.1093/nutrit/nuac100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
CONTEXT Emerging evidence indicates that variants of alcohol-metabolizing enzymes may influence lipid metabolism. OBJECTIVE This study aimed to investigate whether the rs671 and rs1229984 variants affect lipid levels in East Asian individuals. DATA SOURCES PubMed, Foreign Medical Journal Service, Embase, Cochrane Library, Scopus, MEDLINE, Web of Science, Web of Knowledge, Wanfang, and Chinese Biomedical Literature databases were searched until December 31, 2021. DATA EXTRACTION Meta-analyses of studies that examined the effects of alcohol-metabolizing enzyme variants on lipid levels, as well as the interaction with alcohol intake, were selected. Data extraction was conducted independently by two investigators and confirmed by the third. DATA ANALYSIS In total, 86 studies (179 640 individuals) were analyzed. The A allele of rs671 (a functional variant in the ALDH2 gene) was linked to higher levels of low-density lipoprotein cholesterol (LDL-C) and lower levels of triglycerides and high-density lipoprotein cholesterol. In contrast, the A allele of the rs1229984 (a functional variant in the ADH2 gene) was associated only with lower levels of LDL-C. The effects of rs671 and rs1229984 on lipid levels were much stronger in Japanese than in Chinese individuals and in males than in females. Regression analysis indicated that the effects of rs671 on lipid levels were independent of alcohol intake in an integrated East Asian population (ie, Japanese, Chinese, and Korean individuals). Intriguingly, alcohol intake had a statistical influence on lipid levels when the sample analyzed was restricted to Japanese individuals or to males. CONCLUSIONS The rs671 and rs1229984 variants of alcohol-metabolizing enzymes have significant effects on lipid levels and may serve as genetic markers for lipid dyslipidemia in East Asian populations. Circulating lipid levels in Japanese individuals and in males were modulated by the interaction between rs671 and alcohol intake.
Collapse
Affiliation(s)
- Zhi Luo
- Department of General Medicine and Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Jun Cheng
- Department of General Medicine and Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China.,Medical Research Institute of Wuhan University, Wuhan University, Wuhan, China
| | - Yanggan Wang
- Department of General Medicine and Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China.,Medical Research Institute of Wuhan University, Wuhan University, Wuhan, China
| |
Collapse
|
22
|
Taslim TH, Hussein AM, Keshri R, Ishibashi JR, Chan TC, Nguyen BN, Liu S, Brewer D, Harper S, Lyons S, Garver B, Dang J, Balachandar N, Jhajharia S, Castillo DD, Mathieu J, Ruohola-Baker H. Stress-induced reversible cell-cycle arrest requires PRC2/PRC1-mediated control of mitophagy in Drosophila germline stem cells and human iPSCs. Stem Cell Reports 2022; 18:269-288. [PMID: 36493777 PMCID: PMC9860083 DOI: 10.1016/j.stemcr.2022.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 11/02/2022] [Accepted: 11/07/2022] [Indexed: 12/13/2022] Open
Abstract
Following acute genotoxic stress, both normal and tumorous stem cells can undergo cell-cycle arrest to avoid apoptosis and later re-enter the cell cycle to regenerate daughter cells. However, the mechanism of protective, reversible proliferative arrest, "quiescence," remains unresolved. Here, we show that mitophagy is a prerequisite for reversible quiescence in both irradiated Drosophila germline stem cells (GSCs) and human induced pluripotent stem cells (hiPSCs). In GSCs, mitofission (Drp1) or mitophagy (Pink1/Parkin) genes are essential to enter quiescence, whereas mitochondrial biogenesis (PGC1α) or fusion (Mfn2) genes are crucial for exiting quiescence. Furthermore, mitophagy-dependent quiescence lies downstream of mTOR- and PRC2-mediated repression and relies on the mitochondrial pool of cyclin E. Mitophagy-dependent reduction of cyclin E in GSCs and in hiPSCs during mTOR inhibition prevents the usual G1/S transition, pushing the cells toward reversible quiescence (G0). This alternative method of G1/S control may present new opportunities for therapeutic purposes.
Collapse
Affiliation(s)
- Tommy H Taslim
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, USA
| | - Abdiasis M Hussein
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, USA
| | - Riya Keshri
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, USA
| | - Julien R Ishibashi
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, USA
| | - Tung C Chan
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, USA
| | - Bich N Nguyen
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, USA
| | - Shuozhi Liu
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, USA
| | - Daniel Brewer
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, USA
| | - Stuart Harper
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, USA
| | - Scott Lyons
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, USA
| | - Ben Garver
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, USA
| | - Jimmy Dang
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, USA
| | - Nanditaa Balachandar
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, USA; Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, India
| | - Samriddhi Jhajharia
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, USA; Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, India
| | - Debra Del Castillo
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, USA
| | - Julie Mathieu
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, USA; Department of Comparative Medicine, University of Washington, Seattle, WA, USA
| | - Hannele Ruohola-Baker
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, USA.
| |
Collapse
|
23
|
Frappaolo A, Karimpour-Ghahnavieh A, Cesare G, Sechi S, Fraschini R, Vaccari T, Giansanti MG. GOLPH3 protein controls organ growth by interacting with TOR signaling proteins in Drosophila. Cell Death Dis 2022; 13:1003. [PMID: 36435842 PMCID: PMC9701223 DOI: 10.1038/s41419-022-05438-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/28/2022]
Abstract
The oncoprotein GOLPH3 (Golgi phosphoprotein 3) is an evolutionarily conserved phosphatidylinositol 4-phosphate effector, mainly localized to the Golgi apparatus, where it supports organelle architecture and vesicular trafficking. Overexpression of human GOLPH3 correlates with poor prognosis in several cancer types and is associated with enhanced signaling downstream of mTOR (mechanistic target of rapamycin). However, the molecular link between GOLPH3 and mTOR remains elusive. Studies in Drosophila melanogaster have shown that Translationally controlled tumor protein (Tctp) and 14-3-3 proteins are required for organ growth by supporting the function of the small GTPase Ras homolog enriched in the brain (Rheb) during mTORC1 (mTOR complex 1) signaling. Here we demonstrate that Drosophila GOLPH3 (dGOLPH3) physically interacts with Tctp and 14-3-3ζ. RNAi-mediated knockdown of dGOLPH3 reduces wing and eye size and enhances the phenotypes of Tctp RNAi. This phenotype is partially rescued by overexpression of Tctp, 14-3-3ζ, or Rheb. We also show that the Golgi localization of Rheb in Drosophila cells depends on dGOLPH3. Consistent with dGOLPH3 involvement in Rheb-mediated mTORC1 activation, depletion of dGOLPH3 also reduces levels of phosphorylated ribosomal S6 kinase, a downstream target of mTORC1. Finally, the autophagy flux and the expression of autophagic transcription factors of the TFEB family, which anti correlates with mTOR signaling, are compromised upon reduction of dGOLPH3. Overall, our data provide the first in vivo demonstration that GOLPH3 regulates organ growth by directly associating with mTOR signaling proteins.
Collapse
Affiliation(s)
- Anna Frappaolo
- grid.7841.aIstituto di Biologia e Patologia Molecolari del CNR, c/o Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, 00185 Roma, Italy
| | - Angela Karimpour-Ghahnavieh
- grid.7841.aIstituto di Biologia e Patologia Molecolari del CNR, c/o Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, 00185 Roma, Italy
| | - Giuliana Cesare
- grid.4708.b0000 0004 1757 2822Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milano, Italy
| | - Stefano Sechi
- grid.7841.aIstituto di Biologia e Patologia Molecolari del CNR, c/o Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, 00185 Roma, Italy
| | - Roberta Fraschini
- grid.7563.70000 0001 2174 1754Dipartimento di Biotecnologie e Bioscienze, Università degli studi di Milano Bicocca, 20126 Milano, Italy
| | - Thomas Vaccari
- grid.4708.b0000 0004 1757 2822Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milano, Italy
| | - Maria Grazia Giansanti
- grid.7841.aIstituto di Biologia e Patologia Molecolari del CNR, c/o Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, 00185 Roma, Italy
| |
Collapse
|
24
|
Chaudhry N, Sica M, Surabhi S, Hernandez DS, Mesquita A, Selimovic A, Riaz A, Lescat L, Bai H, MacIntosh GC, Jenny A. Lamp1 mediates lipid transport, but is dispensable for autophagy in Drosophila. Autophagy 2022; 18:2443-2458. [PMID: 35266854 PMCID: PMC9542896 DOI: 10.1080/15548627.2022.2038999] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 01/31/2022] [Accepted: 02/03/2022] [Indexed: 01/03/2023] Open
Abstract
The endolysosomal system not only is an integral part of the cellular catabolic machinery that processes and recycles nutrients for synthesis of biomaterials, but also acts as signaling hub to sense and coordinate the energy state of cells with growth and differentiation. Lysosomal dysfunction adversely influences vesicular transport-dependent macromolecular degradation and thus causes serious problems for human health. In mammalian cells, loss of the lysosome associated membrane proteins LAMP1 and LAMP2 strongly affects autophagy and cholesterol trafficking. Here we show that the previously uncharacterized Drosophila Lamp1 is a bona fide ortholog of vertebrate LAMP1 and LAMP2. Surprisingly and in contrast to lamp1 lamp2 double-mutant mice, Drosophila Lamp1 is not required for viability or autophagy, suggesting that fly and vertebrate LAMP proteins acquired distinct functions, or that autophagy defects in lamp1 lamp2 mutants may have indirect causes. However, Lamp1 deficiency results in an increase in the number of acidic organelles in flies. Furthermore, we find that Lamp1 mutant larvae have defects in lipid metabolism as they show elevated levels of sterols and diacylglycerols (DAGs). Because DAGs are the main lipid species used for transport through the hemolymph (blood) in insects, our results indicate broader functions of Lamp1 in lipid transport. Our findings make Drosophila an ideal model to study the role of LAMP proteins in lipid assimilation without the confounding effects of their storage and without interfering with autophagic processes.Abbreviations: aa: amino acid; AL: autolysosome; AP: autophagosome; APGL: autophagolysosome; AV: autophagic vacuole (i.e. AP and APGL/AL); AVi: early/initial autophagic vacuoles; AVd: late/degradative autophagic vacuoles; Atg: autophagy-related; CMA: chaperone-mediated autophagy; Cnx99A: Calnexin 99A; DAG: diacylglycerol; eMI: endosomal microautophagy; ESCRT: endosomal sorting complexes required for transport; FB: fat body; HDL: high-density lipoprotein; Hrs: Hepatocyte growth factor regulated tyrosine kinase substrate; LAMP: lysosomal associated membrane protein; LD: lipid droplet; LDL: low-density lipoprotein; Lpp: lipophorin; LTP: Lipid transfer particle; LTR: LysoTracker Red; MA: macroautophagy; MCC: Manders colocalization coefficient; MEF: mouse embryonic fibroblast MTORC: mechanistic target of rapamycin kinase complex; PV: parasitophorous vacuole; SNARE: soluble N-ethylmaleimide sensitive factor attachment protein receptor; Snap: Synaptosomal-associated protein; st: starved; TAG: triacylglycerol; TEM: transmission electron microscopy; TFEB/Mitf: transcription factor EB; TM: transmembrane domain; tub: tubulin; UTR: untranslated region.
Collapse
Affiliation(s)
- Norin Chaudhry
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, USA
| | - Margaux Sica
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, USA
| | - Satya Surabhi
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, USA
| | | | - Ana Mesquita
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, USA
| | - Adem Selimovic
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, USA
| | - Ayesha Riaz
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, USA
| | - Laury Lescat
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, USA
| | - Hua Bai
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
| | - Gustavo C. MacIntosh
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, USA
| | - Andreas Jenny
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, USA
- Department of Genetics, Albert Einstein College of MedicineNew York, NY, USA
| |
Collapse
|
25
|
Sato S, Hirose T, Ohba K, Watanabe F, Watanabe T, Minato K, Endo A, Ito H, Mori T, Takahashi K. (Pro)renin receptor and insulin signaling regulate cell proliferation in MCF-7 breast cancer cells. J Biochem 2022; 172:355-363. [PMID: 36071571 DOI: 10.1093/jb/mvac072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
(Pro)renin receptor [(P)RR] is related to both the renin-angiotensin system and V-ATPase with various functions including stimulation of cell proliferation. (P)RR is implicated in the pathophysiology of diabetes mellitus and cancer. Hyperinsulinemia is observed in obesity-related breast cancer. However, the relationship between (P)RR and insulin has not been clarified. We have therefore studied the effect of insulin on (P)RR expression, cell viability, and AKT phosphorylation under the conditions with and without (P)RR knockdown. Effects of insulin were studied in a human breast cancer cell line, MCF-7. Cell proliferation assay was performed by WST-8 assay. (P)RR expression was suppressed by (P)RR-specific siRNAs. The treated cells were analyzed by western blotting and real-time quantitative PCR analysis. Insulin stimulated proliferation of MCF-7 cells and increased (P)RR protein expression, but not (P)RR mRNA levels. Moreover, autophagy flux was suppressed by insulin. Suppression of (P)RR expression reduced cell number of MCF-7 cells and AKT phosphorylation significantly in both the presence and the absence of insulin, indicating that (P)RR is important for cell viability and AKT phosphorylation. In conclusion, insulin upregulates the level of (P)RR protein, which is important for cell viability, proliferation, AKT phosphorylation, and autophagy in breast cancer cells.
Collapse
Affiliation(s)
- Shigemitsu Sato
- Department of Endocrinology and Applied Medical Science, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takuo Hirose
- Department of Endocrinology and Applied Medical Science, Tohoku University Graduate School of Medicine, Sendai, Japan.,Division of Nephrology and Endocrinology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan.,Division of Integrative Renal Replacement Therapy, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Koji Ohba
- Department of Endocrinology and Applied Medical Science, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Fumihiko Watanabe
- Department of Endocrinology and Applied Medical Science, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomoki Watanabe
- Department of Endocrinology and Applied Medical Science, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kazuya Minato
- Department of Endocrinology and Applied Medical Science, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Akari Endo
- Department of Endocrinology and Applied Medical Science, Tohoku University Graduate School of Medicine, Sendai, Japan.,Division of Nephrology and Endocrinology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Hiroki Ito
- Department of Endocrinology and Applied Medical Science, Tohoku University Graduate School of Medicine, Sendai, Japan.,Division of Nephrology and Endocrinology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Takefumi Mori
- Division of Nephrology and Endocrinology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan.,Division of Integrative Renal Replacement Therapy, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Kazuhiro Takahashi
- Department of Endocrinology and Applied Medical Science, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
26
|
Gu X, Jouandin P, Lalgudi PV, Binari R, Valenstein ML, Reid MA, Allen AE, Kamitaki N, Locasale JW, Perrimon N, Sabatini DM. Sestrin mediates detection of and adaptation to low-leucine diets in Drosophila. Nature 2022; 608:209-216. [PMID: 35859173 PMCID: PMC10112710 DOI: 10.1038/s41586-022-04960-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 06/09/2022] [Indexed: 12/28/2022]
Abstract
Mechanistic target of rapamycin complex 1 (mTORC1) regulates cell growth and metabolism in response to multiple nutrients, including the essential amino acid leucine1. Recent work in cultured mammalian cells established the Sestrins as leucine-binding proteins that inhibit mTORC1 signalling during leucine deprivation2,3, but their role in the organismal response to dietary leucine remains elusive. Here we find that Sestrin-null flies (Sesn-/-) fail to inhibit mTORC1 or activate autophagy after acute leucine starvation and have impaired development and a shortened lifespan on a low-leucine diet. Knock-in flies expressing a leucine-binding-deficient Sestrin mutant (SesnL431E) have reduced, leucine-insensitive mTORC1 activity. Notably, we find that flies can discriminate between food with or without leucine, and preferentially feed and lay progeny on leucine-containing food. This preference depends on Sestrin and its capacity to bind leucine. Leucine regulates mTORC1 activity in glial cells, and knockdown of Sesn in these cells reduces the ability of flies to detect leucine-free food. Thus, nutrient sensing by mTORC1 is necessary for flies not only to adapt to, but also to detect, a diet deficient in an essential nutrient.
Collapse
Affiliation(s)
- Xin Gu
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Patrick Jouandin
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA.
| | - Pranav V Lalgudi
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Rich Binari
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Max L Valenstein
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Michael A Reid
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Annamarie E Allen
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Nolan Kamitaki
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Jason W Locasale
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA.
| | | |
Collapse
|
27
|
Agostini F, Agostinis R, Medina DL, Bisaglia M, Greggio E, Plotegher N. The Regulation of MiTF/TFE Transcription Factors Across Model Organisms: from Brain Physiology to Implication for Neurodegeneration. Mol Neurobiol 2022; 59:5000-5023. [PMID: 35665902 PMCID: PMC9363479 DOI: 10.1007/s12035-022-02895-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 05/21/2022] [Indexed: 12/30/2022]
Abstract
The microphthalmia/transcription factor E (MiTF/TFE) transcription factors are responsible for the regulation of various key processes for the maintenance of brain function, including autophagy-lysosomal pathway, lipid catabolism, and mitochondrial homeostasis. Among them, autophagy is one of the most relevant pathways in this frame; it is evolutionary conserved and crucial for cellular homeostasis. The dysregulation of MiTF/TFE proteins was shown to be involved in the development and progression of neurodegenerative diseases. Thus, the characterization of their function is key in the understanding of the etiology of these diseases, with the potential to develop novel therapeutics targeted to MiTF/TFE proteins and to the autophagic process. The fact that these proteins are evolutionary conserved suggests that their function and dysfunction can be investigated in model organisms with a simpler nervous system than the mammalian one. Building not only on studies in mammalian models but also in complementary model organisms, in this review we discuss (1) the mechanistic regulation of MiTF/TFE transcription factors; (2) their roles in different regions of the central nervous system, in different cell types, and their involvement in the development of neurodegenerative diseases, including lysosomal storage disorders; (3) the overlap and the compensation that occur among the different members of the family; (4) the importance of the evolutionary conservation of these protein and the process they regulate, which allows their study in different model organisms; and (5) their possible role as therapeutic targets in neurodegeneration.
Collapse
Affiliation(s)
| | - Rossella Agostinis
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy
- Scuola Superiore Meridionale SSM, Federico II University, Naples, Italy
| | - Diego L Medina
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy
- Department of Medical and Translational, Science, II University, Naples, Federico, Italy
| | - Marco Bisaglia
- Department of Biology, University of Padova, Padua, Italy
| | - Elisa Greggio
- Department of Biology, University of Padova, Padua, Italy
| | | |
Collapse
|
28
|
Zhou X, Zhao S, Liu T, Yao L, Zhao M, Ye X, Zhang X, Guo Q, Tu P, Zeng K. Schisandrol A protects AGEs-induced neuronal cells death by allosterically targeting ATP6V0d1 subunit of V-ATPase. Acta Pharm Sin B 2022; 12:3843-3860. [PMID: 36213534 PMCID: PMC9532558 DOI: 10.1016/j.apsb.2022.06.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/30/2022] [Accepted: 05/24/2022] [Indexed: 12/26/2022] Open
|
29
|
Hsu CH, Lee KJ, Chiu YH, Huang KC, Wang GS, Chen LP, Liao KW, Lin CS. The Lysosome in Malignant Melanoma: Biology, Function and Therapeutic Applications. Cells 2022; 11:1492. [PMID: 35563798 PMCID: PMC9103375 DOI: 10.3390/cells11091492] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 02/04/2023] Open
Abstract
Lysosomes are membrane-bound vesicles that play roles in the degradation and recycling of cellular waste and homeostasis maintenance within cells. False alterations of lysosomal functions can lead to broad detrimental effects and cause various diseases, including cancers. Cancer cells that are rapidly proliferative and invasive are highly dependent on effective lysosomal function. Malignant melanoma is the most lethal form of skin cancer, with high metastasis characteristics, drug resistance, and aggressiveness. It is critical to understand the role of lysosomes in melanoma pathogenesis in order to improve the outcomes of melanoma patients. In this mini-review, we compile our current knowledge of lysosomes' role in tumorigenesis, progression, therapy resistance, and the current treatment strategies related to lysosomes in melanoma.
Collapse
Affiliation(s)
- Chia-Hsin Hsu
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan;
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Keng-Jung Lee
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA;
| | - Yi-Han Chiu
- Department of Microbiology, Soochow University, Taipei 10617, Taiwan;
| | - Kuo-Ching Huang
- Holistic Education Center, Mackay Medical College, New Taipei City 25245, Taiwan;
| | - Guo-Shou Wang
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan; (G.-S.W.); (K.-W.L.)
| | - Lei-Po Chen
- Ph.D. Degree Program of Biomedical Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan;
| | - Kuang-Wen Liao
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan; (G.-S.W.); (K.-W.L.)
| | - Chen-Si Lin
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan;
| |
Collapse
|
30
|
Regulation of Aging and Longevity by Ion Channels and Transporters. Cells 2022; 11:cells11071180. [PMID: 35406743 PMCID: PMC8997527 DOI: 10.3390/cells11071180] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/22/2022] [Accepted: 03/29/2022] [Indexed: 12/10/2022] Open
Abstract
Despite significant advances in our understanding of the mechanisms that underlie age-related physiological decline, our ability to translate these insights into actionable strategies to extend human healthspan has been limited. One of the major reasons for the existence of this barrier is that with a few important exceptions, many of the proteins that mediate aging have proven to be undruggable. The argument put forth here is that the amenability of ion channels and transporters to pharmacological manipulation could be leveraged to develop novel therapeutic strategies to combat aging. This review delves into the established roles for ion channels and transporters in the regulation of aging and longevity via their influence on membrane excitability, Ca2+ homeostasis, mitochondrial and endolysosomal function, and the transduction of sensory stimuli. The goal is to provide the reader with an understanding of emergent themes, and prompt further investigation into how the activities of ion channels and transporters sculpt the trajectories of cellular and organismal aging.
Collapse
|
31
|
Abstract
Cisplatin is the first line therapy for patients with head and neck cancer. However, resistance to cisplatin remains a major concern. High expression of the calcium-activated chloride channel TMEM16A in tumors portends poor survival in these patients, possibly because of drug resistance. Here, we show that TMEM16A drives the sequestration of cisplatin into lysosomes. Subsequently, cisplatin is expelled via the delivery of lysosomes to the cell surface. We show that TMEM16A enhances this process, thereby promoting cisplatin resistance. We also show that lysosomal inhibition synergizes with cisplatin to induce tumor cell death. Our data uncovers a new fundamental feature of both lysosomal physiology and cancer cell biology that can potentially impact the treatment of patients with head and neck cancer. Squamous cell carcinoma of the head and neck (SCCHN) is a devastating disease that continues to have low cure rates despite the recent advances in therapies. Cisplatin is the most used chemotherapy agent, and treatment failure is largely driven by resistance to this drug. Amplification of chromosomal band 11q13 occurs in ∼30% of SCCHN tumors. This region harbors the ANO1 gene that encodes the TMEM16A ion channel, which is responsible for calcium-activated chloride transport in epithelial tissues. TMEM16A overexpression is associated with cisplatin resistance, and high TMEM16A levels correlate with decreased survival. However, the mechanistic underpinning of this effect remains unknown. Lysosomal biogenesis and exocytosis have been implicated in cancer because of their roles in the clearance of damaged organelles and exocytosis of chemotherapeutic drugs and toxins. Here, we show that TMEM16A overexpression promotes lysosomal biogenesis and exocytosis, which is consistent with the expulsion of intracellular cisplatin. Using a combination of genetic and pharmacologic approaches, we find that TMEM16A promotes lysosomal flux in a manner that requires reactive oxygen species, TRPML1, and the activation of the β-catenin–melanocyte-inducing transcription factor pathway. The lysosomal inhibitor hydroxychloroquine (HCQ) synergizes with cisplatin in killing SCCHN cells in vitro. Using a murine model of SCCHN, we show that HCQ and cisplatin retard the growth of cisplatin-resistant patient-derived xenografts in vivo. We propose that TMEM16A enables cell survival by the up-regulation of lysosomal sequestration and exocytosis of the cytotoxic drugs. These results uncover a model of treatment for resistance in cancer, its reversal, and a role for TMEM16A.
Collapse
|
32
|
Murakawa T, Nakamura T, Kawaguchi K, Murayama F, Zhao N, Stasevich TJ, Kimura H, Fujita N. A Drosophila toolkit for HA-tagged proteins unveils a block in autophagy flux in the last instar larval fat body. Development 2022; 149:274775. [DOI: 10.1242/dev.200243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/27/2022] [Indexed: 01/18/2023]
Abstract
ABSTRACT
For in vivo functional analysis of a protein of interest (POI), multiple transgenic strains with a POI that harbors different tags are needed but generation of these strains is still labor-intensive work. To overcome this, we have developed a versatile Drosophila toolkit with a genetically encoded single-chain variable fragment for the HA epitope tag: ‘HA Frankenbody’. This system allows various analyses of HA-tagged POI in live tissues by simply crossing an HA Frankenbody fly with an HA-tagged POI fly. Strikingly, the GFP-mCherry tandem fluorescent-tagged HA Frankenbody revealed a block in autophagic flux and an accumulation of enlarged autolysosomes in the last instar larval and prepupal fat body. Mechanistically, lysosomal activity was downregulated at this stage, and endocytosis, but not autophagy, was indispensable for the swelling of lysosomes. Furthermore, forced activation of lysosomes by fat body-targeted overexpression of Mitf, the single MiTF/TFE family gene in Drosophila, suppressed the lysosomal swelling and resulted in pupal lethality. Collectively, we propose that downregulated lysosomal function in the fat body plays a role in the metamorphosis of Drosophila.
Collapse
Affiliation(s)
- Tadayoshi Murakawa
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, 4259-S2-11 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
- Graduate School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Tsuyoshi Nakamura
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, 4259-S2-11 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
| | - Kohei Kawaguchi
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, 4259-S2-11 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
| | - Futoshi Murayama
- Graduate School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Ning Zhao
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Timothy J. Stasevich
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
- World Research Hub Initiative, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Hiroshi Kimura
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, 4259-S2-11 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
- Graduate School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8503, Japan
- World Research Hub Initiative, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Naonobu Fujita
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, 4259-S2-11 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
- Graduate School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8503, Japan
- Precursory Research for Embryonic Science & Technology (PRESTO), Japan Science & Technology Agency (JST), 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
33
|
Li R, Xiao Y, Li K, Tian L. Transcription and Post-translational Regulation of Autophagy in Insects. Front Physiol 2022; 13:825202. [PMID: 35283796 PMCID: PMC8916536 DOI: 10.3389/fphys.2022.825202] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/19/2022] [Indexed: 01/18/2023] Open
Abstract
Autophagy attracts great attention, and numerous progresses have been obtained in the last two decades. Autophagy is implicated in mammalian neurodegenerative diseases, tumorigenesis, as well as development in insects. The regulatory mechanism of autophagy is well documented in yeast and mammals, whereas it is not fully illustrated in insects. Drosophila melanogaster and Bombyx mori are the two well-studied insects for autophagy, and several insect-mammalian evolutionarily conserved or insect-specific mechanisms in regulating autophagy are reported. In this review, we summarize the most recent studies of autophagy regulated at both transcriptional and post-translational levels by insect hormone in cooperation with other signals, such as nutrient, which will provide a reference and deep thinking for studies on autophagy in insects.
Collapse
Affiliation(s)
- Rongsong Li
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- Guangdong Provincial Sericulture and Mulberry Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yang Xiao
- Department of Sericulture and Southern Medicine Resources Utilization, The Sericultural and Agri-Food Research Institute of the Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Kang Li
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Ling Tian
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- Guangdong Provincial Sericulture and Mulberry Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, China
- *Correspondence: Ling Tian,
| |
Collapse
|
34
|
A splicing variant of TFEB negatively regulates the TFEB-autophagy pathway. Sci Rep 2021; 11:21119. [PMID: 34702966 PMCID: PMC8548335 DOI: 10.1038/s41598-021-00613-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 10/15/2021] [Indexed: 11/09/2022] Open
Abstract
Transcription factor EB (TFEB) is a master regulator of the autophagy-lysosomal pathway (ALP). Here, we cloned a novel splicing variant of TFEB, comprising 281 amino acids (hereafter referred to as small TFEB), and lacking the helix-loop-helix (HLH) and leucine zipper (LZ) motifs present in the full-length TFEB (TFEB-L). The TFEB variant is widely expressed in several tissues, including the brain, although its expression level is considerably lower than that of TFEB-L. Intriguingly, in cells stably expressing small TFEB, the expression profile of genes was inverted compared to that in cells ectopically expressing TFEB-L. In addition, fisetin-induced luciferase activity of promoter containing either coordinated lysosomal expression and regulation (CLEAR) element or antioxidant response element (ARE) was significantly repressed by co-transfection with small TFEB. Moreover, fisetin-mediated clearance of phosphorylated tau or α-synuclein was attenuated in the presence of small TFEB. Taken together, the results suggest that small TFEB is a novel splicing variant of TFEB that might act as a negative regulator of TFEB-L, thus fine tuning the activity of ALP during cellular stress.
Collapse
|
35
|
Zhu SY, Yao RQ, Li YX, Zhao PY, Ren C, Du XH, Yao YM. The Role and Regulatory Mechanism of Transcription Factor EB in Health and Diseases. Front Cell Dev Biol 2021; 9:667750. [PMID: 34490237 PMCID: PMC8418145 DOI: 10.3389/fcell.2021.667750] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 07/28/2021] [Indexed: 11/13/2022] Open
Abstract
Transcription factor EB (TFEB) is a member of the microphthalmia-associated transcription factor/transcription factor E (MiTF/TFE) family and critically involved in the maintenance of structural integrity and functional balance of multiple cells. In this review, we described the effects of post-transcriptional modifications, including phosphorylation, acetylation, SUMOylation, and ubiquitination, on the subcellular localization and activation of TFEB. The activated TFEB enters into the nucleus and induces the expressions of targeted genes. We then presented the role of TFEB in the biosynthesis of multiple organelles, completion of lysosome-autophagy pathway, metabolism regulation, immune, and inflammatory responses. This review compiles existing knowledge in the understanding of TFEB regulation and function, covering its essential role in response to cellular stress. We further elaborated the involvement of TFEB dysregulation in the pathophysiological process of various diseases, such as the catabolic hyperactivity in tumors, the accumulation of abnormal aggregates in neurodegenerative diseases, and the aberrant host responses in inflammatory diseases. In this review, multiple drugs have also been introduced, which enable regulating the translocation and activation of TFEB, showing beneficial effects in mitigating various disease models. Therefore, TFEB might serve as a potential therapeutic target for human diseases. The limitation of this review is that the mechanism of TFEB-related human diseases mainly focuses on its association with lysosome and autophagy, which needs deep description of other mechanism in diseases progression after getting more advanced information.
Collapse
Affiliation(s)
- Sheng-Yu Zhu
- Medical Innovation Research Division, Translational Medicine Research Center and Fourth Medical Center of the Chinese PLA General Hospital, Beijing, China.,Department of General Surgery, First Medical Center of Chinese PLA General Hospital, Beijing, China.,School of Medicine, Nankai University, Tianjin, China
| | - Ren-Qi Yao
- Medical Innovation Research Division, Translational Medicine Research Center and Fourth Medical Center of the Chinese PLA General Hospital, Beijing, China.,Department of Burn Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yu-Xuan Li
- Department of General Surgery, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Peng-Yue Zhao
- Department of General Surgery, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Chao Ren
- Medical Innovation Research Division, Translational Medicine Research Center and Fourth Medical Center of the Chinese PLA General Hospital, Beijing, China
| | - Xiao-Hui Du
- Department of General Surgery, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yong-Ming Yao
- Medical Innovation Research Division, Translational Medicine Research Center and Fourth Medical Center of the Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
36
|
Allemailem KS, Almatroudi A, Alrumaihi F, Almatroodi SA, Alkurbi MO, Basfar GT, Rahmani AH, Khan AA. Novel Approaches of Dysregulating Lysosome Functions in Cancer Cells by Specific Drugs and Its Nanoformulations: A Smart Approach of Modern Therapeutics. Int J Nanomedicine 2021; 16:5065-5098. [PMID: 34345172 PMCID: PMC8324981 DOI: 10.2147/ijn.s321343] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 07/08/2021] [Indexed: 01/18/2023] Open
Abstract
The smart strategy of cancer cells to bypass the caspase-dependent apoptotic pathway has led to the discovery of novel anti-cancer approaches including the targeting of lysosomes. Recent discoveries observed that lysosomes perform far beyond just recycling of cellular waste, as these organelles are metabolically very active and mediate several signalling pathways to sense the cellular metabolic status. These organelles also play a significant role in mediating the immune system functions. Thus, direct or indirect lysosome-targeting with different drugs can be considered a novel therapeutic approach in different disease including cancer. Recently, some anticancer lysosomotropic drugs (eg, nortriptyline, siramesine, desipramine) and their nanoformulations have been engineered to specifically accumulate within these organelles. These drugs can enhance lysosome membrane permeabilization (LMP) or disrupt the activity of resident enzymes and protein complexes, like v-ATPase and mTORC1. Other anticancer drugs like doxorubicin, quinacrine, chloroquine and DQ661 have also been used which act through multi-target points. In addition, autophagy inhibitors, ferroptosis inducers and fluorescent probes have also been used as novel theranostic agents. Several lysosome-specific drug nanoformulations like mixed charge and peptide conjugated gold nanoparticles (AuNPs), Au-ZnO hybrid NPs, TPP-PEG-biotin NPs, octadecyl-rhodamine-B and cationic liposomes, etc. have been synthesized by diverse methods. These nanoformulations can target cathepsins, glucose-regulated protein 78, or other lysosome specific proteins in different cancers. The specific targeting of cancer cell lysosomes with drug nanoformulations is quite recent and faces tremendous challenges like toxicity concerns to normal tissues, which may be resolved in future research. The anticancer applications of these nanoformulations have led them up to various stages of clinical trials. Here in this review article, we present the recent updates about the lysosome ultrastructure, its cross-talk with other organelles, and the novel strategies of targeting this organelle in tumor cells as a recent innovative approach of cancer management.
Collapse
Affiliation(s)
- Khaled S Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Saleh A Almatroodi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Mohammad O Alkurbi
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ghaiyda Talal Basfar
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Amjad Ali Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| |
Collapse
|
37
|
Joy J, Barrio L, Santos-Tapia C, Romão D, Giakoumakis NN, Clemente-Ruiz M, Milán M. Proteostasis failure and mitochondrial dysfunction leads to aneuploidy-induced senescence. Dev Cell 2021; 56:2043-2058.e7. [PMID: 34216545 DOI: 10.1016/j.devcel.2021.06.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 03/03/2021] [Accepted: 06/11/2021] [Indexed: 01/10/2023]
Abstract
Aneuploidy, an unbalanced number of chromosomes, is highly deleterious at the cellular level and leads to senescence, a stress-induced response characterized by permanent cell-cycle arrest and a well-defined associated secretory phenotype. Here, we use a Drosophila epithelial model to delineate the pathway that leads to the induction of senescence as a consequence of the acquisition of an aneuploid karyotype. Whereas aneuploidy induces, as a result of gene dosage imbalance, proteotoxic stress and activation of the major protein quality control mechanisms, near-saturation functioning of autophagy leads to compromised mitophagy, accumulation of dysfunctional mitochondria, and the production of radical oxygen species (ROS). We uncovered a role of c-Jun N-terminal kinase (JNK) in driving senescence as a consequence of dysfunctional mitochondria and ROS. We show that activation of the major protein quality control mechanisms and mitophagy dampens the deleterious effects of aneuploidy, and we identify a role of senescence in proteostasis and compensatory proliferation for tissue repair.
Collapse
Affiliation(s)
- Jery Joy
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Lara Barrio
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Celia Santos-Tapia
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Daniela Romão
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Nikolaos Nikiforos Giakoumakis
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Marta Clemente-Ruiz
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Marco Milán
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, 08010 Barcelona, Spain.
| |
Collapse
|
38
|
Formica M, Storaci AM, Bertolini I, Carminati F, Knævelsrud H, Vaira V, Vaccari T. V-ATPase controls tumor growth and autophagy in a Drosophila model of gliomagenesis. Autophagy 2021; 17:4442-4452. [PMID: 33978540 PMCID: PMC8726678 DOI: 10.1080/15548627.2021.1918915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Glioblastoma (GBM), a very aggressive and incurable tumor, often results from constitutive activation of EGFR (epidermal growth factor receptor) and of phosphoinositide 3-kinase (PI3K). To understand the role of autophagy in the pathogenesis of glial tumors in vivo, we used an established Drosophila melanogaster model of glioma based on overexpression in larval glial cells of an active human EGFR and of the PI3K homolog Pi3K92E/Dp110. Interestingly, the resulting hyperplastic glia express high levels of key components of the lysosomal-autophagic compartment, including vacuolar-type H+-ATPase (V-ATPase) subunits and ref(2)P (refractory to Sigma P), the Drosophila homolog of SQSTM1/p62. However, cellular clearance of autophagic cargoes appears inhibited upstream of autophagosome formation. Remarkably, downregulation of subunits of V-ATPase, of Pdk1, or of the Tor (Target of rapamycin) complex 1 (TORC1) component raptor prevents overgrowth and normalize ref(2)P levels. In addition, downregulation of the V-ATPase subunit VhaPPA1-1 reduces Akt and Tor-dependent signaling and restores clearance. Consistent with evidence in flies, neurospheres from patients with high V-ATPase subunit expression show inhibition of autophagy. Altogether, our data suggest that autophagy is repressed during glial tumorigenesis and that V-ATPase and MTORC1 components acting at lysosomes could represent therapeutic targets against GBM.
Collapse
Affiliation(s)
- Miriam Formica
- Department of Biosciences, Università Degli Studi Di Milano, Milan, Italy
| | - Alessandra Maria Storaci
- Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, Università Degli Studi Di Milano, Milan, Italy
| | - Irene Bertolini
- Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, Università Degli Studi Di Milano, Milan, Italy
| | | | - Helene Knævelsrud
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, the Norwegian Radium Hospital, Oslo, Norway.,Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Valentina Vaira
- Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, Università Degli Studi Di Milano, Milan, Italy
| | - Thomas Vaccari
- Department of Biosciences, Università Degli Studi Di Milano, Milan, Italy
| |
Collapse
|
39
|
Response of the microbiome-gut-brain axis in Drosophila to amino acid deficit. Nature 2021; 593:570-574. [PMID: 33953396 DOI: 10.1038/s41586-021-03522-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 04/08/2021] [Indexed: 02/03/2023]
Abstract
A balanced intake of macronutrients-protein, carbohydrate and fat-is essential for the well-being of organisms. An adequate calorific intake but with insufficient protein consumption can lead to several ailments, including kwashiorkor1. Taste receptors (T1R1-T1R3)2 can detect amino acids in the environment, and cellular sensors (Gcn2 and Tor)3 monitor the levels of amino acids in the cell. When deprived of dietary protein, animals select a food source that contains a greater proportion of protein or essential amino acids (EAAs)4. This suggests that food selection is geared towards achieving the target amount of a particular macronutrient with assistance of the EAA-specific hunger-driven response, which is poorly understood. Here we show in Drosophila that a microbiome-gut-brain axis detects a deficit of EAAs and stimulates a compensatory appetite for EAAs. We found that the neuropeptide CNMamide (CNMa)5 was highly induced in enterocytes of the anterior midgut during protein deprivation. Silencing of the CNMa-CNMa receptor axis blocked the EAA-specific hunger-driven response in deprived flies. Furthermore, gnotobiotic flies bearing an EAA-producing symbiotic microbiome exhibited a reduced appetite for EAAs. By contrast, gnotobiotic flies with a mutant microbiome that did not produce leucine or other EAAs showed higher expression of CNMa and a greater compensatory appetite for EAAs. We propose that gut enterocytes sense the levels of diet- and microbiome-derived EAAs and communicate the EAA-deprived condition to the brain through CNMa.
Collapse
|
40
|
La Spina M, Contreras PS, Rissone A, Meena NK, Jeong E, Martina JA. MiT/TFE Family of Transcription Factors: An Evolutionary Perspective. Front Cell Dev Biol 2021; 8:609683. [PMID: 33490073 PMCID: PMC7815692 DOI: 10.3389/fcell.2020.609683] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/24/2020] [Indexed: 12/13/2022] Open
Abstract
Response and adaptation to stress are critical for the survival of all living organisms. The regulation of the transcriptional machinery is an important aspect of these complex processes. The members of the microphthalmia (MiT/TFE) family of transcription factors, apart from their involvement in melanocyte biology, are emerging as key players in a wide range of cellular functions in response to a plethora of internal and external stresses. The MiT/TFE proteins are structurally related and conserved through evolution. Their tissue expression and activities are highly regulated by alternative splicing, promoter usage, and posttranslational modifications. Here, we summarize the functions of MiT/TFE proteins as master transcriptional regulators across evolution and discuss the contribution of animal models to our understanding of the various roles of these transcription factors. We also highlight the importance of deciphering transcriptional regulatory mechanisms in the quest for potential therapeutic targets for human diseases, such as lysosomal storage disorders, neurodegeneration, and cancer.
Collapse
Affiliation(s)
- Martina La Spina
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Pablo S Contreras
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Alberto Rissone
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Naresh K Meena
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Eutteum Jeong
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - José A Martina
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
41
|
Cunningham KM, Maulding K, Ruan K, Senturk M, Grima JC, Sung H, Zuo Z, Song H, Gao J, Dubey S, Rothstein JD, Zhang K, Bellen HJ, Lloyd TE. TFEB/Mitf links impaired nuclear import to autophagolysosomal dysfunction in C9-ALS. eLife 2020; 9:59419. [PMID: 33300868 PMCID: PMC7758070 DOI: 10.7554/elife.59419] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 12/09/2020] [Indexed: 12/13/2022] Open
Abstract
Disrupted nucleocytoplasmic transport (NCT) has been implicated in neurodegenerative disease pathogenesis; however, the mechanisms by which disrupted NCT causes neurodegeneration remain unclear. In a Drosophila screen, we identified ref(2)P/p62, a key regulator of autophagy, as a potent suppressor of neurodegeneration caused by the GGGGCC hexanucleotide repeat expansion (G4C2 HRE) in C9orf72 that causes amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). We found that p62 is increased and forms ubiquitinated aggregates due to decreased autophagic cargo degradation. Immunofluorescence and electron microscopy of Drosophila tissues demonstrate an accumulation of lysosome-like organelles that precedes neurodegeneration. These phenotypes are partially caused by cytoplasmic mislocalization of Mitf/TFEB, a key transcriptional regulator of autophagolysosomal function. Additionally, TFEB is mislocalized and downregulated in human cells expressing GGGGCC repeats and in C9-ALS patient motor cortex. Our data suggest that the C9orf72-HRE impairs Mitf/TFEB nuclear import, thereby disrupting autophagy and exacerbating proteostasis defects in C9-ALS/FTD.
Collapse
Affiliation(s)
- Kathleen M Cunningham
- Cellular and Molecular Medicine Program, School of Medicine, Johns Hopkins University, Baltimore, United States
| | - Kirstin Maulding
- Cellular and Molecular Medicine Program, School of Medicine, Johns Hopkins University, Baltimore, United States
| | - Kai Ruan
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, United States
| | - Mumine Senturk
- Program in Developmental Biology, Baylor College of Medicine (BCM), Houston, United States
| | - Jonathan C Grima
- Brain Science Institute, School of Medicine, Johns Hopkins University, Baltimore, United States.,Solomon H. Snyder Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, United States
| | - Hyun Sung
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, United States
| | - Zhongyuan Zuo
- Department of Molecular and Human Genetics, BCM, Houston, United States
| | - Helen Song
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, United States
| | - Junli Gao
- Department of Neuroscience, Mayo Clinic, Jacksonville, United States
| | - Sandeep Dubey
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, United States
| | - Jeffrey D Rothstein
- Cellular and Molecular Medicine Program, School of Medicine, Johns Hopkins University, Baltimore, United States.,Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, United States.,Brain Science Institute, School of Medicine, Johns Hopkins University, Baltimore, United States.,Solomon H. Snyder Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, United States
| | - Ke Zhang
- Department of Neuroscience, Mayo Clinic, Jacksonville, United States
| | - Hugo J Bellen
- Program in Developmental Biology, Baylor College of Medicine (BCM), Houston, United States.,Department of Molecular and Human Genetics, BCM, Houston, United States.,Department of Neuroscience, BCM, Houston, United States.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, United States.,Howard Hughes Medical Institute, Houston, United States
| | - Thomas E Lloyd
- Cellular and Molecular Medicine Program, School of Medicine, Johns Hopkins University, Baltimore, United States.,Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, United States.,Solomon H. Snyder Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, United States
| |
Collapse
|
42
|
Xu T, Nicolson S, Sandow JJ, Dayan S, Jiang X, Manning JA, Webb AI, Kumar S, Denton D. Cp1/cathepsin L is required for autolysosomal clearance in Drosophila. Autophagy 2020; 17:2734-2749. [PMID: 33112206 DOI: 10.1080/15548627.2020.1838105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Macroautophagy/autophagy is a highly conserved lysosomal degradative pathway important for maintaining cellular homeostasis. Much of our current knowledge of autophagy is focused on the initiation steps in this process. Recently, an understanding of later steps, particularly lysosomal fusion leading to autolysosome formation and the subsequent role of lysosomal enzymes in degradation and recycling, is becoming evident. Autophagy can function in both cell survival and cell death, however, the mechanisms that distinguish adaptive/survival autophagy from autophagy-dependent cell death remain to be established. Here, using proteomic analysis of Drosophila larval midguts during degradation, we identify a group of proteins with peptidase activity, suggesting a role in autophagy-dependent cell death. We show that Cp1/cathepsin L-deficient larval midgut cells accumulate aberrant autophagic vesicles due to a block in autophagic flux, yet later stages of midgut degradation are not compromised. The accumulation of large aberrant autolysosomes in the absence of Cp1 appears to be the consequence of decreased degradative capacity as they contain undigested cytoplasmic material, rather than a defect in autophagosome-lysosome fusion. Finally, we find that other cathepsins may also contribute to proper autolysosomal degradation in Drosophila larval midgut cells. Our findings provide evidence that cathepsins play an essential role in the autolysosome to maintain basal autophagy flux by balancing autophagosome production and turnover.
Collapse
Affiliation(s)
- Tianqi Xu
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia
| | - Shannon Nicolson
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia
| | - Jarrod J Sandow
- Advanced Technology and Biology, The Walter & Eliza Hall Institute of Medical Research, Parkville, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Sonia Dayan
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia
| | - Xin Jiang
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia
| | - Jantina A Manning
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia
| | - Andrew I Webb
- Advanced Technology and Biology, The Walter & Eliza Hall Institute of Medical Research, Parkville, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Sharad Kumar
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia
| | - Donna Denton
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia
| |
Collapse
|
43
|
Lysosome as a Central Hub for Rewiring PH Homeostasis in Tumors. Cancers (Basel) 2020; 12:cancers12092437. [PMID: 32867178 PMCID: PMC7565471 DOI: 10.3390/cancers12092437] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/18/2020] [Accepted: 08/21/2020] [Indexed: 02/06/2023] Open
Abstract
Cancer cells generate large quantities of cytoplasmic protons as byproducts of aberrantly activated aerobic glycolysis and lactate fermentation. To avoid potentially detrimental acidification of the intracellular milieu, cancer cells activate multiple acid-removal pathways that promote cytosolic alkalization and extracellular acidification. Accumulating evidence suggests that in addition to the well-characterized ion pumps and exchangers in the plasma membrane, cancer cell lysosomes are also reprogrammed for this purpose. On the one hand, the increased expression and activity of the vacuolar-type H+-ATPase (V-ATPase) on the lysosomal limiting membrane combined with the larger volume of the lysosomal compartment increases the lysosomal proton storage capacity substantially. On the other hand, enhanced lysosome exocytosis enables the efficient release of lysosomal protons to the extracellular space. Together, these two steps dynamically drive proton flow from the cytosol to extracellular space. In this perspective, we provide mechanistic insight into how lysosomes contribute to the rewiring of pH homeostasis in cancer cells.
Collapse
|
44
|
Johansson JA, Marie KL, Lu Y, Brombin A, Santoriello C, Zeng Z, Zich J, Gautier P, von Kriegsheim A, Brunsdon H, Wheeler AP, Dreger M, Houston DR, Dooley CM, Sims AH, Busch-Nentwich EM, Zon LI, Illingworth RS, Patton EE. PRL3-DDX21 Transcriptional Control of Endolysosomal Genes Restricts Melanocyte Stem Cell Differentiation. Dev Cell 2020; 54:317-332.e9. [PMID: 32652076 PMCID: PMC7435699 DOI: 10.1016/j.devcel.2020.06.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/06/2020] [Accepted: 06/09/2020] [Indexed: 01/22/2023]
Abstract
Melanocytes, replenished throughout life by melanocyte stem cells (MSCs), play a critical role in pigmentation and melanoma. Here, we reveal a function for the metastasis-associated phosphatase of regenerating liver 3 (PRL3) in MSC regeneration. We show that PRL3 binds to the RNA helicase DDX21, thereby restricting productive transcription by RNAPII at master transcription factor (MITF)-regulated endolysosomal vesicle genes. In zebrafish, this mechanism controls premature melanoblast expansion and differentiation from MSCs. In melanoma patients, restricted transcription of this endolysosomal vesicle pathway is a hallmark of PRL3-high melanomas. Our work presents the conceptual advance that PRL3-mediated control of transcriptional elongation is a differentiation checkpoint mechanism for activated MSCs and has clinical relevance for the activity of PRL3 in regenerating tissue and cancer.
Collapse
Affiliation(s)
- Jeanette A Johansson
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh EH4 2XU, UK; Cancer Research UK Edinburgh Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Kerrie L Marie
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh EH4 2XU, UK; Cancer Research UK Edinburgh Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK; Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yuting Lu
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh EH4 2XU, UK; Cancer Research UK Edinburgh Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Alessandro Brombin
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh EH4 2XU, UK; Cancer Research UK Edinburgh Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Cristina Santoriello
- Stem Cell Program and Division of Hematology, Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, USA
| | - Zhiqiang Zeng
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh EH4 2XU, UK; Cancer Research UK Edinburgh Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Judith Zich
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh EH4 2XU, UK; Cancer Research UK Edinburgh Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Philippe Gautier
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh EH4 2XU, UK
| | - Alex von Kriegsheim
- Cancer Research UK Edinburgh Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Hannah Brunsdon
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh EH4 2XU, UK; Cancer Research UK Edinburgh Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Ann P Wheeler
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh EH4 2XU, UK
| | - Marcel Dreger
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh EH4 2XU, UK; Cancer Research UK Edinburgh Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Douglas R Houston
- Institute of Quantitative Biology, Biochemistry and Biotechnology, Waddington Building, King's Buildings, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Christopher M Dooley
- Wellcome Sanger Institute, Hinxton CB10 1SA, UK; Max-Planck-Institute for Developmental Biology, Department ECNV, Max-Planck-Ring 5, 72076 Tübingen, Germany
| | - Andrew H Sims
- Cancer Research UK Edinburgh Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Elisabeth M Busch-Nentwich
- Wellcome Sanger Institute, Hinxton CB10 1SA, UK; Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Leonard I Zon
- Stem Cell Program and Division of Hematology, Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, USA
| | - Robert S Illingworth
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh BioQuarter, 5 Little France Drive, Edinburgh EH16 4UU, UK.
| | - E Elizabeth Patton
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh EH4 2XU, UK; Cancer Research UK Edinburgh Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK.
| |
Collapse
|
45
|
Sachdeva K, Goel M, Sudhakar M, Mehta M, Raju R, Raman K, Singh A, Sundaramurthy V. Mycobacterium tuberculosis ( Mtb) lipid mediated lysosomal rewiring in infected macrophages modulates intracellular Mtb trafficking and survival. J Biol Chem 2020; 295:9192-9210. [PMID: 32424041 PMCID: PMC7335774 DOI: 10.1074/jbc.ra120.012809] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/14/2020] [Indexed: 12/24/2022] Open
Abstract
Intracellular pathogens commonly manipulate the host lysosomal system for their survival. However, whether this pathogen-induced alteration affects the organization and functioning of the lysosomal system itself is not known. Here, using in vitro and in vivo infections and quantitative image analysis, we show that the lysosomal content and activity are globally elevated in Mycobacterium tuberculosis (Mtb)-infected macrophages. We observed that this enhanced lysosomal state is sustained over time and defines an adaptive homeostasis in the infected macrophage. Lysosomal alterations are caused by mycobacterial surface components, notably the cell wall-associated lipid sulfolipid-1 (SL-1), which functions through the mTOR complex 1 (mTORC1)-transcription factor EB (TFEB) axis in the host cells. An Mtb mutant lacking SL-1, MtbΔpks2, shows attenuated lysosomal rewiring compared with the WT Mtb in both in vitro and in vivo infections. Exposing macrophages to purified SL-1 enhanced the trafficking of phagocytic cargo to lysosomes. Correspondingly, MtbΔpks2 exhibited a further reduction in lysosomal delivery compared with the WT. Reduced trafficking of this mutant Mtb strain to lysosomes correlated with enhanced intracellular bacterial survival. Our results reveal that global alteration of the host lysosomal system is a defining feature of Mtb-infected macrophages and suggest that this altered lysosomal state protects host cell integrity and contributes to the containment of the pathogen.
Collapse
Affiliation(s)
- Kuldeep Sachdeva
- National Center for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India
| | - Manisha Goel
- National Center for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India
| | - Malvika Sudhakar
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai, India; Initiative for Biological Systems Engineering, Robert Bosch Centre for Data Science and Artificial Intelligence (RBC-DSAI), Indian Institute of Technology Madras, Chennai, India
| | - Mansi Mehta
- Center for Infectious Disease Research, Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | - Rajmani Raju
- Center for Infectious Disease Research, Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | - Karthik Raman
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai, India; Initiative for Biological Systems Engineering, Robert Bosch Centre for Data Science and Artificial Intelligence (RBC-DSAI), Indian Institute of Technology Madras, Chennai, India
| | - Amit Singh
- Center for Infectious Disease Research, Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | | |
Collapse
|
46
|
Xu Z, Li Y, Wang D, Wu D, Wang J, Chen L, Deng Y, Zhang J, Wu Z, Wan X, Liu Q, Huang H, Hu P, Zeng J, Zhou D. Mutated SASH1 promotes Mitf expression in a heterozygous mutated SASH1 knock‑in mouse model. Int J Mol Med 2020; 46:1118-1134. [PMID: 32582980 PMCID: PMC7387086 DOI: 10.3892/ijmm.2020.4652] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 06/03/2020] [Indexed: 01/12/2023] Open
Abstract
The SAM and SH3 domain‑containing 1 (SASH1) genes have been identified as the causal genes of dyschromatosis universalis hereditaria (DUH); these genes cause the pathological phenotypes of DUH, and SASH1 variants have been shown to regulate the abnormal pigmentation phenotype in human skin in various genodermatoses. However, investigations into the mutated SASH1 gene have been limited to in vitro studies. In the present study, to recapitulate the molecular pathological phenotypes of individuals with DUH induced by SASH1 mutations, a heterozygous BALB/c mouse model, in which the human SASH1 c.1654 T>G (p. Tyr 551Asp, Y551D) mutation was knocked in was first generated. The in vivo functional experiments on Y551D SASH1 indicated that the increased expression of microphthalmia‑associated transcription factor (Mitf) was uniformly induced in the tails of heterozygous BALB/c mice, and an increased quantity of Mitf‑positive epithelial cells was also detected. An increased expression of Mitf‑ and Mitf‑positive cells was also demonstrated in the epithelial tissues of Y551D‑SASH1 affected individuals. In the present study, Mitf expression was also found to be increased by Y551D SASH1 in vitro. Taken together, these findings indicate that the upregulation of Mitf is the bona fide effector of the Y551D SASH1‑mediated melanogenesis signaling pathway in vivo. SASH1 may function as a scaffold molecule for the assembly of a SASH1‑Mitf molecular complex to regulate Mitf expression in the cell nucleus and thus to promote the hyperpigmented phenotype in the pathogenesis of DUH and other genodermatoses related to pigment abnormalities.
Collapse
Affiliation(s)
- Zexi Xu
- Clinical Research Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Yadong Li
- Clinical College, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Dahong Wang
- Clinical Research Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Daoqiu Wu
- School of Clinical Laboratory Sciences, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Jinyun Wang
- School of Biology and Engineering, Guizhou Medical University, Guiyang, Guizhou 550025, P.R. China
| | - Lian Chen
- Clinical College, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Yinqian Deng
- Clinical College, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Jing Zhang
- Clinical Research Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Zhixiong Wu
- Clinical College, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Xin Wan
- Clinical College, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Qianfan Liu
- Clinical College, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Hai Huang
- School of Clinical Laboratory Sciences, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Pingsheng Hu
- Clinical Research Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Jiawei Zeng
- Department of Clinical Laboratory, Mianyang Central Hospital, Mianyang, Sichuan 621000, P.R. China
| | - Ding'an Zhou
- Clinical Research Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| |
Collapse
|
47
|
Barthez M, Poplineau M, Elrefaey M, Caruso N, Graba Y, Saurin AJ. Human ZKSCAN3 and Drosophila M1BP are functionally homologous transcription factors in autophagy regulation. Sci Rep 2020; 10:9653. [PMID: 32541927 PMCID: PMC7296029 DOI: 10.1038/s41598-020-66377-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/20/2020] [Indexed: 01/02/2023] Open
Abstract
Autophagy is an essential cellular process that maintains homeostasis by recycling damaged organelles and nutrients during development and cellular stress. ZKSCAN3 is the sole identified master transcriptional repressor of autophagy in human cell lines. How ZKSCAN3 achieves autophagy repression at the mechanistic or organismal level however still remains to be elucidated. Furthermore, Zkscan3 knockout mice display no discernable autophagy-related phenotypes, suggesting that there may be substantial differences in the regulation of autophagy between normal tissues and tumor cell lines. Here, we demonstrate that vertebrate ZKSCAN3 and Drosophila M1BP are functionally homologous transcription factors in autophagy repression. Expression of ZKSCAN3 in Drosophila prevents premature autophagy onset due to loss of M1BP function and conversely, M1BP expression in human cells can prevent starvation-induced autophagy due to loss of nuclear ZKSCAN3 function. In Drosophila ZKSCAN3 binds genome-wide to sequences targeted by M1BP and transcriptionally regulates the majority of M1BP-controlled genes, demonstrating the evolutionary conservation of the transcriptional repression of autophagy. This study thus allows the potential for transitioning the mechanisms, gene targets and plethora metabolic processes controlled by M1BP onto ZKSCAN3 and opens up Drosophila as a tool in studying the function of ZKSCAN3 in autophagy and tumourigenesis.
Collapse
Affiliation(s)
- Marine Barthez
- Aix Marseille Université, CNRS, IBDM, UMR 7288, Marseille, 13288, Cedex 09, France
| | - Mathilde Poplineau
- Epigenetic Factors in Normal and Malignant Hematopoiesis, Aix Marseille Université, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Marwa Elrefaey
- Aix Marseille Université, CNRS, IBDM, UMR 7288, Marseille, 13288, Cedex 09, France
| | - Nathalie Caruso
- Aix Marseille Université, CNRS, IBDM, UMR 7288, Marseille, 13288, Cedex 09, France
| | - Yacine Graba
- Aix Marseille Université, CNRS, IBDM, UMR 7288, Marseille, 13288, Cedex 09, France
| | - Andrew J Saurin
- Aix Marseille Université, CNRS, IBDM, UMR 7288, Marseille, 13288, Cedex 09, France.
| |
Collapse
|
48
|
Wang S, Chen Y, Li X, Zhang W, Liu Z, Wu M, Pan Q, Liu H. Emerging role of transcription factor EB in mitochondrial quality control. Biomed Pharmacother 2020; 128:110272. [PMID: 32447212 DOI: 10.1016/j.biopha.2020.110272] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/09/2020] [Accepted: 05/14/2020] [Indexed: 01/05/2023] Open
Abstract
Mitochondria are energy producers that play a vital role in cell survival. Mitochondrial dysfunction is involved in many diseases, including metabolic syndrome, neurodegenerative disorders, cardiomyopathies, cancer, obesity, and diabetic kidney disease, and challenges still remain in terms of treatments for these diseases. Mitochondrial quality control (MQC), which is defined as the maintenance of the quantity, morphology, and function of mitochondria, plays a pivotal role in maintaining cellular metabolic homeostasis and cell survival. Recently, growing evidence suggests that the transcription factor EB (TFEB) plays a pivotal role in MQC. Here, we systemically investigate the potential role and mechanisms of TFEB in MQC, which include the activation of mitophagy, regulation of mitochondrial biogenesis, reactive oxygen species (ROS) clearance, and the balance of mitochondria fission-fusion cycle. Importantly, we further discuss the therapeutic measures and effects aimed at TFEB on mitochondrial dysfunction-related diseases. Taken together, targeting TFEB to regulate MQC may represent an appealing therapeutic strategy for mitochondrial dysfunction related-diseases.
Collapse
Affiliation(s)
- Shujun Wang
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Yanse Chen
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Xiaoyu Li
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Weihuang Zhang
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Zejian Liu
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Man Wu
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Qingjun Pan
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China.
| | - Huafeng Liu
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China.
| |
Collapse
|
49
|
Zhang W, Li X, Wang S, Chen Y, Liu H. Regulation of TFEB activity and its potential as a therapeutic target against kidney diseases. Cell Death Discov 2020; 6:32. [PMID: 32377395 PMCID: PMC7195473 DOI: 10.1038/s41420-020-0265-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/20/2020] [Accepted: 04/09/2020] [Indexed: 12/24/2022] Open
Abstract
The transcription factor EB (TFEB) regulates the expression of target genes bearing the Coordinated Lysosomal Expression and Regulation (CLEAR) motif, thereby modulating autophagy and lysosomal biogenesis. Furthermore, TFEB can bind to the promoter of autophagy-associated genes and induce the formation of autophagosomes, autophagosome-lysosome fusion, and lysosomal cargo degradation. An increasing number of studies have shown that TFEB stimulates the intracellular clearance of pathogenic factors by enhancing autophagy and lysosomal function in multiple kidney diseases, such as cystinosis, acute kidney injury, and diabetic nephropathy. Taken together, this highlights the importance of developing novel therapeutic strategies against kidney diseases based on TFEB regulation. In this review, we present an overview of the current data on TFEB and its implication in kidney disease.
Collapse
Affiliation(s)
- Weihuang Zhang
- Institute of Nephrology, and Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, 524001 Zhanjiang, Guangdong China
| | - Xiaoyu Li
- Institute of Nephrology, and Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, 524001 Zhanjiang, Guangdong China
| | - Shujun Wang
- Institute of Nephrology, and Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, 524001 Zhanjiang, Guangdong China
| | - Yanse Chen
- Institute of Nephrology, and Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, 524001 Zhanjiang, Guangdong China
| | - Huafeng Liu
- Institute of Nephrology, and Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, 524001 Zhanjiang, Guangdong China
| |
Collapse
|
50
|
Hyperactive Innate Immunity Causes Degeneration of Dopamine Neurons upon Altering Activity of Cdk5. Cell Rep 2020; 26:131-144.e4. [PMID: 30605670 PMCID: PMC6442473 DOI: 10.1016/j.celrep.2018.12.025] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 10/10/2018] [Accepted: 12/05/2018] [Indexed: 11/23/2022] Open
Abstract
Innate immunity is central to the pathophysiology of neurodegenerative disorders, but it remains unclear why immunity is altered in the disease state and whether changes in immunity are a cause or a consequence of neuronal dysfunction. Here, we identify a molecular pathway that links innate immunity to age-dependent loss of dopaminergic neurons in Drosophila. We find, first, that altering the expression of the activating subunit of the Cdk5 protein kinase (Cdk5α) causes severe disruption of autophagy. Second, this disruption of autophagy is both necessary and sufficient to cause the hyperactivation of innate immunity, particularly expression of anti-microbial peptides. Finally, it is the upregulation of immunity that induces the age-dependent death of dopaminergic neurons. Given the dysregulation of Cdk5 and innate immunity in human neurodegeneration and the conserved role of the kinase in the regulation of autophagy, this sequence is likely to have direct application to the chain of events in human neurodegenerative disease. How can one disentangle the many pathologies of neurodegeneration from one another and from normal aging? Shukla et al. show that a mutation in Drosophila kills neurons by impairing autophagy, which in turn stimulates neurotoxic levels of innate immunity, and this acts synergistically with a parallel pathway that accelerates aging.
Collapse
|