1
|
Oliveira M, Antunes W, Mota S, Madureira-Carvalho Á, Dinis-Oliveira RJ, Dias da Silva D. An Overview of the Recent Advances in Antimicrobial Resistance. Microorganisms 2024; 12:1920. [PMID: 39338594 PMCID: PMC11434382 DOI: 10.3390/microorganisms12091920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Antimicrobial resistance (AMR), frequently considered a major global public health threat, requires a comprehensive understanding of its emergence, mechanisms, advances, and implications. AMR's epidemiological landscape is characterized by its widespread prevalence and constantly evolving patterns, with multidrug-resistant organisms (MDROs) creating new challenges every day. The most common mechanisms underlying AMR (i.e., genetic mutations, horizontal gene transfer, and selective pressure) contribute to the emergence and dissemination of new resistant strains. Therefore, mitigation strategies (e.g., antibiotic stewardship programs-ASPs-and infection prevention and control strategies-IPCs) emphasize the importance of responsible antimicrobial use and surveillance. A One Health approach (i.e., the interconnectedness of human, animal, and environmental health) highlights the necessity for interdisciplinary collaboration and holistic strategies in combating AMR. Advancements in novel therapeutics (e.g., alternative antimicrobial agents and vaccines) offer promising avenues in addressing AMR challenges. Policy interventions at the international and national levels also promote ASPs aiming to regulate antimicrobial use. Despite all of the observed progress, AMR remains a pressing concern, demanding sustained efforts to address emerging threats and promote antimicrobial sustainability. Future research must prioritize innovative approaches and address the complex socioecological dynamics underlying AMR. This manuscript is a comprehensive resource for researchers, policymakers, and healthcare professionals seeking to navigate the complex AMR landscape and develop effective strategies for its mitigation.
Collapse
Affiliation(s)
- Manuela Oliveira
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal; (Á.M.-C.); (D.D.d.S.)
- UCIBIO—Research Unit on Applied Molecular Biosciences, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal
| | - Wilson Antunes
- Instituto Universitário Militar, CINAMIL, Unidade Militar Laboratorial de Defesa Biológica e Química, Avenida Doutor Alfredo Bensaúde, 4 piso, do LNM, 1849-012 Lisbon, Portugal
| | - Salete Mota
- ULSEDV—Unidade Local De Saúde De Entre Douro Vouga, Unidade de Santa Maria da Feira e Hospital S. Sebastião, Rua Dr. Cândido Pinho, 4520-211 Santa Maria da Feira, Portugal
| | - Áurea Madureira-Carvalho
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal; (Á.M.-C.); (D.D.d.S.)
- UCIBIO—Applied Molecular Biosciences Unit, Forensics and Biomedical Sciences Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal
- Department of Public Health and Forensic Sciences and Medical Education, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Ricardo Jorge Dinis-Oliveira
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal; (Á.M.-C.); (D.D.d.S.)
- UCIBIO—Research Unit on Applied Molecular Biosciences, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal
- Department of Public Health and Forensic Sciences and Medical Education, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- FOREN—Forensic Science Experts, Avenida Dr. Mário Moutinho 33-A, 1400-136 Lisbon, Portugal
| | - Diana Dias da Silva
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal; (Á.M.-C.); (D.D.d.S.)
- UCIBIO—Applied Molecular Biosciences Unit, Forensics and Biomedical Sciences Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal
- REQUIMTE/LAQV, ESS, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
2
|
Foysal M, Imam T, Das SB, Gibson JS, Mahmud R, Gupta SD, Fournié G, Hoque MA, Henning J. Association between antimicrobial usage and resistance on commercial broiler and layer farms in Bangladesh. Front Vet Sci 2024; 11:1435111. [PMID: 39268518 PMCID: PMC11390387 DOI: 10.3389/fvets.2024.1435111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 08/06/2024] [Indexed: 09/15/2024] Open
Abstract
Antimicrobial resistance has emerged as a significant health problem worldwide, including in Bangladesh, where chickens are an important protein source for human nutrition. One of the factors accelerating the development of antimicrobial resistance is the inappropriate use of antimicrobials on commercial chicken farms. A cross-sectional study was conducted in 2019 on 140 commercial chicken farms in the Chattogram district of Bangladesh to investigate the association between antimicrobial use and resistance in Escherichia coli and Salmonella spp. cultured from cloacal swabs of chickens and from the poultry shed environment. All E. coli and Salmonella spp. isolates were resistant to multiple antimicrobial classes, including those categorized as "Highest Priority Critically Important Antimicrobials" for human medicine. Notably, resistance was observed in E. coli isolates from farms that did not use these antimicrobial classes in the current production cycle. For example, although quinolones were not used on 43.9% of E. coli positive farms, 95.7% of these farms had quinolone-resistant E. coli isolates. The results of the path analysis revealed that there was a "direct effect" of the frequency of antimicrobial usage on "high" resistance, with resistance increasing when antimicrobials were administered more frequently (β = 0.28, p = 0.002). There was a "direct effect" of the purpose of antimicrobial use on "low" resistance, with resistance marginally decreasing when antimicrobials were administered solely for therapeutic use (β = -0.17, p = 0.062), but increasing when they were used prophylactically. Overall, the study results could be used to educate farmers on better practices for antimicrobial administration, and to guide government agencies to update policies on antimicrobial use and resistance surveillance in the poultry sector of Bangladesh.
Collapse
Affiliation(s)
- Mohammad Foysal
- Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | - Tasneem Imam
- School of Veterinary Science, The University of Queensland, Gatton, QLD, Australia
| | - Shetu B Das
- Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | - Justine S Gibson
- School of Veterinary Science, The University of Queensland, Gatton, QLD, Australia
| | - Rashed Mahmud
- Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | - Suman D Gupta
- School of Veterinary Science, The University of Queensland, Gatton, QLD, Australia
- Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW, Australia
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Guillaume Fournié
- Royal Veterinary College, University of London, London, United Kingdom
- INRAE, VetAgro Sup, UMR EPIA, Université de Lyon, Marcy l'Etoile, France
| | - Md Ahasanul Hoque
- Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | - Joerg Henning
- School of Veterinary Science, The University of Queensland, Gatton, QLD, Australia
| |
Collapse
|
3
|
Bhuller Y, Deonandan R, Krewski D. Relevance and feasibility of principles for health and environmental risk decision-making. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2024; 27:189-211. [PMID: 38743482 DOI: 10.1080/10937404.2024.2338078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Globally, national regulatory authorities are both responsible and accountable for health and environmental decisions related to diverse products and risk decision contexts. These authorities provided regulatory oversight and expedited market authorizations of vaccines and other therapeutic products during the COVID-19 pandemic. Regulatory decisions regarding such products and situations depend upon well-established risk assessment and management steps. The underlying processes supporting such decisions were outlined in frameworks describing the complex interactions between factors including risk assessment and management steps as well as principles which help guide risk decision-making. In 2022, experts in risk science proposed a set of 10 guiding principles, further examining the intersection and utility of these principles using 10 diverse risk contexts, and inviting a broader discourse on the application of these principles in risk decision-making. To add to this information, Canadian regulatory practitioners responsible for evaluating health and environmental risks and establishing policies convened at a Health Canada workshop on Principles for Risk Decision-Making. This review reports the results derived from this interactive engagement and provides a first pragmatic analysis of the relevance, importance, and feasibility of such principles for health and environmental risk decision-making within the Canadian regulatory context.
Collapse
Affiliation(s)
- Yadvinder Bhuller
- Interdisciplinary School of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Raywat Deonandan
- Interdisciplinary School of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Daniel Krewski
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
4
|
Haraoui LP, Rizk A, Landecker H. States of Resistance: nosocomial and environmental approaches to antimicrobial resistance in Lebanon. HISTORY AND PHILOSOPHY OF THE LIFE SCIENCES 2024; 46:28. [PMID: 39090452 PMCID: PMC11294430 DOI: 10.1007/s40656-024-00624-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 06/24/2024] [Indexed: 08/04/2024]
Abstract
Drawing on institutional historical records, interviews and student theses, this article charts the intersection of hospital acquired illness, the emergence of antimicrobial resistance (AMR), environments of armed conflict, and larger questions of social governance in the specific case of the American University of Beirut Medical Center (AUBMC) in Lebanon. Taking a methodological cue from approaches in contemporary scientific work that understand non-clinical settings as a fundamental aspect of the history and development of AMR, we treat the hospital as not just nested in a set of social and environmental contexts, but frequently housing within itself elements of social and environmental history. AMR in Lebanon differs in important ways from the settings in which global protocols for infection control or rubrics for risk factor identification for resistant nosocomial outbreaks were originally generated. While such differences are all too often depicted as failures of low and middle-income countries (LMIC) to maintain universal standards, the historical question before us is quite the reverse: how have the putatively universal rubrics of AMR and hospital infection control failed to take account of social and environmental conditions that clearly matter deeply in the evolution and spread of resistance? Focusing on conditions of war as an organized chaos in which social, environmental and clinical factors shift dramatically, on the social and political topography of patient transfer, and on a missing "meso" level of AMR surveillance between the local and global settings, we show how a multisectoral One Health approach to AMR could be enriched by an answering multisectoral methodology in history, particularly one that unsettles a canonical focus on the story of AMR in the Euro-American context.
Collapse
Affiliation(s)
- Louis-Patrick Haraoui
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
- Centre de Recherche Charles-Le Moyne, CISSS Montérégie-Centre, Greenfield Park, QC, Canada
| | - Anthony Rizk
- Department of Anthropology and Sociology, Geneva Graduate Institute (IHEID), Geneva, Switzerland
| | - Hannah Landecker
- Department of Sociology, Institute for Society and Genetics, 264 Haines Hall, 375 Portola Plaza, Los Angeles, CA, 90095, USA.
| |
Collapse
|
5
|
He S, Shrestha P, Henry AD, Legido-Quigley H. Leveraging collaborative research networks against antimicrobial resistance in Asia. Front Public Health 2023; 11:1191036. [PMID: 38146479 PMCID: PMC10749297 DOI: 10.3389/fpubh.2023.1191036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 11/13/2023] [Indexed: 12/27/2023] Open
Abstract
Background Antimicrobial resistance (AMR) is a global health security threat requiring research collaboration globally and regionally. Despite repeated calls for international research collaboration in Asia, literature analyzing the nature of collaborative AMR research in Asia has been sparse. This study aims to describe the characteristics of the AMR research network in Asia and investigate the factors influencing collaborative tie formation between organizations. Methods We carried out a mixed-methods study by combining social network analysis (SNA) and in-depth interviews. SNA was first conducted on primary data to describe the characteristics of the AMR research network in Asia. Exponential random graph models (ERGMs) were then used to examine the influence of factors such as organization type, country affluence levels, regional proximity and One Health research on collaborative tie formation among organizations. In-depth interviews were conducted with network participants to provide contextual insights to the quantitative data. Results The results reveal that the research network exhibits a core-periphery structure, where a minority of organizations have a significantly higher number of collaborations with others. The most influential organizations in the network are academic institutions from high-income countries within and outside Asia. The ERGM results demonstrate that organizations prefer to collaborate with others of similar organization types, country-based affluence levels and One Health domains of focus, but also with others across different World Health Organization regions. The qualitative analysis identified three main themes: the challenges that impede collaboration, the central role of academic institutions, and the nature of collaborations across One Health domains, giving rise to important empirical milestones in understanding AMR research in Asia. Conclusion We thus recommend leveraging academic institutions as "integrators" to bridge differences, increasing funds channelled towards research capacity building to alleviate structural barriers to collaboration, streamlining collaborative mechanisms to overcome cumbersome administrative hurdles, and increasing efforts to establish trust between all organizations.
Collapse
Affiliation(s)
- Shiying He
- Saw Swee Hock School of Public Health, National University of Singapore, Tahir Foundation Building, Singapore, Singapore
| | - Pami Shrestha
- Saw Swee Hock School of Public Health, National University of Singapore, Tahir Foundation Building, Singapore, Singapore
| | - Adam Douglas Henry
- School of Government & Public Policy, University of Arizona, Tucson, AZ, United States
| | - Helena Legido-Quigley
- Saw Swee Hock School of Public Health, National University of Singapore, Tahir Foundation Building, Singapore, Singapore
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
6
|
Siri Y, Precha N, Sirikanchana K, Haramoto E, Makkaew P. Antimicrobial resistance in southeast Asian water environments: A systematic review of current evidence and future research directions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:165229. [PMID: 37394072 DOI: 10.1016/j.scitotenv.2023.165229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/04/2023]
Abstract
Antimicrobial resistance has been a serious and complex issue for over a decade. Although research on antimicrobial resistance (AMR) has mainly focused on clinical and animal samples as essential for treatment, the AMR situation in aquatic environments may vary and have complicated patterns according to geographical area. Therefore, this study aimed to examine recent literature on the current situation and identify gaps in the AMR research on freshwater, seawater, and wastewater in Southeast Asia. The PubMed, Scopus, and ScienceDirect databases were searched for relevant publications published from January 2013 to June 2023 that focused on antimicrobial resistance bacteria (ARB) and antimicrobial resistance genes (ARGs) among water sources. Based on the inclusion criteria, the final screening included 41 studies, with acceptable agreement assessed using Cohen's inter-examiner kappa equal to 0.866. This review found that 23 out of 41 included studies investigated ARGs and ARB reservoirs in freshwater rather than in seawater and wastewater, and it frequently found that Escherichia coli was a predominant indicator in AMR detection conducted by both phenotypic and genotypic methods. Different ARGs, such as blaTEM, sul1, and tetA genes, were found to be at a high prevalence in wastewater, freshwater, and seawater. Existing evidence highlights the importance of wastewater management and constant water monitoring in preventing AMR dissemination and strengthening effective mitigation strategies. This review may be beneficial for updating current evidence and providing a framework for spreading ARB and ARGs, particularly region-specific water sources. Future AMR research should include samples from various water systems, such as drinking water or seawater, to generate contextually appropriate results. Robust evidence regarding standard detection methods is required for prospective-era work to raise practical policies and alerts for developing microbial source tracking and identifying sources of contamination-specific indicators in aquatic environment markers.
Collapse
Affiliation(s)
- Yadpiroon Siri
- Environmental, Safety Technology and Health Program, School of Public Health, Walailak University, Thaiburi, Thasala, Nakhon Si Thammarat 80160, Thailand
| | - Nopadol Precha
- Department of Environmental Health and Technology, School of Public Health, Walailak University, Nakhon Si Thammarat 80160, Thailand; One Health Research Center, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Kwanrawee Sirikanchana
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok 10400, Thailand
| | - Eiji Haramoto
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, Yamanashi 400-8511, Japan
| | - Prasert Makkaew
- Department of Environmental Health and Technology, School of Public Health, Walailak University, Nakhon Si Thammarat 80160, Thailand; One Health Research Center, Walailak University, Nakhon Si Thammarat 80160, Thailand.
| |
Collapse
|
7
|
Lambraki IA, Chadag MV, Cousins M, Graells T, Léger A, Henriksson PJG, Troell MF, Harbarth S, Wernli D, Jørgensen PS, Carson CA, Parmley EJ, Majowicz SE. Factors impacting antimicrobial resistance in the South East Asian food system and potential places to intervene: A participatory, one health study. Front Microbiol 2023; 13:992507. [PMID: 36687632 PMCID: PMC9849958 DOI: 10.3389/fmicb.2022.992507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 12/07/2022] [Indexed: 01/07/2023] Open
Abstract
Background With AMU projected to increase, South East Asia (SEA) is at high risk of experiencing disproportionate health, social, and economic burdens due to antimicrobial resistance (AMR). Our objective was to identify factors influencing AMR in SEA's food system and places for intervention by integrating the perspectives of experts from the region to inform policy and management decisions. Materials and methods We conducted two 6.5 h workshops and two 90-min interviews involving 18 AMR and other disciplinary experts from human, animal, and environment sectors who brainstormed the factors influencing AMR and identified leverage points (places) for intervention. Transcripts and workshop materials were coded for factors and their connections and transcribed into a causal loop diagram (CLD). Thematic analysis described AMR dynamics in SEA's food system and leverage points for intervention. The CLD and themes were confirmed via participant feedback. Results Participants constructed a CLD of AMR in the SEA food system that contained 98 factors interlinked by 362 connections. CLD factors reflected eight sub-areas of the SEA food system (e.g., government). Seven themes [e.g., antimicrobial and pesticide use and AMR spread (n = 40 quotes)], six "overarching factors" that impact the entire AMR system [e.g., the drive to survive (n = 12 quotes)], and 10 places for intervention that target CLD factors (n = 5) and overarching factors (n = 2) emerged from workshop discussions. Conclusion The participant derived CLD of factors influencing AMR in the SEA food system demonstrates that AMR is a product of numerous interlinked actions taken across the One Health spectrum and that finding solutions is no simple task. Developing the model enabled the identification of potentially promising leverage points across human, animal, and environment sectors that, if comprehensively targeted using multi-pronged interventions, could evoke system wide changes that mitigate AMR. Even targeting some leverage points for intervention, such as increasing investments in research and capacity building, and setting and enforcing regulations to control antimicrobial supply, demand, and use could, in turn, shift mindsets that lead to changes in more difficult to alter leverage points, such as redefining the profit-driven intent that drives system behavior in ways that transform AMU and sustainably mitigate AMR.
Collapse
Affiliation(s)
- Irene Anna Lambraki
- School of Public Health Sciences, University of Waterloo, Waterloo, ON, Canada,*Correspondence: Irene Anna Lambraki, ✉
| | | | - Melanie Cousins
- School of Public Health Sciences, University of Waterloo, Waterloo, ON, Canada
| | - Tiscar Graells
- Global Economic Dynamics and the Biosphere, Royal Swedish Academy of Sciences, Stockholm, Sweden,Stockholm Resilience Center, Stockholm University, Stockholm, Sweden
| | - Anaïs Léger
- Global Studies Institute, University of Geneva, Geneva, Switzerland
| | - Patrik John Gustav Henriksson
- WorldFish, Penang, Malaysia,Stockholm Resilience Center, Stockholm University, Stockholm, Sweden,Beijer Institute of Ecological Economics, Royal Swedish Academy of Sciences, Stockholm, Sweden
| | - Max Fredrik Troell
- Stockholm Resilience Center, Stockholm University, Stockholm, Sweden,Beijer Institute of Ecological Economics, Royal Swedish Academy of Sciences, Stockholm, Sweden
| | - Stephan Harbarth
- Infection Control Program and WHO Collaborating Center on Patient Safety, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - Didier Wernli
- Global Studies Institute, University of Geneva, Geneva, Switzerland
| | - Peter Søgaard Jørgensen
- Global Economic Dynamics and the Biosphere, Royal Swedish Academy of Sciences, Stockholm, Sweden,Stockholm Resilience Center, Stockholm University, Stockholm, Sweden
| | - Carolee Anne Carson
- Foodborne Disease and Antimicrobial Resistance Surveillance Division, Public Health Agency of Canada, Guelph, ON, Canada
| | - Elizabeth Jane Parmley
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Shannon E. Majowicz
- School of Public Health Sciences, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
8
|
Antimicrobial Resistance Research Collaborations in Asia: Challenges and Opportunities to Equitable Partnerships. Antibiotics (Basel) 2022; 11:antibiotics11060755. [PMID: 35740161 PMCID: PMC9219997 DOI: 10.3390/antibiotics11060755] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 02/01/2023] Open
Abstract
Antimicrobial Resistance is recognized as a major threat to global health security. The WHO Southeast Asia region is dubbed a “global hub for AMR emergence”, as it runs the highest risk for AMR emergence among all WHO regions in Asia. Hence, there is a need for Asia-centric, collaborative AMR research aligned with the true needs and priorities of the region. This study aimed to identify and understand the challenges and opportunities for such collaborative endeavors to enhance equitable partnerships. This qualitative study adopted an interpretative approach involving a thematic analysis of 15 semi-structured interviews with AMR experts conducting research in the region. The study identified several factors influencing research collaborations, such as the multi-dimensional nature of AMR, limited or lack of funds, different AMR research priorities in Asian countries, absence of Asia-centric AMR leadership, lack of trust and, unequal power relationships between researchers, and the negative impact of the COVID-19 pandemic in research collaborations. It also identified some opportunities, such as the willingness of researchers to collaborate, the formation of a few networks, and the prioritization by many academics of the One Health paradigm for framing AMR research. Participants reported that the initiation of stronger cross-discipline and cross-country networks, the development of Asia-centric AMR leadership, flexible research agendas with shared priorities, transparent and transferable funds, and support to enhance research capacity in LMICs could assist in developing more equitable collaborative research in Asia.
Collapse
|
9
|
Rodríguez-Molina D, Berglund F, Blaak H, Flach CF, Kemper M, Marutescu L, Pircalabioru Gradisteanu G, Popa M, Spießberger B, Wengenroth L, Chifiriuc MC, Larsson DGJ, Nowak D, Radon K, de Roda Husman AM, Wieser A, Schmitt H. International Travel as a Risk Factor for Carriage of Extended-Spectrum β-Lactamase-Producing Escherichia coli in a Large Sample of European Individuals—The AWARE Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19084758. [PMID: 35457624 PMCID: PMC9029788 DOI: 10.3390/ijerph19084758] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/10/2022] [Accepted: 04/13/2022] [Indexed: 02/06/2023]
Abstract
Antibiotic resistance (AR) is currently a major threat to global health, calling for a One Health approach to be properly understood, monitored, tackled, and managed. Potential risk factors for AR are often studied in specific high-risk populations, but are still poorly understood in the general population. Our aim was to explore, describe, and characterize potential risk factors for carriage of Extended-Spectrum Beta-Lactamase-resistant Escherichia coli (ESBL-EC) in a large sample of European individuals aged between 16 and 67 years recruited from the general population in Southern Germany, the Netherlands, and Romania. Questionnaire and stool sample collection for this cross-sectional study took place from September 2018 to March 2020. Selected cultures of participants’ stool samples were analyzed for detection of ESBL-EC. A total of 1183 participants were included in the analyses: 333 from Germany, 689 from the Netherlands, and 161 from Romania. Travels to Northern Africa (adjusted Odds Ratio, aOR 4.03, 95% Confidence Interval, CI 1.67–9.68), Sub-Saharan Africa (aOR 4.60, 95% CI 1.60–13.26), and Asia (aOR 4.08, 95% CI 1.97–8.43) were identified as independent risk factors for carriage of ESBL-EC. Therefore, travel to these regions should continue to be routinely asked about by clinical practitioners as possible risk factors when considering antibiotic therapy.
Collapse
Affiliation(s)
- Daloha Rodríguez-Molina
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, 80336 Munich, Germany; (L.W.); (D.N.); (K.R.)
- Institute for Medical Information Processing, Biometry and Epidemiology—IBE, LMU Munich, 81377 Munich, Germany
- Pettenkofer School of Public Health, 81377 Munich, Germany
- Correspondence: ; Tel.: +49-(89)-4400-52358; Fax: +49-(89)-4400-54954
| | - Fanny Berglund
- Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden; (F.B.); (C.-F.F.); (D.G.J.L.)
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, 40530 Gothenburg, Sweden
| | - Hetty Blaak
- Centre of Infectious Disease Control, National Institute for Public Health and the Environment, 3721 MA Bilthoven, The Netherlands; (H.B.); (M.K.); (A.M.d.R.H.); (H.S.)
| | - Carl-Fredrik Flach
- Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden; (F.B.); (C.-F.F.); (D.G.J.L.)
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, 40530 Gothenburg, Sweden
| | - Merel Kemper
- Centre of Infectious Disease Control, National Institute for Public Health and the Environment, 3721 MA Bilthoven, The Netherlands; (H.B.); (M.K.); (A.M.d.R.H.); (H.S.)
| | - Luminita Marutescu
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest and the Academy of Romanian Scientists, 050657 Bucharest, Romania; (L.M.); (G.P.G.); (M.P.); (M.C.C.)
- Earth, Environmental and Life Sciences Section, Research Institute of the University of Bucharest, University of Bucharest, 030018 Bucharest, Romania
| | - Gratiela Pircalabioru Gradisteanu
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest and the Academy of Romanian Scientists, 050657 Bucharest, Romania; (L.M.); (G.P.G.); (M.P.); (M.C.C.)
- Earth, Environmental and Life Sciences Section, Research Institute of the University of Bucharest, University of Bucharest, 030018 Bucharest, Romania
| | - Marcela Popa
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest and the Academy of Romanian Scientists, 050657 Bucharest, Romania; (L.M.); (G.P.G.); (M.P.); (M.C.C.)
- Earth, Environmental and Life Sciences Section, Research Institute of the University of Bucharest, University of Bucharest, 030018 Bucharest, Romania
| | - Beate Spießberger
- German Centre for Infection Research (DZIF), Partner Site Munich, 80336 Munich, Germany; (B.S.); (A.W.)
- Max von Pettenkofer Institute, Faculty of Medicine, LMU Munich, 81377 Munich, Germany
- Department of Infectious Diseases and Tropical Medicine, LMU University Hospital Munich, 80802 Munich, Germany
| | - Laura Wengenroth
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, 80336 Munich, Germany; (L.W.); (D.N.); (K.R.)
| | - Mariana Carmen Chifiriuc
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest and the Academy of Romanian Scientists, 050657 Bucharest, Romania; (L.M.); (G.P.G.); (M.P.); (M.C.C.)
- Earth, Environmental and Life Sciences Section, Research Institute of the University of Bucharest, University of Bucharest, 030018 Bucharest, Romania
| | - D. G. Joakim Larsson
- Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden; (F.B.); (C.-F.F.); (D.G.J.L.)
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, 40530 Gothenburg, Sweden
| | - Dennis Nowak
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, 80336 Munich, Germany; (L.W.); (D.N.); (K.R.)
- Comprehensive Pneumology Center Munich (CPC-M), German Center for Lung Research (DZL), 80336 Munich, Germany
| | - Katja Radon
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, 80336 Munich, Germany; (L.W.); (D.N.); (K.R.)
| | - Ana Maria de Roda Husman
- Centre of Infectious Disease Control, National Institute for Public Health and the Environment, 3721 MA Bilthoven, The Netherlands; (H.B.); (M.K.); (A.M.d.R.H.); (H.S.)
| | - Andreas Wieser
- German Centre for Infection Research (DZIF), Partner Site Munich, 80336 Munich, Germany; (B.S.); (A.W.)
- Max von Pettenkofer Institute, Faculty of Medicine, LMU Munich, 81377 Munich, Germany
- Department of Infectious Diseases and Tropical Medicine, LMU University Hospital Munich, 80802 Munich, Germany
| | - Heike Schmitt
- Centre of Infectious Disease Control, National Institute for Public Health and the Environment, 3721 MA Bilthoven, The Netherlands; (H.B.); (M.K.); (A.M.d.R.H.); (H.S.)
| |
Collapse
|
10
|
Antimicrobial Resistance Situation in Indonesia: A Challenge of Multisector and Global Coordination. J Trop Med 2022; 2022:2783300. [PMID: 35145554 PMCID: PMC8822317 DOI: 10.1155/2022/2783300] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 11/30/2021] [Accepted: 12/31/2021] [Indexed: 11/17/2022] Open
Abstract
High levels of antimicrobial resistance (AMR) in Indonesia are caused by the use of inappropriate antimicrobials (AM) in healthcare services and the livestock and fisheries sector. The available data and information about overused antibiotics and the AMR threat in Indonesia are limited. The aim of the study is to describe the AMR situation in Indonesia based on perceptions of government officials, health professionals, and the community to determine actions needed to develop AMR-related strategy and policy. The study was done in eight provinces in Indonesia and included reviewing AMR-related policy, collecting antibiotic use reports in primary health care from health offices and hospitals, and conducting in-depth interviews and focus group discussions with informants from health and nonhealth sectors. The results of the study show that AM misuse happens not only in healthcare facilities but also in communities. Medical officers are unfamiliar with AMR-related policy, as are officers in the livestock and fisheries sectors. There is limited coordination between sectors regarding the AMR situation in Indonesia. The government has to take stronger measures to oversee better implementation of AMR policies.
Collapse
|
11
|
Bharathi SV, Venkataramaiah M, Rajamohan G. Genotypic and Phenotypic Characterization of Novel Sequence Types of Carbapenem-Resistant Acinetobacter baumannii, With Heterogeneous Resistance Determinants and Targeted Variations in Efflux Operons. Front Microbiol 2022; 12:738371. [PMID: 35002996 PMCID: PMC8735875 DOI: 10.3389/fmicb.2021.738371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 11/16/2021] [Indexed: 01/21/2023] Open
Abstract
Acinetobacter baumannii has emerged as one of the dominant nosocomial human pathogens associated with high morbidity and mortality globally. Increased incidences of carbapenem-resistant A. baumannii (CRAB) have resulted in an enormous socioeconomic burden on health-care systems. Here, we report the genotypic and phenotypic characterization of novel ST1816 and ST128 variants in A. baumannii strains belonging to International clone II (GC2) with capsule types KL1:OCL8 and KL3:OCL1d from India. Sequence analysis revealed the presence of diverse virulome and resistome in these clinical strains, in addition to islands, prophages, and resistance genes. The oxacillinase bla OXA-23 detected in the genomic island also highlighted the coexistence of bla OXA-66 /bla OXA-98 , bla ADC73 /bla ADC-3 , and bla TEM-1D in their mobile scaffolds, which is alarming. Together with these resistance-determining enzymes, multidrug efflux transporters also harbored substitutions, with increased expression in CRAB strains. The hotspot mutations in colistin resistance-conferring operons, PmrAB, LpxACD, and AdeRS, were additionally confirmed. Phenotype microarray analysis indicated that multidrug-resistant strains A. baumannii DR2 and A. baumannii AB067 preferred a range of antimicrobial compounds as their substrates relative to the other. To our knowledge, this is the first comprehensive report on the characterization of A. baumannii variants ST1816 and ST128, with different genetic makeup and genome organization. The occurrence of CRAB infections worldwide is a severe threat to available limited therapeutic options; hence, continued surveillance to monitor the emergence and dissemination of such novel ST variants in A. baumannii is imperative.
Collapse
Affiliation(s)
- Srinivasan Vijaya Bharathi
- Molecular Biology Division, Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, India
| | - Manjunath Venkataramaiah
- Molecular Biology Division, Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, India
| | - Govindan Rajamohan
- Molecular Biology Division, Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, India
| |
Collapse
|
12
|
San T, Aung MS, San N, Aung MMZ, Mon WLY, Thazin TE, Kobayashi N. Bacterial Species and Antimicrobial Resistance of Clinical Isolates from Pediatric Patients in Yangon, Myanmar, 2020. Infect Dis Rep 2022; 14:26-32. [PMID: 35076535 PMCID: PMC8788269 DOI: 10.3390/idr14010004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/04/2022] [Accepted: 01/04/2022] [Indexed: 02/04/2023] Open
Abstract
Antimicrobial resistance (AMR) is a concern in medical care for children who have high burden of infectious diseases. We investigated the prevalence of bacterial species and their susceptibility to antimicrobials of 1019 clinical isolates from pediatric patients in a tertiary-care hospital in Yangon, Myanmar for one-year period (2020). The most frequently recovered species was Escherichia coli, followed by Klebsiella pneumoniae and Staphylococcus aureus, all of which accounted for 43% of clinical isolates, while 25% of isolates comprised non-fermenter, including Pseudomonas sp. and Acinetobacter sp. Phenotypically determined ESBL (extended-spectrum beta-lactamase)-positive rates in E. coli, K. pneumoniae, and Enterobacter sp. were 82%, 88%, and 65%, respectively. High rates of multiple drug resistance were noted for E. coli (84%), K. pneumoniae (81%), and Acinetobacter sp. (65%), associated with carbapenem resistance in 48%, 42%, and 59% of isolates, respectively. In contrast, S. aureus isolates exhibited low resistance rates (<30%) to most of antimicrobials, with 22% being resistant to oxacillin/cefoxitin. Fluoroquinolone resistance was found in most of bacterial species with different prevalence rates. The present study revealed the current status on prevalence of bacterial species causing infections in pediatric patients in Myanmar, highlighting the significance to monitor AMR among children.
Collapse
Affiliation(s)
- Thida San
- Department of Clinical Laboratory, Yangon Children’s Hospital, Yangon 11191, Myanmar; (T.S.); (T.E.T.)
| | - Meiji Soe Aung
- Department of Hygiene, School of Medicine, Sapporo Medical University, Sapporo 060-8556, Japan;
| | - Nilar San
- Department of Microbiology, University of Medicine 2, Yangon 11031, Myanmar;
| | - Myat Myint Zu Aung
- Department of Microbiology, University of Medicine 1, Yangon 11131, Myanmar;
| | - Win Lei Yi Mon
- Department of Clinical Laboratory, Yangon General Hospital, Yangon 11131, Myanmar;
| | - Thin Ei Thazin
- Department of Clinical Laboratory, Yangon Children’s Hospital, Yangon 11191, Myanmar; (T.S.); (T.E.T.)
| | - Nobumichi Kobayashi
- Department of Hygiene, School of Medicine, Sapporo Medical University, Sapporo 060-8556, Japan;
- Correspondence: ; Tel.: +81-11-611-2111
| |
Collapse
|
13
|
Antimicrobial Susceptibility and Frequency of bla and qnr Genes in Salmonella enterica Isolated from Slaughtered Pigs. Antibiotics (Basel) 2021; 10:antibiotics10121442. [PMID: 34943653 PMCID: PMC8698178 DOI: 10.3390/antibiotics10121442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 12/03/2022] Open
Abstract
Salmonella enterica is known as one of the most common foodborne pathogens worldwide. While salmonellosis is usually self-limiting, severe infections may require antimicrobial therapy. However, increasing resistance of Salmonella to antimicrobials, particularly fluoroquinolones and cephalosporins, is of utmost concern. The present study aimed to investigate the antimicrobial susceptibility of S. enterica isolated from pork, the major product in Philippine livestock production. Our results show that both the qnrS and the blaTEM antimicrobial resistance genes were present in 61.2% of the isolates. While qnrA (12.9%) and qnrB (39.3%) were found less frequently, co-carriage of blaTEM and one to three qnr subtypes was observed in 45.5% of the isolates. Co-carriage of blaTEM and blaCTX-M was also observed in 3.9% of the isolates. Antimicrobial susceptibility testing revealed that the majority of isolates were non-susceptible to ampicillin and trimethoprim/sulfamethoxazole, and 13.5% of the isolates were multidrug-resistant (MDR). MDR isolates belonged to either O:3,10, O:4, or an unidentified serogroup. High numbers of S. enterica carrying antimicrobial resistance genes (ARG), specifically the presence of isolates co-carrying resistance to both β-lactams and fluoroquinolones, raise a concern on antimicrobial use in the Philippine hog industry and on possible transmission of ARG to other bacteria.
Collapse
|
14
|
Osman AY, Elmi SA, Simons D, Elton L, Haider N, Khan MA, Othman I, Zumla A, McCoy D, Kock R. Antimicrobial Resistance Patterns and Risk Factors Associated with Salmonella spp. Isolates from Poultry Farms in the East Coast of Peninsular Malaysia: A Cross-Sectional Study. Pathogens 2021; 10:pathogens10091160. [PMID: 34578192 PMCID: PMC8470665 DOI: 10.3390/pathogens10091160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/15/2021] [Accepted: 09/06/2021] [Indexed: 11/16/2022] Open
Abstract
The burden of antimicrobial use in agricultural settings is one of the greatest challenges facing global health and food security in the modern era. Malaysian poultry operations are a relevant but understudied component of epidemiology of antimicrobial resistance. We aimed to identify the prevalence, resistance patterns, and risk factors associated with Salmonella isolates from poultry farms in three states of East Coast Peninsular Malaysia. Between 8 February 2019 and 23 February 2020, a total of 371 samples (cloacal swabs = 259; faecal = 84; Sewage = 14, Tap water = 14) was collected from poultry operations. Characteristics of the sampled farms and associated risk factors were obtained using semi-structured questionnaires. Presumptive Salmonella spp. isolates were identified based on colony morphology with subsequent biochemical and PCR confirmation. Susceptibility of isolates was tested against a panel of 12 antimicrobials using disk diffusion method. Our findings revealed that the proportion of Salmonella spp.-positive isolates across sample source were as following: cloacal swab (46.3%, 120/259); faecal (59.5%, 50/84); in tap water (14.3%, 2/14); and in sewage sample (35.7%, 5/14). Isolates from faecal (15.5%, 13/84), cloacal (1.2%, 3/259), and sewage (7.1%, 1/14) samples were significantly resistant to at least five classes of antimicrobials. Resistance to Sulfonamides class (52%, 92/177) was predominantly observed followed by tetracycline (39.5%, 70/177) and aminoglycosides (35.6%, 63/177). Multivariate regression analysis identified intensive management system (OR = 1.55, 95% CI = 1.00–2.40) as a leading driver of antimicrobial resistance (AMR) acquisition. A prevalence of resistance to common antimicrobials was recorded for sulfamethoxazole (33.9%), tetracycline (39.5%), and trimethoprim-sulphamethoxazole (37.9%). A close association between different risk factors and the prevalence of AMR of Salmonella strains suggests a concern over rising misuse of veterinary antimicrobials that may contribute to the emergence and evolution of multidrug-resistant pathogen isolates. One Health approach is recommended to achieve a positive health outcome for all species.
Collapse
Affiliation(s)
- Abdinasir Yusuf Osman
- The Royal Veterinary College, University of London, Hawkshead Lane, North Mymms, Hatfield AL9 7TA, UK; (D.S.); (N.H.); (R.K.)
- Correspondence: ; Tel.: +44-742-404-9130
| | - Sharifo Ali Elmi
- Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Pengkalan Chepa, Kota Bharu 16100, Malaysia; (S.A.E.); (M.A.K.)
| | - David Simons
- The Royal Veterinary College, University of London, Hawkshead Lane, North Mymms, Hatfield AL9 7TA, UK; (D.S.); (N.H.); (R.K.)
| | - Linzy Elton
- Centre for Clinical Microbiology, Department of Infection, Division of Infection and Immunity, University College London, London NW3 2PF, UK; (L.E.); (A.Z.)
| | - Najmul Haider
- The Royal Veterinary College, University of London, Hawkshead Lane, North Mymms, Hatfield AL9 7TA, UK; (D.S.); (N.H.); (R.K.)
| | - Mohd Azam Khan
- Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Pengkalan Chepa, Kota Bharu 16100, Malaysia; (S.A.E.); (M.A.K.)
| | - Iekhsan Othman
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 46150, Malaysia;
| | - Alimuddin Zumla
- Centre for Clinical Microbiology, Department of Infection, Division of Infection and Immunity, University College London, London NW3 2PF, UK; (L.E.); (A.Z.)
- National Institute for Health Research Biomedical Research Centre, University College London Hospitals, London NW1 2BU, UK
| | - David McCoy
- Institute of Population Health Sciences, Barts and London Medical and Dental School, Queen Mary University of London, London E1 2AD, UK;
| | - Richard Kock
- The Royal Veterinary College, University of London, Hawkshead Lane, North Mymms, Hatfield AL9 7TA, UK; (D.S.); (N.H.); (R.K.)
| |
Collapse
|
15
|
Noyes NR, Slizovskiy IB, Singer RS. Beyond Antimicrobial Use: A Framework for Prioritizing Antimicrobial Resistance Interventions. Annu Rev Anim Biosci 2021; 9:313-332. [PMID: 33592160 DOI: 10.1146/annurev-animal-072020-080638] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Antimicrobial resistance (AMR) is a threat to animal and human health. Antimicrobial use has been identified as a major driver of AMR, and reductions in use are a focal point of interventions to reduce resistance. Accordingly, stakeholders in human health and livestock production have implemented antimicrobial stewardship programs aimed at reducing use. Thus far, these efforts have yielded variable impacts on AMR. Furthermore, scientific advances are prompting an expansion and more nuanced appreciation of the many nonantibiotic factors that drive AMR, as well as how these factors vary across systems, geographies, and contexts. Given these trends, we propose a framework to prioritize AMR interventions. We use this framework to evaluate the impact of interventions that focus on antimicrobial use. We conclude by suggesting that priorities be expanded to include greater consideration of host-microbial interactions that dictate AMR, as well as anthropogenic and environmental systems that promote dissemination of AMR.
Collapse
Affiliation(s)
- Noelle R Noyes
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota 55108, USA; ,
| | - Ilya B Slizovskiy
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota 55108, USA; ,
| | - Randall S Singer
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota 55108, USA;
| |
Collapse
|
16
|
Pereira-Dias J, Nguyen Ngoc Minh C, Tran Thi Hong C, Nguyen Thi Nguyen T, Ha Thanh T, Zellmer C, Chung The H, Pike L, Higginson EE, Baker S. The gut microbiome of healthy Vietnamese adults and children is a major reservoir for resistance genes against critical antimicrobials. J Infect Dis 2021; 224:S840-S847. [PMID: 34374428 PMCID: PMC8687120 DOI: 10.1093/infdis/jiab398] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Antimicrobials are a key group of therapeutic agents. Given the animal/human population density and high antimicrobial consumption rate in Southeast Asia, the region is a focal area for monitoring antimicrobial resistance (AMR). Hypothesizing that the gastrointestinal tract of healthy individuals in Vietnam is a major source of AMR genes that may be transferred to pathogens, we performed shotgun metagenomic sequencing on fecal samples from 42 healthy Vietnamese people (21 children and 21 adults). We compared their microbiome profiles by age group and determined the composition of AMR genes. An analysis of the taxonomic profiles in the gut microbiome showed a clear differentiation by age, with young children (age <2 years) exhibiting a unique structure in comparison to adults and older children. We identified a total of 132 unique AMR genes, with macrolide, lincosamide, and streptogramin class resistance genes (ermB and lnuC) and tetracycline resistance genes being almost ubiquitous across the study population. Notably, samples from younger children were significantly associated with a greater number of AMR genes than other age groups, including key signature genes associated with AMR pathogens (eg, blaCTX-M, mphA). Our data suggest that the gut microbiome of those living in Vietnam, particularly young children, is a substantial reservoir of AMR genes, which can be transferred to circulating enteric pathogens. Our data support the generation of longitudinal cohort studies of those living in urban and rural areas of developing countries to understand the behavior of these AMR reservoirs and their role in generating multidrug-resistant and extensively drug-resistant pathogens.
Collapse
Affiliation(s)
- Joana Pereira-Dias
- University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, United Kingdom.,Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | | | | | | | - Tuyen Ha Thanh
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Caroline Zellmer
- University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, United Kingdom.,Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Hao Chung The
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Lindsay Pike
- The Wellcome Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Ellen E Higginson
- University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Stephen Baker
- University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, United Kingdom.,Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, United Kingdom
| |
Collapse
|
17
|
Ott A, O'Donnell G, Tran NH, Mohd Haniffah MR, Su JQ, Zealand AM, Gin KYH, Goodson ML, Zhu YG, Graham DW. Developing Surrogate Markers for Predicting Antibiotic Resistance "Hot Spots" in Rivers Where Limited Data Are Available. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:7466-7478. [PMID: 34000189 DOI: 10.1021/acs.est.1c00939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Pinpointing environmental antibiotic resistance (AR) hot spots in low-and middle-income countries (LMICs) is hindered by a lack of available and comparable AR monitoring data relevant to such settings. Addressing this problem, we performed a comprehensive spatial and seasonal assessment of water quality and AR conditions in a Malaysian river catchment to identify potential "simple" surrogates that mirror elevated AR. We screened for resistant coliforms, 22 antibiotics, 287 AR genes and integrons, and routine water quality parameters, covering absolute concentrations and mass loadings. To understand relationships, we introduced standardized "effect sizes" (Cohen's D) for AR monitoring to improve comparability of field studies. Overall, water quality generally declined and environmental AR levels increased as one moved down the catchment without major seasonal variations, except total antibiotic concentrations that were higher in the dry season (Cohen's D > 0.8, P < 0.05). Among simple surrogates, dissolved oxygen (DO) most strongly correlated (inversely) with total AR gene concentrations (Spearman's ρ 0.81, P < 0.05). We suspect this results from minimally treated sewage inputs, which also contain AR bacteria and genes, depleting DO in the most impacted reaches. Thus, although DO is not a measure of AR, lower DO levels reflect wastewater inputs, flagging possible AR hot spots. DO measurement is inexpensive, already monitored in many catchments, and exists in many numerical water quality models (e.g., oxygen sag curves). Therefore, we propose combining DO data and prospective modeling to guide local interventions, especially in LMIC rivers with limited data.
Collapse
Affiliation(s)
- Amelie Ott
- School of Engineering, Newcastle University, NE1 7RU Newcastle upon Tyne, United Kingdom
| | - Greg O'Donnell
- School of Engineering, Newcastle University, NE1 7RU Newcastle upon Tyne, United Kingdom
| | - Ngoc Han Tran
- Department of Civil and Environmental Engineering, National University of Singapore, 117576 Singapore
| | | | - Jian-Qiang Su
- Chinese Academy of Science, Institute of Urban Environment, 1799 Xiamen, China
| | - Andrew M Zealand
- School of Engineering, Newcastle University, NE1 7RU Newcastle upon Tyne, United Kingdom
| | - Karina Yew-Hoong Gin
- Department of Civil and Environmental Engineering, National University of Singapore, 117576 Singapore
| | - Michaela L Goodson
- Newcastle University Malaysia, Educity@Iskandar, 79200 Iskandar Puteri, Johor, Malaysia
| | - Yong-Guan Zhu
- Chinese Academy of Science, Institute of Urban Environment, 1799 Xiamen, China
| | - David W Graham
- School of Engineering, Newcastle University, NE1 7RU Newcastle upon Tyne, United Kingdom
| |
Collapse
|
18
|
Herawati F, Yulia R, Arifin B, Frasetyo I, Setiasih, Woerdenbag HJ, Avanti C, Andrajati R. Educational Video Improves Knowledge about Outpatients' Usage of Antibiotics in Two Public Hospitals in Indonesia. Antibiotics (Basel) 2021; 10:606. [PMID: 34065353 PMCID: PMC8161411 DOI: 10.3390/antibiotics10050606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/12/2021] [Accepted: 05/18/2021] [Indexed: 11/29/2022] Open
Abstract
The inappropriate use or misuse of antibiotics, particularly by outpatients, increases antibiotic resistance. A lack of public knowledge about "Responsible use of antibiotics" and "How to obtain antibiotics" is a major cause of this. This study aimed to assess the effectiveness of an educational video about antibiotics and antibiotic use to increase outpatients' knowledge shown in two public hospitals in East Java, Indonesia. A quasi-experimental research setting was used with a one-group pre-test-post-test design, carried out from November 2018 to January 2019. The study population consisted of outpatients to whom antibiotics were prescribed. Participants were selected using a purposive sampling technique; 98 outpatients at MZ General Hospital in the S regency and 96 at SG General Hospital in the L regency were included. A questionnaire was used to measure the respondents' knowledge, and consisted of five domains, i.e., the definition of infections and antibiotics, obtaining the antibiotics, directions for use, storage instructions, and antibiotic resistance. The knowledge test score was the total score of the Guttman scale (a dichotomous "yes" or "no" answer). To determine the significance of the difference in knowledge before and after providing the educational video and in the knowledge score between hospitals, the (paired) Student's t-test was applied. The educational videos significantly improved outpatients' knowledge, which increased by 41% in MZ General Hospital, and by 42% in SG General Hospital. It was concluded that an educational video provides a useful method to improve the knowledge of the outpatients regarding antibiotics.
Collapse
Affiliation(s)
- Fauna Herawati
- Department of Clinical and Community Pharmacy, Faculty of Pharmacy, Universitas Surabaya, Surabaya 60293, Indonesia; (R.Y.); (B.A.); (I.F.)
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Indonesia, Depok 16424, Indonesia;
| | - Rika Yulia
- Department of Clinical and Community Pharmacy, Faculty of Pharmacy, Universitas Surabaya, Surabaya 60293, Indonesia; (R.Y.); (B.A.); (I.F.)
| | - Bustanul Arifin
- Department of Clinical and Community Pharmacy, Faculty of Pharmacy, Universitas Surabaya, Surabaya 60293, Indonesia; (R.Y.); (B.A.); (I.F.)
| | - Ikhwan Frasetyo
- Department of Clinical and Community Pharmacy, Faculty of Pharmacy, Universitas Surabaya, Surabaya 60293, Indonesia; (R.Y.); (B.A.); (I.F.)
| | - Setiasih
- Laboratory for Developmental Psychology, Faculty of Psychology, Universitas Surabaya, Surabaya 60293, Indonesia;
| | - Herman J. Woerdenbag
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, 9713 AV Groningen, The Netherlands;
| | - Christina Avanti
- Department of Pharmaceutics, Faculty of Pharmacy, Universitas Surabaya, Surabaya 60293, Indonesia;
| | - Retnosari Andrajati
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Indonesia, Depok 16424, Indonesia;
| |
Collapse
|
19
|
Frumence G, Mboera LEG, Sindato C, Katale BZ, Kimera S, Metta E, Durrance-Bagale A, Jung AS, Mshana SE, Clark TG, Rweyemamu M, Legido-Quigley H, Matee MIN. The Governance and Implementation of the National Action Plan on Antimicrobial Resistance in Tanzania: A Qualitative Study. Antibiotics (Basel) 2021; 10:273. [PMID: 33803077 PMCID: PMC7998560 DOI: 10.3390/antibiotics10030273] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 12/17/2022] Open
Abstract
Tanzania launched its first National Action Plan (NAP) on antimicrobial resistance (AMR) in 2017 to reduce the burden of AMR in the country and contribute to the global response. We aimed to analyze the implementation of the NAP on AMR in Tanzania using the governance framework. In-depth interviews were conducted with human and animal health practitioners and national-level policy actors. We adapted Chua's AMR governance framework to analyze the development and implementation of the NAP in Tanzania. Implementation of the NAP has realized several achievements, including: (i) the establishment of a functioning Multi-Sectoral Coordinating Committee for coordinating the implementation of AMR activities; (ii) existence of governance structure; (iii) establishment of human and animal surveillance sites; (iv) creation of AMR awareness in the community and (v) availability of guidelines at the health facility level to ensure AMR stewardship. However, some dimensions of the governance areas, including reporting and feedback mechanisms, accountability, transparency and sustainability of AMR plans, are not effectively implemented. Addressing these challenges should involve strengthening the collaboration of the different sectors involved at different NAP implementation levels by careful planning and coordination, and provision of adequate resources to ensure sustainability.
Collapse
Affiliation(s)
- Gasto Frumence
- Muhimbili University of Health and Allied Sciences, Dar es Salaam 65001, Tanzania; (E.M.); (M.I.N.M.)
- Eastern and Southern Africa Centers of Excellence for Infectious Diseases of Humans and Animals (SACIDS-ACE), Morogoro 3019, Tanzania; (L.E.G.M.); (C.S.); (B.Z.K.); (S.K.); (S.E.M.); (M.R.)
| | - Leonard E. G. Mboera
- Eastern and Southern Africa Centers of Excellence for Infectious Diseases of Humans and Animals (SACIDS-ACE), Morogoro 3019, Tanzania; (L.E.G.M.); (C.S.); (B.Z.K.); (S.K.); (S.E.M.); (M.R.)
| | - Calvin Sindato
- Eastern and Southern Africa Centers of Excellence for Infectious Diseases of Humans and Animals (SACIDS-ACE), Morogoro 3019, Tanzania; (L.E.G.M.); (C.S.); (B.Z.K.); (S.K.); (S.E.M.); (M.R.)
- Tabora Research Centre, National Institute for Medical Research, Tabora 45026, Tanzania
| | - Bugwesa Z. Katale
- Eastern and Southern Africa Centers of Excellence for Infectious Diseases of Humans and Animals (SACIDS-ACE), Morogoro 3019, Tanzania; (L.E.G.M.); (C.S.); (B.Z.K.); (S.K.); (S.E.M.); (M.R.)
- Tanzania Commission for Science and Technology, Dar es Salaam 4302, Tanzania
| | - Sharadhuli Kimera
- Eastern and Southern Africa Centers of Excellence for Infectious Diseases of Humans and Animals (SACIDS-ACE), Morogoro 3019, Tanzania; (L.E.G.M.); (C.S.); (B.Z.K.); (S.K.); (S.E.M.); (M.R.)
- Sokoine University of Agriculture, Morogoro 3019, Tanzania
| | - Emmy Metta
- Muhimbili University of Health and Allied Sciences, Dar es Salaam 65001, Tanzania; (E.M.); (M.I.N.M.)
| | - Anna Durrance-Bagale
- London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK; (A.D.-B.); (A.-S.J.); (T.G.C.); (H.L.-Q.)
| | - Anne-Sophie Jung
- London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK; (A.D.-B.); (A.-S.J.); (T.G.C.); (H.L.-Q.)
| | - Stephen E. Mshana
- Eastern and Southern Africa Centers of Excellence for Infectious Diseases of Humans and Animals (SACIDS-ACE), Morogoro 3019, Tanzania; (L.E.G.M.); (C.S.); (B.Z.K.); (S.K.); (S.E.M.); (M.R.)
- Catholic University of Health and Allied Sciences, Mwanza 33109, Tanzania
| | - Taane G. Clark
- London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK; (A.D.-B.); (A.-S.J.); (T.G.C.); (H.L.-Q.)
| | - Mark Rweyemamu
- Eastern and Southern Africa Centers of Excellence for Infectious Diseases of Humans and Animals (SACIDS-ACE), Morogoro 3019, Tanzania; (L.E.G.M.); (C.S.); (B.Z.K.); (S.K.); (S.E.M.); (M.R.)
- SACIDS Foundation for One Health, Sokoine University of Agriculture, Morogoro 3019, Tanzania
| | - Helena Legido-Quigley
- London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK; (A.D.-B.); (A.-S.J.); (T.G.C.); (H.L.-Q.)
| | - Mecky I. N. Matee
- Muhimbili University of Health and Allied Sciences, Dar es Salaam 65001, Tanzania; (E.M.); (M.I.N.M.)
- Eastern and Southern Africa Centers of Excellence for Infectious Diseases of Humans and Animals (SACIDS-ACE), Morogoro 3019, Tanzania; (L.E.G.M.); (C.S.); (B.Z.K.); (S.K.); (S.E.M.); (M.R.)
| |
Collapse
|
20
|
Sweileh WM. Bibliometric analysis of peer-reviewed literature on antimicrobial stewardship from 1990 to 2019. Global Health 2021; 17:1. [PMID: 33397377 PMCID: PMC7780390 DOI: 10.1186/s12992-020-00651-7] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The World Health Organization recommended the implementation of antimicrobial stewardship (AMS) in the clinical settings to minimize the development and spread of antimicrobial resistance (AMR). The current study aimed to assess global research activity on AMS as one measure for efforts dedicated to contain AMR. METHOD A bibliometric method was applied using Scopus. A validated search query was implemented. Bibliometric indicators and mapping were generated. The study period was from 1990 to 2019. The search query utilized the keywords "antimicrobial stewardship" or "antibiotic stewardship" in the titles or abstracts. In addition, documents with the term "restrict" or "restriction" if used with the terms "antimicrobial" or "antibiotic" were retrieved. RESULTS The search query returned 4402 documents. The keyword "antimicrobial stewardship" returned 2849 documents while the keyword "antibiotic stewardship" returned 1718 documents. The terms restrict/restriction and antimicrobial/antibiotics returned 209 documents. The number of publications and cumulative citations showed a steep and parallel increase in the last decade. The region of the Americas returned the most while the Eastern Mediterranean region returned the least. The United States (n = 1834, 41.7%) ranked first. Main research themes in the retrieved literature were the (1) impact of AMS on hospital length stay, (2) role of pharmacists, and (3) development of resistance of various pathogens. Clostridium difficile (n = 94) and Staphylococcus aureus (n = 76) were among the most frequently encountered author keywords. The Infection Control and Hospital Epidemiology journal ranked first (n = 245, 5.6%, h-index = 134) while documents published in the Clinical Infectious Diseases journal (h-index = 321) received the highest number of citations per document (70.7). At the institutional level, the US Centers for Disease Prevention and Control (n = 93, 2.1%) ranked first followed by the Imperial College London (n = 86, 2.0%). The main funding sponsors were the National Institute of Health. Pfizer, Merck, and Bayer pharmaceutical companies played a key role in funding AMS research. International research collaboration between developed (n = 3693, 83.9%) and developing countries (n = 759, 17.2%). CONCLUSION The fight against AMR is a global responsibility and implementation of AMS need to be carried out across the globe. International research collaboration between developing and developed countries should be encouraged.
Collapse
Affiliation(s)
- Waleed M Sweileh
- Department of Physiology, Pharmacology/Toxicology, Division of Biomedical Sciences, College of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine.
| |
Collapse
|
21
|
Imam T, Gibson JS, Foysal M, Das SB, Gupta SD, Fournié G, Hoque MA, Henning J. A Cross-Sectional Study of Antimicrobial Usage on Commercial Broiler and Layer Chicken Farms in Bangladesh. Front Vet Sci 2020; 7:576113. [PMID: 33392279 PMCID: PMC7772320 DOI: 10.3389/fvets.2020.576113] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 11/13/2020] [Indexed: 12/25/2022] Open
Abstract
Commercial poultry production is growing rapidly in Bangladesh to address the increasing demand for poultry meat and eggs. Challenges faced by producers include the occurrence of poultry diseases, which are usually treated or controlled by antimicrobials. A cross-sectional study was conducted on 57 commercial layer and 83 broiler farms in eight subdistricts of the Chattogram district, Bangladesh, to assess antimicrobial usage in relation to clinical signs observed in chicken flocks on these farms. Of the 140 commercial chicken farms, 137 (97.9%) used antimicrobials and 24 different antimicrobial agents were administered. On layer farms, the most commonly used antimicrobials were ciprofloxacin (37.0% of farms, 20/54), amoxicillin (33.3%, 18/54), and tiamulin (31.5%, 17/54), while on broiler farms, colistin (56.6%, 47/83), doxycycline (50.6%, 42/83), and neomycin (38.6%, 32/83) were most commonly administered. Only 15.3% (21/137) of farmers used antimicrobials exclusively for therapeutic purposes, while 84.7% (116/137) of farmers used them prophylactically, administering them either for prophylactic purposes only (22.6% of farmers, 31/137) or in combination with therapeutic purposes (62.1% of farmers, 85/137). About 83.3% (45/54) of layer farmers were selling eggs while antimicrobials were being administered compared to 36.1% (30/83) of the broiler farmers selling broiler chickens while administering antimicrobials. Overall, 75.2% (103/137) of farmers reported clinical signs for which they administered antimicrobials, while 24.8% (34/137) of farmers reported no clinical signs but still administered antimicrobials. Respiratory signs (71.8% of farms with clinical signs, 74/103) were most commonly reported, followed by enteric signs (32.0%, 33/103) and increased mortality (16.5%, 17/103). About 37.2% (51/137) of farmers bought antimicrobials exclusively from feed and chick traders, followed by veterinary medical stores (35.0%, 48/137). Purchasing antimicrobials from feed and chick traders was more common among broiler than layer farmers. It is recommended that commercial poultry farmers should keep records of antimicrobials used with dosage and duration of administration along with indication of use. This would allow farmers and veterinarians to review if antimicrobial usage had the desired effects and to evaluate the appropriate use of antimicrobial agents under an antimicrobial stewardship approach.
Collapse
Affiliation(s)
- Tasneem Imam
- School of Veterinary Science, The University of Queensland, Gatton, QLD, Australia
| | - Justine S Gibson
- School of Veterinary Science, The University of Queensland, Gatton, QLD, Australia
| | - Mohammad Foysal
- Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | - Shetu Bhusan Das
- Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | - Suman Das Gupta
- School of Veterinary Science, The University of Queensland, Gatton, QLD, Australia
| | - Guillaume Fournié
- Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, London, United Kingdom
| | - Md Ahasanul Hoque
- Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | - Joerg Henning
- School of Veterinary Science, The University of Queensland, Gatton, QLD, Australia
| |
Collapse
|
22
|
Wernli D, Jørgensen PS, Parmley EJ, Troell M, Majowicz S, Harbarth S, Léger A, Lambraki I, Graells T, Henriksson PJG, Carson C, Cousins M, Skoog Ståhlgren G, Mohan CV, Simpson AJH, Wieland B, Pedersen K, Schneider A, Chandy SJ, Wijayathilaka TP, Delamare-Deboutteville J, Vila J, Stålsby Lundborg C, Pittet D. Evidence for action: a One Health learning platform on interventions to tackle antimicrobial resistance. THE LANCET. INFECTIOUS DISEASES 2020; 20:e307-e311. [PMID: 32853549 PMCID: PMC7444982 DOI: 10.1016/s1473-3099(20)30392-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 04/20/2020] [Accepted: 04/23/2020] [Indexed: 12/16/2022]
Abstract
Improving evidence for action is crucial to tackle antimicrobial resistance. The number of interventions for antimicrobial resistance is increasing but current research has major limitations in terms of efforts, methods, scope, quality, and reporting. Moving the agenda forwards requires an improved understanding of the diversity of interventions, their feasibility and cost-benefit, the implementation factors that shape and underpin their effectiveness, and the ways in which individual interventions might interact synergistically or antagonistically to influence actions against antimicrobial resistance in different contexts. Within the efforts to strengthen the global governance of antimicrobial resistance, we advocate for the creation of an international One Health platform for online learning. The platform will synthesise the evidence for actions on antimicrobial resistance into a fully accessible database; generate new scientific insights into the design, implementation, evaluation, and reporting of the broad range of interventions relevant to addressing antimicrobial resistance; and ultimately contribute to the goal of building societal resilience to this central challenge of the 21st century.
Collapse
Affiliation(s)
- Didier Wernli
- Geneva Transformative Governance Lab, Global Studies Institute, University of Geneva, Geneva, Switzerland; School of Public Health, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong Special Administrative Region, China.
| | - Peter S Jørgensen
- Global Economic Dynamics and the Biosphere, The Royal Swedish Academy of Sciences, Stockholm, Sweden; Stockholm Resilience Centre, Stockholm University, Stockholm, Sweden
| | - E Jane Parmley
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Max Troell
- Beijer Institute of Ecological Economics, The Royal Swedish Academy of Sciences, Stockholm, Sweden; Stockholm Resilience Centre, Stockholm University, Stockholm, Sweden
| | - Shannon Majowicz
- School of Public Health and Health Systems, University of Waterloo, Waterloo, ON, Canada
| | - Stephan Harbarth
- Infection Control Program and World Health Organization Collaborating Centre on Patient Safety, University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Anaïs Léger
- Geneva Transformative Governance Lab, Global Studies Institute, University of Geneva, Geneva, Switzerland
| | - Irene Lambraki
- School of Public Health and Health Systems, University of Waterloo, Waterloo, ON, Canada
| | - Tiscar Graells
- Global Economic Dynamics and the Biosphere, The Royal Swedish Academy of Sciences, Stockholm, Sweden; Stockholm Resilience Centre, Stockholm University, Stockholm, Sweden
| | - Patrik J G Henriksson
- Beijer Institute of Ecological Economics, The Royal Swedish Academy of Sciences, Stockholm, Sweden; Stockholm Resilience Centre, Stockholm University, Stockholm, Sweden; WorldFish, Penang, Malaysia
| | - Carolee Carson
- Centre for Foodborne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Guelph, ON, Canada
| | - Melanie Cousins
- School of Public Health and Health Systems, University of Waterloo, Waterloo, ON, Canada
| | - Gunilla Skoog Ståhlgren
- Unit for Antibiotics and Infection Control, The Public Health Agency of Sweden, Solna, Sweden
| | | | - Andrew J H Simpson
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine Research Building, University of Oxford, Oxford, UK; Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Laos
| | | | | | - Annegret Schneider
- Department of Clinical, Educational and Health Psychology, University College London, London, UK
| | - Sujith J Chandy
- Department of Pharmacology and Clinical Pharmacology, Christian Medical College, Vellore, India
| | | | | | - Jordi Vila
- Department of Clinical Microbiology, Biomedical Diagnostic Center, Hospital Clinic School of Medicine and Barcelona Institute for Global Health, University of Barcelona, Barcelona, Spain
| | | | - Didier Pittet
- Infection Control Program and World Health Organization Collaborating Centre on Patient Safety, University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
23
|
Zhang H, Xu Y, Jia P, Zhu Y, Zhang G, Zhang J, Duan S, Kang W, Wang T, Jing R, Cheng J, Liu Y, Yang Q. Global trends of antimicrobial susceptibility to ceftaroline and ceftazidime-avibactam: a surveillance study from the ATLAS program (2012-2016). Antimicrob Resist Infect Control 2020; 9:166. [PMID: 33109242 PMCID: PMC7590473 DOI: 10.1186/s13756-020-00829-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 10/15/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND This study reports the global trends of antimicrobial susceptibility to ceftaroline and ceftazidime-avibactam using data from the Antimicrobial Testing Leadership and Surveillance (ATLAS) program between 2012 and 2016. METHODS For the 2012-2016 ATLAS program, 205 medical centers located in Africa-Middle East (n = 12), Asia-Pacific (n = 32), Europe (n = 94), Latin America (n = 26), North America (n = 31), and Oceania (n = 10) consecutively collected the clinical isolates. The minimum inhibitory concentrations (MICs) and in vitro susceptibilities to ceftaroline and ceftazidime-avibactam were assessed using the Clinical and Laboratory Standards Institute (CLSI) 2019and European Committee on Antimicrobial Susceptibility Testing (EUCAST) 2019 guidelines. RESULTS Between 2012 and 2016, 176,345 isolates were collected from around the globe and included in the analysis. Regarding Gram-negative bacteria, ceftazidime-avibactam demonstrated high susceptibility (> 90%) against Enterobacteriaceae and Pseudomonas aeruginosa, with increased antimicrobial activity observed from the addition of avibactam (4 mg/L) to ceftazidime. Regarding Gram-positive bacteria, ceftaroline showed > 90% susceptibility against Staphylococcus aureus, Streptococcus pneumoniae, α-and β-hemolytic Streptococcus. The antimicrobial susceptibilities to ceftaroline and ceftazidime-avibactam were mostly stable from 2012 to 2016, but the susceptibilities to ceftazidime-avibactam to carbapenem-resistant (CR) Klebsiella pneumonia (88.4-81.6%) and to CR-P. aeruginosa (89.6-72.7%) decreased over time. In terms of regional difference, the susceptibilities of methicillin-resistant S. aureus to ceftaroline in Asia and of CR-K. pneumonia to ceftazidime-avibactam in Asia/Africa-Middle East were lower compared with other regions, while the susceptibility of CR-P. aeruginosa to ceftazidime-avibactam in North America was higher. CONCLUSION The addition of avibactam improves the activity of ceftazidime against Enterobacteriaceae and P. aeruginosa. The global antimicrobial susceptibilities to ceftaroline and ceftazidime-avibactam were, in general, stable from 2012 to 2016, but a marked reduction in the susceptibilities of specific species and CR-P. aeruginosa to ceftazidime-avibactam was observed.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, 100730, China
| | - Yingchun Xu
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, 100730, China
| | - Peiyao Jia
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, 100730, China
| | - Ying Zhu
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, 100730, China
| | - Ge Zhang
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, 100730, China
| | - Jingjia Zhang
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, 100730, China
| | - Simeng Duan
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, 100730, China
| | - Wei Kang
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, 100730, China
| | - Tong Wang
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, 100730, China
| | - Ran Jing
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, 100730, China
| | - Jingwei Cheng
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, 100730, China
| | - Yali Liu
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, 100730, China
| | - Qiwen Yang
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, 100730, China.
| |
Collapse
|
24
|
Mutua F, Sharma G, Grace D, Bandyopadhyay S, Shome B, Lindahl J. A review of animal health and drug use practices in India, and their possible link to antimicrobial resistance. Antimicrob Resist Infect Control 2020; 9:103. [PMID: 32641109 PMCID: PMC7346624 DOI: 10.1186/s13756-020-00760-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 06/14/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Livestock production, particularly the dairy sector, is important for food and nutritional wellbeing of communities in India, it supports livelihoods of many farmers, and contributes to the economy of the country. India is a high consumer of antibiotics and antimicrobial resistant (AMR) bacteria are a major public health concern. OBJECTIVES Our objectives were to identify animal health and drug use practices that may contribute to emergence and spread of AMR in the country, review previous AMR- mitigation strategies, and discuss "theory of change" as an approach to informing the choice of interventions. METHODS We undertook a desk review of literature to identify practices with potential to contribute to emergence and spread of antimicrobial resistance in India. Searches were done in PubMed, Google scholar, and Google. Data were synthesized and discussed by themes. RESULTS Animal disease surveillance is less developed and infrastructure to support delivery of services is inadequate. Several groups are known to offer animal health services. The untrained "animal health workers" and para-veterinarians are more popular with farmers as they charge less for consultations (compared to veterinarians who are few and charge more). Over-the-counter access of antibiotics, without prescription, and direct marketing of drugs to farmers are common. Because of this, farmers are able to treat their animals and only consult when cases become non- responsive to treatment. Antibiotics are mostly used in management of mastitis cases. Drug withdrawal periods are rarely observed and occurrence of antibiotic- contaminated milk has been reported. Awareness on AMR is low and antimicrobial stewardship in livestock is yet to be developed. Initiatives such as the National programme for containment of AMR, National Action Plan on AMR, and the National Health policy point to government's commitment in addressing the problem of AMR in the country. CONCLUSION Several animal health and drug use practices, with potential to cause AMR, have been described, and their contribution can be discussed further by engaging stakeholders in a "theory of change" exercise. Interventions that address AMR from the animal health perspective should be promoted, and incentives to increase their adoption explored.
Collapse
Affiliation(s)
- Florence Mutua
- International Livestock Research Institute, P. O. Box 30709, Nairobi, 00100, Kenya.
| | - Garima Sharma
- International Livestock Research Institute, P. O. Box 30709, Nairobi, 00100, Kenya
- Zoonoses Science Centre, Uppsala University, P. O. Box 70790, SE 750 07, Uppsala, Sweden
| | - Delia Grace
- International Livestock Research Institute, P. O. Box 30709, Nairobi, 00100, Kenya
| | - Samiran Bandyopadhyay
- Indian Veterinary Research Institute, Eastern Regional Station, 37 Belgachia Road, Kolkata, 700 037, India
| | - Bibek Shome
- National Institute of Veterinary Epidemiology and Disease Informatics, Bangalore, India
| | - Johanna Lindahl
- International Livestock Research Institute, P. O. Box 30709, Nairobi, 00100, Kenya
- Zoonoses Science Centre, Uppsala University, P. O. Box 70790, SE 750 07, Uppsala, Sweden
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, P. O. Box 70790, SE 750 07, Uppsala, Sweden
| |
Collapse
|
25
|
Lima WG, Brito JCM, Cardoso BG, Cardoso VN, de Paiva MC, de Lima ME, Fernandes SOA. Rate of polymyxin resistance among Acinetobacter baumannii recovered from hospitalized patients: a systematic review and meta-analysis. Eur J Clin Microbiol Infect Dis 2020; 39:1427-1438. [PMID: 32533271 DOI: 10.1007/s10096-020-03876-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 03/23/2020] [Indexed: 01/08/2023]
Abstract
We conducted a systematic review and meta-analysis to determine the rate of polymyxin resistance among Acinetobacter baumannii isolates causing infection in hospitalized patients around the world during the period of 2010-2019. The systematic review was performed on September 1, 2019, using PubMed/MEDLINE, Scopus, and Web of Science; studies published after January 1, 2010, were selected. The data were summarized in tables, critically analyzed, and treated statistically using the RStudio® Software with Meta package and Metaprop Command. After applying exclusion factors, 41 relevant studies were selected from 969 articles identified on literature search. The overall rate of polymyxin-resistant A. baumannii (PRAB) related to hospitalized patients was estimated to be 13% (95% CI, 0.06-0.27), where a higher rate was observed in America (29%; 95% CI, 0.12-0.55), followed by Europe (13%; 95% CI, 0.02-0.52), and Asia (10%; 95% CI, 0.02-0.32). The extensive use of polymyxins on veterinary to control bacterial infection and growth promotion, as well as the resurgence in prescription and use of polymyxins in the clinics against carbapenem-resistant gram-negative bacteria, may have contributed to the increased incidence of PRAB. The findings of this meta-analysis revealed that the rate of PRAB recovered from hospitalized patients is distinctively high. Thus, action needs to be taken to develop strategies to combat the clinical incidence of PRAB-induced hospital infections.
Collapse
Affiliation(s)
- William Gustavo Lima
- Laboratório de Radioisótopos, Departamento de Análises Clinicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil. .,Laboratório de Diagnóstico Laboratorial e Microbiologia Clínica, Campus Centro-Oeste/Dona Lindu, Universidade Federal de São João del-Rei, Rua Sebastião Gonçalves Coelho, 400, Divinópolis, MG, 35501-293, Brazil.
| | - Júlio César Moreira Brito
- Fundação Ezequiel Dias (FUNED), Belo Horizonte, MG, Brazil.,Programa de Pós-Graduação em Inovação Tecnológica e Biofarmacêutica, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Bárbara Gatti Cardoso
- Laboratório de Radioisótopos, Departamento de Análises Clinicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Valbert Nascimento Cardoso
- Laboratório de Radioisótopos, Departamento de Análises Clinicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Magna Cristina de Paiva
- Laboratório de Diagnóstico Laboratorial e Microbiologia Clínica, Campus Centro-Oeste/Dona Lindu, Universidade Federal de São João del-Rei, Rua Sebastião Gonçalves Coelho, 400, Divinópolis, MG, 35501-293, Brazil
| | - Maria Elena de Lima
- Programa de Pós-Graduação em Inovação Tecnológica e Biofarmacêutica, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.,Instituto de Ensino e Pesquisa, Santa Casa-Belo Horizonte, Belo Horizonte, Brazil
| | - Simone Odília Antunes Fernandes
- Laboratório de Radioisótopos, Departamento de Análises Clinicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
26
|
Thornber K, Huso D, Rahman MM, Biswas H, Rahman MH, Brum E, Tyler CR. Raising awareness of antimicrobial resistance in rural aquaculture practice in Bangladesh through digital communications: a pilot study. Glob Health Action 2020; 12:1734735. [PMID: 32153258 PMCID: PMC7144293 DOI: 10.1080/16549716.2020.1734735] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
One of the key strategic objectives of the World Health Organisation’s global antimicrobial resistance (AMR) action plan is to improve public awareness and understanding of this issue. Very few AMR awareness campaigns have targeted the animal production sector, particularly in low- and middle-income countries (LMICs) where rural communities can be geographically difficult to access via traditional face-to-face community engagement methods. Aquaculture is a major food production industry in Bangladesh and across Asia, an area which poses a significant risk to global AMR dissemination. In this pilot study, we sought to investigate the potential for digital communication materials to rapidly and effectively communicate AMR messages to rural aquaculture farmers in Bangladesh. Working with stakeholders from the Bangladesh aquaculture industry, we developed a 4-minute digital animation designed specifically for this audience and assessed its capacity to engage and communicate AMR messages to farmers. We then conducted a small-scale social media campaign, to determine the potential for rapidly disseminating AMR awareness materials to a large audience across Bangladesh, where there is an extensive 4 G internet network and an ever-increasing proportion of the population (57% as of December 2019) have mobile internet access. Thirty-six farmers were surveyed: all of them liked this method of communication and 97% said it would change the way they use antibiotics in the future. Through the social media campaign, the animation received 9,100 views in the first 2 weeks alone. Although preliminary, these results demonstrate the huge potential for digital communication methods for the rapid and widespread communication of AMR awareness materials to rural aquaculture communities in Bangladesh and across Asia. Our results support the need for more research into the most appropriate and effective content of AMR awareness campaigns for aquaculture communities and question the need for explaining the science underlying AMR in such communication materials.
Collapse
Affiliation(s)
- Kelly Thornber
- Centre for Sustainable Aquaculture Futures, University of Exeter, Exeter, UK.,Biosciences, University of Exeter, Exeter, UK
| | - Doina Huso
- WorldFish Headquarters, Bayan Lepas, Penang, Malaysia
| | | | - Himangsu Biswas
- WorldFish Bangladesh, World Fish Bangladesh Office, Banani, Dhaka, Bangladesh
| | - Mohammad Habibur Rahman
- Emergency Centre for Transboundary Animal Diseases (ECTAD), Food and Agriculture Organization of the United Nations, Dhaka, Bangladesh
| | - Eric Brum
- Emergency Centre for Transboundary Animal Diseases (ECTAD), Food and Agriculture Organization of the United Nations, Dhaka, Bangladesh
| | - Charles R Tyler
- Centre for Sustainable Aquaculture Futures, University of Exeter, Exeter, UK.,Biosciences, University of Exeter, Exeter, UK
| |
Collapse
|
27
|
Rickard J. Bacterial Resistance in Surgical Infections in Low-Resource Settings. Surg Infect (Larchmt) 2020; 21:509-515. [PMID: 32380936 DOI: 10.1089/sur.2020.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: There is an alarming increase in antimicrobial resistance (AMR) globally, complicating management of surgical infections, especially in low-resource settings. Of particular concern for surgeons are third generation cephalosporin-resistant and carbapenem-resistant Enterobacteriaceae. Methods: The published literature was searched to identify the scope and causative factors of emerging bacterial resistance in low- and middle-income countries (LMICs). Results: Antimicrobial resistance impacts economics, human development, health equity, health security, and food production. Factors that contribute to AMR include use of antibiotic agents in livestock, antibiotic agents in wastewater and sewage, poor sanitation, and overprescribing or unregulated use of antibiotic agents. Because the factors influencing AMR globally are multi-factorial, solutions must be addressed at multiple levels. In LMICs, these can occur through national initiatives, at the facility level, or at the community level with coordination engaging government agencies, the private sector, civil service, and professional groups. Conclusions: There is a growing recognition of the need for national AMR prevention programs. Meanwhile, infection prevention and control programs and antimicrobial stewardship remain cornerstones of management at the facility level.
Collapse
Affiliation(s)
- Jennifer Rickard
- Department of Surgery, University of Minnesota Minneapolis, Minnesota, USA
| |
Collapse
|
28
|
Thornber K, Verner‐Jeffreys D, Hinchliffe S, Rahman MM, Bass D, Tyler CR. Evaluating antimicrobial resistance in the global shrimp industry. REVIEWS IN AQUACULTURE 2020; 12:966-986. [PMID: 32612676 PMCID: PMC7319481 DOI: 10.1111/raq.12367] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 06/05/2019] [Indexed: 05/13/2023]
Abstract
Antimicrobial resistance (AMR) is a growing threat to global public health, and the overuse of antibiotics in animals has been identified as a major risk factor. With high levels of international trade and direct connectivity to the aquatic environment, shrimp aquaculture may play a role in global AMR dissemination. The vast majority of shrimp production occurs in low- and middle-income countries, where antibiotic quality and usage is widely unregulated, and where the integration of aquaculture with family livelihoods offers many opportunities for human, animal and environmental bacteria to come into close contact. Furthermore, in shrimp growing areas, untreated waste is often directly eliminated into local water sources. These risks are very different to many other major internationally-traded aquaculture commodities, such as salmon, which is produced in higher income countries where there are greater levels of regulation and well-established management practices. Assessing the true scale of the risk of AMR dissemination in the shrimp industry is a considerable challenge, not least because obtaining reliable data on antibiotic usage is very difficult. Combating the risks associated with AMR dissemination is also challenging due to the increasing trend towards intensification and its associated disease burden, and because many farmers currently have no alternatives to antibiotics for preventing crop failure. In this review, we critically assess the potential risks the shrimp industry poses to AMR dissemination. We also discuss some of the possible risk mitigation strategies that could be considered by the shrimp industry as it strives for a more sustainable future in production.
Collapse
Affiliation(s)
- Kelly Thornber
- Centre for Sustainable Aquaculture FuturesUniversity of ExeterExeterUK
- BiosciencesUniversity of ExeterExeterUK
| | - David Verner‐Jeffreys
- Centre for Sustainable Aquaculture FuturesUniversity of ExeterExeterUK
- Centre for Environment, Fisheries and Aquaculture ScienceWeymouthUK
| | - Steve Hinchliffe
- Centre for Sustainable Aquaculture FuturesUniversity of ExeterExeterUK
- Department of GeographyUniversity of ExeterExeterUK
| | | | - David Bass
- Centre for Sustainable Aquaculture FuturesUniversity of ExeterExeterUK
- Centre for Environment, Fisheries and Aquaculture ScienceWeymouthUK
| | - Charles R. Tyler
- Centre for Sustainable Aquaculture FuturesUniversity of ExeterExeterUK
- BiosciencesUniversity of ExeterExeterUK
| |
Collapse
|
29
|
Angeles LF, Islam S, Aldstadt J, Saqeeb KN, Alam M, Khan MA, Johura FT, Ahmed SI, Aga DS. Retrospective suspect screening reveals previously ignored antibiotics, antifungal compounds, and metabolites in Bangladesh surface waters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 712:136285. [PMID: 31927441 DOI: 10.1016/j.scitotenv.2019.136285] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/20/2019] [Accepted: 12/20/2019] [Indexed: 05/10/2023]
Abstract
Densely populated countries in Asia, such as Bangladesh, are considered to be major contributors to the increased occurrence of global antimicrobial resistance (AMR). Several factors make low-and middle-income countries vulnerable to increased emergence and spread of AMR in the environment including limited regulations on antimicrobial drug use, high volume of antimicrobials used in human medicine and agricultural production, and poor wastewater management. Previous monitoring campaigns to investigate the presence of antibiotics in the aquatic environment have employed targeted analysis in which selected antibiotics are measured using liquid chromatography with tandem mass spectrometry (LC/MS/MS). However, this approach can miss several important contaminants that can contribute to the selective pressure that promotes maintenance and dissemination of antibiotic resistance genes (ARGs) in the environment. Nontarget analysis by suspect screening and reanalysis of stored digital data of previously ran samples can provide information on analytes that were formerly uncharacterized and may be chemicals of emerging concern (CECs). In this study, surface waters in both urban and rural sites in Bangladesh were collected and analyzed for the presence of antibiotic residues and other pharmaceuticals. Utilizing targeted analysis, the antibiotics with the highest concentrations detected were ciprofloxacin (1407 ng/L) and clarithromycin (909 ng/L). In addition, using high-resolution LC/MS/MS in the first ever application of retrospective analysis in samples from Bangladesh, additional antibiotics clindamycin, lincomycin, linezolid, metronidazole, moxifloxacin, nalidixic acid, and sulfapyridine were detected. Prevalence of amoxicillin transformation products in surface waters was also confirmed. In addition, medicinal and agricultural antifungal compounds were frequently found in Bangladeshi surface waters. This later finding - the near ubiquity of antifungal agents in environmental samples - is of particular concern, as it may be contributing to the alarming rise of multi-drug resistant fungal (e.g. Candida auris) disease recently seen in humans throughout the world.
Collapse
Affiliation(s)
- Luisa F Angeles
- Department of Chemistry, The State University of New York at Buffalo, Buffalo, NY, United States of America
| | - Shamim Islam
- Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, The State University of New York at Buffalo, Buffalo, NY, United States of America
| | - Jared Aldstadt
- Department of Geography, The State University of New York at Buffalo, Buffalo, NY, United States of America
| | | | - Munirul Alam
- International Centre for Diarrhoeal Disease Research, Bangladesh
| | - Md Alfazal Khan
- International Centre for Diarrhoeal Disease Research, Bangladesh
| | | | - Syed Imran Ahmed
- International Centre for Diarrhoeal Disease Research, Bangladesh
| | - Diana S Aga
- Department of Chemistry, The State University of New York at Buffalo, Buffalo, NY, United States of America.
| |
Collapse
|
30
|
Mitchell MEV, Alders R, Unger F, Nguyen-Viet H, Le TTH, Toribio JA. The challenges of investigating antimicrobial resistance in Vietnam - what benefits does a One Health approach offer the animal and human health sectors? BMC Public Health 2020; 20:213. [PMID: 32046713 PMCID: PMC7014660 DOI: 10.1186/s12889-020-8319-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 02/04/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The One Health concept promotes the enhancement of human, animal and ecosystem health through multi-sectorial governance support and policies to combat health security threats. In Vietnam, antimicrobial resistance (AMR) in animal and human health settings poses a significant threat, but one that could be minimised by adopting a One Health approach to AMR surveillance. To advance understanding of the willingness and abilities of the human and animal health sectors to undertake investigations of AMR with a One Health approach, we explored the perceptions and experiences of those tasked with investigating AMR in Vietnam, and the benefits a multi-sectorial approach offers. METHODS This study used qualitative methodology to provide key informants' perspectives from the animal and human health sectors. Two scenarios of food-borne AMR bacteria found within the pork value chain were used as case studies to investigate challenges and opportunities for improving collaboration across different stakeholders and to understand benefits offered by a One Health approach surveillance system. Fifteen semi-structured interviews with 11 participants from the animal and six from the human health sectors at the central level in Hanoi and the provincial level in Thai Nguyen were conducted. RESULTS Eight themes emerged from the transcripts of the interviews. From the participants perspectives on the benefits of a One Health approach: (1) Communication and multi-sectorial collaboration; (2) Building comprehensive knowledge; (3) Improving likelihood of success. Five themes emerged from participants views of the challenges to investigate AMR: (4) Diagnostic capacity; (5) Availability and access to antibiotics (6) Tracing ability within the Vietnamese food chain; (7) Personal benefits and (8) Managing the system. CONCLUSION The findings of this study suggest that there is potential to strengthen multi-sectorial collaboration between the animal and human health sectors by building upon existing informal networks. Based on these results, we recommend an inclusive approach to multi-sectorial communication supported by government network activities to facilitate partnerships and create cross-disciplinary awareness and participation. The themes relating to diagnostic capacity show that both sectors are facing challenges to undertake investigations in AMR. Our results indicate that the need to strengthen the animal health sector is more pronounced.
Collapse
Affiliation(s)
- Marisa E V Mitchell
- International Livestock Research Institute (ILRI), 298 Kim Ma, Ba Dinh, Hanoi, Vietnam.
- Faculty of Arts and Social Sciences, University of Sydney, Sydney, Australia.
- Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, Australia.
| | - Robyn Alders
- Centre on Global Health Security, Chatham House, Royal Institute of International Affairs, London, UK
- Development Policy Centre, Australian National University, Canberra, ACT, Australia
- Kyeema Foundation, Brisbane, Australia
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, USA
| | - Fred Unger
- International Livestock Research Institute (ILRI), 298 Kim Ma, Ba Dinh, Hanoi, Vietnam
| | - Hung Nguyen-Viet
- International Livestock Research Institute (ILRI), 298 Kim Ma, Ba Dinh, Hanoi, Vietnam
- Center for Public Health and Ecosystem Research, Hanoi University of Public Health, Hanoi, Vietnam
| | - Trang Thi Huyen Le
- International Livestock Research Institute (ILRI), 298 Kim Ma, Ba Dinh, Hanoi, Vietnam
| | - Jenny-Ann Toribio
- Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, Australia
- School of Veterinary Science, Faculty of Science, University of Sydney, Sydney, Australia
| |
Collapse
|
31
|
Wall S. Prevention of antibiotic resistance - an epidemiological scoping review to identify research categories and knowledge gaps. Glob Health Action 2019; 12:1756191. [PMID: 32475304 PMCID: PMC7782542 DOI: 10.1080/16549716.2020.1756191] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 04/10/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Antibiotics have become the cornerstone for the treatment of infectious diseases and contributed significantly to the dramatic global health development during the last 70 years. Millions of people now survive what were previously life-threatening infections. But antibiotics are finite resources and misuse has led to antibiotic resistance and reduced efficacy within just a few years of introduction of each new antibiotic. The World Health Organization rates antibiotic resistance as a 'global security threat' impacting on global health, food security and development and as important as terrorism and climate change. OBJECTIVES This paper explores, through a scoping review of the literature published during the past 20 years, the magnitude of peer-reviewed and grey literature that addresses antibiotic resistance and specifically the extent to which "prevention" has been at the core. The ultimate aim is to identify know-do gaps and strategies to prevent ABR. METHODS The review covers four main data bases, Web of Science, Medline, Scopus and Ebsco searched for 2000-17. The broader research field "antibiotic OR antimicrobial resistance" gave 431,335 hits. Narrowing the search criteria to "Prevention of antibiotic OR antimicrobial resistance" resulted in 1062 remaining titles. Of these, 622 were unique titles. After screening of the 622 titles for relevance, 420 abstracts were read, and of these 282 papers were read in full. An additional 53 references were identified from these papers, and 64 published during 2018 and 2019 were also included. The final scoping review database thus consisted of 399 papers. RESULTS A thematic structure emerged when categorizing articles in different subject areas, serving as a proxy for interest expressed from the research community. The research area has been an evolving one with about half of the 399 papers published during the past four years of the study period. Epidemiological modelling needs strengthening and there is a need for more and better surveillance systems, especially in lower- and middle-income countries. There is a wealth of information on the local and national uses and misuses of antibiotics. Educational and stewardship programmes basically lack evidence. Several studies address knowledge of the public and prescribers. The lessons for policy are conveyed in many alarming reports from national and international organizations. CONCLUSIONS Descriptive rather than theoretical ambitions have characterized the literature. If we want to better understand and explain the antibiotic situation from a behavioural perspective, the required approaches are lacking. A framework for an epidemiological causal web behind ABR is suggested and may serve to identify entry points for potential interventions.
Collapse
Affiliation(s)
- Stig Wall
- Department of Epidemiology and Global Health, Umeå University, Umeå, Sweden
| |
Collapse
|
32
|
Nguyen TK, Argudín MA, Deplano A, Nhung PH, Nguyen HA, Tulkens PM, Dodemont M, Van Bambeke F. Antibiotic Resistance, Biofilm Formation, and Intracellular Survival As Possible Determinants of Persistent or Recurrent Infections by Staphylococcus aureus in a Vietnamese Tertiary Hospital: Focus on Bacterial Response to Moxifloxacin. Microb Drug Resist 2019; 26:537-544. [PMID: 31825276 DOI: 10.1089/mdr.2019.0282] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Resistance is notoriously high in Asia but may not entirely explain therapeutic failures. Specific modes of bacterial life, such as biofilm or intracellular survival, may also contribute to the persistent and/or recurrent character of infections. Most Staphylococcus aureus isolates form biofilm and many survive and even thrive intracellularly. We collected 36 nonduplicate S. aureus isolates (including 18 methicillin-resistant S. aureus) from patients with clinical evidence of persistent or recurrent infections in a large tertiary Vietnamese hospital. We examined their antibiotic resistance profile (minimal inhibitory concentration determination) and clonal relatedness (spa and agr typing, pulsed field gel electrophoresis profiles). We then assessed the activity of moxifloxacin in both biofilms and infected phagocytes (moxifloxacin previously proved to be one of the most active antibiotics against reference strains in these models). spa-types t189 and t437 and agr group I were the most frequent. Among the 36 isolates, 30 were multidrug resistant but 30 were recovered from patients having received an active drug. All tested isolates produced biofilm and survived inside phagocytes. At its human Cmax, moxifloxacin was inactive on biofilms made by moxifloxacin-susceptible as well as moxifloxacin-resistant isolates. It caused only a modest intracellular colony-forming unit decrease against moxifloxacin-susceptible isolates and was inactive against those resistant to moxifloxacin. While our data confirm for this collection the high resistance levels and prevalence of endemic spa- or agr- types in Asia, they show that tolerance in both biofilm and phagocytes are correlated and markedly limit moxifloxacin activity, which goes in line with the suggested role of these modes of life in persistence or recurrence of infections.
Collapse
Affiliation(s)
- Tiep Khac Nguyen
- Pharmacologie Cellulaire et Moléculaire, Louvain Drug Research Institute, Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Maria A Argudín
- Centre National de Référence des Staphylocoques, Laboratoire Hospitalier Universitaire de Bruxelles (LHUB-ULB) Site Anderlecht, Hôpital Erasme-Cliniques Universitaires de Bruxelles, Université Libre de Bruxelles, Brussels, Belgium
| | - Ariane Deplano
- Centre National de Référence des Staphylocoques, Laboratoire Hospitalier Universitaire de Bruxelles (LHUB-ULB) Site Anderlecht, Hôpital Erasme-Cliniques Universitaires de Bruxelles, Université Libre de Bruxelles, Brussels, Belgium
| | - Pham Hong Nhung
- Department of Microbiology, Bach Mai Hospital, Hanoi, Vietnam
| | - Hoang Anh Nguyen
- The National Center for Drug Information and Adverse Drug Reactions Monitoring, Hanoi University of Pharmacy, Hanoi, Vietnam
| | - Paul M Tulkens
- Pharmacologie Cellulaire et Moléculaire, Louvain Drug Research Institute, Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Magali Dodemont
- Centre National de Référence des Staphylocoques, Laboratoire Hospitalier Universitaire de Bruxelles (LHUB-ULB) Site Anderlecht, Hôpital Erasme-Cliniques Universitaires de Bruxelles, Université Libre de Bruxelles, Brussels, Belgium
| | - Françoise Van Bambeke
- Pharmacologie Cellulaire et Moléculaire, Louvain Drug Research Institute, Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| |
Collapse
|
33
|
Plasmid-mediated quinolone resistance (PMQR) among Enterobacteriales in Latin America: a systematic review. Mol Biol Rep 2019; 47:1471-1483. [DOI: 10.1007/s11033-019-05220-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 11/30/2019] [Indexed: 01/22/2023]
|
34
|
Zhang Z, Chen M, Yu Y, Liu B, Liu Y. In Vitro Activity Of Ceftaroline And Comparators Against Staphylococcus aureus Isolates: Results From 6 Years Of The ATLAS Program (2012 To 2017). Infect Drug Resist 2019; 12:3349-3358. [PMID: 31749624 PMCID: PMC6818672 DOI: 10.2147/idr.s226649] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 10/08/2019] [Indexed: 12/26/2022] Open
Abstract
Background Ceftaroline is effective against methicillin-resistant Staphylococcus aureus (MRSA), but the resistance patterns still need to be defined. This study aimed to investigate the susceptibility of S. aureus to ceftaroline and comparator antimicrobial agents in patients hospitalized due to infection and to observe the patterns among different regions and over the years. Methods The Antimicrobial Testing Leadership And Surveillance (ATLAS) program includes medical centers located in five geographical regions (Europe, Asia-Pacific, South America, Africa-West Asia, and the United States). The isolates were collected from different specimens from patients hospitalized between 2012 and 2017 due to documented complicated skin and soft tissue infection, complicated intra-abdominal infection, complicated urinary tract infection, lower respiratory tract infection, and bloodstream infection. Results During the study period, 61,045 isolates were tested, including 35,837 MRSA isolates (58.7%) and 25,208 methicillin-sensitive S. aureus (MSSA) isolates (41.3%). For MRSA, the minimal inhibitory concentration (MIC)50, MIC90, and MIC range of ceftaroline were 0.5, 2, and 0.015–64 μg/mL. The proportion of susceptible MRSA strains was 89.3%. The proportion of resistant MRSA strains was 0.7%. The susceptibility of all S. aureus, MRSA, and MSSA strains to ceftaroline remained relatively constant from 2012 to 2017. The susceptibility to ceftaroline of S. aureus, MRSA, and MSSA strains from the United States, Europe, South America, and Africa/West Asia was high, while the susceptibility of the strains from Asia-Pacific was lower, especially for MRSA. Conclusion This study reveals the patterns of ceftaroline susceptibility of MRSA and MSSA around the world and over 6 years.
Collapse
Affiliation(s)
- Zhijie Zhang
- Department of Clinical Laboratory, Shengjing Hospital, Shenyang, People's Republic of China
| | - Meng Chen
- Department of Rheumatology, Affiliated Hospital of Hebei University, Baoding, People's Republic of China
| | - Ying Yu
- Medical Affairs Department, Pfizer Investment Co., Ltd, Shanghai, People's Republic of China
| | - Beini Liu
- Medical Affairs Department, Pfizer Investment Co., Ltd, Shanghai, People's Republic of China
| | - Yong Liu
- Department of Clinical Laboratory, Shengjing Hospital, Shenyang, People's Republic of China
| |
Collapse
|
35
|
Ahmad R, Zhu NJ, Leather AJM, Holmes A, Ferlie E. Strengthening strategic management approaches to address antimicrobial resistance in global human health: a scoping review. BMJ Glob Health 2019; 4:e001730. [PMID: 31565417 PMCID: PMC6747904 DOI: 10.1136/bmjgh-2019-001730] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/07/2019] [Accepted: 07/12/2019] [Indexed: 11/13/2022] Open
Abstract
Introduction The development and implementation of national strategic plans is a critical component towards successfully addressing antimicrobial resistance (AMR). This study aimed to review the scope and analytical depth of situation analyses conducted to address AMR in human health to inform the development and implementation of national strategic plans. Methods A systematic search of the literature was conducted to identify all studies since 2000, that have employed a situation analysis to address AMR. The included studies are analysed against frameworks for strategic analysis, primarily the PESTELI (Political, Economic, Sociological, Technological, Ecological, Legislative, Industry) framework, to understand the depth, scope and utility of current published approaches. Results 10 studies were included in the final review ranging from single country (6) to regional-level multicountry studies (4). 8 studies carried out documentary review, and 3 of these also included stakeholder interviews. 2 studies were based on expert opinion with no data collection. No study employed the PESTELI framework. Most studies (9) included analysis of the political domain and 1 study included 6 domains of the framework. Technological and industry analyses is a notable gap. Facilitators and inhibitors within the political and legislative domains were the most frequently reported. No facilitators were reported in the economic or industry domains but featured inhibiting factors including: lack of ring-fenced funding for surveillance, perverse financial incentives, cost-shifting to patients; joint-stock drug company ownership complicating regulations. Conclusion The PESTELI framework provides further opportunities to combat AMR using a systematic, strategic management approach, rather than a retrospective view. Future analysis of existing quantitative data with interviews of key strategic and operational stakeholders is needed to provide critical insights about where implementation efforts should be focussed, and also how to build contingency at the strategic level for agile responses to macro-level environmental influences.
Collapse
Affiliation(s)
- Raheelah Ahmad
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance at Imperial College London, Imperial College London, London, UK.,Health Group, Management Department, Imperial College Business School, Imperial College London, London, UK
| | - Nina Jiayue Zhu
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance at Imperial College London, Imperial College London, London, UK
| | - Andrew J M Leather
- King's Centre for Global Health and Health Partnerships, King's College London, London, UK
| | - Alison Holmes
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance at Imperial College London, Imperial College London, London, UK
| | - Ewan Ferlie
- King's Business School, King's College London, London, UK
| | | |
Collapse
|
36
|
Joshi RD, Zervos M, Kaljee LM, Shrestha B, Maki G, Prentiss T, Bajracharya D, Karki K, Joshi N, Rai SM. Evaluation of a Hospital-Based Post-Prescription Review and Feedback Pilot in Kathmandu, Nepal. Am J Trop Med Hyg 2019; 101:923-928. [PMID: 31392949 DOI: 10.4269/ajtmh.18-0724] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Capacity building is needed in low- and middle-income countries (LMICs) to combat antimicrobial resistance (AMR). Stewardship programs such as post-prescription review and feedback (PPRF) are important components in addressing AMR. Little data are available regarding effectiveness of PPRF programs in LMIC settings. An adapted PPRF program was implemented in the medicine, surgery, and obstetrics/gynecology wards in a 125-bed hospital in Kathmandu. Seven "physician champions" were trained. Baseline and post-intervention patient chart data were analyzed for changes in days of therapy (DOT) and mean number of course days for intravenous and oral antibiotics, and for specific study antibiotics. Charts were independently reviewed to determine justification for prescribed antibiotics. Physician champions documented recommendations. Days of therapy per 1,000 patient-days for courses of aminoglycoside (P < 0.001) and cephalosporin (P < 0.001) decreased. In the medicine ward, data indicate increased justified use of antibiotics (P = 0.02), de-escalation (P < 0.001), rational use of antibiotics (P < 0.01), and conforming to guidelines in the first 72 hours (P = 0.02), and for definitive therapy (P < 0.001). Physician champions documented 437 patient chart reviews and made 138 recommendations; 78.3% of recommendations were followed by the attending physician. Post-prescription review and feedback can be successfully implemented in LMIC hospitals, which often lack infectious disease specialists. Future program adaptation and training will focus on identifying additional stewardship programming and support mechanisms to optimize antibiotic use in LMICs.
Collapse
Affiliation(s)
| | - Marcus Zervos
- Henry Ford Health System, Division of Infectious Disease, Detroit, Michigan
| | | | - Basudha Shrestha
- Laboratory and Microbiology Division, Kathmandu Model Hospital, Kathmandu, Nepal
| | - Gina Maki
- Henry Ford Health System, Division of Infectious Disease, Detroit, Michigan
| | | | | | | | - Nilesh Joshi
- Group for Technical Assistance, Kathmandu, Nepal
| | - Shankar Man Rai
- Kirtipur Hospital, Administration, Reconstructive Surgery and Burn ICU, Kathmandu, Nepal
| |
Collapse
|
37
|
Mohsin M, Van Boeckel TP, Saleemi MK, Umair M, Naseem MN, He C, Khan A, Laxminarayan R. Excessive use of medically important antimicrobials in food animals in Pakistan: a five-year surveillance survey. Glob Health Action 2019; 12:1697541. [PMID: 31795863 PMCID: PMC6896466 DOI: 10.1080/16549716.2019.1697541] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 11/20/2019] [Indexed: 01/07/2023] Open
Abstract
Demand for poultry meat is rising in low- and middle-countries, driving the expansion of large commercial farms where antimicrobials are used as surrogates for hygiene, good nutrition. This routine use of antimicrobials in animal production facilitates the emergence and spread of antibiotic-resistant pathogens. Despite potentially serious consequences for the animal industry, few studies have documented trends in antimicrobial use (AMU) at the farm-level in low- and middle-income countries. The objective of this study was to estimate AMU in a broiler chicken farm in Pakistan over a five-year period and to extrapolate national AMU in commercial broiler farming. Between 2013 and 2017, we monitored AMU in 30 flocks from a commercial broiler farm in Punjab, the most populous province of Pakistan. The amount of antimicrobials administered was calculated in milligram/population unit of the final flock weight (mg/fPU) and in used daily dose (UDD). The annual on-farm antimicrobial use was 250.84 mg of active ingredient per kilogram of the final flock weight. This consumption intensity exceeds the amount of antimicrobial used per kilogram of chicken of all countries in the world except China. Measured in mg per kg of final flock weight or population unit (fPU), medically important drugs such as colistin (31.39 mg/fPU), tylosin (41.71 mg/fPU), doxycycline (81.81 mg/fPU), and enrofloxacin (26.19 mg/fPU) were the most frequently used antimicrobials for prophylactic or therapeutic use. Lincomycin was the most frequently used antimicrobial used in-feed (29.09 mg/fPU). Our findings suggest that the annual consumption of antimicrobials in the broiler sector in Pakistan could be as high as 568 tons. This alarmingly high consumption estimate is the first baseline study on antimicrobial use in animals in Pakistan. Our findings call for immediate actions to reduce antimicrobial use in Pakistan, and countries with comparable farming practices.
Collapse
Affiliation(s)
- Mashkoor Mohsin
- Institute of Microbiology, University of Agriculture, Faisalabad, Pakistan
| | - Thomas P. Van Boeckel
- Institute for Environmental Decisions, ETH Zurich, Zurich, Switzerland
- Center for Disease Dynamics, Economics & Policy, Washington, DC, USA
| | | | - Muhammad Umair
- Institute of Microbiology, University of Agriculture, Faisalabad, Pakistan
| | | | - Cheng He
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Ahrar Khan
- Shandong Vocational Animal Science and Veterinary College, Weifang, China
| | - Ramanan Laxminarayan
- Center for Disease Dynamics, Economics & Policy, Washington, DC, USA
- Princeton Environment Institute, Princeton, NJ, USA
| |
Collapse
|