1
|
Liu G, Huang Z, Xu J, Zhang B, Lin T, He P. Simple and Efficient Synthesis of Ruthenium(III) PEDOT:PSS Complexes for High-Performance Stretchable and Transparent Supercapacitors. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:866. [PMID: 38786821 PMCID: PMC11124221 DOI: 10.3390/nano14100866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024]
Abstract
In the evolving landscape of portable electronics, there is a critical demand for components that meld stretchability with optical transparency, especially in supercapacitors. Traditional materials fall short in harmonizing conductivity, stretchability, transparency, and capacity. Although poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) stands out as an exemplary candidate, further performance enhancements are necessary to meet the demands of practical applications. This study presents an innovative and effective method for enhancing electrochemical properties by homogeneously incorporating Ru(III) into PEDOT:PSS. These Ru(III) PEDOT:PSS complexes are readily synthesized by dipping PEDOT:PSS films in RuCl3 solution for no longer than one minute, leveraging the high specific capacitance of Ru(III) while minimizing interference with transmittance. The supercapacitor made with this Ru(III) PEDOT:PSS complex demonstrated an areal capacitance of 1.62 mF cm-2 at a transmittance of 73.5%, which was 155% higher than that of the supercapacitor made with PEDOT:PSS under comparable transparency. Notably, the supercapacitor retained 87.8% of its initial capacitance even under 20% tensile strain across 20,000 cycles. This work presents a blueprint for developing stretchable and transparent supercapacitors, marking a significant stride toward next-generation wearable electronics.
Collapse
Affiliation(s)
- Guiming Liu
- State Key Laboratory of Precision Welding & Joining of Materials and Structures, Harbin Institute of Technology, Harbin 150001, China; (G.L.); (Z.H.); (J.X.)
| | - Zhao Huang
- State Key Laboratory of Precision Welding & Joining of Materials and Structures, Harbin Institute of Technology, Harbin 150001, China; (G.L.); (Z.H.); (J.X.)
| | - Jiujie Xu
- State Key Laboratory of Precision Welding & Joining of Materials and Structures, Harbin Institute of Technology, Harbin 150001, China; (G.L.); (Z.H.); (J.X.)
| | - Bowen Zhang
- School of Electrical Engineering, Tiangong University, Tianjin 300350, China;
| | - Tiesong Lin
- State Key Laboratory of Precision Welding & Joining of Materials and Structures, Harbin Institute of Technology, Harbin 150001, China; (G.L.); (Z.H.); (J.X.)
| | - Peng He
- State Key Laboratory of Precision Welding & Joining of Materials and Structures, Harbin Institute of Technology, Harbin 150001, China; (G.L.); (Z.H.); (J.X.)
| |
Collapse
|
2
|
Kim Y, Nam H, Ryu B, Son SY, Park SY, Park S, Youn SM, Yun C. Thermally Induced Phase Separation of the PEDOT:PSS Layer for Highly Efficient Laminated Polymer Light-Emitting Diodes. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38690839 DOI: 10.1021/acsami.4c03104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Among various conductive polymers, the poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) film has been studied as a promising material for use as a transparent electrode and a hole-injecting layer in organic optoelectronic devices. Due to the increasing demand for the low-cost fabrication of organic light-emitting diodes (OLEDs), PEDOT:PSS has been employed as the top electrode by using the coating or lamination method. Herein, a facile method is reported for the fabrication of highly efficient polymer light-emitting diodes (PLEDs) based on a laminated transparent electrode (LTE) consisting of successive PEDOT:PSS and silver-nanowire (AgNW) layers. In particular, thermally induced phase separation (TIPS) of the PEDOT:PSS film is found to depend on the annealing temperature (Tanneal) during preparation of the LTE. At Tanneal close to the glass transition temperature of the PSS chains, a PSS-rich phase with a large number of PSS- molecules enhances the work function of the PEDOT:PSS on the glass-side surface relative to the air side. By using the optimized LTEs, bidirectional laminated PLEDs are obtained with a total external quantum efficiency of 2.9% and a turn-on voltage of 2.6 V, giving a comparable performance to that of the reference bottom-emitting PLED based on a costly evaporated metal electrode. In addition, an analysis of the angular characteristics, including the variation in the electroluminescence spectra and the change in luminance according to the emission angle, indicates that the laminated PLED with the LTE provides a more uniform angular distribution regardless of the direction of emission. Detailed optical and electrical analyses are also performed to evaluate the suitability of LTEs for the low-cost fabrication of efficient PLEDs.
Collapse
Affiliation(s)
- Yejin Kim
- School of Polymer Science and Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Hyuckjin Nam
- School of Polymer Science and Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Boeun Ryu
- School of Polymer Science and Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Seo Yeong Son
- School of Polymer Science and Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Seong Yeon Park
- School of Polymer Science and Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Sejung Park
- School of Polymer Science and Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Sung-Min Youn
- Energy & Nano Technology Group, Korea Institute of Industrial Technology, Gwangju 61012, Republic of Korea
| | - Changhun Yun
- School of Polymer Science and Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
3
|
Chhatre S, Nagane SS, Wu Y, Lee J, Yap GPA, Martin DC. Influence of Controlled Chirality on the Crystallization of Maleimide-Functionalized 3,4-Ethylenedioxythiophene (EDOT-MA) Monomers. ACS OMEGA 2024; 9:13655-13665. [PMID: 38559998 PMCID: PMC10975600 DOI: 10.1021/acsomega.3c07719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/15/2024] [Accepted: 01/31/2024] [Indexed: 04/04/2024]
Abstract
Conjugated poly(alkoxythiophenes) such as poly(3,4-ethylenedioxythiophene) (PEDOT) have attracted considerable interest for use in a variety of applications such as biomedical devices, energy storage, and chemical sensing. Functionalized versions of the 3,4-ethylenedioxythiophene (EDOT) monomer make it possible to create polymers with properties tailored for specific applications. The maleimide functional group shows particular promise due to the wide variety of chemical modifications that it can undergo. Here, we examine the role that control of the chirality of the maleimide (MA) substituent has on the crystal structure and crystallization of the EDOT-MA monomer. We describe a method for the synthesis of a homochiral (S) variant of EDOT-MA and compare its crystallography, morphology, and thermal properties to that of the (R,S) EDOT-MA racemic compound. The conformation of the EDOT-MA molecule was substantially different, with the molecules adopting an "L" shape in the homochiral crystal, while in the racemic crystals, they were more colinear. The thermal stability of the homochiral crystals (Tm = 128.6 °C) was slightly higher than the racemic ones (Tm = 102.8 °C). We expect these results to be important in better understanding the solid-state assembly of the corresponding polymers prepared from these monomers.
Collapse
Affiliation(s)
- Shrirang
S. Chhatre
- Department
of Materials Science and Engineering, University
of Delaware, Newark, Delaware 19716, United States
| | - Samadhan S. Nagane
- Department
of Materials Science and Engineering, University
of Delaware, Newark, Delaware 19716, United States
| | - Yuhang Wu
- Department
of Materials Science and Engineering, University
of Delaware, Newark, Delaware 19716, United States
| | - Junghyun Lee
- Department
of Materials Science and Engineering, University
of Delaware, Newark, Delaware 19716, United States
| | - Glenn P. A. Yap
- Department
of Chemistry and Biochemistry, University
of Delaware, Newark, Delaware 19716, United States
| | - David C. Martin
- Department
of Materials Science and Engineering, University
of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
4
|
Oh SH, Oh M, Lee S, Kim DK, Lee JS, Lee SK, Kang SK, Joo YC. Fast and Durable Nanofiber Mat Channel Organic Electrochemical Transistors. ACS APPLIED MATERIALS & INTERFACES 2023; 15:39614-39624. [PMID: 37556112 DOI: 10.1021/acsami.3c04590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Bioelectronic devices that offer real-time measurements, biological signal processing, and continuous monitoring while maintaining stable performance are in high demand. The materials used in organic electrochemical transistors (OECTs) demonstrate high transconductance (GM) and excellent biocompatibility, making them suitable for bioelectronics in a biological environment. However, ion migration in OECTs induces a delayed response time and low cut-off frequency, and the adverse biological environment causes OECT durability problems. Herein, we present OECTs with a faster response time and improved durability, made possible by using a nanofiber mat channel of a conventional OECT structure. Poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS)/polyacrylamide (PAAm) nanofiber mat channel OECTs are fabricated and subjected to various durability tests for the first time based on continuous measurements and mechanical stability assessments. The results indicate that the nanofiber mat channel OECTs have a faster response time and longer life spans compared to those of film channel OECTs. The improvements can be attributed to the increased surface area and fibrous structure of the nanofiber mat channel. Furthermore, the hydrogel helps to maintain the structure of the nanofiber, facilitates material exchange, and eliminates the need for a crosslinker.
Collapse
Affiliation(s)
- Seung-Hyun Oh
- Department of Materials Science & Engineering, Seoul National University, Seoul 151-744, Korea
| | - Minseok Oh
- Department of Materials Science & Engineering, Seoul National University, Seoul 151-744, Korea
| | - Seongi Lee
- Department of Materials Science & Engineering, Seoul National University, Seoul 151-744, Korea
| | - Do-Kyun Kim
- Department of Materials Science & Engineering, Seoul National University, Seoul 151-744, Korea
| | - Jong-Sung Lee
- Department of Materials Science & Engineering, Seoul National University, Seoul 151-744, Korea
| | - Sol-Kyu Lee
- Department of Materials Science & Engineering, Seoul National University, Seoul 151-744, Korea
| | - Seung-Kyun Kang
- Department of Materials Science & Engineering, Seoul National University, Seoul 151-744, Korea
| | - Young-Chang Joo
- Department of Materials Science & Engineering, Seoul National University, Seoul 151-744, Korea
| |
Collapse
|
5
|
Kausar A. Fullerene grafting in polymeric nanocomposite—a promising strategy. POLYM-PLAST TECH MAT 2023. [DOI: 10.1080/25740881.2023.2175219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Affiliation(s)
- Ayesha Kausar
- NPU-NCP Joint International Research Center on Advanced Nanomaterials and Defects Engineering, National Centre for Physics, Islamabad, Pakistan
- NPU-NCP Joint International Research Center on Advanced Nanomaterials and Defects Engineering, Northwestern Polytechnical University, Xi’an, China
- UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology, iThemba LABS, Somerset West, South Africa
| |
Collapse
|
6
|
Lee I, Park S, Lee YS, Kim Y, Kang MH, Yun C. Gradual Morphological Change in PEDOT:PSS Thin Films Immersed in an Aqueous Solution. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:1600-1610. [PMID: 36637867 DOI: 10.1021/acs.langmuir.2c03038] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) film is a promising material for electrodes, biomolecular sensor channels, and probes for physiological signals because the electrical conduction of PEDOT:PSS is tuned simply through the electrochemical reaction with the target analyte. However, forming a specific morphology or nanostructure on PEDOT:PSS thin films immersed in an aqueous solution is still a challenge. Herein, we report the mechanism for the stepwise morphological change in the highly conductive PEDOT:PSS layer that successfully explains the electrical and structural modulations that occur after a soaking test in various pH conditions. The change in PEDOT:PSS begins with the rapid swelling and dissolution of PSS-rich domains and the simultaneous structural rearrangement of the remaining PEDOT chains within 1 s of dipping. Analysis confirms that the pH conditions of an aqueous solution govern the oxidation state and the form of the PEDOT chains. After removing the water molecules, additional PEDOT-rich grains were generated and accumulated on the surface of the film, which exhibited hydrophobic barrier characteristics. With the help of this intrinsic barrier on the PEDOT:PSS surface, the sheet resistance slightly increased from 72 to 144 Ω/sq even after dipping in a water bath for 350 h. We also demonstrate the usability of the proposed approach on a sensor to detect vitamin C in an aqueous medium. Utilizing the electrochemical reaction of PEDOT:PSS films, the simple resistor sensor showed a response time of less than 150 s, which is 10 times faster than that observed in a previous report. The soaked samples also showed a more reliable linear correlation between the current change and the amount of ascorbic acid compared with pristine PEDOT:PSS. Both the proposed mechanism and the role of accumulated PEDOT-rich regions illustrate the versatile potential of highly conductive PEDOT:PSS films in the field of bioelectronic applications, owing to the increased design architecture.
Collapse
Affiliation(s)
- Inwoo Lee
- School of Polymer Science and Engineering, Chonnam National University, Gwangju61186, Republic of Korea
| | - Sejung Park
- School of Polymer Science and Engineering, Chonnam National University, Gwangju61186, Republic of Korea
| | - Yu Seong Lee
- School of Polymer Science and Engineering, Chonnam National University, Gwangju61186, Republic of Korea
| | - Yejin Kim
- School of Polymer Science and Engineering, Chonnam National University, Gwangju61186, Republic of Korea
| | - Moon Hee Kang
- School of Electronics Engineering, Chungbuk National University, Cheongju28644, Republic of Korea
| | - Changhun Yun
- School of Polymer Science and Engineering, Chonnam National University, Gwangju61186, Republic of Korea
| |
Collapse
|
7
|
Qiao M, Tian Y, Wang J, Li X, He X, Lei X, Zhang Q, Ma M, Meng X. Magnetic-Field-Induced Vapor-Phase Polymerization to Achieve PEDOT-Decorated Porous Fe 3O 4 Particles as Excellent Microwave Absorbers. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mingtao Qiao
- College of Materials Science and Engineering, Xi’an University of Architecture & Technology, Xi’an 710055, Shaanxi, P. R. China
| | - Yurui Tian
- School of Environmental and Municipal Engineering, Xi’an University of Architecture & Technology, Xi’an 710055, Shaanxi, P. R. China
| | - Jiani Wang
- College of Materials Science and Engineering, Xi’an University of Architecture & Technology, Xi’an 710055, Shaanxi, P. R. China
| | - Xiang Li
- College of Materials Science and Engineering, Xi’an University of Architecture & Technology, Xi’an 710055, Shaanxi, P. R. China
| | - Xiaowei He
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710129, Shaanxi, P. R. China
| | - Xingfeng Lei
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710129, Shaanxi, P. R. China
| | - Qiuyu Zhang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710129, Shaanxi, P. R. China
| | - Mingliang Ma
- School of Civil Engineering, Qingdao University of Technology, Qingdao 266033, Shandong, P. R. China
| | - Xiaorong Meng
- School of Chemistry and Chemical Engineering, Xi’an University of Architecture & Technology, Xi’an 710055, Shaanxi, P. R. China
| |
Collapse
|
8
|
Li Q, Zhou Q, Xu W, Wen L, Li J, Deng B, Zhang J, Xu H, Liu W. Anion Size Effect of Ionic Liquids in Tuning the Thermoelectric and Mechanical Properties of PEDOT:PSS Films through a Counterion Exchange Strategy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:27911-27921. [PMID: 35670602 DOI: 10.1021/acsami.2c05591] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Poly(3,4-ethylene dioxythiophene):poly(styrenesulfonic acid) (PEDOT:PSS) thermoelectric thin films have attracted significant interest due to their solution-processable manufacturing. However, molecular-level tuning or doping is still a challenge to synergistically boost their thermoelectric performance and mechanically stretchable capabilities. In this work, we report a counterion exchange between ionic liquid bis(x-fluorosulfonyl) amide lithium (Li:nFSI, n = 1, 3, 5) with different sizes of anions and a PEDOT:PSS-induced bipolaron network, which significantly boosted the thermoelectric power factor from 0.8 to 157 μW m K-2 at 235 °C and the maximum tensile strain from 3% to over 30%. The π-π* stacking of the PEDOT polymer chains was fine-tuned by the hydrophobic anions of nFSI-, providing a technical route for constructing a bipolaron network and inducing the transition from hopping transport to band-like transport. Furthermore, we found that the stretchable capabilities, that is, εmax, were connected to the gelation time of the PEDOT:PSS-Li:nFSI aqueous solution. Thus, more fluorine-containing groups resulted in longer gelation times and higher εmax values, which significantly improved the processability of the solution-derived films.
Collapse
Affiliation(s)
- Qikai Li
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
- Shenzhen Engineering Research Center for Novel Electronic Information Materials and Devices, Southern University of Science and Technology, Shenzhen 518055, China
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, China
| | - Qing Zhou
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
- Shenzhen Engineering Research Center for Novel Electronic Information Materials and Devices, Southern University of Science and Technology, Shenzhen 518055, China
- School of Science, Minzu University of China, Beijing 100081, China
| | - Wangping Xu
- Department of Physics, Guangdong Provincial Key Laboratory of Computational Science and Material Design, and Shenzhen Key Laboratory of Advanced Quantum Functional Materials and Devices, Southern University of Science and Technology, Shenzhen 518055, China
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan 411105, Hunan, China
| | - Long Wen
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
- Shenzhen Engineering Research Center for Novel Electronic Information Materials and Devices, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jun Li
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
- Shenzhen Engineering Research Center for Novel Electronic Information Materials and Devices, Southern University of Science and Technology, Shenzhen 518055, China
| | - Biao Deng
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
- Shenzhen Engineering Research Center for Novel Electronic Information Materials and Devices, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jiajia Zhang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
- Shenzhen Engineering Research Center for Novel Electronic Information Materials and Devices, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hu Xu
- Department of Physics, Guangdong Provincial Key Laboratory of Computational Science and Material Design, and Shenzhen Key Laboratory of Advanced Quantum Functional Materials and Devices, Southern University of Science and Technology, Shenzhen 518055, China
| | - Weishu Liu
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
- Shenzhen Engineering Research Center for Novel Electronic Information Materials and Devices, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
9
|
Teodor AH, Monge S, Aguilar D, Tames A, Nunez R, Gonzalez E, Rodríguez JJM, Bergkamp JJ, Starbird R, Renugopalakrishnan V, Bruce BD, Villarreal C. PEDOT-Carbon Nanotube Counter Electrodes and Bipyridine Cobalt (II/III) Mediators as Universally Compatible Components in Bio-Sensitized Solar Cells Using Photosystem I and Bacteriorhodopsin. Int J Mol Sci 2022; 23:3865. [PMID: 35409224 PMCID: PMC8998335 DOI: 10.3390/ijms23073865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/26/2022] [Accepted: 03/27/2022] [Indexed: 02/04/2023] Open
Abstract
In nature, solar energy is captured by different types of light harvesting protein-pigment complexes. Two of these photoactivatable proteins are bacteriorhodopsin (bR), which utilizes a retinal moiety to function as a proton pump, and photosystem I (PSI), which uses a chlorophyll antenna to catalyze unidirectional electron transfer. Both PSI and bR are well characterized biochemically and have been integrated into solar photovoltaic (PV) devices built from sustainable materials. Both PSI and bR are some of the best performing photosensitizers in the bio-sensitized PV field, yet relatively little attention has been devoted to the development of more sustainable, biocompatible alternative counter electrodes and electrolytes for bio-sensitized solar cells. Careful selection of the electrolyte and counter electrode components is critical to designing bio-sensitized solar cells with more sustainable materials and improved device performance. This work explores the use of poly (3,4-ethylenedioxythiophene) (PEDOT) modified with multi-walled carbon nanotubes (PEDOT/CNT) as counter electrodes and aqueous-soluble bipyridine cobaltII/III complexes as direct redox mediators for both PSI and bR devices. We report a unique counter electrode and redox mediator system that can perform remarkably well for both bio-photosensitizers that have independently evolved over millions of years. The compatibility of disparate proteins with common mediators and counter electrodes may further the improvement of bio-sensitized PV design in a way that is more universally biocompatible for device outputs and longevity.
Collapse
Affiliation(s)
- Alexandra H. Teodor
- Graduate School of Genome Science and Technology, University of Tennessee at Knoxville, Knoxville, TN 37996, USA;
| | - Stephanie Monge
- Escuela de Ciencia e Ingeniería de Materiales, Instituto Tecnológico de Costa Rica, Cartago 30101, Costa Rica; (S.M.); (D.A.); (A.T.)
- Centro de Investigación y Extensión en Ingeniería de Materiales (CIEMTEC), Instituto Tecnológico de Costa Rica, Cartago 30101, Costa Rica
- Maestría Ingeniería en Dispositivos Médicos, Instituto Tecnológico de Costa Rica, Cartago 30101, Costa Rica
| | - Dariana Aguilar
- Escuela de Ciencia e Ingeniería de Materiales, Instituto Tecnológico de Costa Rica, Cartago 30101, Costa Rica; (S.M.); (D.A.); (A.T.)
- Centro de Investigación y Extensión en Ingeniería de Materiales (CIEMTEC), Instituto Tecnológico de Costa Rica, Cartago 30101, Costa Rica
| | - Alexandra Tames
- Escuela de Ciencia e Ingeniería de Materiales, Instituto Tecnológico de Costa Rica, Cartago 30101, Costa Rica; (S.M.); (D.A.); (A.T.)
- Centro de Investigación y Extensión en Ingeniería de Materiales (CIEMTEC), Instituto Tecnológico de Costa Rica, Cartago 30101, Costa Rica
| | - Roger Nunez
- Department of Chemistry and Biochemistry, California State University Bakersfield, Bakersfield, CA 93311, USA; (R.N.); (E.G.); (J.J.B.)
| | - Elaine Gonzalez
- Department of Chemistry and Biochemistry, California State University Bakersfield, Bakersfield, CA 93311, USA; (R.N.); (E.G.); (J.J.B.)
| | | | - Jesse J. Bergkamp
- Department of Chemistry and Biochemistry, California State University Bakersfield, Bakersfield, CA 93311, USA; (R.N.); (E.G.); (J.J.B.)
| | - Ricardo Starbird
- Centro de Investigación y de Servicios Químicos y Microbiológicos (CEQIATEC), Instituto Tecnológico de Costa Rica, Cartago 30101, Costa Rica;
- Escuela de Química, Instituto Tecnológico de Costa Rica, Cartago 30101, Costa Rica
| | - Venkatesan Renugopalakrishnan
- Children’s Hospital, Harvard Medical School, 4 Blackfan Circle, Boston, MA 02115, USA;
- Department of Chemistry and Chemical Biology, Center for Renewable Energy Technology, Northeastern University, 317 Egan Center, Boston, MA 02138, USA
| | - Barry D. Bruce
- Department of Biochemistry, Cellular, and Molecular Biology, University of Tennessee at Knoxville, Knoxville, TN 37996, USA
- Chemical and Biomolecular Engineering Department, University of Tennessee at Knoxville, Knoxville, TN 37996, USA
| | - Claudia Villarreal
- Escuela de Ciencia e Ingeniería de Materiales, Instituto Tecnológico de Costa Rica, Cartago 30101, Costa Rica; (S.M.); (D.A.); (A.T.)
- Centro de Investigación y Extensión en Ingeniería de Materiales (CIEMTEC), Instituto Tecnológico de Costa Rica, Cartago 30101, Costa Rica
| |
Collapse
|
10
|
The influence of physicochemical properties on the processibility of conducting polymers: A bioelectronics perspective. Acta Biomater 2022; 139:259-279. [PMID: 34111518 DOI: 10.1016/j.actbio.2021.05.052] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/20/2022]
Abstract
Conducting polymers (CPs) possess unique electrical and electrochemical properties and hold great potential for different applications in the field of bioelectronics. However, the widespread implementation of CPs in this field has been critically hindered by their poor processibility. There are four key elements that determine the processibility of CPs, which are thermal tunability, chemical stability, solvent compatibility and mechanical robustness. Recent research efforts have focused on enhancing the processibility of these materials through pre- or post-synthesis chemical modifications, the fabrication of CP-based complexes and composites, and the adoption of additive manufacturing techniques. In this review, the physicochemical and structural properties that underlie the performance and processibility of CPs are examined. In addition, current research efforts to overcome technical limitations and broaden the potential applications of CPs in bioelectronics are discussed. STATEMENT OF SIGNIFICANCE: This review details the inherent properties of CPs that have hindered their use in additive manufacturing for the creation of 3D bioelectronics. A fundamental approach is presented with consideration of the chemical structure and how this contributes to their electrical, thermal and mechanical properties. The review then considers how manipulation of these properties has been addressed in the literature including areas where improvements can be made. Finally, the review details the use of CPs in additive manufacturing and the future scope for the use of CPs and their composites in the development of 3D bioelectronics.
Collapse
|
11
|
Subramanian V, Martin DC. In Situ Observations of Nanofibril Nucleation and Growth during the Electrochemical Polymerization of Poly(3,4-ethylenedioxythiophene) Using Liquid-Phase Transmission Electron Microscopy. NANO LETTERS 2021; 21:9077-9084. [PMID: 34672611 DOI: 10.1021/acs.nanolett.1c02762] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The electrochemical deposition of poly(3,4-ethylenedioxythiophene) (PEDOT) has been carried out previously in the presence of a variety of counterions. Previous studies have shown that elongated nanofibrillar structures of PEDOT would form reproducibly when certain counterions such as poly(acrylic acid) (PAA) were added to the reaction mixture. However, details of the nanofibril nucleation and growth stages were not yet clear. Here, we describe the structural evolution of PEDOT nanofibrils using liquid-phase transmission electron microscopy (LPTEM). We measured the growth velocities of nanofibrils in different directions at various stages of the process and their intensity profiles, and we have estimated the number of EDOT monomers involved. We observed that fibrils initially grew anisotropically in a direction nominally perpendicular to the local edge of the electrodes, with rates that were faster along their lengths as compared those along to their widths and thicknesses. These real-time observations have helped us elucidate the nucleation and growth of PEDOT nanofibrils during electrochemical deposition.
Collapse
Affiliation(s)
- Vivek Subramanian
- Department of Materials Science and Engineering, The University of Delaware, Newark, Delaware 19716, United States
| | - David C Martin
- Department of Materials Science and Engineering, The University of Delaware, Newark, Delaware 19716, United States
- Department of Biomedical Engineering, The University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
12
|
Viola W, Andrew TL. Sustainable polymer materials for flexible light control and thermal management. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Wesley Viola
- Department of Chemical Engineering University of Massachusetts Amherst Amherst Massachusetts USA
| | - Trisha L. Andrew
- Department of Chemical Engineering University of Massachusetts Amherst Amherst Massachusetts USA
- Department of Chemistry and Chemical Engineering University of Massachusetts Amherst Amherst Massachusetts USA
| |
Collapse
|
13
|
Subramanian V, Martin DC. Direct Observation of Liquid-to-Solid Phase Transformations during the Electrochemical Deposition of Poly(3,4-ethylenedioxythiophene) (PEDOT) by Liquid-Phase Transmission Electron Microscopy (LPTEM). Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00404] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Vivek Subramanian
- Department of Materials Science and Engineering, The University of Delaware, Newark, Delaware 19716, United States
| | - David C. Martin
- Department of Materials Science and Engineering, The University of Delaware, Newark, Delaware 19716, United States
- Department of Biomedical Engineering, The University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
14
|
Delavari N, Gladisch J, Petsagkourakis I, Liu X, Modarresi M, Fahlman M, Stavrinidou E, Linares M, Zozoulenko I. Water Intake and Ion Exchange in PEDOT:Tos Films upon Cyclic Voltammetry: Experimental and Molecular Dynamics Investigation. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00723] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Najmeh Delavari
- Laboratory of Organic Electronics (LOE), Department of Science and Technology (ITN), Campus Norrköping, Linköping University, SE-60174 Norrköping, Sweden
| | - Johannes Gladisch
- Laboratory of Organic Electronics (LOE), Department of Science and Technology (ITN), Campus Norrköping, Linköping University, SE-60174 Norrköping, Sweden
| | - Ioannis Petsagkourakis
- Laboratory of Organic Electronics (LOE), Department of Science and Technology (ITN), Campus Norrköping, Linköping University, SE-60174 Norrköping, Sweden
| | - Xianjie Liu
- Laboratory of Organic Electronics (LOE), Department of Science and Technology (ITN), Campus Norrköping, Linköping University, SE-60174 Norrköping, Sweden
| | - Mohsen Modarresi
- Department of Physics, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mats Fahlman
- Laboratory of Organic Electronics (LOE), Department of Science and Technology (ITN), Campus Norrköping, Linköping University, SE-60174 Norrköping, Sweden
| | - Eleni Stavrinidou
- Laboratory of Organic Electronics (LOE), Department of Science and Technology (ITN), Campus Norrköping, Linköping University, SE-60174 Norrköping, Sweden
| | - Mathieu Linares
- Laboratory of Organic Electronics (LOE), Department of Science and Technology (ITN), Campus Norrköping, Linköping University, SE-60174 Norrköping, Sweden
- Group of Scientific Visualization, Department of Science and Technology (ITN), Campus Norrköping, Linköping University, SE-60174 Norrköping, Sweden
- Swedish e-Science Center (SeRC), Linköping University, SE-581 83 Linköping, Sweden
| | - Igor Zozoulenko
- Laboratory of Organic Electronics (LOE), Department of Science and Technology (ITN), Campus Norrköping, Linköping University, SE-60174 Norrköping, Sweden
| |
Collapse
|
15
|
Tseng CH, Lin HH, Hung CW, Cheng IC, Luo SC, Cheng IC, Chen JZ. Electropolymerized Poly(3,4-ethylenedioxythiophene)/Screen-Printed Reduced Graphene Oxide-Chitosan Bilayer Electrodes for Flexible Supercapacitors. ACS OMEGA 2021; 6:16455-16464. [PMID: 34235317 PMCID: PMC8246451 DOI: 10.1021/acsomega.1c01601] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/10/2021] [Indexed: 06/13/2023]
Abstract
An electropolymerized poly(3,4-ethylenedioxythiophene) (PEDOT)/screen-printed reduced graphene oxide (rGO)-chitosan (CS) bilayer material was coated on carbon cloth to form electrodes for gel-electrolyte flexible supercapacitors. The conductive polymer and carbon-based materials mainly contribute pseudocapacitance (PC) and electrical double-layer capacitance (EDLC), respectively. The high porosity and hydrophilicity of the PEDOT/rGO-CS bilayer material offers a large contact area and improves the contact quality for the gel electrolyte, thereby enhancing the capacitive performance. Cyclic voltammetry (CV) under a potential scan rate of 2 mV/s revealed that a maximum areal capacitance of 1073.67 mF/cm2 was achieved. The capacitance contribution ratio PC/EDLC was evaluated to be ∼67/33 by the Trasatti method. A 10,000-cycle CV test showed a capacitance retention rate of 99.3% under a potential scan rate of 200 mV/s, indicating good stability. The areal capacitance remains similar under bending with a bending curvature of up to 1.5 cm-1.
Collapse
Affiliation(s)
- Chia-Hui Tseng
- Graduate
Institute of Applied Mechanics, National
Taiwan University, Taipei
City 106319, Taiwan
- Advanced
Research Center for Green Materials Science and Technology, National Taiwan University, Taipei City 106319, Taiwan
| | - Hsun-Hao Lin
- Department
of Materials Science and Engineering, National
Taiwan University, Taipei City 106319, Taiwan
| | - Cheng-Wei Hung
- Department
of Mechanical Engineering, National Taiwan
University, Taipei City 106319, Taiwan
| | - I-Chung Cheng
- Department
of Mechanical Engineering, National Taiwan
University, Taipei City 106319, Taiwan
| | - Shyh-Chyang Luo
- Department
of Materials Science and Engineering, National
Taiwan University, Taipei City 106319, Taiwan
- Advanced
Research Center for Green Materials Science and Technology, National Taiwan University, Taipei City 106319, Taiwan
| | - I-Chun Cheng
- Graduate
Institute of Photonics and Optoelectronics & Department of Electrical
Engineering, National Taiwan University, Taipei City 106319, Taiwan
| | - Jian-Zhang Chen
- Graduate
Institute of Applied Mechanics, National
Taiwan University, Taipei
City 106319, Taiwan
- Advanced
Research Center for Green Materials Science and Technology, National Taiwan University, Taipei City 106319, Taiwan
| |
Collapse
|
16
|
Zozoulenko I, Franco-Gonzalez JF, Gueskine V, Mehandzhiyski A, Modarresi M, Rolland N, Tybrandt K. Electronic, Optical, Morphological, Transport, and Electrochemical Properties of PEDOT: A Theoretical Perspective. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00444] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Igor Zozoulenko
- Laboratory of Organic Electronics, ITN, Linköping University, 60174 Norrköping, Sweden
| | | | - Viktor Gueskine
- Laboratory of Organic Electronics, ITN, Linköping University, 60174 Norrköping, Sweden
| | | | - Mohsen Modarresi
- Department of Physics, Ferdowsi University of Mashhad, Mashhad, PO Box 91775-1436, Iran
| | - Nicolas Rolland
- Laboratory of Organic Electronics, ITN, Linköping University, 60174 Norrköping, Sweden
| | - Klas Tybrandt
- Laboratory of Organic Electronics, ITN, Linköping University, 60174 Norrköping, Sweden
| |
Collapse
|
17
|
Kubarkov AV, Boeva ZA, Lindfors T, Sergeyev VG. Electrochemical synthesis of 3D microstructured composite films of poly(3,4-ethylenedioxythiophene) and reduced nanographene oxide. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2020.137625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
18
|
Amsallem D, Bedi A, Tassinari F, Gidron O. Relation between Morphology and Chiroptical Properties in Chiral Conducting Polymer Films: A Case Study in Chiral PEDOT. Macromolecules 2020; 53:9521-9528. [PMID: 33191953 PMCID: PMC7660938 DOI: 10.1021/acs.macromol.0c01731] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 10/07/2020] [Indexed: 11/28/2022]
Abstract
The electronic properties of conducting polymers are influenced by their micro- and macrostructural orders, which can be tailored by substituent modification. However, while the effect of substituents on conducting polymers is extensively investigated, chiral substituents are far less studied. Furthermore, many chiral conducting polymers have regioirregular structures, which result in polymer films with inferior properties. In this work, we apply electronic circular dichroism (ECD) spectroscopy to study the morphological changes to the chiral polymers under different polymerization conditions. For this purpose, we investigated 3,4-ethylenedioxythiophene (EDOT) derivatives having two stereogenic centers on each monomer and bearing methyl or phenyl side groups (dimethyl-EDOT and diphenyl-EDOT, respectively). Polymerizing the enantiomerically pure monomers produces regioregular and stereoregular dimethyl-PEDOT and diphenyl-PEDOT, respectively. The effect of the electrolyte and solvent on polymer film morphology was studied using scanning electron microscopy (SEM) and ECD, showing a correlation between the polymer's morphology and the chiroptical properties of its films. We found that, for diphenyl-PEDOT, the combination of perchlorate anion electrolyte and acetonitrile solvent resulted in a unique morphology characterized by significant intermolecular interactions. These interactions were clearly observable in the ECD spectra in the form of exciton couplings, whose presence was supported by TD-DFT calculations. A small enantiomeric excess was sufficient to induce very intense ECD signals, demonstrating chiral amplification in electropolymerized films.
Collapse
Affiliation(s)
- Dana Amsallem
- The
Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190401 Jerusalem, Israel
| | - Anjan Bedi
- The
Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190401 Jerusalem, Israel
| | - Francesco Tassinari
- Department
of Chemical and Biological Physics, Weizmann
Institute of Science, 76100 Rehovot, Israel
| | - Ori Gidron
- The
Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190401 Jerusalem, Israel
| |
Collapse
|
19
|
Abstract
Conducting polymers display a range of interesting properties, from electrical conduction to tunable optical absorption and mechanical flexibility, to name but a few. Their properties arise from positive charges (carbocations) on their conjugated backbone that are stabilised by counterions doped in the polymer matrix. In this research we report hydrolysis of these carbocations when poly(3,4-ethylenedioxy thiophene) is exposed to 1 mM aqueous salt solutions. Remarkably, two classes of anion interactions are revealed; anions that oxidise PEDOT via a doping process, and those that facilitate the SN1 hydrolysis of the carbocation to create hydroxylated PEDOT. A pKa of 6.4 for the conjugate acid of the anion approximately marks the transition between chemical oxidation and hydrolysis. PEDOT can be cycled between hydrolysis and oxidation by alternating exposure to different salt solutions. This has ramifications for using doped conducting polymers in aqueous environments (such as sensing, energy storage and biomedical devices).
Collapse
|
20
|
Nikiforidis G, Wustoni S, Routier C, Hama A, Koklu A, Saleh A, Steiner N, Druet V, Fiumelli H, Inal S. Benchmarking the Performance of Electropolymerized Poly(3,4-ethylenedioxythiophene) Electrodes for Neural Interfacing. Macromol Biosci 2020; 20:e2000215. [PMID: 32820588 DOI: 10.1002/mabi.202000215] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/03/2020] [Indexed: 11/11/2022]
Abstract
The development of electronics adept at interfacing with the nervous system is an ever-growing effort, leading to discoveries in fundamental neuroscience applied in clinical setting. Highly capacitive and electrochemically stable electronic materials are paramount for these advances. A systematic study is presented where copolymers based on 3,4-ethylenedioxythiophene (EDOT) and its hydroxyl-terminated counterpart (EDOTOH) are electropolymerized in an aqueous solution in the presence of various counter anions and additives. Amongst the conducting materials developed, the copolymer p(EDOT-ran-EDOTOH) doped with perchlorate in the presence of ethylene glycol shows high specific capacitance (105 F g-1 ), and capacitance retention (85%) over 1000 galvanostatic charge-discharge cycles. A microelectrode array-based on this material is fabricated and primary cortical neurons are cultured therein for several days. The microelectrodes electrically stimulate targeted neuronal networks and record their activity with high signal-to-noise ratio. The stability of charge injection capacity of the material is validated via long-term pulsing experiments. While providing insights on the effect of additives and dopants on the electrochemical performance and operational stability of electropolymerized conducting polymers, this study highlights the importance of high capacitance accompanied with stability to achieve high performance electrodes for biological interfacing.
Collapse
Affiliation(s)
- Georgios Nikiforidis
- Organic Bioelectronics Laboratory, Biological Science and Engineering Division (BESE), King Abdullah University of Science and Engineering (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Shofarul Wustoni
- Organic Bioelectronics Laboratory, Biological Science and Engineering Division (BESE), King Abdullah University of Science and Engineering (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Cyril Routier
- Organic Bioelectronics Laboratory, Biological Science and Engineering Division (BESE), King Abdullah University of Science and Engineering (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Adel Hama
- Organic Bioelectronics Laboratory, Biological Science and Engineering Division (BESE), King Abdullah University of Science and Engineering (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Anil Koklu
- Organic Bioelectronics Laboratory, Biological Science and Engineering Division (BESE), King Abdullah University of Science and Engineering (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Abdulelah Saleh
- Organic Bioelectronics Laboratory, Biological Science and Engineering Division (BESE), King Abdullah University of Science and Engineering (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | | | - Victor Druet
- Organic Bioelectronics Laboratory, Biological Science and Engineering Division (BESE), King Abdullah University of Science and Engineering (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | | | - Sahika Inal
- Organic Bioelectronics Laboratory, Biological Science and Engineering Division (BESE), King Abdullah University of Science and Engineering (KAUST), Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
21
|
Modarresi M, Mehandzhiyski A, Fahlman M, Tybrandt K, Zozoulenko I. Microscopic Understanding of the Granular Structure and the Swelling of PEDOT:PSS. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00877] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Mohsen Modarresi
- Department of Physics, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Mats Fahlman
- Laboratory of Organic Electronics, ITN, Linköping University, 60174 Norrköping, Sweden
| | - Klas Tybrandt
- Laboratory of Organic Electronics, ITN, Linköping University, 60174 Norrköping, Sweden
| | - Igor Zozoulenko
- Laboratory of Organic Electronics, ITN, Linköping University, 60174 Norrköping, Sweden
| |
Collapse
|
22
|
Roch LM, Saikin SK, Häse F, Friederich P, Goldsmith RH, León S, Aspuru-Guzik A. From Absorption Spectra to Charge Transfer in Nanoaggregates of Oligomers with Machine Learning. ACS NANO 2020; 14:6589-6598. [PMID: 32338888 DOI: 10.1021/acsnano.0c00384] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Fast and inexpensive characterization of materials properties is a key element to discover novel functional materials. In this work, we suggest an approach employing three classes of Bayesian machine learning (ML) models to correlate electronic absorption spectra of nanoaggregates with the strength of intermolecular electronic couplings in organic conducting and semiconducting materials. As a specific model system, we consider poly(3,4-ethylenedioxythiophene) (PEDOT) polystyrene sulfonate, a cornerstone material for organic electronic applications, and so analyze the couplings between charged dimers of closely packed PEDOT oligomers that are at the heart of the material's unrivaled conductivity. We demonstrate that ML algorithms can identify correlations between the coupling strengths and the electronic absorption spectra. We also show that ML models can be trained to be transferable across a broad range of spectral resolutions and that the electronic couplings can be predicted from the simulated spectra with an 88% accuracy when ML models are used as classifiers. Although the ML models employed in this study were trained on data generated by a multiscale computational workflow, they were able to leverage experimental data.
Collapse
Affiliation(s)
- Loïc M Roch
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
- Vector Institute for Artificial Intelligence, Toronto, ON M5S 1M1, Canada
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
- Department of Computer Science, University of Toronto, Toronto, ON M5S 3H6, Canada
- ChemOS Sàrl, Lausanne, VD 1006, Switzerland
| | - Semion K Saikin
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
- Kebotix, Inc., Cambridge, Massachusetts 02139, United States
| | - Florian Häse
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
- Vector Institute for Artificial Intelligence, Toronto, ON M5S 1M1, Canada
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
- Department of Computer Science, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Pascal Friederich
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
- Department of Computer Science, University of Toronto, Toronto, ON M5S 3H6, Canada
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen 76344, Germany
| | - Randall H Goldsmith
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Salvador León
- Department of Industrial Chemical Engineering and Environment, Universidad Politécnica de Madrid, Madrid 28006, Spain
| | - Alán Aspuru-Guzik
- Vector Institute for Artificial Intelligence, Toronto, ON M5S 1M1, Canada
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
- Department of Computer Science, University of Toronto, Toronto, ON M5S 3H6, Canada
- Lebovic Fellow, Canadian Institute for Advanced Research, Toronto, ON M5G 1M1, Canada
| |
Collapse
|
23
|
Gunapu DVSK, Mudigunda VS, Das A, Rengan AK, Vanjari SRK. Facile synthesis and characterization of Poly (3, 4-ethylenedioxythiophene)/Molybdenum disulfide (PEDOT/MoS2) composite coatings for potential neural electrode applications. J APPL ELECTROCHEM 2020. [DOI: 10.1007/s10800-020-01447-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
24
|
Chin M, Tada S, Tsai MH, Ito Y, Luo SC. Strategy to Immobilize Peptide Probe Selected through In Vitro Ribosome Display for Electrochemical Aptasensor Application. Anal Chem 2020; 92:11260-11267. [DOI: 10.1021/acs.analchem.0c01891] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mi Chin
- Department of Materials Science and Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Seiichi Tada
- Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science, Saitama 351-0198, Japan
| | - Min-Han Tsai
- Department of Materials Science and Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Yoshihiro Ito
- Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science, Saitama 351-0198, Japan
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Shyh-Chyang Luo
- Department of Materials Science and Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| |
Collapse
|
25
|
Gong HY, Park J, Kim W, Kim J, Lee JY, Koh WG. A Novel Conductive and Micropatterned PEG-Based Hydrogel Enabling the Topographical and Electrical Stimulation of Myoblasts. ACS APPLIED MATERIALS & INTERFACES 2019; 11:47695-47706. [PMID: 31794187 DOI: 10.1021/acsami.9b16005] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
In this study, we designed a cell-adhesive poly(ethylene glycol) (PEG)-based hydrogel that simultaneously provides topographical and electrical stimuli to C2C12 myoblasts. Specifically, PEG hydrogels with microgroove structures of 3 μm ridges and 3 μm grooves were prepared by micromolding; in situ polymerization of poly(3,4-ethylenedioxythiophene) (PEDOT) was then performed within the micropatterned PEG hydrogels to create a microgrooved conductive hydrogel (CH/P). The CH/P had clear replica patterns of the silicone mold and a conductivity of 2.49 × 10-3 S/cm, with greater than 85% water content. In addition, the CH exhibited Young's modulus (45.84 ± 7.12 kPa) similar to that of a muscle tissue. The surface of the CH/P was further modified via covalent bonding with cell-adhesive peptides to facilitate cell adhesion without affecting conductivity. An in vitro cell assay revealed that the CH/P was cytocompatible and enhanced the cell alignment and elongation of C2C12 myoblasts. The microgrooves and conductivity of the CH/P had the greatest positive effect on the myogenesis of C2C12 myoblasts compared to the other PEG hydrogel samples without conductivity or/and microgrooves, even in the absence of electrical stimulation. Electrical stimulation studies indicated that the combination of topographical and electrical cues maximized the differentiation of C2C12 myoblasts into myotubes, confirming the synergetic effect of incorporating microgroove surface features and a conductive PEDOT component into hydrogels.
Collapse
Affiliation(s)
| | - Junggeon Park
- School of Materials Science and Engineering , Gwangju Institute of Science and Technology (GIST) , Gwangju 61105 , South Korea
| | | | | | - Jae Young Lee
- School of Materials Science and Engineering , Gwangju Institute of Science and Technology (GIST) , Gwangju 61105 , South Korea
| | | |
Collapse
|
26
|
Mao X, He X, Xu J, Yang W, Liu H, Yang Y, Zhou Y. Three-Dimensional Reduced Graphene Oxide/Poly(3,4-Ethylenedioxythiophene) Composite Open Network Architectures for Microsupercapacitors. NANOSCALE RESEARCH LETTERS 2019; 14:267. [PMID: 31388867 PMCID: PMC6684723 DOI: 10.1186/s11671-019-3098-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 07/24/2019] [Indexed: 06/10/2023]
Abstract
The three-dimensional (3D) porous nanostructures have shown attractive promise for flexible microsupercapacitors due to their merits of more exposed electrochemical active sites, higher ion diffusion coefficient, and lower charge-transfer resistance. Herein, a highly opened 3D network of reduced graphene oxide/poly(3,4-ethylenedioxythiophene) (rGO/PEDOT) was constructed through the laser-assisted treatment and in situ vapor phase polymerization methods, which can be employed with gel electrolyte to prepare flexible microsupercapacitors, without conductive additives, polymer binder, separator, or complex processing. These porous open network structures endow the obtained microsupercapacitors with a maximum specific capacitance (35.12 F cm-3 at 80 mA cm-3), the corresponding energy density up to 4.876 mWh cm-3, remarkable cycling stability (with only about 9.8% loss after 4000 cycles), and excellent coulombic efficiency, which are comparable with most previous reported rGO-based microsupercapacitors. Additionally, the microsupercapacitors connected in series/parallel have been conveniently fabricated, followed by being integrated with solar cells as efficient energy harvesting and storage systems. Moreover, the working voltage or energy density of microsupercapacitors array can be easily tailored according to the practical requirements and this work provides a promising approach to prepare high-performance flexible micro-energy device applied in the wearable electronics accordingly.
Collapse
Affiliation(s)
- Xiling Mao
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China (UESTC), Chengdu, 610054 People’s Republic of China
| | - Xin He
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China (UESTC), Chengdu, 610054 People’s Republic of China
| | - Jianhua Xu
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China (UESTC), Chengdu, 610054 People’s Republic of China
| | - Wenyao Yang
- School of Electrical and Electronic Engineering, Engineering Research Center of Electronic Information Technology and Application, Chongqing University of Arts and Sciences, Chongqing, 402160 People’s Republic of China
| | - Hao Liu
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China (UESTC), Chengdu, 610054 People’s Republic of China
| | - Yajie Yang
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China (UESTC), Chengdu, 610054 People’s Republic of China
| | - Yujiu Zhou
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China (UESTC), Chengdu, 610054 People’s Republic of China
| |
Collapse
|
27
|
Kim D, Zozoulenko I. Why Is Pristine PEDOT Oxidized to 33%? A Density Functional Theory Study of Oxidative Polymerization Mechanism. J Phys Chem B 2019; 123:5160-5167. [DOI: 10.1021/acs.jpcb.9b01745] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Donghyun Kim
- Laboratory of Organic Electronics Department of Science and Technology, Linköping University, 60174 Norrköping, Sweden
| | - Igor Zozoulenko
- Laboratory of Organic Electronics Department of Science and Technology, Linköping University, 60174 Norrköping, Sweden
| |
Collapse
|
28
|
Modarresi M, Franco-Gonzalez JF, Zozoulenko I. Computational microscopy study of the granular structure and pH dependence of PEDOT:PSS. Phys Chem Chem Phys 2019; 21:6699-6711. [PMID: 30855609 DOI: 10.1039/c8cp07141a] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Computational microscopy based on Martini coarse grained molecular dynamics (MD) simulations of a doped conducting polymer poly(3,4-ethylenedioxythiophene)polystyrene sulfonate (best known as PEDOT:PSS) was performed focussing on the formation of the granular structure and PEDOT crystallites, and the effect of pH on the material morphology. The PEDOT:PSS morphology is shown to be sensitive to the initial distribution of PEDOT and PSS in the solution, and the results of the modelling suggest that the experimentally observed granular structure of PEDOT:PSS can be only obtained if the PEDOT/PSS solution is in the dispersive state in the initial crystallization stages. Variation of the pH is demonstrated to strongly affect the morphology of PEDOT:PSS films, altering their structure between granular-type and homogeneous. It also affects the size of crystallites and the relative arrangement of PEDOT and PSS chains. It is shown that the crystallites in PEDOT:PSS are smaller than those in PEDOT with molecular counterions such as PEDOT:tosylate, which is consistent with the available experimental data. The predicted changes of the PEDOT:PSS morphology with variation of the pH can be tested experimentally, and the calculated atomistic picture of PEDOT:PSS films (not accessible by conventional experimental techniques) is instrumental for understanding the material structure and building realistic models of PEDOT:PSS morphology.
Collapse
Affiliation(s)
- Mohsen Modarresi
- Department of Physics, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | | |
Collapse
|
29
|
Cappai A, Antidormi A, Bosin A, Galliani D, Narducci D, Melis C. Interplay between synthetic conditions and micromorphology in poly(3,4-ethylenedioxythiophene):tosylate (PEDOT:Tos): an atomistic investigation. Phys Chem Chem Phys 2019; 21:8580-8586. [DOI: 10.1039/c9cp00970a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A systematic analysis was performed to elucidate the role played by proton scavengers in PEDOT chain length distribution and micromorphology.
Collapse
Affiliation(s)
- A. Cappai
- Department of Physics
- Univ. of Cagliari
- Cittadella Universitaria
- 09042 Monserrato
- Italy
| | - A. Antidormi
- Department of Physics
- Univ. of Cagliari
- Cittadella Universitaria
- 09042 Monserrato
- Italy
| | - A. Bosin
- Department of Physics
- Univ. of Cagliari
- Cittadella Universitaria
- 09042 Monserrato
- Italy
| | - D. Galliani
- Department of Materials Science
- Univ. of Milano-Bicocca
- 20125 Milano
- Italy
| | - D. Narducci
- Department of Materials Science
- Univ. of Milano-Bicocca
- 20125 Milano
- Italy
| | - C. Melis
- Department of Physics
- Univ. of Cagliari
- Cittadella Universitaria
- 09042 Monserrato
- Italy
| |
Collapse
|
30
|
Franco-Gonzalez JF, Rolland N, Zozoulenko IV. Substrate-Dependent Morphology and Its Effect on Electrical Mobility of Doped Poly(3,4-ethylenedioxythiophene) (PEDOT) Thin Films. ACS APPLIED MATERIALS & INTERFACES 2018; 10:29115-29126. [PMID: 30070463 DOI: 10.1021/acsami.8b08774] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Deposition dynamics, crystallization, molecular packing, and electronic mobility of poly(3,4-ethylenedioxythiophene) (PEDOT) thin films are affected by the nature of the substrate. Computational microscopy has been carried out to reveal the morphology-substrate dependence for PEDOT thin films doped with molecular tosylate deposited on different substrates including graphite, Si3N4, silicon, and amorphous SiO2. It is shown that the substrate is instrumental in formation of the lamellar structure. PEDOT films on the ordered substrates (graphite, Si3N4, and silicon) exhibit preferential face-on orientation, with graphite showing the most ordered and pronounced face-on packing. In contrast, PEDOT on amorphous SiO2 exhibits the dominant edge-on orientation, except in the dry state where both packings are equally presented. The role of water and the porosity of the substrate in formation of the edge-on structure on SiO2 is outlined. On the basis of the calculated morphology, the multiscale calculations of the electronic transport and percolative analysis are performed outlining how the character of the substrate affects the electron mobility. It is demonstrated that good crystallinity (PEDOT on graphite substrate) and high content of edge-on (PEDOT on SiO2 substrate) are not enough to achieve the highest electrical in-plane mobility. Instead, the least ordered material with lower degree of the edge-on content (PEDOT on silicon substrate) provides the highest mobility because it exhibits an efficient network of π-π stacked chain extending throughout the entire sample.
Collapse
Affiliation(s)
- Juan Felipe Franco-Gonzalez
- Laboratory of Organic Electronics, Department of Science and Technology , Linköping University , SE-601 74 Norrköping , Sweden
| | - Nicolas Rolland
- Laboratory of Organic Electronics, Department of Science and Technology , Linköping University , SE-601 74 Norrköping , Sweden
| | - Igor V Zozoulenko
- Laboratory of Organic Electronics, Department of Science and Technology , Linköping University , SE-601 74 Norrköping , Sweden
| |
Collapse
|
31
|
Vallejo-Giraldo C, Krukiewicz K, Calaresu I, Zhu J, Palma M, Fernandez-Yague M, McDowell B, Peixoto N, Farid N, O'Connor G, Ballerini L, Pandit A, Biggs MJP. Attenuated Glial Reactivity on Topographically Functionalized Poly(3,4-Ethylenedioxythiophene):P-Toluene Sulfonate (PEDOT:PTS) Neuroelectrodes Fabricated by Microimprint Lithography. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1800863. [PMID: 29862640 DOI: 10.1002/smll.201800863] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 04/17/2018] [Indexed: 06/08/2023]
Abstract
Following implantation, neuroelectrode functionality is susceptible to deterioration via reactive host cell response and glial scar-induced encapsulation. Within the neuroengineering community, there is a consensus that the induction of selective adhesion and regulated cellular interaction at the tissue-electrode interface can significantly enhance device interfacing and functionality in vivo. In particular, topographical modification holds promise for the development of functionalized neural interfaces to mediate initial cell adhesion and the subsequent evolution of gliosis, minimizing the onset of a proinflammatory glial phenotype, to provide long-term stability. Herein, a low-temperature microimprint-lithography technique for the development of micro-topographically functionalized neuroelectrode interfaces in electrodeposited poly(3,4-ethylenedioxythiophene):p-toluene sulfonate (PEDOT:PTS) is described and assessed in vitro. Platinum (Pt) microelectrodes are subjected to electrodeposition of a PEDOT:PTS microcoating, which is subsequently topographically functionalized with an ordered array of micropits, inducing a significant reduction in electrode electrical impedance and an increase in charge storage capacity. Furthermore, topographically functionalized electrodes reduce the adhesion of reactive astrocytes in vitro, evident from morphological changes in cell area, focal adhesion formation, and the synthesis of proinflammatory cytokines and chemokine factors. This study contributes to the understanding of gliosis in complex primary mixed cell cultures, and describes the role of micro-topographically modified neural interfaces in the development of stable microelectrode interfaces.
Collapse
Affiliation(s)
- Catalina Vallejo-Giraldo
- CÚRAM-Centre for Research in Medical Devices-Galway, Biosciences Research Building, 118 Corrib Village, Newcastle, Galway, H91 D577, Ireland
| | - Katarzyna Krukiewicz
- CÚRAM-Centre for Research in Medical Devices-Galway, Biosciences Research Building, 118 Corrib Village, Newcastle, Galway, H91 D577, Ireland
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, Gliwice, 44-100, Poland
| | - Ivo Calaresu
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), Via Bonomea, 265, 34136, Trieste, Italy
| | - Jingyuan Zhu
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E14NS, UK
| | - Matteo Palma
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E14NS, UK
| | - Marc Fernandez-Yague
- CÚRAM-Centre for Research in Medical Devices-Galway, Biosciences Research Building, 118 Corrib Village, Newcastle, Galway, H91 D577, Ireland
| | - BenjaminW McDowell
- Department of Electrical and Computer Engineering, George Mason University, 4400 University Drive, MS-1G5 Fairfax, VA, 22030, USA
| | - Nathalia Peixoto
- Department of Electrical and Computer Engineering, George Mason University, 4400 University Drive, MS-1G5 Fairfax, VA, 22030, USA
| | - Nazar Farid
- School of Physics, National University of Ireland, Galway, University Road, Galway, H91 CF50, Ireland
| | - Gerard O'Connor
- School of Physics, National University of Ireland, Galway, University Road, Galway, H91 CF50, Ireland
| | - Laura Ballerini
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), Via Bonomea, 265, 34136, Trieste, Italy
| | - Abhay Pandit
- CÚRAM-Centre for Research in Medical Devices-Galway, Biosciences Research Building, 118 Corrib Village, Newcastle, Galway, H91 D577, Ireland
| | - Manus Jonathan Paul Biggs
- CÚRAM-Centre for Research in Medical Devices-Galway, Biosciences Research Building, 118 Corrib Village, Newcastle, Galway, H91 D577, Ireland
| |
Collapse
|
32
|
Ibanez JG, Rincón ME, Gutierrez-Granados S, Chahma M, Jaramillo-Quintero OA, Frontana-Uribe BA. Conducting Polymers in the Fields of Energy, Environmental Remediation, and Chemical–Chiral Sensors. Chem Rev 2018; 118:4731-4816. [DOI: 10.1021/acs.chemrev.7b00482] [Citation(s) in RCA: 264] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jorge G. Ibanez
- Departamento de Ingeniería y Ciencias Químicas, Universidad Iberoamericana, Prolongación Paseo de la Reforma 880, 01219 Ciudad de México, Mexico
| | - Marina. E. Rincón
- Instituto de Energías Renovables, Universidad Nacional Autónoma de México, Apartado Postal 34, 62580, Temixco, MOR, Mexico
| | - Silvia Gutierrez-Granados
- Departamento de Química, DCNyE, Campus Guanajuato, Universidad de Guanajuato, Cerro de la Venada S/N, Pueblito
de Rocha, 36080 Guanajuato, GTO Mexico
| | - M’hamed Chahma
- Laurentian University, Department of Chemistry & Biochemistry, Sudbury, ON P3E2C6, Canada
| | - Oscar A. Jaramillo-Quintero
- CONACYT-Instituto de Energías Renovables, Universidad Nacional Autónoma de México, Apartado Postal 34, 62580 Temixco, MOR, Mexico
| | - Bernardo A. Frontana-Uribe
- Centro Conjunto de Investigación en Química Sustentable, UAEM-UNAM, Km 14.5 Carretera Toluca-Ixtlahuaca, Toluca 50200, Estado de México Mexico
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito
exterior Ciudad Universitaria, 04510 Ciudad de México, Mexico
| |
Collapse
|
33
|
Cigarini L, Ruini A, Catellani A, Calzolari A. Conflicting effect of chemical doping on the thermoelectric response of ordered PEDOT aggregates. Phys Chem Chem Phys 2018; 20:5021-5027. [PMID: 29388641 DOI: 10.1039/c7cp07898f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Poly(3,4-ethylenedioxythiophene) (PEDOT) semiconductor plays a relevant role in the development of organic thermoelectric (TE) devices for low-power generation.
Collapse
Affiliation(s)
- Luigi Cigarini
- Dipartimento FIM
- Universitá di Modena e Reggio Emilia
- Modena
- Italy
- CNR-NANO
| | - Alice Ruini
- Dipartimento FIM
- Universitá di Modena e Reggio Emilia
- Modena
- Italy
- CNR-NANO
| | | | | |
Collapse
|
34
|
Li Z, Guo Y, Wang X, Ying W, Chen D, Ma X, Zhao X, Peng X. Highly conductive PEDOT:PSS threaded HKUST-1 thin films. Chem Commun (Camb) 2018; 54:13865-13868. [DOI: 10.1039/c8cc07591c] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A highly conductive and porous PEDOT:PSS threaded HKUST-1 thin film was prepared and utilized as a thin film-like electrode for supercapacitors.
Collapse
Affiliation(s)
- Zhouyi Li
- State Key Laboratory of Silicon Materials
- School of Materials Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Yi Guo
- State Key Laboratory of Silicon Materials
- School of Materials Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Xiaobin Wang
- State Key Laboratory of Silicon Materials
- School of Materials Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Wen Ying
- State Key Laboratory of Silicon Materials
- School of Materials Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Danke Chen
- State Key Laboratory of Silicon Materials
- School of Materials Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Xu Ma
- State Key Laboratory of Silicon Materials
- School of Materials Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Xing Zhao
- State Key Laboratory of Silicon Materials
- School of Materials Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Xinsheng Peng
- State Key Laboratory of Silicon Materials
- School of Materials Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| |
Collapse
|
35
|
Wang MH, Ji BW, Gu XW, Tian HC, Kang XY, Yang B, Wang XL, Chen X, Li CY, Liu JQ. Direct electrodeposition of Graphene enhanced conductive polymer on microelectrode for biosensing application. Biosens Bioelectron 2018; 99:99-107. [DOI: 10.1016/j.bios.2017.07.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 07/01/2017] [Accepted: 07/11/2017] [Indexed: 11/27/2022]
|
36
|
Boronate affinity solid-phase extraction of cis-diol compounds by a one-step electrochemically synthesized selective polymer sorbent. Anal Bioanal Chem 2017; 410:501-508. [DOI: 10.1007/s00216-017-0740-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 09/27/2017] [Accepted: 11/02/2017] [Indexed: 02/07/2023]
|
37
|
Muñoz WA, Crispin X, Fahlman M, Zozoulenko IV. Understanding the Impact of Film Disorder and Local Surface Potential in Ultraviolet Photoelectron Spectroscopy of PEDOT. Macromol Rapid Commun 2017; 39. [DOI: 10.1002/marc.201700533] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 10/03/2017] [Indexed: 11/06/2022]
Affiliation(s)
- William A. Muñoz
- Laboratory of Organic Electronics; Department of Science and Technology; Linköping University; SE-601 74 Norrköping Sweden
| | - Xavier Crispin
- Laboratory of Organic Electronics; Department of Science and Technology; Linköping University; SE-601 74 Norrköping Sweden
| | - Mats Fahlman
- Department of Physics; Chemistry and Biology; Linköping University; SE-581 83 Linköping Sweden
| | - Igor V. Zozoulenko
- Laboratory of Organic Electronics; Department of Science and Technology; Linköping University; SE-601 74 Norrköping Sweden
| |
Collapse
|
38
|
Rudd S, Franco-Gonzalez JF, Kumar Singh S, Ullah Khan Z, Crispin X, Andreasen JW, Zozoulenko I, Evans D. Charge transport and structure in semimetallic polymers. ACTA ACUST UNITED AC 2017; 56:97-104. [PMID: 29242675 PMCID: PMC5725714 DOI: 10.1002/polb.24530] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 10/03/2017] [Indexed: 11/30/2022]
Abstract
Owing to changes in their chemistry and structure, polymers can be fabricated to demonstrate vastly different electrical conductivities over many orders of magnitude. At the high end of conductivity is the class of conducting polymers, which are ideal candidates for many applications in low‐cost electronics. Here, we report the influence of the nature of the doping anion at high doping levels within the semi‐metallic conducting polymer poly(3,4‐ethylenedioxythiophene) (PEDOT) on its electronic transport properties. Hall effect measurements on a variety of PEDOT samples show that the choice of doping anion can lead to an order of magnitude enhancement in the charge carrier mobility > 3 cm2/Vs at conductivities approaching 3000 S/cm under ambient conditions. Grazing Incidence Wide Angle X‐ray Scattering, Density Functional Theory calculations, and Molecular Dynamics simulations indicate that the chosen doping anion modifies the way PEDOT chains stack together. This link between structure and specific anion doping at high doping levels has ramifications for the fabrication of conducting polymer‐based devices. © 2017 The Authors. Journal of Polymer Science Part B: Polymer Physics Published by Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018, 56, 97–104
Collapse
Affiliation(s)
- Sam Rudd
- Thin Film Coatings Group, Future Industries Institute, University of South Australia Mawson Lakes South Australia 5095 Australia
| | - Juan F Franco-Gonzalez
- Department of Science and Technology, Organic Electronics Linkoping University Norrkoping SE-601 74 Sweden
| | - Sandeep Kumar Singh
- Department of Science and Technology, Organic Electronics Linkoping University Norrkoping SE-601 74 Sweden
| | - Zia Ullah Khan
- Department of Science and Technology, Organic Electronics Linkoping University Norrkoping SE-601 74 Sweden
| | - Xavier Crispin
- Department of Science and Technology, Organic Electronics Linkoping University Norrkoping SE-601 74 Sweden
| | - Jens W Andreasen
- Department of Energy Conversion and Storage, Frederiksborgvej 399 Technical University of Denmark Roskilde 4000 Denmark
| | - Igor Zozoulenko
- Department of Science and Technology, Organic Electronics Linkoping University Norrkoping SE-601 74 Sweden
| | - Drew Evans
- Thin Film Coatings Group, Future Industries Institute, University of South Australia Mawson Lakes South Australia 5095 Australia
| |
Collapse
|
39
|
Determination of the charge transfer resistance of poly(3,4-ethylenedioxythiophene)-modified electrodes immediately after overoxidation. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.06.177] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
40
|
Ling X, Chen Z. Electrochemically deposited conductive composite sorbent for highly efficient online solid-phase microextraction of jasmonates in plant samples. Talanta 2017; 170:337-342. [DOI: 10.1016/j.talanta.2017.03.100] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/21/2017] [Accepted: 03/29/2017] [Indexed: 10/19/2022]
|
41
|
Abstract
Alkoxy-functionalized polythiophenes such as poly(3,4-ethylenedioxythiophene) (PEDOT) and poly(3,4-propylenedioxythiophene) (PProDOT) have become promising materials for a variety of applications including bioelectronic devices due to their high conductivity, relatively soft mechanical response, good chemical stability and excellent biocompatibility. However the long-term applications of PEDOT and PProDOT coatings are still limited by their relatively poor electrochemical stability on various inorganic substrates. Here, we report the synthesis of an octa-ProDOT-functionalized polyhedral oligomeric silsesquioxane (POSS) derivative (POSS-ProDOT) and its copolymerization with EDOT to improve the stability of PEDOT coatings. The POSS-ProDOT crosslinker was synthesized via thiol-ene "click" chemistry, and its structure was confirmed by both Nuclear Magnetic Resonance and Fourier Transform Infrared spectroscopies. PEDOT copolymer films were then electrochemically deposited with various concentrations of the crosslinker. The resulting PEDOT-co-POSS-ProDOT copolymer films were characterized by Cyclic Voltammetry, Electrochemical Impedance Spectroscopy, Ultraviolet-Visible spectroscopy and Scanning Electron Microscopy. The optical, morphological and electrochemical properties of the copolymer films could be systematically tuned with the incorporation of POSS-ProDOT. Significantly enhanced electrochemical stability of the copolymers was observed at intermediate levels of POSS-ProDOT content (3.1 wt%). It is expected that these highly stable PEDOT-co-POSS-ProDOT materials will be excellent candidates for use in bioelectronics devices such as neural electrodes.
Collapse
Affiliation(s)
- Bin Wei
- Materials Science and Engineering, the University of Delaware, Newark, DE, USA,19716
| | - Jinglin Liu
- Materials Science and Engineering, the University of Delaware, Newark, DE, USA,19716
| | - Liangqi Ouyang
- Materials Science and Engineering, the University of Delaware, Newark, DE, USA,19716
| | - David C Martin
- Materials Science and Engineering, the University of Delaware, Newark, DE, USA,19716
- Biomedical Engineering, the University of Delaware, Newark, DE, USA, 19716
| |
Collapse
|
42
|
Franco-Gonzalez JF, Zozoulenko IV. Molecular Dynamics Study of Morphology of Doped PEDOT: From Solution to Dry Phase. J Phys Chem B 2017; 121:4299-4307. [DOI: 10.1021/acs.jpcb.7b01510] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
| | - Igor V. Zozoulenko
- Laboratory of Organic Electronics,
ITN, Linköping University, 60174 Norrköping, Sweden
| |
Collapse
|
43
|
Wen Y, Xu J. Scientific Importance of Water-Processable PEDOT-PSS and Preparation, Challenge and New Application in Sensors of Its Film Electrode: A Review. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/pola.28482] [Citation(s) in RCA: 183] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yangping Wen
- Key Laboratory of Applied Chemistry; Jiangxi Agricultural University; Nanchang 330045 People's Republic of China
| | - Jingkun Xu
- Jiangxi Engineering Laboratory of Waterborne Coatings; Jiangxi Science and Technology Normal University; Nanchang 330013 People's Republic of China
| |
Collapse
|
44
|
Vapor-phase polymerized poly(3,4-ethylenedioxythiophene) (PEDOT)/TiO2 composite fibers as electrode materials for supercapacitors. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2016.12.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
45
|
Wang T, Farajollahi M, Henke S, Zhu T, Bajpe SR, Sun S, Barnard JS, Lee JS, Madden JDW, Cheetham AK, Smoukov SK. Functional conductive nanomaterials via polymerisation in nano-channels: PEDOT in a MOF. MATERIALS HORIZONS 2017; 4:64-71. [PMID: 28496984 PMCID: PMC5361137 DOI: 10.1039/c6mh00230g] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 08/22/2016] [Indexed: 05/04/2023]
Abstract
Reactions inside the pores of metal-organic frameworks (MOFs) offer potential for controlling polymer structures with regularity to sub-nanometre scales. We report a wet-chemistry route to poly-3,4-ethylenedioxythiophene (PEDOT)-MOF composites. After a two-step removal of the MOF template we obtain unique and stable macroscale structures of this conductive polymer with some nanoscale regularity.
Collapse
Affiliation(s)
- Tiesheng Wang
- Department of Materials Science and Metallurgy , University of Cambridge , Cambridge CB3 0FS , UK .
- EPSRC Centre for Doctoral Training in Sensor Technologies and Applications , University of Cambridge , Cambridge CB2 3RA , UK
| | - Meisam Farajollahi
- Advanced Materials and Process Engineering Laboratory , University of British Columbia , Vancouver BC V6T 1Z4 , Canada
| | - Sebastian Henke
- Lehrstuhl für Anorganische Chemie II , Ruhr-Universität Bochum , Bochum 44801 , Germany
| | - Tongtong Zhu
- Department of Materials Science and Metallurgy , University of Cambridge , Cambridge CB3 0FS , UK .
| | - Sneha R Bajpe
- Department of Materials Science and Metallurgy , University of Cambridge , Cambridge CB3 0FS , UK .
| | - Shijing Sun
- Department of Materials Science and Metallurgy , University of Cambridge , Cambridge CB3 0FS , UK .
| | - Jonathan S Barnard
- Department of Materials Science and Metallurgy , University of Cambridge , Cambridge CB3 0FS , UK .
| | - June Sang Lee
- Department of Materials Science and Metallurgy , University of Cambridge , Cambridge CB3 0FS , UK .
| | - John D W Madden
- Advanced Materials and Process Engineering Laboratory , University of British Columbia , Vancouver BC V6T 1Z4 , Canada
| | - Anthony K Cheetham
- Department of Materials Science and Metallurgy , University of Cambridge , Cambridge CB3 0FS , UK .
| | - Stoyan K Smoukov
- Department of Materials Science and Metallurgy , University of Cambridge , Cambridge CB3 0FS , UK .
| |
Collapse
|
46
|
Neurobiochemical changes in the vicinity of a nanostructured neural implant. Sci Rep 2016; 6:35944. [PMID: 27775024 PMCID: PMC5075914 DOI: 10.1038/srep35944] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 10/07/2016] [Indexed: 01/22/2023] Open
Abstract
Neural interface technologies including recording and stimulation electrodes are currently in the early phase of clinical trials aiming to help patients with spinal cord injuries, degenerative disorders, strokes interrupting descending motor pathways, or limb amputations. Their lifetime is of key importance; however, it is limited by the foreign body response of the tissue causing the loss of neurons and a reactive astrogliosis around the implant surface. Improving the biocompatibility of implant surfaces, especially promoting neuronal attachment and regeneration is therefore essential. In our work, bioactive properties of implanted black polySi nanostructured surfaces (520–800 nm long nanopillars with a diameter of 150–200 nm) were investigated and compared to microstructured Si surfaces in eight-week-long in vivo experiments. Glial encapsulation and local neuronal cell loss were characterised using GFAP and NeuN immunostaining respectively, followed by systematic image analysis. Regarding the severity of gliosis, no significant difference was observed in the vicinity of the different implant surfaces, however, the number of surviving neurons close to the nanostructured surface was higher than that of the microstructured ones. Our results imply that the functionality of implanted microelectrodes covered by Si nanopillars may lead to improved long-term recordings.
Collapse
|
47
|
Zhao X, Dong M, Zhang J, Li Y, Zhang Q. Vapor-phase polymerization of poly(3, 4-ethylenedioxythiophene) nanofibers on carbon cloth as electrodes for flexible supercapacitors. NANOTECHNOLOGY 2016; 27:385705. [PMID: 27533130 DOI: 10.1088/0957-4484/27/38/385705] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In this study, an evaporative vapor-phase polymerization approach was employed to fabricate vertically aligned poly(3, 4-ethylenedioxythiophene) (PEDOT) nanofibers on the surface of carbon cloth (CC). Optimized reaction conditions can obtain well distributed and uniform layers of high-aspect-ratio PEDOT nanofibers on CC. The hierarchical PEDOT/CC structure as a freestanding electrode exhibits good electrochemical properties. As a flexible symmetric supercapacitor, the PEDOT/CC hybrid electrode displays a specific areal capacitance of 201.4 mF cm(-2) at 1 mA cm(-2), good flexibility with a higher value (204.6 mF cm(-2)) in the bending state, and a good cycling stability of 92.4% after 1000 cycles. Moreover, the device shows a maximum energy density of 4.0 Wh kg(-1) (with a power density of 3.2 kW kg(-1)) and a maximum power density of 4.2 kW kg(-1) (with an energy density of 3.1 Wh kg(-1)). The results demonstrate that PEDOT may be a promising material for storage devices through a simple and efficient vapor-phase polymerization process with precisely controlled reaction conditions.
Collapse
Affiliation(s)
- Xin Zhao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China
| | | | | | | | | |
Collapse
|
48
|
Simon DT, Gabrielsson EO, Tybrandt K, Berggren M. Organic Bioelectronics: Bridging the Signaling Gap between Biology and Technology. Chem Rev 2016; 116:13009-13041. [PMID: 27367172 DOI: 10.1021/acs.chemrev.6b00146] [Citation(s) in RCA: 227] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The electronics surrounding us in our daily lives rely almost exclusively on electrons as the dominant charge carrier. In stark contrast, biological systems rarely use electrons but rather use ions and molecules of varying size. Due to the unique combination of both electronic and ionic/molecular conductivity in conducting and semiconducting organic polymers and small molecules, these materials have emerged in recent decades as excellent tools for translating signals between these two realms and, therefore, providing a means to effectively interface biology with conventional electronics-thus, the field of organic bioelectronics. Today, organic bioelectronics defines a generic platform with unprecedented biological recording and regulation tools and is maturing toward applications ranging from life sciences to the clinic. In this Review, we introduce the field, from its early breakthroughs to its current results and future challenges.
Collapse
Affiliation(s)
- Daniel T Simon
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University , 60174 Norrköping, Sweden
| | - Erik O Gabrielsson
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University , 60174 Norrköping, Sweden
| | - Klas Tybrandt
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University , 60174 Norrköping, Sweden.,Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich , 8092 Zürich, Switzerland
| | - Magnus Berggren
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University , 60174 Norrköping, Sweden
| |
Collapse
|
49
|
Martin DC, Malliaras GG. Interfacing Electronic and Ionic Charge Transport in Bioelectronics. ChemElectroChem 2016. [DOI: 10.1002/celc.201500555] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- David C. Martin
- Materials Science and Engineering and Biomedical Engineering The University of Delaware Newark DE 19716 USA
| | - George G. Malliaras
- Department of Bioelectronics École des Mines de Saint-Étienne Gardanne France
| |
Collapse
|
50
|
Qu J, Ouyang L, Kuo CC, Martin DC. Stiffness, strength and adhesion characterization of electrochemically deposited conjugated polymer films. Acta Biomater 2016; 31:114-121. [PMID: 26607768 DOI: 10.1016/j.actbio.2015.11.018] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 10/13/2015] [Accepted: 11/12/2015] [Indexed: 11/15/2022]
Abstract
Conjugated polymers such as poly(3,4-ethylenedioxythiphene) (PEDOT) are of interest for a variety of applications including interfaces between electronic biomedical devices and living tissue. The mechanical properties, strength, and adhesion of these materials to solid substrates are all vital for long-term applications. We have been developing methods to quantify the mechanical properties of conjugated polymer thin films. In this paper, the stiffness, strength and the interfacial shear strength (adhesion) of electrochemically deposited PEDOT and PEDOT-co-1,3,5-tri[2-(3,4-ethylene dioxythienyl)]-benzene (EPh) were studied. The estimated Young's modulus of the PEDOT films was 2.6±1.4GPa, and the strain to failure was around 2%. The tensile strength was measured to be 56±27MPa. The effective interfacial shear strength was estimated with a shear-lag model by measuring the crack spacing as a function of film thickness. For PEDOT on gold/palladium-coated hydrocarbon film substrates an interfacial shear strength of 0.7±0.3MPa was determined. The addition of 5mole% of a tri-functional EDOT crosslinker (EPh) increased the tensile strength of the films to 283±67MPa, while the strain to failure remained about the same (2%). The effective interfacial shear strength was increased to 2.4±0.6MPa. STATEMENT OF SIGNIFICANCE This paper describes methods for estimating the ultimate mechanical properties of electrochemically deposited conjugated polymer (here PEDOT and PEDOT copolymers) films. Of particular interest and novelty is our implementation of a cracking test to quantify the shear strength of the PEDOT thin films on these solid substrates. There is considerable interest in these materials as interfaces between biomedical devices and living tissue, however potential mechanisms and modes of failure are areas of continuing concern, and establishing methods to quantify the strengths of these interfaces are therefore of particular current interest. We are confident that these results will be useful to the broader biological materials community and are worthy of broader dissemination.
Collapse
Affiliation(s)
- Jing Qu
- Department of Materials Science & Engineering, University of Delaware, Newark, DE 19716, USA
| | - Liangqi Ouyang
- Department of Materials Science & Engineering, University of Delaware, Newark, DE 19716, USA
| | - Chin-Chen Kuo
- Department of Materials Science & Engineering, University of Delaware, Newark, DE 19716, USA
| | - David C Martin
- Department of Materials Science & Engineering, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|