1
|
Wu J, Hua Z, Liu G. Supramolecular adhesives inspired from adhesive proteins and nucleic acids: molecular design, properties, and applications. SOFT MATTER 2025; 21:324-341. [PMID: 39688920 DOI: 10.1039/d4sm01220h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Bioinspired supramolecular adhesives have been recently emerging as novel functional materials, which have shown a wide range of applications in wearable sensors and tissue engineering such as tissue adhesives and wound dressings. In this review, we summarize and discuss two main types of biologically inspired supramolecular adhesives from adhesive proteins and nucleic acids. The widely studied catechol-based adhesives, that originated from adhesive proteins of marine organisms such as mussels, and recently emerging nucleobase-containing supramolecular adhesives are both introduced and discussed. Both bioinspired adhesives from nucleic acids and adhesive proteins involve multiple supramolecular interactions such as hydrogen bonding, hydrophobic interactions, π-π stacking, and so on. Several major types of these bioinspired adhesives are summarized, respectively, including polymer-based, hydrogel-based, and other types of adhesives. The novel molecular design and adhesion properties are focused on and highlighted for each type of bioinspired adhesive. In addition, the potential applications of these bioinspired supramolecular adhesives in different realms including tissue engineering and biomedical devices are discussed. This review concludes with issues and challenges in the area of the bioinspired adhesives, hopefully promoting further developments and broader applications of novel supramolecular adhesives.
Collapse
Affiliation(s)
- Jiang Wu
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, P. R. China.
| | - Zan Hua
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, and Department of Materials Chemistry, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.
| | - Guangming Liu
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, P. R. China.
| |
Collapse
|
2
|
Zhang M, Chen Y, Chung A, Yang S, Choi CH, Zhang S, Han Y, Xiao H. Harnessing Nature-Inspired Catechol Amino Acid to Engineer Sticky Proteins and Bacteria. SMALL METHODS 2024; 8:e2400230. [PMID: 39285836 DOI: 10.1002/smtd.202400230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 09/06/2024] [Indexed: 10/22/2024]
Abstract
3,4-Dihydroxy-L-phenylalanine (DOPA) serves as a post-translational modification amino acid present in mussel foot proteins. Mussels exploit the exceptional adhesive properties of DOPA to adhere to a wide range of surfaces. This study presents the development of sticky proteins and bacteria through the site-specific incorporation of DOPA using Genetic Code Expansion Technology. Through the optimization of the DOPA incorporation system, proteins containing DOPA demonstrate significantly improved binding abilities to various organic and metallic materials. The material-binding capabilities of DOPA to combat different types of biofoulings are harnessed by integrating it into intrinsically disordered proteins. Beyond the creation of adhesive proteins for anti-biofouling purposes, this highly efficient DOPA incorporation system is also applied to engineer adhesive bacteria, resulting in a remarkable increase in their binding capability to diverse materials including 400 folds of improvement to polyethylene terephthalate (PET). This substantial enhancement in PET binding of these bacteria has allowed to develop a unique approach for PET degradation, showcasing the innovative application of Genetic Code Expansion in cell engineering.
Collapse
Affiliation(s)
- Mengxi Zhang
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Yuda Chen
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Anna Chung
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Shudan Yang
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Chi Hun Choi
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Sophie Zhang
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX, 77005, USA
- The Awty International Schoo, 6100 Main Street, Houston, TX, 77055, USA
| | - Yimo Han
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Han Xiao
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX, 77005, USA
- Department of Biosciences, Rice University, 6100 Main Street, Houston, TX, 77005, USA
- Department of Bioengineering, Rice University, 6100 Main Street, Houston, TX, 77005, USA
- SynthX Center, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| |
Collapse
|
3
|
Kruse B, Vasic K, Böker KO, Schilling AF, Lehmann W, Epple M. A particle-filled hydrogel based on alginate and calcium phosphate nanoparticles as bone adhesive. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2024; 35:63. [PMID: 39400634 PMCID: PMC11473629 DOI: 10.1007/s10856-024-06798-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 05/08/2024] [Indexed: 10/15/2024]
Abstract
The clinical need for bone adhesives as an alternative to osteosynthesis is evident. However, this is a challenging problem due to the moist environment in surgical sites with bone surfaces covered with blood and biomolecules like lipids or proteins. A nanoparticle-loaded hydrogel that is based on a freeze-dried powder of silica-coated calcium phosphate/carboxymethyl cellulose nanoparticles (CaP/CMC/SiO2) and an aqueous solution of sodium alginate (2 wt%) was developed and optimized with respect to the gluing ability in air and in water. The final paste was crosslinked within about one minute by calcium ions released from the calcium phosphate nanoparticles and contained about 20 wt% nanoparticles and 80 wt% water. The mechanical properties of the hydrogel were determined by extensive rheological tests. The thixotropic pasty hydrogel can be applied with a syringe. The adhesion strength was about 84 kPa between moist bone fragments in air. The hydrogel kept fragments of cortical bone well connected for >3 months during complete submersion in water. Besides water, the material consists only of biocompatible and biodegradable components (calcium phosphate, CMC, alginate). It carries only a very low dose of these materials into the bone site (mainly calcium phosphate nanoparticles). In-vitro cell culture with hMSCs that differentiated to osteoblasts confirmed a good biocompatibility of the bone adhesive formulation.
Collapse
Affiliation(s)
- Benedikt Kruse
- Inorganic Chemistry and Centre for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Essen, Germany
| | - Katarina Vasic
- Clinic for Trauma Surgery, Orthopedics and Plastic Surgery, University Medical Center Goettingen, Goettingen, Germany
| | - Kai O Böker
- Clinic for Trauma Surgery, Orthopedics and Plastic Surgery, University Medical Center Goettingen, Goettingen, Germany
| | - Arndt F Schilling
- Clinic for Trauma Surgery, Orthopedics and Plastic Surgery, University Medical Center Goettingen, Goettingen, Germany
| | - Wolfgang Lehmann
- Clinic for Trauma Surgery, Orthopedics and Plastic Surgery, University Medical Center Goettingen, Goettingen, Germany.
| | - Matthias Epple
- Inorganic Chemistry and Centre for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
4
|
Naser SS, Gupta A, Choudhury A, Yadav A, Sinha A, Kirti A, Singh D, Kujawska M, Kaushik NK, Ghosh A, De S, Verma SK. Biophysical translational paradigm of polymeric nanoparticle: Embarked advancement to brain tumor therapy. Biomed Pharmacother 2024; 179:117372. [PMID: 39208668 DOI: 10.1016/j.biopha.2024.117372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
Polymeric nanoparticles have emerged as promising contenders for addressing the intricate challenges encountered in brain tumor therapy due to their distinctive attributes, including adjustable size, biocompatibility, and controlled drug release kinetics. This review comprehensively delves into the latest developments in synthesizing, characterizing, and applying polymeric nanoparticles explicitly tailored for brain tumor therapy. Various synthesis methodologies, such as emulsion polymerization, nanoprecipitation, and template-assisted fabrication, are scrutinized within the context of brain tumor targeting, elucidating their advantages and limitations concerning traversing the blood-brain barrier. Furthermore, strategies pertaining to surface modification and functionalization are expounded upon to augment the stability, biocompatibility, and targeting prowess of polymeric nanoparticles amidst the intricate milieu of the brain microenvironment. Characterization techniques encompassing dynamic light scattering, transmission electron microscopy, and spectroscopic methods are scrutinized to evaluate the physicochemical attributes of polymeric nanoparticles engineered for brain tumor therapy. Moreover, a comprehensive exploration of the manifold applications of polymeric nanoparticles encompassing drug delivery, gene therapy, imaging, and combination therapies for brain tumours is undertaken. Special emphasis is placed on the encapsulation of diverse therapeutics within polymeric nanoparticles, thereby shielding them from degradation and enabling precise targeting within the brain. Additionally, recent advancements in stimuli-responsive and multifunctional polymeric nanoparticles are probed for their potential in personalized medicine and theranostics tailored for brain tumours. In essence, this review furnishes an all-encompassing overview of the recent strides made in tailoring polymeric nanoparticles for brain tumor therapy, illuminating their synthesis, characterization, and multifaceted application.
Collapse
Affiliation(s)
- Shaikh Sheeran Naser
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Abha Gupta
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Anmol Choudhury
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Anu Yadav
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Adrija Sinha
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Apoorv Kirti
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Deobrat Singh
- Department of Physics and Astronomy, Uppsala University, Box 516, Uppsala SE-751 20, Sweden
| | | | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, South Korea.
| | - Aishee Ghosh
- Department of Physics and Astronomy, Uppsala University, Box 516, Uppsala SE-751 20, Sweden.
| | - Sriparna De
- Department of Allied Health Sciences, Brainware University, 398, Ramkrishnapur Road, Kolkata 700125, India.
| | - Suresh K Verma
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India.
| |
Collapse
|
5
|
Pereira R, Lins RBE, Lima EFDS, Mainardi MDCAJ, Stamboroski S, Rischka K, Aguiar FHB. Properties of a Dental Adhesive Containing Graphene and DOPA-Modified Graphene. Polymers (Basel) 2024; 16:2081. [PMID: 39065398 PMCID: PMC11280573 DOI: 10.3390/polym16142081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Graphene is a promising biomaterial. However, its dispersion in aqueous medium is challenging. This study aimed to modify graphene nanoparticles with L-dopa to improve the properties of experimental dental adhesives. Adhesives were formulated with 0% (control), 0.25%, 0.5%, and 0.75% of graphene, modified or not. Particle modification and dispersion were microscopically assessed. Degree of conversion was tested by Fourier-transform infrared spectroscopy. Flexural strength and modulus of elasticity were evaluated by a 3-point flexural test. Bond strength was tested by shear. To test water sorption/solubility, samples were weighed during hydration and dehydration. Antibacterial activity was tested by Streptococcus mutans colony-forming units quantification. Cytotoxicity on fibroblasts was evaluated through a dentin barrier test. The modification of graphene improved the particle dispersion. Control presented the highest degree of conversion, flexural strength, and bond strength. In degree of conversion, 0.25% of groups were similar to control. In bond strength, groups of graphene modified by L-dopa were similar to Control. The modulus of elasticity was similar between groups. Cytotoxicity and water sorption/solubility decreased as particles increased. Compared to graphene, less graphene modified by L-dopa was needed to promote antibacterial activity. By modifying graphene with L-dopa, the properties of graphene and, therefore, the adhesives incorporated by it were enhanced.
Collapse
Affiliation(s)
- Renata Pereira
- Department of Restorative Dentistry, Division of Operative Dentistry, Piracicaba Dental School, University of Campinas (UNICAMP), Av. Limeira 901, Piracicaba 13414-903, SP, Brazil; (R.P.); (M.d.C.A.J.M.); (F.H.B.A.)
- Department of Adhesive Bonding Technology and Surfaces, Fraunhofer Institute for Manufacturing Technology and Advanced Materials (IFAM), Wiener Straße 12, 28359 Bremen, Germany;
| | | | - Elton Faria de Souza Lima
- Federal Institute of Education, Science and Technology of Goiás (IFG—Campus Uruaçu), Rua Formosa, Qd 28 e 29—Loteamento Santana, Uruaçu 76400-000, GO, Brazil;
| | - Maria do Carmo Aguiar Jordão Mainardi
- Department of Restorative Dentistry, Division of Operative Dentistry, Piracicaba Dental School, University of Campinas (UNICAMP), Av. Limeira 901, Piracicaba 13414-903, SP, Brazil; (R.P.); (M.d.C.A.J.M.); (F.H.B.A.)
- Department of Adhesive Bonding Technology and Surfaces, Fraunhofer Institute for Manufacturing Technology and Advanced Materials (IFAM), Wiener Straße 12, 28359 Bremen, Germany;
| | - Stephani Stamboroski
- Department of Adhesive Bonding Technology and Surfaces, Fraunhofer Institute for Manufacturing Technology and Advanced Materials (IFAM), Wiener Straße 12, 28359 Bremen, Germany;
| | - Klaus Rischka
- Department of Restorative Dentistry, Division of Operative Dentistry, Piracicaba Dental School, University of Campinas (UNICAMP), Av. Limeira 901, Piracicaba 13414-903, SP, Brazil; (R.P.); (M.d.C.A.J.M.); (F.H.B.A.)
- Department of Adhesive Bonding Technology and Surfaces, Fraunhofer Institute for Manufacturing Technology and Advanced Materials (IFAM), Wiener Straße 12, 28359 Bremen, Germany;
| | - Flávio Henrique Baggio Aguiar
- Department of Restorative Dentistry, Division of Operative Dentistry, Piracicaba Dental School, University of Campinas (UNICAMP), Av. Limeira 901, Piracicaba 13414-903, SP, Brazil; (R.P.); (M.d.C.A.J.M.); (F.H.B.A.)
| |
Collapse
|
6
|
Jeon W, Kwon Y, Kwon MS. Highly efficient dual photoredox/copper catalyzed atom transfer radical polymerization achieved through mechanism-driven photocatalyst design. Nat Commun 2024; 15:5160. [PMID: 38886349 PMCID: PMC11183263 DOI: 10.1038/s41467-024-49509-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 06/07/2024] [Indexed: 06/20/2024] Open
Abstract
Atom transfer radical polymerization (ATRP) with dual photoredox/copper catalysis combines the advantages of photo-ATRP and photoredox-mediated ATRP, utilizing visible light and ensuring broad monomer scope and solvent compatibility while minimizing side reactions. Despite its popularity, challenges include high photocatalyst (PC) loadings (10 to 1000 ppm), requiring additional purification and increasing costs. In this study, we discover a PC that functions at the sub-ppm level for ATRP through mechanism-driven PC design. Through studying polymerization mechanisms, we find that the efficient polymerizations are driven by PCs whose ground state oxidation potential-responsible for PC regeneration-play a more important role than their excited state reducing power, responsible for initiation. This is verified by screening PCs with varying redox potentials and triplet excited state generation capabilities. Based on these findings, we identify a highly efficient PC, 4DCDP-IPN, featuring moderate excited state reducing power and a maximized ground state oxidation potential. Employing this PC at 50 ppb, we synthesize poly(methyl methacrylate) with high conversion, narrow molecular weight distribution, and high chain-end fidelity. This system exhibits oxygen tolerance and supports large-scale reactions under ambient conditions. Our findings, driven by the systematic PC design, offer meaningful insights for controlled radical polymerizations and metallaphotoredox-mediated syntheses beyond ATRP.
Collapse
Affiliation(s)
- Woojin Jeon
- Department of Materials Science and Engineering and Research Institute of Advanced Materials, Seoul National University, Seoul, Republic of Korea
| | - Yonghwan Kwon
- Department of Materials Science and Engineering and Research Institute of Advanced Materials, Seoul National University, Seoul, Republic of Korea.
| | - Min Sang Kwon
- Department of Materials Science and Engineering and Research Institute of Advanced Materials, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
7
|
Jurku̅nas M, Talaikis M, Klimkevičius V, Pudžaitis V, Niaura G, Makuška R. Diblock Copolymers of Methacryloyloxyethyl Phosphorylcholine and Dopamine Methacrylamide: Synthesis and Real-Time Adsorption Dynamics by SEIRAS and RAIRS. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:5945-5958. [PMID: 38456424 PMCID: PMC10956495 DOI: 10.1021/acs.langmuir.3c03925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/18/2024] [Accepted: 02/23/2024] [Indexed: 03/09/2024]
Abstract
Amphiphilic diblock copolymers containing a block of 2-methacryloyloxyethyl phosphorylcholine (MPC) with unique properties to prevent nonspecific protein adsorption and enhance lubrication in aqueous media and a block of dopamine methacrylamide (DOPMA) distinguished by excellent adhesion performance were synthesized by reversible addition fragmentation chain transfer (RAFT) polymerization for the first time. The DOPMA monomer with an acetonide-protected catechol group (acetonide-protected dopamine methacrylamide (ADOPMA)) was used, allowing the prevention of undesirable side reactions during polymerization and oxidation during storage. The adsorption behavior of the diblock copolymers with protected and unprotected catechol groups on gold surfaces was probed using attenuated total reflection (ATR)-Fourier transform infrared (FTIR) spectroscopy, surface-enhanced infrared absorption spectroscopy (SEIRAS), and reflection-absorption infrared spectroscopy (RAIRS). The copolymers pMPC-b-pADOPMA demonstrated physisorption with rapid adsorption and ultrasound-assisted desorption, while the copolymers pMPC-b-DOPMA exhibited chemical adsorption with slower dynamics but a stronger interaction with the gold surface. SEIRAS and RAIRS allowed proving the reorientation of the diblock copolymers during adsorption, demonstrating the exposure of the pMPC block toward the aqueous phase.
Collapse
Affiliation(s)
- Marijus Jurku̅nas
- Institute
of Chemistry, Vilnius University, Naugarduko Str. 24, 03225 Vilnius, Lithuania
| | - Martynas Talaikis
- Department
of Organic Chemistry, Center for Physical
Sciences and Technology (FTMC), Sauletekio Ave. 3, 10257 Vilnius, Lithuania
| | - Vaidas Klimkevičius
- Institute
of Chemistry, Vilnius University, Naugarduko Str. 24, 03225 Vilnius, Lithuania
| | - Vaidas Pudžaitis
- Department
of Organic Chemistry, Center for Physical
Sciences and Technology (FTMC), Sauletekio Ave. 3, 10257 Vilnius, Lithuania
| | - Gediminas Niaura
- Department
of Organic Chemistry, Center for Physical
Sciences and Technology (FTMC), Sauletekio Ave. 3, 10257 Vilnius, Lithuania
| | - Ričardas Makuška
- Institute
of Chemistry, Vilnius University, Naugarduko Str. 24, 03225 Vilnius, Lithuania
| |
Collapse
|
8
|
Feng M, Zeng X, Lin Q, Wang Y, Wei H, Yang S, Wang G, Chen X, Guo M, Yang X, Hu J, Zhang Y, Yang X, Du Y, Zhao Y. Characterization of Chitosan-Gallic Acid Graft Copolymer for Periodontal Dressing Hydrogel Application. Adv Healthc Mater 2024; 13:e2302877. [PMID: 38041691 DOI: 10.1002/adhm.202302877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/09/2023] [Indexed: 12/03/2023]
Abstract
The postoperative periodontal wound is in a complex physiological environment; the bacteria accumulation, the saliva stimulation, and the food residues retention will aggravate the wound deterioration. Commercial periodontal dressings have been widely used for postoperative periodontal treatment, and there still exists some problems, such as poor biocompatibility, weak adhesion, insufficient antibacterial, and anti-inflammatory properties. In this study, a chitosan-gallic acid graft copolymer (CS-GA) is synthesized as a potential periodontal dressing hydrogel. CS-GA possesses high swelling rate, adjustable degradability, self-healing ability, biocompatibility, strong adhesion ability, high mechanical properties and toughness. Furthermore, CS-GA has good scavenging ability for ·OH, O2 - , and 1 O2. And CS-GA has good inhibition effect on different bacterial through bacterial membranes damage. CS-GA can stop bleeding in a short time and adsorb erythrocytes to form physical blood clots to enhance the hemostatic performance. In addition, CS-GA can reduce inflammatory factors expressions, increase collagen fibers deposition, and neovascularization to promote wounds healing, which makes it as a potential periodontal dressing for postoperative tissue restoration.
Collapse
Affiliation(s)
- Mengge Feng
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, P. R. China
| | - Xuelian Zeng
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Quan Lin
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Yunxiao Wang
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, P. R. China
| | - Hongjiang Wei
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, P. R. China
| | - Shanyi Yang
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, P. R. China
| | - Guangwei Wang
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Xingyu Chen
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Mengqin Guo
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Xin Yang
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Jun Hu
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Hubei Jiangxia Laboratory, Wuhan, 430200, P. R. China
| | - Yufeng Zhang
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, P. R. China
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Yangge Du
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, P. R. China
| | - Yanbing Zhao
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
9
|
Yang S, Shi Y, Wang X, Liu Y, Ren Y, Li W, Zhang H, Dai X, Sun W, Lai B. Selective elimination of sulfonamide antibiotics upon periodate/catechol process: Dominance of quinone intermediates. WATER RESEARCH 2023; 242:120317. [PMID: 37441871 DOI: 10.1016/j.watres.2023.120317] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023]
Abstract
Natural organic matter, specifically ortho-quinones organics among them, was considered can participate in the transformation of sulfonamide antibiotics (SAs). Herein, based on targeted oxidizing for ortho-dihydroxyl structures (catechol as the model) upon periodate, an efficient approach for SAs elimination was introduced. Results first indicated the generation of ortho-benzoquinone (o-BQ) within periodate/catechol system progresses readily (the energy barriers for 9.6854 kcal/mol). The near-complete eliminations were observed towards sulfamethoxazole (SMX) in periodate/catechol system (with the rate of 0.4229 min-1) as well as other SAs and exhibited unprecedented resistance to operating parameters. Besides, periodate converts little into toxic low-valent iodate species during the reaction process, and both the cytotoxicity and acute toxicity assays revealed a significant decline in antibiotics bioactivity. Mechanistic insight revealed that o-BQ dominated the degradation process, comprehensive analysis further confirmed Michael addition reaction was the first degradation stage, in which electrons flow from o-BQ to SMX and form covalent bonds upon aniline. Furthermore, several catechol derivatives were used to verify the universality of the mechanism, and their wide distribution in both subsurface and wastewater implies the potential applications. Overall, the mechanisms elucidated behind this research proposed an efficient strategy for eliminating trace SAs in aqueous environments and selectively removing SAs from complex wastewater matrices.
Collapse
Affiliation(s)
- Shuai Yang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Yang Shi
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Xinhao Wang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Yang Liu
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China; Water Safety and Water Pollution Control Engineering Technology Research Center in Sichuan Province, Haitian Water Group, China.
| | - Yi Ren
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Wei Li
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China; China MCC5 Group Corp., Ltd, Chengdu 610063, China
| | - Heng Zhang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | | | - Weiyi Sun
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Bo Lai
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
10
|
Altin-Yavuzarslan G, Brooks SM, Yuan SF, Park JO, Alper HS, Nelson A. Additive Manufacturing of Engineered Living Materials with Bio-augmented Mechanical Properties and Resistance to Degradation. ADVANCED FUNCTIONAL MATERIALS 2023; 33:2300332. [PMID: 37810281 PMCID: PMC10553028 DOI: 10.1002/adfm.202300332] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Indexed: 10/10/2023]
Abstract
Engineered living materials (ELMs) combine living cells with polymeric matrices to yield unique materials with programmable functions. While the cellular platform and the polymer network determine the material properties and applications, there are still gaps in our ability to seamlessly integrate the biotic (cellular) and abiotic (polymer) components into singular material, then assemble them into devices and machines. Herein, we demonstrated the additive-manufacturing of ELMs wherein bioproduction of metabolites from the encapsulated cells enhanced the properties of the surrounding matrix. First, we developed aqueous resins comprising bovine serum albumin (BSA) and poly(ethylene glycol diacrylate) (PEGDA) with engineered microbes for vat photopolymerization to create objects with a wide array of 3D form factors. The BSA-PEGDA matrix afforded hydrogels that were mechanically stiff and tough for use in load-bearing applications. Second, we demonstrated the continuous in situ production of L-DOPA, naringenin, and betaxanthins from the engineered cells encapsulated within the BSA-PEGDA matrix. These microbial metabolites bioaugmented the properties of the BSA-PEGDA matrix by enhancing the stiffness (L-DOPA) or resistance to enzymatic degradation (betaxanthin). Finally, we demonstrated the assembly of the 3D printed ELM components into mechanically functional bolts and gears to showcase the potential to create functional ELMs for synthetic living machines.
Collapse
Affiliation(s)
- Gokce Altin-Yavuzarslan
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, Washington 98195, United States
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA, USA
| | - Sierra M. Brooks
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Shuo-Fu Yuan
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
| | - James O. Park
- Department of Surgery, University of Washington, Seattle, Washington 98195, United States
| | - Hal S. Alper
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
| | - Alshakim Nelson
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, Washington 98195, United States
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA, USA
| |
Collapse
|
11
|
Jin M, Tao C, Hu X, Liu B, Ma C, Wu Z, Yao H, Wang DA. An Instant Underwater Tissue Adhesive Composed of Catechin-Chondroitin Sulfate and Cholesterol-Polyethyleneimine. Adv Healthc Mater 2023; 12:e2202814. [PMID: 36707970 DOI: 10.1002/adhm.202202814] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/28/2022] [Indexed: 01/29/2023]
Abstract
Due to the safety issue and poor underwater adhesion of current commercially available bioadhesives, they are hard to apply to in vivo physiological environments and more diverse medical use conditions. In this study, a novel and facile bioadhesive for underwater medical applications are designed based on the coacervation of electrostatic interactions and hydrophobic interactions, with the introduction of catechin as a provider of catechol moieties for adhesion to surrounding tissues. The orange-colored bio-adhesive, named PcC, is generated within seconds by mixing catechin-modified chondroitin sulfate and cholesterol chloroformate-modified polyethyleneimine with agitation. In vitro mechanical measurements prove that this novel PcC bio-adhesive is superior in underwater adhesion performance when applied to cartilage. Animal experiments in a rat mastectomy model and rat cartilage graft implantation model demonstrate its potential for diverse medical purposes, such as closing surgical incisions, reducing the formation of seroma, and tissue adhesive applied in orthopedic or cartilage surgery.
Collapse
Affiliation(s)
- Min Jin
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China.,Karolinska Institutet Ming Wai Lau Centre for Reparative Medicine, HKSTP, Sha Tin, Hong Kong SAR, P. R. China
| | - Chao Tao
- Karolinska Institutet Ming Wai Lau Centre for Reparative Medicine, HKSTP, Sha Tin, Hong Kong SAR, P. R. China
| | - Xu Hu
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China
| | - Bangheng Liu
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China.,Karolinska Institutet Ming Wai Lau Centre for Reparative Medicine, HKSTP, Sha Tin, Hong Kong SAR, P. R. China
| | - Cheng Ma
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China.,Karolinska Institutet Ming Wai Lau Centre for Reparative Medicine, HKSTP, Sha Tin, Hong Kong SAR, P. R. China
| | - Zhonglian Wu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Hang Yao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Dong-An Wang
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China.,Karolinska Institutet Ming Wai Lau Centre for Reparative Medicine, HKSTP, Sha Tin, Hong Kong SAR, P. R. China.,Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, P. R. China
| |
Collapse
|
12
|
Perkucin I, Lau KSK, Morshead CM, Naguib HE. Bio-inspired conductive adhesive based on calcium-free alginate hydrogels for bioelectronic interfaces. Biomed Mater 2022; 18. [PMID: 36537718 DOI: 10.1088/1748-605x/aca578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/23/2022] [Indexed: 11/25/2022]
Abstract
Electrode impedance is one of the greatest challenges facing neural interfacing medical devices and the use of electrical stimulation-based therapies in the fields of neurology and regenerative medicine. Maximizing contact between electronics and tissue would allow for more accurate recordings of neural activity and to stimulate with less power in implantable devices as electric signals could be more precisely transferred by a stable interfacial area. Neural environments, inherently wet and ion-rich, present a unique challenge for traditional conductive adhesives. As such, we look to marine mussels that use a 3,4-dihydroxyphenyl-L-analine (DOPA)-containing proteinaceous excretion to adhere to a variety of substrates for inspiration. By functionalizing alginate, which is an abundantly available natural polymer, with the catechol residues DOPA contains, we developed a hydrogel-based matrix to which carbon-based nanofiller was added to render it conductive. The synthesized product had adhesive energy within the range of previously reported mussel-based polymers, good electrical properties and was not cytotoxic to brain derived neural precursor cells.
Collapse
Affiliation(s)
- Ivana Perkucin
- Department of Chemical Engineering and Applied Sciences, University of Toronto, Toronto, Canada
| | - Kylie S K Lau
- Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Cindi M Morshead
- Institute of Biomedical Engineering, University of Toronto, Toronto, Canada.,Department of Surgery, Division of Anatomy, University of Toronto, Toronto, Canada
| | - Hani E Naguib
- Institute of Biomedical Engineering, University of Toronto, Toronto, Canada.,Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Canada
| |
Collapse
|
13
|
Wang R, Sun M, Wang C, Dong A, Zhang J. A facile and versatile strategy for synthesis of dopamine‐functionalized polymers. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ruosi Wang
- Department of Polymer Science and Engineering, School of Chemical Engineering and Technology Tianjin University Tianjin China
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE) Tianjin University Tianjin China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology Tianjin University Tianjin China
| | - Mengxiao Sun
- Department of Polymer Science and Engineering, School of Chemical Engineering and Technology Tianjin University Tianjin China
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE) Tianjin University Tianjin China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology Tianjin University Tianjin China
| | - Chenyu Wang
- Department of Polymer Science and Engineering, School of Chemical Engineering and Technology Tianjin University Tianjin China
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE) Tianjin University Tianjin China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology Tianjin University Tianjin China
| | - Anjie Dong
- Department of Polymer Science and Engineering, School of Chemical Engineering and Technology Tianjin University Tianjin China
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE) Tianjin University Tianjin China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology Tianjin University Tianjin China
| | - Jianhua Zhang
- Department of Polymer Science and Engineering, School of Chemical Engineering and Technology Tianjin University Tianjin China
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE) Tianjin University Tianjin China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology Tianjin University Tianjin China
| |
Collapse
|
14
|
Li S, Ma C, Hou B, Liu H. Rational design of adhesives for effective underwater bonding. Front Chem 2022; 10:1007212. [DOI: 10.3389/fchem.2022.1007212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 10/17/2022] [Indexed: 11/13/2022] Open
Abstract
Underwater adhesives hold great promises in our daily life, biomedical fields and industrial engineering. Appropriate underwater bonding can reduce the huge cost from removing the target substance from water, and greatly lift working efficiency. However, different from bonding in air, underwater bonding is quite challenging. The existence of interfacial water prevents the intimate contact between the adhesives and the submerged surfaces, and water environment makes it difficult to achieve high cohesiveness. Even so, in recent years, various underwater adhesives with macroscopic adhesion abilities were emerged. These smart adhesives can ingeniously remove the interfacial water, and enhance cohesion by utilizing their special physicochemical properties or functional groups. In this mini review, we first give a detail introduction of the difficulties in underwater bonding. Further, we overview the recent strategies that are used to construct underwater adhesives, with the emphasis on how to overcome the difficulties of interfacial water and achieve high cohesiveness underwater. In addition, future perspectives of underwater adhesives from the view of practical applications are also discussed. We believe the review will provide inspirations for the discovery of new strategies to overcome the obstacles in underwater bonding, and therefore may contribute to designing effective underwater adhesives.
Collapse
|
15
|
Li Y, Li L, Li Y, Feng L, Wang B, Wang M, Wang H, Zhu M, Yang Y, Waldorff EI, Zhang N, Viohl I, Lin S, Bian L, Lee WYW, Li G. Enhancing cartilage repair with optimized supramolecular hydrogel-based scaffold and pulsed electromagnetic field. Bioact Mater 2022; 22:312-324. [PMID: 36263100 PMCID: PMC9576572 DOI: 10.1016/j.bioactmat.2022.10.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 10/05/2022] [Accepted: 10/05/2022] [Indexed: 11/05/2022] Open
Abstract
Functional tissue engineering strategies provide innovative approach for the repair and regeneration of damaged cartilage. Hydrogel is widely used because it could provide rapid defect filling and proper structure support, and is biocompatible for cell aggregation and matrix deposition. Efforts have been made to seek suitable scaffolds for cartilage tissue engineering. Here Alg-DA/Ac-β-CD/gelatin hydrogel was designed with the features of physical and chemical multiple crosslinking and self-healing properties. Gelation time, swelling ratio, biodegradability and biocompatibility of the hydrogels were systematically characterized, and the injectable self-healing adhesive hydrogel were demonstrated to exhibit ideal properties for cartilage repair. Furthermore, the new hydrogel design introduces a pre-gel state before photo-crosslinking, where increased viscosity and decreased fluidity allow the gel to remain in a semi-solid condition. This granted multiple administration routes to the hydrogels, which brings hydrogels the ability to adapt to complex clinical situations. Pulsed electromagnetic fields (PEMF) have been recognized as a promising solution to various health problems owing to their noninvasive properties and therapeutic potentials. PEMF treatment offers a better clinical outcome with fewer, if any, side effects, and wildly used in musculoskeletal tissue repair. Thereby we propose PEMF as an effective biophysical stimulation to be 4th key element in cartilage tissue engineering. In this study, the as-prepared Alg-DA/Ac-β-CD/gelatin hydrogels were utilized in the rat osteochondral defect model, and the potential application of PEMF in cartilage tissue engineering were investigated. PEMF treatment were proven to enhance the quality of engineered chondrogenic constructs in vitro, and facilitate chondrogenesis and cartilage repair in vivo. All of the results suggested that with the injectable self-healing adhesive hydrogel and PEMF treatment, this newly proposed tissue engineering strategy revealed superior clinical potential for cartilage defect treatment. The supramolecular Alg-DA/Ac-β-CD/gelatin hydrogel with physical and chemical multiple crosslinking was fabricated. The multi-crosslinked structure of the hydrogels endows strong injection, adhesion abilities and mechanical performance. A pre-gel state of the hydrogel grants it more administration routes and ability to adapt to complex clinical scenarios. Pulsed electromagnetic field (PEMF) serves as the 4th element in mesenchymal stem cell-based cartilage tissue engineering. Bioinformatics analysis reveal that PEMF regulates chondrogenesis and cell hypertrophy via ERK and p38 MAPK pathways.
Collapse
Affiliation(s)
- Yucong Li
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong Special Administrative Region
| | - Linlong Li
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong Special Administrative Region
| | - Ye Li
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong Special Administrative Region,Department of Rehabilitation Sciences, Hong Kong Polytechnic University, Hong Kong Special Administrative Region
| | - Lu Feng
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong Special Administrative Region
| | - Bin Wang
- Innovation Centre for Advanced Interdisciplinary Medicine, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ming Wang
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong Special Administrative Region
| | - Haixing Wang
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong Special Administrative Region
| | - Meiling Zhu
- The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, PR China
| | - Yongkang Yang
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong Special Administrative Region
| | - Erik I. Waldorff
- Research & Clinical Affairs, Orthofix Medical Inc., Lewisville, TX, USA
| | - Nianli Zhang
- Research & Clinical Affairs, Orthofix Medical Inc., Lewisville, TX, USA
| | - Ingmar Viohl
- Research & Clinical Affairs, Orthofix Medical Inc., Lewisville, TX, USA
| | - Sien Lin
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong Special Administrative Region
| | - Liming Bian
- School of Biomedical Sciences and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, PR China
| | - Wayne Yuk-Wai Lee
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong Special Administrative Region,Department of Orthopaedics and Traumatology, SH Ho Scoliosis Research Laboratory, Joint Scoliosis Research Center of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Hong Kong Special Administrative Region,Corresponding author. Department of Orthopaedic and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Gang Li
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong Special Administrative Region,Corresponding author. Department of Orthopaedic and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region.
| |
Collapse
|
16
|
Bashir Z, Yu W, Xu Z, Li Y, Lai J, Li Y, Cao Y, Xue B. Engineering Bio-Adhesives Based on Protein-Polysaccharide Phase Separation. Int J Mol Sci 2022; 23:9987. [PMID: 36077375 PMCID: PMC9456018 DOI: 10.3390/ijms23179987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 12/14/2022] Open
Abstract
Glue-type bio-adhesives are in high demand for many applications, including hemostasis, wound closure, and integration of bioelectronic devices, due to their injectable ability and in situ adhesion. However, most glue-type bio-adhesives cannot be used for short-term tissue adhesion due to their weak instant cohesion. Here, we show a novel glue-type bio-adhesive based on the phase separation of proteins and polysaccharides by functionalizing polysaccharides with dopa. The bio-adhesive exhibits increased adhesion performance and enhanced phase separation behaviors. Because of the cohesion from phase separation and adhesion from dopa, the bio-adhesive shows excellent instant and long-term adhesion performance for both organic and inorganic substrates. The long-term adhesion strength of the bio-glue on wet tissues reached 1.48 MPa (shear strength), while the interfacial toughness reached ~880 J m-2. Due to the unique phase separation behaviors, the bio-glue can even work normally in aqueous environments. At last, the feasibility of this glue-type bio-adhesive in the adhesion of various visceral tissues in vitro was demonstrated to have excellent biocompatibility. Given the convenience of application, biocompatibility, and robust bio-adhesion, we anticipate the bio-glue may find broad biomedical and clinical applications.
Collapse
Affiliation(s)
- Zoobia Bashir
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Wenting Yu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Zhengyu Xu
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Yiran Li
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Jiancheng Lai
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Ying Li
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Yi Cao
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, Nanjing 210093, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Bin Xue
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, Nanjing 210093, China
| |
Collapse
|
17
|
Taghizadeh A, Taghizadeh M, Yazdi MK, Zarrintaj P, Ramsey JD, Seidi F, Stadler FJ, Lee H, Saeb MR, Mozafari M. Mussel-inspired biomaterials: From chemistry to clinic. Bioeng Transl Med 2022; 7:e10385. [PMID: 36176595 PMCID: PMC9472010 DOI: 10.1002/btm2.10385] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 05/25/2022] [Accepted: 07/16/2022] [Indexed: 11/18/2022] Open
Abstract
After several billions of years, nature still makes decisions on its own to identify, develop, and direct the most effective material for phenomena/challenges faced. Likewise, and inspired by the nature, we learned how to take steps in developing new technologies and materials innovations. Wet and strong adhesion by Mytilidae mussels (among which Mytilus edulis-blue mussel and Mytilus californianus-California mussel are the most well-known species) has been an inspiration in developing advanced adhesives for the moist condition. The wet adhesion phenomenon is significant in designing tissue adhesives and surgical sealants. However, a deep understanding of engaged chemical moieties, microenvironmental conditions of secreted proteins, and other contributing mechanisms for outstanding wet adhesion mussels are essential for the optimal design of wet glues. In this review, all aspects of wet adhesion of Mytilidae mussels, as well as different strategies needed for designing and fabricating wet adhesives are discussed from a chemistry point of view. Developed muscle-inspired chemistry is a versatile technique when designing not only wet adhesive, but also, in several more applications, especially in the bioengineering area. The applications of muscle-inspired biomaterials in various medical applications are summarized for future developments in the field.
Collapse
Affiliation(s)
- Ali Taghizadeh
- Institute of Tissue Regeneration Engineering (ITREN), Dankook UniversityCheonanRepublic of Korea
| | - Mohsen Taghizadeh
- Institute of Tissue Regeneration Engineering (ITREN), Dankook UniversityCheonanRepublic of Korea
| | - Mohsen Khodadadi Yazdi
- Center of Excellence in ElectrochemistrySchool of Chemistry, College of Science, University of TehranTehranIran
| | - Payam Zarrintaj
- School of Chemical Engineering, Oklahoma State UniversityStillwaterOklahomaUSA
| | - Joshua D. Ramsey
- School of Chemical Engineering, Oklahoma State UniversityStillwaterOklahomaUSA
| | - Farzad Seidi
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and MaterialsNanjing Forestry UniversityNanjingChina
| | - Florian J. Stadler
- College of Materials Science and EngineeringShenzhen Key Laboratory of Polymer Science and TechnologyGuangdongChina
| | - Haeshin Lee
- Department of ChemistryKorea Advanced Institute of Science and Technology (KAIST)DaejeonRepublic of Korea
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of ChemistryGdańsk University of TechnologyGdańskPoland
| | - Masoud Mozafari
- Department of Tissue Engineering & Regenerative MedicineIran University of Medical SciencesTehranIran
- Present address:
Lunenfeld‐Tanenbaum Research InstituteMount Sinai Hospital, University of TorontoToronto, ONCanada
| |
Collapse
|
18
|
Kim S, Saha B, Boykin J, Chung H. Gallol containing adhesive polymers. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2022. [DOI: 10.1080/10601325.2022.2100790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Sundol Kim
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL, USA
| | - Biswajit Saha
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL, USA
| | - Jacob Boykin
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL, USA
| | - Hoyong Chung
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL, USA
| |
Collapse
|
19
|
Shokri M, Dalili F, Kharaziha M, Baghaban Eslaminejad M, Ahmadi Tafti H. Strong and bioactive bioinspired biomaterials, next generation of bone adhesives. Adv Colloid Interface Sci 2022; 305:102706. [PMID: 35623113 DOI: 10.1016/j.cis.2022.102706] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/20/2022] [Accepted: 05/15/2022] [Indexed: 12/29/2022]
Abstract
The bone adhesive is a clinical requirement for complicated bone fractures always articulated by surgeons. Applying glue is a quick and easy way to fix broken bones. Adhesives, unlike conventional fixation methods such as wires and sutures, improve healing conditions and reduce postoperative pain by creating a complete connection at the fractured joint. Despite many efforts in the field of bone adhesives, the creation of a successful adhesive with robust adhesion and appropriate bioactivity for the treatment of bone fractures is still in its infancy. Because of the resemblance of the body's humid environment to the underwater environment, in the latest decades, researchers have pursued inspiration from nature to develop strong bioactive adhesives for bone tissue. The aim of this review article is to discuss the recent state of the art in bone adhesives with a specific focus on biomimetic adhesives, their action mechanisms, and upcoming perspective. Firstly, the adhesive biomaterials with specific affinity to bone tissue are introduced and their rational design is studied. Consequently, various types of synthetic and natural bioadhesives for bone tissue are comprehensively overviewed. Then, bioinspired-adhesives are described, highlighting relevant structures and examples of biomimetic adhesives mainly made of DOPA and the complex coacervates inspired by proteins secreted in mussel and sandcastle worms, respectively. Finally, this article overviews the challenges of the current bioadhesives and the future research for the improvement of the properties of biomimetic adhesives for use as bone adhesives.
Collapse
Affiliation(s)
- Mahshid Shokri
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Faezeh Dalili
- School of Metallurgy & Materials Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
| | - Mahshid Kharaziha
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Mohamadreza Baghaban Eslaminejad
- Department of Stem Cells and Developmental Biology, Cell Sciences Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Hossein Ahmadi Tafti
- Tehran Heart Hospital Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Marin E, Yoshikawa O, Boschetto F, Honma T, Adachi T, Zhu W, Xu H, Kanamura N, Yamamoto T, Pezzotti G. Innovative electrospun PCL/fibroin/l-dopa scaffolds scaffolds supporting bone tissue regeneration. Biomed Mater 2022; 17. [PMID: 35504268 DOI: 10.1088/1748-605x/ac6c68] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/03/2022] [Indexed: 11/11/2022]
Abstract
Poly-caprolactone is one of the most promising biocompatible polymers on the market, in particular for temporary devices that are not subjected to high physiological loads. Even if completely resorbable in various biological environments, poly-caprolactione does not play any specific biological role in supporting tissue regeneration and for this reason has a limited range of possible applications. In this preliminary work, for the first time l-dopa and fibroin have been combined with electrospun poly-caprolactone fibers in order to induce bioactive effects and, in particular, stimulate the proliferation, adhesion and osteoconduction of the polymeric fibers. Results showed that addition of low-molecular weight fibroin reduces the mechanical strength of the fibers while promoting the formation of mineralized deposits, when tested in vitro with KUSA-A1 mesenchymal cells. l-dopa, on the other hand, improved the mechanical properties and stimulated the formation of agglomerates of mineralized deposits containing calcium and phosphorous with high specific volume. The combination of the two substances resulted in good mechanical properties and higher amounts of mineralized deposits formed in vitro.
Collapse
Affiliation(s)
- Elia Marin
- Kyoto Institute of Technology, Matsugasaki, Kyoto, Kyoto, Kyoto, 606-8585, JAPAN
| | - Orion Yoshikawa
- Kyoto Institute of Technology, Matsugasaki, Kyoto, Kyoto, Kyoto, 606-8585, JAPAN
| | | | - Taigi Honma
- Kyoto Institute of Technology, Matsugasaki, Kyoto, Kyoto, Kyoto, 606-8585, JAPAN
| | - Tetsuya Adachi
- Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto, 602-8566, JAPAN
| | - Wenliang Zhu
- Kyoto Institute of Technology, Matsugasaki, Kyoto, Kyoto, 606-8585, JAPAN
| | - H Xu
- Kyoto Institute of Technology, Matsugasaki, Kyoto, Kyoto, Kyoto, 606-8585, JAPAN
| | - Narisato Kanamura
- Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto, 602-8566, JAPAN
| | - Toshiro Yamamoto
- Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto, 602-8566, JAPAN
| | - Giuseppe Pezzotti
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Kyoto, 606-8585 Kyoto, Kyoto, 606-8585, JAPAN
| |
Collapse
|
21
|
Kost B, Basko M, Bednarek M, Socka M, Kopka B, Łapienis G, Biela T, Kubisa P, Brzeziński M. The influence of the functional end groups on the properties of polylactide-based materials. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
22
|
Wang H, Du X, Liu Y, Liu X, Sun A, Wei L, Li Y. An Environmentally Friendly Supramolecular Glue Developed from Natural 3,4-Dihydroxybenzaldehyde. Polymers (Basel) 2022; 14:polym14050916. [PMID: 35267739 PMCID: PMC8912294 DOI: 10.3390/polym14050916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/20/2022] [Accepted: 02/22/2022] [Indexed: 02/01/2023] Open
Abstract
Liquid adhesive suffers from the emission of volatile organic compounds (VOCs) that have detrimental effects on human beings. Herein, an environmentally friendly glue containing a novel supramolecule dissolved in non-toxic ethanol is developed. Poly (ether amine) (PEA) and 3,4-dihydroxybenzaldehyde (dhba) is utilized to synthesize catechol-terminated PEA, and subsequent complexation by Fe3+ results in the supramolecular component (PEA-dhba-Fe3+). The Fourier transform infrared (FTIR) spectrum together with the UV-vis spectrum reveal the existence of quinone converted from catechol. Raman spectra prove the existence of a successful complex of catechol-terminated PEA with Fe3+. The tri-complex is found to be the predominant mode and can successfully form into clusters, serving as a physical cross-linking network. The PEA-dhba-Fe3+ exhibits strong adherence to metal substrates compared to polymeric substrates, with its shear strength reaching as high as 1.36 ± 0.14 MPa when the pH of the glue is adjusted to 8. The obvious improvement of adhesion originates from the formation of interfacial coordination bonds between quinone/catechol and metal atoms, as well as their cations, as revealed by X-ray photoelectron spectroscopy (XPS) and theoretical calculations. With consideration of its merits, including strong adhesion and the minor emission of VOCs compared to commercial epoxy and acrylic adhesives, this environmentally friendly supramolecular glue has a range of cutting-edge applications as an adhesive for metal substrates.
Collapse
|
23
|
Hollingshead S, Torres JE, Wilker JJ, Liu JC. Effect of Cross-Linkers on Mussel- and Elastin-Inspired Adhesives on Physiological Substrates. ACS APPLIED BIO MATERIALS 2022; 5:630-641. [PMID: 35080852 DOI: 10.1021/acsabm.1c01095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Surgical adhesives can be useful in wound closure because they reduce the risk of infection and pain associated with sutures and staples. However, there are no commercially available surgical adhesives for soft tissue wound closure. To be effective, soft tissue adhesives must be soft and flexible, strongly cohesive and adhesive, biocompatible, and effective in a moist environment. To address these criteria, we draw inspiration from the elasticity and resilience of elastin proteins and the adhesive of marine mussels. We used an elastin-like polypeptide (ELP) for the backbone of our adhesive material due to its elasticity and biocompatibility. A mussel-inspired adhesive molecule, l-3,4-dihydroxyphenylalanine (DOPA), was incorporated into the adhesive to confer wet-setting adhesion. In this study, an ELP named YKV was designed to include tyrosine residues and lysine residues, which contain amine groups. A modified version of YKV, named mYKV, was created through enzymatic conversion of tyrosine residues into DOPA. The ELPs were combined with iron(III) nitrate, sodium periodate, and/or tris(hydroxymethyl)phosphine (THP) cross-linkers to investigate the effect of DOPA- and amine-based cross-linking on adhesion strength and cure time on porcine skin in a warm, humid environment. Incorporation of DOPA into the ELP increased adhesive strength by 2.5 times and reduced failure rates. Iron cross-linkers improved adhesion in the presence of DOPA. THP increased adhesion for all proteins tested even in the absence of DOPA. Using multiple cross-linkers in a single formulation did not significantly improve adhesion. The adhesives with the highest performance (iron nitrate mixed with mYKV and THP mixed with YKV or mYKV) on porcine skin had 10-18 times higher adhesion than a commercial sealant and reached appreciable adhesive strength within 10 min.
Collapse
Affiliation(s)
- Sydney Hollingshead
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jessica E Torres
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jonathan J Wilker
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States.,School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Julie C Liu
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States.,Weldon School of Biomedical Engineering, West Lafayette, Indiana 47907, United States
| |
Collapse
|
24
|
Vėbraitė I, Hanein Y. Soft Devices for High-Resolution Neuro-Stimulation: The Interplay Between Low-Rigidity and Resolution. FRONTIERS IN MEDICAL TECHNOLOGY 2022; 3:675744. [PMID: 35047928 PMCID: PMC8757739 DOI: 10.3389/fmedt.2021.675744] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/14/2021] [Indexed: 12/27/2022] Open
Abstract
The field of neurostimulation has evolved over the last few decades from a crude, low-resolution approach to a highly sophisticated methodology entailing the use of state-of-the-art technologies. Neurostimulation has been tested for a growing number of neurological applications, demonstrating great promise and attracting growing attention in both academia and industry. Despite tremendous progress, long-term stability of the implants, their large dimensions, their rigidity and the methods of their introduction and anchoring to sensitive neural tissue remain challenging. The purpose of this review is to provide a concise introduction to the field of high-resolution neurostimulation from a technological perspective and to focus on opportunities stemming from developments in materials sciences and engineering to reduce device rigidity while optimizing electrode small dimensions. We discuss how these factors may contribute to smaller, lighter, softer and higher electrode density devices.
Collapse
Affiliation(s)
- Ieva Vėbraitė
- School of Electrical Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Yael Hanein
- School of Electrical Engineering, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
25
|
Chen Y, Loredo A, Chung A, Zhang M, Liu R, Xiao H. Biosynthesis and Genetic Incorporation of 3,4-Dihydroxy-L-Phenylalanine into Proteins in Escherichia coli. J Mol Biol 2021; 434:167412. [PMID: 34942167 PMCID: PMC9018569 DOI: 10.1016/j.jmb.2021.167412] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 11/28/2022]
Abstract
While 20 canonical amino acids are used by most organisms for protein synthesis, the creation of cells that can use noncanonical amino acids (ncAAs) as additional protein building blocks holds great promise for preparing novel medicines and for studying complex questions in biological systems. However, only a small number of biosynthetic pathways for ncAAs have been reported to date, greatly restricting our ability to generate cells with ncAA building blocks. In this study, we report the creation of a completely autonomous bacterium that utilizes 3,4-dihydroxy-L-phenylalanine (DOPA) as its 21st amino acid building block. Like canonical amino acids, DOPA can be biosynthesized without exogenous addition and can be genetically incorporated into proteins in a site-specific manner. Equally important, the protein production yield of DOPA-containing proteins from these autonomous cells is greater than that of cells exogenously fed with 9 mM DOPA. The unique catechol moiety of DOPA can be used as a versatile handle for site-specific protein functionalizations via either oxidative coupling or strain-promoted oxidation-controlled cyclooctyne-1,2-quinone (SPOCQ) cycloaddition reactions. We further demonstrate the use of these autonomous cells in preparing fluorophore-labeled anti-human epidermal growth factor 2 (HER2) antibodies for the detection of HER2 expression on cancer cells.
Collapse
Affiliation(s)
- Yuda Chen
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas, 77005
| | - Axel Loredo
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas, 77005
| | - Anna Chung
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas, 77005
| | - Mengxi Zhang
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas, 77005
| | - Rui Liu
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas, 77005
| | - Han Xiao
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas, 77005; Department of Biosciences, Rice University, 6100 Main Street, Houston, Texas, 77005; Department of Bioengineering, Rice University, 6100 Main Street, Houston, Texas, 77005.
| |
Collapse
|
26
|
Xue B, Gu J, Li L, Yu W, Yin S, Qin M, Jiang Q, Wang W, Cao Y. Hydrogel tapes for fault-tolerant strong wet adhesion. Nat Commun 2021; 12:7156. [PMID: 34887418 PMCID: PMC8660897 DOI: 10.1038/s41467-021-27529-5] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 11/19/2021] [Indexed: 11/08/2022] Open
Abstract
Fast and strong bio-adhesives are in high demand for many biomedical applications, including closing wounds in surgeries, fixing implantable devices, and haemostasis. However, most strong bio-adhesives rely on the instant formation of irreversible covalent crosslinks to provide strong surface binding. Repositioning misplaced adhesives during surgical operations may cause severe secondary damage to tissues. Here, we report hydrogel tapes that can form strong physical interactions with tissues in seconds and gradually form covalent bonds in hours. This timescale-dependent adhesion mechanism allows instant and robust wet adhesion to be combined with fault-tolerant convenient surgical operations. Specifically, inspired by the catechol chemistry discovered in mussel foot proteins, we develop an electrical oxidation approach to controllably oxidize catechol to catecholquinone, which reacts slowly with amino groups on the tissue surface. We demonstrate that the tapes show fast and reversible adhesion at the initial stage and ultrastrong adhesion after the formation of covalent linkages over hours for various tissues and electronic devices. Given that the hydrogel tapes are biocompatible, easy to use, and robust for bio-adhesion, we anticipate that they may find broad biomedical and clinical applications.
Collapse
Affiliation(s)
- Bin Xue
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, 210093, Nanjing, China
| | - Jie Gu
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, 210093, Nanjing, China
| | - Lan Li
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Drum Tower Hospital affiliated to Medical School of Nanjing University, 210008, Nanjing, China
| | - Wenting Yu
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, 210093, Nanjing, China
| | - Sheng Yin
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, 210093, Nanjing, China
| | - Meng Qin
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, 210093, Nanjing, China
| | - Qing Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Drum Tower Hospital affiliated to Medical School of Nanjing University, 210008, Nanjing, China.
| | - Wei Wang
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, 210093, Nanjing, China.
- Institute for Brain Sciences, Nanjing University, 210093, Nanjing, China.
| | - Yi Cao
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, 210093, Nanjing, China.
- Institute for Brain Sciences, Nanjing University, 210093, Nanjing, China.
- Chemistry and Biomedicine Innovation Center, Nanjing University, 210093, Nanjing, China.
- Wenzhou Institute, University of Chinese Academy of Sciences, 325001, Wenzhou, China.
| |
Collapse
|
27
|
Affiliation(s)
- Guido Raos
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, Via L. Mancinelli 7, I-20131 Milano, Italy
| | - Bruno Zappone
- Consiglio Nazionale delle Ricerche - Istituto di Nanotecnologia (CNR-Nanotec), Via P. Bucci, 33/C, 87036 Rende (CS), Italy
| |
Collapse
|
28
|
Narayanan A, Dhinojwala A, Joy A. Design principles for creating synthetic underwater adhesives. Chem Soc Rev 2021; 50:13321-13345. [PMID: 34751690 DOI: 10.1039/d1cs00316j] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Water and adhesives have a conflicting relationship as demonstrated by the failure of most man-made adhesives in underwater environments. However, living creatures routinely adhere to substrates underwater. For example, sandcastle worms create protective reefs underwater by secreting a cocktail of protein glue that binds mineral particles together, and mussels attach themselves to rocks near tide-swept sea shores using byssal threads formed from their extracellular secretions. Over the past few decades, the physicochemical examination of biological underwater adhesives has begun to decipher the mysteries behind underwater adhesion. These naturally occurring adhesives have inspired the creation of several synthetic materials that can stick underwater - a task that was once thought to be "impossible". This review provides a comprehensive overview of the progress in the science of underwater adhesion over the past few decades. In this review, we introduce the basic thermodynamics processes and kinetic parameters involved in adhesion. Second, we describe the challenges brought by water when adhering underwater. Third, we explore the adhesive mechanisms showcased by mussels and sandcastle worms to overcome the challenges brought by water. We then present a detailed review of synthetic underwater adhesives that have been reported to date. Finally, we discuss some potential applications of underwater adhesives and the current challenges in the field by using a tandem analysis of the reported chemical structures and their adhesive strength. This review is aimed to inspire and facilitate the design of novel synthetic underwater adhesives, that will, in turn expand our understanding of the physical and chemical parameters that influence underwater adhesion.
Collapse
Affiliation(s)
- Amal Narayanan
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH 44325, USA.
| | - Ali Dhinojwala
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH 44325, USA.
| | - Abraham Joy
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH 44325, USA.
| |
Collapse
|
29
|
Wanasingha N, Dutta NK, Choudhury NR. Emerging bioadhesives: from traditional bioactive and bioinert to a new biomimetic protein-based approach. Adv Colloid Interface Sci 2021; 296:102521. [PMID: 34534751 DOI: 10.1016/j.cis.2021.102521] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/04/2021] [Accepted: 09/04/2021] [Indexed: 12/29/2022]
Abstract
Bioadhesives have reached significant milestones over the past two decades. Research has shown not only to produce adhesives capable of adhering to dry tissue but recently wet tissue as well. However, most bioadhesives developed have exhibited high adhesion strength yet lack other properties required for versatility in application, such as elasticity, biocompatibility and biodegradability. Adapting from limitations met from early bioadhesives and meeting the current demand allows novel bioadhesives to reach new milestones for the future. In this review, we overview the progression and variations of bioadhesives, current trends, characterisation techniques and conclude with future perspectives for bioadhesives for tissue engineering applications.
Collapse
Affiliation(s)
- Nisal Wanasingha
- School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
| | - Naba K Dutta
- School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
| | | |
Collapse
|
30
|
Agergaard AH, Sommerfeldt A, Pedersen SU, Birkedal H, Daasbjerg K. Dual-Responsive Material Based on Catechol-Modified Self-Immolative Poly(Disulfide) Backbones. Angew Chem Int Ed Engl 2021; 60:21543-21549. [PMID: 34279056 PMCID: PMC8518080 DOI: 10.1002/anie.202108698] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Indexed: 01/18/2023]
Abstract
Functional materials engineered to degrade upon triggering are in high demand due their potentially lower impact on the environment as well as their use in sensing and in medical applications. Here, stimuli-responsive polymers are prepared by decorating a self-immolative poly(dithiothreitol) backbone with pendant catechol units. The highly functional polymer is fashioned into stimuli-responsive gels, formed through pH-dependent catecholato-metal ion cross-links. The gels degrade in response to specific environmental changes, either by addressing the pH responsive, non-covalent, catecholato-metal complexes, or by addition of a thiol. The latter stimulus triggers end-to-end depolymerization of the entire self-immolative backbone through end-cap replacement via thiol-disufide exchanges. Gel degradation is visualized by release of a dye from the supramolecular gel as it itself is converted into smaller molecules.
Collapse
Affiliation(s)
- Asger Holm Agergaard
- Department of ChemistryAarhus UniversityLangelandsgade 1408000AarhusDenmark
- Interdisciplinary Nanoscience Center (iNANO)Aarhus UniversityGustav Wieds Vej 148000AarhusDenmark
| | - Andreas Sommerfeldt
- Department of ChemistryAarhus UniversityLangelandsgade 1408000AarhusDenmark
- Interdisciplinary Nanoscience Center (iNANO)Aarhus UniversityGustav Wieds Vej 148000AarhusDenmark
| | - Steen Uttrup Pedersen
- Department of ChemistryAarhus UniversityLangelandsgade 1408000AarhusDenmark
- Interdisciplinary Nanoscience Center (iNANO)Aarhus UniversityGustav Wieds Vej 148000AarhusDenmark
| | - Henrik Birkedal
- Department of ChemistryAarhus UniversityLangelandsgade 1408000AarhusDenmark
- Interdisciplinary Nanoscience Center (iNANO)Aarhus UniversityGustav Wieds Vej 148000AarhusDenmark
| | - Kim Daasbjerg
- Department of ChemistryAarhus UniversityLangelandsgade 1408000AarhusDenmark
- Interdisciplinary Nanoscience Center (iNANO)Aarhus UniversityGustav Wieds Vej 148000AarhusDenmark
| |
Collapse
|
31
|
Agergaard AH, Sommerfeldt A, Pedersen SU, Birkedal H, Daasbjerg K. Dual‐Responsive Material Based on Catechol‐Modified Self‐Immolative Poly(Disulfide) Backbones. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Asger Holm Agergaard
- Department of Chemistry Aarhus University Langelandsgade 140 8000 Aarhus Denmark
- Interdisciplinary Nanoscience Center (iNANO) Aarhus University Gustav Wieds Vej 14 8000 Aarhus Denmark
| | - Andreas Sommerfeldt
- Department of Chemistry Aarhus University Langelandsgade 140 8000 Aarhus Denmark
- Interdisciplinary Nanoscience Center (iNANO) Aarhus University Gustav Wieds Vej 14 8000 Aarhus Denmark
| | - Steen Uttrup Pedersen
- Department of Chemistry Aarhus University Langelandsgade 140 8000 Aarhus Denmark
- Interdisciplinary Nanoscience Center (iNANO) Aarhus University Gustav Wieds Vej 14 8000 Aarhus Denmark
| | - Henrik Birkedal
- Department of Chemistry Aarhus University Langelandsgade 140 8000 Aarhus Denmark
- Interdisciplinary Nanoscience Center (iNANO) Aarhus University Gustav Wieds Vej 14 8000 Aarhus Denmark
| | - Kim Daasbjerg
- Department of Chemistry Aarhus University Langelandsgade 140 8000 Aarhus Denmark
- Interdisciplinary Nanoscience Center (iNANO) Aarhus University Gustav Wieds Vej 14 8000 Aarhus Denmark
| |
Collapse
|
32
|
Wanasingha N, Dorishetty P, Dutta NK, Choudhury NR. Polyelectrolyte Gels: Fundamentals, Fabrication and Applications. Gels 2021; 7:148. [PMID: 34563034 PMCID: PMC8482214 DOI: 10.3390/gels7030148] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/07/2021] [Accepted: 09/09/2021] [Indexed: 12/22/2022] Open
Abstract
Polyelectrolyte gels are an important class of polymer gels and a versatile platform with charged polymer networks with ionisable groups. They have drawn significant recent attention as a class of smart material and have demonstrated potential for a variety of applications. This review begins with the fundamentals of polyelectrolyte gels, which encompass various classifications (i.e., origin, charge, shape) and crucial aspects (ionic conductivity and stimuli responsiveness). It further centralises recent developments of polyelectrolyte gels, emphasising their synthesis, structure-property relationships and responsive properties. Sequentially, this review demonstrates how polyelectrolyte gels' flourishing properties create attractiveness to a range of applications including tissue engineering, drug delivery, actuators and bioelectronics. Finally, the review outlines the indisputable appeal, further improvements and emerging trends in polyelectrolyte gels.
Collapse
Affiliation(s)
| | | | - Naba K. Dutta
- School of Engineering, STEM College, RMIT University, Melbourne, VIC 3000, Australia; (N.W.); (P.D.)
| | - Namita Roy Choudhury
- School of Engineering, STEM College, RMIT University, Melbourne, VIC 3000, Australia; (N.W.); (P.D.)
| |
Collapse
|
33
|
Ganesh K, Jung J, Woo Park J, Kim BS, Seo S. Effect of Substituents in Mussel-inspired Surface Primers on their Oxidation and Priming Efficiency. ChemistryOpen 2021; 10:852-859. [PMID: 34437767 PMCID: PMC8389193 DOI: 10.1002/open.202100158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/13/2021] [Indexed: 11/09/2022] Open
Abstract
Marine mussels contain an abundant catechol moiety, 3,4-dihydroxyphenylalanine (DOPA), in their interfacial foot proteins. DOPA contributes to both surface adhesion and bridging between the surface and overhead proteins (surface priming) by taking advantage of the unique redox properties of catechol. Inspired by the mussel surface priming mechanism, herein we synthesized a series of DOPA-mimetic analogs - a bifunctional group molecule, consisting of a catechol group and an acrylic group at the opposite ends. The surface primers with differently substituted (-COOH, -CH3 ) alkyl chains in the middle spacer were synthesized. Time-dependent oxidation and redox potentials of the surface primers were studied in an oxidizing environment to gain a better understanding of the mussel's redox chemistry. The thickness and degree of priming of the surface primers on silicon-based substrates were analyzed by ellipsometry and UV/Vis absorption spectroscopy. The post-reactivity of the acrylic groups of the primed layer was first visualized through a reaction with an acrylic group-reactive dye.
Collapse
Affiliation(s)
- Karuppasamy Ganesh
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, 50463, Republic of Korea
| | - Jaewon Jung
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, 50463, Republic of Korea
| | - Jun Woo Park
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, 50463, Republic of Korea
| | - Byeong-Su Kim
- Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea
| | - Sungbaek Seo
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, 50463, Republic of Korea
| |
Collapse
|
34
|
Tannic Acid: A green and efficient stabilizer of Au, Ag, Cu and Pd nanoparticles for the 4-Nitrophenol Reduction, Suzuki-Miyaura coupling reactions and click reactions in aqueous solution. J Colloid Interface Sci 2021; 604:281-291. [PMID: 34271489 DOI: 10.1016/j.jcis.2021.07.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 06/06/2021] [Accepted: 07/03/2021] [Indexed: 11/19/2022]
Abstract
Due to the good electrical, optical, magnetic, catalytic properties, transition metal nanoparticles (TMNPs) have been becoming more and more interesting in the fileds of environment, material, biomedicine, catalysis, and so on. Here, tannic acid (TA) is used as a green and efficient stabilizer to fabricate all kinds of TMNPs including AuNPs, AgNPs, CuNPs and PdNPs. These TMNPs possess small sizes ranging from 1 nm to 6 nm, which is conducive to several catalytic reactions in aqueous solution, such as 4-nitrophenol (4-NP) reduction, CuAAC reactions and Suzuki-Miyaura coupling reactions. AuNPs and PdNPs are found to have distinctly higher catalytic activities than AgNPs and CuNPs in the 4-NP reduction process. Especially, PdNPs show the highest catalytic activities with TOF up to 7200 h-1 in the 4-NP reduction. Furthermore, PdNPs also exhibit satisfying catalytic performance in the Suzuki-Miyaura coupling process, and CuNPs are catalytically active in the copper-catalyzed azide alkyne cycloaddition (CuAAC) reactions. The applicability and generality of PdNPs and CuNPs are respectively confirmed via the reaction between different substrates in the Suzuki-Miyaura coupling reactions and the CuAAC reactions. This work present a simple, fast, green and efficient strategy to synthesize TMNPs for multiple catalysis.
Collapse
|
35
|
Ejeian F, Haghani E, Nasr-Esfahani MH, Asadnia M, Razmjou A, Chen V. Mechanobiology of Dental Pulp Stem Cells at the Interface of Aqueous-Based Fabricated ZIF8 Thin Film. ACS APPLIED BIO MATERIALS 2021; 4:4885-4895. [DOI: 10.1021/acsabm.1c00189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Fatemeh Ejeian
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan 73441-81746, Iran
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Elnaz Haghani
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan 73441-81746, Iran
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohammad Hossein Nasr-Esfahani
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohsen Asadnia
- School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Amir Razmjou
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan 73441-81746, Iran
- Centre for Technology in Water and Wastewater, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Vicki Chen
- School of Chemical Engineering, University of Queensland, Brisbane 4072, Australia
| |
Collapse
|
36
|
Ma Z, Bao G, Li J. Multifaceted Design and Emerging Applications of Tissue Adhesives. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007663. [PMID: 33956371 DOI: 10.1002/adma.202007663] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/04/2020] [Indexed: 05/24/2023]
Abstract
Tissue adhesives can form appreciable adhesion with tissues and have found clinical use in a variety of medical settings such as wound closure, surgical sealants, regenerative medicine, and device attachment. The advantages of tissue adhesives include ease of implementation, rapid application, mitigation of tissue damage, and compatibility with minimally invasive procedures. The field of tissue adhesives is rapidly evolving, leading to tissue adhesives with superior mechanical properties and advanced functionality. Such adhesives enable new applications ranging from mobile health to cancer treatment. To provide guidelines for the rational design of tissue adhesives, here, existing strategies for tissue adhesives are synthesized into a multifaceted design, which comprises three design elements: the tissue, the adhesive surface, and the adhesive matrix. The mechanical, chemical, and biological considerations associated with each design element are reviewed. Throughout the report, the limitations of existing tissue adhesives and immediate opportunities for improvement are discussed. The recent progress of tissue adhesives in topical and implantable applications is highlighted, and then future directions toward next-generation tissue adhesives are outlined. The development of tissue adhesives will fuse disciplines and make broad impacts in engineering and medicine.
Collapse
Affiliation(s)
- Zhenwei Ma
- Department of Mechanical Engineering, McGill University, Montréal, QC, H3A 0C3, Canada
| | - Guangyu Bao
- Department of Mechanical Engineering, McGill University, Montréal, QC, H3A 0C3, Canada
| | - Jianyu Li
- Department of Mechanical Engineering, McGill University, Montréal, QC, H3A 0C3, Canada
- Department of Biomedical Engineering, McGill University, Montréal, QC, H3A 2B4, Canada
| |
Collapse
|
37
|
Wang H, Wang L, Zhang S, Zhang W, Li J, Han Y. Mussel‐inspired polymer materials derived from nonphytogenic and phytogenic catechol derivatives and their applications. POLYM INT 2021. [DOI: 10.1002/pi.6230] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hanzhang Wang
- Key Laboratory of Wood‐Based Materials Science and Utilization Beijing Forestry University Beijing China
- Beijing Key Laboratory of Wood Science and Engineering Beijing Forestry University Beijing China
| | - Liuliu Wang
- Key Laboratory of Wood‐Based Materials Science and Utilization Beijing Forestry University Beijing China
- Beijing Key Laboratory of Wood Science and Engineering Beijing Forestry University Beijing China
| | - Shifeng Zhang
- Key Laboratory of Wood‐Based Materials Science and Utilization Beijing Forestry University Beijing China
- Beijing Key Laboratory of Wood Science and Engineering Beijing Forestry University Beijing China
| | - Wei Zhang
- Key Laboratory of Wood‐Based Materials Science and Utilization Beijing Forestry University Beijing China
- Beijing Key Laboratory of Wood Science and Engineering Beijing Forestry University Beijing China
| | - Jianzhang Li
- Key Laboratory of Wood‐Based Materials Science and Utilization Beijing Forestry University Beijing China
- Beijing Key Laboratory of Wood Science and Engineering Beijing Forestry University Beijing China
| | - Yanming Han
- Research Institute of Forestry New Technology, Chinese Academy of Forestry Beijing China
| |
Collapse
|
38
|
Surface modification by poly(ethylene glycol) with different end-grafted groups: Experimental and theoretical study. Biointerphases 2021; 16:021002. [PMID: 33726496 DOI: 10.1116/6.0000647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Dihydroxyphenylalanine (DOPA) is extensively reported to be a surface-independent anchor molecule in bioadhesive surface modification and antifouling biomaterial fabrication. However, the mechanisms of DOPA adsorption on versatile substrates and the comparison between experimental results and theoretical results are less addressed. We report the adsorption of DOPA anchored monomethoxy poly(ethylene glycol) (DOPA-mPEG) on substrates and surface wettability as well as antifouling property in comparison with thiol and hydroxyl anchored mPEG (mPEG-SH and mPEG-OH). Gold and hydroxylated silicon were used as model substrates to study the adsorptions of mPEGs. The experimental results showed that the DOPA-mPEG showed higher affinity to both gold and silicon wafers, and the DOPA-mPEG modified surfaces had higher resistance to protein adsorption than those of mPEG-SH and mPEG-OH. It is revealed that the surface wettability is primary for surface fouling, while polymer flexibility is the secondary parameter. We present ab initio calculations of the adsorption of mEGs with different end-functionalities on Au and hydroxylated silicon wafer (Si-OH), where the binding energies are obtained. It is established that monomethoxy ethylene glycol (mEG) with DOPA terminal DOPA-mEG is clearly favored for the adsorption with both gold and Si-OH surfaces due to the bidentate Au-O interactions and the bidentate O-H bond interactions, in agreement with experimental evidence.
Collapse
|
39
|
Shin M, Choi JH, Kim K, Kim S, Lee H. Hemostatic Needles: Controlling Hemostasis Time by a Catecholamine Oxidative Pathway. ACS APPLIED MATERIALS & INTERFACES 2021; 13:10741-10747. [PMID: 33620191 DOI: 10.1021/acsami.0c22223] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Most infectious human viruses are generally found in the bloodstream after being released by infected organs. Thus, hemorrhage in patients, whose blood contains infectious viruses might be a significant risk for secondary infections. In this work, a self-sealing hemostatic needle that causes no bleeding even after its removal is reported. The materials used for the self-sealing needles are inspired by mussel adhesive polysaccharide, chitosan-catechol, which shows a rapid phase transition from a solid phase (i.e., a thin film) to an adhesive gel upon coming into contact with blood. We found that the self-sealing time for the complete hemostasis depends on the oxidation pathway of the conjugated catechol. For high-temperature oxidation (i.e., 60 °C), Michael addition is a dominant oxidative coupling reaction, which weakens the chitosan-catechol attachment force on the needle surface. Thus, the film is easily transferred to the hemorrhaging sites, with the result that there is no bleeding even after a short injection time (<5 s). In contrast, during low-temperature oxidation (4 °C), Schiff base formation is dominant, which strengthens the film attachment force on the needle surface, resulting in continued bleeding owing to a dearth of tissue transfer after the injection.
Collapse
Affiliation(s)
- Mikyung Shin
- Department of Intelligent Precision Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Suwon 16419, Republic of Korea
| | - Jae Hyuk Choi
- Department of Intelligent Precision Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Suwon 16419, Republic of Korea
| | - Keumyeon Kim
- R&D Center, InnoTherapy Inc., Seonyu-ro 13-gil, Yeongdeungpo-gu, Seoul 07327, Republic of Korea
| | - Soomi Kim
- R&D Center, InnoTherapy Inc., Seonyu-ro 13-gil, Yeongdeungpo-gu, Seoul 07327, Republic of Korea
| | - Haeshin Lee
- R&D Center, InnoTherapy Inc., Seonyu-ro 13-gil, Yeongdeungpo-gu, Seoul 07327, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), 291 University Road, Yuseong-Gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
40
|
Steponaviciute M, Klimkevicius V, Makuska R. Synthesis and Properties of Cationic Gradient Brush Copolymers Carrying PEO Side Chains and Catechol Moieties. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202000364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
41
|
Tan X, Gao P, Li Y, Qi P, Liu J, Shen R, Wang L, Huang N, Xiong K, Tian W, Tu Q. Poly-dopamine, poly-levodopa, and poly-norepinephrine coatings: Comparison of physico-chemical and biological properties with focus on the application for blood-contacting devices. Bioact Mater 2021; 6:285-296. [PMID: 32913935 PMCID: PMC7451900 DOI: 10.1016/j.bioactmat.2020.06.024] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/28/2020] [Accepted: 06/28/2020] [Indexed: 12/21/2022] Open
Abstract
Thanks to its simplicity, versatility, and secondary reactivity, dopamine self-polymerized coatings (pDA) have been widely used in surface modification of biomaterials, but the limitation in secondary molecular grafting and the high roughness restrain their application in some special scenarios. Therefore, some other catecholamine coatings analog to pDA have attracted more and more attention, including the smoother poly-norepinephrine coating (pNE), and the poly-levodopa coating (pLD) containing additional carboxyl groups. However, the lack of a systematic comparison of the properties, especially the biological properties of the above three catecholamine coatings, makes it difficult to give a guiding opinion on the application scenarios of different coatings. Herein, we systematically studied the physical, chemical, and biological properties of the three catecholamine coatings, and explored the feasibility of their application for the modification of biomaterials, especially cardiovascular materials. Among them, the pDA coating was the roughest, with the largest amount of amino and phenolic hydroxyl groups for molecule grafting, and induced the strongest platelet adhesion and activation. The pLD coating was the thinnest and most hydrophilic but triggered the strongest inflammatory response. The pNE coating was the smoothest, with the best hemocompatibility and histocompatibility, and with the strongest cell selectivity of promoting the proliferation of endothelial cells while inhibiting the proliferation of smooth muscle cells. To sum up, the pNE coating may be a better choice for the surface modification of cardiovascular materials, especially those for vascular stents and grafts, but it is still not widely recognized.
Collapse
Affiliation(s)
- Xing Tan
- Key Lab of Advanced Technology of Materials of Education Ministry, Southwest Jiaotong University, Chengdu, 610031, China
| | - Peng Gao
- Key Lab of Advanced Technology of Materials of Education Ministry, Southwest Jiaotong University, Chengdu, 610031, China
| | - Yalong Li
- Department of Stem Cell Center, Henan Key Laboratory of Stem Cell Differentiation and Modification, Henan Provincial People's Hospital; People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China
| | - Pengkai Qi
- Key Lab of Advanced Technology of Materials of Education Ministry, Southwest Jiaotong University, Chengdu, 610031, China
| | - Jingxia Liu
- Physical Education Department, Southwest Jiaotong University, Chengdu, 610031, China
| | - Ru Shen
- Key Lab of Advanced Technology of Materials of Education Ministry, Southwest Jiaotong University, Chengdu, 610031, China
| | - Lianghui Wang
- Key Lab of Advanced Technology of Materials of Education Ministry, Southwest Jiaotong University, Chengdu, 610031, China
| | - Nan Huang
- Key Lab of Advanced Technology of Materials of Education Ministry, Southwest Jiaotong University, Chengdu, 610031, China
| | - Kaiqin Xiong
- Key Lab of Advanced Technology of Materials of Education Ministry, Southwest Jiaotong University, Chengdu, 610031, China
| | - Wenjie Tian
- Cardiology Department, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China. 32 West Second Section, First Ring Road, Chengdu 610072, China
| | - Qiufen Tu
- Key Lab of Advanced Technology of Materials of Education Ministry, Southwest Jiaotong University, Chengdu, 610031, China
| |
Collapse
|
42
|
Peng W, Cai Y, Fanslau L, Vana P. Nanoengineering with RAFT polymers: from nanocomposite design to applications. Polym Chem 2021. [DOI: 10.1039/d1py01172c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Reversible addition–fragmentation chain-transfer (RAFT) polymerization is a powerful tool for the precise formation of macromolecular building blocks that can be used for the construction of well-defined nanocomposites.
Collapse
Affiliation(s)
- Wentao Peng
- Institut für Physikalische Chemie, Georg-August-Universität Göttingen, Tammannstrasse 6, 37077 Göttingen, Germany
| | - Yingying Cai
- Institut für Physikalische Chemie, Georg-August-Universität Göttingen, Tammannstrasse 6, 37077 Göttingen, Germany
| | - Luise Fanslau
- Institut für Physikalische Chemie, Georg-August-Universität Göttingen, Tammannstrasse 6, 37077 Göttingen, Germany
| | - Philipp Vana
- Institut für Physikalische Chemie, Georg-August-Universität Göttingen, Tammannstrasse 6, 37077 Göttingen, Germany
| |
Collapse
|
43
|
Ilamaran M, Sundarapandian A, Aarthy M, Shanmugam G, Ponesakki G, Ramudu KN, Niraikulam A. Growth factor-mimicking 3,4-dihydroxyphenylalanine-encoded bioartificial extracellular matrix like protein promotes wound closure and angiogenesis. Biomater Sci 2020; 8:6773-6785. [PMID: 33141121 DOI: 10.1039/d0bm01379j] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The present work reports a new route to prepare a "smart biomaterial" by mimicking long-acting cellular growth factor showing enhanced cell-material interactions by promoting cell proliferation and angiogenesis. For that, reactive non-proteogenic amino acid 3,4-dihydroxyphenylalanine (DOPA) was genetically introduced into an intrinsic triple-helical hierarchical structure forming protein to initiate hierarchical self-assembly to form a macromolecular structure. The self-assembled scaffold displayed vascular endothelial growth factor mimicking the pro-angiogenic reactive group for repairing and remodeling of damaged tissue cells. We customized the recombinant collagen-like protein (CLP) with DOPA to promote rapid wound healing and cell migrations. Selective incorporation of catechol in variable and C-terminal region of CLP enhanced interaction between inter- and intra-triple-helical collagen molecules that resulted in a structure resembling higher-order native collagen fibril. Turbidity analysis indicated that the triple-helical CLP self-assembled at neutral pH via a catechol intra-crosslinking mechanism. After self-assembly, only DOPA-encoded CLP formed branched filamentous structures suggesting that catechol mediated network coordination. The catechol-encoded CLP also acted as a "smart material" by mimicking long-acting cellular growth factor showing enhanced cell-material interactions by promoting cell proliferation and angiogenesis. It eliminates release rate, stability, and shelf-life of hybrid growth factor conjugated biomaterials. The newly synthesized CLP has the potential to promote accelerated cell migration, pro-angiogenesis, and biocompatibility and could be used in the field of implantable medical devices and tissue engineering.
Collapse
Affiliation(s)
- Meganathan Ilamaran
- Division of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR) - CLRI, Chennai, India.
| | | | | | | | | | | | | |
Collapse
|
44
|
Fischer L, Strzelczyk AK, Wedler N, Kropf C, Schmidt S, Hartmann L. Sequence-defined positioning of amine and amide residues to control catechol driven wet adhesion. Chem Sci 2020; 11:9919-9924. [PMID: 34094252 PMCID: PMC8162180 DOI: 10.1039/d0sc03457f] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/28/2020] [Indexed: 01/13/2023] Open
Abstract
Catechol and amine residues, both abundantly present in mussel adhesion proteins, are known to act cooperatively by displacing hydration barriers before binding to mineral surfaces. In spite of synthetic efforts toward mussel-inspired adhesives, the effect of positioning of the involved functional groups along a polymer chain is not well understood. By using sequence-defined oligomers grafted to soft hydrogel particles as adhesion probes, we study the effect of catechol-amine spacing, as well as positioning relative to the oligomer terminus. We demonstrate that the catechol-amine spacing has a significant effect on adhesion, while shifting their position has a small effect. Notably, combinations of non-charged amides and catechols can achieve similar cooperative effects on adhesion when compared to amine and catechol residues. Thus, these findings provide a blueprint for the design of next generation mussel-inspired adhesives.
Collapse
Affiliation(s)
- Lukas Fischer
- Institut für Organische und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf Universitätsstr. 1 40225 Düsseldorf Germany
| | - Alexander K Strzelczyk
- Institut für Organische und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf Universitätsstr. 1 40225 Düsseldorf Germany
| | - Nils Wedler
- Laundry & Home Care, Henkel AG & Co. KGaA Henkelstr. 67 40589 Düsseldorf Germany
| | - Christian Kropf
- Laundry & Home Care, Henkel AG & Co. KGaA Henkelstr. 67 40589 Düsseldorf Germany
| | - Stephan Schmidt
- Institut für Organische und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf Universitätsstr. 1 40225 Düsseldorf Germany
| | - Laura Hartmann
- Institut für Organische und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf Universitätsstr. 1 40225 Düsseldorf Germany
| |
Collapse
|
45
|
Xu X, Xia X, Zhang K, Rai A, Li Z, Zhao P, Wei K, Zou L, Yang B, Wong WK, Chiu PWY, Bian L. Bioadhesive hydrogels demonstrating pH-independent and ultrafast gelation promote gastric ulcer healing in pigs. Sci Transl Med 2020; 12:eaba8014. [PMID: 32848095 DOI: 10.1126/scitranslmed.aba8014] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 07/27/2020] [Indexed: 01/02/2025]
Abstract
Hydrogels are soft materials used in an array of biomedical applications. However, the in situ formation of hydrogels at target sites, particularly in dynamic in vivo environments, usually requires a prolonged gelation time and results in poor adhesion. These limitations cause considerable loss of both hydrogel mass and encapsulated therapeutic cargoes, thereby compromising treatment outcomes. Here, we report the development of a hydrogel based on thiourea-catechol reaction to enhance the bioadhesion. Compared with classical bioadhesive hydrogels, our hydrogels show enhanced mechanical properties, exceedingly short curing time, and pH-independent gelation with a much lower oxidant concentration. We further report the robust adhesion of our hydrogels to acidic gastric tissues and easy delivery to the porcine stomach via endoscopy. The delivered hydrogels adhered to ulcer sites in vivo for at least 48 hours. Hydrogel treatment of gastric ulcers in rodent and porcine models accelerated ulcer healing by suppressing inflammation and promoting re-epithelization and angiogenesis. The improved retention of proregenerative growth factors and reduced exposure to external catabolic factors after hydrogel application may contribute to the observed therapeutic outcomes. Our findings reveal a promising biomaterial-based approach for treating gastrointestinal diseases.
Collapse
Affiliation(s)
- Xiayi Xu
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Xianfeng Xia
- Department of Endoscopy, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510000, China
- Chow Yuk Ho Technology Centre for Innovative Medicine, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Kunyu Zhang
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Aliza Rai
- Department of Surgery, Institute of Digestive Disease, State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Zhuo Li
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Pengchao Zhao
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Kongchang Wei
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland
| | - Li Zou
- Department of Orthpaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Boguang Yang
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Wai-Ki Wong
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Philip Wai-Yan Chiu
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR 999077, China.
- Chow Yuk Ho Technology Centre for Innovative Medicine, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
- Department of Surgery, Institute of Digestive Disease, State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Liming Bian
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR 999077, China.
- The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen 518000, China
| |
Collapse
|
46
|
Gan D, Shuai T, Wang X, Huang Z, Ren F, Fang L, Wang K, Xie C, Lu X. Mussel-Inspired Redox-Active and Hydrophilic Conductive Polymer Nanoparticles for Adhesive Hydrogel Bioelectronics. NANO-MICRO LETTERS 2020; 12:169. [PMID: 34138168 PMCID: PMC7770971 DOI: 10.1007/s40820-020-00507-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/17/2020] [Indexed: 05/10/2023]
Abstract
Conductive polymers (CPs) are generally insoluble, and developing hydrophilic CPs is significant to broaden the applications of CPs. In this work, a mussel-inspired strategy was proposed to construct hydrophilic CP nanoparticles (CP NPs), while endowing the CP NPs with redox activity and biocompatibility. This is a universal strategy applicable for a series of CPs, including polyaniline, polypyrrole, and poly(3,4-ethylenedioxythiophene). The catechol/quinone contained sulfonated lignin (LS) was doped into various CPs to form CP/LS NPs with hydrophilicity, conductivity, and redox activity. These CP/LS NPs were used as versatile nanofillers to prepare the conductive hydrogels with long-term adhesiveness. The CP/LS NPs-incorporated hydrogels have a good conductivity because of the uniform distribution of the hydrophilic NPs in the hydrogel network, forming a well-connected electric path. The hydrogel exhibits long-term adhesiveness, which is attributed to the mussel-inspired dynamic redox balance of catechol/quinone groups on the CP/LS NPs. This conductive and adhesive hydrogel shows good electroactivity and biocompatibility and therefore has broad applications in electrostimulation of tissue regeneration and implantable bioelectronics.
Collapse
Affiliation(s)
- Donglin Gan
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, People's Republic of China
| | - Tao Shuai
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, People's Republic of China
| | - Xiao Wang
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, People's Republic of China
| | - Ziqiang Huang
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, People's Republic of China
| | - Fuzeng Ren
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, People's Republic of China
| | - Liming Fang
- Department of Polymer Science and Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, People's Republic of China
| | - Kefeng Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, People's Republic of China
| | - Chaoming Xie
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, People's Republic of China.
| | - Xiong Lu
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, People's Republic of China.
| |
Collapse
|
47
|
Mezhuev YO, Varankin AV, Luss AL, Dyatlov VA, Tsatsakis AM, Shtilman MI, Korshak YV. Immobilization of dopamine on the copolymer of
N
‐vinyl‐2‐pyrrolidone and allyl glycidyl ether and synthesis of new hydrogels. POLYM INT 2020. [DOI: 10.1002/pi.6073] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Yaroslav O Mezhuev
- Department of Biomaterials D. Mendeleev University of Chemical Technology of Russia Moscow Russia
| | - Alexander V Varankin
- Department of Biomaterials D. Mendeleev University of Chemical Technology of Russia Moscow Russia
| | - Anna L Luss
- Department of Biomaterials D. Mendeleev University of Chemical Technology of Russia Moscow Russia
| | - Valerie A Dyatlov
- Department of Biomaterials D. Mendeleev University of Chemical Technology of Russia Moscow Russia
| | - Aristidis M Tsatsakis
- Center of Toxicology Science and Research, Division of Morphology Medical School, University of Crete Heraklion Greece
| | - Mikhail I Shtilman
- Department of Biomaterials D. Mendeleev University of Chemical Technology of Russia Moscow Russia
| | - Yuri V Korshak
- Department of Biomaterials D. Mendeleev University of Chemical Technology of Russia Moscow Russia
| |
Collapse
|
48
|
Park MK, Li MX, Yeo I, Jung J, Yoon BI, Joung YK. Balanced adhesion and cohesion of chitosan matrices by conjugation and oxidation of catechol for high-performance surgical adhesives. Carbohydr Polym 2020; 248:116760. [PMID: 32919558 DOI: 10.1016/j.carbpol.2020.116760] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/02/2020] [Accepted: 07/10/2020] [Indexed: 12/17/2022]
Abstract
Catechol-conjugated chitosan (CCs), used as tissue adhesive, wound dressing, and hemostatic materials, has been drawing much more attention. However, most CCs tissue adhesives exhibit poor adhesion strength, and few studies on optimization of cohesion and adhesion strength of CCs derivatives have been conducted. This work focused on the balance between cohesion and adhesion strength of catechol-conjugated chitosan (CCs) derivatives via different mechanisms of chemical and enzymatic conjugation. CCs derivatives were characterized regarding its mechanical property, cytotoxicity, platelet adhesion and wound healing test. Mechanical properties could be optimized by the degree of catechol substitution, pH and the presence of oxidizing agent, resulting in that the highest value of adhesive shear strength to the porcine tissue is 64.8 ± 5.7 kPa. In addition, CCs derivatives exhibit decreased toxicity and promoted in vivo wound healing effects as comparing to a commercially available adhesive (Dermabond®). All the results demonstrate that CCs derivatives can be used as well-optimized tissue adhesives as well as a hemostat.
Collapse
Affiliation(s)
- Mi Kyung Park
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea; Department of Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Mei-Xian Li
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Ingyu Yeo
- Medical Device Development Center, Deagu-Gyeongbuk Medical Innovation Foundation (DGMIF), 80 Cheombok-Ro, Dong-gu, Daegu, 41061, Republic of Korea
| | - Jaehoon Jung
- Medical Device Development Center, Deagu-Gyeongbuk Medical Innovation Foundation (DGMIF), 80 Cheombok-Ro, Dong-gu, Daegu, 41061, Republic of Korea
| | - Byung-Il Yoon
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Gangwondaehak-gil, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Yoon Ki Joung
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea; Division of Bio-Medical Science and Technology, Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.
| |
Collapse
|
49
|
Samyn P. Engineering the Cellulose Fiber Interface in a Polymer Composite by Mussel-Inspired Adhesive Nanoparticles with Intrinsic Stress-Sensitive Responsivity. ACS APPLIED MATERIALS & INTERFACES 2020; 12:28819-28830. [PMID: 32515574 DOI: 10.1021/acsami.0c05960] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The interface between the fiber and matrix plays a key role in polymer composite performance and is adapted by chemical modification of the fiber surface. In this study, biomimetic adhesive nanoparticles formed by the self-assembly of polymer-peptide amphiphiles with a polydiacetelyene tail and local presentation of 3-hydroxyphenylalanine or DOPA adhesive groups at the outer surface are adsorbed on cellulose fiber surfaces for (i) probing the nanoscale adhesion in combination with a functionalized atomic force microscopy tip and (ii) evaluating the macroscale adhesion by single-fiber pull out tests from a solvent cast cellulose/poly(methyl methacrylate) composite. The interface properties are altered by changing the structure of the nanoparticles into either vesicular or planar shapes depending on the number of incorporated amphiphiles with adhesive groups and the nanoparticle concentration at the cellulose fiber surface. Based on nanoscale adhesive measurements, the adhesion force on modified cellulose fibers increases as a function of the nanoparticle concentration and is higher for the vesicular than for the planar nanoparticle structures. However, the local presentation and number of adhesive groups seems to rule over the surface roughness effects. From macrosale tests, an optimum concentration of adhesive vesicles provides maximum interface strength, while the formation of nanoparticle multilayers at higher concentrations results in lower interface adhesion. In addition, the intrinsic fluorescent properties of the adhesive vesicles under mechanical stress provide a unique tool to evaluate local failure and stress concentrations in the fiber/matrix interface. The incorporation of both adhesive and sensitive properties and versatility of the adhesive functional group may be an attractive strategy for the surface modification of fiber-reinforced composites in general.
Collapse
Affiliation(s)
- Pieter Samyn
- Institute for Materials Research, Applied and Analytical Chemistry, Hasselt University, Agoralaan Gebouw D, B-3590 Diepenbeek, Belgium
| |
Collapse
|
50
|
Wu S, Cai C, Li F, Tan Z, Dong S. Deep Eutectic Supramolecular Polymers: Bulk Supramolecular Materials. Angew Chem Int Ed Engl 2020; 59:11871-11875. [DOI: 10.1002/anie.202004104] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Indexed: 01/14/2023]
Affiliation(s)
- Shuanggen Wu
- College of Chemistry and Chemical Engineering Hunan University Changsha 410082 Hunan P. R. China
| | - Changyong Cai
- College of Chemistry and Chemical Engineering Central South University Changsha 410083 P. R. China
| | - Fenfang Li
- College of Chemistry and Chemical Engineering Central South University Changsha 410083 P. R. China
| | - Zhijian Tan
- Institute of Bast Fiber Crops Chinese Academy of Agricultural Sciences Changsha 410205 P. R. China
| | - Shengyi Dong
- College of Chemistry and Chemical Engineering Hunan University Changsha 410082 Hunan P. R. China
| |
Collapse
|