1
|
Zhao T, Liu T, Li T, Chen S, Wang L, Zhang M. The expression of glycolysis-related proteins in urine significantly increases after running. Front Physiol 2024; 15:1481741. [PMID: 39717827 PMCID: PMC11663847 DOI: 10.3389/fphys.2024.1481741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 11/15/2024] [Indexed: 12/25/2024] Open
Abstract
Objective Glucose metabolism is the main way in which cells obtain energy during exercise and plays an important role in exercise. The purpose of this study was to explore the changes in the expression of glucose metabolism-related proteins in urine after running, and finally applied to the monitoring of running training. Methods Urine samples were collected before and after running, and urine proteomics information was collected to explore the expression of proteins in the urine using LC-MS/MS in DDA mode and DIA mode. Receiver operating characteristic (ROC) curve was drawn to evaluate the value of target proteins in monitoring running training. Results A total of 140 proteins were identified using LC-MS/MS in DDA mode, of which 49 urine proteins showed increased expression after running. KEGG analysis revealed that glucose metabolism-related proteins are mainly concentrated in glycolysis. There were six glycolysis-related proteins, among which urine proteins PKM, TPI1, ENO1 and LDHB were significantly increased after running (P < 0.05). This changes in urine proteins PKM, TPI1, ENO1 and LDHB were further verified by the results of LC-MS/MS in DIA mode. The concentrations of the urine proteins TPI1, ENO1 and LDHB showed a significant linear relationship with PKM. ROC curve analysis showed that PKM, TPI1, ENO1 and LDHB proteins in urine had good monitoring values for running training. Conclusion The expression of glycolysis-related proteins PKM, TPI1, ENO1 and LDHB in urine was significantly increased after running, which may be applied to the monitoring of running training.
Collapse
Affiliation(s)
- Tian Zhao
- College of Information Engineering, Hangzhou Dianzi University, Hangzhou, China
- Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, China
| | - Tianci Liu
- Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, China
- Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Tao Li
- Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, China
- Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Shengcun Chen
- Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, China
- Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Lupeng Wang
- Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, China
- Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Man Zhang
- Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, China
- Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Institute of Regenerative Medicine and Laboratory Technology Innovation, Qingdao University, Qingdao, China
| |
Collapse
|
2
|
Jia H, Kang L, Huang B, Lu S, Ding Z, Chen Z, Wang C, Song J, Zou Y, Sun Y. o 8G-miR-6513-5p/BCL2L13 Axis Regulates Mitophagy during Oxidative Stress in the Human Saphenous Vein Endothelial Cells. Adv Biol (Weinh) 2024; 8:e2400218. [PMID: 39307929 DOI: 10.1002/adbi.202400218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/15/2024] [Indexed: 12/14/2024]
Abstract
Venous graft decay (VGD) occurs in coronary artery bypass grafting (CABG), and ischemia-reperfusion oxidative stress injury during the operation is involved in VGD. To explore the cellular phenotypic changes during this process, a stable oxidative stress model of human saphenous vein endothelial cells (HSVECs) is constructed. Through proteomics and cell experiments, it is found that the expression of BCL2L13 is upregulated during oxidative stress of HSVECs, and BCL2L13 regulated mitophagy through receptor-mediated interaction with LC3 and plays a role in cell protection. During oxidative stress, intracellular o8G epigenetic modification occurs, and the o8G modification of miR-6513-5p causes this molecule to lose its targeted regulation of BCL2L13 and participates in the upregulation of BCL2L13. There is a regulatory pathway of o8G modification-BCL2L13-LC3-mitophagy when oxidative stress occurs in HSVECs.
Collapse
Affiliation(s)
- Hao Jia
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200030, China
- Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100032, China
| | - Le Kang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200030, China
| | - Ben Huang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200030, China
| | - Shuyang Lu
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200030, China
| | - Zhiwen Ding
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institute of Biomedical Sciences, Fudan University, Shanghai, 200030, China
| | - Zhenhang Chen
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200030, China
| | - Chunsheng Wang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200030, China
| | - Jiangping Song
- Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100032, China
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100032, China
- National Centre for Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100032, China
| | - Yunzeng Zou
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institute of Biomedical Sciences, Fudan University, Shanghai, 200030, China
| | - Yongxin Sun
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200030, China
| |
Collapse
|
3
|
Shi J, Liu M, Zhu H, Jiang C. SIRT3 mitigates high glucose-induced damage in retinal microvascular endothelial cells via OPA1-mediated mitochondrial dynamics. Exp Cell Res 2024; 444:114320. [PMID: 39491778 DOI: 10.1016/j.yexcr.2024.114320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/29/2024] [Accepted: 11/02/2024] [Indexed: 11/05/2024]
Abstract
Oxidative stress in endothelial cells is pivotal in diabetic retinopathy (DR), with mitochondrial homeostasis being crucial to mitigate this stress. This study explored the roles of mitochondrial sirtuins (SIRTs) in high glucose (HG)-induced oxidative stress, related endothelial impairment, and mitochondrial homeostasis damage in rat retinal microvascular endothelial cells (RMECs). RMECs were cultured under HG or equivalent osmotic conditions. Cell viability was assessed using the Cell Counting Kit-8 assay, whereas cell death and survival were determined via calcein-AM/propidium iodide double staining. Reactive oxygen species (ROS) levels were measured using 2',7'-dichlorofluorescein fluorescence. Expression of mitochondrial SIRTs3-5 and key mitochondrial homeostasis molecules was quantified by the quantitative real-time polymerase chain reaction and confirmed by western blotting. Mitochondrial morphology was evaluated using electron microscopy and the MitoTracker fluorescent probe. A SIRT3-overexpressing RMEC line was constructed to assess the role of SIRT3 in oxidative stress and mitochondrial dynamics. After 48 h of HG exposure, cell viability was significantly reduced, with a concomitant increase in cell death and ROS levels, alongside a marked decrease in SIRT3 expression and molecules associated with mitochondrial dynamics. SIRT3 overexpression reversed these effects, particularly increasing the mitochondrial fusion-related molecule, optic atrophy 1 (OPA1). However, the OPA1 inhibitor, MYLS22, blocked the protective effect of SIRT3, leading to more dead cells, a higher ROS level, and intensified mitochondrial fragmentation. These results suggest that SIRT3 is involved in HG-induced imbalanced mitochondrial dynamics of endothelial cells in DR, potentially through the OPA1 pathway.
Collapse
Affiliation(s)
- Jiemei Shi
- Department of Ophthalmology and Vision Science, Eye and ENT Hospital, Fudan University, Shanghai, China; Key Laboratory of Myopia of State Health Ministry, and Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai, China
| | - Min Liu
- Department of Ophthalmology and Vision Science, Eye and ENT Hospital, Fudan University, Shanghai, China; Key Laboratory of Myopia of State Health Ministry, and Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai, China
| | - Haohao Zhu
- Department of Ophthalmology, People's Hospital of Shanghai No. 5, Shanghai, 200240, China.
| | - Chunhui Jiang
- Department of Ophthalmology and Vision Science, Eye and ENT Hospital, Fudan University, Shanghai, China; Key Laboratory of Myopia of State Health Ministry, and Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai, China.
| |
Collapse
|
4
|
Niu N, Zhao R, Tian M, Zong W, Hou X, Liu X, Wang L, Wang L, Zhang L. Genomic Variants Associated with Haematological Parameters and T Lymphocyte Subpopulations in a Large White and Min Pig Intercross Population. Animals (Basel) 2024; 14:3140. [PMID: 39518863 PMCID: PMC11545393 DOI: 10.3390/ani14213140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/07/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
The breeding of disease-resistant pigs has consistently been a topic of significant interest and concern within the pig farming industry. The study of pig blood indicators has the potential to confer economic benefits upon the pig farming industry, whilst simultaneously providing valuable insights that can inform the study of human diseases. In this study, an F2 resource population of 489 individuals was generated through the intercrossing of Large White boars and Min pig sows. A total of 17 haematological parameters and T lymphocyte subpopulations were measured, including white blood cell count (WBC), lymphocyte count (LYM), lymphocyte count percentage (LYM%), monocyte count (MID), monocyte count percentage (MID%), neutrophilic granulocyte count (GRN), percentage of neutrophils (GRN%), mean platelet volume (MPV), platelet distribution width (PDW), platelet count (PLT), CD4+/CD8+, CD4+CD8+CD3+, CD4+CD8-CD3+, CD4-CD8+CD3+, CD4-CD8-CD3+, and CD3+. The Illumina PorcineSNP60 Genotyping BeadChip was obtained for all of the F2 animals. Subsequently, a genome-wide association study (GWAS) was conducted using the TASSEL 5.0 software to identify associated variants and candidate genes for the 17 traits. Significant association signals were identified for PCT and PLT on SSC7, with 1 and 11 significant SNP loci, respectively. A single nucleotide polymorphism (SNP) on SSC12 was identified as a significant predictor of the white blood cell (WBC) trait. Significant association signals were detected for the T lymphocyte subpopulations, namely CD4+/CD8+, CD4+CD8+CD3+, CD4+CD8-CD3+, and CD4-CD8+CD3+, with the majority of these signals observed on SSC7. The genes CLIC5, TRIM15, and SLC17A4 were identified as potential candidates for influencing CD4+/CD8+ and CD4-CD8+CD3+. A missense variant, c.2707 G>A, in the SLC17A4 gene has been demonstrated to be significantly associated with the CD4+/CD8+ and CD4-CD8+CD3+ traits. Three missense variants (c.425 A>C, c.500 C>T, and c.733 A>G) have been identified in the TRIM15 gene as being linked to the CD4+/CD8+ trait. Nevertheless, only c.425 A>C has been demonstrated to be significantly associated with CD4-CD8+CD3+. In the CLIC5 gene, one missense variant (c.957 T>C) has been identified as being associated with the CD4+/CD8+ and CD4-CD8+CD3+ traits. Additionally, significant association signals were observed for CD4+CD8+CD3+ and CD4+CD8-CD3+ on SSC2 and 5, respectively. Subsequently, a gene ontology (GO) enrichment analysis was conducted on all genes within the quantitative trait loci (QTL) intervals of platelet count, CD4+/CD8+, and CD4-CD8+CD3+. The MHC class II protein complex binding pathway was identified as the most significant pathway among the three immune traits. These results provide guidance for further research in the field of breeding disease-resistant pigs.
Collapse
Affiliation(s)
- Naiqi Niu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (N.N.); (R.Z.); (W.Z.); (X.H.); (X.L.); (L.W.); (L.W.)
| | - Runze Zhao
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (N.N.); (R.Z.); (W.Z.); (X.H.); (X.L.); (L.W.); (L.W.)
| | - Ming Tian
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China;
| | - Wencheng Zong
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (N.N.); (R.Z.); (W.Z.); (X.H.); (X.L.); (L.W.); (L.W.)
| | - Xinhua Hou
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (N.N.); (R.Z.); (W.Z.); (X.H.); (X.L.); (L.W.); (L.W.)
| | - Xin Liu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (N.N.); (R.Z.); (W.Z.); (X.H.); (X.L.); (L.W.); (L.W.)
| | - Ligang Wang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (N.N.); (R.Z.); (W.Z.); (X.H.); (X.L.); (L.W.); (L.W.)
| | - Lixian Wang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (N.N.); (R.Z.); (W.Z.); (X.H.); (X.L.); (L.W.); (L.W.)
| | - Longchao Zhang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (N.N.); (R.Z.); (W.Z.); (X.H.); (X.L.); (L.W.); (L.W.)
| |
Collapse
|
5
|
Li X, Huang Y, Liu X, Zhang L, Wang X, Zhao F, Zou L, Wu K, Chen W, Qin Y, Zeng S, Li B, He Y, Song Y, Li Z, Fan J, Zhao M, Yi L, Ding H, Fan S, Chen J. Classical swine fever virus inhibits serine metabolism-mediated antiviral immunity by deacetylating modified PHGDH. mBio 2024; 15:e0209724. [PMID: 39207107 PMCID: PMC11481501 DOI: 10.1128/mbio.02097-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Classical swine fever virus (CSFV), an obligate intracellular pathogen, hijacks cellular metabolism to evade immune surveillance and facilitate its replication. The precise mechanisms by which CSFV modulates immune metabolism remain largely unknown. Our study reveals that CSFV infection disrupts serine metabolism, which plays a crucial role in antiviral immunity. Notably, we discovered that CSFV infection leads to the deacetylation of PHGDH, a key enzyme in serine metabolism, resulting in autophagic degradation. This deacetylation impairs PHGDH's enzymatic activity, reduces serine biosynthesis, weakens innate immunity, and promotes viral proliferation. Molecularly, CSFV infection induces the association of HDAC3 with PHGDH, leading to deacetylation at the K364 site. This modification attracts the E3 ubiquitin ligase RNF125, which facilitates the addition of K63-linked ubiquitin chains to PHGDH-K364R. Subsequently, PHGDH is targeted for lysosomal degradation by p62 and NDP52. Furthermore, the deacetylation of PHGDH disrupts its interaction with the NAD+ substrate, destabilizing the PHGDH-NAD complex, impeding the active site, and thereby inhibiting de novo serine synthesis. Additionally, our research indicates that deacetylated PHGDH suppresses the mitochondria-MAVS-IRF3 pathway through its regulatory effect on serine metabolism, leading to decreased IFN-β production and enhanced viral replication. Overall, our findings elucidate the complex interplay between CSFV and serine metabolism, revealing a novel aspect of viral immune evasion through the lens of immune metabolism. IMPORTANCE Classical swine fever (CSF) seriously restricts the healthy development of China's aquaculture industry, and the unclear pathogenic mechanism and pathogenesis of classical swine fever virus (CSFV) are the main obstacle to CSF prevention, control, and purification. Therefore, it is of great significance to explore the molecular mechanism of CSFV and host interplay, to search for the key signaling pathways and target molecules in the host that regulate the replication of CSFV infection, and to elucidate the mechanism of action of host immune dysfunction and immune escape due to CSFV infection for the development of novel CSFV vaccines and drugs. This study reveals the mechanism of serine metabolizing enzyme post-translational modifications and antiviral signaling proteins in the replication of CSFV and enriches the knowledge of CSFV infection and immune metabolism.
Collapse
Affiliation(s)
- Xiaowen Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yaoyao Huang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xueyi Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Lihong Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xinyan Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Feifan Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Linke Zou
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Keke Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Wenxian Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yuwei Qin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Sen Zeng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Bingke Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yintao He
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yiwan Song
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zhaoyao Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jindai Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Mingqiu Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Lin Yi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Hongxing Ding
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Shuangqi Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jinding Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| |
Collapse
|
6
|
Monaco V, Iacobucci I, Canè L, Cipollone I, Ferrucci V, de Antonellis P, Quaranta M, Pascarella S, Zollo M, Monti M. SARS-CoV-2 uses Spike glycoprotein to control the host's anaerobic metabolism by inhibiting LDHB. Int J Biol Macromol 2024; 278:134638. [PMID: 39147351 DOI: 10.1016/j.ijbiomac.2024.134638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/29/2024] [Accepted: 08/08/2024] [Indexed: 08/17/2024]
Abstract
The SARS-CoV-2 pandemic, responsible for approximately 7 million deaths worldwide, highlights the urgent need to understand the molecular mechanisms of the virus in order to prevent future outbreaks. The Spike glycoprotein of SARS-CoV-2, which is critical for viral entry through its interaction with ACE2 and other host cell receptors, has been a focus of this study. The present research goes beyond receptor recognition to explore Spike's influence on cellular metabolism. AP-MS interactome analysis revealed an interaction between the Spike S1 domain and lactate dehydrogenase B (LDHB), which was further confirmed by co-immunoprecipitation and immunofluorescence, indicating colocalisation in cells expressing the S1 domain. The study showed that Spike inhibits the catalytic activity of LDHB, leading to increased lactate levels in HEK-293T cells overexpressing the S1 subunit. In the hypothesised mechanism, Spike deprives LDHB of NAD+, facilitating a metabolic switch from aerobic to anaerobic energy production during infection. The Spike-NAD+ interacting region was characterised and mainly involves the W436 within the RDB domain. This novel hypothesis suggests that the Spike protein may play a broader role in altering host cell metabolism, thereby contributing to the pathophysiology of viral infection.
Collapse
Affiliation(s)
- Vittoria Monaco
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; CEINGE Biotecnologie Avanzate "Franco Salvatore" S.c.a r.l., 80131 Naples, Italy
| | - Ilaria Iacobucci
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; CEINGE Biotecnologie Avanzate "Franco Salvatore" S.c.a r.l., 80131 Naples, Italy
| | - Luisa Canè
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; Department of Translational Medical Sciences, University of Naples "Federico II", 80131 Naples, Italy
| | - Irene Cipollone
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; CEINGE Biotecnologie Avanzate "Franco Salvatore" S.c.a r.l., 80131 Naples, Italy
| | - Veronica Ferrucci
- CEINGE Biotecnologie Avanzate "Franco Salvatore" S.c.a r.l., 80131 Naples, Italy; Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), "Federico II" University of Naples, Naples 80131, Italy
| | - Pasqualino de Antonellis
- CEINGE Biotecnologie Avanzate "Franco Salvatore" S.c.a r.l., 80131 Naples, Italy; Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), "Federico II" University of Naples, Naples 80131, Italy
| | - Miriana Quaranta
- Sapienza Università di Roma, Department of Biochemical Sciences "A. Rossi Fanelli", Rome 00185, Italy
| | - Stefano Pascarella
- Sapienza Università di Roma, Department of Biochemical Sciences "A. Rossi Fanelli", Rome 00185, Italy
| | - Massimo Zollo
- CEINGE Biotecnologie Avanzate "Franco Salvatore" S.c.a r.l., 80131 Naples, Italy; Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), "Federico II" University of Naples, Naples 80131, Italy
| | - Maria Monti
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; CEINGE Biotecnologie Avanzate "Franco Salvatore" S.c.a r.l., 80131 Naples, Italy.
| |
Collapse
|
7
|
Fei S, Xia J, Mehmood N, Wang Y, Feng M, Sun J. Autophagy promotes replication of Bombyx mori Nucleopolyhedrovirus in insect cells. Int J Biol Macromol 2024; 277:134325. [PMID: 39089561 DOI: 10.1016/j.ijbiomac.2024.134325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/21/2024] [Accepted: 07/25/2024] [Indexed: 08/04/2024]
Abstract
BmNPV is a pathogen that infects silkworms exclusively. Although the interaction between BmNPV and the silkworm has been widely noticed and studied, its specific mechanism has still not been elucidated. In this study, we investigated whether BmNPV infection induces the onset of host cell autophagy to enhance viral replication. We observed a significant increase in double- or single-membrane vesicles and an accumulation of enhanced green fluorescent protein eGFP-ATG8 spots in virus-infected cells 72 h after BmNPV infection, accompanied by a conversion of ATG8 to ATG8-PE. In addition, we observed changes in the mitochondrial morphology of BmN cells after BmNPV infection by transmission electron microscopy. By detecting the mitochondrial membrane potential, we found that BmNPV infection resulted in the decrease of mitochondrial membrane potential, and that eGFP-ATG8 was able to co-localise with mitochondria after virus infection of the cells. Moreover, the use of drugs to regulate the occurrence of autophagy affects the replication of cellular BmNPV. Our data demonstrates that BmNPV infection induces host cell autophagy and leads to cellular mitochondrial damage, which in turn may lead to mitochondrial autophagy, and that BmNPV-induced host autophagy promotes its replication in cells. These findings will provide clues for further understanding of host-virus interactions.
Collapse
Affiliation(s)
- Shigang Fei
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Junming Xia
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Nasir Mehmood
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yeyuan Wang
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China.
| | - Min Feng
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China.
| | - Jingchen Sun
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
8
|
Sun Z, Wang Y, Jin X, Li S, Qiu HJ. Crosstalk between Dysfunctional Mitochondria and Proinflammatory Responses during Viral Infections. Int J Mol Sci 2024; 25:9206. [PMID: 39273156 PMCID: PMC11395300 DOI: 10.3390/ijms25179206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/17/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
Mitochondria play pivotal roles in sustaining various biological functions including energy metabolism, cellular signaling transduction, and innate immune responses. Viruses exploit cellular metabolic synthesis to facilitate viral replication, potentially disrupting mitochondrial functions and subsequently eliciting a cascade of proinflammatory responses in host cells. Additionally, the disruption of mitochondrial membranes is involved in immune regulation. During viral infections, mitochondria orchestrate innate immune responses through the generation of reactive oxygen species (ROS) and the release of mitochondrial DNA, which serves as an effective defense mechanism against virus invasion. The targeting of mitochondrial damage may represent a novel approach to antiviral intervention. This review summarizes the regulatory mechanism underlying proinflammatory response induced by mitochondrial damage during viral infections, providing new insights for antiviral strategies.
Collapse
Affiliation(s)
- Zitao Sun
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
- Agricultural College, Yanbian University, Yanji 133002, China
| | - Yanjin Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Xin Jin
- Agricultural College, Yanbian University, Yanji 133002, China
| | - Su Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Hua-Ji Qiu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| |
Collapse
|
9
|
Song X, Wang Y, Zou W, Wang Z, Cao W, Liang M, Li F, Zeng Q, Ren Z, Wang Y, Zheng K. Inhibition of mitophagy via the EIF2S1-ATF4-PRKN pathway contributes to viral encephalitis. J Adv Res 2024:S2090-1232(24)00326-6. [PMID: 39103048 DOI: 10.1016/j.jare.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/07/2024] Open
Abstract
INTRODUCTION Mitophagy, a selective form of autophagy responsible for maintaining mitochondrial homeostasis, regulates the antiviral immune response and acts as viral replication platforms to facilitate infection with various viruses. However, its precise role in herpes simplex virus 1 (HSV-1) infection and herpes simplex encephalitis (HSE) remains largely unknown. OBJECTIVES We aimed to investigate the regulation of mitophagy by HSV-1 neurotropic infection and its role in viral encephalitis, and to identify small compounds that regulate mitophagy to affect HSV-1 infection. METHODS The antiviral effects of compounds were investigated by Western blot, RT-PCR and plaque assay. The changes of Parkin (PRKN)-mediated mitophagy and Nuclear Factor kappa B (NFKB)-mediated neuroinflammation were examined by TEM, RT-qPCR, Western blot and ELISA. The therapeutic effect of taurine or PRKN-overexpression was confirmed in the HSE mouse model by evaluating survival rate, eye damage, neurodegenerative symptoms, immunohistochemistry analysis and histopathology. RESULTS HSV-1 infection caused the accumulation of damaged mitochondria in neuronal cells and in the brain tissue of HSE mice. Early HSV-1 infection led to mitophagy activation, followed by inhibition in the later viral infection. The HSV-1 proteins ICP34.5 or US11 deregulated the EIF2S1-ATF4 axis to suppress PRKN/Parkin mRNA expression, thereby impeding PRKN-dependent mitophagy. Consequently, inhibition of mitophagy by specific inhibitor midiv-1 promoted HSV-1 infection, whereas mitophagy activation by PRKN overexpression or agonists (CCCP and rotenone) attenuated HSV-1 infection and reduced the NF-κB-mediated neuroinflammation. Moreover, PRKN-overexpressing mice showed enhanced resistance to HSV-1 infection and ameliorated HSE pathogenesis. Furthermore, taurine, a differentially regulated gut microbial metabolite upon HSV-1 infection, acted as a mitophagy activator that transcriptionally promotes PRKN expression to stimulate mitophagy and to limit HSV-1 infection both in vitro and in vivo. CONCLUSION These results reveal the protective function of mitophagy in HSE pathogenesis and highlight mitophagy activation as a potential antiviral therapeutic strategy for HSV-1-related diseases.
Collapse
Affiliation(s)
- Xiaowei Song
- Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Key Laboratory of Innovative Technology Research on Natural Products and Cosmetics Raw Materials, Jinan University, Guangzhou 510632, China; Center for Mitochondrial Genetics and Health, Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Guangzhou 511400, China
| | - Yiliang Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510440, China
| | - Weixiangmin Zou
- Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Key Laboratory of Innovative Technology Research on Natural Products and Cosmetics Raw Materials, Jinan University, Guangzhou 510632, China
| | - Zexu Wang
- Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Key Laboratory of Innovative Technology Research on Natural Products and Cosmetics Raw Materials, Jinan University, Guangzhou 510632, China
| | - Wenyan Cao
- Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Key Laboratory of Innovative Technology Research on Natural Products and Cosmetics Raw Materials, Jinan University, Guangzhou 510632, China
| | - Minting Liang
- Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Key Laboratory of Innovative Technology Research on Natural Products and Cosmetics Raw Materials, Jinan University, Guangzhou 510632, China
| | - Feng Li
- Infectious Diseases Institute, Guangzhou Eighth People's Hospital, Guangzhou 510440, China
| | - Qiongzhen Zeng
- Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Key Laboratory of Innovative Technology Research on Natural Products and Cosmetics Raw Materials, Jinan University, Guangzhou 510632, China
| | - Zhe Ren
- Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Key Laboratory of Innovative Technology Research on Natural Products and Cosmetics Raw Materials, Jinan University, Guangzhou 510632, China
| | - Yifei Wang
- Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Key Laboratory of Innovative Technology Research on Natural Products and Cosmetics Raw Materials, Jinan University, Guangzhou 510632, China.
| | - Kai Zheng
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China.
| |
Collapse
|
10
|
Zhao F, Huang Y, Ji J, Liu X, Li X, Zou L, Wu K, Liu XD, Zeng S, Wang X, Hu W, Song Y, Lu Z, Zhou B, Li P, Wang W, Zhao M, Chen J, Yi L, Fan S. IDO1 promotes CSFV replication by mediating tryptophan metabolism to inhibit NF-κB signaling. J Virol 2024; 98:e0045824. [PMID: 38814067 PMCID: PMC11265401 DOI: 10.1128/jvi.00458-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 03/29/2024] [Indexed: 05/31/2024] Open
Abstract
Tryptophan metabolism plays a crucial role in facilitating various cellular processes essential for maintaining normal cellular function. Indoleamine 2,3-dioxygenase 1 (IDO1) catalyzes the conversion of tryptophan (Trp) into kynurenine (Kyn), thereby initiating the degradation of Trp. The resulting Kyn metabolites have been implicated in the modulation of immune responses. Currently, the role of IDO1-mediated tryptophan metabolism in the process of viral infection remains relatively unknown. In this study, we discovered that classical swine fever virus (CSFV) infection of PK-15 cells can induce the expression of IDO1, thereby promoting tryptophan metabolism. IDO1 can negatively regulate the NF-κB signaling by mediating tryptophan metabolism, thereby facilitating CSFV replication. We found that silencing the IDO1 gene enhances the expression of IFN-α, IFN-β, and IL-6 by activating the NF-κB signaling pathway. Furthermore, our observations indicate that both silencing the IDO1 gene and administering exogenous tryptophan can inhibit CSFV replication by counteracting the cellular autophagy induced by Rapamycin. This study reveals a novel mechanism of IDO1-mediated tryptophan metabolism in CSFV infection, providing new insights and a theoretical basis for the treatment and control of CSFV.IMPORTANCEIt is well known that due to the widespread use of vaccines, the prevalence of classical swine fever (CSF) is shifting towards atypical and invisible infections. CSF can disrupt host metabolism, leading to persistent immune suppression in the host and causing significant harm when co-infected with other diseases. Changes in the host's metabolic profiles, such as increased catabolic metabolism of amino acids and the production of immunoregulatory metabolites and their derivatives, can also influence virus replication. Mammals utilize various pathways to modulate immune responses through amino acid utilization, including increased catabolic metabolism of amino acids and the production of immunoregulatory metabolites and their derivatives, thereby limiting viral replication. Therefore, this study proposes that targeting the modulation of tryptophan metabolism may represent an effective approach to control the progression of CSF.
Collapse
Affiliation(s)
- Feifan Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Yaoyao Huang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Junzhi Ji
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Xueyi Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Xiaowen Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Linke Zou
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Keke Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Xiao di Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Sen Zeng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Xinyan Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Wenshuo Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Yiwan Song
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Zhimin Lu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Bolun Zhou
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Peng Li
- Wen's Foodstuffs Group Co., Ltd., Xinxing, China, Yunfu, China
| | - Weijun Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Mingqiu Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Jinding Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Lin Yi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Shuangqi Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| |
Collapse
|
11
|
Zhang L, Tang R, Liang D, Wang W, Min K, Luo T, Li X. Uncovering the Interaction between TRAF1 and MAVS in the RIG-I Pathway to Enhance the Upregulation of IRF1/ISG15 during Classical Swine Fever Virus Infection. Cells 2024; 13:1165. [PMID: 38995016 PMCID: PMC11240745 DOI: 10.3390/cells13131165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/28/2024] [Accepted: 07/06/2024] [Indexed: 07/13/2024] Open
Abstract
Classical swine fever (CSF) is caused by the classical swine fever virus (CSFV), which poses a threat to swine production. The activation of host innate immunity through linker proteins such as tumor necrosis factor receptor (TNF-R)-associated factor (TRAF) is crucial for the induction of the NF-κB pathway. Recent research has revealed the involvement of mitochondrial antiviral-signaling protein (MAVS) in the interaction with TRAF2, 3, 5, and 6 to activate both the NF-κB and IRF3 pathways. This study revealed that CSFV infection led to the upregulation of TRAF1 mRNA and protein levels; moreover, TRAF1 overexpression inhibited CSFV replication, while TRAF1 knockdown promoted replication, highlighting its importance in the host response to CSFV infection. Additionally, the expression of RIG-I, MAVS, TRAF1, IRF1, and ISG15 were detected in PK-15 cells infected with CSFV, revealing that TRAF1 plays a role in regulating IRF1 and ISG15 within the RIG-I pathway. Furthermore, Co-IP, GST pull-down, and IFA analyses demonstrated that TRAF1 interacted with MAVS and co-localized in the cytoplasm during CSFV infection. Ultimately, TRAF1 acted as a novel member of the TRAF family, bound to MAVS as a linker molecule, and functioned as a mediator downstream of MAVS in the RIG-I/MAVS pathway against CSFV replication.
Collapse
Affiliation(s)
- Liyuan Zhang
- College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning 530004, China; (L.Z.); (R.T.); (D.L.); (W.W.); (K.M.)
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
| | - Rongze Tang
- College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning 530004, China; (L.Z.); (R.T.); (D.L.); (W.W.); (K.M.)
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
| | - Dongli Liang
- College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning 530004, China; (L.Z.); (R.T.); (D.L.); (W.W.); (K.M.)
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
| | - Wenfeng Wang
- College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning 530004, China; (L.Z.); (R.T.); (D.L.); (W.W.); (K.M.)
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
| | - Kaijun Min
- College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning 530004, China; (L.Z.); (R.T.); (D.L.); (W.W.); (K.M.)
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
| | - Tingrong Luo
- College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning 530004, China; (L.Z.); (R.T.); (D.L.); (W.W.); (K.M.)
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
- Guaxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China
| | - Xiaoning Li
- College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning 530004, China; (L.Z.); (R.T.); (D.L.); (W.W.); (K.M.)
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
- Guaxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China
| |
Collapse
|
12
|
Das PJ, Sonowal J, Sengar GS, Pegu SR, Deb R, Kumar S, Banik S, Rajkhowa S, Gupta VK. Characterization of an African swine fever virus outbreak in India and comparative analysis of immune genes in infected and surviving crossbreed vs. indigenous Doom pigs. Arch Virol 2024; 169:145. [PMID: 38864875 DOI: 10.1007/s00705-024-06062-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 04/25/2024] [Indexed: 06/13/2024]
Abstract
Since 2020, African swine fever (ASF) has affected all pig breeds in Northeast India except Doom pigs, a unique indigenous breed from Assam and the closest relatives of Indian wild pigs. ASF outbreaks result in significant economic losses for pig farmers in the region. Based on sequencing and phylogenetic analysis of the B646L (p72) gene, it has been determined that ASFV genotype II is responsible for outbreaks in this region. Recent studies have shown that MYD88, LDHB, and IFIT1, which are important genes of the immune system, are involved in the pathogenesis of ASFV. The differential expression patterns of these genes in surviving ASFV-infected and healthy Doom breed pigs were compared to healthy controls at different stages of infection. The ability of Doom pigs to withstand common pig diseases, along with their genetic resemblance to wild pigs, make them ideal candidates for studying tolerance to ASFV infection. In the present study, we investigated the natural resistance to ASF in Doom pigs from an endemic area in Northeast India. The results of this study provide important molecular insights into the regulation of ASFV tolerance genes.
Collapse
Affiliation(s)
- Pranab Jyoti Das
- ICAR-National Research Centre on Pig, Rani, Assam, 781131, India.
- Principal Scientist Animal Genetics and Breeding, ICAR-National Research Centre on Pig Rani, Guwahati, Assam, 781131, India.
| | - Joyshikh Sonowal
- ICAR-National Research Centre on Pig, Rani, Assam, 781131, India
- Assam Agricultural University, Jorhat, Assam, 785013, India
| | | | - Seema Rani Pegu
- ICAR-National Research Centre on Pig, Rani, Assam, 781131, India
| | - Rajib Deb
- ICAR-National Research Centre on Pig, Rani, Assam, 781131, India
| | - Satish Kumar
- ICAR-National Research Centre on Pig, Rani, Assam, 781131, India
| | - Santanu Banik
- ICAR-National Research Centre on Pig, Rani, Assam, 781131, India
| | - Swaraj Rajkhowa
- ICAR-National Research Centre on Pig, Rani, Assam, 781131, India
| | | |
Collapse
|
13
|
Liu X, Yan Q, Liu X, Wei W, Zou L, Zhao F, Zeng S, Yi L, Ding H, Zhao M, Chen J, Fan S. PKM2 induces mitophagy through the AMPK-mTOR pathway promoting CSFV proliferation. J Virol 2024; 98:e0175123. [PMID: 38319105 PMCID: PMC10949426 DOI: 10.1128/jvi.01751-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/14/2023] [Indexed: 02/07/2024] Open
Abstract
Viruses exploit the host cell's energy metabolism system to support their replication. Mitochondria, known as the powerhouse of the cell, play a critical role in regulating cell survival and virus replication. Our prior research indicated that the classical swine fever virus (CSFV) alters mitochondrial dynamics and triggers glycolytic metabolic reprogramming. However, the role and mechanism of PKM2, a key regulatory enzyme of glycolytic metabolism, in CSFV replication remain unclear. In this study, we discovered that CSFV enhances PKM2 expression and utilizes PKM2 to inhibit pyruvate production. Using an affinity purification coupled mass spectrometry system, we successfully identified PKM as a novel interaction partner of the CSFV non-structural protein NS4A. Furthermore, we validated the interaction between PKM2 and both CSFV NS4A and NS5A through co-immunoprecipitation and confocal analysis. PKM2 was found to promote the expression of both NS4A and NS5A. Moreover, we observed that PKM2 induces mitophagy by activating the AMPK-mTOR signaling pathway, thereby facilitating CSFV proliferation. In summary, our data reveal a novel mechanism whereby PKM2, a metabolic enzyme, promotes CSFV proliferation by inducing mitophagy. These findings offer a new avenue for developing antiviral strategies. IMPORTANCE Viruses rely on the host cell's material-energy metabolic system for replication, inducing host metabolic disorders and subsequent immunosuppression-a major contributor to persistent viral infections. Classical swine fever virus (CSFV) is no exception. Classical swine fever is a severe acute infectious disease caused by CSFV, resulting in significant economic losses to the global pig industry. While the role of the metabolic enzyme PKM2 (pyruvate dehydrogenase) in the glycolytic pathway of tumor cells has been extensively studied, its involvement in viral infection remains relatively unknown. Our data unveil a new mechanism by which the metabolic enzyme PKM2 mediates CSFV infection, offering novel avenues for the development of antiviral strategies.
Collapse
Affiliation(s)
- Xiaodi Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guang Dong, China
| | - Quanhui Yan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guang Dong, China
| | - Xueyi Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guang Dong, China
| | - Wenkang Wei
- State Key Laboratory of Swine and Poultry Breeding Industry, Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Linke Zou
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guang Dong, China
| | - Feifan Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guang Dong, China
| | - Sen Zeng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guang Dong, China
| | - Lin Yi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guang Dong, China
| | - Hongxing Ding
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guang Dong, China
| | - Mingqiu Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guang Dong, China
| | - Jinding Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guang Dong, China
| | - Shuangqi Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guang Dong, China
| |
Collapse
|
14
|
Malemnganba T, Rattan A, Prajapati VK. Decoding macrophage immunometabolism in human viral infection. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 140:493-523. [PMID: 38762278 DOI: 10.1016/bs.apcsb.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2024]
Abstract
Immune-metabolic interactions play a pivotal role in both host defense and susceptibility to various diseases. Immunometabolism, an interdisciplinary field, seeks to elucidate how metabolic processes impact the immune system. In the context of viral infections, macrophages are often exploited by viruses for their replication and propagation. These infections trigger significant metabolic reprogramming within macrophages and polarization of distinct M1 and M2 phenotypes. This metabolic reprogramming involves alterations in standard- pathways such as the Krebs cycle, glycolysis, lipid metabolism, the pentose phosphate pathway, and amino acid metabolism. Disruptions in the balance of key intermediates like spermidine, itaconate, and citrate within these pathways contribute to the severity of viral diseases. In this chapter, we describe the manipulation of metabolic pathways by viruses and how they crosstalk between signaling pathways to evade the immune system. This intricate interplay often involves the upregulation or downregulation of specific metabolites, making these molecules potential biomarkers for diseases like HIV, HCV, and SARS-CoV. Techniques such as Nuclear Magnetic Resonance (NMR) and Mass Spectrometry, are the evaluative ways to analyze these metabolites. Considering the importance of macrophages in the inflammatory response, addressing their metabolome holds great promise for the creating future therapeutic targets aimed at combating a wide spectrum of viral infections.
Collapse
Affiliation(s)
- Takhellambam Malemnganba
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, India
| | - Aditi Rattan
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, India.
| |
Collapse
|
15
|
Zou M, Wang D, Chen Y, Yang C, Xu S, Dai Y. Dajianzhong decoction ameliorated D-gal-induced cognitive aging by triggering mitophagy in vivo and in vitro. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117212. [PMID: 37783403 DOI: 10.1016/j.jep.2023.117212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/17/2023] [Accepted: 09/20/2023] [Indexed: 10/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dajianzhong decoction (DJZ) is a classical famous formula for treating yang-deficiency-syndrome in traditional Chinese medicine and recorded in Jin-Kui-Yao-Lue in Dynasty of Dong Han. Cognitive aging can present similar features of mitochondrial energy deficits to the clinical features of Yang deficiency. However, there is poor understanding of the effects of DJZ treatment on mitophagy in cognitive aging. AIM OF THE STUDY The aims of this work were to decipher the effectiveness and mechanism of DJZ against cognitive aging, focusing on mitophagy. MATERIALS AND METHODS YFP-Parkin HeLa cells, D-galactose (D-gal) -induced mice (500 mg/kg for 35 d, s. c.) and SH-SY5Y cells (80 mg/ml for 6 h) were established. Firstly, the formation of YFP-Parkin puncta (a well-known mitophagy marker) in YFP-Parkin HeLa cells was employed to discover the mitophagy induction of DJZ. Moreover, the genes and proteins related to PINK1/Parkin pathway and mitochondrial functions were evaluated after treatment with DJZ in vivo (3.5 g/kg or 1.75 g/kg, i. g, 35 d) and in vitro (0.2, 2 and 20 μg/ml, 12 h). Furthermore, the effectiveness of DJZ (3.5 g/kg or 1.75 g/kg, i. g) for alleviating cognitive aging and nerve damage was measured in D-gal mice. Finally, siPINK1 was applied to reverse validation of DJZ in vitro. RESULTS The formation of YFP-Parkin puncta in YFP-Parkin HeLa cells was markedly induced by DJZ in a dose-dependent manner. The immunofluorescence intensity of Parkin and the protein expression of Parkin in mitochondrial membrane in D-gal mice were significantly increased after treatment of DJZ. The inhibition of PINK1/Parkin pathway in D-gal-induced mice and SH-SY5Y cells was significantly activated by DJZ. Simultaneously, the impairment of mitochondrial functions induced by D-gal were markedly reversed by DJZ. In addition, DJZ significantly ameliorated the neuropathological injury and cognitive declines in D-gal mice. Finally, after PINK1 was knocked down by siPINK1 in vitro, the neuroprotective effects of DJZ and the Parkin enhancement effect of DJZ were markedly reversed. CONCLUSION Our findings firstly showed DJZ could relieve cognitive aging through facilitating PINK1/Parkin-mediated mitophagy to protect against mitochondrial functions, indicating DJZ may be regarded as a promising intervention in cognitive aging.
Collapse
Affiliation(s)
- Mi Zou
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China
| | - Dan Wang
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China
| | - Yuanyuan Chen
- Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Chuan Yang
- Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Shijun Xu
- Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Yuan Dai
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China.
| |
Collapse
|
16
|
Wu K, Li B, Zhang X, Fang Y, Zeng S, Hu W, Liu X, Liu X, Lu Z, Li X, Chen W, Qin Y, Zhou B, Zou L, Zhao F, Yi L, Zhao M, Fan S, Chen J. CSFV restricts necroptosis to sustain infection by inducing autophagy/mitophagy-targeted degradation of RIPK3. Microbiol Spectr 2024; 12:e0275823. [PMID: 38100396 PMCID: PMC10782971 DOI: 10.1128/spectrum.02758-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 11/10/2023] [Indexed: 12/17/2023] Open
Abstract
IMPORTANCE CSFV infection in pigs causes persistent high fever, hemorrhagic necrotizing multi-organ inflammation, and high mortality, which seriously threatens the global swine industry. Cell death is an essential immune response of the host against pathogen invasion, and lymphopenia is the most typical clinical feature in the acute phase of CSFV infection, which affects the initial host antiviral immunity. As an "old" virus, CSFV has evolved mechanisms to evade host immune response after a long genetic evolution. Here, we show that necroptosis is a limiting host factor for CSFV infection and that CSFV-induced autophagy can subvert this host defense mechanism to promote its sustained replication. Our findings reveal a complex link between necroptosis and autophagy in the process of cell death, provide evidence supporting the important role for CSFV in counteracting host cell necrosis, and enrich our knowledge of pathogens that may subvert and evade this host defense.
Collapse
Affiliation(s)
- Keke Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding industry, Guangzhou, China
| | - Bingke Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding industry, Guangzhou, China
| | - Xiaoai Zhang
- Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding industry, Guangzhou, China
| | - Yiqi Fang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, South China Agricultural University, Guangzhou, China
| | - Sen Zeng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, South China Agricultural University, Guangzhou, China
| | - Wenshuo Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, South China Agricultural University, Guangzhou, China
| | - Xiaodi Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, South China Agricultural University, Guangzhou, China
| | - Xueyi Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, South China Agricultural University, Guangzhou, China
| | - Zhimin Lu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, South China Agricultural University, Guangzhou, China
| | - Xiaowen Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, South China Agricultural University, Guangzhou, China
| | - Wenxian Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, South China Agricultural University, Guangzhou, China
| | - Yuwei Qin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, South China Agricultural University, Guangzhou, China
| | - Bolun Zhou
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, South China Agricultural University, Guangzhou, China
| | - Linke Zou
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, South China Agricultural University, Guangzhou, China
| | - Feifan Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, South China Agricultural University, Guangzhou, China
| | - Lin Yi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding industry, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, South China Agricultural University, Guangzhou, China
| | - Mingqiu Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding industry, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, South China Agricultural University, Guangzhou, China
| | - Shuangqi Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding industry, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, South China Agricultural University, Guangzhou, China
| | - Jinding Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding industry, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, South China Agricultural University, Guangzhou, China
| |
Collapse
|
17
|
Li X, Song Y, Wang X, Fu C, Zhao F, Zou L, Wu K, Chen W, Li Z, Fan J, Li Y, Li B, Zeng S, Liu X, Zhao M, Yi L, Chen J, Fan S. The regulation of cell homeostasis and antiviral innate immunity by autophagy during classical swine fever virus infection. Emerg Microbes Infect 2023; 12:2164217. [PMID: 36583373 PMCID: PMC9848339 DOI: 10.1080/22221751.2022.2164217] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
CSFV (classical swine fever virus) is currently endemic in developing countries in Asia and has recently re-emerged in Japan. Under the pressure of natural selection pressure, CSFV keeps evolving to maintain its ecological niche in nature. CSFV has evolved mechanisms that induce immune depression, but its pathogenic mechanism is still unclear. In this study, using transcriptomics and metabolomics methods, we found that CSFV infection alters innate host immunity by activating the interferon pathway, inhibiting host inflammation, apoptosis, and remodelling host metabolism in porcine alveolar macrophages. Moreover, we revealed that autophagy could alter innate immunity and metabolism induced by CSFV infection. Enhanced autophagy further inhibited CSFV-induced RIG-I-IRF3 signal transduction axis and JAK-STAT signalling pathway and blocked type I interferon production while reducing autophagy inhibition of the NF-κB signalling pathway and apoptosis in CSFV infection cells. Furthermore, the level of CSFV infection-induced glycolysis and the content of lactate and pyruvate, as well as 3-phosphoglyceraldehyde, a derivative of glycolysis converted to serine, was altered by autophagy. We also found that silencing HK2 (hexokinase 2), the rate-limiting enzyme of glycolytic metabolism, could induce autophagy but reduce the interferon signalling pathway, NF-κB signalling pathway, and inhibition of apoptosis induced by CSFV infection. In addition, inhibited cellular autophagy by silencing ATG5 or using 3-Methyladenine, could backfill the inhibitory effect of silencing HK2 on the cellular interferon signalling pathway, NF-κB signalling pathway, and apoptosis.
Collapse
Affiliation(s)
- Xiaowen Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, People’s Republic of China,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, People’s Republic of China,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Yiwan Song
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, People’s Republic of China,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, People’s Republic of China,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Xinyan Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, People’s Republic of China,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, People’s Republic of China,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Cheng Fu
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering
| | - Feifan Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, People’s Republic of China,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, People’s Republic of China,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Linke Zou
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, People’s Republic of China,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, People’s Republic of China,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Keke Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, People’s Republic of China,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, People’s Republic of China,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Wenxian Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, People’s Republic of China,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, People’s Republic of China,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Zhaoyao Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, People’s Republic of China,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, People’s Republic of China,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Jindai Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, People’s Republic of China,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, People’s Republic of China,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Yuwan Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, People’s Republic of China,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, People’s Republic of China,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Bingke Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, People’s Republic of China,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, People’s Republic of China,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Sen Zeng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, People’s Republic of China,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, People’s Republic of China,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Xiaodi Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, People’s Republic of China,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, People’s Republic of China,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Mingqiu Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, People’s Republic of China,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, People’s Republic of China,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Lin Yi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, People’s Republic of China,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, People’s Republic of China,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Jinding Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, People’s Republic of China,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, People’s Republic of China,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Shuangqi Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, People’s Republic of China,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, People’s Republic of China,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, South China Agricultural University, Guangzhou, People’s Republic of China, Shuangqi Fan College of Veterinary Medicine, South China Agricultural University, Guangzhou, People’s Republic of China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, People’s Republic of China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, South China Agricultural University, Guangzhou, 510630, People’s Republic of China
| |
Collapse
|
18
|
Wang Q, Jiang Y, Bao G, Yao W, Yang Q, Chen S, Wang G. Duck Tembusu virus induces incomplete autophagy via the ERK/mTOR and AMPK/mTOR signalling pathways to promote viral replication in neuronal cells. Vet Res 2023; 54:103. [PMID: 37936178 PMCID: PMC10631066 DOI: 10.1186/s13567-023-01235-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 09/13/2023] [Indexed: 11/09/2023] Open
Abstract
Duck Tembusu virus (DTMUV) is a neurotropic virus in the genus Flavivirus that causes massive economic losses to the poultry industry in China and neighbouring countries. Autophagy is pivotal in cellular responses to pathogens and in viral pathogenesis. However, little is known about the roles of autophagy in DTMUV replication and viral pathogenesis, especially in neuropathogenesis. In this study, mouse neuroblastoma cells (Neuro-2a) were used to establish a cell model of DTMUV infection. Our experiments indicated that DTMUV infection induced incomplete autophagy in Neuro-2a cells. Then, we used different autophagy regulators to alter the autophagy induced by DTMUV and found that incomplete autophagy promoted DTMUV replication. Furthermore, we showed that DTMUV infection activated the ERK and AMPK pathways, resulting in decreased phosphorylation of the autophagy repressor mTOR, subsequently leading to autophagic induction. In addition, we utilized ICR mice in an animal model of DTMUV infection to evaluate the autophagic responses in brain tissues and investigate the effects of autophagy on viral replication and tissue lesions. Our results confirmed that DTMUV induced incomplete autophagy in mouse brain tissues and that autophagy inducer treatment promoted DTMUV replication and aggravated DTMUV-induced lesions, whereas autophagy inhibitor treatment had the opposite effects. In summary, DTMUV infection induced incomplete autophagy through the ERK/mTOR and AMPK/mTOR signalling pathways to promote viral replication in mouse neuronal cells, and DTMUV-induced incomplete autophagy contributed to the neuropathogenesis of DTMUV.
Collapse
Affiliation(s)
- Qing Wang
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Yaqian Jiang
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Guangbin Bao
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Weiping Yao
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Qing Yang
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Shuyue Chen
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Guijun Wang
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
19
|
Chen LF, Cai JX, Zhang JJ, Tang YJ, Chen JY, Xiong S, Li YL, Zhang H, Liu Z, Li MM. Respiratory syncytial virus co-opts hypoxia-inducible factor-1α-mediated glycolysis to favor the production of infectious virus. mBio 2023; 14:e0211023. [PMID: 37796013 PMCID: PMC10653832 DOI: 10.1128/mbio.02110-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 08/22/2023] [Indexed: 10/06/2023] Open
Abstract
IMPORTANCE Respiratory syncytial virus (RSV) is the leading etiological agent of lower respiratory tract illness. However, efficacious vaccines or antiviral drugs for treating RSV infections are currently not available. Indeed, RSV depends on host cells to provide energy needed to produce progeny virions. Glycolysis is a series of oxidative reactions used to metabolize glucose and provide energy to host cells. Therefore, glycolysis may be helpful for RSV infection. In this study, we show that RSV increases glycolysis by inducing the stabilization, transcription, translation, and activation of hypoxia-inducible factor (HIF)-1α in infected cells, which is important for the production of progeny RSV virions. This study contributes to understanding the molecular mechanism by which HIF-1α-mediated glycolysis controls RSV infection and reveals an effective target for the development of highly efficient anti-RSV drugs.
Collapse
Affiliation(s)
- Li-Feng Chen
- Department of Dermatology, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Jun-Xing Cai
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, Guangdong, China
| | - Jing-Jing Zhang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, Guangdong, China
| | - Yu-Jun Tang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, Guangdong, China
| | - Jia-Yi Chen
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, Guangdong, China
| | - Si Xiong
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, Guangdong, China
| | - Yao-Lan Li
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, Guangdong, China
| | - Hong Zhang
- Department of Dermatology, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Zhong Liu
- Guangzhou Jinan Biomedicine Research and Development Center, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Man-Mei Li
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
20
|
Seeger AY, Zaidi F, Alhayek S, Jones RM, Zohair H, Holland RL, Kim IJ, Blanke SR. Host cell sensing and restoration of mitochondrial function and metabolism within Helicobacter pylori VacA intoxicated cells. mBio 2023; 14:e0211723. [PMID: 37815365 PMCID: PMC10653863 DOI: 10.1128/mbio.02117-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 08/23/2023] [Indexed: 10/11/2023] Open
Abstract
IMPORTANCE Persistent human gastric infection with Helicobacter pylori is the single most important risk factor for development of gastric malignancy, which is one of the leading causes of cancer-related deaths worldwide. An important virulence factor for Hp colonization and severity of gastric disease is the protein exotoxin VacA, which is secreted by the bacterium and modulates functional properties of gastric cells. VacA acts by damaging mitochondria, which impairs host cell metabolism through impairment of energy production. Here, we demonstrate that intoxicated cells have the capacity to detect VacA-mediated damage, and orchestrate the repair of mitochondrial function, thereby restoring cellular health and vitality. This study provides new insights into cellular recognition and responses to intracellular-acting toxin modulation of host cell function, which could be relevant for the growing list of pathogenic microbes and viruses identified that target mitochondria as part of their virulence strategies.
Collapse
Affiliation(s)
- Ami Y. Seeger
- Department of Microbiology, University of Illinois, Urbana, Illinois, USA
| | - Faisal Zaidi
- Department of Microbiology, University of Illinois, Urbana, Illinois, USA
| | - Sammy Alhayek
- Department of Microbiology, University of Illinois, Urbana, Illinois, USA
| | - Rachel M. Jones
- Department of Microbiology, University of Illinois, Urbana, Illinois, USA
| | - Huzaifa Zohair
- Department of Microbiology, University of Illinois, Urbana, Illinois, USA
| | - Robin L. Holland
- Department of Pathobiology, University of Illinois, Urbana, Illinois, USA
| | - Ik-Jung Kim
- Department of Microbiology, University of Illinois, Urbana, Illinois, USA
- Buck Institute for Research on Aging, Novato, California, USA
| | - Steven R. Blanke
- Department of Microbiology, University of Illinois, Urbana, Illinois, USA
- Department of Pathobiology, University of Illinois, Urbana, Illinois, USA
- Department of Biomedical and Translational Medicine, University of Illinois, Urbana, Illinois, USA
| |
Collapse
|
21
|
Liu X, Zou X, Zhou Y, Chen R, Peng Y, Qu M. LDHA and LDHB overexpression promoted the Warburg effect in malignantly transformed GES-1 cells induced by N-nitroso compounds. Food Chem Toxicol 2023; 180:114007. [PMID: 37648104 DOI: 10.1016/j.fct.2023.114007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/26/2023] [Accepted: 08/27/2023] [Indexed: 09/01/2023]
Abstract
N-nitroso compounds (NOCs) exposure is a major risk factor for the development of gastric cancer. However, the carcinogenic mechanisms by which NOCs induce gastric and other cancers, especially the NOCs-induced Warburg effect, have not been comprehensively studied. Lactate dehydrogenase (LDH), which has two subunits (LDHA and LDHB), plays an important role in the Warburg effect of tumor cells. Therefore, we hypothesized that LDHA and LDHB could promote Warburg effect in malignant transformed GES-1 cells induced by Nmethyl-N'-nitro-N-nitrosoguanidine (MNNG). GES-1 cells were exposed to 1 μmol/L MNNG and cultured for 40 passages. During the culturing process, cell proliferation, migration, and soft agar colony formation significantly increased after 30 passages. Following MNNG exposure, lactate, LDH, glucose uptake, and the expression levels of key enzymes in glycolysis were significantly increased. Knocking down LDHA or LDHB alone reduced lactate secretion, inhibited cell viability, and impaired migratory capacities. Knocking down LDHA and LDHB together fully suppressed lactate secretion and effectively suppressed the malignant phenotype of cells transformed by long-term MNNG exposure. Finally, we demonstrated that overexpression of LDHA and LDHB promotes the malignant transformation of GES-1 cells by enhancing the Warburg effect during long-term exposure to NOCs.
Collapse
Affiliation(s)
- Xing Liu
- School of Public Health, Yangzhou University, Yangzhou, 225009, China.
| | - Xihuan Zou
- School of Public Health, Yangzhou University, Yangzhou, 225009, China.
| | - Yueyue Zhou
- School of Public Health, Yangzhou University, Yangzhou, 225009, China.
| | - Ruobing Chen
- School of Public Health, Yangzhou University, Yangzhou, 225009, China.
| | - Yuting Peng
- School of Public Health, Yangzhou University, Yangzhou, 225009, China.
| | - Man Qu
- School of Public Health, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
22
|
Rühmkorf A, Harbauer AB. Role of Mitochondria-ER Contact Sites in Mitophagy. Biomolecules 2023; 13:1198. [PMID: 37627263 PMCID: PMC10452924 DOI: 10.3390/biom13081198] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/27/2023] Open
Abstract
Mitochondria are often referred to as the "powerhouse" of the cell. However, this organelle has many more functions than simply satisfying the cells' metabolic needs. Mitochondria are involved in calcium homeostasis and lipid metabolism, and they also regulate apoptotic processes. Many of these functions require contact with the ER, which is mediated by several tether proteins located on the respective organellar surfaces, enabling the formation of mitochondria-ER contact sites (MERCS). Upon damage, mitochondria produce reactive oxygen species (ROS) that can harm the surrounding cell. To circumvent toxicity and to maintain a functional pool of healthy organelles, damaged and excess mitochondria can be targeted for degradation via mitophagy, a form of selective autophagy. Defects in mitochondria-ER tethers and the accumulation of damaged mitochondria are found in several neurodegenerative diseases, including Parkinson's disease and amyotrophic lateral sclerosis, which argues that the interplay between the two organelles is vital for neuronal health. This review provides an overview of the different mechanisms of mitochondrial quality control that are implicated with the different mitochondria-ER tether proteins, and also provides a novel perspective on how MERCS are involved in mediating mitophagy upon mitochondrial damage.
Collapse
Affiliation(s)
- Alina Rühmkorf
- TUM Medical Graduate Center, Technical University of Munich, 81675 Munich, Germany
- Max Planck Institute for Biological Intelligence, 82152 Planegg-Martinsried, Germany
| | - Angelika Bettina Harbauer
- Max Planck Institute for Biological Intelligence, 82152 Planegg-Martinsried, Germany
- Institute of Neuronal Cell Biology, Technical University of Munich, 80802 Munich, Germany
- Munich Cluster for Systems Neurology, 81377 Munich, Germany
| |
Collapse
|
23
|
Li J, Wang Y, Deng H, Li S, Qiu HJ. Cellular metabolism hijacked by viruses for immunoevasion: potential antiviral targets. Front Immunol 2023; 14:1228811. [PMID: 37559723 PMCID: PMC10409484 DOI: 10.3389/fimmu.2023.1228811] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/07/2023] [Indexed: 08/11/2023] Open
Abstract
Cellular metabolism plays a central role in the regulation of both innate and adaptive immunity. Immune cells utilize metabolic pathways to modulate the cellular differentiation or death. The intricate interplay between metabolism and immune response is critical for maintaining homeostasis and effective antiviral activities. In recent years, immunometabolism induced by viral infections has been extensively investigated, and accumulating evidence has indicated that cellular metabolism can be hijacked to facilitate viral replication. Generally, virus-induced changes in cellular metabolism lead to the reprogramming of metabolites and metabolic enzymes in different pathways (glucose, lipid, and amino acid metabolism). Metabolic reprogramming affects the function of immune cells, regulates the expression of immune molecules and determines cell fate. Therefore, it is important to explore the effector molecules with immunomodulatory properties, including metabolites, metabolic enzymes, and other immunometabolism-related molecules as the antivirals. This review summarizes the relevant advances in the field of metabolic reprogramming induced by viral infections, providing novel insights for the development of antivirals.
Collapse
Affiliation(s)
| | | | | | - Su Li
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hua-Ji Qiu
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
24
|
Feng W, Zhou L, Zhao P, Du H, Diao C, Zhang Y, Liu Z, Jin W, Yu J, Han J, Okoth E, Mrode R, Liu JF. Comparative Genomic Analysis of Warthog and Sus Scrofa Identifies Adaptive Genes Associated with African Swine Fever. BIOLOGY 2023; 12:1001. [PMID: 37508430 PMCID: PMC10376286 DOI: 10.3390/biology12071001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/01/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023]
Abstract
BACKGROUND As warthogs (Phacochoerus africanus) have innate immunity against African swine fever (ASF), it is critical to understand the evolutionary novelty of warthogs to explain their specific ASF resistance. METHODS Here, we present two completed new genomes of one warthog and one Kenyan domestic pig as fundamental genomic references to elucidate the genetic mechanisms of ASF tolerance. RESULTS Multiple genomic variations, including gene losses, independent contraction, and the expansion of specific gene families, likely molded the warthog genome to adapt to the environment. Importantly, the analysis of the presence and absence of genomic sequences revealed that the DNA sequence of the warthog genome had an absence of the gene lactate dehydrogenase B (LDHB) on chromosome 2 compared with the reference genome. The overexpression and siRNA of LDHB inhibited the replication of the African swine fever virus. Combined with large-scale sequencing data from 42 pigs worldwide, the contraction and expansion of tripartite motif-containing (TRIM) gene families revealed that TRIM family genes in the warthog genome are potentially responsible for its tolerance to ASF. CONCLUSION Our results will help improve the understanding of genetic resistance to ASF in pigs.
Collapse
Affiliation(s)
- Wen Feng
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture; Frontiers Science Center for Molecular Design Breeding (MOE), College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- Shenzhen Kingsino Technology Co., Ltd., Shenzhen 518107, China
| | - Lei Zhou
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture; Frontiers Science Center for Molecular Design Breeding (MOE), College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Pengju Zhao
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture; Frontiers Science Center for Molecular Design Breeding (MOE), College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Heng Du
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture; Frontiers Science Center for Molecular Design Breeding (MOE), College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Chenguang Diao
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture; Frontiers Science Center for Molecular Design Breeding (MOE), College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yu Zhang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture; Frontiers Science Center for Molecular Design Breeding (MOE), College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zhen Liu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture; Frontiers Science Center for Molecular Design Breeding (MOE), College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Wenjiao Jin
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture; Frontiers Science Center for Molecular Design Breeding (MOE), College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jian Yu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture; Frontiers Science Center for Molecular Design Breeding (MOE), College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jianlin Han
- International Livestock Research Institute (ILRI), Nairobi 00100, Kenya
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agriculture Sciences (CAAS), Beijing 100193, China
| | - Edward Okoth
- International Livestock Research Institute (ILRI), Nairobi 00100, Kenya
| | - Raphael Mrode
- International Livestock Research Institute (ILRI), Nairobi 00100, Kenya
| | - Jian-Feng Liu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture; Frontiers Science Center for Molecular Design Breeding (MOE), College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
25
|
Huang T, Wang Y, Yu Z, Miao X, Jiang Z, Yu K, Fu M, Lai K, Wang Y, Yang G. Effect of mitophagy in the formation of osteomorphs derived from osteoclasts. iScience 2023; 26:106682. [PMID: 37250312 PMCID: PMC10214740 DOI: 10.1016/j.isci.2023.106682] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 01/27/2023] [Accepted: 04/12/2023] [Indexed: 05/31/2023] Open
Abstract
Osteoclasts are specialized multinucleated giant cells with unique bone-destroying capacities. A recent study revealed that osteoclasts undergo an alternative cell fate by dividing into daughter cells called osteomorphs. To date, no studies have focused on the mechanisms of osteoclast fission. In this study, we analyzed the alternative cell fate process in vitro and, herein, reported the high expression of mitophagy-related proteins during osteoclast fission. Mitophagy was further confirmed by the colocalization of mitochondria with lysosomes, as observed in fluorescence images and transmission electron microscopy. We investigated the role played by mitophagy in osteoclast fission via drug stimulation experiments. The results showed that mitophagy promoted osteoclast division, and inhibition of mitophagy induced osteoclast apoptosis. In summary, this study reveals the role played by mitophagy as the decisive link in osteoclasts' fate, providing a new therapeutic target and perspective for the clinical treatment of osteoclast-related diseases.
Collapse
Affiliation(s)
- Tingben Huang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, Zhejiang 310006, China
- Department of Implantology, The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
| | - Yuchen Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, Zhejiang 310006, China
- Department of Implantology, The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
| | - Zhou Yu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, Zhejiang 310006, China
- Department of Implantology, The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
| | - Xiaoyan Miao
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, Zhejiang 310006, China
| | - Zhiwei Jiang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, Zhejiang 310006, China
- Department of Implantology, The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
| | - Ke Yu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, Zhejiang 310006, China
- Department of Implantology, The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
| | - Mengdie Fu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, Zhejiang 310006, China
- Department of Implantology, The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
| | - Kaichen Lai
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, Zhejiang 310006, China
- Department of Implantology, The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
| | - Ying Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, Zhejiang 310006, China
- Department of Endodontics, The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
| | - Guoli Yang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, Zhejiang 310006, China
- Department of Implantology, The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
| |
Collapse
|
26
|
In Silico Analysis of Ferroptosis-Related Genes and Its Implication in Drug Prediction against Fluorosis. Int J Mol Sci 2023; 24:ijms24044221. [PMID: 36835629 PMCID: PMC9961266 DOI: 10.3390/ijms24044221] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
Fluorosis is a serious global public health problem. Interestingly, so far, there is no specific drug treatment for the treatment of fluorosis. In this paper, the potential mechanisms of 35 ferroptosis-related genes in U87 glial cells exposed to fluoride were explored by bioinformatics methods. Significantly, these genes are involved in oxidative stress, ferroptosis, and decanoate CoA ligase activity. Ten pivotal genes were found by the Maximal Clique Centrality (MCC) algorithm. Furthermore, according to the Connectivity Map (CMap) and the Comparative Toxicogenomics Database (CTD), 10 possible drugs for fluorosis were predicted and screened, and a drug target ferroptosis-related gene network was constructed. Molecular docking was used to study the interaction between small molecule compounds and target proteins. Molecular dynamics (MD) simulation results show that the structure of the Celestrol-HMOX1 composite is stable and the docking effect is the best. In general, Celastrol and LDN-193189 may target ferroptosis-related genes to alleviate the symptoms of fluorosis, which may be effective candidate drugs for the treatment of fluorosis.
Collapse
|
27
|
Liu H, Zhu Z, Xue Q, Yang F, Cao W, Xue Z, Liu X, Zheng H. Picornavirus infection enhances aspartate by the SLC38A8 transporter to promote viral replication. PLoS Pathog 2023; 19:e1011126. [PMID: 36735752 PMCID: PMC9931120 DOI: 10.1371/journal.ppat.1011126] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 02/15/2023] [Accepted: 01/17/2023] [Indexed: 02/04/2023] Open
Abstract
Foot-and-mouth disease, a class of animal diseases, is caused by foot-and-mouth disease virus (FMDV). The metabolic changes during FMDV infection remain unclear. Here, PK-15 cells, serum, and tonsils infected with FMDV were analyzed by metabolomics. A total of 284 metabolites in cells were significantly changed after FMDV infection, and most of them belong to amino acids and nucleotides. Further studies showed that FMDV infection significantly enhanced aspartate in vitro and in vivo. The amino acid transporter solute carrier family 38 member 8 (SLC38A8) was responsible for FMDV-upregulated aspartate. Enterovirus 71 (EV71) and Seneca Valley virus (SVV) infection also enhanced aspartate by SLC38A8. Aspartate aminotransferase activity was also elevated in FMDV-, EV71-, and SVV-infected cells, which may lead to reversible transition between the TCA cycle and amino acids synthesis. Aspartate and SLC38A8 were essential for FMDV, EV71, and SVV replication in cells. In addition, aspartate and SLC38A8 also promoted FMDV and EV71 replication in mice. Detailed analysis indicated that FMDV infection promoted the transfer of mTOR to lysosome to enhance interaction between mTOR and Rheb, and activated PI3K/AKT/TSC2/Rheb/mTOR/p70S6K1 pathway to promote viral replication. The mTORC1 signaling pathway was responsible for FMDV-induced SLC38A8 protein expression. For the first time, our data identified metabolic changes during FMDV infection. These data identified a novel mechanism used by FMDV to upregulate aspartate to promote viral replication and will provide new perspectives for developing new preventive strategies.
Collapse
Affiliation(s)
- Huisheng Liu
- State Key Laboratory of Veterinary Etiological Biology; College of Veterinary Medicine, Lanzhou University, WOAH/National reference laboratory for foot-and-mouth disease; Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zixiang Zhu
- State Key Laboratory of Veterinary Etiological Biology; College of Veterinary Medicine, Lanzhou University, WOAH/National reference laboratory for foot-and-mouth disease; Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Qiao Xue
- State Key Laboratory of Veterinary Etiological Biology; College of Veterinary Medicine, Lanzhou University, WOAH/National reference laboratory for foot-and-mouth disease; Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Fan Yang
- State Key Laboratory of Veterinary Etiological Biology; College of Veterinary Medicine, Lanzhou University, WOAH/National reference laboratory for foot-and-mouth disease; Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Weijun Cao
- State Key Laboratory of Veterinary Etiological Biology; College of Veterinary Medicine, Lanzhou University, WOAH/National reference laboratory for foot-and-mouth disease; Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zhaoning Xue
- State Key Laboratory of Veterinary Etiological Biology; College of Veterinary Medicine, Lanzhou University, WOAH/National reference laboratory for foot-and-mouth disease; Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiangtao Liu
- State Key Laboratory of Veterinary Etiological Biology; College of Veterinary Medicine, Lanzhou University, WOAH/National reference laboratory for foot-and-mouth disease; Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Haixue Zheng
- State Key Laboratory of Veterinary Etiological Biology; College of Veterinary Medicine, Lanzhou University, WOAH/National reference laboratory for foot-and-mouth disease; Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
28
|
Hong T, Yang Y, Wang P, Zhu G, Zhu C. Pestiviruses infection: Interferon-virus mutual regulation. Front Cell Infect Microbiol 2023; 13:1146394. [PMID: 36936761 PMCID: PMC10018205 DOI: 10.3389/fcimb.2023.1146394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/17/2023] [Indexed: 03/06/2023] Open
Abstract
Pestiviruses are a class of viruses that in some cases can cause persistent infection of the host, thus posing a threat to the livestock industry. Interferons (IFNs) are a group of secreted proteins that play a crucial role in antiviral defense. In this review, on the one hand, we elaborate on how pestiviruses are recognized by the host retinoic acid-inducible gene-I (RIG-I), melanoma-differentiation-associated protein 5 (MDA5), and Toll-like receptor 3 (TLR3) proteins to induce the synthesis of IFNs. On the other hand, we focus on reviewing how pestiviruses antagonize the production of IFNs utilizing various strategies mediated by self-encoded proteins, such as the structural envelope protein (Erns) and non-structural protein (Npro). Hence, the IFN signal transduction pathway induced by pestiviruses infection and the process of pestiviruses blockade on the production of IFNs intertwines into an intricate regulatory network. By reviewing the interaction between IFN and pestiviruses (based on studies on BVDV and CSFV), we expect to provide a theoretical basis and reference for a better understanding of the mechanisms of induction and evasion of the innate immune response during infection with these viruses.
Collapse
Affiliation(s)
- Tianqi Hong
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Joint Laboratory of International Cooperation on Prevention and Control Technology of Important Animal Diseases and Zoonoses of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Yi Yang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Joint Laboratory of International Cooperation on Prevention and Control Technology of Important Animal Diseases and Zoonoses of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Pengzhi Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Joint Laboratory of International Cooperation on Prevention and Control Technology of Important Animal Diseases and Zoonoses of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Guoqiang Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Joint Laboratory of International Cooperation on Prevention and Control Technology of Important Animal Diseases and Zoonoses of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
- *Correspondence: Guoqiang Zhu, ; Congrui Zhu,
| | - Congrui Zhu
- College of Animal Science, South China Agricultural University, Guangzhou, China
- *Correspondence: Guoqiang Zhu, ; Congrui Zhu,
| |
Collapse
|
29
|
Du F, Cao Z, Ye Z, He J, Zhang W, Zhang K, Ning P. Production and immunogenicity of a deoxyribonucleic acid Alphavirus vaccine expressing classical swine fever virus E2-Erns protein and porcine Circovirus Cap-Rep protein. Front Microbiol 2022; 13:1065532. [PMID: 36560936 PMCID: PMC9764008 DOI: 10.3389/fmicb.2022.1065532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022] Open
Abstract
Classical swine fever virus (CSFV) and porcine Circovirus type 2 (PCV2) are economically pivotal infectious disease viruses of swine. Alphaviral RNA replicon plasmids have been used as an important vector for constructing nucleic acid vaccines. Here, we aimed to construct a recombinant alphaviral plasmid vaccine pSCA1-E2-Erns-Cap-Rep for the prevention and control of CSFV and PCV2. Our results showed that the recombinant alphaviral plasmid vaccine pSCA1-E2-Erns-Cap-Rep was successfully constructed. The vaccine encoding E2 and Erns of CSFV, Cap, and Rep of PCV2 can induce E2, Erns, Cap, and Rep protein expression. ELISA analysis showed that mice-immunized pSCA1-E2-Erns-Cap-Rep plasmid vaccine produced higher anti-CSFV- and anti-PCV2-specific antibodies with dose- and time-dependent manners. Furthermore, neutralizing assays were measured using IF and ELISA methods. The results showed the production of neutralizing antibodies could neutralize CSFV (up to 210.13) and PCV2 (28.6) effectively, which exhibited the immune efficacy of the pSCA1-E2-Erns-Cap-Rep plasmid vaccine. Taken together, this pSCA1-E2-Erns-Cp-Rep plasmid vaccine could be considered a novel candidate vaccine against CSFV and PCV2.
Collapse
Affiliation(s)
- Fuyu Du
- School of Life Science and Technology, Xidian University, Xi’an, China,Shaoxing Academy of Biomedicine of Zhejiang Sci-Tech University, Shaoxing, China
| | - Zhi Cao
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Zixuan Ye
- School of Life Science and Technology, Xidian University, Xi’an, China
| | - Jun He
- School of Life Science and Technology, Xidian University, Xi’an, China
| | - Weijie Zhang
- School of Life Science and Technology, Xidian University, Xi’an, China
| | - Ke Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Pengbo Ning
- School of Life Science and Technology, Xidian University, Xi’an, China,Shaoxing Academy of Biomedicine of Zhejiang Sci-Tech University, Shaoxing, China,Engineering Research Center of Molecular and Neuro Imaging Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, China,*Correspondence: Pengbo Ning,
| |
Collapse
|
30
|
Yang L, Liu X, Huang X, Li N, Zhang L, Yan H, Hou X, Wang L, Wang L. Integrated Proteotranscriptomics Reveals Differences in Molecular Immunity between Min and Large White Pig Breeds. BIOLOGY 2022; 11:biology11121708. [PMID: 36552219 PMCID: PMC9775064 DOI: 10.3390/biology11121708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/11/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022]
Abstract
Long-term selection or evolution is an important factor governing the development of disease resistance in pigs. To better clarify the molecular mechanisms underlying different levels of disease resistance, we used transcriptomics and proteomics analysis to characterize differences in the immunities between six resistant (Min pig) and six susceptible (Large White, LW) pigs which were raised in the same environment. A total of 135 proteins and 791 genes were identified as being differentially expressed between the Large White and Min pig groups. Protein expression clustering and functional analysis revealed that proteins related to immune system process, humoral immune response, the B cell receptor signaling pathway, lymphocyte-mediated immunity, and innate immune responses were more highly expressed in Min pigs. Transcriptome gene set enrichment analysis was used to reveal that pathways of cell adhesion molecules and antigen processing and presentation are significantly enriched in Min pigs. Integrated proteomics and transcriptomics data analysis identified 16 genes that are differentially expressed at both the mRNA and protein levels. In addition, 13 out of these 16 genes were related to the quantitative trait loci of immune diseases, including neural EGFL-like 2 (NELL2) and lactate dehydrogenase B (LDHB), which are involved in innate immunity. Correlation analysis between the genes/proteins and cytokines shows upregulated proteins in LW pigs in association with immunosuppressive/pro-inflammatory cytokines, such as interleukin (IL) 10, IL6, and tumor necrosis factor alpha. This was further validated using parallel reaction monitoring analysis. In summary, we discovered several potential candidate pathways and key genes/proteins involved in determining differences in disease resistance between the two studied pig breeds, which could provide new insights into the breeding of pigs for disease resistance.
Collapse
Affiliation(s)
- Liyu Yang
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture of China, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xin Liu
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture of China, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaoyu Huang
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture of China, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- College of Animal Sciences, Shanxi Agricultural University, Taigu 030800, China
| | - Na Li
- Jilin Academy of Agricultural Sciences, Changchun 130033, China
| | - Longchao Zhang
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture of China, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hua Yan
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture of China, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xinhua Hou
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture of China, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lixian Wang
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture of China, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Correspondence: (L.W.); (L.W.)
| | - Ligang Wang
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture of China, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Correspondence: (L.W.); (L.W.)
| |
Collapse
|
31
|
Transcriptome Profiling in Swine Macrophages Infected with African Swine Fever Virus (ASFV) Uncovers the Complex and Close Relationship with Host. Pathogens 2022; 11:pathogens11121411. [PMID: 36558746 PMCID: PMC9788513 DOI: 10.3390/pathogens11121411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/04/2022] [Accepted: 11/19/2022] [Indexed: 11/25/2022] Open
Abstract
African swine fever virus (ASFV) is a pathogen to cause devastating and economically significant diseases in domestic and feral swine. ASFV mainly infects macrophages and monocytes and regulates its replication process by affecting the content of cytokines in the infected cells. There is a limited understanding of host gene expression and differential profiles before and after ASFV infection in susceptible cells. In this study, RNA-seq technology was used to analyze the transcriptomic change in PAMs infected with ASFV at different time points (0 h, 12 h, 24 h). As a result, a total of 2748, 1570, and 560 genes were enriched in group V12 h vs. MOCK, V24 h vs. MOCK, and V24 h vs. V12 h, respectively. These DEGs (differentially expressed genes) in each group were mainly concentrated in the KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways related to innate immunization and inflammation, including the NF-κB signaling pathway, Toll-like receptor signaling pathway, TNF signaling pathway, IL-17 signaling pathway, cytokine-cytokine receptor interaction, and chemokine signaling pathway. Furthermore, the increased levels of IL-1β, TNF-α, IKKβ, CXCL2, and TRAF2 and decreased level of IκBα were validated through the qPCR method. These results suggested that ASFV infection can activate the NF-κB signaling pathway in the early stage. In general, this study provides a theoretical basis for further understanding the pathogenesis and immune escape mechanism of ASFV.
Collapse
|
32
|
Lin Y, Wang Y, Li PF. Mutual regulation of lactate dehydrogenase and redox robustness. Front Physiol 2022; 13:1038421. [PMID: 36407005 PMCID: PMC9672381 DOI: 10.3389/fphys.2022.1038421] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022] Open
Abstract
The nature of redox is electron transfer; in this way, energy metabolism brings redox stress. Lactate production is associated with NAD regeneration, which is now recognized to play a role in maintaining redox homeostasis. The cellular lactate/pyruvate ratio could be described as a proxy for the cytosolic NADH/NAD ratio, meaning lactate metabolism is the key to redox regulation. Here, we review the role of lactate dehydrogenases in cellular redox regulation, which play the role of the direct regulator of lactate–pyruvate transforming. Lactate dehydrogenases (LDHs) are found in almost all animal tissues; while LDHA catalyzed pyruvate to lactate, LDHB catalyzed the reverse reaction . LDH enzyme activity affects cell oxidative stress with NAD/NADH regulation, especially LDHA recently is also thought as an ROS sensor. We focus on the mutual regulation of LDHA and redox robustness. ROS accumulation regulates the transcription of LDHA. Conversely, diverse post-translational modifications of LDHA, such as phosphorylation and ubiquitination, play important roles in enzyme activity on ROS elimination, emphasizing the potential role of the ROS sensor and regulator of LDHA.
Collapse
Affiliation(s)
- Yijun Lin
- *Correspondence: Yijun Lin, ; Yan Wang, ; Pei-feng Li,
| | - Yan Wang
- *Correspondence: Yijun Lin, ; Yan Wang, ; Pei-feng Li,
| | - Pei-feng Li
- *Correspondence: Yijun Lin, ; Yan Wang, ; Pei-feng Li,
| |
Collapse
|
33
|
Liu Y, Zhou T, Hu J, Jin S, Wu J, Guan X, Wu Y, Cui J. Targeting Selective Autophagy as a Therapeutic Strategy for Viral Infectious Diseases. Front Microbiol 2022; 13:889835. [PMID: 35572624 PMCID: PMC9096610 DOI: 10.3389/fmicb.2022.889835] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 03/29/2022] [Indexed: 12/13/2022] Open
Abstract
Autophagy is an evolutionarily conserved lysosomal degradation system which can recycle multiple cytoplasmic components under both physiological and stressful conditions. Autophagy could be highly selective to deliver different cargoes or substrates, including protein aggregates, pathogenic proteins or superfluous organelles to lysosome using a series of cargo receptor proteins. During viral invasion, cargo receptors selectively target pathogenic components to autolysosome to defense against infection. However, viruses not only evolve different strategies to counteract and escape selective autophagy, but also utilize selective autophagy to restrict antiviral responses to expedite viral replication. Furthermore, several viruses could activate certain forms of selective autophagy, including mitophagy, lipophagy, aggrephagy, and ferritinophagy, for more effective infection and replication. The complicated relationship between selective autophagy and viral infection indicates that selective autophagy may provide potential therapeutic targets for human infectious diseases. In this review, we will summarize the recent progress on the interplay between selective autophagy and host antiviral defense, aiming to arouse the importance of modulating selective autophagy as future therapies toward viral infectious diseases.
Collapse
Affiliation(s)
- Yishan Liu
- Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Tao Zhou
- Ministry of Education (MOE) Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jiajia Hu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Shouheng Jin
- Ministry of Education (MOE) Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jianfeng Wu
- Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiangdong Guan
- Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yaoxing Wu
- Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jun Cui
- Ministry of Education (MOE) Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
34
|
Zhang X, Wang Y, Gong P, Wang X, Zhang N, Chen M, Wei R, Zhang X, Li X, Li J. Neospora caninum Evades Immunity via Inducing Host Cell Mitophagy to Inhibit Production of Proinflammatory Cytokines in a ROS-Dependent Manner. Front Immunol 2022; 13:827004. [PMID: 35355995 PMCID: PMC8959673 DOI: 10.3389/fimmu.2022.827004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/14/2022] [Indexed: 01/27/2023] Open
Abstract
Neospora caninum is an intracellular protozoan that mainly infects cattle to cause abortion and significant economic losses worldwide. A better understanding of the immune evasion mechanisms of N. caninum could help to search for an effective approach to prevent and treat neosporosis. Mitophagy is used by some viruses to evade host immune surveillance. However, host cell mitophagy and its effect on N. caninum infection is unclear. In the present study, N. caninum-induced host cell mitophagy and its role in parasite infection were investigated in vitro and in vivo. Furthermore, the regulation of N. caninum-induced host cell mitophagy on the production of Reactive Oxygen Species (ROS), the secretions of proinflammatory cytokines, and the signals of p38, ERK, and Nlrp3 inflammasome were explored. Our results showed that autophagosomes and co-localization of LC3 with mitochondria were observed in N. caninum-infected macrophages. The mtDNA/nDNA ratio and the levels of mitochondrial marker proteins (Hsp60 and Tim23) were decreased with the increase of N. caninum numbers or infection time. N. caninum could induce mitophagy in brain and peritoneal lavage fluid cells of mice. Promoting mitophagy via mitophagy inducers (CCCP) could shorten survival time, decrease body weight, increase parasite load, and attenuate secretion of cytokines in N. caninum infected mice. CCCP treatment decreased the production of cytokines and Reactive Oxygen Species (ROS), and increased parasite burden in N. caninum-infected macrophages. Furthermore, CCCP or NAC (ROS inhibitor) treatment could inhibit ERK signal, Nlrp3 inflammasome, and cytokine production, while promote p38 signal in N. caninum-infected macrophages. The opposite results were obtained when using a mitophagy inhibitor (Mdivi1). Taken together, N. caninum-induced mitophagy could regulate the activations of p38, ERK, Nlrp3 inflammasome to inhibit the production of inflammatory cytokines in a ROS-dependent manner to escape host immune surveillance.
Collapse
Affiliation(s)
- Xu Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yuru Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Pengtao Gong
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xiaocen Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Nan Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Mengge Chen
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Ran Wei
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xichen Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xin Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jianhua Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
35
|
Yan Q, Liu X, Sun Y, Zeng W, Li Y, Zhao F, Wu K, Fan S, Zhao M, Chen J, Yi L. Swine Enteric Coronavirus: Diverse Pathogen–Host Interactions. Int J Mol Sci 2022; 23:ijms23073953. [PMID: 35409315 PMCID: PMC8999375 DOI: 10.3390/ijms23073953] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 12/23/2022] Open
Abstract
Swine enteric coronavirus (SeCoV) causes acute gastroenteritis and high mortality in newborn piglets. Since the last century, porcine transmissible gastroenteritis virus (TGEV) and porcine epidemic diarrhea virus (PEDV) have swept farms all over the world and caused substantial economic losses. In recent years, porcine delta coronavirus (PDCoV) and swine acute diarrhea syndrome coronavirus (SADS-CoV) have been emerging SeCoVs. Some of them even spread across species, which made the epidemic situation of SeCoV more complex and changeable. Recent studies have begun to reveal the complex SeCoV–host interaction mechanism in detail. This review summarizes the current advances in autophagy, apoptosis, and innate immunity induced by SeCoV infection. These complex interactions may be directly involved in viral replication or the alteration of some signal pathways.
Collapse
Affiliation(s)
- Quanhui Yan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Q.Y.); (X.L.); (Y.S.); (W.Z.); (Y.L.); (F.Z.); (K.W.); (S.F.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Xiaodi Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Q.Y.); (X.L.); (Y.S.); (W.Z.); (Y.L.); (F.Z.); (K.W.); (S.F.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Yawei Sun
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Q.Y.); (X.L.); (Y.S.); (W.Z.); (Y.L.); (F.Z.); (K.W.); (S.F.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Weijun Zeng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Q.Y.); (X.L.); (Y.S.); (W.Z.); (Y.L.); (F.Z.); (K.W.); (S.F.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Yuwan Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Q.Y.); (X.L.); (Y.S.); (W.Z.); (Y.L.); (F.Z.); (K.W.); (S.F.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Feifan Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Q.Y.); (X.L.); (Y.S.); (W.Z.); (Y.L.); (F.Z.); (K.W.); (S.F.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Keke Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Q.Y.); (X.L.); (Y.S.); (W.Z.); (Y.L.); (F.Z.); (K.W.); (S.F.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Shuangqi Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Q.Y.); (X.L.); (Y.S.); (W.Z.); (Y.L.); (F.Z.); (K.W.); (S.F.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Mingqiu Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Q.Y.); (X.L.); (Y.S.); (W.Z.); (Y.L.); (F.Z.); (K.W.); (S.F.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Jinding Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Q.Y.); (X.L.); (Y.S.); (W.Z.); (Y.L.); (F.Z.); (K.W.); (S.F.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Correspondence: (J.C.); (L.Y.); Tel.: +86-20-8528-8017 (J.C. & L.Y.)
| | - Lin Yi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Q.Y.); (X.L.); (Y.S.); (W.Z.); (Y.L.); (F.Z.); (K.W.); (S.F.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Correspondence: (J.C.); (L.Y.); Tel.: +86-20-8528-8017 (J.C. & L.Y.)
| |
Collapse
|
36
|
Jiang H, Kan X, Ding C, Sun Y. The Multi-Faceted Role of Autophagy During Animal Virus Infection. Front Cell Infect Microbiol 2022; 12:858953. [PMID: 35402295 PMCID: PMC8990858 DOI: 10.3389/fcimb.2022.858953] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/01/2022] [Indexed: 01/17/2023] Open
Abstract
Autophagy is a process of degradation to maintain cellular homeostatic by lysosomes, which ensures cellular survival under various stress conditions, including nutrient deficiency, hypoxia, high temperature, and pathogenic infection. Xenophagy, a form of selective autophagy, serves as a defense mechanism against multiple intracellular pathogen types, such as viruses, bacteria, and parasites. Recent years have seen a growing list of animal viruses with autophagy machinery. Although the relationship between autophagy and human viruses has been widely summarized, little attention has been paid to the role of this cellular function in the veterinary field, especially today, with the growth of serious zoonotic diseases. The mechanisms of the same virus inducing autophagy in different species, or different viruses inducing autophagy in the same species have not been clarified. In this review, we examine the role of autophagy in important animal viral infectious diseases and discuss the regulation mechanisms of different animal viruses to provide a potential theoretical basis for therapeutic strategies, such as targets of new vaccine development or drugs, to improve industrial production in farming.
Collapse
Affiliation(s)
- Hui Jiang
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute. Chinese Academy of Agricultural Science, Shanghai, China
| | - Xianjin Kan
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute. Chinese Academy of Agricultural Science, Shanghai, China
| | - Chan Ding
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute. Chinese Academy of Agricultural Science, Shanghai, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China
- *Correspondence: Yingjie Sun, ; Chan Ding,
| | - Yingjie Sun
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute. Chinese Academy of Agricultural Science, Shanghai, China
- *Correspondence: Yingjie Sun, ; Chan Ding,
| |
Collapse
|
37
|
The Role of Mitophagy in Viral Infection. Cells 2022; 11:cells11040711. [PMID: 35203359 PMCID: PMC8870278 DOI: 10.3390/cells11040711] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/06/2022] [Accepted: 02/15/2022] [Indexed: 02/04/2023] Open
Abstract
Mitophagy, which is able to selectively clear excess or damaged mitochondria, plays a vital role in the quality control of mitochondria and the maintenance of normal mitochondrial functions in eukaryotic cells. Mitophagy is involved in many physiological and pathological processes, including apoptosis, innate immunity, inflammation, cell differentiation, signal transduction, and metabolism. Viral infections cause physical dysfunction and thus pose a significant threat to public health. An accumulating body of evidence reveals that some viruses hijack mitophagy to enable immune escape and self-replication. In this review, we systematically summarize the pathway of mitophagy initiation and discuss the functions and mechanisms of mitophagy in infection with classical swine fever virus and other specific viruses, with the aim of providing a theoretical basis for the prevention and control of related diseases.
Collapse
|
38
|
Wu K, Zhang Y, Zeng S, Liu X, Li Y, Li X, Chen W, Li Z, Qin Y, Chen J, Fan S. Development and Application of RAA Nucleic Acid Test Strip Assay and Double RAA Gel Electrophoresis Detection Methods for ASFV and CSFV. Front Mol Biosci 2022; 8:811824. [PMID: 35174210 PMCID: PMC8841470 DOI: 10.3389/fmolb.2021.811824] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/24/2021] [Indexed: 11/13/2022] Open
Abstract
African swine fever (ASF) is an acute, severe and hemorrhagic infectious disease caused by African swine fever virus (ASFV) infecting domestic pigs and wild boars. Since the outbreak of the disease in China in 2018, it has brought a great impact on China’s pig industry. Classical swine fever (CSF) is an acute contact infectious disease of pigs caused by classical swine fever virus (CSFV) infection. Clinically, acute CSF usually shows persistent high fever, anorexia, extensive congestion and bleeding of the skin and mucosa, which are similar to ASF. It is of great significance to prevent, control and accurately detect ASF and CSF in pig farms. In this study, Recombinase aided amplification (RAA) technology combined with a nucleic acid test strip (RAA-strip) was established for simple and specific detection of ASFV/CSFV. The sensitivity and preliminary clinical application results showed that the RAA test strip established in this study could detect recombinant plasmids containing ASFV/CSFV gene fragments as low as 103 copies/µL. The minimum detection limits of virus DNA/cDNA were 10 and 12 pg respectively, and there was no cross-reaction with other porcine viruses. The specificity of the method was good. We used 37–42 clinical samples to evaluate the performance of our established method, and the positive concordance rates with conventional PCR were 94.1 and 57.1%, respectively. In addition, ASFV and CSFV double RAA agarose gel electrophoresis detection methods were established. The results showed that the method had good specificity. The detection limit of this method is 106 copies for ASFV p72 gene recombinant plasmid and 105 copies for CSFV NS5B Gene recombinant plasmid. The use of this method for clinical material detection was consistent with the PCR method. In summary, the developed method of RAA-strip assay for ASFV and CSFV realized the visual detection of pathogens, and the developed method of dual RAA agarose gel electrophoresis assay for ASFV and CSFV realized the simultaneous detection of two pathogens in one reaction, with good specificity, high sensitivity and rapid reaction rate, which was expected to be clinically feasible for the differential diagnosis of ASF and CSF provided technical support.
Collapse
Affiliation(s)
- Keke Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Yuanyuan Zhang
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Sen Zeng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Xiaodi Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Yuwan Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Xiaowen Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Wenxian Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Zhaoyao Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Yuwei Qin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Jinding Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- *Correspondence: Jinding Chen, ; Shuangqi Fan,
| | - Shuangqi Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- *Correspondence: Jinding Chen, ; Shuangqi Fan,
| |
Collapse
|
39
|
Ren Z, Yu Y, Chen C, Yang D, Ding T, Zhu L, Deng J, Xu Z. The Triangle Relationship Between Long Noncoding RNA, RIG-I-like Receptor Signaling Pathway, and Glycolysis. Front Microbiol 2021; 12:807737. [PMID: 34917069 PMCID: PMC8670088 DOI: 10.3389/fmicb.2021.807737] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 11/09/2021] [Indexed: 12/11/2022] Open
Abstract
Long noncoding RNA (LncRNA), a noncoding RNA over 200nt in length, can regulate glycolysis through metabolic pathways, glucose metabolizing enzymes, and epigenetic reprogramming. Upon viral infection, increased aerobic glycolysis providzes material and energy for viral replication. Mitochondrial antiviral signaling protein (MAVS) is the only protein-specified downstream of retinoic acid-inducible gene I (RIG-I) that bridges the gap between antiviral immunity and glycolysis. MAVS binding to RIG-I inhibits MAVS binding to Hexokinase (HK2), thereby impairing glycolysis, while excess lactate production inhibits MAVS and the downstream antiviral immune response, facilitating viral replication. LncRNAs can also regulate antiviral innate immunity by interacting with RIG-I and downstream signaling pathways and by regulating the expression of interferons and interferon-stimulated genes (ISGs). Altogether, we summarize the relationship between glycolysis, antiviral immunity, and lncRNAs and propose that lncRNAs interact with glycolysis and antiviral pathways, providing a new perspective for the future treatment against virus infection, including SARS-CoV-2.
Collapse
Affiliation(s)
- Zhihua Ren
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yueru Yu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Chaoxi Chen
- College of Life Since and Technology, Southwest Minzu University, Chengdu, China
| | - Dingyong Yang
- College of Animal Husbandry and Veterinary Medicine, Chengdu Agricultural College, Chengdu, China
| | - Ting Ding
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Junliang Deng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhiwen Xu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
40
|
Viral Infection Modulates Mitochondrial Function. Int J Mol Sci 2021; 22:ijms22084260. [PMID: 33923929 PMCID: PMC8073244 DOI: 10.3390/ijms22084260] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 02/08/2023] Open
Abstract
Mitochondria are important organelles involved in metabolism and programmed cell death in eukaryotic cells. In addition, mitochondria are also closely related to the innate immunity of host cells against viruses. The abnormality of mitochondrial morphology and function might lead to a variety of diseases. A large number of studies have found that a variety of viral infections could change mitochondrial dynamics, mediate mitochondria-induced cell death, and alter the mitochondrial metabolic status and cellular innate immune response to maintain intracellular survival. Meanwhile, mitochondria can also play an antiviral role during viral infection, thereby protecting the host. Therefore, mitochondria play an important role in the interaction between the host and the virus. Herein, we summarize how viral infections affect microbial pathogenesis by altering mitochondrial morphology and function and how viruses escape the host immune response.
Collapse
|
41
|
Fan J, Liao Y, Zhang M, Liu C, Li Z, Li Y, Li X, Wu K, Yi L, Ding H, Zhao M, Fan S, Chen J. Anti-Classical Swine Fever Virus Strategies. Microorganisms 2021; 9:microorganisms9040761. [PMID: 33917361 PMCID: PMC8067343 DOI: 10.3390/microorganisms9040761] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/24/2021] [Accepted: 04/02/2021] [Indexed: 12/23/2022] Open
Abstract
Classical swine fever (CSF), caused by CSF virus (CSFV), is a highly contagious swine disease with high morbidity and mortality, which has caused significant economic losses to the pig industry worldwide. Biosecurity measures and vaccination are the main methods for prevention and control of CSF since no specific drug is available for the effective treatment of CSF. Although a series of biosecurity and vaccination strategies have been developed to curb the outbreak events, it is still difficult to eliminate CSF in CSF-endemic and re-emerging areas. Thus, in addition to implementing enhanced biosecurity measures and exploring more effective CSF vaccines, other strategies are also needed for effectively controlling CSF. Currently, more and more research about anti-CSFV strategies was carried out by scientists, because of the great prospects and value of anti-CSFV strategies in the prevention and control of CSF. Additionally, studies on anti-CSFV strategies could be used as a reference for other viruses in the Flaviviridae family, such as hepatitis C virus, dengue virus, and Zika virus. In this review, we aim to summarize the research on anti-CSFV strategies. In detail, host proteins affecting CSFV replication, drug candidates with anti-CSFV effects, and RNA interference (RNAi) targeting CSFV viral genes were mentioned and the possible mechanisms related to anti-CSFV effects were also summarized.
Collapse
Affiliation(s)
- Jindai Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (J.F.); (Y.L.); (M.Z.); (C.L.); (Z.L.); (Y.L.); (X.L.); (K.W.); (L.Y.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Yingxin Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (J.F.); (Y.L.); (M.Z.); (C.L.); (Z.L.); (Y.L.); (X.L.); (K.W.); (L.Y.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Mengru Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (J.F.); (Y.L.); (M.Z.); (C.L.); (Z.L.); (Y.L.); (X.L.); (K.W.); (L.Y.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Chenchen Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (J.F.); (Y.L.); (M.Z.); (C.L.); (Z.L.); (Y.L.); (X.L.); (K.W.); (L.Y.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Zhaoyao Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (J.F.); (Y.L.); (M.Z.); (C.L.); (Z.L.); (Y.L.); (X.L.); (K.W.); (L.Y.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Yuwan Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (J.F.); (Y.L.); (M.Z.); (C.L.); (Z.L.); (Y.L.); (X.L.); (K.W.); (L.Y.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Xiaowen Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (J.F.); (Y.L.); (M.Z.); (C.L.); (Z.L.); (Y.L.); (X.L.); (K.W.); (L.Y.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Keke Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (J.F.); (Y.L.); (M.Z.); (C.L.); (Z.L.); (Y.L.); (X.L.); (K.W.); (L.Y.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Lin Yi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (J.F.); (Y.L.); (M.Z.); (C.L.); (Z.L.); (Y.L.); (X.L.); (K.W.); (L.Y.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Hongxing Ding
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (J.F.); (Y.L.); (M.Z.); (C.L.); (Z.L.); (Y.L.); (X.L.); (K.W.); (L.Y.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Mingqiu Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (J.F.); (Y.L.); (M.Z.); (C.L.); (Z.L.); (Y.L.); (X.L.); (K.W.); (L.Y.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Shuangqi Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (J.F.); (Y.L.); (M.Z.); (C.L.); (Z.L.); (Y.L.); (X.L.); (K.W.); (L.Y.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Correspondence: (S.F.); (J.C.); Tel.: +86-20-8528-8017 (J.C.)
| | - Jinding Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (J.F.); (Y.L.); (M.Z.); (C.L.); (Z.L.); (Y.L.); (X.L.); (K.W.); (L.Y.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Correspondence: (S.F.); (J.C.); Tel.: +86-20-8528-8017 (J.C.)
| |
Collapse
|
42
|
Zhu E, Wu H, Chen W, Qin Y, Liu J, Fan S, Ma S, Wu K, Mao Q, Luo C, Qin Y, Yi L, Ding H, Zhao M, Chen J. Classical swine fever virus employs the PERK- and IRE1-dependent autophagy for viral replication in cultured cells. Virulence 2020; 12:130-149. [PMID: 33380286 PMCID: PMC7781608 DOI: 10.1080/21505594.2020.1845040] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Endoplasmic reticulum stress (ERS)-mediated autophagy is indispensable for modulation of replication and pathogenesis of numerous mammalian viruses. We have previously shown that classical swine fever virus (CSFV) infection induces ERS-mediated autophagy for maintaining viral replication both in vivo and in vitro, however, the underlying mechanism remains unclarified. Here we found that CSFV infection activates the PERK pathway-dependent complete autophagy to promote viral replication in cultured PK-15 and 3D4/2 cells. Likewise, our results also suggested the essential roles of the IRE1/GRP78-mediated complete autophagy in CSFV replication in vitro. Furthermore, we suggested that CSFV infection induces activation of the PERK and IRE1 pathway for potential immunoregulation via promoting transcription of proinflammatory cytokine (IFN-γ and TNF-α) genes in the CSFV-infected cells. Finally, pharmacological treatment of PERK- or IRE1-pathway regulators, and the corresponding SiRNAs interventions did not affect the viabilities of the cells, excluding the potential interference elicited by altered cell viabilities. Taken together, our results suggest that CSFV infection induces complete autophagy through activation of the PERK and IRE1 pathway to facilitate viral replication in cultured cells, and modulation of proinflammatory cytokines may be a potential mechanism involved in this event. Our findings will open new horizons for molecular mechanisms of sustainable replication and pathogenesis of CSFV, and lay a theoretical foundation for the development of ERS-autophagy-targeting therapeutic strategies for clinical control of CSF.
Collapse
Affiliation(s)
- Erpeng Zhu
- Department of Microbiology and Immunology, College of Veterinary Medicine, South China Agricultural University , Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture , Guangzhou, China.,Department of Veterinary Medicine, College of Animal Science, Guizhou University , Guiyang, China
| | - Huawei Wu
- Department of Viral Biologics, China Institute of Veterinary Drug Control , Beijing, China
| | - Wenxian Chen
- Department of Microbiology and Immunology, College of Veterinary Medicine, South China Agricultural University , Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture , Guangzhou, China
| | - Yuwei Qin
- Department of Microbiology and Immunology, College of Veterinary Medicine, South China Agricultural University , Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture , Guangzhou, China
| | - Jiameng Liu
- Department of Microbiology and Immunology, College of Veterinary Medicine, South China Agricultural University , Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture , Guangzhou, China
| | - Shuangqi Fan
- Department of Microbiology and Immunology, College of Veterinary Medicine, South China Agricultural University , Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture , Guangzhou, China
| | - Shengming Ma
- Department of Microbiology and Immunology, College of Veterinary Medicine, South China Agricultural University , Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture , Guangzhou, China
| | - Keke Wu
- Department of Microbiology and Immunology, College of Veterinary Medicine, South China Agricultural University , Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture , Guangzhou, China
| | - Qian Mao
- Department of Microbiology and Immunology, College of Veterinary Medicine, South China Agricultural University , Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture , Guangzhou, China
| | - Chaowei Luo
- Department of Microbiology and Immunology, College of Veterinary Medicine, South China Agricultural University , Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture , Guangzhou, China
| | - Yixian Qin
- Department of Viral Biologics, China Institute of Veterinary Drug Control , Beijing, China
| | - Lin Yi
- Department of Microbiology and Immunology, College of Veterinary Medicine, South China Agricultural University , Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture , Guangzhou, China
| | - Hongxing Ding
- Department of Microbiology and Immunology, College of Veterinary Medicine, South China Agricultural University , Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture , Guangzhou, China
| | - Mingqiu Zhao
- Department of Microbiology and Immunology, College of Veterinary Medicine, South China Agricultural University , Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture , Guangzhou, China
| | - Jinding Chen
- Department of Microbiology and Immunology, College of Veterinary Medicine, South China Agricultural University , Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture , Guangzhou, China
| |
Collapse
|