1
|
Hasan R, Bhuia MS, Chowdhury R, Saha S, Khan MA, Afroz M, Ansari SA, Ansari IA, Melo Coutinho HD, Islam MT. Abietic acid antagonizes the anti-inflammatory effects of celecoxib and ketoprofen: Preclinical assessment and molecular dynamic simulations. Comput Biol Med 2024; 183:109298. [PMID: 39454522 DOI: 10.1016/j.compbiomed.2024.109298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/10/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024]
Abstract
The present work is designed to explore the anti-inflammatory properties of AA and its modulatory effects on celecoxib (CEL) and ketoprofen (KET) through in vitro, ex vivo, in vivo, and in silico approaches. Different concentrations of AA were utilized to evaluate the membrane-stabilizing potential via egg albumin and the Human Red Blood Cell (HRBC) denaturation model. In the animal model, formalin (50 μL) was injected into the right hind paw of young chicks to induce inflammation. AA was administered at 20 and 40 mg/kg (p.o.) to the experimental animals. We used CEL and KET as positive controls. The vehicle was provided as a control group. Two combinations of AA with CEL and KET were also investigated in all tests to assess the modulatory activity of AA. In addition, in silico investigation was used for predictions about drug-likeness, pharmacokinetics, and toxicity of the selected chemical compounds, and the study also evaluated the binding affinity, visualization, and stability of ligand-receptor interactions through molecular dynamic (MD) simulation. Results manifested that AA concentration-dependently significantly inhibited the egg albumin denaturation (IC50: 27.53 ± 0.88 μg/ml) and breakdown of HRBC (IC50: 15.69 ± 0.75 μg/ml), indicating the membrane stabilizing potential compared to the control group. AA also significantly (p < 0.05) lessened the frequency of licking and alleviated the paw edema in a dose-dependent manner in an in vivo test. However, AA reduced the activity of CEL and KET in combination treatment. AA showed good pharmacokinetic characteristics to be considered as a therapeutic candidate. Additionally, the in silico study displayed that AA demonstrated a relatively higher docking score of -9.1 kcal/mol with the cyclooxygenase-2 (COX-2) enzyme and stable binding in MD simulation. Whereas the standard ligand (CEL) expressed the highest binding value of -9.2 kcal/mol to the COX-2.
Collapse
Affiliation(s)
- Rubel Hasan
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh; BioLuster Research Center Ltd., Gopalgaj (Dhaka), 8100, Bangladesh.
| | - Md Shimul Bhuia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh; BioLuster Research Center Ltd., Gopalgaj (Dhaka), 8100, Bangladesh.
| | - Raihan Chowdhury
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh; BioLuster Research Center Ltd., Gopalgaj (Dhaka), 8100, Bangladesh.
| | - Sajib Saha
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh; BioLuster Research Center Ltd., Gopalgaj (Dhaka), 8100, Bangladesh.
| | - Muhammad Ali Khan
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh.
| | - Meher Afroz
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh; BioLuster Research Center Ltd., Gopalgaj (Dhaka), 8100, Bangladesh.
| | - Siddique Akber Ansari
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia.
| | - Irfan Aamer Ansari
- Department of Drug Science and Technology, University of Turin, Turin, 10124, Italy.
| | | | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh; BioLuster Research Center Ltd., Gopalgaj (Dhaka), 8100, Bangladesh.
| |
Collapse
|
2
|
Saravanan J, Nair A, Krishna SS, Viswanad V. Nanomaterials in biology and medicine: a new perspective on its toxicity and applications. Drug Chem Toxicol 2024; 47:767-784. [PMID: 38682270 DOI: 10.1080/01480545.2024.2340002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 03/31/2024] [Accepted: 04/02/2024] [Indexed: 05/01/2024]
Abstract
Nanotechnology offers excellent prospects for application in biology and medicine. It is used for detecting biological molecules, imaging, and as therapeutic agents. Due to nano-size (1-100 nm) and high surface-to-volume ratio, nanomaterials possess highly specific and distinct characteristics in the biological environment. Recently, the use of nanomaterials as sensors, theranostic, and drug delivery agents has become popular. The safety of these materials is being questioned because of their biological toxicity, such as inflammatory responses, cardiotoxicity, cytotoxicity, inhalation problems, etc., which can have a negative impact on the environment. This review paper focuses primarily on the toxicological effects of nanomaterials along with the mechanisms involved in cell interactions and the generation of reactive oxygen species by nanoparticles, which is the fundamental source of nanotoxicity. We also emphasize the greener synthesis of nanomaterials in biomedicine, as it is non-hazardous, feasible, and economical. The review articles shed light on the complexities of nanotoxicology in biosystems and the environment.
Collapse
Affiliation(s)
- Janani Saravanan
- Department of Pharmaceutics, Amrita School of Pharmacy, AIMS Health Science Campus, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Ayushi Nair
- Department of Pharmaceutics, Amrita School of Pharmacy, AIMS Health Science Campus, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Sivadas Swathi Krishna
- Department of Pharmaceutics, Amrita School of Pharmacy, AIMS Health Science Campus, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Vidya Viswanad
- Department of Pharmaceutics, Amrita School of Pharmacy, AIMS Health Science Campus, Amrita Vishwa Vidyapeetham, Kochi, India
| |
Collapse
|
3
|
Pramanik S, Aggarwal A, Kadi A, Alhomrani M, Alamri AS, Alsanie WF, Koul K, Deepak A, Bellucci S. Chitosan alchemy: transforming tissue engineering and wound healing. RSC Adv 2024; 14:19219-19256. [PMID: 38887635 PMCID: PMC11180996 DOI: 10.1039/d4ra01594k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/04/2024] [Indexed: 06/20/2024] Open
Abstract
Chitosan, a biopolymer acquired from chitin, has emerged as a versatile and favorable material in the domain of tissue engineering and wound healing. Its biocompatibility, biodegradability, and antimicrobial characteristics make it a suitable candidate for these applications. In tissue engineering, chitosan-based formulations have garnered substantial attention as they have the ability to mimic the extracellular matrix, furnishing an optimal microenvironment for cell adhesion, proliferation, and differentiation. In the realm of wound healing, chitosan-based dressings have revealed exceptional characteristics. They maintain a moist wound environment, expedite wound closure, and prevent infections. These formulations provide controlled release mechanisms, assuring sustained delivery of bioactive molecules to the wound area. Chitosan's immunomodulatory properties have also been investigated to govern the inflammatory reaction during wound healing, fostering a balanced healing procedure. In summary, recent progress in chitosan-based formulations portrays a substantial stride in tissue engineering and wound healing. These innovative approaches hold great promise for enhancing patient outcomes, diminishing healing times, and minimizing complications in clinical settings. Continued research and development in this field are anticipated to lead to even more sophisticated chitosan-based formulations for tissue repair and wound management. The integration of chitosan with emergent technologies emphasizes its potential as a cornerstone in the future of regenerative medicine and wound care. Initially, this review provides an outline of sources and unique properties of chitosan, followed by recent signs of progress in chitosan-based formulations for tissue engineering and wound healing, underscoring their potential and innovative strategies.
Collapse
Affiliation(s)
- Sheersha Pramanik
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras Chennai 600036 Tamil Nadu India
| | - Akanksha Aggarwal
- Department of Biotechnology, Indian Institute of Technology Hyderabad Kandi Sangareddy Telangana 502284 India
- Delhi Institute of Pharmaceutical Sciences and Research, Delhi Pharmaceutical Sciences and Research University New Delhi 110017 India
| | - Ammar Kadi
- Department of Food and Biotechnology, South Ural State University Chelyabinsk 454080 Russia
| | - Majid Alhomrani
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University Taif Saudi Arabia
- Research Centre for Health Sciences, Deanship of Graduate Studies and Scientific Research, Taif University Taif Saudi Arabia
| | - Abdulhakeem S Alamri
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University Taif Saudi Arabia
- Research Centre for Health Sciences, Deanship of Graduate Studies and Scientific Research, Taif University Taif Saudi Arabia
| | - Walaa F Alsanie
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University Taif Saudi Arabia
- Research Centre for Health Sciences, Deanship of Graduate Studies and Scientific Research, Taif University Taif Saudi Arabia
| | - Kanchan Koul
- Department of Physiotherapy, Jain School of Sports Education and Research, Jain University Bangalore Karnataka 560069 India
| | - A Deepak
- Saveetha Institute of Medical and Technical Sciences, Saveetha School of Engineering Chennai Tamil Nadu 600128 India
| | - Stefano Bellucci
- 7INFN-Laboratori Nazionali di Frascati Via E. Fermi 54 00044 Frascati Italy
| |
Collapse
|
4
|
Wang Q, Dong X, Castañeda-Reyes ED, Wu Y, Zhang S, Wu Z, Wang Z, Dai L, Xu B, Xu F. Chitosan and sodium alginate nanocarrier system: Controlling the release of rapeseed-derived peptides and improving their therapeutic efficiency of anti-diabetes. Int J Biol Macromol 2024; 265:130713. [PMID: 38471612 DOI: 10.1016/j.ijbiomac.2024.130713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/06/2024] [Accepted: 03/05/2024] [Indexed: 03/14/2024]
Abstract
Rapeseed-derived peptides (RPPs) can maintain the homeostasis of human blood glucose by inhibiting Dipeptidyl Peptidase-IV (DPP-IV) and activating the calcium-sensing receptor (CaSR). However, these peptides are susceptible to hydrolysis in the gastrointestinal tract. To enhance the therapeutic potential of these peptides, we developed a chitosan/sodium alginate-based nanocarrier to encapsulate two RPP variants, rapeseed-derived cruciferin peptide (RCPP) and rapeseed-derived napin peptide (RNPP). A convenient three-channel device was employed to prepare chitosan (CS)/sodium alginate (ALG)-RPPs nanoparticles (CS/ALG-RPPs) at a ratio of 1:3:1 for CS, ALG, and RPPs. CS/ALG-RPPs possessed optimal encapsulation efficiencies of 90.7 % (CS/ALG-RNPP) and 91.4 % (CS/ALG-RCPP), with loading capacities of 15.38 % (CS/ALG-RNPP) and 16.63 % (CS/ALG-RCPP) at the specified ratios. The electrostatic association between CS and ALG was corroborated by zeta potential and near infrared analysis. 13C NMR analysis verified successful RPPs loading, with CS/ALG-RNPP displaying superior stability. Pharmacokinetics showed that both nanoparticles were sustained release and transported irregularly (0.43 < n < 0.85). Compared with the control group, CS/ALG-RPPs exhibited significantly increased glucose tolerance, serum GLP-1 (Glucagon-like peptide 1) content, and CaSR expression which play pivotal roles in glucose homeostasis (*p < 0.05). These findings proposed that CS/ALG-RPPs hold promise in achieving sustained release within the intestinal epithelium, thereby augmenting the therapeutic efficacy of targeted peptides.
Collapse
Affiliation(s)
- Qianqian Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230601, People's Republic of China; Engineering Research Center of Bioprocess, Ministry of Education, Hefei University of Technology, Hefei, 230601, People's Republic of China
| | - Xinran Dong
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230601, People's Republic of China; Engineering Research Center of Bioprocess, Ministry of Education, Hefei University of Technology, Hefei, 230601, People's Republic of China
| | - Erick Damian Castañeda-Reyes
- Department of Food Science and Human Nutrition, Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Ying Wu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230601, People's Republic of China; Engineering Research Center of Bioprocess, Ministry of Education, Hefei University of Technology, Hefei, 230601, People's Republic of China
| | - Siling Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230601, People's Republic of China; Engineering Research Center of Bioprocess, Ministry of Education, Hefei University of Technology, Hefei, 230601, People's Republic of China
| | - Zeyu Wu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230601, People's Republic of China; Engineering Research Center of Bioprocess, Ministry of Education, Hefei University of Technology, Hefei, 230601, People's Republic of China
| | - Zhaoming Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230601, People's Republic of China; Engineering Research Center of Bioprocess, Ministry of Education, Hefei University of Technology, Hefei, 230601, People's Republic of China
| | - Lei Dai
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Baocai Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230601, People's Republic of China; Engineering Research Center of Bioprocess, Ministry of Education, Hefei University of Technology, Hefei, 230601, People's Republic of China
| | - Feiran Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230601, People's Republic of China; Engineering Research Center of Bioprocess, Ministry of Education, Hefei University of Technology, Hefei, 230601, People's Republic of China.
| |
Collapse
|
5
|
Nair R, Paul P, Maji I, Gupta U, Mahajan S, Aalhate M, Guru SK, Singh PK. Exploring the current landscape of chitosan-based hybrid nanoplatforms as cancer theragnostic. Carbohydr Polym 2024; 326:121644. [PMID: 38142105 DOI: 10.1016/j.carbpol.2023.121644] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 11/24/2023] [Indexed: 12/25/2023]
Abstract
In the last decade, investigators have put significant efforts to develop several diagnostic and therapeutic strategies against cancer. Many novel nanoplatforms, including lipidic, metallic, and inorganic nanocarriers, have shown massive potential at preclinical and clinical stages for cancer diagnosis and treatment. Each of these nano-systems is distinct with its own benefits and limitations. The need to overcome the limitations of single-component nano-systems, improve their morphological and biological features, and achieve multiple functionalities has resulted in the emergence of hybrid nanoparticles (HNPs). These HNPs integrate multicomponent nano-systems with diagnostic and therapeutic functions into a single nano-system serving as promising nanotools for cancer theragnostic applications. Chitosan (CS) being a mucoadhesive, biodegradable, and biocompatible biopolymer, has emerged as an essential element for the development of HNPs offering several advantages over conventional nanoparticles including pH-dependent drug delivery, sustained drug release, and enhanced nanoparticle stability. In addition, the free protonable amino groups in the CS backbone offer flexibility to its structure, making it easy for the modification and functionalization of CS, resulting in better drug targetability and cell uptake. This review discusses in detail the existing different oncology-directed CS-based HNPs including their morphological characteristics, in-vitro/in-vivo outcomes, toxicity concerns, hurdles in clinical translation, and future prospects.
Collapse
Affiliation(s)
- Rahul Nair
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Priti Paul
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Indrani Maji
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Ujala Gupta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Srushti Mahajan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Mayur Aalhate
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Santosh Kumar Guru
- Department of Biological Science, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India.
| |
Collapse
|
6
|
Dourado D, Silva Medeiros T, do Nascimento Alencar É, Matos Sales E, Formiga FR. Curcumin-loaded nanostructured systems for treatment of leishmaniasis: a review. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:37-50. [PMID: 38213574 PMCID: PMC10777206 DOI: 10.3762/bjnano.15.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/04/2023] [Indexed: 01/13/2024]
Abstract
Leishmaniasis is a neglected tropical disease that has affected more than 350 million people worldwide and can manifest itself in three different forms: cutaneous, mucocutaneous, or visceral. Furthermore, the current treatment options have drawbacks which compromise efficacy and patient compliance. To face this global health concern, new alternatives for the treatment of leishmaniasis have been explored. Curcumin, a polyphenol obtained from the rhizome of turmeric, exhibits leishmanicidal activity against different species of Leishmania spp. Although its mechanism of action has not yet been fully elucidated, its leishmanicidal potential may be associated with its antioxidant and anti-inflammatory properties. However, it has limitations that compromise its clinical use. Conversely, nanotechnology has been used as a tool for solving biopharmaceutical challenges associated with drugs, such as curcumin. From a drug delivery standpoint, nanocarriers (1-1000 nm) can improve stability, increase solubility, promote intracellular delivery, and increase biological activity. Thus, this review offers a deep look into curcumin-loaded nanocarriers intended for the treatment of leishmaniasis.
Collapse
Affiliation(s)
- Douglas Dourado
- Department of Immunology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (FIOCRUZ), 50670-420 Recife, PE, Brazil
| | - Thayse Silva Medeiros
- Department of Pharmacy, Federal University of Rio Grande do Norte (UFRN), 59010180, Natal, RN, Brazil
| | - Éverton do Nascimento Alencar
- College of Pharmaceutical Sciences, Food and Nutrition. Federal University of Mato Grosso do Sul (UFMS), 79070-900, Campo Grande, MS, Brazil
| | | | - Fábio Rocha Formiga
- Department of Immunology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (FIOCRUZ), 50670-420 Recife, PE, Brazil
- Faculty of Medical Sciences (FCM), University of Pernambuco (UPE), 50100-130, Recife, PE, Brazil
| |
Collapse
|
7
|
Alwahsh W, Sahudin S, Alkhatib H, Bostanudin MF, Alwahsh M. Chitosan-Based Nanocarriers for Pulmonary and Intranasal Drug Delivery Systems: A Comprehensive Overview of their Applications. Curr Drug Targets 2024; 25:492-511. [PMID: 38676513 DOI: 10.2174/0113894501301747240417103321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/06/2024] [Accepted: 03/14/2024] [Indexed: 04/29/2024]
Abstract
The optimization of respiratory health is important, and one avenue for achieving this is through the application of both Pulmonary Drug Delivery System (PDDS) and Intranasal Delivery (IND). PDDS offers immediate delivery of medication to the respiratory system, providing advantages, such as sustained regional drug concentration, tunable drug release, extended duration of action, and enhanced patient compliance. IND, renowned for its non-invasive nature and swift onset of action, presents a promising path for advancement. Modern PDDS and IND utilize various polymers, among which chitosan (CS) stands out. CS is a biocompatible and biodegradable polysaccharide with unique physicochemical properties, making it well-suited for medical and pharmaceutical applications. The multiple positively charged amino groups present in CS facilitate its interaction with negatively charged mucous membranes, allowing CS to adsorb easily onto the mucosal surface. In addition, CS-based nanocarriers have been an important topic of research. Polymeric Nanoparticles (NPs), liposomes, dendrimers, microspheres, nanoemulsions, Solid Lipid Nanoparticles (SLNs), carbon nanotubes, and modified effective targeting systems compete as important ways of increasing pulmonary drug delivery with chitosan. This review covers the latest findings on CS-based nanocarriers and their applications.
Collapse
Affiliation(s)
- Wasan Alwahsh
- Department of Pharmaceutics, Faculty of Pharmacy, Universiti Teknologi MARA Cawangan Selangor, Puncak Alam Campus, 42300, Selangor, Malaysia
| | - Shariza Sahudin
- Department of Pharmaceutics, Faculty of Pharmacy, Universiti Teknologi MARA Cawangan Selangor, Puncak Alam Campus, 42300, Selangor, Malaysia
- Atta-Ur-Rahman Institute of Natural Products Discovery, Universiti Teknologi MARA, Puncak Alam Campus, 42300, Selangor, Malaysia
| | - Hatim Alkhatib
- Department of Pharmaceutics and Pharmaceutical Technology, School of Pharmacy, The University of Jordan, Amman, 11942, Jordan
| | | | - Mohammad Alwahsh
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman, 11733, Jordan
| |
Collapse
|
8
|
Shalaby ES, Aboutaleb S, Ismail SA, Yassen NN, Sedik AA. Chitosan tamarind-based nanoparticles as a promising approach for topical application of curcumin intended for burn healing: in vitro and in vivo study. J Drug Target 2023; 31:1081-1097. [PMID: 37886815 DOI: 10.1080/1061186x.2023.2276662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/21/2023] [Indexed: 10/28/2023]
Abstract
One of the most prevalent worldwide problems that affect all ages and genders is skin burn. The goal of our study was to assess the ability of curcumin nanoparticles to cure a rat burn model. Three formulations were selected after several tests were performed including investigation of encapsulation efficiency, particle size and zeta potential measurements. In vitro release was achieved on the three selected formulations. The effectiveness of the chosen formulation for healing was evaluated. The induced burn wound was smeared, starting just after excision, once daily with curcumin nanoparticles for 18 days. Our findings revealed that curcumin nanoparticles improved the burn healing potential by augmenting the skin regeneration indices as evidenced by enhancing the new production of hyaluronic acid and collagen type I. Additionally, curcumin nanoparticles could increase levels of vascular endothelial growth factor and alpha smooth muscle activity while drastically reducing the skin's tumour necrosis factor content, revealing a significant potential for burn healing process that is also reflected in the histopathological and immunohistochemical studies. Finally, our results demonstrated that curcumin nanoparticles revealed a significant potential for burn healing than curcumin alone due to its potent antimicrobial, antioxidant and anti-inflammatory properties.
Collapse
Affiliation(s)
- Eman S Shalaby
- Pharmaceutical Technology Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Cairo, Egypt
| | - Sally Aboutaleb
- Pharmaceutical Technology Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Cairo, Egypt
| | - Shaymaa A Ismail
- Department of Chemistry of Natural and Microbial Products, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Cairo, Egypt
| | - Noha N Yassen
- Pathology Department, National Research Centre, Cairo, Egypt
| | - Ahmed A Sedik
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre, Cairo, Egypt
| |
Collapse
|
9
|
Alshangiti DM, Ghobashy MM, Alqahtani HA, El-Damhougy TK, Madani M. The energetic and physical concept of gold nanorod-dependent fluorescence in cancer treatment and development of new photonic compounds|review. RSC Adv 2023; 13:32223-32265. [PMID: 37928851 PMCID: PMC10620648 DOI: 10.1039/d3ra05487j] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/10/2023] [Indexed: 11/07/2023] Open
Abstract
The optical features of gold nanorods (GNR) may be precisely controlled by manipulating their size, shape, and aspect ratio. This review explores the impact of these parameters on the optical tuning of (GNR). By altering the experimental conditions, like the addition of silver ions during the seed-mediated growth process, the aspect ratio of (GNR) may be regulated. The shape is trans from spherical to rod-like structures resulting in noticeable changes in the nanoparticles surface plasmons resonance (SPR) bands. The longitudinal SPR band, associated with electron oscillations along the long axis, exhibits a pronounced red shift into the (NIR) region as the aspect ratio increases. In contrast, the transverse SPR band remains relate unchanged. Using computational methods like the discrete dipole approximation (DDA) allows for analyzing absorption, scattering, and total extinction features of gold (G) nanoparticles. Studies have shown that increasing the aspect ratio enhances the scattering efficiency, indicating a higher scattering quantum yield (QY). These findings highlight the importance of size, shape, and aspect ratio in controlling the optical features of (GNR) providing valuable insights for various uses in nanophotonics and plasmonic-dependent fluorescence in cancer treatment and developing new photonic compound NRs.
Collapse
Affiliation(s)
- Dalal Mohamed Alshangiti
- College of Science and Humanities-Jubail, Imam Abdulrahman Bin Faisal University Jubail Saudi Arabia
| | - Mohamed Mohamady Ghobashy
- Radiation Research of Polymer Chemistry Department, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority P.O. Box 29, Nasr City Cairo Egypt
| | - Haifa A Alqahtani
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University Dammam 31441 Saudi Arabia
| | - Tasneam K El-Damhougy
- Department of Chemistry, Faculty of Science (Girls), Al-Azhar University P.O. Box 11754, Yousef Abbas Str., Nasr City Cairo Egypt
| | - Mohamed Madani
- College of Science and Humanities-Jubail, Imam Abdulrahman Bin Faisal University Jubail Saudi Arabia
| |
Collapse
|
10
|
Desai N, Rana D, Salave S, Gupta R, Patel P, Karunakaran B, Sharma A, Giri J, Benival D, Kommineni N. Chitosan: A Potential Biopolymer in Drug Delivery and Biomedical Applications. Pharmaceutics 2023; 15:pharmaceutics15041313. [PMID: 37111795 PMCID: PMC10144389 DOI: 10.3390/pharmaceutics15041313] [Citation(s) in RCA: 102] [Impact Index Per Article: 102.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/11/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Chitosan, a biocompatible and biodegradable polysaccharide derived from chitin, has surfaced as a material of promise for drug delivery and biomedical applications. Different chitin and chitosan extraction techniques can produce materials with unique properties, which can be further modified to enhance their bioactivities. Chitosan-based drug delivery systems have been developed for various routes of administration, including oral, ophthalmic, transdermal, nasal, and vaginal, allowing for targeted and sustained release of drugs. Additionally, chitosan has been used in numerous biomedical applications, such as bone regeneration, cartilage tissue regeneration, cardiac tissue regeneration, corneal regeneration, periodontal tissue regeneration, and wound healing. Moreover, chitosan has also been utilized in gene delivery, bioimaging, vaccination, and cosmeceutical applications. Modified chitosan derivatives have been developed to improve their biocompatibility and enhance their properties, resulting in innovative materials with promising potentials in various biomedical applications. This article summarizes the recent findings on chitosan and its application in drug delivery and biomedical science.
Collapse
Affiliation(s)
- Nimeet Desai
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi 502285, India
| | - Dhwani Rana
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, India
| | - Sagar Salave
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, India
| | - Raghav Gupta
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, India
| | - Pranav Patel
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, India
| | - Bharathi Karunakaran
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, India
| | - Amit Sharma
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, India
| | - Jyotsnendu Giri
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi 502285, India
| | - Derajram Benival
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, India
| | | |
Collapse
|
11
|
El-Naggar NEA, Dalal SR, Zweil AM, Eltarahony M. Artificial intelligence-based optimization for chitosan nanoparticles biosynthesis, characterization and in‑vitro assessment of its anti-biofilm potentiality. Sci Rep 2023; 13:4401. [PMID: 36928367 PMCID: PMC10019797 DOI: 10.1038/s41598-023-30911-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 03/03/2023] [Indexed: 03/18/2023] Open
Abstract
Chitosan nanoparticles (CNPs) are promising biopolymeric nanoparticles with excellent physicochemical, antimicrobial, and biological properties. CNPs have a wide range of applications due to their unique characteristics, including plant growth promotion and protection, drug delivery, antimicrobials, and encapsulation. The current study describes an alternative, biologically-based strategy for CNPs biosynthesis using Olea europaea leaves extract. Face centered central composite design (FCCCD), with 50 experiments was used for optimization of CNPs biosynthesis. The artificial neural network (ANN) was employed for analyzing, validating, and predicting CNPs biosynthesis using Olea europaea leaves extract. Using the desirability function, the optimum conditions for maximum CNPs biosynthesis were determined theoretically and verified experimentally. The highest experimental yield of CNPs (21.15 mg CNPs/mL) was obtained using chitosan solution of 1%, leaves extract solution of 100%, initial pH 4.47, and incubation time of 60 min at 53.83°C. The SEM and TEM images revealed that CNPs had a spherical form and varied in size between 6.91 and 11.14 nm. X-ray diffraction demonstrates the crystalline nature of CNPs. The surface of the CNPs is positively charged, having a Zeta potential of 33.1 mV. FTIR analysis revealed various functional groups including C-H, C-O, CONH2, NH2, C-OH and C-O-C. The thermogravimetric investigation indicated that CNPs are thermally stable. The CNPs were able to suppress biofilm formation by P. aeruginosa, S. aureus and C. albicans at concentrations ranging from 10 to 1500 µg/mL in a dose-dependent manner. Inhibition of biofilm formation was associated with suppression of metabolic activity, protein/exopolysaccharide moieties, and hydrophobicity of biofilm encased cells (r ˃ 0.9, P = 0.00). Due to their small size, in the range of 6.91 to 11.14 nm, CNPs produced using Olea europaea leaves extract are promising for applications in the medical and pharmaceutical industries, in addition to their potential application in controlling multidrug-resistant microorganisms, especially those associated with post COVID-19 pneumonia in immunosuppressed patients.
Collapse
Affiliation(s)
- Noura El-Ahmady El-Naggar
- Department of Bioprocess Development, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, 21934, Alexandria, Egypt.
| | - Shimaa R Dalal
- Botany Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Amal M Zweil
- Plant Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - Marwa Eltarahony
- Environmental Biotechnology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, 21934, Alexandria, Egypt
| |
Collapse
|
12
|
Recent progressions in biomedical and pharmaceutical applications of chitosan nanoparticles: A comprehensive review. Int J Biol Macromol 2023; 231:123354. [PMID: 36681228 DOI: 10.1016/j.ijbiomac.2023.123354] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/05/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023]
Abstract
Nowadays, the most common approaches in the prognosis, diagnosis, and treatment of diseases are along with undeniable limitations. Thus, the ever-increasing need for using biocompatible natural materials and novel practical modalities is required. Applying biomaterials, such as chitosan nanoparticles (CS NPs: FDA-approved long-chain polymer of N-acetyl-glucosamine and D-glucosamine for some pharmaceutical applications), can serve as an appropriate alternative to overcome these limitations. Recently, the biomedical applications of CS NPs have extensively been investigated. These NPs and their derivatives can not only prepare through different physical and chemical approaches but also modify with various molecules and bioactive materials. The potential properties of CS NPs, such as biocompatibility, biodegradability, serum stability, solubility, non-immunogenicity, anti-inflammatory properties, appropriate pharmacokinetics and pharmacodynamics, and so forth, have made them excellent candidates for biomedical applications. Therefore, CS NPs have efficiently applied for various biomedical applications, like regenerative medicine and tissue engineering, biosensors for the detection of microorganisms, and drug delivery systems (DDS) for the suppression of diseases. These NPs possess a high level of biosafety. In summary, CS NPs have the potential ability for biomedical and clinical applications, and it would be remarkably beneficial to develop new generations of CS-based material for the future of medicine.
Collapse
|
13
|
Xia H, Hu Q, Yang Y, Yuan H, Cai Y, Liu Z, Xu Z, Xiong Y, Zhou J, Ye Q, Zhong Z. Effect of Matrix Metalloproteinase 23 Accelerating Wound Healing Induced by Hydroxybutyl Chitosan. ACS APPLIED BIO MATERIALS 2023; 6:1460-1470. [PMID: 36921248 DOI: 10.1021/acsabm.2c01008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Skin wounds may cause severe financial and social burden due to the difficulties in wound healing. Original inert dressings cannot meet multiple needs in the process of wound healing. Therefore, the development of materials to accelerate healing progress is essential and urgent. In the previous study, we found that the homogeneously synthesized hydroxybutyl chitosan (HBCS) had an effective performance in promoting wound healing. Proteomic analysis of the same specimen suggested that matrix metalloproteinase 23 (MMP23) may play a key role in HBCS expediting the progress of wound healing. In this work, we aim to reveal the underlying mechanism of MMP23 in the dynamic process of cutaneous proliferation and repair period. In order to regulate the expression level of MMP23 in the local wound area, we leaded in adeno-associated virus (AAV) to specifically decreased expression quantity of MMP23 in rat skin. In contrast to the negative control groups, we found that the wound closed faster and the collagen fibers and neovascularization were significantly increased in AAV groups. These findings highlighted that MMP23 was involved in wound healing after traumatic injury, and managing the expression of MMP23 could be a potential intervention target to accelerate wound healing.
Collapse
Affiliation(s)
- Haoyang Xia
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, Wuhan 430071, China
| | - Qianchao Hu
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, Wuhan 430071, China
| | - Yi Yang
- College of Health Science, Wuhan Sports University, Wuhan 430079, China
| | - Haoran Yuan
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, Wuhan 430071, China
| | - Yan Cai
- Department of Chemistry, Hubei Engineering Center of Natural Polymers-based Medical Materials, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Zhongzhong Liu
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, Wuhan 430071, China
| | - Zhigao Xu
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, Wuhan 430071, China
| | - Yan Xiong
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, Wuhan 430071, China
| | - Jinping Zhou
- Department of Chemistry, Hubei Engineering Center of Natural Polymers-based Medical Materials, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Qifa Ye
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, Wuhan 430071, China.,Transplantation Medicine Engineering and Technology Research Center, National Health Commission, The 3rd Xiangya Hospital of Central South University, Changsha 410013, China
| | - Zibiao Zhong
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, Wuhan 430071, China
| |
Collapse
|
14
|
Liu L, Zhao W, Ma Q, Gao Y, Wang W, Zhang X, Dong Y, Zhang T, Liang Y, Han S, Cao J, Wang X, Sun W, Ma H, Sun Y. Functional nano-systems for transdermal drug delivery and skin therapy. NANOSCALE ADVANCES 2023; 5:1527-1558. [PMID: 36926556 PMCID: PMC10012846 DOI: 10.1039/d2na00530a] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/27/2022] [Indexed: 06/18/2023]
Abstract
Transdermal drug delivery is one of the least intrusive and patient-friendly ways for therapeutic agent administration. Recently, functional nano-systems have been demonstrated as one of the most promising strategies to treat skin diseases by improving drug penetration across the skin barrier and achieving therapeutically effective drug concentrations in the target cutaneous tissues. Here, a brief review of functional nano-systems for promoting transdermal drug delivery is presented. The fundamentals of transdermal delivery, including skin biology and penetration routes, are introduced. The characteristics of functional nano-systems for facilitating transdermal drug delivery are elucidated. Moreover, the fabrication of various types of functional transdermal nano-systems is systematically presented. Multiple techniques for evaluating the transdermal capacities of nano-systems are illustrated. Finally, the advances in the applications of functional transdermal nano-systems for treating different skin diseases are summarized.
Collapse
Affiliation(s)
- Lijun Liu
- School of Pharmacy, Qingdao University Qingdao 266071 China
- The Shandong Consortium in the Yellow River Basin for Prevention, Treatment and Drug Development for Primary Diseases Related to Alcoholism, Qingdao University Qingdao 266021 China
| | - Wenbin Zhao
- School of Pharmacy, Qingdao University Qingdao 266071 China
- The Shandong Consortium in the Yellow River Basin for Prevention, Treatment and Drug Development for Primary Diseases Related to Alcoholism, Qingdao University Qingdao 266021 China
| | - Qingming Ma
- School of Pharmacy, Qingdao University Qingdao 266071 China
- The Shandong Consortium in the Yellow River Basin for Prevention, Treatment and Drug Development for Primary Diseases Related to Alcoholism, Qingdao University Qingdao 266021 China
| | - Yang Gao
- School of Pharmacy, Qingdao University Qingdao 266071 China
| | - Weijiang Wang
- School of Pharmacy, Qingdao University Qingdao 266071 China
- The Shandong Consortium in the Yellow River Basin for Prevention, Treatment and Drug Development for Primary Diseases Related to Alcoholism, Qingdao University Qingdao 266021 China
| | - Xuan Zhang
- School of Pharmacy, Qingdao University Qingdao 266071 China
| | - Yunxia Dong
- School of Pharmacy, Qingdao University Qingdao 266071 China
| | - Tingting Zhang
- School of Pharmacy, Qingdao University Qingdao 266071 China
| | - Yan Liang
- School of Pharmacy, Qingdao University Qingdao 266071 China
| | - Shangcong Han
- School of Pharmacy, Qingdao University Qingdao 266071 China
| | - Jie Cao
- School of Pharmacy, Qingdao University Qingdao 266071 China
| | - Xinyu Wang
- Institute of Thermal Science and Technology, Shandong University Jinan 250061 China
| | - Wentao Sun
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences Qingdao 266113 China
| | - Haifeng Ma
- Department of Geriatrics, Zibo Municipal Hospital Zibo 255400 China
| | - Yong Sun
- School of Pharmacy, Qingdao University Qingdao 266071 China
| |
Collapse
|
15
|
Thambiliyagodage C, Jayanetti M, Mendis A, Ekanayake G, Liyanaarachchi H, Vigneswaran S. Recent Advances in Chitosan-Based Applications-A Review. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2073. [PMID: 36903188 PMCID: PMC10004736 DOI: 10.3390/ma16052073] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/24/2023] [Accepted: 03/01/2023] [Indexed: 05/31/2023]
Abstract
Chitosan derived from chitin gas gathered much interest as a biopolymer due to its known and possible broad applications. Chitin is a nitrogen-enriched polymer abundantly present in the exoskeletons of arthropods, cell walls of fungi, green algae, and microorganisms, radulae and beaks of molluscs and cephalopods, etc. Chitosan is a promising candidate for a wide variety of applications due to its macromolecular structure and its unique biological and physiological properties, including solubility, biocompatibility, biodegradability, and reactivity. Chitosan and its derivatives have been known to be applicable in medicine, pharmaceuticals, food, cosmetics, agriculture, the textile and paper industries, the energy industry, and industrial sustainability. More specifically, their use in drug delivery, dentistry, ophthalmology, wound dressing, cell encapsulation, bioimaging, tissue engineering, food packaging, gelling and coating, food additives and preservatives, active biopolymeric nanofilms, nutraceuticals, skin and hair care, preventing abiotic stress in flora, increasing water availability in plants, controlled release fertilizers, dye-sensitised solar cells, wastewater and sludge treatment, and metal extraction. The merits and demerits associated with the use of chitosan derivatives in the above applications are elucidated, and finally, the key challenges and future perspectives are discussed in detail.
Collapse
Affiliation(s)
- Charitha Thambiliyagodage
- Faculty of Humanities and Sciences, Sri Lanka Institute of Information Technology, Malabe 10115, Sri Lanka
| | - Madara Jayanetti
- Faculty of Humanities and Sciences, Sri Lanka Institute of Information Technology, Malabe 10115, Sri Lanka
| | - Amavin Mendis
- Faculty of Humanities and Sciences, Sri Lanka Institute of Information Technology, Malabe 10115, Sri Lanka
| | - Geethma Ekanayake
- Faculty of Humanities and Sciences, Sri Lanka Institute of Information Technology, Malabe 10115, Sri Lanka
| | - Heshan Liyanaarachchi
- Faculty of Humanities and Sciences, Sri Lanka Institute of Information Technology, Malabe 10115, Sri Lanka
| | - Saravanamuthu Vigneswaran
- Faculty of Engineering and Information Technology, University of Technology Sydney, P.O. Box 123, Broadway, NSW 2007, Australia
- Faculty of Sciences & Technology (RealTek), Norwegian University of Life Sciences, P.O. Box 5003, N-1432 Ås, Norway
| |
Collapse
|
16
|
Mahmoud NA, Hassanein EHM, Bakhite EA, Shaltout ES, Sayed AM. Apocynin and its chitosan nanoparticles attenuated cisplatin-induced multiorgan failure: Synthesis, characterization, and biological evaluation. Life Sci 2023; 314:121313. [PMID: 36565813 DOI: 10.1016/j.lfs.2022.121313] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/08/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
Cisplatin (CDDP) is an effective chemotherapeutic drug that has been used successfully in treating various tumors. Although its higher antineoplastic agent activity, CDDP exhibited severe side effects that limit its use. CDDP-induced toxicity is attributed to oxidative stress and inflammation. Apocynin (APO) is a bioactive phytochemical with potent antioxidant and anti-inflammatory properties. However, pharmaceutical experts face significant hurdles due to the limited bioavailability and quick elimination of APO. Therefore, we synthesized a chitosan (CTS)-based nano delivery system using the ionic gelation method to enhance APO bioactivity. CTS-APO-NPs were characterized using different physical and chemical approaches, including FTIR, XRD, TGA, Zeta-sizer, SEM, and TEM. In addition, the protective effect of CTS-APO-NPs against CDDP-induced nephrotoxicity, hepatotoxicity, and cardiotoxicity in rats was evaluated. CTS-APO-NPs restored serum biomarkers and antioxidants to their normal levels. Also, histopathological examination was used to assess the recovery of heart, kidney, and liver tissues. CTS-APO-NPs attenuated the oxidative stress mediated by Nrf2 activation while it dampened inflammation mediated by NF-κB suppression. CTS-APO-NPs is a potentially attractive target for more therapeutic trials.
Collapse
Affiliation(s)
- Nahed A Mahmoud
- Biochemistry Laboratory, Chemistry Department, Faculty of Science, Assiut University, Egypt
| | - Emad H M Hassanein
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Egypt
| | - Etify A Bakhite
- Chemistry Department, Faculty of Science, Assiut University, Assiut 71516, Egypt
| | - Eman S Shaltout
- Department of Forensic Medicine & Clinical Toxicology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| | - Ahmed M Sayed
- Biochemistry Laboratory, Chemistry Department, Faculty of Science, Assiut University, Egypt.
| |
Collapse
|
17
|
Yang J, Xu Y, Fu Z, Chen J, Fan W, Wu X. Progress in research and development of temozolomide brain-targeted preparations: a review. J Drug Target 2023; 31:119-133. [PMID: 36039767 DOI: 10.1080/1061186x.2022.2119243] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Gliomas are a heterogeneous group of brain tumours with high malignancy, for which surgical resection remains the mainstay of treatment at present. However, the overall prognosis of gliomas remains poor because of their aggressiveness and high recurrence. Temozolomide (TMZ) has anti-proliferative and cytotoxic effects and is indicated for glioblastoma multiforme and recurrent mesenchymal astrocytoma. However, TMZ is disadvantaged by low efficacy and drug resistance, and therefore it is necessary to enhance the brain drug concentration of TMZ to improve its effectiveness and reduce the toxic and adverse effects from systemic administration. There have been many nano-formulations developed for the delivery of TMZ to gliomas that overcome the limitations of TMZ penetration to tumours and increase brain targeting. In this paper, we review the research progress of TMZ nano-formulations, and also discuss challenges and opportunities in the research and development of drug delivery systems, hoping that the data and information summarised herein could provide assistance for the clinical treatment of gliomas.
Collapse
Affiliation(s)
- Jiefen Yang
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Youfa Xu
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Department of Pharmacy, Shanghai Wei Er Biopharmaceutical Technology Co., Ltd, Shanghai, China
| | - Zhiqin Fu
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Department of Pharmacy, Shanghai Wei Er Biopharmaceutical Technology Co., Ltd, Shanghai, China
| | - Jianming Chen
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Wei Fan
- Department of Pharmacy, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xin Wu
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Department of Pharmacy, Shanghai Wei Er Biopharmaceutical Technology Co., Ltd, Shanghai, China
| |
Collapse
|
18
|
Meng Q, Zhong S, Wang J, Gao Y, Cui X. Advances in chitosan-based microcapsules and their applications. Carbohydr Polym 2023; 300:120265. [DOI: 10.1016/j.carbpol.2022.120265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/21/2022] [Accepted: 10/22/2022] [Indexed: 11/11/2022]
|
19
|
Mondal S, Das S, Mahapatra PK, Saha KD. Morin encapsulated chitosan nanoparticles (MCNPs) ameliorate arsenic induced liver damage through improvement of the antioxidant system and prevention of apoptosis and inflammation in mice. NANOSCALE ADVANCES 2022; 4:2857-2872. [PMID: 36132010 PMCID: PMC9419452 DOI: 10.1039/d2na00167e] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/30/2022] [Indexed: 05/31/2023]
Abstract
Chronic exposure to arsenic over a period of time induces toxicity, primarily in the liver but gradually in all systems of the body. Morin hydrate (MH; 2',3,4',5,7-pentahydroxyflavone), a potent flavonoid abundantly present in plants of the Moraceae family, is thought to be a major bioactive compound that may be used to prevent a wide range of disease pathologies including hepatotoxicity. Therapeutic applications of morin (MOR) are however seriously constrained because of its insolubility, poor bioavailability, high metabolism and rapid elimination from the human body. Nanoformulation of MOR is a possible solution to these problems. In the present study we investigated the effectiveness of morin encapsulated chitosan nanoparticles (MCNPs) against arsenic induced liver damage in mice. MNCPs with an average diameter of 124.5 nm, a zeta potential of +16.2 mV and an encapsulation efficiency of 78% were prepared. Co-treatment of MOR and MCNPs by oral gavage on alternate days reduced the serum levels of AST, ALT, and ALP that were elevated in arsenic treated mice. The efficiency of MCNPs was found to be nearly 4 times higher than that of free MOR. Haematological and serum biochemical parameters including lipid profiles altered by arsenic were normalized following MCNP treatment. Arsenic deposition was lowered in the presence of MCNPs. Administration of MCNPs markedly inhibited ROS generation and elevated MDA levels in arsenic exposed mice. The level of hepatic antioxidant factors such as nuclear Nrf2 (Nrf2), superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), GSH peroxidase (GPx), glutathione-S-transferase (GST), heme oxygenase-1 (HO-1), and NADPH quinone oxidoreductase 1(NQO1) were markedly enhanced in the arsenic + MCNP group. Treatment by MCNPs prevented the arsenic induced damage of tissue histology. Also, MCNPs suppressed the arsenic induced pro- and anti-apoptotic parameters and attenuated the level of inflammatory mediators. Our data suggest that MCNPs are good hepatoprotective agents compared to free morin against arsenic induced toxicity and the protective effect results from its strong antioxidant, antiapoptotic and anti-inflammatory properties.
Collapse
Affiliation(s)
- Sanchaita Mondal
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology 4, Raja S.C. Mullick Road Kolkata-700032 West Bengal India
- Department of Chemistry, Jadavpur University 188, Raja S.C. Mullick Road Kolkata-700032 West Bengal India
| | - Sujata Das
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology 4, Raja S.C. Mullick Road Kolkata-700032 West Bengal India
| | - Pradip Kumar Mahapatra
- Department of Chemistry, Jadavpur University 188, Raja S.C. Mullick Road Kolkata-700032 West Bengal India
| | - Krishna Das Saha
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology 4, Raja S.C. Mullick Road Kolkata-700032 West Bengal India
| |
Collapse
|
20
|
Goonoo N, Laetitia Huët MA, Chummun I, Karuri N, Badu K, Gimié F, Bergrath J, Schulze M, Müller M, Bhaw-Luximon A. Nanomedicine-based strategies to improve treatment of cutaneous leishmaniasis. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220058. [PMID: 35719886 PMCID: PMC9198523 DOI: 10.1098/rsos.220058] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 04/14/2022] [Indexed: 05/03/2023]
Abstract
Nanomedicine strategies were first adapted and successfully translated to clinical application for diseases, such as cancer and diabetes. These strategies would no doubt benefit unmet diseases needs as in the case of leishmaniasis. The latter causes skin sores in the cutaneous form and affects internal organs in the visceral form. Treatment of cutaneous leishmaniasis (CL) aims at accelerating wound healing, reducing scarring and cosmetic morbidity, preventing parasite transmission and relapse. Unfortunately, available treatments show only suboptimal effectiveness and none of them were designed specifically for this disease condition. Tissue regeneration using nano-based devices coupled with drug delivery are currently being used in clinic to address diabetic wounds. Thus, in this review, we analyse the current treatment options and attempt to critically analyse the use of nanomedicine-based strategies to address CL wounds in view of achieving scarless wound healing, targeting secondary bacterial infection and lowering drug toxicity.
Collapse
Affiliation(s)
- Nowsheen Goonoo
- Biomaterials, Drug Delivery and Nanotechnology Unit, Center for Biomedical and Biomaterials Research, University of Mauritius, Réduit 80837, Mauritius
| | - Marie Andrea Laetitia Huët
- Biomaterials, Drug Delivery and Nanotechnology Unit, Center for Biomedical and Biomaterials Research, University of Mauritius, Réduit 80837, Mauritius
| | - Itisha Chummun
- Biomaterials, Drug Delivery and Nanotechnology Unit, Center for Biomedical and Biomaterials Research, University of Mauritius, Réduit 80837, Mauritius
| | - Nancy Karuri
- Department of Chemical Engineering, Dedan Kimathi University of Technology, Private Bag 10143 – Dedan Kimathi, Nyeri, Kenya
| | - Kingsley Badu
- Vector-borne Infectious Disease Group, Theoretical and Applied Biology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Fanny Gimié
- Animalerie, Plateforme de recherche CYROI, 2 rue Maxime Rivière, 97490 Sainte Clotilde, Ile de La Réunion, France
| | - Jonas Bergrath
- Department of Natural Sciences, University of Applied Sciences Bonn-Rhein-Sieg, Heisenbergstrasse 16, D-53359 Rheinbach, Germany
| | - Margit Schulze
- Department of Natural Sciences, University of Applied Sciences Bonn-Rhein-Sieg, Heisenbergstrasse 16, D-53359 Rheinbach, Germany
| | - Mareike Müller
- Physical Chemistry I & Research Center of Micro- and Nanochemistry and (Bio)Technology (Cμ), Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Strasse 2, 57076 Siegen, Germany
| | - Archana Bhaw-Luximon
- Biomaterials, Drug Delivery and Nanotechnology Unit, Center for Biomedical and Biomaterials Research, University of Mauritius, Réduit 80837, Mauritius
| |
Collapse
|
21
|
Bhatia N, Kumari A, Thakur N, Sharma G, Singh RR, Sharma R. Phytochemically stabilized chitosan encapsulated Cu and Ag nanocomposites to remove cefuroxime axetil and pathogens from the environment. Int J Biol Macromol 2022; 212:451-464. [PMID: 35618089 DOI: 10.1016/j.ijbiomac.2022.05.143] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 11/29/2022]
Abstract
Antibiotics have been a source of concern since they are causing resistance in bacteria that live in water and air. As a result, green technology was used to manufacture silver and copper nanoparticles, which were encapsulated with the biopolymer chitosan derived from the root extract of the Potentilla astrosanguinea plant. XRD, FTIR, TEM, EDX, and UV-Visible spectroscopy were methods used for structural and spectroscopic analysis. These nanomaterials have a roughly spherical 2-30 nm average size and a face-centered cubic (FCC) shape, according to the findings. The photocatalytic drug degradation and antibacterial properties of the produced nanocomposites were outstanding, with some resistance lasting longer than 180 days. The current study discovered that under UV light exposure, silver nanocomposites degrade drugs rapidly within 40 min, with an average rate of over 95%, while copper nanocomposites degrade drugs rapidly within 70 min, with an average rate of 84%. These nanocomposites have demonstrated exceptionally compelling antibacterial action against Gram-positive, Gram-negative, and fungal pathogens in addition to photocatalytic activity. The lowest recorded MIC values were 10.30 μg/mL and 10.84 μg/mL, respectively, whereas the lowest MBC values were 91.24 μg/mL and 99.50 μg/mL.
Collapse
Affiliation(s)
- Nishat Bhatia
- Department of Chemistry, Career Point University, Bhoranj (Tikker - Kharwarian), Hamirpur, MDR 35, Himachal Pradesh 176041, India
| | - Asha Kumari
- Department of Chemistry, Career Point University, Bhoranj (Tikker - Kharwarian), Hamirpur, MDR 35, Himachal Pradesh 176041, India
| | - Nitika Thakur
- Department of Biotechnology, Shoolini University, Solan-Oachghat-Kumarhatti Highway, Bajhol, Himachal Pradesh 173229, India
| | - Gaurav Sharma
- Department of Biotechnology, Shoolini University, Solan-Oachghat-Kumarhatti Highway, Bajhol, Himachal Pradesh 173229, India
| | - Ragini Raj Singh
- Department of Physics and Material Sciences, Jaypee University of Information Technology (JUIT), Waknaghat, Solan, Himachal Pradesh 173234, India
| | - Rahul Sharma
- Department of Chemistry, Career Point University, Bhoranj (Tikker - Kharwarian), Hamirpur, MDR 35, Himachal Pradesh 176041, India.
| |
Collapse
|
22
|
Xia Y, Wang D, Liu D, Su J, Jin Y, Wang D, Han B, Jiang Z, Liu B. Applications of Chitosan and its Derivatives in Skin and Soft Tissue Diseases. Front Bioeng Biotechnol 2022; 10:894667. [PMID: 35586556 PMCID: PMC9108203 DOI: 10.3389/fbioe.2022.894667] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 04/18/2022] [Indexed: 12/13/2022] Open
Abstract
Chitosan and its derivatives are bioactive molecules that have recently been used in various fields, especially in the medical field. The antibacterial, antitumor, and immunomodulatory properties of chitosan have been extensively studied. Chitosan can be used as a drug-delivery carrier in the form of hydrogels, sponges, microspheres, nanoparticles, and thin films to treat diseases, especially those of the skin and soft tissue such as injuries and lesions of the skin, muscles, blood vessels, and nerves. Chitosan can prevent and also treat soft tissue diseases by exerting diverse biological effects such as antibacterial, antitumor, antioxidant, and tissue regeneration effects. Owing to its antitumor properties, chitosan can be used as a targeted therapy to treat soft tissue tumors. Moreover, owing to its antibacterial and antioxidant properties, chitosan can be used in the prevention and treatment of soft tissue infections. Chitosan can stop the bleeding of open wounds by promoting platelet agglutination. It can also promote the regeneration of soft tissues such as the skin, muscles, and nerves. Drug-delivery carriers containing chitosan can be used as wound dressings to promote wound healing. This review summarizes the structure and biological characteristics of chitosan and its derivatives. The recent breakthroughs and future trends of chitosan and its derivatives in therapeutic effects and drug delivery functions including anti-infection, promotion of wound healing, tissue regeneration and anticancer on soft tissue diseases are elaborated.
Collapse
Affiliation(s)
- Yidan Xia
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Da Liu
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Jiayang Su
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China
| | - Ye Jin
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Duo Wang
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China
| | - Beibei Han
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China
| | - Ziping Jiang
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China,*Correspondence: Ziping Jiang, ; Bin Liu,
| | - Bin Liu
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China,*Correspondence: Ziping Jiang, ; Bin Liu,
| |
Collapse
|
23
|
Loo HL, Goh BH, Lee LH, Chuah LH. Application of chitosan nanoparticles in skin wound healing. Asian J Pharm Sci 2022; 17:299-332. [PMID: 35782330 PMCID: PMC9237591 DOI: 10.1016/j.ajps.2022.04.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 12/25/2022] Open
Abstract
The rising prevalence of impaired wound healing and the consequential healthcare burdens have gained increased attention over recent years. This has prompted research into the development of novel wound dressings with augmented wound healing functions. Nanoparticle (NP)-based delivery systems have become attractive candidates in constructing such wound dressings due to their various favourable attributes. The non-toxicity, biocompatibility and bioactivity of chitosan (CS)-based NPs make them ideal candidates for wound applications. This review focusses on the application of CS-based NP systems for use in wound treatment. An overview of the wound healing process was presented, followed by discussion on the properties and suitability of CS and its NPs in wound healing. The wound healing mechanisms exerted by CS-based NPs were then critically analysed and discussed in sections, namely haemostasis, infection prevention, inflammatory response, oxidative stress, angiogenesis, collagen deposition, and wound closure time. The results of the studies were thoroughly reviewed, and contradicting findings were identified and discussed. Based on the literature, the gap in research and future prospects in this research area were identified and highlighted. Current evidence shows that CS-based NPs possess superior wound healing effects either used on their own, or as drug delivery vehicles to encapsulate wound healing agents. It is concluded that great opportunities and potentials exist surrounding the use of CSNPs in wound healing.
Collapse
|
24
|
Shahid N, Erum A, Zaman M, Tulain UR, Shoaib QUA, Malik NS, Kausar R, Rashid A, Rehman U. Synthesis and evaluation of chitosan based controlled release nanoparticles for the delivery of ticagrelor. Des Monomers Polym 2022; 25:55-63. [PMID: 35341118 PMCID: PMC8942484 DOI: 10.1080/15685551.2022.2054117] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The aim of this contemporary work was to formulate a controlled release mucoadhesive nanoparticle formulation for enhancing the oral bioavailability of Ticagrelor (TG), a BCS class IV drug, having low oral bioavailability of about 36%. The nanoparticles can act as efficient carriers for hydrophobic drugs, due to having high surface area and hence can improve their aqueous solubility due to their hydrophilic nature. The nanoparticles (NPs) of TG were formulated using chitosan (CH) as polymer and sodium tripolyphosphate (TPP) as cross-linker, by ionic gelation technique with varying concentrations of polymer with respect to TG and TPP. Characterization of prepared nanoparticles was carried out to assess zeta potential, size, shape, entrapment efficiency (EE) and loading capacity (LC), using zeta sizer, surface morphology and chemical compatibility analysis. Drug release was observed using UV-Spectrophotometer. By increasing concentration of CH the desired size of particles (106.9 nm), zeta potential (22.6 mv) and poly dispersity index (0.364) was achieved. In vitro profiles showed a controlled and prolonged release of TG in both lower pH-1.2 and neutral pH-7.4 mediums, with effective protection of entrapped TG in simulated gastric conditions. X-ray diffraction patterns (XRD) showed the crystalline nature of formed NPs. Hence, this effort showed that hydrophobic drugs can be effectively encapsulated in nanoparticulate systems to enhance their solubility and stability, ultimately improving their bioavailability and effectiveness with better patient compliance by reducing dosing frequencies as well.
Collapse
Affiliation(s)
- Nariman Shahid
- Faculty of Pharmacy, University of Sargodha, Sargodha, Pakistan.,Akhtar Saeed College of Pharmaceutical Sciences, Lahore, Pakistan
| | - Alia Erum
- Faculty of Pharmacy, University of Sargodha, Sargodha, Pakistan
| | - Muhammad Zaman
- Faculty of Pharmacy, University of Central Punjab, Lahore, Pakistan
| | | | | | - Nadia Shamshad Malik
- Faculty of Pharmacy, Capital University of Science and Technology, Islamabad, Pakistan
| | - Rizwana Kausar
- ILM College of Pharmaceutical Sciences, Sargodha, Pakistan
| | - Ayesha Rashid
- Department of Pharmacy, The Women University Multan, Pakistan
| | - Umaira Rehman
- Faculty of Pharmacy, University of Sargodha, Sargodha, Pakistan
| |
Collapse
|
25
|
Kwon K, Jung J, Sahu A, Tae G. Nanoreactor for cascade reaction between SOD and CAT and its tissue regeneration effect. J Control Release 2022; 344:160-172. [PMID: 35247490 DOI: 10.1016/j.jconrel.2022.02.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 02/24/2022] [Indexed: 11/25/2022]
Abstract
Nanoreactors for scavenging reactive oxygen species (ROS), a major factor in inflammatory diseases, can reduce overproduced ROS, and thus can prevent further progress of the diseases or facilitate the regeneration of damaged inflamed tissues. Herein, we designed a pluronic-based nanocarrier loaded with dual antioxidant enzymes present in vivo (superoxide dismutase (SOD) and catalase (CAT)) as a nanoreactor system for the regeneration of inflammatory tissue. The catalytic activity of each enzyme was enhanced by loading it into the nanocarrier. More importantly, the nanocarrier could enhance the cascade reaction between SOD and CAT, which converts the superoxide anion to oxygen. The synergistic anti-inflammatory effect of the nanoreactor based on the cascade reaction was verified in vitro. Furthermore, in an inflammatory bowel disease (IBD) mouse model, the dual enzyme (SOD/CAT)-loaded nanocarrier could result in significantly enhanced tissue regeneration and notably alleviated inflammation activities upon intravenous administration of them compared to other control groups, including single enzyme (SOD or CAT)-loaded nanocarrier and the free mixture of both enzymes without the nanocarrier. Thus, the efficacy of the nanoreactor for the cascade reaction on tissue regeneration in vivo was proved. Accordingly, the nanoreactor could be applied for tissue regeneration therapy against various inflammatory diseases.
Collapse
Affiliation(s)
- Kiyoon Kwon
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Junyoung Jung
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Abhishek Sahu
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Giyoong Tae
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea.
| |
Collapse
|
26
|
Effect of Cationic Lipid Nanoparticle Loaded siRNA with Stearylamine against Chikungunya Virus. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27041170. [PMID: 35208958 PMCID: PMC8877324 DOI: 10.3390/molecules27041170] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/25/2022] [Accepted: 01/25/2022] [Indexed: 01/18/2023]
Abstract
Chikungunya is an infectious disease caused by mosquito-transmitted chikungunya virus (CHIKV). It was reported that NS1 and E2 siRNAs administration demonstrated CHIKV inhibition in in vitro as well as in vivo systems. Cationic lipids are promising for designing safe non-viral vectors and are beneficial in treating chikungunya. In this study, nanodelivery systems (hybrid polymeric/solid lipid nanoparticles) using cationic lipids (stearylamine, C9 lipid, and dioctadecylamine) and polymers (branched PEI-g-PEG -PEG) were prepared, characterized, and complexed with siRNA. The four developed delivery systems (F1, F2, F3, and F4) were assessed for stability and potential toxicities against CHIKV. In comparison to the other nanodelivery systems, F4 containing stearylamine (Octadecylamine; ODA), with an induced optimum cationic charge of 45.7 mV in the range of 152.1 nm, allowed maximum siRNA complexation, better stability, and higher transfection, with strong inhibition against the E2 and NS1 genes of CHIKV. The study concludes that cationic lipid-like ODA with ease of synthesis and characterization showed maximum complexation by structural condensation of siRNA owing to high transfection alone. Synergistic inhibition of CHIKV along with siRNA was demonstrated in both in vitro and in vivo models. Therefore, ODA-based cationic lipid nanoparticles can be explored as safe, potent, and efficient nonviral vectors overcoming siRNA in vivo complexities against chikungunya.
Collapse
|
27
|
Sudheesh MS, Pavithran K, M S. Revisiting the outstanding questions in cancer nanomedicine with a future outlook. NANOSCALE ADVANCES 2022; 4:634-653. [PMID: 36131837 PMCID: PMC9418065 DOI: 10.1039/d1na00810b] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/22/2021] [Indexed: 06/01/2023]
Abstract
The field of cancer nanomedicine has been fueled by the expectation of mitigating the inefficiencies and life-threatening side effects of conventional chemotherapy. Nanomedicine proposes to utilize the unique nanoscale properties of nanoparticles to address the most pressing questions in cancer treatment and diagnosis. The approval of nano-based products in the 1990s inspired scientific explorations in this direction. However, despite significant progress in the understanding of nanoscale properties, there are only very few success stories in terms of substantial increase in clinical efficacy and overall patient survival. All existing paradigms such as the concept of enhanced permeability and retention (EPR), the stealth effect and immunocompatibility of nanomedicine have been questioned in recent times. In this review we critically examine impediments posed by biological factors to the clinical success of nanomedicine. We put forth current observations on critical outstanding questions in nanomedicine. We also provide the promising side of cancer nanomedicine as we move forward in nanomedicine research. This would provide a future direction for research in nanomedicine and inspire ongoing investigations.
Collapse
Affiliation(s)
- M S Sudheesh
- Dept. of Pharmaceutics, Amrita School of Pharmacy Amrita Health Science Campus, Amrita Vishwa Vidyapeetham, Ponekkara Kochi - 682041 India +91-9669372019
| | - K Pavithran
- Department of Medical Oncology, Amrita Institute of Medial Sciences and Research Centre Amrita Health Science Campus, Amrita Vishwa Vidyapeetham, Ponekkara Kochi - 682041 India
| | - Sabitha M
- Dept. of Pharmaceutics, Amrita School of Pharmacy Amrita Health Science Campus, Amrita Vishwa Vidyapeetham, Ponekkara Kochi - 682041 India +91-9669372019
| |
Collapse
|
28
|
Effective and prolonged targeting of a nanocarrier to the inflammation site by functionalization with ZnBPMP and chitosan. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 131:112521. [PMID: 34857300 DOI: 10.1016/j.msec.2021.112521] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/19/2021] [Accepted: 10/22/2021] [Indexed: 02/07/2023]
Abstract
Efficient and selective targeting of inflamed tissues/organs is critical for diagnosis and therapy. Although nanomaterials themselves have an intrinsic advantage due to their size for targeting inflammation sites, additional functionalization of the nanomaterials with proper targeting moieties is desired to enhance the targeting efficiency. In this study, we aimed to improve the inflammation targeting characteristics of a pluronic-based nanocarrier, which has advantages as a nanosized delivery cargo for diverse molecules, by conjugating with chitosan and ZnBPMP (two Zn(II) ions chelated 2,6-bis[(bis(2-pyridylmethyl)amino)-methyl]-4-methylphenol) moiety. Specific and significant cellular uptake and interaction between the nanocarrier functionalized with ZnBPMP ligand and chitosan to an apoptosis-induced immune cell line were observed in vitro. An inflammation model in the mouse ear caused by skin hypersensitivity was used to evaluate the effect of functionalization with chitosan and ZnBPMP moiety by comparing with various control groups. Functionalization of the nanocarrier with chitosan greatly enhanced the in vivo circulation time of the nanocarrier, so prolonged targeting ability of the nanocarrier to the inflamed ear was achieved. Additional ZnBPMP functionalization to chitosan-functionalized nanocarrier also resulted in significantly improved initial targeting and further enhancement in the targeting until 5 days to the inflamed ear and the decreased non-specific accumulation of the nanocarrier to the remaining body. Thus, developed nanocarrier has a high potential as a drug delivery carrier as well as a diagnostic agent to the inflammation sites.
Collapse
|
29
|
Sivanesan I, Gopal J, Muthu M, Shin J, Oh JW. Reviewing Chitin/Chitosan Nanofibers and Associated Nanocomposites and Their Attained Medical Milestones. Polymers (Basel) 2021; 13:2330. [PMID: 34301087 PMCID: PMC8309474 DOI: 10.3390/polym13142330] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/11/2021] [Accepted: 07/12/2021] [Indexed: 11/25/2022] Open
Abstract
Chitin/chitosan research is an expanding field with wide scope within polymer research. This topic is highly inviting as chitin/chitosan's are natural biopolymers that can be recovered from food waste and hold high potentials for medical applications. This review gives a brief overview of the chitin/chitosan based nanomaterials, their preparation methods and their biomedical applications. Chitin nanofibers and Chitosan nanofibers have been reviewed, their fabrication methods presented and their biomedical applications summarized. The chitin/chitosan based nanocomposites have also been discussed. Chitin and chitosan nanofibers and their binary and ternary composites are represented by scattered superficial reports. Delving deep into synergistic approaches, bringing up novel chitin/chitosan nanocomposites, could help diligently deliver medical expectations. This review highlights such lacunae and further lapses in chitin related inputs towards medical applications. The grey areas and future outlook for aligning chitin/chitosan nanofiber research are outlined as research directions for the future.
Collapse
Affiliation(s)
- Iyyakkannu Sivanesan
- Department of Bioresources and Food Science, Konkuk University, Seoul 143-701, Korea;
| | - Judy Gopal
- Laboratory of Neo Natural Farming, Chunnampet 603 401, Tamil Nadu, India; (J.G.); (M.M.)
| | - Manikandan Muthu
- Laboratory of Neo Natural Farming, Chunnampet 603 401, Tamil Nadu, India; (J.G.); (M.M.)
| | - Juhyun Shin
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 143-701, Korea;
| | - Jae-Wook Oh
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 143-701, Korea;
| |
Collapse
|
30
|
Paulino-Gonzalez AD, Sakagami H, Bandow K, Kanda Y, Nagasawa Y, Hibino Y, Nakajima H, Yokose S, Amano O, Nakaya G, Koga-Ogawa Y, Shiroto A, Nobesawa T, Ueda D, Nakatani S, Kobata K, Iijima Y, Ifuku S, Yamamoto M, Garcia-Contreras R. Biological Properties of the Aggregated Form of Chitosan Magnetic Nanoparticle. In Vivo 2021; 34:1729-1738. [PMID: 32606141 DOI: 10.21873/invivo.11966] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 11/10/2022]
Abstract
BACKGROUND/AIM Chitosan-coated iron oxide nanoparticles (Chi-NP) have gained attention because of their biocompatibility, biodegradability, low toxicity and targetability under magnetic field. In this study, we investigated various biological properties of Chi-NP. MATERIALS AND METHODS Chi-NP was prepared by mixing magnetic NP with chitosan FL-80. Particle size was determined by scanning and transmission electron microscopes, cell viability by MTT assay, cell cycle distribution by cell sorter, synergism with anticancer drugs by combination index, PGE2 production in human gingival fibroblast was assayed by ELISA. RESULTS The synthetic process of Chi-NP from FL-80 and magnetic NP increased the affinity to cells, up to the level attained by nanofibers. Upon contact with the culture medium, Chi-NP instantly formed aggregates and interfered with intracellular uptake. Aggregated Chi-NP did not show cytotoxicity, synergism with anticancer drugs, induce apoptosis (accumulation of subG1 cell population), protect the cells from X-ray-induced damage, nor affected both basal and IL-1β-induced PGE2 production. CONCLUSION Chi-NP is biologically inert and shows high affinity to cells, further confirming its superiority as a scaffold for drug delivery.
Collapse
Affiliation(s)
- Angel David Paulino-Gonzalez
- Laboratorio de Investigación Interdisciplinaria, Área de Nanoestructuras y Biomateriales, Escuela Nacional de Estudios Superiores Unidad León, León, México.,Dental Science, National Autonomous University of Mexico, Mexico City, Mexico
| | | | | | - Yumiko Kanda
- Meikai University School of Dentistry, Saitama, Japan
| | - Yuko Nagasawa
- Meikai University School of Dentistry, Saitama, Japan
| | | | | | | | - Osamu Amano
- Meikai University School of Dentistry, Saitama, Japan
| | - Giichirou Nakaya
- Nihon Institute of Medical Science Faculty of Health Sciences, Saitama, Japan
| | - Yukari Koga-Ogawa
- Nihon Institute of Medical Science Faculty of Health Sciences, Saitama, Japan
| | - Akiyoshi Shiroto
- Nihon Institute of Medical Science Faculty of Health Sciences, Saitama, Japan
| | - Tadamasa Nobesawa
- Nihon Institute of Medical Science Faculty of Health Sciences, Saitama, Japan
| | - Daisuke Ueda
- Nihon Institute of Medical Science Faculty of Health Sciences, Saitama, Japan
| | - Sachie Nakatani
- Graduate School of Pharmaceutical Sciences, Josai University, Saitama, Japan
| | - Kenji Kobata
- Graduate School of Pharmaceutical Sciences, Josai University, Saitama, Japan
| | - Yosuke Iijima
- Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Shinsuke Ifuku
- Department of Veterinary Clinical Medicine, Tottori University, Tottori, Japan
| | | | - Rene Garcia-Contreras
- Laboratorio de Investigación Interdisciplinaria, Área de Nanoestructuras y Biomateriales, Escuela Nacional de Estudios Superiores Unidad León, León, México
| |
Collapse
|
31
|
Liu Y, Xia G, Liu S, Song Z. Development of Oral Chewable Tablets Containing Montelukast Nanoparticles for the Treatment of Childhood Asthma: Preclinical Study in Animal Model. J BIOMATER TISS ENG 2021. [DOI: 10.1166/jbt.2021.2628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The aim of the present study was to formulate oral chewable tablets of Montelukast (MTL) in the form of nanoparticles (NP’s). The MTL loaded NP’s were formulated by ionotropic external gelation method using tripolyphosphate (TPP) as crosslinking agent and Tween 60 as surfactant.
NP’s were characterized for drug loading, encapsulation efficiency, surface morphology, saturation solubility, particle size, zeta potential and polydispersity index. The optimized NP formulation was used for development of chewable tablets using direct compression method. The prepared
tablets were characterized for disintegration test, dissolution, thickness, hardness, friability and assay. The optimized formulation was evaluated in asthamatic animals to demonstrate the efficiency in asthama. The encapsulation efficiency of NP’s was found between 91.24 to 98.21% while
drug loading was in the range of 10.09–14.25%. All formulations were found of nanosized in nature (110 to 200 nm) with excellent zeta potential (20.12 to 22.27 mV). PDI of all NP formulations were found within acceptable limit (less than 0.3). The nanoparticles were found spherical in
shape with smooth surface. The saturation solubility of MTL was enhanced nearly 10 times (92 mg/ml) as compared to pure MTL saturation solubility. All physical parameters of the tablets were found within range. The optimized tablets showed disintegration time of 20 sec while other formulations
showed DT in the rage of 35–57 sec. Tab1 (Optimized formulation) showed almost 100% MTL release from chewable tablets within the period of 30 min. Reduction in lung resistance (RI) was found in animals treated with Tab1. This reduction in RI was found nearly two fold and three fold as
compare to MTL treated and control group animals. These observations clearly support the efficacy of chewable tablets containing nanoparticulate MTL in asthmatic animals.
Collapse
Affiliation(s)
- Ye Liu
- Otolaryngology, Ningbo Beilun People’s Hospital, 1288 Lushan East Road, Beilun, Ningbo, Zhejiang Province, 315000, China
| | - Guihua Xia
- Otolaryngology, Ningbo Beilun People’s Hospital, 1288 Lushan East Road, Beilun, Ningbo, Zhejiang Province, 315000, China
| | - Shaosheng Liu
- Otolaryngology, Ningbo Beilun People’s Hospital, 1288 Lushan East Road, Beilun, Ningbo, Zhejiang Province, 315000, China
| | - Zhenyu Song
- Otolaryngology, Ningbo Beilun People’s Hospital, 1288 Lushan East Road, Beilun, Ningbo, Zhejiang Province, 315000, China
| |
Collapse
|
32
|
Preparation methods and applications of chitosan nanoparticles; with an outlook toward reinforcement of biodegradable packaging. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.104849] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
33
|
Zaman M, Iqbal A, Haider Rizvi SF, Hussain MA, Jamshaid T, Jamshaid M. Chitosan based controlled release drug delivery of mycophenolate mofetil loaded in nanocarriers system: synthesis and in-vitro evaluation. Drug Dev Ind Pharm 2021; 47:477-483. [PMID: 33621153 DOI: 10.1080/03639045.2021.1892739] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Background: Organ transplantation is an important and critical procedure, which requires the suppression of immunity, and to suppress the immunity, a constant plasma concentration of immunosuppressant is required.Objectives: The said objective can be achieved by formulating a controlled release drug delivery system of the drug. Chitosan (CHT) nanoparticles (NPs) have been revolutionizing the conventional drug delivery system, for the past two decades. The aim of the current research work was to develop and evaluate CHT-based mycophenolate mofetil (MMF) loaded nanoparticles (CHT/MMF-NPs) using different drug to polymer ratios.Methods: The challenge was to entrap a lipophilic drug within NPs by the ionic gelation method of the positively charged CHT, using tripolyphosphate (TPP) as the crosslinking agent. The prepared CHT/MMF-NPs were evaluated for physical and chemical characterizations, including particle size, surface charge, entrapment efficiency (EE), surface morphology by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) for chemical compatibilities, X-ray diffractometry (XRD) and in-vitro dissolution studies.Results: Outcomes of the studies revealed that particles were 260 ± 17 nm in diameter, with the smooth and regular surface. Satisfactory values of EE (99%) have indicated the suitability of selected ingredients and employed methodology. Moreover, FTIR has confirmed the chemical compatibilities of the formulations. In-vitro dissolution studies have indicated diffusion type of controlled and sustained drug release during 24 h, with zero-order, as best fit kinetic model.Conclusion: Conclusively, the successful achievement of objectives has indicated the suitability of excipients and methodology to prepare CHT/MMF-NPs for better therapeutic outcomes.
Collapse
Affiliation(s)
- Muhammad Zaman
- Faculty of Pharmacy, University of Central Punjab, Lahore, Pakistan
| | - Asma Iqbal
- Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | | | | | - Talha Jamshaid
- Faculty of Pharmacy and Alternative Medicine, Islamia University, Bahawalpur, Pakistan
| | | |
Collapse
|
34
|
Nanogels Capable of Triggered Release. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2021; 178:99-146. [PMID: 33665715 DOI: 10.1007/10_2021_163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
This chapter provides an overview of soft and environmentally sensitive polymeric nanosystems, which are widely known as nanogels. These particles keep great promise to the area of drug delivery due to their high biocompatibility with body fluids and tissues, as well as due to their ability to encapsulate and release the loaded drugs in a controlled manner. For a long period of time, the controlled drug delivery systems were designed to provide long-termed or sustained release. However, some medical treatments such as cancer chemotherapy, protein and gene delivery do not require the prolonged release of the drug in the site of action. In contrast, the rapid increase of the drug concentration is needed for gaining the desired biological effect. Being very sensitive to surrounding media and different stimuli, nanogels can undergo physico-chemical transitions or chemical changes in their structure. Such changes can result in more rapid release of the drugs, which is usually referred to as triggered drug release. Herein we give the basic information on nanogel unique features, methods of sensitive nanogels preparation, as well as on main mechanisms of triggered release. Additionally, the triggered release of low-molecular drugs and biomacromolecules are discussed.
Collapse
|
35
|
Madni A, Kousar R, Naeem N, Wahid F. Recent advancements in applications of chitosan-based biomaterials for skin tissue engineering. JOURNAL OF BIORESOURCES AND BIOPRODUCTS 2021. [DOI: 10.1016/j.jobab.2021.01.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
36
|
Vieira AC, Chaves LL, Pinheiro M, Lima SC, Neto PJR, Ferreira D, Sarmento B, Reis S. Lipid nanoparticles coated with chitosan using a one-step association method to target rifampicin to alveolar macrophages. Carbohydr Polym 2021; 252:116978. [DOI: 10.1016/j.carbpol.2020.116978] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/24/2020] [Accepted: 08/18/2020] [Indexed: 10/23/2022]
|
37
|
Bilal M, Qindeel M, Nunes LV, Duarte MTS, Ferreira LFR, Soriano RN, Iqbal HMN. Marine-Derived Biologically Active Compounds for the Potential Treatment of Rheumatoid Arthritis. Mar Drugs 2020; 19:10. [PMID: 33383638 PMCID: PMC7823916 DOI: 10.3390/md19010010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/05/2020] [Accepted: 12/10/2020] [Indexed: 02/05/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic, systemic autoimmune disease with a prevalence rate of up to 1% and is significantly considered a common worldwide public health concern. Commercially, several traditional formulations are available to treat RA to some extent. However, these synthetic compounds exert toxicity and considerable side effects even at lower therapeutic concentrations. Considering the above-mentioned critiques, research is underway around the world in finding and exploiting potential alternatives. For instance, marine-derived biologically active compounds have gained much interest and are thus being extensively utilized to confront the confines of in practice counterparts, which have become ineffective for 21st-century medical settings. The utilization of naturally available bioactive compounds and their derivatives can minimize these synthetic compounds' problems to treat RA. Several marine-derived compounds exhibit anti-inflammatory and antioxidant properties and can be effectively used for therapeutic purposes against RA. The results of several studies ensured that the extraction of biologically active compounds from marine sources could provide a new and safe source for drug development against RA. Finally, current challenges, gaps, and future perspectives have been included in this review.
Collapse
Affiliation(s)
- Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Maimoona Qindeel
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan;
| | - Leonardo Vieira Nunes
- Department of Medicine, Federal University of Juiz de Fora, Juiz de Fora-MG 36036-900, Brazil;
| | | | - Luiz Fernando Romanholo Ferreira
- Graduate Program in Process Engineering, Tiradentes University (UNIT), Av. Murilo Dantas, 300, Farolândia, Aracaju-Sergipe 49032-490, Brazil;
- Institute of Technology and Research (ITP), Tiradentes University (UNIT), Av. Murilo Dantas, 300, Farolândia, Aracaju-Sergipe 49032-490, Brazil
| | - Renato Nery Soriano
- Division of Physiology and Biophysics, Department of Basic Life Sciences, Federal University of Juiz de Fora, Governador Valadares-MG 35010-180, Brazil;
| | - Hafiz M. N. Iqbal
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico
| |
Collapse
|
38
|
Sarkar S, Das D, Dutta P, Kalita J, Wann SB, Manna P. Chitosan: A promising therapeutic agent and effective drug delivery system in managing diabetes mellitus. Carbohydr Polym 2020; 247:116594. [DOI: 10.1016/j.carbpol.2020.116594] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 06/03/2020] [Accepted: 06/03/2020] [Indexed: 02/06/2023]
|
39
|
Ramanunny AK, Wadhwa S, Gulati M, Singh SK, Kapoor B, Dureja H, Chellappan DK, Anand K, Dua K, Khursheed R, Awasthi A, Kumar R, Kaur J, Corrie L, Pandey NK. Nanocarriers for treatment of dermatological diseases: Principle, perspective and practices. Eur J Pharmacol 2020; 890:173691. [PMID: 33129787 DOI: 10.1016/j.ejphar.2020.173691] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/15/2020] [Accepted: 10/26/2020] [Indexed: 10/23/2022]
Abstract
Skin diseases are the fourth leading non-fatal skin conditions that act as a burden and affect the world economy globally. This condition affects the quality of a patient's life and has a pronounced impact on both their physical and mental state. Treatment of these skin conditions with conventional approaches shows a lack of efficacy, long treatment duration, recurrence of conditions, systemic side effects, etc., due to improper drug delivery. However, these pitfalls can be overcome with the applications of nanomedicine-based approaches that provide efficient site-specific drug delivery at the target site. These nanomedicine-based strategies are evolved as potential treatment opportunities in the form of nanocarriers such as polymeric and lipidic nanocarriers, nanoemulsions along with emerging others viz. carbon nanotubes for dermatological treatment. The current review focuses on challenges faced by the existing conventional treatments along with the topical therapeutic perspective of nanocarriers in treating various skin diseases. A total of 213 articles have been reviewed and the application of different nanocarriers in treating various skin diseases has been explained in detail through case studies of previously published research works. The toxicity related aspects of nanocarriers are also discussed.
Collapse
Affiliation(s)
| | - Sheetu Wadhwa
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India.
| | - Bhupinder Kapoor
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Dinesh Kumar Chellappan
- School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Krishnan Anand
- Department of Chemical Pathology, School of Pathology, Faculty of Health Sciences and National Health Laboratory Service, University of the Free State, Bloemfontein, South Africa
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Rubiya Khursheed
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Ankit Awasthi
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Rajan Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Jaskiran Kaur
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Leander Corrie
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Narendra Kumar Pandey
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| |
Collapse
|
40
|
Donalisio M, Argenziano M, Rittà M, Bastiancich C, Civra A, Lembo D, Cavalli R. Acyclovir-loaded sulfobutyl ether-β-cyclodextrin decorated chitosan nanodroplets for the local treatment of HSV-2 infections. Int J Pharm 2020; 587:119676. [DOI: 10.1016/j.ijpharm.2020.119676] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/17/2020] [Accepted: 07/18/2020] [Indexed: 12/20/2022]
|
41
|
Jiang H, Liang G, Dai M, Dong Y, Wu Y, Zhang L, Xi Q, Qi L. Preparation of doxorubicin-loaded collagen-PAPBA nanoparticles and their anticancer efficacy in ovarian cancer. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:880. [PMID: 32793724 DOI: 10.21037/atm-20-5028] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background The aims of this study were to prepare the collagen-poly (3-acrylamidophenylboronic acid) nanoparticles (collagen-PAPBA NPs) encapsulating doxorubicin (DOX) and research their anticancer efficacy in ovarian cancer. Methods Collagen-PAPBA NPs were prepared, and their morphology and stability morphology were observed by transmission electron microscopy (TEM) and dynamic light scattering system (DLS). Preparation of doxorubicin-loaded Collagen-PAPBA NPs (DOX-loaded NPs) were then prepared, and the drug-loading content, encapsulation efficiency, and in vitro drug-release profiles were calculated. The morphology of DOX-loaded NPs was also observed by DLS, in vitro cytotoxicity to A2780 cells was analyzed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay, in vitro antitumor activity on A2780 cells was observed by immunofluorescence, and in vivo antitumor activity was assessed using an experimental BALB/c mice tumor model. Results DOX-encapsulating collagen-PAPBA NPs were successfully prepared with mediation by biomolecule. The average hydrodynamic diameter of collagen-PAPBA NPs as measured by DLS was about 79 nm, with a homogeneous distribution of size. TEM revealed that nanoparticles were well-dispersed, spherical, and a roughly uniform 75 nm in size. Collagen-PAPBA NPs were quite stable in a wide range of pH and temperature conditions and associated with the concentration of glucose. DLS revealed that the average hydrodynamic diameter of DOX-loaded NPs was about 81.3 nm, with homogeneous distribution of size. TEM revealed that drug-loaded nanoparticles were spherical, well-dispersed, and gad a roughly uniform size of 79 nm. The proportion of DOX loaded into the nanoparticles was 10%, while the encapsulating efficiency was 97%. The result of the releasing test showed that the drug-loaded nanoparticles, as carriers for DOX, had a good sustained-release effect. The cell toxicity experiment showed that the blank NPs had no cytotoxicity to A2780 cells, and that the drug-loaded NPS had good a sustained-release function. They may thus have potential toxic-reducing side effects. Conclusions Under the same doses, the drug-loaded NP had a superior inhibitory effect to free DOX on the growth of human ovarian cancer.
Collapse
Affiliation(s)
- Haiyan Jiang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, China.,Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Guiwen Liang
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Min Dai
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, China
| | - Yansong Dong
- School of Medicine, Nantong University, Nantong, China
| | - Yao Wu
- School of Medicine, Nantong University, Nantong, China
| | - Luzhong Zhang
- School of Medicine, Nantong University, Nantong, China
| | - Qinghua Xi
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, China
| | - Lei Qi
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, China.,Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
42
|
Roy H, Nayak BS, Nandi S. Chitosan Anchored Nanoparticles in Current Drug Development Utilizing Computer-Aided Pharmacokinetic Modeling: Case Studies for Target Specific Cancer Treatment and Future Prospective. Curr Pharm Des 2020; 26:1666-1675. [DOI: 10.2174/1381612826666200203121241] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 12/02/2019] [Indexed: 02/02/2023]
Abstract
Background:
Recently, in the medical and pharmaceutical fields, biopolymers are extensively used for
chemical and mechanical modifications of pharmaceutical dosage forms, which add novel properties, functions,
and applications. Structural modification of dosage form by polymers along with redesigning in pharmaceutical
and tissue engineering fields, presently being the center of analysis for the modern research world, which utilizes
the subtle instruments, precise research strategies and most significantly the excipients.
Method:
Recently, in the medical and pharmaceutical fields, biopolymers are extensively used for
chemical and mechanical modifications of pharmaceutical dosage forms, which add novel properties, functions,
and applications. Structural modification of dosage form by polymers along with redesigning in pharmaceutical
and tissue engineering fields, presently being the center of analysis for the modern research world, which utilizes
the subtle instruments, precise research strategies and most significantly the excipients.
Results:
The most remarkable point is that chitosan-drug conjugated nanoparticles (CDNP) can target cancer
affected cells with the least attempt to killing the neighbor host cell. It is already proved that the CDNP facilitate
the more drugs uptaking or cytotoxicity to a cancerous cell. This overcomes the dosage form designing problems
of complexity in the biological mechanism and cell specificity. A computer-aided pharmacokinetic study as well
as in-silico design with model fitting can provide the possible finding related to target selectivity and interaction.
The computer aided study also reduces time and could make the entire process much cheaper till today, very
few research has been reported, such as PyRx with AutoDock, response surface methodology and molecular
dynamic simulation in drug delivery for chitosan-drug conjugated nanoparticles.
Conclusion:
Therefore, cancer cell target-specific drug delivery using a natural biopolymer conjugate with a
computer-aided pharmacokinetic model will be the thirst area of future research. To get successful anticancer
drug formulation, in-silico pharmacokinetic modeling would minimize labor, and expenses, during and prior to
the experiment has been extensively discussed in the present review.
Collapse
Affiliation(s)
- Harekrishna Roy
- Biju Patnaik University of Technology, Rourkela, Odisha-769004, India
| | - Bhabani S. Nayak
- Institute of Pharmacy and Technology, Salipur, Cuttack - 754202, Odisha, India
| | - Sisir Nandi
- Department of Pharmaceutical Chemistry, Global Institute of Pharmaceutical Education and Research, Affiliated to Uttarakhand Technical University, Kashipur-244713, India
| |
Collapse
|
43
|
PMAA nanogel controllably releases anti-IL-1β IgY for treating allergic rhinitis. JOURNAL OF POLYMER RESEARCH 2019. [DOI: 10.1007/s10965-019-1846-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
44
|
Pontillo ARN, Detsi A. Nanoparticles for ocular drug delivery: modified and non-modified chitosan as a promising biocompatible carrier. Nanomedicine (Lond) 2019; 14:1889-1909. [PMID: 31274373 DOI: 10.2217/nnm-2019-0040] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The eye is a very important, yet sensitive organ, presenting complex anatomy. To overcome its protective mechanisms, with the aim of improving drug delivery, drug encapsulation in nanocarriers is considered in this review. Chitosan is found to be an excellent drug carrier and its application in ophthalmology is being extensively researched. This mucoadhesive biopolymer can protect the encapsulated molecule, optimize its mode of action and minimize any existent risk. Moreover, chitosan and its derivatives may provide advantageous properties to the system such as thermoresponsivity and pH dependency. Finally, dual systems of chitosan with other carriers, such as poly (lactic-co-glycolic acid) and alginate, are also mentioned in this review, as they may offer additional benefits such as higher permeation due to different interaction of each carrier with the corneal layers.
Collapse
Affiliation(s)
- Antonella Rozaria Nefeli Pontillo
- Laboratory of Organic Chemistry, School of Chemical Engineering, National Technical University of Athens, Iroon Politechniou 9, 15780 Athens, Greece
| | - Anastasia Detsi
- Laboratory of Organic Chemistry, School of Chemical Engineering, National Technical University of Athens, Iroon Politechniou 9, 15780 Athens, Greece
| |
Collapse
|
45
|
Zhu N, Chatzistavrou X, Papagerakis P, Ge L, Qin M, Wang Y. Silver-Doped Bioactive Glass/Chitosan Hydrogel with Potential Application in Dental Pulp Repair. ACS Biomater Sci Eng 2019; 5:4624-4633. [DOI: 10.1021/acsbiomaterials.9b00811] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ningxin Zhu
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Peking University, #22 Zhongguancun Nandajie, Haidian District, Beijing 100081, China
| | - Xanthippi Chatzistavrou
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan 48824, United States
| | - Petros Papagerakis
- College of Dentistry and Biomedical Engineering, Toxicology, Pharmacy/Nutrition, Anatomy and Cell Biology Colleges Graduate Programs, University of Saskatchewan, Saskatoon, Canada
| | - Lihong Ge
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Peking University, #22 Zhongguancun Nandajie, Haidian District, Beijing 100081, China
| | - Man Qin
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Peking University, #22 Zhongguancun Nandajie, Haidian District, Beijing 100081, China
| | - Yuanyuan Wang
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Peking University, #22 Zhongguancun Nandajie, Haidian District, Beijing 100081, China
| |
Collapse
|
46
|
Chitosan as a Natural Copolymer with Unique Properties for the Development of Hydrogels. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9112193] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hydrogel-based polymers are represented by those hydrophilic polymers having functional groups in their chain such as amine (NH2), hydroxyl [-OH], amide (-CONH-, -CONH2), and carboxyl [COOH]. These hydrophilic groups raise their potential to absorb fluids or aqueous solution more than their weights. This physicochemical mechanism leads to increased hydrogel expansion and occupation of larger volume, the process which shows in swelling behavior. With these unique properties, their use for biomedical application has been potentially raised owing also to their biodegradability and biocompatibility. Chitosan as a natural copolymer, presents a subject for hydrogel structures and function. This review aimed to study the structure as well as the function of chitosan and its hydrogel properties.
Collapse
|
47
|
Modification of Chitosan for the Generation of Functional Derivatives. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9071321] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Today, chitosan (CS) is probably considered as a biofunctional polysaccharide with the most notable growth and potential for applications in various fields. The progress in chitin chemistry and the need to replace additives and non-natural polymers with functional natural-based polymers have opened many new opportunities for CS and its derivatives. Thanks to the specific reactive groups of CS and easy chemical modifications, a wide range of physico-chemical and biological properties can be obtained from this ubiquitous polysaccharide that is composed of β-(1,4)-2-acetamido-2-deoxy-d-glucose repeating units. This review is presented to share insights into multiple native/modified CSs and chitooligosaccharides (COS) associated with their functional properties. An overview will be given on bioadhesive applications, antimicrobial activities, adsorption, and chelation in the wine industry, as well as developments in medical fields or biodegradability.
Collapse
|
48
|
Chitosan-based nanoparticles: An overview of biomedical applications and its preparation. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2018.10.022] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
49
|
Deepa G, Sivakumar KC, Sajeevan TP. Molecular simulation and in vitro evaluation of chitosan nanoparticles as drug delivery systems for the controlled release of anticancer drug cytarabine against solid tumours. 3 Biotech 2018; 8:493. [PMID: 30498666 PMCID: PMC6246757 DOI: 10.1007/s13205-018-1510-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 11/09/2018] [Indexed: 12/11/2022] Open
Abstract
The present work is an attempt to integrate the molecular simulation studies with in vitro cytotoxicity of cytarabine-loaded chitosan nanoparticles and exploring the potential of this formulation as therapeutics for treating solid tumours. The molecular simulation was performed using GROMACS v5.4 in which, chitosan polymer (CHT; six molecules) was used to study the encapsulation and release of a single molecule of cytarabine. Root Mean Square Deviation (RMSD) of the Cα atom of cytarabine (CBR) molecule shows that CBR starts to diffuse out of the CHT polymer binding pocket around 10.2 ns, indicated by increased fluctuation of RMSD at pH 6.4, while the drug diffusion is delayed at pH 7.4 and starts diffusing around 17.5 ns. Cytarabine-loaded chitosan nanoparticles (CCNP), prepared by ionic gelation method were characterized for encapsulation efficiency, particle size and morphology, zeta potential, crystallinity and drug release profile at pH 6.4 and 7.4. CCNPs showed 64% encapsulation efficiency with an average diameter of 100 nm and zeta potential of + 53.9 mV. It was found that cytarabine existed in amorphous state in nanoformulation. In vitro release studies showed 70% cytarabine was released from the chitosan-based nanoformulation release at pH 6.4, which coincides with the pH of tumour microenvironment. Cytotoxicity against breast cancer cell line (MCF 7) was higher for nanoformulation compared to free cytarabine. Haemocompatibility studies showed that chitosan-based nanoformulation is safe, biocompatible and nonhaemolytic in nature; hence, can be used as a safe drug delivery system. Taken together, our study suggests that chitosan nanoformulation would be an effective strategy for the pH-dependent release of cytarabine against solid tumours and might impart better therapeutic efficiency.
Collapse
Affiliation(s)
- G. Deepa
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Cochin, Kerala 682016 India
| | - K. C. Sivakumar
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Cochin, Kerala 682016 India
- Rajiv Gandhi Centre for Biotechnology, Poojappura, Thiruvananthapuram, Kerala 695 014 India
| | - T. P. Sajeevan
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Cochin, Kerala 682016 India
| |
Collapse
|
50
|
Gorgieva S, Vuherer T, Kokol V. Autofluorescence-aided assessment of integration and μ-structuring in chitosan/gelatin bilayer membranes with rapidly mineralized interface in relevance to guided tissue regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 93:226-241. [DOI: 10.1016/j.msec.2018.07.077] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 07/24/2018] [Accepted: 07/27/2018] [Indexed: 01/31/2023]
|