1
|
Mellingen RM, Rasinger JD, Nøstbakken OJ, Myrmel LS, Bernhard A. Dietary protein affects tissue accumulation of mercury and induces hepatic Phase I and Phase II enzyme expression after co-exposure with methylmercury in mice. J Nutr Biochem 2024; 133:109712. [PMID: 39094928 DOI: 10.1016/j.jnutbio.2024.109712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/31/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024]
Abstract
Methylmercury (MeHg) is a ubiquitous environmental contaminant, well known for its neurotoxic effects. MeHg can interact with several nutrients in the diet and affect nutrient metabolism, however the interaction between MeHg and dietary proteins has not been thoroughly investigated. Male BALB/c mice were fed diets based on either casein, cod or chicken as protein sources, which were or were not spiked with MeHg (3.5 mg Hg kg-1). Following 13 weeks of dietary exposure to MeHg, the animals accumulated mercury in a varying degree depending on the diet, where the levels of mercury were highest in the mice fed casein and MeHg, lower in mice fed cod and MeHg, and lowest in mice fed chicken and MeHg in all tissues assessed. Assessment of gut microbiota revealed differences in microbiota composition based on the different protein sources. However, the introduction of MeHg eliminated this difference. Proteomic profiling of liver tissue uncovered the influence of the dietary protein sources on a range of enzymes related to Phase I and Phase II detoxification mechanisms, suggesting an impact of the diet on MeHg metabolism and excretion. Also, enzymes linked to pathways including methionine and glycine betaine cycling, which in turn impact the production of glutathione, an important MeHg conjugation molecule, were up-regulated in mice fed chicken as dietary protein. Our findings indicate that dietary proteins can affect expression of hepatic enzymes that potentially influence MeHg metabolism and excretion, highlighting the relevance of considering the dietary composition in risk assessment of MeHg through dietary exposure.
Collapse
Affiliation(s)
- Ragnhild Marie Mellingen
- Department of Seafood, Nutrition and Environmental State, Institute of Marine Research, Bergen, Norway; Department of Biomedicine, University of Bergen, Norway
| | - Josef Daniel Rasinger
- Department of Seafood, Nutrition and Environmental State, Institute of Marine Research, Bergen, Norway
| | - Ole Jakob Nøstbakken
- Department of Seafood, Nutrition and Environmental State, Institute of Marine Research, Bergen, Norway
| | - Lene Secher Myrmel
- Department of Seafood, Nutrition and Environmental State, Institute of Marine Research, Bergen, Norway
| | - Annette Bernhard
- Department of Seafood, Nutrition and Environmental State, Institute of Marine Research, Bergen, Norway.
| |
Collapse
|
2
|
Kang B, Wang J, Guo S, Yang L. Mercury-induced toxicity: Mechanisms, molecular pathways, and gene regulation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 943:173577. [PMID: 38852866 DOI: 10.1016/j.scitotenv.2024.173577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/01/2024] [Accepted: 05/25/2024] [Indexed: 06/11/2024]
Abstract
Mercury is a well-known neurotoxicant for humans and wildlife. The epidemic of mercury poisoning in Japan has clearly demonstrated that chronic exposure to methylmercury (MeHg) results in serious neurological damage to the cerebral and cerebellar cortex, leading to the dysfunction of the central nervous system (CNS), especially in infants exposed to MeHg in utero. The occurrences of poisoning have caused a wide public concern regarding the health risk emanating from MeHg exposure; particularly those eating large amounts of fish may experience the low-level and long-term exposure. There is growing evidence that MeHg at environmentally relevant concentrations can affect the health of biota in the ecosystem. Although extensive in vivo and in vitro studies have demonstrated that the disruption of redox homeostasis and microtube assembly is mainly responsible for mercurial toxicity leading to adverse health outcomes, it is still unclear whether we could quantitively determine the occurrence of interaction between mercurial and thiols and/or selenols groups of proteins linked directly to outcomes, especially at very low levels of exposure. Furthermore, intracellular calcium homeostasis, cytoskeleton, mitochondrial function, oxidative stress, neurotransmitter release, and DNA methylation may be the targets of mercury compounds; however, the primary targets associated with the adverse outcomes remain to be elucidated. Considering these knowledge gaps, in this article, we conducted a comprehensive review of mercurial toxicity, focusing mainly on the mechanism, and genes/proteins expression. We speculated that comprehensive analyses of transcriptomics, proteomics, and metabolomics could enhance interpretation of "omics" profiles, which may reveal specific biomarkers obviously correlated with specific pathways that mediate selective neurotoxicity.
Collapse
Affiliation(s)
- Bolun Kang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 100012 Beijing, China
| | - Jinghan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 100012 Beijing, China
| | - Shaojuan Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 100012 Beijing, China
| | - Lixin Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 100012 Beijing, China.
| |
Collapse
|
3
|
El Hanafi K, Fernández-Bautista T, Ouerdane L, Corns WT, Bueno M, Fontagné-Dicharry S, Amouroux D, Pedrero Z. Exploring mercury detoxification in fish: The role of selenium from tuna byproduct diets for sustainable aquaculture. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135779. [PMID: 39298964 DOI: 10.1016/j.jhazmat.2024.135779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/22/2024]
Abstract
Exposure to mercury (Hg) through fish consumption poses significant environmental and public health risks, given its status as one of the top ten hazardous chemicals. Aquaculture is expanding, driving a surge in demand for sustainable aquafeeds. Tuna byproducts, which are rich in protein, offer potential for aquafeed production, yet their use is challenged by the high content of heavy metals, particularly Hg. However, these byproducts also contain elevated levels of selenium (Se), which may counteract Hg adverse effects. This study examines the fate of dietary Hg and Se in an aquaculture model fish. Biomolecular speciation analyses through hyphenated analytical approaches were conducted on the water-soluble protein fraction of key organs of juvenile rainbow trout (Oncorhynchus mykiss) exposed to various combinations of Hg and Se species, including diets containing tuna byproducts, over a six-month period. The findings shed light on the dynamics of Hg and Se compounds in fish revealing potential Hg detoxification mechanisms through complexation with Hg-biomolecules, such as cysteine, glutathione, and metallothionein. Furthermore, the trophic transfer of selenoneine is demonstrated, revealing novel opportunities for sustainable aquafeed production. Understanding the interactions between Hg and Se in aquaculture systems is crucial for optimizing feed formulations and mitigating environmental risks. This research contributes to the broader goal of advancing sustainable practices in aquaculture while addressing food security challenges.
Collapse
Affiliation(s)
- Khouloud El Hanafi
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les matériaux, Pau, France
| | - Tamara Fernández-Bautista
- Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Laurent Ouerdane
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les matériaux, Pau, France
| | - Warren T Corns
- PS Analytical, Arthur House, Crayfields Industrial Estate, Main Road, Orpington, Kent BR5 3HP, United Kingdom
| | - Maite Bueno
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les matériaux, Pau, France
| | | | - David Amouroux
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les matériaux, Pau, France
| | - Zoyne Pedrero
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les matériaux, Pau, France.
| |
Collapse
|
4
|
Veeraswamy D, Subramanian A, Mohan D, Ettiyagounder P, Selvaraj PS, Ramasamy SP, Veeramani V. Exploring the origins and cleanup of mercury contamination: a comprehensive review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:53943-53972. [PMID: 37964142 DOI: 10.1007/s11356-023-30636-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 10/19/2023] [Indexed: 11/16/2023]
Abstract
Mercury is a global pollutant that poses significant risks to human health and the environment. Natural sources of mercury include volcanic eruptions, while anthropogenic sources include industrial processes, artisanal and small-scale gold mining, and fossil fuel combustion. Contamination can arise through various pathways, such as atmospheric deposition, water and soil contamination, bioaccumulation, and biomagnification in food chains. Various remediation strategies, including phytoremediation, bioremediation, chemical oxidation/reduction, and adsorption, have been developed to address mercury pollution, including physical, chemical, and biological approaches. The effectiveness of remediation techniques depends on the nature and extent of contamination and site-specific conditions. This review discusses the challenges associated with mercury pollution and remediation, including the need for effective monitoring and management strategies. Overall, this review offers a comprehensive understanding of mercury contamination and the range of remediation techniques available to mitigate its adverse impacts.
Collapse
Affiliation(s)
- Davamani Veeraswamy
- Department of Environmental Sciences, Directorate of Natural Resource Management, Tamil Nadu Agricultural University, Coimbatore, 641 003, Tamil Nadu, India
- College of Engineering, Science and Environment, Global Centre for Environmental Remediation (GCER), ATC Building, The University of Newcastle, Callaghan Campus, Callaghan, NSW, 2308, Australia
| | - Arulmani Subramanian
- Department of Chemistry, Bannari Amman Institute of Technology, Sathyamangalam, 638 401, Tamil Nadu, India.
| | - Deepasri Mohan
- Division of Environmental Sciences, Sher-E-Kashmir University of Agricultural Sciences and Technology, Shalimar, 190025, Jammu and Kashmir Union Territory, India
| | - Parameswari Ettiyagounder
- Department of Environmental Sciences, Directorate of Natural Resource Management, Tamil Nadu Agricultural University, Coimbatore, 641 003, Tamil Nadu, India
| | - Paul Sebastian Selvaraj
- Department of Environmental Sciences, Directorate of Natural Resource Management, Tamil Nadu Agricultural University, Coimbatore, 641 003, Tamil Nadu, India
- College of Engineering, Science and Environment, Global Centre for Environmental Remediation (GCER), ATC Building, The University of Newcastle, Callaghan Campus, Callaghan, NSW, 2308, Australia
| | - Sangeetha Piriya Ramasamy
- Department of Environmental Sciences, Directorate of Natural Resource Management, Tamil Nadu Agricultural University, Coimbatore, 641 003, Tamil Nadu, India
- School of Water, Energy, and Environment, Cranfield University, Cranfield, MK43 0AL, UK
| | - Venkatesan Veeramani
- Department of Civil Engineering, University College of Engineering, Anna University, Ariyalur, 621 731, Tamil Nadu, India
| |
Collapse
|
5
|
Tan AB, Wang H, Ji JT, Yao HY, Tang HY. Hg 2+ removal characteristics of a strain of mercury-tolerant bacteria screened from heavy metal-contaminated soil in a molybdenum-lead mining area. Int Microbiol 2024:10.1007/s10123-024-00559-x. [PMID: 39028370 DOI: 10.1007/s10123-024-00559-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/19/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
In this study, the mercury-tolerant strain LTC105 was isolated from a contaminated soil sample collected from a molybdenum-lead mine in Luanchuan County, Henan Province, China. The strain was shown to be highly resistant to mercury, with a minimum inhibitory concentration (MIC) of 32 mg·L-1. After a 24-h incubation in LB medium with 10 mg·L-1 Hg2+, the removal, adsorption, and volatilization rates of Hg2+ were 97.37%, 7.3%, and 90.07%, respectively, indicating that the strain had significant influence on mercury removal. Based on the results of Fourier infrared spectroscopy (FTIR) and scanning electron microscopy (SEM), the investigation revealed that the primary function of LTC105 was to encourage the volatilization of mercury. The LTC105 strain also showed strong tolerance to heavy metals such as Mn2+, Zn2+, and Pb2+. According to the results of the soil incubation test, the total mercury removal rate of the LTC105 inoculation increased by 16.34% when the initial mercury concentration of the soil was 100 mg·L-1 and by 62.28% when the initial mercury concentration of the soil was 50 mg·kg-1. These findings indicate that LTC105 has certain bioremediation ability for Hg-contaminated soil and is a suitable candidate strain for microbial remediation of heavy metal-contaminated soil in mining areas.
Collapse
Affiliation(s)
- Ao-Bo Tan
- School of Chemistry & Chemical Engineering, Henan University of Science and Technology, Luoyang, 471000, China
| | - Hui Wang
- School of Chemistry & Chemical Engineering, Henan University of Science and Technology, Luoyang, 471000, China.
| | - Jiang-Tao Ji
- College of Agricultural Equipment Engineering, Henan University of Science and Technology, Luoyang, 471000, China
| | - Han-Yue Yao
- School of Chemistry & Chemical Engineering, Henan University of Science and Technology, Luoyang, 471000, China
| | - Hong-Yan Tang
- School of Chemistry & Chemical Engineering, Henan University of Science and Technology, Luoyang, 471000, China
| |
Collapse
|
6
|
Desjardins K, Ponton DE, Bilodeau F, Rosabal M, Amyot M. Methylmercury in northern pike (Esox lucius) liver and hepatic mitochondria is linked to lipid peroxidation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172703. [PMID: 38703851 DOI: 10.1016/j.scitotenv.2024.172703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/05/2024] [Accepted: 04/21/2024] [Indexed: 05/06/2024]
Abstract
Methylmercury (MeHg) readily bioaccumulates and biomagnifies in aquatic food webs leading to elevated concentrations in fish and may thus induce toxicity. Oxidative stress is a suggested effect of MeHg bioaccumulation in fish. However, studies on how MeHg triggers oxidative stress in wild fish are scarce. The purpose of this study was to link the subcellular distribution of MeHg in the liver of northern pike from the St. Maurice River (Québec, Canada), affected by two run-of-river (RoR) dams, artificial wetlands, forest fires, and logging activity, to lipid peroxidation as an indicator of oxidative stress. We also evaluated the protective effects of the glutathione (GSH) system and selenium (Se), as they are known to alleviate MeHg toxicity. A customized subcellular partitioning protocol was used to separate the liver into metal-sensitive (mitochondria, microsome/lysosome and HDP - heat-denatured proteins) and metal-detoxified fractions (metal-rich granules and HSP - heat-stable proteins). We examined the relation among THg, MeHg, and Se concentration in livers and subcellular fractions, and the hepatic ratio of total GSH (GSHt) to oxidized glutathione (GSSG) on lipid peroxidation levels, using the concentrations of malondialdehyde (MDA), a product of lipid peroxidation. Results showed that hepatic MDA concentration was positively correlated with the combined MeHg and Se concentrations in northern pike liver (r2 = 0.88, p < 0.001) and that MDA concentrations were best predicted by MeHg associated with the mitochondria (r2 = 0.71, p < 0.001). This highlights the need for additional research on the MeHg influence on fish health and the interactions between Hg and Se in northern pike.
Collapse
Affiliation(s)
- Kimberley Desjardins
- Groupe interuniversitaire en limnologie et en environnement aquatique (GRIL), Département de sciences biologiques, Complexe des sciences, Université de Montréal, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, Québec H2V 0B3, Canada
| | - Dominic E Ponton
- Groupe interuniversitaire en limnologie et en environnement aquatique (GRIL), Département de sciences biologiques, Complexe des sciences, Université de Montréal, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, Québec H2V 0B3, Canada
| | - François Bilodeau
- Direction Environnement, Hydro-Québec, 800 Boul. De Maisonneuve Est, Montréal, Québec H2Z 1A4, Canada
| | - Maikel Rosabal
- Groupe interuniversitaire en limnologie et en environnement aquatique (GRIL), Département des sciences biologiques, Université du Québec à Montréal, C.P. 8888, Succursale Centre-Ville, Montréal, Québec H3C 3P8, Canada
| | - Marc Amyot
- Groupe interuniversitaire en limnologie et en environnement aquatique (GRIL), Département de sciences biologiques, Complexe des sciences, Université de Montréal, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, Québec H2V 0B3, Canada.
| |
Collapse
|
7
|
Dack K, Huang P, Taylor CM, Rai D, Lewis SJ. Environmental and genetic predictors of whole blood mercury and selenium concentrations in pregnant women in a UK birth cohort. ENVIRONMENTAL ADVANCES 2024; 15:100469. [PMID: 38562418 PMCID: PMC10951965 DOI: 10.1016/j.envadv.2023.100469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 04/04/2024]
Abstract
There is evidence that tissue concentrations of mercury (Hg) and selenium (Se) are predicted by numerous dietary, sociodemographic, environmental, and genetic factors. This study aimed to estimate the relative importance of predictors of Hg and Se concentrations in blood samples taken from pregnant women. The Avon Longitudinal Study of Parents and Children (ALSPAC) in the UK measured whole blood Hg and Se concentrations in 3,972 pregnant women. We identified 30 potential predictors of Hg and 24 of Se, which were evaluated using cross-validated random forests to identify the optimal models for predictive power. The relative importance of individual variables was estimated by averaging the added-R2 per predictor. Linkage disequilibrium score regression was used to estimate the variance explained by genotype. A multivariable model of 14 predictors explained 22.4% of Hg variance (95% CI: 13.0 to 37.1), including 6.9% from blood Se and 3.2% from white fish consumption. There were 11 predictors which explained 15.3% of Se variance (CI: 8.9 to 25.9), including 6.4% from blood Hg, 1.3% from blood lead, and 1.3% from oily fish. Measured genetic variation explained 30% of Hg variance (CI: 8.4 to 51.5) and 37.5% of Se (CI: 10.4 to 64.5). A high proportion of Hg and Se variance could be explained from dietary, sociodemographic, metabolic, and genetic factors. Seafood consumption was less predictive of Hg than may be expected and other factors should be considered when determining risk of exposure. There was tentative evidence that genotype is a major contributor to Hg and Se variation, possibly by modifying the efficacy of internal metabolism.
Collapse
Affiliation(s)
- Kyle Dack
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Peiyuan Huang
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Caroline M Taylor
- Centre for Academic Child Health, Bristol Medical School, University of Bristol, Bristol, UK
| | - Dheeraj Rai
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Sarah J Lewis
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| |
Collapse
|
8
|
Wesolowska M, Yeates AJ, McSorley EM, Watson GE, van Wijngaarden E, Bodin N, Govinden R, Jean-Baptiste J, Desnousse S, Shamlaye CF, Myers GJ, Strain JJ, Mulhern MS. Dietary selenium and mercury intakes from fish consumption during pregnancy: Seychelles Child Development Study Nutrition Cohort 2. Neurotoxicology 2024; 101:1-5. [PMID: 38135192 DOI: 10.1016/j.neuro.2023.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/11/2023] [Accepted: 12/18/2023] [Indexed: 12/24/2023]
Abstract
Some health agencies have issued precautionary principle fish advisories to pregnant women based on the presence of methylmercury (MeHg) in fish that could possibly be harmful to the developing fetus. Fish, however, is a rich source of selenium (Se) and other nutrients essential for normal brain development. Selenium is also thought to have a key role in alleviating MeHg toxicity. We estimated the dietary Se and MeHg intakes and dietary Se:Hg molar ratios from the fish consumed in a high fish-eating pregnant cohort where no adverse associations of fish consumption and outcomes has been reported. We used dietary data collected as part of the Seychelles Child Development Study Nutrition Cohort 2 (n = 1419). In this cohort 98% of participants consumed fish, with an average intake of 106.2 g per day. Daily Se intakes from fish consumption were 61.6 µg/ d, within the range recommended during pregnancy. The mean dietary Se:Hg molar ratios was 6. These findings demonstrate that fish consumption exposes pregnant Seychellois women to Se in excess of MeHg. Based on these findings, fish consumption, especially fish with Se:Hg ratios above 1, may help pregnant women achieve optimum dietary Se intakes, which may protect against MeHg toxicity.
Collapse
Affiliation(s)
- Maria Wesolowska
- Nutrition Innovation Centre for Food and Health, Ulster University, Coleraine BT52 1SA, the United Kingdom of Great Britain and Northern Ireland
| | - Alison J Yeates
- Nutrition Innovation Centre for Food and Health, Ulster University, Coleraine BT52 1SA, the United Kingdom of Great Britain and Northern Ireland
| | - Emeir M McSorley
- Nutrition Innovation Centre for Food and Health, Ulster University, Coleraine BT52 1SA, the United Kingdom of Great Britain and Northern Ireland
| | - Gene E Watson
- School of Medicine and Dentistry, University of Rochester, New York, United States
| | | | - Nathalie Bodin
- Seychelles Fishing Authority (SFA), Fishing Port, Victoria, Mahé, Republic of Seychelles
| | - Rodney Govinden
- Seychelles Fishing Authority (SFA), Fishing Port, Victoria, Mahé, Republic of Seychelles
| | - Juddy Jean-Baptiste
- Nutrition Innovation Centre for Food and Health, Ulster University, Coleraine BT52 1SA, the United Kingdom of Great Britain and Northern Ireland; The Ministry of Health, Mahé, Republic of Seychelles
| | | | | | - Gary J Myers
- School of Medicine and Dentistry, University of Rochester, New York, United States
| | - J J Strain
- Nutrition Innovation Centre for Food and Health, Ulster University, Coleraine BT52 1SA, the United Kingdom of Great Britain and Northern Ireland
| | - Maria S Mulhern
- Nutrition Innovation Centre for Food and Health, Ulster University, Coleraine BT52 1SA, the United Kingdom of Great Britain and Northern Ireland.
| |
Collapse
|
9
|
Ralston NVC, Raymond LJ, Gilman CL, Soon R, Seale LA, Berry MJ. Maternal seafood consumption is associated with improved selenium status: Implications for child health. Neurotoxicology 2024; 101:26-35. [PMID: 38272071 PMCID: PMC10978253 DOI: 10.1016/j.neuro.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024]
Abstract
Selenium (Se) is required for synthesis of selenocysteine (Sec), an amino acid expressed in the active sites of Se-dependent enzymes (selenoenzymes), including forms with essential functions in fetal development, brain activities, thyroid hormone metabolism, calcium regulation, and to prevent or reverse oxidative damage. Homeostatic mechanisms normally ensure the brain is preferentially supplied with Se to maintain selenoenzymes, but high methylmercury (CH3Hg) exposures irreversibly inhibit their activities and impair Sec synthesis. Due to Hg's high affinity for sulfur, CH3Hg initially binds with the cysteine (Cys) moieties of thiomolecules which are selenoenzyme substrates. These CH3Hg-Cys adducts enter selenoenzyme active sites and transfer CH3Hg to Sec, thus irreversibly inhibiting their activities. High CH3Hg exposures are uniquely able to induce a conditioned Se-deficiency that impairs synthesis of brain selenoenzymes. Since the fetal brain lacks Se reserves, it is far more vulnerable to CH3Hg exposures than adult brains. This prompted concerns that maternal exposures to CH3Hg present in seafood might impair child neurodevelopment. However, typical varieties of ocean fish contain far more Se than CH3Hg. Therefore, eating them should augment Se-status and thus prevent Hg-dependent loss of fetal selenoenzyme activities. To assess this hypothesis, umbilical cord blood and placental tissue samples were collected following delivery of a cohort of 100 babies born on Oahu, Hawaii. Dietary food frequency surveys of the mother's last month of pregnancy identified groups with no (0 g/wk), low (0-12 g/wk), or high (12 + g/wk) levels of ocean fish consumption. Maternal seafood consumption increased Hg contents in fetal tissues and resulted in ∼34% of cord blood samples exceeding the EPA Hg reference level of 5.8 ppb (0.029 µM). However, Se concentrations in these tissues were orders of magnitude higher and ocean fish consumption caused cord blood Se to increase ∼9.4 times faster than Hg. Therefore, this study supports the hypothesis that maternal consumption of typical varieties of ocean fish provides substantial amounts of Se that protect against Hg-dependent losses in Se bioavailability. Recognizing the pivotal nature of the Hg:Se relationship provides a consilient perspective of seafood benefits vs. risks and clarifies the reasons for the contrasting findings of certain early studies.
Collapse
Affiliation(s)
| | - Laura J Raymond
- Sage Green Nutrition Research Guidance, Grand Forks, ND, 58203, USA
| | - Christy L Gilman
- Division of Gastroenterology and Hepatology, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Reni Soon
- Department of Obstetrics and Gynecology, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| | - Lucia A Seale
- Pacific Biosciences Research Center, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Marla J Berry
- Pacific Biosciences Research Center, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| |
Collapse
|
10
|
Zhao Y, Ni S, Pei C, Sun L, Wu L, Xu A, Nie Y, Liu Y. Parental treatment with selenium protects Caenorhabditis elegans and their offspring against the reproductive toxicity of mercury. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169461. [PMID: 38141982 DOI: 10.1016/j.scitotenv.2023.169461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 12/25/2023]
Abstract
Mercury (Hg) is one of the major pollutants in the environment, which requires effective countermeasures to manage its risk to both human health and the ecosystem. The antagonistic effect of selenium (Se) against methyl mercury (MeHg) and HgCl2 was evaluated using parent and offspring Caenorhabditis elegans (C. elegans) in this study. Through designated acute exposure of 24 h, our results showed that both MeHg and HgCl2 induced dose-dependent reproductive toxicity, including increased germ cell apoptosis, decrease in the number of oocytes, brood size, and sperm activation. The increased germ cell apoptosis was even higher in F1 and F2 generations, but returned to control level in F3 generation. Pretreatment with Se significantly suppressed the reproductive toxicity caused by Hg in both parental worms and their offspring, but had little influence on Hg accumulation. The protective role of Se was found closely related to the chemical forms of Hg: mtl-1 and mtl-2 genes participated in reducing the toxicity of HgCl2, while the gst-4 gene was involved in the reduced toxicity of MeHg. The formation of Se-Hg complex and the antioxidant function of Se were considered as possible antagonistic mechanisms. Our data indicated that pretreatment with Se could effectively protect C. elegans and their offspring against the reproductive toxicity of Hg in different chemical forms, which provided a reference for the prevention of Hg poisoning and essential information for better understanding the detoxification potential of Se on heavy metals.
Collapse
Affiliation(s)
- Yanan Zhao
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, PR China
| | - Shenyao Ni
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, PR China
| | - Chengcheng Pei
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, PR China
| | - Lingyan Sun
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, PR China
| | - Lijun Wu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, PR China
| | - An Xu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, PR China; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology; High Magnetic Field Laboratory, HFIPS, Anhui, Chinese Academy of Science, Hefei 230031, PR China
| | - Yaguang Nie
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, PR China.
| | - Yun Liu
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology; High Magnetic Field Laboratory, HFIPS, Anhui, Chinese Academy of Science, Hefei 230031, PR China.
| |
Collapse
|
11
|
Takatani T, Takatani R, Eguchi A, Yamamoto M, Sakurai K, Taniguchi Y, Kobayashi Y, Mori C, Kamijima M. Association between maternal blood or cord blood metal concentrations and catch-up growth in children born small for gestational age: an analysis by the Japan environment and children's study. Environ Health 2024; 23:18. [PMID: 38336787 PMCID: PMC10858588 DOI: 10.1186/s12940-024-01061-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND Catch-up growth issues among children born small for gestational age (SGA) present a substantial public health challenge. Prenatal exposure to heavy metals can cause adverse effects on birth weight. However, comprehensive studies on the accurate assessment of individual blood concentrations of heavy metals and their effect on the failure to achieve catch-up growth remain unavailable. This study aimed to evaluate the effects of uterine exposure to toxic metals cadmium, lead, and mercury and essential trace metals manganese and selenium at low concentrations on the postnatal growth of children born SGA. METHODS Data on newborn birth size and other factors were obtained from the medical record transcripts and self-administered questionnaires of participants in the Japan Environment and Children's Study. The blood concentrations of lead, cadmium, mercury, selenium, and manganese in pregnant women in their second or third trimester were determined by inductively coupled plasma mass spectrometry. These heavy metal concentrations were also assessed in pregnant women's cord blood. Furthermore, the relationship between each heavy metal and height measure/catch-up growth in SGA children aged 4 years was analyzed using linear and logistic regression methods. These models were adjusted for confounders. RESULTS We studied 4683 mother-child pairings from 103,060 pregnancies included in the Japan Environment and Children's Study. Of these, 278 pairs were also analyzed using cord blood. At 3 and 4 years old, 10.7% and 9.0% of children who were born below the 10th percentile of body weight had height standard deviation scores (SDSs) below 2, respectively. Cord blood cadmium concentrations were associated with the inability to catch up in growth by 3 or 4 years old and the height SDS at 3 years old. In maternal blood, only manganese was positively associated with the height SDS of SGA children aged 2 years; however, it was not significantly associated with catch-up growth in these children. CONCLUSION Cadmium exposure is associated with failed catch-up development in SGA children. These new findings could help identify children highly at risk of failing to catch up in growth, and could motivate the elimination of heavy metal (especially cadmium) pollution to improve SGA children's growth.
Collapse
Affiliation(s)
- Tomozumi Takatani
- Department of Pediatrics, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan.
| | - Rieko Takatani
- Center for Preventive Medical Sciences, Chiba University, Chiba, 263-8522, Japan
| | - Akifumi Eguchi
- Center for Preventive Medical Sciences, Chiba University, Chiba, 263-8522, Japan
| | - Midori Yamamoto
- Center for Preventive Medical Sciences, Chiba University, Chiba, 263-8522, Japan
| | - Kenichi Sakurai
- Center for Preventive Medical Sciences, Chiba University, Chiba, 263-8522, Japan
| | - Yu Taniguchi
- Centre for Health and Environmental Risk Research, National Institute for Environmental Studies, Ibaraki, 305- 8506, Japan
| | - Yayoi Kobayashi
- Centre for Health and Environmental Risk Research, National Institute for Environmental Studies, Ibaraki, 305- 8506, Japan
| | - Chisato Mori
- Center for Preventive Medical Sciences, Chiba University, Chiba, 263-8522, Japan
- Department of Bioenvironmental Medicine, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan
| | - Michihiro Kamijima
- Department of Occupational and Environmental Health, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan.
| |
Collapse
|
12
|
Barbosa NV, Aschner M, Tinkov AA, Farina M, da Rocha JBT. Should ebselen be considered for the treatment of mercury intoxication? A minireview. Toxicol Mech Methods 2024; 34:1-12. [PMID: 37731353 PMCID: PMC10841883 DOI: 10.1080/15376516.2023.2258958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 09/09/2023] [Indexed: 09/22/2023]
Abstract
Mercury is a ubiquitous environmental contaminant and can be found in inorganic (Hg0, Hg+ and Hg2+) and organic forms (chiefly CH3Hg+ or MeHg+). The main route of human, mammals and bird exposure occurs via predatory fish ingestion. Occupational exposure to Hg0 (and Hg2+) can also occur; furthermore, in gold mining areas the exposure to inorganic Hg can also be high. The toxicity of electrophilic forms of Hg (E+Hg) is mediated by disruption of thiol (-SH)- or selenol (-SeH)-containing proteins. The therapeutic approaches to treat methylmercury (MeHg+), Hg0 and Hg2+ are limited. Here we discuss the potential use of ebselen as a potential therapeutic agent to lower the body burden of Hg in man. Ebselen is a safe drug for humans and has been tested in clinical trials (for instance, brain ischemia, noise-induce hearing loss, diabetes complications, bipolar disorders) at doses varying from 400 to 3600 mg per day. Two clinical trials with ebselen in moderate and severe COVID are also approved. Ebselen can be metabolized to an intermediate with -SeH (selenol) functional group, which has a greater affinity to electrophilic Hg (E+Hg) forms than the available thiol-containing therapeutic agents. Accordingly, as observed in vitro and rodent models in vivo, Ebselen exhibited protective effects against MeHg+, indicating its potential as a therapeutic agent to treat MeHg+ overexposure. The combined use of ebselen with thiol-containing molecules (e.g. N-acetylcysteine and enaramide)) is also commented, because they can have synergistic protective effects against MeHg+.
Collapse
Affiliation(s)
- Nilda V. Barbosa
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Alexey A. Tinkov
- Yaroslavl State University, Yaroslavl, Russia
- Center of Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Marcelo Farina
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - João Batista Teixeira da Rocha
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, Brazil
- Departamento de Bioquímica, Instituto Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
13
|
Weng M, Dolgova NV, Vogt LI, Qureshi M, Sokaras D, Kroll T, Saitō H, O'Donoghue JL, Watson GE, Myers GJ, Sekikawa T, Pickering IJ, George GN. Synchrotron speciation of umbilical cord mercury and selenium after environmental exposure in Niigata. Neurotoxicology 2024; 100:117-123. [PMID: 38128735 DOI: 10.1016/j.neuro.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/09/2023] [Accepted: 12/17/2023] [Indexed: 12/23/2023]
Abstract
The insidious and deadly nature of mercury's organometallic compounds is informed by two large scale poisonings due to industrial mercury pollution that occurred decades ago in Minamata and Niigata, Japan. The present study examined chemical speciation for both mercury and selenium in a historic umbilical cord sample from a child born to a mother who lived near the Agano River in Niigata. The mother had experienced mercury exposure leading to more than 50 ppm mercury measured in her hair and was symptomatic 9 years prior to the birth. We sought to determine the mercury and selenium speciation in the child's cord using Hg Lα1 and Se Kα1 high-energy resolution fluorescence detected X-ray absorption spectroscopy, the chemical speciation of mercury was found to be predominantly organometallic and coordinated to a thiolate. The selenium was found to be primarily in an organic form and at levels higher than those of mercury, with no evidence of mercury-selenium chemical species. Our results are consistent with mercury exposure at Niigata being due to exposure to organometallic mercury species.
Collapse
Affiliation(s)
- Monica Weng
- Department of Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, Saskatchewan S7N 5E2, Canada
| | - Natalia V Dolgova
- Calibr - California Institute for Biomedical Research, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Linda I Vogt
- Department of Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, Saskatchewan S7N 5E2, Canada
| | - Muhammad Qureshi
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Dimosthenis Sokaras
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Thomas Kroll
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | | | - John L O'Donoghue
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
| | - Gene E Watson
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA; Eastman Institute for Oral Health, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
| | - Gary J Myers
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA; Departments of Neurology and Pediatrics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
| | - Tomoko Sekikawa
- Department of Internal Medicine, Nuttari Clinic, 6-4-12 Nuttarihigasi, Chuo-ku, Niigata 950-0075, Japan
| | - Ingrid J Pickering
- Department of Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, Saskatchewan S7N 5E2, Canada; Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; Department of Chemistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Graham N George
- Department of Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, Saskatchewan S7N 5E2, Canada; Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; Department of Chemistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| |
Collapse
|
14
|
Wesolowska M, Yeates AJ, McSorley EM, van Wijngaarden E, Shamlaye CF, Myers GJ, Strain JJ, Mulhern MS. Potential role of selenium in modifying the effect of maternal methylmercury exposure on child neurodevelopment - A review. Neurotoxicology 2023; 99:59-69. [PMID: 37659579 DOI: 10.1016/j.neuro.2023.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/16/2023] [Accepted: 08/25/2023] [Indexed: 09/04/2023]
Abstract
Selenium (Se) is an essential trace element for normal neurodevelopment. It is incorporated into multiple selenoenzymes which have roles in the brain and neurological function, the synthesis of thyroid hormones, the antioxidant defense system, DNA synthesis, and reproduction. Fish is a source of both Se and neurotoxic methylmercury (MeHg). Selenium is known to ameliorate the effects of MeHg in experimental animals, but studies in children exposed to both Se and MeHg through prenatal fish consumption have been inconclusive. Research on Se's implications for pregnancy and child neurodevelopment is limited. The aims of this review are to summarize the literature on the biological roles of Se during pregnancy and the potential role in mitigating the effects of MeHg exposure from fish consumption on human health. This review has shown that Se concentrations among pregnant women globally appear insufficient, with the majority of pregnant women reporting Se concentrations below 70 µg/L during pregnancy. The role of Se in child development and its interactions with MeHg in children are inconclusive. Further investigation of the interaction between Se and MeHg in relation to child neurodevelopment in high fish-eating populations is required to fully elucidate effects.
Collapse
Affiliation(s)
- Maria Wesolowska
- Nutrition Innovation Centre for Food and Health, Ulster University, Coleraine BT52 1SA, UK
| | - Alison J Yeates
- Nutrition Innovation Centre for Food and Health, Ulster University, Coleraine BT52 1SA, UK
| | - Emeir M McSorley
- Nutrition Innovation Centre for Food and Health, Ulster University, Coleraine BT52 1SA, UK
| | | | | | - Gary J Myers
- School of Medicine and Dentistry, University of Rochester, New York, United States
| | - J J Strain
- Nutrition Innovation Centre for Food and Health, Ulster University, Coleraine BT52 1SA, UK
| | - Maria S Mulhern
- Nutrition Innovation Centre for Food and Health, Ulster University, Coleraine BT52 1SA, UK.
| |
Collapse
|
15
|
Decharat S, Phethuayluk P. Quality and risk assessment of lead and cadmium in drinking water for child development centres use in Phatthalung province, Thailand. Environ Anal Health Toxicol 2023; 38:e2023020-0. [PMID: 38298039 PMCID: PMC10834074 DOI: 10.5620/eaht.2023020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 10/04/2023] [Indexed: 02/02/2024] Open
Abstract
The purpose of this cross-sectional study and research was to evaluate the health risks to children in relation to the concentration of lead and cadmium in drinking water. Samples were collected between 1 May 2020 and 15 October 2020. Thirty-three child development centres, Phatthalung province, Thailand. Two hundred and ten drinking water samples were taken, consisting of 66 bottled water samples, 66 tap water samples, 66 filtered tap water samples and 12 raw water samples for using in the child development centres. Concentrations of lead and cadmium were identified by graphite furnace atomic absorption spectrometry. The concentration of cadmium in bottled water samples, tap water samples, filtered tap water samples, and raw water samples ranged from nd - 0.0020mg/L, nd - 0.0049 mg/L, nd - 0.0018 mg/L and nd - 0.0049 mg/L. The summation of the total hazard index of bottled water samples, tap water samples, filtered tap water, and raw water samples was less than 1, was considered health-protective. The results will provide the direct evidence needed by child development centres managers to warn learners about the health risk of drinking water among children.
Collapse
Affiliation(s)
- Somsiri Decharat
- Department of Occupational health and Safety, Faculty of Health and Sports Science, Thaksin University, Phattalung Province 93210, Thailand
| | - Piriyalux Phethuayluk
- Department of Public Health, Faculty of Health and Sports Science, Thaksin University, Phattalung Province 93210, Thailand
| |
Collapse
|
16
|
Díaz SM, Palma RM, Gamboa EM, Idrovo ÁJ. Selenium-rich food potentially useful to control mercury levels among Afro-Colombians: Towards an intercultural intervention. BIOMEDICA : REVISTA DEL INSTITUTO NACIONAL DE SALUD 2023; 43:427-437. [PMID: 38109141 PMCID: PMC10768523 DOI: 10.7705/biomedica.6981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 10/03/2023] [Indexed: 12/19/2023]
Abstract
INTRODUCTION Diet-based interventions may be a culturally acceptable option to decrease mercury levels and thus prevent the adverse effects of this metal on population health. Selenium is an element present in Colombian geology that can act as a chelator, decreasing mercury concentrations in the human body. OBJECTIVE To identify potentially useful selenium-rich foods to control the effects of mercury exposure among Afro-Colombians. MATERIALS AND METHODS A cross-sectional study was carried out with 320 individuals from five municipalities of Chocó. They were asked about the frequency of consumption of selenium-rich foods, and their association with mercury concentrations in hair was estimated with multiple robust regression. RESULTS Guava, whole wheat flour, strawberries, cow liver, spinach and yeast extract were the foods with higher consumption. Walnuts, whole wheat flour, and yeast extract were identified in multiple robust regression as foods to consider in future interventions. CONCLUSION It is proposed that the banana juice, the pineapple colada, the borojó (Borojoa patinoi) sorbet, the cucas, and the enyucado are basic elements for a culturally acceptable intervention.
Collapse
Affiliation(s)
- Sonia M Díaz
- Departamento de Salud Pública, Escuela de Medicina, Universidad Industrial de Santander, Bucaramanga, Colombia.
| | - Ruth Marién Palma
- Grupo de Salud Ambiental y Laboral, Instituto Nacional de Salud, Bogotá, D.C., Colombia.
| | - Edna M Gamboa
- Escuela de Nutrición y Dietética, Universidad Industrial de Santander, Bucaramanga, Colombia.
| | - Álvaro J Idrovo
- Departamento de Salud Pública, Escuela de Medicina, Universidad Industrial de Santander, Bucaramanga, Colombia.
| |
Collapse
|
17
|
Fadhila AN, Pramono BA, Muniroh M. Mercury and cadmium-induced inflammatory cytokines activation and its effect on the risk of preeclampsia: a review. REVIEWS ON ENVIRONMENTAL HEALTH 2023; 0:reveh-2023-0083. [PMID: 37978836 DOI: 10.1515/reveh-2023-0083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/31/2023] [Indexed: 11/19/2023]
Abstract
During the last decade, there has been an increase in exposure to heavy metals that can affect human health and the environment, especially mercury (Hg) and cadmium (Cd). These exposures can pollute the rivers or oceans, then contaminating marine organisms. Humans as the last consumer of this food chain cycle can be a place for the bioaccumulation of Hg and Cd, especially for people living in coastal areas, including pregnant women. Exposure to heavy metals Hg and Cd can have a high risk of triggering blood vessel disorders, penetrating the blood-brain barrier (BBB) and the placental barrier, one of which can increase the risk of preeclampsia. Several immunological biomarkers such as some cytokines associated with Hg and Cd exposure are also involved in the pathophysiology of preeclampsia, which are the placental implantation process and endothelial dysfunction in pregnant women. Therefore, countries that have a high incidence of preeclampsia should be aware of the environmental factors, especially heavy metal pollution such as Hg and Cd.
Collapse
Affiliation(s)
- Alya N Fadhila
- Master Program of Biomedical Science, Faculty of Medicine, Diponegoro University, Semarang, Indonesia
| | - Besari A Pramono
- Department of Obstetrics and Gynecology, Faculty of Medicine, Diponegoro University, Semarang, Indonesia
| | - Muflihatul Muniroh
- Department of Physiology, Faculty of Medicine, Diponegoro University, Semarang, Indonesia
| |
Collapse
|
18
|
Abdoel Wahid FZ, Hindori-Mohangoo AD, Covert HH, Karimi M, Sabrin S, Shafer M, Gokoel AR, Shankar A, Zijlmans W, Lichtveld M, Wickliffe JK. Geographic differences in exposures to metals and essential elements in pregnant women living in Suriname. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2023; 33:911-920. [PMID: 36765100 PMCID: PMC10412735 DOI: 10.1038/s41370-023-00526-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND In Suriname, 20% of pregnancies end in adverse birth outcomes. While prenatal exposure to metals may lead to adverse health outcomes, exposure assessments in Suriname are scant. Environmental contamination from mercury (Hg) used in artisanal goldmining in the Amazonian Interior, and the uncontrolled use of pesticides in suburban regions are of particular concern. OBJECTIVE This study assessed geographic differences in exposures to metals and essential elements in pregnant Surinamese women. METHODS This study is a subset (n = 400) of the Caribbean Consortium for Research in Environmental and Occupational Health (CCREOH) cohort study. Sector-field inductively-coupled plasma mass spectrometry was used to determine concentrations of lead (Pb), Hg, selenium (Se), cadmium (Cd), manganese (Mn) and tin (Sn) in whole blood of the pregnant women. High vs. low exposures to Pb and Hg were determined and were based respectively on CDC (3.5 ug/dL) and USEPA (3.5 ug/L) action levels. Differences in geographic exposures were tested with the Mann-Whitney U-test, and differences between blood elemental concentrations and action levels for Pb and Hg with the Wilcoxon signed rank test. The association between demographics and high exposures of Pb and Hg was examined with multivariate logistic regression models. RESULTS The median concentrations of Pb, Hg and Se (5.08 μg/dL, 7.87 μg/L, and 228.26 μg/L respectively) in Interior women, were higher than the Urban and Suburban regions (p < 0.001), and higher than internationally accepted action levels (p < 0.001). The median concentrations of Mn and Sn found in Suburban women (17.55 and 0.97 ug/L respectively) were higher than Urban and Interior regions (p < 0.02). SIGNIFICANCE Pregnant women living in Suriname's Amazonian Interior are exposed to Hg and Pb at levels of public health concern. Urgently needed is a comprehensive source characterization assessment and the development, implementation and monitoring of environmental health policies, specifically addressing the chemicals of concern. IMPACT In a subset of participants enrolled in the CCREOH environmental epidemiology cohort study elevated levels of Hg and Pb were identified. This is the first comprehensive exposure assessment in the Surinamese population. Health concerns include adverse birth- and neurodevelopmental outcomes. Geographic differences require a tailored approach to health intervention and comprehensive source characterization. Future research should ascertain the role of Se as a potential protective factor. Environmental policy development, implementation and monitoring is pivotal to mitigate exposures to these neurotoxicants.
Collapse
Affiliation(s)
- Firoz Z Abdoel Wahid
- School of Public Health, Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA.
- School of Public Health and Tropical Medicine, Department of Environmental Health Sciences, Tulane University, New Orleans, LA, USA.
| | | | - Hannah H Covert
- School of Public Health, Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
- School of Public Health and Tropical Medicine, Department of Environmental Health Sciences, Tulane University, New Orleans, LA, USA
| | - Maryam Karimi
- School of Public Health, Department of Environmental Health Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Samain Sabrin
- Department of Civil, Construction, and Environmental Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Martin Shafer
- Trace Element Research Group, University of Wisconsin-Madison & Wisconsin State Laboratory of Hygiene, Madison, WI, USA
| | - Anisma R Gokoel
- Scientific Research Center Suriname, Academic Hospital Paramaribo, Paramaribo, Suriname
| | - Arti Shankar
- School of Public Health and Tropical Medicine, Department of Biostatistics and Data Science, Tulane University, New Orleans, LA, USA
| | - Wilco Zijlmans
- Faculty of Medical Sciences, Anton de Kom University of Suriname, Paramaribo, Suriname
| | - Maureen Lichtveld
- School of Public Health, Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
- School of Public Health and Tropical Medicine, Department of Environmental Health Sciences, Tulane University, New Orleans, LA, USA
| | - Jeffrey K Wickliffe
- School of Public Health, Department of Environmental Health Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
19
|
Hurtado TC, de Medeiros Costa G, de Carvalho GS, Brum BR, Ignácio ÁRA. Mercury and methylmercury concentration in the feathers of two species of Kingfishers Megaceryle torquata and Chloroceryle amazona in the Upper Paraguay Basin and Amazon Basin. ECOTOXICOLOGY (LONDON, ENGLAND) 2023; 32:1084-1095. [PMID: 37349507 DOI: 10.1007/s10646-023-02680-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/06/2023] [Indexed: 06/24/2023]
Abstract
Mercury (Hg) contamination remains a significant environmental concern. In aquatic ecosystems, Hg can undergo methylation, forming its organic form, methylmercury (MeHg), which bioaccumulates and biomagnifies in the food chain, ultimately reaching the top predators, including waterfowl. The objective of this study was to investigate the distribution and levels of Hg in wing feathers, with a specific focus on evaluating heterogeneity in the primary feathers of two kingfisher species (Megaceryle torquata and Chloroceryle amazona). The concentrations of total Hg (THg) in the primary feathers of C. amazona individuals from the Juruena, Teles Pires, and Paraguay rivers were 4.724 ± 1.600, 4.003 ± 1.532, and 2.800 ± 1.475 µg/kg, respectively. The THg concentrations in the secondary feathers were 4.624 ± 1.718, 3.531 ± 1.361, and 2.779 ± 1.699 µg/kg, respectively. For M. torquata, the THg concentrations in the primary feathers from the Juruena, Teles Pires, and Paraguay rivers were 7.937 ± 3.830, 6.081 ± 2.598, and 4.697 ± 2.585 µg/kg, respectively. The THg concentrations in the secondary feathers were 7.891 ± 3.869, 5.124 ± 2.420, and 4.201 ± 2.176 µg/kg, respectively. The percentage of MeHg in the samples increased during THg recovery, with an average of 95% in primary feathers and 80% in secondary feathers. It is crucial to comprehend the current Hg concentrations in Neotropical birds to mitigate potential toxic effects on these species. Exposure to Hg can lead to reduced reproductive rates and behavioral changes, such as motor incoordination and impaired flight ability, ultimately resulting in population decline among bird populations.
Collapse
Affiliation(s)
- Thaysa Costa Hurtado
- Center for the Study of Limnology, Biodiversity and Ethnobiology of the Pantanal (CELBE) - Ecotoxicology Laboratory, University of the State of Mato Grosso, Cáceres, Brazil.
| | - Gerlane de Medeiros Costa
- Center for the Study of Limnology, Biodiversity and Ethnobiology of the Pantanal (CELBE) - Ecotoxicology Laboratory, University of the State of Mato Grosso, Cáceres, Brazil
| | - Giovani Spínola de Carvalho
- Center for the Study of Limnology, Biodiversity and Ethnobiology of the Pantanal (CELBE) - Ecotoxicology Laboratory, University of the State of Mato Grosso, Cáceres, Brazil
| | - Bruno Ramos Brum
- Center for the Study of Limnology, Biodiversity and Ethnobiology of the Pantanal (CELBE) - Ecotoxicology Laboratory, University of the State of Mato Grosso, Cáceres, Brazil
| | - Áurea Regina Alves Ignácio
- Center for the Study of Limnology, Biodiversity and Ethnobiology of the Pantanal (CELBE) - Ecotoxicology Laboratory, University of the State of Mato Grosso, Cáceres, Brazil
| |
Collapse
|
20
|
Varona-Uribe ME, Díaz SM, Palma RM, Briceño-Ayala L, Trillos-Peña C, Téllez-Avila EM, Espitia-Pérez L, Pastor-Sierra K, Espitia-Pérez PJ, Idrovo AJ. Micronuclei, Pesticides, and Element Mixtures in Mining Contexts: The Hormetic Effect of Selenium. TOXICS 2023; 11:821. [PMID: 37888671 PMCID: PMC10611081 DOI: 10.3390/toxics11100821] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/07/2023] [Accepted: 08/16/2023] [Indexed: 10/28/2023]
Abstract
The contexts where there are mining and agriculture activities are potential sources of risk to human health due to contamination by chemical mixtures. These contexts are frequent in several Colombian regions. This study explored the potential association between the frequency of micronuclei and pesticides and elements in regions with ferronickel (Montelibano, Córdoba) and gold (Nechí, Antioquia) mining, and a closed native mercury mine (Aranzazu, Caldas), with an emphasis in the potential effect of selenium as a potential chelator. A cross-sectional study was carried out with 247 individuals. Sociodemographic, occupational, and toxicological variables were ascertained. Blood and urine samples were taken for pesticide analysis (5 organophosphates, 4 organochlorines, and 3 carbamates), 68 elements were quantified in hair, and micronuclei were quantified in lymphocytes. The mixtures of elements were grouped through principal component analysis. Prevalence ratios were estimated with robust variance Poisson regressions to explore associations. Interactions of selenium with toxic elements were explored. The highest concentrations of elements were in the active mines. The potentially most toxic chemical mixture was observed in the ferronickel mine. Pesticides were detected in a low proportion of participants (<2.5%), except paraoxon-methyl in blood (27.55%) in Montelibano and paraoxon-ethyl in blood (18.81%) in Aranzazu. The frequency of micronuclei was similar in the three mining contexts, with means between 4 to 7 (p = 0.1298). There was great heterogeneity in the exposure to pesticides and elements. The "hormetic effect" of selenium was described, in which, at low doses, it acts as a chelator in Montelibano and Aranzazu, and at high doses, it can enhance the toxic effects of other elements, maybe as in Nechí. Selenium can serve as a protective agent, but it requires adaptation to the available concentrations in each region to avoid its toxic effects.
Collapse
Affiliation(s)
- Marcela E. Varona-Uribe
- School of Medicine and Health Sciences, Universidad del Rosario, Bogotá D.C. 111221, Colombia; (M.E.V.-U.); (S.M.D.); (L.B.-A.); (C.T.-P.)
| | - Sonia M. Díaz
- School of Medicine and Health Sciences, Universidad del Rosario, Bogotá D.C. 111221, Colombia; (M.E.V.-U.); (S.M.D.); (L.B.-A.); (C.T.-P.)
| | - Ruth-Marien Palma
- Environmental and Occupational Health Group, National Institute of Health, Bogotá D.C. 111321, Colombia; (R.-M.P.); (E.M.T.-A.)
| | - Leonardo Briceño-Ayala
- School of Medicine and Health Sciences, Universidad del Rosario, Bogotá D.C. 111221, Colombia; (M.E.V.-U.); (S.M.D.); (L.B.-A.); (C.T.-P.)
| | - Carlos Trillos-Peña
- School of Medicine and Health Sciences, Universidad del Rosario, Bogotá D.C. 111221, Colombia; (M.E.V.-U.); (S.M.D.); (L.B.-A.); (C.T.-P.)
| | - Eliana M. Téllez-Avila
- Environmental and Occupational Health Group, National Institute of Health, Bogotá D.C. 111321, Colombia; (R.-M.P.); (E.M.T.-A.)
| | - Lyda Espitia-Pérez
- Grupo de Investigación Biomédicas y Biología Molecular, Universidad del Sinú, Montería 230001, Colombia; (L.E.-P.); (K.P.-S.); (P.J.E.-P.)
| | - Karina Pastor-Sierra
- Grupo de Investigación Biomédicas y Biología Molecular, Universidad del Sinú, Montería 230001, Colombia; (L.E.-P.); (K.P.-S.); (P.J.E.-P.)
| | - Pedro Juan Espitia-Pérez
- Grupo de Investigación Biomédicas y Biología Molecular, Universidad del Sinú, Montería 230001, Colombia; (L.E.-P.); (K.P.-S.); (P.J.E.-P.)
| | - Alvaro J. Idrovo
- Public Health Department, School of Medicine, Universidad Industrial de Santander, Bucaramanga 680002, Colombia
| |
Collapse
|
21
|
Amyot M, Husser E, St-Fort K, Ponton DE. Effect of cooking temperature on metal concentrations and speciation in fish muscle and seal liver. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115184. [PMID: 37379667 DOI: 10.1016/j.ecoenv.2023.115184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/09/2023] [Accepted: 06/22/2023] [Indexed: 06/30/2023]
Abstract
Fish and marine mammals constitute a significant part of the country food diet of many Indigenous communities in Canada. These animals sometimes accumulate essential elements as well as elevated levels of toxic metals. We experimentally assessed how changes in cooking temperature (23-99 °C by boiling) modified elemental concentrations in whitefish muscle and grey seal liver (two organs commonly consumed in some northern communities). Wet and dry elemental concentrations changed linearly as a function of temperature, and two patterns were observed: methylmercury, selenium, and rare earth elements tended to remain associated with the food during cooking, whereas alkali, alkaline-earth metals, and arsenic were significantly transferred to cooking juices. Mass balances indicated that speciation of mercury was stable during cooking. Because elements generally behaved similarly as those of their periodic table group or their ecotoxicological classes (A, B, intermediate), we propose that elemental behavior during cooking is partly a function of chemical affinity, and this relationship can be used to predict the behavior of data-poor elements of emerging concern, such as technology-critical elements. Furthermore, the marked increases and decreases in elemental concentrations during cooking (e.g., -14% As and +39% Se in whitefish; -22% Cd and +55% Hg in seal liver, on a wet weight basis) should be considered when assessing risk because current exposure models usually only consider elemental concentrations in raw food.
Collapse
Affiliation(s)
- Marc Amyot
- Université de Montréal, Département de sciences biologiques, Complexe des Sciences, 1375 Avenue Thérèse-Lavoie-Roux, Montreal, QC H2V 0B3, Canada.
| | - Emma Husser
- Université de Montréal, Département de sciences biologiques, Complexe des Sciences, 1375 Avenue Thérèse-Lavoie-Roux, Montreal, QC H2V 0B3, Canada
| | - Kathy St-Fort
- Université de Montréal, Département de sciences biologiques, Complexe des Sciences, 1375 Avenue Thérèse-Lavoie-Roux, Montreal, QC H2V 0B3, Canada
| | - Dominic E Ponton
- Université de Montréal, Département de sciences biologiques, Complexe des Sciences, 1375 Avenue Thérèse-Lavoie-Roux, Montreal, QC H2V 0B3, Canada
| |
Collapse
|
22
|
Rodríguez-Viso P, Domene A, Sánchez A, Vélez D, Monedero V, Devesa V, Zúñiga M. Challenges and strategies for preventing intestinal damage associated to mercury dietary exposure. Toxicology 2023; 494:153580. [PMID: 37328091 DOI: 10.1016/j.tox.2023.153580] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/02/2023] [Accepted: 06/12/2023] [Indexed: 06/18/2023]
Abstract
Food represents the major risk factor for exposure to mercury in most human populations. Therefore, passage through the gastrointestinal tract plays a fundamental role in its entry into the organism. Despite the intense research carried out on the toxicity of Hg, the effects at the intestinal level have received increased attention only recently. In this review we first provide a critical appraisal of the recent advances on the toxic effects of Hg at the intestinal epithelium. Next, dietary strategies aimed to diminish Hg bioavailability or modulate the epithelial and microbiota responses will be revised. Food components and additives, including probiotics, will be considered. Finally, limitations of current approaches to tackle this problem and future lines of research will be discussed.
Collapse
Affiliation(s)
| | - Adrián Domene
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Paterna, Spain
| | - Alicia Sánchez
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Paterna, Spain
| | - Dinoraz Vélez
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Paterna, Spain
| | - Vicente Monedero
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Paterna, Spain
| | - Vicenta Devesa
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Paterna, Spain
| | - Manuel Zúñiga
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Paterna, Spain.
| |
Collapse
|
23
|
Abasilim C, Persky V, Turyk ME. Association of Blood Total Mercury with Dyslipidemia in a sample of U.S. Adolescents: Results from the National Health and Nutrition Examination Survey Database, 2011-2018. HYGIENE AND ENVIRONMENTAL HEALTH ADVANCES 2023; 6:100047. [PMID: 38617034 PMCID: PMC11014419 DOI: 10.1016/j.heha.2023.100047] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Background Abnormal lipid profiles in adolescents predict metabolic and cardiovascular diseases in adulthood. While seafood consumption is the primary source of mercury exposure, it also provides beneficial nutrients such as omega-3 fatty acids (O3FA). Prior studies indicate that blood total mercury (TBHg) has endocrine disrupting effects and may be associated with abnormal lipid profiles in adolescents. However, the impact of beneficial nutrients on this relationship has not been examined. Our study investigated the relationship of TBHg with dyslipidemia and lipid profiles and potential confounding and modification of these relationships by sex, body mass index (BMI), selenium and O3FA from seafood consumption. Methods We examined 1,390 National Health and Nutrition Examination Survey participants 12-19 years of age from the 2011-2018 cycles. Using logistic and linear regression adjusted for survey design variables and stratified by sex a priori, we estimated the associations of TBHg and methylmercury with dyslipidemia, and with total cholesterol (TC), high (HDL-C) and low-density lipoprotein cholesterol (LDL-C) and triglycerides. Results The geometric mean of TBHg in this adolescent population was 0.44 μg/L. After controlling for socio-demographic covariates, BMI, serum selenium, age at menarche (females only) and average daily intake of O3FA; TBHg was significantly associated with higher TC levels (β=3.34, 95% CI: 0.19, 6.50; p<0.05) in females but not males. Methyl Hg was also associated with increased TC, as well as decreased HDL-C in females but not males. We did not find significant associations of Hg exposure with dyslipidemia, LDL-C or triglycerides levels in either male or female adolescents. However, we observed evidence of effect modification by BMI and serum selenium for associations of TBHg with TC levels in male and female adolescents, respectively. Conclusion Our findings of elevated TC levels in females but not males necessitates further research to better understand the underlying mechanisms driving these sex-specific associations.
Collapse
Affiliation(s)
- Chibuzor Abasilim
- Division of Epidemiology and Biostatistics, School of Public Health, University of Illinois Chicago, Chicago, IL
| | - Victoria Persky
- Division of Epidemiology and Biostatistics, School of Public Health, University of Illinois Chicago, Chicago, IL
| | - Mary E. Turyk
- Division of Epidemiology and Biostatistics, School of Public Health, University of Illinois Chicago, Chicago, IL
| |
Collapse
|
24
|
Liang K, Bai S, Zhu H. Effects of cadmium, lead, mercury, chromium, and selenium co-treatment on egg quality and fatty acids. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27493-1. [PMID: 37199839 DOI: 10.1007/s11356-023-27493-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 05/03/2023] [Indexed: 05/19/2023]
Abstract
This study aimed to reveal the effect of selenium (Se) and heavy metals (chromium (Cr), cadmium (Cd), lead (Pb), and mercury (Hg)) on the quality, fatty acids, and 13 kinds of ions in the egg yolk and albumen. Four experimental groups were established, including a control group (control; basal diet), Se group (basal diet + Se), heavy metals group (basal diet + CdCl2 + Pb(NO3)2 + HgCl2 + CrCl3), and Se + heavy metal (HM) group (basal diet + Se + CdCl2 + Pb(NO3)2 + HgCl2 + CrCl3). Se supplementation significantly increased the experimental egg yolk percentage since Se accumulation mainly occurred in the yolks of the eggs. The Cr content in the yolks of the Se + heavy metal groups decreased at 28 days, while a significant reduction was evident in the Cd and Hg levels of the Se + heavy metal yolks compared to the heavy metal group at 84 days. The complex interactions between the elements were analyzed to determine the positive and negative correlations. Se displayed a high positive correlation with Cd and Pb in the yolk and albumen, while the heavy metals minimally affected the fatty acids in the egg yolk.
Collapse
Affiliation(s)
- Kehong Liang
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China.
| | - Shiping Bai
- Institute of Animal Nutrition, Feed Engineering Research Centre of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Hong Zhu
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| |
Collapse
|
25
|
Kong X, Zhang J, Li Y, Otsuka S, Liu Q, He Q. Selenium in the liver facilitates the biodilution of mercury in the muscle of Planiliza haematocheilus in the Jiaozhou Bay, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 258:114981. [PMID: 37163907 DOI: 10.1016/j.ecoenv.2023.114981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/25/2023] [Accepted: 05/02/2023] [Indexed: 05/12/2023]
Abstract
There are increasing evidences that the biodilution effect can significantly reduce the biomagnification of mercury (Hg) in fish. The significant antagonism of selenium (Se) -Hg may have a potential diluting effect on Hg in fish; however, there is still lack of knowledge on such effect. To reveal the Se-Hg interaction and its role in controlling the biodilution effect of Hg, we investigated levels of Hg and Se in the muscle and liver of redlip mullet from Jiaozhou Bay, China, an urbanized semi-enclosed bay highly impacted by human activities. In general, Hg levels in fish muscle were significantly negatively correlated to the levels of Se in the liver and fish size for fish with a size of < 200 mm, indicating that the antagonistic effect of Se on Hg increased with fish growth. This relationship was not significant for fish with a size of > 200 mm, possibly because the normal metabolism of Hg in muscle was hindered by homeostatic regulation or physiological activities such as gonadal development in vivo. Furthermore, the molar ratio of Se in the liver/Hg in the muscle was significantly increasing with Se/Hg in the liver, suggesting that the liver may be the key organ involved in Se-Hg antagonism. Moreover, both ratios continued to decrease with increasing fish size, implying that the antagonistic effect weakens with fish growth. These results indicate that Hg sequestration by liver may be a key mechanism of Se-Hg antagonism in fish and function as a driver for the biodilution effect of Hg, especially at a size of < 200 mm. These findings are further supported by the established linear model of Se-Hg antagonism at different developmental stages.
Collapse
Affiliation(s)
- Xiangyu Kong
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Jing Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Faculty of Science, Academic Assembly, University of Toyama, 3190 Gofuku, Toyama 9308555, Japan.
| | - Yanbin Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China.
| | - Shinpei Otsuka
- Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama 9308555, Japan
| | - Qian Liu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Qian He
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
26
|
Singh K, Blechinger S, Pelletier L, Karthikeyan S, St-Amand A, Liberda EN, Chan HM. Characterizing variability in total mercury hair:blood ratio in the general Canadian population. ENVIRONMENTAL RESEARCH 2023; 224:115491. [PMID: 36791836 DOI: 10.1016/j.envres.2023.115491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/26/2023] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND/OBJECTIVES The body burden of mercury in humans can be measured through hair or blood biomarkers. To compare results from different studies, it is often required to convert mercury in hair to an equivalent level in blood, using a default hair:blood ratio of 250:1 by the World Health Organization (WHO). However, the actual ratio may vary within and between populations. The objectives of this study were to analyze the hair:blood mercury ratio in the general Canadian population, explore factors associated with higher/lower ratios, and determine if the standard ratio of 250:1 is supported. METHODS The Canadian Health Measures Survey (CHMS) Cycle 5 (2016-2017) measured total mercury (THg) in both hair and blood of 1168 participants 20-59 years of age. We calculated geometric mean (GM) concentrations of THg for this entire sample and subgroups. The subgroups included biological sex, women of childbearing age, race, hair treatments, categories of blood and hair selenium, urinary arsenobetaine/arsenocholine, categories of blood and hair mercury, and food consumption. We calculated a hair:blood ratio for each participant and determined population-level ratios from the GMs of the distributions. Differences by subgroups, and agreement with the WHO ratio of 250:1, were tested. The combined effect of factors on the THg hair:blood ratio was explored using staged regression analysis. RESULTS For participants with paired hair and blood mercury measurements, the GM of the hair:blood THg ratio was 293 (95%CI:273-316), and significantly >250. In women of childbearing age, the ratio did not differ from 250. The GMs of the ratio were higher (i.e.>300) for second tertile blood selenium (365, 95%CI:307-433), third and fourth quartiles hair mercury (347, 95%CI:308-390 and 376, 95%CI:336-422), and consumers of shellfish (338, 95%CI:308-371). Shellfish consumption was the only statistically significant factor associated with the hair:blood ratio as identified in the regression model. CONCLUSIONS The mean hair:blood THg ratio among Canadians generally exceeded the default ratio of 250:1. Higher ratios were observed in certain subgroups, such as seafood consumers, and shellfish consumption was the most important variable associated with the ratio. Our results suggest that population-specific hair:blood THg ratios be considered, if possible, when converting mercury levels from hair to blood to better characterize the variation around the conversion.
Collapse
Affiliation(s)
- Kavita Singh
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Canada.
| | - Scott Blechinger
- Bureau of Chemical Safety, Food Directorate, Health Canada, Ottawa, Canada
| | - Luc Pelletier
- Bureau of Chemical Safety, Food Directorate, Health Canada, Ottawa, Canada
| | - Subramanian Karthikeyan
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Canada
| | - Annie St-Amand
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Canada
| | - Eric N Liberda
- School of Occupational and Public Health, Toronto Metropolitan University, Toronto, Canada
| | - Hing Man Chan
- Department of Biology, University of Ottawa, Ottawa, Canada
| |
Collapse
|
27
|
Bottini CLJ, MacDougall-Shackleton SA. Methylmercury effects on avian brains. Neurotoxicology 2023; 96:140-153. [PMID: 37059311 DOI: 10.1016/j.neuro.2023.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 04/03/2023] [Accepted: 04/11/2023] [Indexed: 04/16/2023]
Abstract
Methylmercury (MeHg) is a concerning contaminant due to its ubiquity and harmful effects on organisms. Although birds are important models in the neurobiology of vocal learning and adult neuroplasticity, the neurotoxic effects of MeHg are less understood in birds than mammals. We surveyed the literature on MeHg effects on biochemical changes in the avian brain. Publication rates of papers related to neurology and/or birds and/or MeHg increased with time and can be linked with historical events, regulations, and increased understanding of MeHg cycling in the environment. However, publications on MeHg effects on the avian brain remain relatively low across time. The neural effects measured to evaluate MeHg neurotoxicity in birds changed with time and researcher interest. The measures most consistently affected by MeHg exposure in birds were markers of oxidative stress. NMDA, acetylcholinesterase, and Purkinje cells also seem sensitive to some extent. MeHg exposure has the potential to affect most neurotransmitter systems but more studies are needed for validation in birds. We also review the main mechanisms of MeHg-induced neurotoxicity in mammals and compare it to what is known in birds. The literature on MeHg effects on the avian brain is limited, preventing full construction of an adverse outcome pathway. We identify research gaps for taxonomic groups such as songbirds, and age- and life-stage groups such as immature fledgling stage and adult non-reproductive life stage. In addition, results are often inconsistent between experimental and field studies. We conclude that future neurotoxicological studies of MeHg impacts on birds need to better connect the numerous aspects of exposure from molecular physiological effects to behavioural outcomes that would be ecologically or biologically relevant for birds, especially under challenging conditions.
Collapse
Affiliation(s)
- Claire L J Bottini
- University of Western Ontario, Department of Biology, 1151 Richmond St., London Ontario, N6A 5B7; Advanced Facility for Avian Research, University of Western Ontario, London, Ontario, Canada.
| | - Scott A MacDougall-Shackleton
- Advanced Facility for Avian Research, University of Western Ontario, London, Ontario, Canada; University of Western Ontario, Department of Psychology, 1151 Richmond St., London Ontario, N6A 5C2
| |
Collapse
|
28
|
Tomza-Marciniak A, Pilarczyk B, Drozd R, Pilarczyk R, Juszczak-Czasnojć M, Havryliak V, Podlasińska J, Udała J. Selenium and mercury concentrations, Se:Hg molar ratios and their effect on the antioxidant system in wild mammals. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 322:121234. [PMID: 36758931 DOI: 10.1016/j.envpol.2023.121234] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
The aim of this study was to a) evaluate the concentration of Se and Hg and their relationship in the tissues of 4 species of wild mammals, including Se:Hg molar ratios, and b) evaluate the effect of the analysed elements and their mutual proportions expressed as Se:Hg molar ratio, on the antioxidant system in the tissues of the tested animals. The study was performed on 31 animals belonging to four species: wild boar, red fox, roe deer, brown hare. Determination of Hg in liver, kidney and muscle of animals was performed using an AMA 254 mercury analyser. Total Se concentrations were determined using the spectrofluorometric method. In omnivores demonstrated higher Se concentrations in all analysed organs compared to the herbivores. The highest concentration of Hg was found in the kidneys of the tested animals, and the lowest in the muscles. High and moderate correlation between Se and Hg was observed in the liver of omnivorous, while in herbivores this correlation was weak. In all analysed samples, the Se:Hg molar ratios were above 1 (min: liver 5.9, max: kidney 110). Generally, the highest Se:Hg ratio values were found in kidney and the lowest in liver of tested animals. No significant correlation was found between GPx, GST and SOD activity and Se or Hg concentration in analysed organs. But it was observed that Se:Hg molar was negatively correlated with CAT activity in the most samples. The obtained results may suggest that omnivorous animals demonstrate greater Hg sequestration in the liver than herbivores, which has been proposed as one of the mechanisms of Se antagonistic action towards Hg. The ratio between Se and Hg, rather than the concentration of these elements in organs, affected the antioxidant status in the animal organism, specifically the CAT activity.
Collapse
Affiliation(s)
- Agnieszka Tomza-Marciniak
- Department of Animal Reproduction Biotechnology and Environmental Hygiene, West Pomeranian University of Technology, Szczecin, Janickiego 29, 71-270, Szczecin, Poland.
| | - Bogumiła Pilarczyk
- Department of Animal Reproduction Biotechnology and Environmental Hygiene, West Pomeranian University of Technology, Szczecin, Janickiego 29, 71-270, Szczecin, Poland
| | - Radosław Drozd
- Department of Microbiology and Biotechnology, West Pomeranian University of Technology, Szczecin, Al. Piastów 45, 70-311, Szczecin, Poland
| | - Renata Pilarczyk
- Laboratory of Biostatistics, West Pomeranian University of Technology, Szczecin, Janickiego 29, 71-270, Szczecin, Poland
| | - Marta Juszczak-Czasnojć
- Department of Animal Reproduction Biotechnology and Environmental Hygiene, West Pomeranian University of Technology, Szczecin, Janickiego 29, 71-270, Szczecin, Poland
| | - Viktoriia Havryliak
- Department of Technology of Biologically Active Substances, Pharmacy and Biotechnology, Institute of Chemistry and Chemical Technologies, Lviv Polytechnic National University, 79000, Lviv, Ukraine
| | - Joanna Podlasińska
- Department of Environmental Management, West Pomeranian University of Technology, Szczecin, Ul. Juliusza Słowackiego 17, 71-434, Szczecin, Poland
| | - Jan Udała
- Department of Animal Reproduction Biotechnology and Environmental Hygiene, West Pomeranian University of Technology, Szczecin, Janickiego 29, 71-270, Szczecin, Poland
| |
Collapse
|
29
|
Selenium, Iodine and Iron-Essential Trace Elements for Thyroid Hormone Synthesis and Metabolism. Int J Mol Sci 2023; 24:ijms24043393. [PMID: 36834802 PMCID: PMC9967593 DOI: 10.3390/ijms24043393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/16/2023] [Accepted: 01/31/2023] [Indexed: 02/11/2023] Open
Abstract
The adequate availability and metabolism of three essential trace elements, iodine, selenium and iron, provide the basic requirements for the function and action of the thyroid hormone system in humans, vertebrate animals and their evolutionary precursors. Selenocysteine-containing proteins convey both cellular protection along with H2O2-dependent biosynthesis and the deiodinase-mediated (in-)activation of thyroid hormones, which is critical for their receptor-mediated mechanism of cellular action. Disbalances between the thyroidal content of these elements challenge the negative feedback regulation of the hypothalamus-pituitary-thyroid periphery axis, causing or facilitating common diseases related to disturbed thyroid hormone status such as autoimmune thyroid disease and metabolic disorders. Iodide is accumulated by the sodium-iodide-symporter NIS, and oxidized and incorporated into thyroglobulin by the hemoprotein thyroperoxidase, which requires local H2O2 as cofactor. The latter is generated by the dual oxidase system organized as 'thyroxisome' at the surface of the apical membrane facing the colloidal lumen of the thyroid follicles. Various selenoproteins expressed in thyrocytes defend the follicular structure and function against life-long exposure to H2O2 and reactive oxygen species derived therefrom. The pituitary hormone thyrotropin (TSH) stimulates all processes required for thyroid hormone synthesis and secretion and regulates thyrocyte growth, differentiation and function. Worldwide deficiencies of nutritional iodine, selenium and iron supply and the resulting endemic diseases are preventable with educational, societal and political measures.
Collapse
|
30
|
Kljaković-Gašpić Z, Dvoršćak M, Orct T, Sekovanić A, Klinčić D, Jagić K, Šebešćen D, Klasiček E, Zanella D. Metal(loid)s and persistent organic pollutants in yellow European eel from the Raša River, Croatia. MARINE POLLUTION BULLETIN 2023; 187:114527. [PMID: 36608477 DOI: 10.1016/j.marpolbul.2022.114527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/25/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
The anthropogenic impact on the aquatic environment of the Raša River (Croatia) was investigated through the analysis of seven polybrominated diphenyl ethers (PBDEs), seven polychlorinated biphenyls (PCBs), three DDT isomers, and 22 major and trace elements using yellow European eel (Anguilla anguilla L.) as a biological indicator of contamination. The obtained data indicated generally low contamination status in the surrounding area. Levels of all organic contaminants in muscle significantly increased with lipid content, length, weight and body condition. In both muscle and liver, most metal(loid)s decreased or remained unchanged with increasing size, while at downstream location only several elements (Cd, Cu, Fe, Na, Se, U, V, Zn) accumulated in the liver with fish growth. Spatial analysis revealed higher pressure of Ag, Cd, Cr, Mo, Tl, U, and V at the downstream location, revealing the potentially limited impact of historical coal mining industry on the lower reaches of the Raša River.
Collapse
Affiliation(s)
- Zorana Kljaković-Gašpić
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10 000 Zagreb, Croatia
| | - Marija Dvoršćak
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10 000 Zagreb, Croatia.
| | - Tatjana Orct
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10 000 Zagreb, Croatia
| | - Ankica Sekovanić
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10 000 Zagreb, Croatia
| | - Darija Klinčić
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10 000 Zagreb, Croatia
| | - Karla Jagić
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10 000 Zagreb, Croatia
| | - Dora Šebešćen
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10 000 Zagreb, Croatia; University of Zagreb, Faculty of Science, Department of Biology, Rooseveltov trg 6, 10 000 Zagreb, Croatia
| | - Elena Klasiček
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10 000 Zagreb, Croatia; University of Zagreb, Faculty of Science, Department of Biology, Rooseveltov trg 6, 10 000 Zagreb, Croatia
| | - Davor Zanella
- University of Zagreb, Faculty of Science, Department of Biology, Rooseveltov trg 6, 10 000 Zagreb, Croatia
| |
Collapse
|
31
|
de Medeiros Costa G, Lázaro WL, Hurtado TC, Teodoro PE, Davée Guimarães JR, Ignácio ÁRA, Filho MDS, Díez S. New insights on the use of bill sheath as a biomonitoring tool for mercury in two kingfisher species: A comparison with different tissues. ENVIRONMENTAL RESEARCH 2023; 218:114966. [PMID: 36455629 DOI: 10.1016/j.envres.2022.114966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
Bird species have been widely used as suitable bioindicators of environmental mercury (Hg). However, there is still some debate about the most suitable tissue to indicate Hg body burden in birds. For a long time, blood and feathers have proved to be relevant to monitor Hg at different time scales, and recently, bill sheath has been suggested as a potential tissue to this end. In the present study, we evaluated THg in muscle, liver, feathers, claws, and bill sheath in two waterbird species (i.e. the ringed and the Amazon kingfishers) from the Teles Pires, Juruena and Paraguay rivers. Considering all species and sites, feathers (5.47 ± 2.15 μg/g) and bill sheath (3.39 ± 1.37 μg/g) had mean THg concentrations about 2-, 3- and 10-times higher than claws, liver and muscle, respectively. When bird species were segregated, the ringed kingfisher showed THg values 1.8 times higher than the Amazon kingfisher in all tissues. Moreover, results showed that the Amazon kingfisher from the Juruena and Teles Pires rivers was clearly separated from the Paraguay River (control site), and was associated with higher THg values in the claws and feathers. Results obtained for the THg concentrations in bill sheath, muscle and liver tissues of the Amazon kingfisher using multivariate analysis of canonical variates (CVA) showed a pattern of segregation between the sampling areas, being the highest THg values in Teles Pires River samples. The largest bill sheath vector in the CVA suggests that this tissue is a key variable in the segregation of the samples. Overall, feathers may be useful for effects monitoring or spatial patterns, whereas bill sheath, which are more invasive, may be advantejous for temporal trends and retrospective studies of Hg pollution.
Collapse
Affiliation(s)
- Gerlane de Medeiros Costa
- Postgraduate Program in Environmental Sciences, Limnology Research Center, Biodiversity, Ethnobiology of the Pantanal (CELBE), State University of Mato Grosso - UNEMAT, Cáceres Campus, Mato Grosso, Brazil
| | - Wilkinson Lopes Lázaro
- Postgraduate Program in Environmental Sciences, Limnology Research Center, Biodiversity, Ethnobiology of the Pantanal (CELBE), State University of Mato Grosso - UNEMAT, Cáceres Campus, Mato Grosso, Brazil
| | - Thaysa Costa Hurtado
- Postgraduate Program in Environmental Sciences, Limnology Research Center, Biodiversity, Ethnobiology of the Pantanal (CELBE), State University of Mato Grosso - UNEMAT, Cáceres Campus, Mato Grosso, Brazil
| | | | - Jean Remy Davée Guimarães
- Tracers Laboratory, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro - UFRJ - Rio de Janeiro, RJ, Brazil
| | - Áurea Regina Alves Ignácio
- Postgraduate Program in Environmental Sciences, Limnology Research Center, Biodiversity, Ethnobiology of the Pantanal (CELBE), State University of Mato Grosso - UNEMAT, Cáceres Campus, Mato Grosso, Brazil
| | - Manoel Dos Santos Filho
- Postgraduate Program in Environmental Sciences, Limnology Research Center, Biodiversity, Ethnobiology of the Pantanal (CELBE), State University of Mato Grosso - UNEMAT, Cáceres Campus, Mato Grosso, Brazil
| | - Sergi Díez
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain.
| |
Collapse
|
32
|
Kose O, Mantecca P, Costa A, Carrière M. Putative adverse outcome pathways for silver nanoparticle toxicity on mammalian male reproductive system: a literature review. Part Fibre Toxicol 2023; 20:1. [PMID: 36604752 PMCID: PMC9814206 DOI: 10.1186/s12989-022-00511-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/11/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Adverse outcome pathways (AOPs) are conceptual frameworks that organize knowledge about biological interactions and toxicity mechanisms. They present a sequence of events commencing with initial interaction(s) of a stressor, which defines the perturbation in a biological system (molecular initiating event, MIE), and a dependent series of key events (KEs), ending with an adverse outcome (AO). AOPs have recently become the subject of intense studies in a view to better understand the mechanisms of nanomaterial (NM) toxicity. Silver nanoparticles (Ag NPs) are one of the most explored nanostructures and are extensively used in various application. This, in turn, has increased the potential for interactions of Ag NPs with environments, and toxicity to human health. The aim of this study was to construct a putative AOPs (pAOP) related to reproductive toxicity of Ag NPs, in order to lay the groundwork for a better comprehension of mechanisms affecting both undesired toxicity (against human cell) and expected toxicity (against microorganisms). METHODS PubMed and Scopus were systematically searched for peer-reviewed studies examining reproductive toxicity potential of Ag NPs. The quality of selected studies was assessed through ToxRTool. Eventually, forty-eight studies published between 2005 and 2022 were selected to identify the mechanisms of Ag NPs impact on reproductive function in human male. The biological endpoints, measurements, and results were extracted from these studies. Where possible, endpoints were assigned to a potential KE and an AO using expert judgment. Then, KEs were classified at each major level of biological organization. RESULTS We identified the impairment of intracellular SH-containing biomolecules, which are major cellular antioxidants, as a putative MIE, with subsequent KEs defined as ROS accumulation, mitochondrial damage, DNA damage and lipid peroxidation, apoptosis, reduced production of reproductive hormones and reduced quality of sperm. These successive KEs may result in impaired male fertility (AO). CONCLUSION This research recapitulates and schematically represents complex literature data gathered from different biological levels and propose a pAOP related to the reproductive toxicity induced by AgNPs. The development of AOPs specific to NMs should be encouraged in order to provide new insights to gain a better understanding of NP toxicity.
Collapse
Affiliation(s)
- Ozge Kose
- grid.457348.90000 0004 0630 1517Univ. Grenoble-Alpes, CEA, CNRS, IRIG, SyMMES-CIBEST, 38000 Grenoble, France
| | - Paride Mantecca
- grid.7563.70000 0001 2174 1754Polaris Research Centre, Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza, 1, 20126 Milan, Italy
| | - Anna Costa
- grid.5326.20000 0001 1940 4177CNR-ISTEC, Institute of Science and Technology for Ceramics-National Research Council of Italy, Via Granarolo 64, 48018 Faenza, Italy
| | - Marie Carrière
- Univ. Grenoble-Alpes, CEA, CNRS, IRIG, SyMMES-CIBEST, 38000, Grenoble, France.
| |
Collapse
|
33
|
Xu J, Zhang Q, Wang S, Nan Z, Long S, Wu Y, Dong S. Bioavailability, transfer, toxicological effects, and contamination assessment of arsenic and mercury in soil-corn systems. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:10063-10078. [PMID: 36066802 DOI: 10.1007/s11356-022-22847-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
Sewage irrigation has solved the shortage of agricultural water and increased the content of heavy metal(loid)s (HMs) in soil-crop systems, which harms human health via the food chain. In this study, 43 pairs of soil and corn samples (leaf, stem1, stem2, stem3, root, husk, grain, and corncob) were collected in the Dongdagou (DDG) and Xidagou (XDG) streams of Baiyin City. Fraction and transfer of As and Hg were investigated, and toxicological effects and contamination were assessed in soil-corn systems. The results showed that the mean values of As and Hg in soil were 33.79 mg/kg and 0.96 mg/kg, respectively, which exceeded the soil background values in Gansu Province. As and Hg are mainly dominated by the residual fraction. Total and bioavailability contributed significantly to As and Hg accumulation in corn, with root, stem3, and leaf accumulating more strongly. The results based on the bioavailability concentration soil-corn transfer factor indicated that As and Hg tended to accumulate more in the root, stem3, and leaf and less in grain, and further assessment of the human health effects of consuming contaminated cron is needed. Scanning electron microscope (SEM) and Fourier transform infrared (FTIR) results showed that As and Hg were not significantly toxic to corn parts, indicating morphology. As and Hg were bound to hydroxyl groups in the outer epidermal cell wall of the roots, thereby reducing upward translocation. The trinity assessment (TA) model results indicated that the most severe contamination was found in root and stem1. The TA provides a practical tool for soil-cron systems and helps develop management strategies to prevent ecological hazards.
Collapse
Affiliation(s)
- Jun Xu
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Qian Zhang
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
- Department of Environmental Science and Engineering, Sichuan University, Sichuan, 610065, China
| | - Shengli Wang
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Zhongren Nan
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Song Long
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yining Wu
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Suhang Dong
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
34
|
Selenol (-SeH) as a target for mercury and gold in biological systems: Contributions of mass spectrometry and atomic spectroscopy. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
35
|
Ralston NVC. Concomitant selenoenzyme inhibitor exposures as etiologic contributors to disease: Implications for preventative medicine. Arch Biochem Biophys 2023; 733:109469. [PMID: 36423662 DOI: 10.1016/j.abb.2022.109469] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/16/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022]
Abstract
The physiological activities of selenium (Se) occur through enzymes that incorporate selenocysteine (Sec), a rare but important amino acid. The human genome includes 25 genes coding for Sec that employ it to catalyze challenging reactions. Selenoenzymes control thyroid hormones, calcium activities, immune responses, and perform other vital roles, but most are devoted to preventing and reversing oxidative damage. As the most potent intracellular nucleophile (pKa 5.2), Sec is vulnerable to binding by metallic and organic soft electrophiles (E*). These electron poor reactants initially form covalent bonds with nucleophiles such as cysteine (Cys) whose thiol (pKa 8.3) forms adducts which function as suicide substrates for selenoenzymes. These adducts orient E* to interact with Sec and since Se has a higher affinity for E* than sulfur, the E* transfers to Sec and irreversibly inhibits the enzyme's activity. Organic electrophiles have lower Se-binding affinities than metallic E*, but exposure sources are more abundant. Individuals with poor Se status are more vulnerable to the toxic effects of high E* exposures. The relative E*:Se stoichiometries remain undefined, but the aggregate effects of multiple E* exposures are predicted to be additive and possibly synergistic under certain conditions. The potential for the combined Se-binding effects of common pharmaceutical, dietary, or environmental E* require study, but even temporary loss of selenoenzyme activities would accentuate oxidative damage to tissues. As various degenerative diseases are associated with accumulating DNA damage, defining the effects of complementary E* exposures on selenoenzyme activities may enhance the ability of preventative medicine to support healthy aging.
Collapse
Affiliation(s)
- Nicholas V C Ralston
- Earth System Science and Policy, University of North Dakota, Grand Forks, ND, USA.
| |
Collapse
|
36
|
Dack K, Wootton RE, Taylor CM, Lewis SJ. Prenatal Mercury Exposure and Infant Weight Trajectories in a UK Observational Birth Cohort. TOXICS 2022; 11:10. [PMID: 36668736 PMCID: PMC9864311 DOI: 10.3390/toxics11010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Mercury is highly toxic metal found in trace quantities in common foods. There is concern that exposure during pregnancy could impair infant development. Epidemiological evidence is mixed, but few studies have examined postnatal growth. Differences in nutrition, exposures, and the living environment after birth may make it easier to detect a negative impact from mercury toxicity on infant growth. This study includes 544 mother-child pairs from the Avon Longitudinal Study of Parents and Children. Blood mercury was measured in early pregnancy and infant weight at 10 intervals between 4 and 61 months. Mixed-effect models were used to estimate the change in infant weight associated with prenatal mercury exposure. The estimated difference in monthly weight gain was -0.02 kg per 1 standard deviation increase in Hg (95% confidence intervals: -0.10 to 0.06 kg). When restricted to the 10th decile of Hg, the association with weight at each age level was consistently negative but with wide confidence intervals. The lack of evidence for an association may indicate that at Hg levels in this cohort (median 1.9 µg/L) there is minimal biological impact, and the effect is too small to be either clinically relevant or detectable.
Collapse
Affiliation(s)
- Kyle Dack
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol BS8 2BN, UK
| | - Robyn E. Wootton
- Nic Waals Institute, Lovisenberg Diaconal Hospital, 0771 Oslo, Norway
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2BN, UK
| | - Caroline M. Taylor
- Centre for Academic Child Health, Bristol Medical School, University of Bristol, Bristol BS8 1NU, UK
| | - Sarah J. Lewis
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol BS8 2BN, UK
| |
Collapse
|
37
|
Sebastiano M, Eens M, Bustamante P, Chastel O, Costantini D. Seabirds under environmental pressures: Food supplementation has a larger impact than selenium on chicks exposed to mercury and a viral disease. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.963512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Although infectious disease outbreaks represent a serious threat for wildlife population viability, the environmental factors that underlie such outbreaks are poorly investigated. The French Guiana breeding population of Magnificent frigatebird Fregata magnificens is subjected to recurrent episodes of chicks’ mortality likely caused by a viral disease. We hypothesized that high mercury (Hg) concentrations may be responsible for the emergence of clinical signs. We therefore investigated whether healthy and sick chicks show different Hg concentrations in blood. Because the essential element selenium (Se) may be highly depleted during Hg poisoning, we further experimentally tested whether an increased intake of dietary Se has an effect on blood levels of Hg, increases circulating Se, and improves the oxidative status of chicks. Finally, we compared the results of this experiment with a previous food supplementation experiment. Our results show similar Hg concentrations between healthy and sick chicks with visible clinical signs of the disease. Se concentrations were significantly depleted in sick chicks. Se concentrations increased while Hg concentrations simultaneously decreased in chicks that naturally recovered from the disease. Both the Se and fish supplementation experiments significantly increased Se concentrations in blood, while Hg levels were only modestly affected. Providing food to chicks appeared to have greater benefits than only supplementing chicks with Se pills as, although food supplementation had an impact on blood Se similar to that of supplementation with Se pills, it also reduced the vulnerability of chicks to the viral disease, possibly by reducing nutritional stress and providing essential nutrients.
Collapse
|
38
|
Taylor S, Terkildsen M, McQuilty R, Lee D, Wing-Simpson A, Gray R. Non-essential heavy metals and protective effects of selenium against mercury toxicity in endangered Australian sea lion (Neophoca cinerea) pups with hookworm disease. ENVIRONMENT INTERNATIONAL 2022; 169:107521. [PMID: 36148712 DOI: 10.1016/j.envint.2022.107521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/06/2022] [Accepted: 09/11/2022] [Indexed: 06/16/2023]
Abstract
The endangered Australian sea lion, Neophoca cinerea, faces ongoing population decline. Identification of key threats to N. cinerea population recovery, including disease and pollutants, is an objective of the species' recovery plan. Previous studies have identified Uncinaria sanguinis, an intestinal nematode, as a significant cause of disease and mortality in N. cinerea pups. Given the impact of heavy metals on the immune response, investigation of these pollutants is critical. To this end, the concentrations of arsenic (As), total mercury (Hg), cadmium (Cd), chromium (Cr), lead (Pb) and selenium (Se) were determined in blood collected from N. cinerea pups sampled during the 2017/18, 2019 and 2020/21 breeding seasons at Seal Bay Conservation Park, South Australia. Significant differences (p < 0.05) in Hg, As, Cr, and Se concentrations and molar ratio of Se:Hg were seen between breeding seasons. Pup age, maternal parity and inter-individual foraging behaviour were considered factors driving these differences. The concentrations of Hg (357, 198 and 241 µg/L) and As (225, 834 and 608 µg/L) were high in 2017/18, 2019 and 2020/21 respectively with Hg concentrations in the blood of N. cinerea pups above toxicological thresholds reported for marine mammals. The concentration of Se (1332, 647, 763 µg/L) and molar ratio of Se:Hg (9.47, 7.98 and 6.82) were low compared to other pinniped pups, indicating potential vulnerability of pups to the toxic effects of Hg. Significant (p < 0.05) negative associations for Pb and Cd with several red blood cell parameters suggest they could be exacerbating the anaemia caused by hookworm disease. Temporal (age-related) changes in element concentrations were also seen, such that pup age needs to be considered when interpreting bioaccumulation patterns. Further investigation of the role of elevated heavy metal concentrations on N. cinerea pup health, disease and development is recommended, particularly with respect to immunological impacts.
Collapse
Affiliation(s)
- Shannon Taylor
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camperdown, NSW 2006, Australia
| | | | - Robert McQuilty
- Department of Chemical Pathology, Royal Prince Alfred Hospital, Camperdown, Sydney 2050, Australia
| | - David Lee
- Department of Chemical Pathology, Royal Prince Alfred Hospital, Camperdown, Sydney 2050, Australia
| | - Aileen Wing-Simpson
- Department of Chemical Pathology, Royal Prince Alfred Hospital, Camperdown, Sydney 2050, Australia
| | - Rachael Gray
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camperdown, NSW 2006, Australia.
| |
Collapse
|
39
|
Bjørklund G, Zou L, Peana M, Chasapis CT, Hangan T, Lu J, Maes M. The Role of the Thioredoxin System in Brain Diseases. Antioxidants (Basel) 2022; 11:2161. [PMID: 36358532 PMCID: PMC9686621 DOI: 10.3390/antiox11112161] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/23/2022] [Accepted: 10/28/2022] [Indexed: 08/08/2023] Open
Abstract
The thioredoxin system, consisting of thioredoxin (Trx), thioredoxin reductase (TrxR), and NADPH, plays a fundamental role in the control of antioxidant defenses, cell proliferation, redox states, and apoptosis. Aberrations in the Trx system may lead to increased oxidative stress toxicity and neurodegenerative processes. This study reviews the role of the Trx system in the pathophysiology and treatment of Alzheimer's, Parkinson's and Huntington's diseases, brain stroke, and multiple sclerosis. Trx system plays an important role in the pathophysiology of those disorders via multiple interactions through oxidative stress, apoptotic, neuro-immune, and pro-survival pathways. Multiple aberrations in Trx and TrxR systems related to other redox systems and their multiple reciprocal relationships with the neurodegenerative, neuro-inflammatory, and neuro-oxidative pathways are here analyzed. Genetic and environmental factors (nutrition, metals, and toxins) may impact the function of the Trx system, thereby contributing to neuropsychiatric disease. Aberrations in the Trx and TrxR systems could be a promising drug target to prevent and treat neurodegenerative, neuro-inflammatory, neuro-oxidative stress processes, and related brain disorders.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Toften 24, 8610 Mo i Rana, Norway
| | - Lili Zou
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang 443002, China
| | - Massimiliano Peana
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Christos T. Chasapis
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Tony Hangan
- Faculty of Medicine, Ovidius University of Constanta, 900470 Constanta, Romania
| | - Jun Lu
- School of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| |
Collapse
|
40
|
Dietary Selenomethionine Reduce Mercury Tissue Levels and Modulate Methylmercury Induced Proteomic and Transcriptomic Alterations in Hippocampi of Adolescent BALB/c Mice. Int J Mol Sci 2022; 23:ijms232012242. [PMID: 36293098 PMCID: PMC9603801 DOI: 10.3390/ijms232012242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/06/2022] [Accepted: 10/11/2022] [Indexed: 12/02/2022] Open
Abstract
Methylmercury (MeHg) is a well-known environmental contaminant, particularly harmful to the developing brain. The main human dietary exposure to MeHg occurs through seafood consumption. However, seafood also contains several nutrients, including selenium, which has been shown to interact with MeHg and potentially ameliorate its toxicity. The aim of this study was to investigate the combined effects of selenium (as selenomethionine; SeMet) and MeHg on mercury accumulation in tissues and the effects concomitant dietary exposure of these compounds exert on the hippocampal proteome and transcriptome in mice. Adolescent male BALB/c mice were exposed to SeMet and two different doses of MeHg through their diet for 11 weeks. Organs, including the brain, were sampled for mercury analyses. Hippocampi were collected and analyzed using proteomics and transcriptomics followed by multi-omics bioinformatics data analysis. The dietary presence of SeMet reduced the amount of mercury in several organs, including the brain. Proteomic and RNA-seq analyses showed that both protein and RNA expression patterns were inversely regulated in mice receiving SeMet together with MeHg compared to MeHg alone. Several pathways, proteins and RNA transcripts involved in conditions such as immune responses and inflammation, oxidative stress, cell plasticity and Alzheimer’s disease were affected inversely by SeMet and MeHg, indicating that SeMet can ameliorate several toxic effects of MeHg in mice.
Collapse
|
41
|
Sha C, Li Z, Lu S, Hu X, Xu D. A dansyl-based fluorescent probe for turn-off and turn-on detection of Hg2+ in a full water system. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04846-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
42
|
Khan M, Soylak M. Deep Eutectic Solvent Based Liquid-Liquid Microextraction of Mercury in Water, Hair and Fish with Spectrophotometric Determination: A Green Protocol. ANAL LETT 2022. [DOI: 10.1080/00032719.2022.2121406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Mansoor Khan
- Faculty of Sciences, Department of Chemistry, Erciyes University, Kayseri, Turkey
- Technology Research & Application Center (TAUM), Erciyes University, Kayseri, Turkey
- Department of Chemistry, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Mustafa Soylak
- Faculty of Sciences, Department of Chemistry, Erciyes University, Kayseri, Turkey
- Technology Research & Application Center (TAUM), Erciyes University, Kayseri, Turkey
- Turkish Academy of Sciences (TUBA), Ankara, Turkey
| |
Collapse
|
43
|
Banerjee M, Chakravarty D, Kalwani P, Ballal A. Voyage of selenium from environment to life: Beneficial or toxic? J Biochem Mol Toxicol 2022; 36:e23195. [PMID: 35976011 DOI: 10.1002/jbt.23195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/22/2022] [Accepted: 07/21/2022] [Indexed: 11/08/2022]
Abstract
Selenium (Se), a naturally occurring metalloid, is an essential micronutrient for life as it is incorporated as selenocysteine in proteins. Although beneficial at low doses, Se is hazardous at high concentrations and poses a serious threat to various ecosystems. Due to this contrasting 'dual' nature, Se has garnered the attention of researchers wishing to unravel its puzzling properties. In this review, we describe the impact of selenium's journey from environment to diverse biological systems, with an emphasis on its chemical advantage. We describe the uneven distribution of Se and how this affects the bioavailability of this element, which, in turn, profoundly affects the habitat of a region. Once taken up, the subsequent incorporation of Se into proteins as selenocysteine and its antioxidant functions are detailed here. The causes of improved protein function due to the incorporation of redox-active Se atom (instead of S) are examined. Subsequently, the reasons for the deleterious effects of Se, which depend on its chemical form (organo-selenium or the inorganic forms) in different organisms are elaborated. Although Se is vital for the function of many antioxidant enzymes, how the pro-oxidant nature of Se can be potentially exploited in different therapies is highlighted. Furthermore, we succinctly explain how the presence of Se in biological systems offsets the toxic effects of heavy metal mercury. Finally, the different avenues of research that are fundamental to expand our understanding of selenium biology are suggested.
Collapse
Affiliation(s)
- Manisha Banerjee
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| | - Dhiman Chakravarty
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Prakash Kalwani
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| | - Anand Ballal
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
44
|
Hossain MS, Liyana E, Sifat SAD, Ameen F, Ullah MA, Jolly YN, Quraishi SB, Hossain M, Salleh S, Akter S, Hossain MA, Bin Mukhlish MZ, Elliott M. Trace element bioaccumulation in edible red seaweeds (Rhodophyta): A risk assessment for consumers. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119560. [PMID: 35654256 DOI: 10.1016/j.envpol.2022.119560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/13/2022] [Accepted: 05/29/2022] [Indexed: 06/15/2023]
Abstract
As a precursor to risk assessment and risk management through consuming contaminated seafood, food safety needs to be quantified and assured. Seaweed is an increasing dietary component, especially in developing countries, but there are few studies assessing uptake rates of contaminants from this route. As such, the present study determined likely human uptake due to the trace elemental (Fe, Mn, Ni, Cu, Zn, Se, Hg, and As) concentrations in the edible red seaweeds (Rhodophyta) Gelidium pusillum and Hypnea musciformis, growing in the industrialised Cox's Bazar coastal area of Bangladesh. Metal and metalloid concentrations in G. pusillum were in the order (mg/kg): Fe (797 ± 67) > Mn (69 ± 4) > Ni (12 ± 5) > Zn (9 ± 4) > Cu (9 ± 4) >Se (0.1 ± 0.1) > Hg (0.1 ± 0.01), and in H. musciformis: Fe (668 ± 58) > Mn (28 ± 5) > Ni (14 ± 2) > Zn (11 ± 5) > Cu (6 ± 4) >Se (0.2 ± 0.03) > Hg (0.04 ± 0.01). Despite the industrial activities in the area, and based on 10 g. day-1 seaweed consumption, it is concluded that these concentrations pose no risk to human health as part of a normal diet according to the targeted hazard quotient and hazard index (THQ and HI) (values < 1). In addition, and as a novel aspect for seaweeds, Selenium Health Benefit Values (Se-HBV) were determined and found to have positive values. Seaweed can be used as an absorber of inorganic metals for removing contamination in coastal waters. The results are a precursor to further research regarding the efficiency and rate at which seaweeds can sequester metal contamination in water. In addition, management techniques need to be developed thereby to control the contaminant inputs.
Collapse
Affiliation(s)
- Md Solaiman Hossain
- Dept. of Oceanography, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh.
| | - Eurida Liyana
- Dept. of Oceanography, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Saad Al-Din Sifat
- Dept. of Food Engineering and Tea Technology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Fuad Ameen
- Dept. of Botany & Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Md Akram Ullah
- Dept. of Fisheries and Marine Science, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Yeasmin Nahar Jolly
- Atmospheric and Environmental Chemistry Laboratory, Chemistry Division, Atomic Energy Center, Dhaka, 1000, Bangladesh
| | - Shamshad Begum Quraishi
- Atmospheric and Environmental Chemistry Laboratory, Chemistry Division, Atomic Energy Center, Dhaka, 1000, Bangladesh
| | - Mofazzal Hossain
- Dhaka Central International Medical College and Hospital, Dhaka, 1207, Bangladesh
| | - Sazlina Salleh
- Centre for Policy Research and International Studies, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia; Centre for Marine and Coastal Studies, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
| | - Sharmin Akter
- Dept. of Petroleum and Mining Engineering, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Mohammad Afzal Hossain
- Dept. of Food Engineering and Tea Technology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Muhammad Zobayer Bin Mukhlish
- Dept. of Chemical Engineering and Polymer Science, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Michael Elliott
- Dept. of Biological & Marine Sciences, University of Hull, Hull, HU6 7RX, United Kingdom; International Estuarine & Coastal Specialists Ltd., Leven, HU17 5LQ, United Kingdom
| |
Collapse
|
45
|
Toxic and essential trace element concentrations in Pacific walrus (Odobenus rosmarus divergens) skeletal muscle varies by location and reproductive status. Polar Biol 2022. [DOI: 10.1007/s00300-022-03069-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
46
|
James AK, Dolgova NV, Nehzati S, Korbas M, Cotelesage JJH, Sokaras D, Kroll T, O’Donoghue JL, Watson GE, Myers GJ, Pickering IJ, George GN. Molecular Fates of Organometallic Mercury in Human Brain. ACS Chem Neurosci 2022; 13:1756-1768. [PMID: 35543423 PMCID: PMC9977140 DOI: 10.1021/acschemneuro.2c00166] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Mercury is ubiquitous in the environment, with rising levels due to pollution and climate change being a current global concern. Many mercury compounds are notorious for their toxicity, with the potential of organometallic mercury compounds for devastating effects on the structures and functions of the central nervous system being of particular concern. Chronic exposure of human populations to low levels of methylmercury compounds occurs through consumption of fish and other seafood, although the health consequences, if any, from this exposure remain controversial. We have used high energy resolution fluorescence detected X-ray absorption spectroscopy to determine the speciation of mercury and selenium in human brain tissue. We show that the molecular fate of mercury differs dramatically between individuals who suffered acute organometallic mercury exposure (poisoning) and individuals with chronic low-level exposure from a diet rich in marine fish. For long-term low-level methylmercury exposure from fish consumption, mercury speciation in brain tissue shows methylmercury coordinated to an aliphatic thiolate, resembling the coordination environment observed in marine fish. In marked contrast, for short-term high-level exposure, we observe the presence of biologically less available mercuric selenide deposits, confirmed by X-ray fluorescence imaging, as well as mercury(II)-bis-thiolate complexes, which may be signatures of severe poisoning in humans. These differences between low-level and high-level exposures challenge the relevance of studies involving acute exposure as a proxy for low-level chronic exposure.
Collapse
Affiliation(s)
- Ashley K. James
- Toxicology Centre, 44 Campus Drive, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada
- Department of Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, Saskatchewan S7N 5E2, Canada
| | - Natalia V. Dolgova
- Department of Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, Saskatchewan S7N 5E2, Canada
| | - Susan Nehzati
- Department of Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, Saskatchewan S7N 5E2, Canada
| | - Malgorzata Korbas
- Canadian Light Source, 44 Innovation Blvd, Saskatoon, Saskatchewan S7N 2V3, Canada
| | - Julien J. H. Cotelesage
- Department of Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, Saskatchewan S7N 5E2, Canada
| | - Dimosthenis Sokaras
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, USA
| | - Thomas Kroll
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, USA
| | - John L. O’Donoghue
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642, USA
| | - Gene E. Watson
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642, USA
- Eastman Institute for Oral Health, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642, USA
| | - Gary J. Myers
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642, USA
- Departments of Neurology and Pediatrics, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642, USA
| | - Ingrid J. Pickering
- Toxicology Centre, 44 Campus Drive, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada
- Department of Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, Saskatchewan S7N 5E2, Canada
- Department of Chemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5C9, Canada
| | - Graham N. George
- Toxicology Centre, 44 Campus Drive, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada
- Department of Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, Saskatchewan S7N 5E2, Canada
- Department of Chemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5C9, Canada
| |
Collapse
|
47
|
Méndez-Fernandez P, Spitz J, Dars C, Dabin W, Mahfouz C, André JM, Chouvelon T, Authier M, Caurant F. Two cetacean species reveal different long-term trends for toxic trace elements in European Atlantic French waters. CHEMOSPHERE 2022; 294:133676. [PMID: 35077732 DOI: 10.1016/j.chemosphere.2022.133676] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
Cetaceans have been naturally exposed to toxic trace elements (TEs) on an evolutionary time scale. Hence, they have developed mechanisms to control and/or mitigate their toxic effects. These long-lived species located at high trophic positions and bioaccumulating toxic elements are assumed to be good biomonitoring organisms. However, anthropogenic emissions have strongly increased environmental levels of toxic TEs in the last decades, questioning the efficiency of the detoxication mechanisms in cetaceans. In this context, temporal trends of mercury (Hg), cadmium (Cd) and lead (Pb) concentrations were studied through the analysis of 264 individuals from two cetacean species the common dolphin (Delphinus delphis) and the harbour porpoise (Phocoena phocoena) and belonging to two different Management Units (MUs) for the latter. These individuals stranded along the French Atlantic coasts from 2000s to 2017. All the trends presented were age- and sex-corrected and stable isotope ratios of carbon (δ13C) and nitrogen (δ15N) were measured as proxies of their feeding ecology. Results showed that Pb concentrations clearly decreased over time in both species and MUs. This decrease agrees with the lead petrol regulation after 2000s, supporting the use of these species as valuable bioindicators of changes for TE levels in the marine environment. A significant long-term increase of total Hg concentrations was only observed in common dolphins. Cadmium concentrations also revealed different trends over the period in both species. The different Hg and Cd trends observed in the two species, probably reflected a contrasted contamination of habitat and prey species than a global increase of the contamination in the environment. These results highlight the necessity and gain of using different species to monitor changes in marine environments, each of them informing on the contamination of its own ecological niche. Lastly, the Se:Hg molar ratios of species suggested a low risk for Hg toxicity over time.
Collapse
Affiliation(s)
- Paula Méndez-Fernandez
- Observatoire Pelagis, UMS 3462- La Rochelle Université - CNRS, 5 Allées de L'océan, 17000, La Rochelle, France.
| | - Jérôme Spitz
- Observatoire Pelagis, UMS 3462- La Rochelle Université - CNRS, 5 Allées de L'océan, 17000, La Rochelle, France; Centre D'Etudes Biologiques de Chizé-La Rochelle, UMR 7372- Université de La Rochelle-CNRS, 5 Allées de L'océan, 17000, La Rochelle, France
| | - Cécile Dars
- Observatoire Pelagis, UMS 3462- La Rochelle Université - CNRS, 5 Allées de L'océan, 17000, La Rochelle, France
| | - Willy Dabin
- Observatoire Pelagis, UMS 3462- La Rochelle Université - CNRS, 5 Allées de L'océan, 17000, La Rochelle, France
| | - Celine Mahfouz
- National Center for Marine Sciences, National Council for Scientific Research in Lebanon (CNRS-L), Beirut, Lebanon
| | | | - Tiphaine Chouvelon
- Observatoire Pelagis, UMS 3462- La Rochelle Université - CNRS, 5 Allées de L'océan, 17000, La Rochelle, France; Ifremer, Unité Biogéochimie et Écotoxicologie, Laboratoire de Biogéochimie des Contaminants Métalliques (BE/LBCM), Rue de L'île D'Yeu, BP 21105, 44311, Nantes Cedex 03, France
| | - Matthieu Authier
- Observatoire Pelagis, UMS 3462- La Rochelle Université - CNRS, 5 Allées de L'océan, 17000, La Rochelle, France
| | - Florence Caurant
- Observatoire Pelagis, UMS 3462- La Rochelle Université - CNRS, 5 Allées de L'océan, 17000, La Rochelle, France; Centre D'Etudes Biologiques de Chizé-La Rochelle, UMR 7372- Université de La Rochelle-CNRS, 5 Allées de L'océan, 17000, La Rochelle, France
| |
Collapse
|
48
|
Vianna ADS, Câmara VDM, Barbosa MCDM, Santos ADSE, Asmus CIRF, Luiz RR, Jesus IMD. Exposição ao mercúrio e anemia em crianças e adolescentes de seis comunidades da Amazônia Brasileira. CIENCIA & SAUDE COLETIVA 2022; 27:1859-1871. [DOI: 10.1590/1413-81232022275.08842021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 06/01/2021] [Indexed: 12/23/2022] Open
Abstract
Resumo O mercúrio (Hg) é uma substância tóxica, sendo o consumo de pescados uma das principais fontes de exposição da população. Este artigo visa avaliar a associação entre anemia e exposição ao Hg na população infanto-juvenil de seis comunidades ribeirinhas da Amazônia Brasileira. Realizou-se a análise secundária de dados de estudos seccionais, incluindo 1.318 indivíduos, divididos em dois grupos segundo a influência do garimpo (grupo A sob influência, e grupo B sem influência). Métodos de análise multivariada foram realizados para verificar a associação entre variável de exposição (Hg no cabelo) e anemia, estratificando pelos grupos. Foram observados 348 casos de anemia (27,1%), sendo 206 entre o grupo B e 142 no grupo A. Houve diferença na mediana dos níveis de Hg entre os grupos (A = 12,8µg/g e B = 4,3µg/g, p = 0,01). Foi observada associação entre Hg no cabelo ≥ 6,0µg/g e anemia (OR = 1,38; IC95% = 1,02-1,87), fato que foi magnificado para o grupo A quando realizada estratificação (OR = 2,23; IC95% = 1,28-3,90). O estudo mostrou elevados níveis de Hg, principalmente no grupo A, e que essa substância pode ser um possível fator de risco para anemia. Além disso, as áreas geográficas pareceram modificar esse efeito, apontando para influência de outros fatores, fato que deve ser melhor avaliado.
Collapse
|
49
|
Famurewa AC, Renu K, Eladl MA, Chakraborty R, Myakala H, El-Sherbiny M, Elsherbini DMA, Vellingiri B, Madhyastha H, Ramesh Wanjari U, Goutam Mukherjee A, Valsala Gopalakrishnan A. Hesperidin and hesperetin against heavy metal toxicity: Insight on the molecular mechanism of mitigation. Biomed Pharmacother 2022; 149:112914. [DOI: 10.1016/j.biopha.2022.112914] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 11/02/2022] Open
|
50
|
Kendricks DR, Boomhower SR, Newland MC. Adolescence as a sensitive period for neurotoxicity: Lifespan developmental effects of methylmercury. Pharmacol Biochem Behav 2022; 217:173389. [PMID: 35452710 DOI: 10.1016/j.pbb.2022.173389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 04/04/2022] [Accepted: 04/11/2022] [Indexed: 10/18/2022]
Abstract
Neurotoxicity resulting from the environmental contaminant, methylmercury (MeHg), is a source of concern for many human populations that rely heavily on the consumption of fish and rice as stable ingredients in the diet. The developmental period of exposure is important both to the qualitative effects of MeHg and to the dose required to produce those effects. MeHg exposure during the sensitive prenatal period causes deleterious and long-lasting changes in neurodevelopment at particularly low doses. The effects include a wide host of cognitive and behavioral outcomes expressed in adulthood and sometimes not until aging. However, neurotoxic outcomes of methylmercury when exposure occurs during adolescence are only recently revealing impacts on human populations and animal models. This review examines the current body of work and showcases the sensitivity of adolescence, a period that straddles early development and adulthood, to methylmercury neurotoxicity and the implications such toxicity has in our understanding of methylmercury's effects in human populations and animal models.
Collapse
Affiliation(s)
- Dalisa R Kendricks
- Department of Psychology, Auburn University, Auburn, AL, United States of America.
| | - Steven R Boomhower
- Gradient, Boston, MA, United States of America; Harvard Division of Continuing Education, Harvard University, Cambridge, MA, United States of America
| | | |
Collapse
|