1
|
Justi LHZ, Silva JF, Santana MS, Laureano HA, Pereira ME, Oliveira CS, Guiloski IC. Non-steroidal anti-inflammatory drugs and oxidative stress biomarkers in fish: a meta-analytic review. Toxicol Rep 2025; 14:101910. [PMID: 39901883 PMCID: PMC11788796 DOI: 10.1016/j.toxrep.2025.101910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/07/2025] [Accepted: 01/12/2025] [Indexed: 02/05/2025] Open
Abstract
Drug residues have been detected in aquatic environments around the world and non-steroidal anti-inflammatory drugs (NSAIDs) are one of the most used classes. Therefore, it is important to verify the physiological effects of these products on exposed non-target organisms such as fish. Through a meta-analytic review, we evaluated the effects of NSAIDs on oxidative stress biomarkers in fish. Overall, Diclofenac was the most frequently tested drug in the systematically selected studies while acute and hydric exposure types were the most prevalent among these studies. The meta-analysis revealed that (1) chronic and subchronic exposures to NSAIDs decreased catalase (CAT) activity, and acute exposure increased glutathione peroxidase (GPx) activity; (2) hydric exposure increased GPx activity; (3) exposure to low concentrations of NSAIDs increased GPx and superoxide dismutase (SOD) activity; (4) Paracetamol exposure increased GPx and SOD activity and lipid peroxidation levels, but reduced glutathione S-transferase (GST) activity; (5) Diclofenac exposure increased GPx activity. In conclusion, our results demonstrated that fish are sensitive to NSAIDs exposure presenting significant alterations in oxidative stress biomarkers, especially in the GPx enzyme. This enzyme exhibits strong potential as a biomarker of NSAIDs exposure in fish. Paracetamol stood out as the NSAID that altered the largest number of oxidative stress biomarkers, drawing attention to its risk to fish. In contrast, ibuprofen did not change the biomarkers evaluated. These data demonstrate the important impact of emerging contaminants such as NSAIDs on aquatic organisms and the need for strategies to mitigate these effects.
Collapse
Affiliation(s)
- Luiz Henrique Zaniolo Justi
- Instituto de Pesquisas Pelé Pequeno Príncipe, Curitiba, PR, Brazil
- Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| | - Juliana Ferreira Silva
- Instituto de Pesquisas Pelé Pequeno Príncipe, Curitiba, PR, Brazil
- Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| | | | | | - Meire Ellen Pereira
- Instituto de Pesquisas Pelé Pequeno Príncipe, Curitiba, PR, Brazil
- Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| | - Cláudia Sirlene Oliveira
- Instituto de Pesquisas Pelé Pequeno Príncipe, Curitiba, PR, Brazil
- Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| | - Izonete Cristina Guiloski
- Instituto de Pesquisas Pelé Pequeno Príncipe, Curitiba, PR, Brazil
- Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| |
Collapse
|
2
|
Teixeira CD, Barbosa PO, Lima WG, Breguez GS, Fagundes MMDA, Costa DC, Magalhães CLDB, Amaral JF, de Souza MO. Preventive treatment with guarana powder ( Paullinia cupana) mitigates acute paracetamol-induced hepatotoxicity by modulating oxidative stress. Toxicol Rep 2025; 14:101946. [PMID: 39989980 PMCID: PMC11847530 DOI: 10.1016/j.toxrep.2025.101946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/21/2025] [Accepted: 01/31/2025] [Indexed: 02/25/2025] Open
Abstract
Liver damage caused by high doses of paracetamol is a global public health concern. Consequently, therapeutic strategies are being explored to prevent this damage. The bioactive compounds present in fruits have shown promise in protecting against disorders associated with paracetamol-induced liver damage. This study assessed the preventive effects of guarana powder on redox status in a rat model of acute hepatotoxicity induced by a toxic dose of paracetamol. Male Wistar rats were divided into four groups: control (C), guarana (G), paracetamol (P), and guarana + paracetamol (GP). Animals in groups G and GP received 300 mg/kg guarana powder daily for seven days. Hepatotoxicity was induced in the P and GP groups by a single dose of 3 g/kg paracetamol on the last day. Paracetamol effectively induced liver damage and oxidative stress in group P animals. Preventive treatment with guarana significantly mitigated this damage and prevented the serum elevation of ALT, AST, and ALP by 44 %, 29 %, and 24 %, respectively. It also prevented a 133 % increase in the necrotic liver area in GP animals compared to the P. Guarana treatment, which prevented reductions in glutathione levels, modulated antioxidant enzyme (SOD and CAT) expression and activity, and protein carbonylation, while enhancing the total antioxidant capacity. Our results suggest that preventive treatment with guarana can attenuate oxidative damage, modulate antioxidant defense gene expression, and protect against paracetamol-induced hepatotoxicity in rats, highlighting guarana powder as a potential therapeutic agent to prevent liver damage induced by high doses of paracetamol.
Collapse
Affiliation(s)
- Clécia Dias Teixeira
- Post-Graduate Program in Health and Nutrition (PPGSN), Nutrition School, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Priscila Oliveira Barbosa
- Department of Gynecology and Obstetrics, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, São Paulo, Brazil
| | - Wanderson Geraldo Lima
- Department of Biological Sciences (DECBI), Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Minas Gerais, Brazil
| | - Gustavo Silveira Breguez
- Post-Graduate Program in Health and Nutrition (PPGSN), Nutrition School, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | | | - Daniela Caldeira Costa
- Department of Biological Sciences (DECBI), Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Minas Gerais, Brazil
| | - Cintia Lopes de Brito Magalhães
- Department of Biological Sciences (DECBI), Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Minas Gerais, Brazil
| | - Joana Ferreira Amaral
- Post-Graduate Program in Health and Nutrition (PPGSN), Nutrition School, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Melina Oliveira de Souza
- Post-Graduate Program in Health and Nutrition (PPGSN), Nutrition School, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| |
Collapse
|
3
|
Li R, Wu H, Xu Y, Xu X, Xu Y, Huang H, Lv X, Liao C, Ye J, Li H. Underlying mechanisms and treatment of acetaminophen‑induced liver injury (Review). Mol Med Rep 2025; 31:106. [PMID: 40017143 DOI: 10.3892/mmr.2025.13471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 01/30/2025] [Indexed: 03/01/2025] Open
Abstract
Acetaminophen (APAP) is safe at therapeutic doses; however, when ingested in excess, it accumulates in the liver and leads to severe hepatotoxicity, which in turn may trigger acute liver failure (ALF). This is known as APAP poisoning and is a major type of drug‑related liver injury. In the United States, APAP poisoning accounts for ≥50% of the total number of ALF cases, making it one of the most common triggers of ALF. According to the American Association for the Study of Liver Diseases, the incidence of APAP‑associated hepatotoxicity has increased over the past few decades; however, the mechanism underlying liver injury due to APAP poisoning has remained inconclusive. The present study aims to comprehensively review and summarize the latest research progress on the mechanism of APAP‑induced liver injury, and to provide scientific and effective guidance for the clinical treatment of APAP poisoning through in‑depth analysis of the metabolic pathways, toxicity‑producing mechanisms and possible protective mechanisms of APAP in the liver.
Collapse
Affiliation(s)
- Ruisi Li
- Chinese Medicine College, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| | - Haojia Wu
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, Guangdong 518112, P.R. China
| | - Yue Xu
- Chinese Medicine College, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| | - Xiaoying Xu
- Chinese Medicine College, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| | - Yiheng Xu
- Chinese Medicine College, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| | - Haitang Huang
- Department of Hepatology, Hubei Key Laboratory of the theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei 430061, P.R. China
| | - Xiaojuan Lv
- Department of Hepatology, Hubei Key Laboratory of the theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei 430061, P.R. China
| | - Chu Liao
- Department of Hepatology, Hubei Key Laboratory of the theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei 430061, P.R. China
| | - Junqiu Ye
- Department of Hepatology, Hubei Key Laboratory of the theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei 430061, P.R. China
| | - Hengfei Li
- Chinese Medicine College, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| |
Collapse
|
4
|
Yang F, Wu L, Xu W, Wu Y, Zhu S, Zhang Y, Chong Y, Peng L. Sodium taurocholate co-transporting polypeptide deficiency attenuates acetaminophen-induced hepatotoxicity via regulating expression of drug metabolism enzymes in mice. Toxicol Appl Pharmacol 2025; 497:117266. [PMID: 39947258 DOI: 10.1016/j.taap.2025.117266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/21/2025] [Accepted: 02/10/2025] [Indexed: 02/20/2025]
Abstract
Acetaminophen (APAP) overdose can induce liver injury and is generally accompanied by disruption of bile acid homeostasis. Physiologically, sodium taurocholate co-transporting polypeptide (NTCP) participates in the uptake of bile acids from portal blood into hepatocytes to maintain enterohepatic recirculation but its role in APAP-induced hepatotoxicity is unclear. Wild-type (WT) C57BL/6J and NTCP knockout (KO) mice were injected with 400mg/kg APAP and liver injury was evaluated by serum biochemical markers and histologic evaluation. RNA-seq analysis was performed to evaluate the liver gene expression profiles in APAP-treated mice. Compared with WT mice, the exposure to APAP overdose caused liver dysfunction, oxidative stress, inflammation and cell death, which were ameliorated by NTCP deficiency. APAP detoxification, metabolism, and elimination were significantly accelerated by the upregulation of UDP-glucuronosyltransferase (Ugt1a1, Ugt1a6 and Ugt1a9), sulfotransferase (Sult1a1 and Sult2a1) and bile acid efflux transporters (Abcc2/3/4) in NTCP KO mice compared with WT mice. Interestingly, APAP-induced hepatotoxicity was ameliorated using Irbesartan and Ezetimibe (NTCP inhibitors). In conclusion, NTCP deficiency attenuates APAP-induced hepatotoxicity by enhancing the metabolism and elimination of APAP. NTCP inhibitors protect against APAP-induced hepatotoxicity and thus are a potential therapeutic option.
Collapse
Affiliation(s)
- Fangji Yang
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Department of Critical Care Medicine, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Lina Wu
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wenxiong Xu
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yuankai Wu
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shu Zhu
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yuzhen Zhang
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yutian Chong
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Key Laboratory of Liver Disease of Guangdong Province, Guangzhou, China.
| | - Liang Peng
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Key Laboratory of Liver Disease of Guangdong Province, Guangzhou, China.
| |
Collapse
|
5
|
Tan J, Li F, Zhang X, Zhu H, Liu J, Wu T, Zhang Y, Zhang D, Geng Y, Shen Y. Extracts from petal of the Crocus sativus (saffron) possesses detoxification effects on acetaminophen induced liver injury by inhibiting hepatocyte apoptosis via regulating Nrf2/HO-1 signaling. Fitoterapia 2025; 182:106452. [PMID: 39993543 DOI: 10.1016/j.fitote.2025.106452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 02/10/2025] [Accepted: 02/21/2025] [Indexed: 02/26/2025]
Abstract
The purpose of this study was to investigate the detoxification effect of extracts from the petal of Crocus sativus L. (PCSE) on acetaminophen (APAP) induced liver injury in mice and its related mechanisms. LC-MS/MS analysis was used to identify the main components in PCSE, and an APAP-induced acute liver injury model in mice was constructed to evaluate the detoxification effect of PCSE. Liver tissue H&E staining, liver function indexes including ALT and AST, pro-inflammatory cytokine including TNF-α and IL-6, as well as hepatic tissue oxidative stress levels were examined. In addition, in vitro APAP induced cell was also prepared, apoptosis levels were detected by AO/EB staining, ROS fluorescence intensity was analyzed as well as the expression levels of apoptosis-related proteins and Nrf2/HO-1 pathway-related proteins were detected by western blot, to investigate the mechanism of PCSE's action in ameliorating liver injury. The results showed that PCSE can improve the survival rate of APAP induced mice, decrease ALT, AST, TNF-α and IL-6 levels, and ameliorate the liver injury induced by APAP. Furthermore, the mechanism research suggested PCSE attenuated oxidative stress and apoptosis in APAP-induced liver cells, as well as activated the Nrf2/HO-1 signaling. In summary, PCSE possesses potential detoxification effects on APAP induced liver injury by inhibiting hepatocyte apoptosis via regulating Nrf2/HO-1 signaling, which provides more possibilities for the drug selection for the treatment of liver injury in clinical practice.
Collapse
Affiliation(s)
- Jin Tan
- Gooddoctor Pharmaceutical Group Co., Ltd., Chengdu 610073, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Fangqiong Li
- Gooddoctor Pharmaceutical Group Co., Ltd., Chengdu 610073, China
| | - Xin Zhang
- Gooddoctor Pharmaceutical Group Co., Ltd., Chengdu 610073, China
| | - Hongrui Zhu
- Gooddoctor Pharmaceutical Group Co., Ltd., Chengdu 610073, China
| | - Jin Liu
- Gooddoctor Pharmaceutical Group Co., Ltd., Chengdu 610073, China
| | - Taoqing Wu
- Gooddoctor Pharmaceutical Group Co., Ltd., Chengdu 610073, China
| | - Yang Zhang
- Gooddoctor Pharmaceutical Group Co., Ltd., Chengdu 610073, China
| | - Dingkun Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yuefei Geng
- Gooddoctor Pharmaceutical Group Co., Ltd., Chengdu 610073, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Yongmei Shen
- Gooddoctor Pharmaceutical Group Co., Ltd., Chengdu 610073, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
6
|
Dong Y, Jia R, Jiang Y, Li Q, Wang L, Ding W, Yan R, Qiu Y, Shi Z, Liu W, Wang J, Xu S, Li N. SMND-309 activates Nrf2 signaling to alleviate acetaminophen-induced hepatotoxicity and oxidative stress. PLoS One 2025; 20:e0310879. [PMID: 40163430 PMCID: PMC11957308 DOI: 10.1371/journal.pone.0310879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 02/17/2025] [Indexed: 04/02/2025] Open
Abstract
BACKGROUND Acetaminophen (APAP) can be used for pain relief and fever alleviation, the overdose of which, however, may lead to the accumulation of N-acetyl-p-benzoquinone imine (NAPQI), inducing oxidative stress and liver damage. The natural compound SMND-309 has been shown to have hepatoprotective effects and potential antioxidant activity. However, its ability to alleviate acetaminophen-induced acute liver injury (AILI) has not been elucidated. OBJECTIVE To explore the protective effect of the natural compound SMND-309 against AILI and the potential mechanism. METHODS The AILI model was established using a mouse model and HepG2 cells for pathological evaluation and biochemical assays of mouse liver tissues to assess the level of liver injury. The effects of SMND-309 on cellular ROS levels and mitochondrial membrane potential were detected using DCFH-DA and JC-1 probes. Western blotting was performed to detect the expressions of Nrf2 signaling pathway and key proteins related to APAP metabolism in the combination of immunohistochemistry of liver tissues, with immunofluorescence assay used to detect whether Nrf2 undergoes nuclear translocation. Molecular docking, molecular dynamics simulation (MD) and biofilm layer interference (BLI) experiments were performed to detect the interaction of SMND-309 with Keap1. RESULTS SMND-309 improved histopathological changes in the liver, decreased alanine aminotransferase (ALT), aspartate aminotransferase (AST), and lactate dehydrogenase (LDH) levels, as well as attenuated oxidative stress injury and mitochondrial dysfunction in the HepG2 cell line. Further studies revealed that SMND-309 promoted nuclear translocation of Nrf2 and upregulated the expressions of glutamate-cysteine ligase catalytic subunit (GCLC), heme oxygenase 1 (HO-1) and NAD(P)H quinone dehydrogenase 1 (NQO1). In addition, molecular docking and MD suggested that SMND-309 could bind Keap1 and identified possible binding modes, with BLI experiments confirming that SMND-309 directly interacted with Keap1. CONCLUSION SMND-309 exerts hepatoprotective effects against AILI in an Nrf2-ARE signaling pathway-dependent manner.
Collapse
Affiliation(s)
- Yao Dong
- Binzhou Medical University, Yantai, Shandong, P.R.China
| | - Ru Jia
- Department of Obstetrics, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, P.R.China
| | - Yujie Jiang
- Binzhou Medical University, Yantai, Shandong, P.R.China
| | - Qing Li
- Department of Obstetrics, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, P.R.China
| | - Lei Wang
- Department of Obstetrics, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, P.R.China
| | - Wensi Ding
- Binzhou Medical University, Yantai, Shandong, P.R.China
| | - Rui Yan
- Binzhou Medical University, Yantai, Shandong, P.R.China
| | - Yujie Qiu
- Binzhou Medical University, Yantai, Shandong, P.R.China
| | - Zhengjie Shi
- Binzhou Medical University, Yantai, Shandong, P.R.China
| | - Wenying Liu
- Binzhou Medical University, Yantai, Shandong, P.R.China
| | - Jing Wang
- Department of Gastroenterology, Yantai Zhifu Hospital, Yantai, Shandong, P.R.China
| | - Sen Xu
- Binzhou Medical University, Yantai, Shandong, P.R.China
| | - Na Li
- Department of Orthopedics, Yantai Yantaishan Hospital, Yantai, Shandong, P.R.China
| |
Collapse
|
7
|
Shi JL, Sun T, Li Q, Li CM, Jin JF, Zhang C. Mogroside V protects against acetaminophen-induced liver injury by reducing reactive oxygen species and c-jun-N-terminal kinase activation in mice. World J Hepatol 2025; 17:104520. [PMID: 40177205 PMCID: PMC11959673 DOI: 10.4254/wjh.v17.i3.104520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/24/2025] [Accepted: 03/06/2025] [Indexed: 03/26/2025] Open
Abstract
BACKGROUND High levels of acetaminophen (APAP) consumption can result in significant liver toxicity. Mogroside V (MV) is a bioactive, plant-derived triterpenoid known for its various pharmacological activities. However, the impact of MV on acute liver injury (ALI) is unknown. AIM To investigate the hepatoprotective potential of MV against liver damage caused by APAP and to examine the underlying mechanisms. METHODS Mice were divided into three groups: Saline, APAP and APAP + MV. MV (10 mg/kg) was given intraperitoneally one hour before APAP (300 mg/kg) administration. Twenty-four hours after APAP exposure, serum transaminase levels, liver necrotic area, inflammatory responses, nitrotyrosine accumulation, and c-jun-N-terminal kinase (JNK) activation were assessed. Additionally, we analyzed reactive oxygen species (ROS) levels, JNK activation, and cell death in alpha mouse liver 12 (AML12) cells. RESULTS MV pre-treatment in vivo led to a reduction in the rise of aspartate transaminase and alanine transaminase levels, mitigated liver damage, decreased nitrotyrosine accumulation, and blocked JNK phosphorylation resulting from APAP exposure, without affecting glutathione production. Similarly, MV diminished the APAP-induced increase in ROS, JNK phosphorylation, and cell death in vitro. CONCLUSION Our study suggests that MV treatment alleviates APAP-induced ALI by reducing ROS and JNK activation.
Collapse
Affiliation(s)
- Jia-Lin Shi
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
| | - Tian Sun
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- China-USA Lipids in Health and Disease Research Center, Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- Laboratory of Hepatobiliary and Pancreatic Surgery, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
| | - Qing Li
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- China-USA Lipids in Health and Disease Research Center, Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- Laboratory of Hepatobiliary and Pancreatic Surgery, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
| | - Chun-Mei Li
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- China-USA Lipids in Health and Disease Research Center, Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- Laboratory of Hepatobiliary and Pancreatic Surgery, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
| | - Jun-Fei Jin
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- China-USA Lipids in Health and Disease Research Center, Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- Laboratory of Hepatobiliary and Pancreatic Surgery, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
| | - Chong Zhang
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- China-USA Lipids in Health and Disease Research Center, Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- Laboratory of Hepatobiliary and Pancreatic Surgery, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China.
| |
Collapse
|
8
|
Habibi B, Bahadori Y, Pashazadeh S, Pashazadeh A. ZIF-67 decorated with silica nanoparticles and graphene oxide nanosheets composite modified electrode for simultaneous determination of paracetamol and diclofenac. Sci Rep 2025; 15:9499. [PMID: 40108259 PMCID: PMC11923285 DOI: 10.1038/s41598-025-94178-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 03/12/2025] [Indexed: 03/22/2025] Open
Abstract
In this work, a novel nanocomposite containing zeolitic imidazolate framework-67 decorated silica nanoparticles/graphene oxide nanosheets (ZIF-67/SiO2NPs/GONs) was synthesized and used for the fabrication of the modified glassy carbon electrode for individual and simultaneous electrodetermination of paracetamol (PAR) and diclofenac (DIC) at trace levels. Structural and morphological characterization of the nanocomposite were carried out using suitable techniques. The modified electrode; ZIF-67/SiO2NPs/GONs/GCE, exhibited excellent electrocatalytic activities toward the oxidation of PAR and DIC than the bare GCE, GONs/GCE, SiO2NPs/GONs/GCE and ZIF-67/GCE. Through using differential pulse voltammetry, the individual and simultaneous determination of PAR and DIC were conducted by the ZIF-67/SiO2NPs/GONs/GCE. Under optimal conditions, it has been observed that the calibration plots for PAR and DIC exhibit linearity within the concentration ranges of 0.5-190 (PAR) and 0.5-200 µM (DIC), with detection limits of 0.29 and 0.132 µM for PAR and DIC, respectively. The ZIF-67/SiO2NPs/GONs/GCE shows commendable stability, reproducibility, and repeatability, and the proposed method is evaluated by individual and simultaneous determination of PAR and DIC in real samples with satisfactory results (recovery > 97%).
Collapse
Affiliation(s)
- Biuck Habibi
- Electroanalytical Chemistry Laboratory, Department of Chemistry, Faculty of Sciences, Azarbaijan Shahid Madani University, Tabriz, 53714-161, Iran.
| | - Younes Bahadori
- Electroanalytical Chemistry Laboratory, Department of Chemistry, Faculty of Sciences, Azarbaijan Shahid Madani University, Tabriz, 53714-161, Iran.
| | - Sara Pashazadeh
- Electroanalytical Chemistry Laboratory, Department of Chemistry, Faculty of Sciences, Azarbaijan Shahid Madani University, Tabriz, 53714-161, Iran
| | - Ali Pashazadeh
- Electroanalytical Chemistry Laboratory, Department of Chemistry, Faculty of Sciences, Azarbaijan Shahid Madani University, Tabriz, 53714-161, Iran
| |
Collapse
|
9
|
Kumar H, Dhalaria R, Kimta N, Guleria S, Upadhyay NK, Nepovimova E, Dhanjal DS, Sethi N, Manickam S. Curcumin: A Potential Detoxifier Against Chemical and Natural Toxicants. Phytother Res 2025; 39:1494-1530. [PMID: 39853860 DOI: 10.1002/ptr.8442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/05/2025] [Accepted: 01/11/2025] [Indexed: 01/26/2025]
Abstract
The human body gets exposed to a variety of toxins intentionally or unintentionally on a regular basis from sources such as air, water, food, and soil. Certain toxins can be synthetic, while some are biological. The toxins affect the various parts of the body by activating numerous pro-inflammatory markers, like oxidative stresses, that tend to disturb the normal function of the organs ultimately. Nowadays, people use different types of herbal treatments, viz., herbal drinks that contain different spices for detoxification of their bodies. One such example is turmeric, the most commonly available spice in the kitchen and used across all kinds of households. Turmeric contains curcumin, which is a natural polyphenol. Curcumin is a medicinal compound with different biological activities, such as antioxidant, antineoplastic, anti-inflammatory, and antibacterial. Hence, this review gives a comprehensive insight into the promising potential of curcumin in the detoxification of heavy metals, carbon tetrachloride, drugs, alcohol, acrylamide, mycotoxins, nicotine, and plastics. The review encompasses diverse animal-based studies portraying curcumin's role in nullifying the different toxic effects in various organs of the body (especially the liver, kidney, testicles, and brain) by enhancing defensive signaling pathways, improving antioxidant enzyme levels, inhibiting pro-inflammatory markers activities and so on. Furthermore, this review also argues over curcumin's safety assessment for its utilization as a detoxifying agent.
Collapse
Affiliation(s)
- Harsh Kumar
- Centre of Advanced Technologies, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Rajni Dhalaria
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Neetika Kimta
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Shivani Guleria
- Department of Biotechnology, TIFAC-Centre of Relevance and Excellence in Agro and Industrial Biotechnology (CORE), Thapar Institute of Engineering and Technology, Patiala, India
| | | | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
- Centre for Advanced Innovation Technologies, VSB-Technical University of Ostrava, Ostrava-Poruba, Czech Republic
| | - Daljeet Singh Dhanjal
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, India
| | - Nidhi Sethi
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | - Sivakumar Manickam
- Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, Brunei
| |
Collapse
|
10
|
Pandey B, Pandey AK, Bhardwaj L, Dubey SK. Biodegradation of acetaminophen: Current knowledge and future directions with mechanistic insights from omics. CHEMOSPHERE 2025; 372:144096. [PMID: 39818083 DOI: 10.1016/j.chemosphere.2025.144096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 01/06/2025] [Accepted: 01/08/2025] [Indexed: 01/18/2025]
Abstract
Acetaminophen (APAP), one of the most frequently used antipyretic and analgesic medications, has recently grown into a persistent organic contaminant of emerging concern due to its over-the-counter and widespread use. The excessive accumulation of APAP and its derivatives in various environmental matrices is threatening human health and the ecosystem. The complexity of APAP and its intermediates augments the need for adequate innovative and sustainable strategies for the remediation of contaminated environments. Bioremediation serves as an efficient, eco-friendly, cost-effective, and sustainable approach to mitigate the toxic impacts of APAP. The present review provides comprehensive insights into the ecotoxicity of APAP, its complex biodegradation pathways, and the various factors influencing biodegradation. The omics approaches viz., genomics/metagenomics, transcriptomics/metatranscriptomics, proteomics, and metabolomics have emerged as powerful tools for understanding the diverse APAP-degraders, degradation-associated genes, enzymatic pathways, and metabolites. The outcomes revealed amidases, deaminases, oxygenases, and dioxygenases as the lead enzymes mediating degradation via 4-aminophenol, hydroquinone, hydroxyquinol, 3-hydroxy-cis, cis-muconate, etc. as the major intermediates. Overall, a holistic approach with the amalgamation of omics aspects would accelerate the bioaugmentation processes and play a significant role in formulating strategies for remediating and reducing the heavy loads of acetaminophen from the environmental matrices.
Collapse
Affiliation(s)
- Bhavana Pandey
- Molecular Ecology Laboratory, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Anand Kumar Pandey
- Department of Biotechnology Engineering, Institute of Engineering and Technology, Bundelkhand University, Jhansi, 284128, India
| | - Laliteshwari Bhardwaj
- Molecular Ecology Laboratory, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Suresh Kumar Dubey
- Molecular Ecology Laboratory, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|
11
|
Vandoorne CZ. Suicidal Iron and Paracetamol Overdose: A Case Report. Am J Forensic Med Pathol 2025; 46:e5-e7. [PMID: 39621068 DOI: 10.1097/paf.0000000000000997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Affiliation(s)
- Carmen Zenda Vandoorne
- Medical Registrar, Department of Forensic Medicine, University of Pretoria, Prinshof Campus, Pretoria, South Africa
| |
Collapse
|
12
|
McDonald DD, Zhang Y, Almasri B. How people respond to their analgesic adverse drug event: A secondary data analysis. J Am Assoc Nurse Pract 2025; 37:149-157. [PMID: 39808580 DOI: 10.1097/jxx.0000000000001073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 08/13/2024] [Indexed: 01/16/2025]
Abstract
BACKGROUND An individual's inability to self-identify or refusal to acknowledge an analgesic adverse drug event (ADE) lengthens the time to ADE treatment and resolution and may worsen the outcome. PURPOSE The purpose was to describe how people who experienced an analgesic ADE during pain self-management respond to the event and to identify predictors of serious analgesic ADEs. METHODOLOGY The design was a secondary data analysis. The sample consisted of 599 adult cases that had an analgesic ADE during pain self-management and reported their response to the ADE, the analgesic, a description of the ADE, demographic, and health data. Logistic regression was used to test predictors of serious versus nonserious analgesic ADEs. RESULTS Three-fourth (75.5%) of cases indicated the ADE was easy to connect to the analgesic. The majority (72.6%) stopped the medication. Most (71.9%) talked with their provider. Serious ADEs such as gastrointestinal bleeding occurred in 16.2% of cases. Significant predictors of serious analgesic ADEs included less than a baccalaureate degree, male gender, and a higher Analgesic Adverse Drug Event Measure score. CONCLUSIONS Adults who experience an analgesic ADE generally respond in an injury prevention way. A smaller group of individuals who experienced a serious analgesic ADE did not seem to differentiate between serious and nonserious ADEs. IMPLICATIONS To promote safe pain management when prescribing new analgesics, providers should highlight common serious ADEs and instruct patients to contact them if an ADE emerges and to seek immediate care if they suspect a serious ADE.
Collapse
|
13
|
Zhang QH, Jin LM, Lin MS, Wang MX, Cui YQ, Ye JX, Xiong YQ, Luo W, Zhu WW, Liang G. FNDC5/Irisin exacerbates APAP-induced acute liver injury through activating JNK/NF-κB and inflammatory response. Acta Pharmacol Sin 2025:10.1038/s41401-025-01509-7. [PMID: 40016523 DOI: 10.1038/s41401-025-01509-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 02/10/2025] [Indexed: 03/01/2025]
Abstract
Acute liver injury (ALI) is associated with high mortality rates. Despite its severity, there are currently no effective interventions, underscoring the urgent need for research on the mechanisms driving ALI progression. Irisin, a hormone derived from its precursor FNDC5, has been shown to play a critical role in some chronic liver diseases. In this study we investigated the role of hepatic FNDC5/Irisin in a mouse model of AILI induced by acetaminophen (APAP, 400 mg/kg, i.p.). The mice were euthanized at 6, 12 and 24 h after APAP injection, then the blood and liver tissues were collected for analyses. By conducting transcriptome sequencing, we identified that both the expression and release of FNDC5/Irisin were significantly increased and highly correlated with AILI. We showed that knockout of Irisin significantly improved APAP-induced tissue damage and hepatocyte death in mouse liver. Conversely, preinjection of recombinant Irisin protein (1 mg·kg-1·d-1, i.p., for 3 days) exacerbated the AILI in FNDC5 knockout mice. RNA-seq analysis revealed that knockout of FNDC5/Irisin reduced inflammatory responses and JNK/NF-κB activation in APAP-treated mouse liver, while exogenous Irisin administration aggravated JNK/NF-κB-mediated inflammation. In primary mouse hepatocytes treated with APAP (15 mM), application of Irisin (100 ng/mL) activated the integrin αV/JNK/NF-κB axis, driving inflammation and oxidative stress. In summary, this study highlights Irisin as a critical regulator in AILI progression. Circulating Irisin could be a novel biomarker for AILI diagnosis, and targeting FNDC5/Irisin could hold promise for the development of novel treatments for AILI.
Collapse
Affiliation(s)
- Qian-Hui Zhang
- Department of Cardiology and Medical Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji, 133002, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Lei-Ming Jin
- Department of Cardiology and Medical Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Meng-Sha Lin
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Min-Xiu Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Ya-Qian Cui
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Jia-Xi Ye
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yong-Qiang Xiong
- Department of Cardiology and Medical Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Wu Luo
- Department of Cardiology and Medical Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China.
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
- The Affiliated Cangnan Hospital, Wenzhou Medical University, Wenzhou, 325800, China.
| | - Wei-Wei Zhu
- Department of Cardiology and Medical Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China.
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
- The Affiliated Cangnan Hospital, Wenzhou Medical University, Wenzhou, 325800, China.
| | - Guang Liang
- Department of Cardiology and Medical Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China.
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
14
|
Einafshar E, Bahrami P, Pashaei F, Naseri P, Ay Gharanjik A, Mirteimoori A, Daraeebaf N, Marami Y, Sahebkar A, Hosseini H. The potential of curcumin in mitigating acetaminophen-induced liver damage. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03907-4. [PMID: 40009170 DOI: 10.1007/s00210-025-03907-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 02/10/2025] [Indexed: 02/27/2025]
Abstract
Acetaminophen (APAP) is a widely used over-the-counter medication for pain and fever, but its overuse can lead to liver toxicity, hepatocyte apoptosis, and necrosis. Despite therapeutic advances in drug-induced hepatotoxicity, APAP-induced liver damage still poses a medical challenge. Recently, natural products have emerged as potential options for mitigating the effects of APAP hepatotoxicity. Curcumin, a natural compound with antioxidant and anti-inflammatory properties, has shown promising results in drug-induced hepatotoxicity. However, further investigations are needed to assess the clinical benefits of curcumin. In this review, we discuss the mechanisms of APAP-induced liver damage and the role of curcumin in preventing liver necrosis, oxidative stress, inflammation, and apoptosis caused by APAP overdose. Through its ability to scavenge free radicals, prevent lipid peroxidation, restore glutathione (GSH) levels, and inhibit apoptosis, curcumin has been found to significantly reduce oxidative stress and protect liver tissue from APAP toxicity in various studies. This paper also reviews the potential of novel nanoformulations to enhance the bioavailability of curcumin for improved therapeutic outcomes. Overall, the evidence suggests that curcumin could be a promising intervention to mitigate the harmful effects of APAP overdose and improve liver health. However, further research is required to assess the optimal dosing and timing of curcumin administration in APAP toxicity.
Collapse
Affiliation(s)
- Elham Einafshar
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Pegah Bahrami
- School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Pashaei
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Paniz Naseri
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Altin Ay Gharanjik
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Atefe Mirteimoori
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nastaran Daraeebaf
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Yegane Marami
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Hossein Hosseini
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
15
|
Maris BR, Grama A, Pop TL. Drug-Induced Liver Injury-Pharmacological Spectrum Among Children. Int J Mol Sci 2025; 26:2006. [PMID: 40076629 PMCID: PMC11901067 DOI: 10.3390/ijms26052006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/15/2025] [Accepted: 02/20/2025] [Indexed: 03/14/2025] Open
Abstract
Drug-induced liver injury (DILI) is one of the main causes of acute liver failure in children. Its incidence is probably underestimated, as specific diagnostic tools are currently lacking. Over 1000 known drugs cause DILI, and the list is expanding. The aim of this review is to describe DILI pathogenesis and emphasize the drugs accountable for child DILI in order to aid its recognition. Intrinsic DILI is well described in terms of mechanism, incriminated drugs, and toxic dose. Conversely, idiosyncratic DILI (iDILI) is unpredictable, occurring as a result of a particular response to drug administration, and its occurrence cannot be foreseen in clinical studies. Half of pediatric iDILI cases are linked to antibiotics, mostly amoxicillin-clavulanate, in the immune-allergic group, while autoimmune DILI is the hallmark of minocycline and nitrofurantoin. Secondly, antiepileptics are responsible for 20% of pediatric iDILI cases, children being more prone to iDILI caused by these agents than adults. A similar tendency was observed in anti-tuberculosis drugs, higher incidences being reported in children below three years old. Current data show growing cases of iDILI related to antineoplastic agents, atomoxetine, and albendazole, so that it is advisable for clinicians to maintain a high index of suspicion regarding iDILI.
Collapse
Affiliation(s)
- Bianca Raluca Maris
- 2nd Pediatric Discipline, Department of Mother and Child, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (B.R.M.); (T.L.P.)
- 2nd Pediatric Clinic, Emergency Clinical Hospital for Children, 400177 Cluj-Napoca, Romania
| | - Alina Grama
- 2nd Pediatric Discipline, Department of Mother and Child, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (B.R.M.); (T.L.P.)
- 2nd Pediatric Clinic, Emergency Clinical Hospital for Children, 400177 Cluj-Napoca, Romania
| | - Tudor Lucian Pop
- 2nd Pediatric Discipline, Department of Mother and Child, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (B.R.M.); (T.L.P.)
- 2nd Pediatric Clinic, Emergency Clinical Hospital for Children, 400177 Cluj-Napoca, Romania
| |
Collapse
|
16
|
Alkandahri MY, Sadino A, Abriyani E, Hermanto F, Oktoba Z, Sayoeti MFW, Sangging PRA, Wardani D, Hasan N, Sari SW, Safitri NA, Ikhtianingsih W, Safitri S. Evaluation of hepatoprotective and nephroprotective activities of Castanopsis costata extract in rats. Biomed Rep 2025; 22:24. [PMID: 39720299 PMCID: PMC11668127 DOI: 10.3892/br.2024.1902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/19/2024] [Indexed: 12/26/2024] Open
Abstract
The liver and kidneys are important organs for body homeostasis but susceptible to damage or injury caused by different factors. A number of medicinal plants, such as Castanopsis costata have been proven effective in protecting the liver and kidneys from damage. Therefore, the present study aimed to examine the effect of C. costata extract (CcE) on paracetamol-induced hepatotoxicity and gentamicin-induced nephrotoxicity in rat model. Each treatment group was given CcE at doses of 100, 200 and 400 mg/kg for 21 and 8 days for hepatoprotective tests and nephroprotective tests, respectively. To induce liver and kidney damage, rats were given paracetamol 1,000 mg/kg orally for 7 (15-21) and gentamicin 80 mg/kg intraperitoneally for 5 (4-8) days. To assess liver function, the levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), total bilirubin (TB), total cholesterol (TC), total albumin (TA) and total protein (TP) were measured, as well as liver antioxidant enzymes. Meanwhile, to assess kidney function, the levels of serum creatinine (SCr), serum urea (SU) and uric acid (UA) were measured. TNF-α and IFN-γ were also measured with histopathology testing to assess the effects of liver and kidney organ damage in each experiment. The results showed that CcE reduced the levels of AST, ALT, ALP, TB and TC, increased TA, TP and liver antioxidant enzymes, as well as reducing SCr, SU and UA when compared with the pathological group. Additionally, CcE reduced the levels of TNF-α and IFN-γ, as well as improving the structure of liver and kidney tissue as confirmed by histopathology. CcE had hepatoprotective and nephroprotective effects on paracetamol-induced and gentamicin-induced rats, respectively.
Collapse
Affiliation(s)
- Maulana Yusuf Alkandahri
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Buana Perjuangan Karawang, Karawang, West Java 41361, Indonesia
| | - Asman Sadino
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Garut, Garut, West Java 44151, Indonesia
| | - Ermi Abriyani
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Buana Perjuangan Karawang, Karawang, West Java 41361, Indonesia
| | - Faizal Hermanto
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Jenderal Achmad Yani, Cimahi, West Java 40525, Indonesia
| | - Zulpakor Oktoba
- Department of Pharmacy, Faculty of Medicine, Universitas Lampung, Bandar Lampung 35141, Indonesia
| | | | | | - Diah Wardani
- Diploma Program of Pharmacy, Karsa Husada Garut College of Health Sciences, Garut, West Java 44151, Indonesia
| | - Nahrul Hasan
- Department of Pharmacy, Faculty of Health Sciences, Universitas Jenderal Soedirman, Purwokerto, Central Java 53122, Indonesia
| | - Suci Wulan Sari
- Department of Pharmacy, Faculty of Health Sciences, Universitas Jenderal Soedirman, Purwokerto, Central Java 53122, Indonesia
| | - Nurul Aeni Safitri
- Faculty of Pharmacy, Universitas Buana Perjuangan Karawang, Karawang, West Java 41361, Indonesia
| | - Windi Ikhtianingsih
- Faculty of Pharmacy, Universitas Buana Perjuangan Karawang, Karawang, West Java 41361, Indonesia
| | - Safitri Safitri
- Faculty of Pharmacy, Universitas Buana Perjuangan Karawang, Karawang, West Java 41361, Indonesia
| |
Collapse
|
17
|
Long Z, Yu X, Li S, Cheng N, Huo C, Zhang X, Wang S. Sakuranetin Prevents Acetaminophen-Induced Liver Injury via Nrf2-Induced Inhibition of Hepatocyte Ferroptosis. Drug Des Devel Ther 2025; 19:159-171. [PMID: 39816848 PMCID: PMC11733203 DOI: 10.2147/dddt.s497817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/07/2025] [Indexed: 01/30/2025] Open
Abstract
Introduction Oxidative stress is an important cause of acetaminophen (APAP)-induced liver injury (AILI). Sakuranetin (Sak) is an antitoxin from the cherry flavonoid plant with good antioxidant effects. However, whether sakuranetine has a protective effect on APAP-induced liver injury is not clear. Methods Mouse and HepG2 cell models of APAP injury were used to investigate the effect of sakuranetin on AILI and its mechanism. Serum transaminase levels, histological changes, inflammatory mediators, oxidative stress, ferroptosis-related markers and Nrf2 signaling pathway proteins were analyzed. Results Sakuranetin significantly reduced serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST), as well as inflammatory factor; increased HepG2 activity and decreased cell death; inhibited ROS production, increased glutathione (GSH) content, expression of Glutathione Peroxidase 4 (GPX4) and Solute Carrier Family 7 Member 11 (SLC7A11), and decreased malondialdehyde and Acyl-CoA Synthetase Long Chain Family Member 4 (ACSL4) expression in mice and HepG2 cells after APAP treatment. Further analysis showed that sakuranetin induced the activation of the NFE2 Like BZIP Transcription Factor 2 (Nrf2) signaling pathway in liver tissue and HepG2 cells and promoted the nuclear translocation of Nrf2. Moreover, the hepatoprotective effect of sakuranetin and its inhibitory effect on ferroptosis were significantly attenuated by the Nrf2 inhibitor ML385. Conclusion Sakuranetin alleviates AILI by activating the Nrf2 signaling pathway and inhibiting ferroptosis, and sakuranetin may be a potential therapeutic agent for the treatment of AILI.
Collapse
Affiliation(s)
- Zhida Long
- Department of Hepatobiliary Surgery, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, Hubei, People’s Republic of China
| | - Xiao Yu
- Department of Hepatobiliary Surgery, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, Hubei, People’s Republic of China
| | - Shijia Li
- Department of Hepatobiliary Surgery, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, Hubei, People’s Republic of China
| | - Nuo Cheng
- Department of Hepatobiliary Surgery, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, Hubei, People’s Republic of China
| | - Chenglong Huo
- Department of Hepatobiliary Surgery, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, Hubei, People’s Republic of China
| | - Xuewen Zhang
- Department of Hepatobiliary Surgery, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, Hubei, People’s Republic of China
| | - Shuai Wang
- Department of Hepatobiliary Surgery, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, Hubei, People’s Republic of China
| |
Collapse
|
18
|
Kim S, Song SW, Lee H, Byun CS, Park JH. Paracetamol did not improve the analgesic efficacy with regional block after video assisted thoracoscopic surgery: a randomized controlled trial. BMC Anesthesiol 2025; 25:11. [PMID: 39773335 PMCID: PMC11706059 DOI: 10.1186/s12871-025-02888-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 01/01/2025] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Various analgesic techniques have been applied, the pain after video assisted thoracic surgery (VATS) is still challenging for anesthesiologists. Paracetamol provide analgesic efficacy in many surgeries. However, clinical evidence in the lung surgery with regional block remain limited. This monocentric double-blind randomized controlled trial investigates the efficacy of paracetamol after VATS with regional block. METHODS A total of 90 patients were randomized to receive paracetamol (1 g) or normal saline. Erector Spinae Plane Block and Intercostal Nerve block were applied during the surgery. The Visual Analogue Scales (VAS) pain score was measured in the PACU as well as 6, 12, 24, and 48 h postoperatively. And the total dose of rescue analgesics administered to patients in morphine milligram equivalents (MME), satisfaction score, length of hospital stays, and incidence of nausea and vomiting were also recorded. RESULTS The VAS pain score at each time point, the primary endpoint, did not differ between the groups (3.09 ± 2.14 vs. 2.53 ± 1.67, p = 0.174 at PACU; 4.56 ± 2.80 vs. 4.06 ± 2.46, p = 0.368 at 6 h; 3.07 ± 1.98 vs. 3.44 ± 2.48, p = 0.427 at 12 h; 2.10 ± 2.00 vs. 2.49 ± 2.07, p = 0.368 at 24 h; and 1.93 ± 1.76 vs. 2.39 ± 1.97, p = 0.251 at 48 h postoperatively). Satisfaction scores (4.37 ± 0.76 vs. 4.14 ± 0.88, p = 0.201), nausea (35.6% vs. 37.8%, p = 0.827), hypotension (2.2% vs. 0.0%, p = 0.317), and bradycardia (6.7% vs. 2.2%, p = 0.309) were also reported at similar rates. CONCLUSIONS The analgesic efficacy of one gram of paracetamol with ESPB and ICNB after VATS was not proven. Thus, caution should be exercised when prescribing paracetamol for pain control during VATS. TRIAL REGISTRATION this trial was registered on Clinical Research Information Service (CRIS), Republic of Korea (KCT0008710). Registration date: 17/08/2023.
Collapse
Affiliation(s)
- Sujin Kim
- Department of Anesthesiology and Pain Medicine, Wonju College of Medicine, Yonsei University, Wonju, 26426, Korea
| | - Seung Woo Song
- Department of Anesthesiology and Pain Medicine, Wonju College of Medicine, Yonsei University, Wonju, 26426, Korea
| | - Haesung Lee
- Department of Anesthesiology and Pain Medicine, Wonju College of Medicine, Yonsei University, Wonju, 26426, Korea
| | - Chun Sung Byun
- Department of Thoracic and Cardiovascular Surgery, Wonju College of Medicine, Yonsei University, Wonju, 26426, Korea
| | - Ji-Hyoung Park
- Department of Anesthesiology and Pain Medicine, Wonju College of Medicine, Yonsei University, Wonju, 26426, Korea.
| |
Collapse
|
19
|
Cui W, Cao Q, Liu L, Yin X, Wang X, Zhao Y, Wang Y, Wei B, Xu X, Tang Y. Artemisia Argyi essential oil ameliorates acetaminophen-induced hepatotoxicity via CYP2E1 and γ-glutamyl cycle reprogramming. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156106. [PMID: 39366156 DOI: 10.1016/j.phymed.2024.156106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 09/22/2024] [Accepted: 09/28/2024] [Indexed: 10/06/2024]
Abstract
BACKGROUND The hepatotoxicity induced by acetaminophen (APAP), a commonly used antipyretic, analgesic and anti-inflammatory drug in clinical practice, has received accumulated attention. Artemisia argyi essential oil (AAEO), a volatile oil component extracted from traditional Chinese medicine Artemisia argyi H.Lév. & Vaniot, has great hepatoprotective effects. However, the potential role of AAEO in APAP-induced hepatotoxicity has not been characterized. The present study aimed to investigate the effects of AAEO on hepatic metabolic changes in mice exposed to APAP. METHODS In this study, 300.00 mg/kg acetaminophen was used to establish liver injury model in C57BL/6 J mice. Hepatoprotective effect of AAEO on APAP-induced hepatotoxicity in mice was investigated by detecting liver function enzymes and histopathological examination. Secondly, UPLC-MS/MS was used to analyze the to analyze the small molecule metabolites and metabolic pathways induced by AAEO treatment; In addition, the effect of AAEO on APAP-induced oxidative stress and inflammation were evaluated by detecting the levels of glutathione peroxidase 4, malondialdehyde, reactive oxygen species and inflammatory factors. Finally, the active components of AAEO were preliminarily screened by cellular assays. The hepatoprotective effect of AAEO against APAP-induced hepatotoxicity was examined through the Western blotting, after the CYP2E1 gene was knocked down in AML12 cells by siRNA transfection. RESULTS Compared with the APAP group, AAEO could reduce the abnormal increase in the levels of liver function enzymes caused by APAP. AAEO could enhance the antioxidant capacity by down-regulating the biosynthesis pathway of unsaturated fatty acids and promoting the activity of antioxidant enzymes SOD and CAT in liver tissue induced by APAP. Our study revealed that AAEO promoted GSH synthesis and covalently combined to form APAP-GSH conjugates to reduce the accumulation of APAP in liver tissue. In addition, the chemical constituents in AAEO were analyzed by GC-MS/MS, and it was determined to identify that dihydro-beta-ionone and (-)-verbenone in AAEO might have a significant protective effect on hepatocyte survival after APAP exposure. Further studies on the hepatoprotective mechanism of AAEO indicated that it might reduce the production of toxic metabolites by regulating CYP2E1 levels. CONCLUSION AAEO exerted hepatoprotective effects on acetaminophen-induced hepatotoxicity in mice via regulating the activity of CYP2E1 and regulating the γ-glutamyl cycle pathway.
Collapse
Affiliation(s)
- Weiqi Cui
- Henan Key Laboratory of Rehabilitation Medicine, Henan Joint International Research Laboratory of Chronic Liver Injury, Henan Workshop of Chronic Liver Injury for Outstanding Overseas Scientists, Zhengzhou Key Laboratory of Metabolic-dysfunction-associated Fatty Liver Disease, Department of Pharmacy, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Qianwen Cao
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Luyao Liu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Xuecui Yin
- Henan Key Laboratory of Rehabilitation Medicine, Henan Joint International Research Laboratory of Chronic Liver Injury, Henan Workshop of Chronic Liver Injury for Outstanding Overseas Scientists, Zhengzhou Key Laboratory of Metabolic-dysfunction-associated Fatty Liver Disease, Department of Pharmacy, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Xiaohan Wang
- Henan Key Laboratory of Rehabilitation Medicine, Henan Joint International Research Laboratory of Chronic Liver Injury, Henan Workshop of Chronic Liver Injury for Outstanding Overseas Scientists, Zhengzhou Key Laboratory of Metabolic-dysfunction-associated Fatty Liver Disease, Department of Pharmacy, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yang Zhao
- Henan Key Laboratory of Rehabilitation Medicine, Henan Joint International Research Laboratory of Chronic Liver Injury, Henan Workshop of Chronic Liver Injury for Outstanding Overseas Scientists, Zhengzhou Key Laboratory of Metabolic-dysfunction-associated Fatty Liver Disease, Department of Pharmacy, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yanhong Wang
- Henan Key Laboratory of Rehabilitation Medicine, Henan Joint International Research Laboratory of Chronic Liver Injury, Henan Workshop of Chronic Liver Injury for Outstanding Overseas Scientists, Zhengzhou Key Laboratory of Metabolic-dysfunction-associated Fatty Liver Disease, Department of Pharmacy, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Bo Wei
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Xia Xu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Youcai Tang
- Henan Key Laboratory of Rehabilitation Medicine, Henan Joint International Research Laboratory of Chronic Liver Injury, Henan Workshop of Chronic Liver Injury for Outstanding Overseas Scientists, Zhengzhou Key Laboratory of Metabolic-dysfunction-associated Fatty Liver Disease, Department of Pharmacy, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China.
| |
Collapse
|
20
|
Chidiac AS, Buckley NA, Noghrehchi F, Cairns R. Paracetamol Dosing Errors in People Aged 12 Years and Over: An Analysis of Over 14,000 Cases Reported to an Australian Poisons Information Centre. Drug Saf 2024; 47:1293-1306. [PMID: 39222216 PMCID: PMC11554734 DOI: 10.1007/s40264-024-01472-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2024] [Indexed: 09/04/2024]
Abstract
INTRODUCTION Paracetamol dosing errors can cause acute liver injury, with potentially toxic doses only slightly above the therapeutic range. This study aimed to characterise unintentional paracetamol overdose reported to an Australian poisons centre, including time trends, demographics, types of dosing errors, and outcomes. METHODS Records regarding paracetamol dosing errors for individuals aged ≥12 years were extracted from the New South Wales Poisons Information Centre database, January 2017 to June 2023. Data from 2021 underwent an in-depth screening of free text case notes to examine: dose, duration, products involved, reasons for ingestion and outcomes including hospitalisation, treatment, liver transplantations and deaths. Where possible, complete outcome data were obtained from medical records of New South Wales hospitalised cases in 2021. RESULTS There were 14,380 exposures due to paracetamol dosing errors (predominantly self-administered, median age 43 years, 62.6% female), with an average yearly increase of 2.5% (95% CI 1.6-3.8%; p < 0.0001). The in-depth analysis of exposures recorded during 2021 revealed 1899 exposures (median age 46 years, 63.4% female) with 26.8% requiring hospitalisation. Immediate- and modified-release formulations were highly implicated. Multiple paracetamol-containing products were ingested in approximately 20% of exposures. Hospitalised exposures were associated with paracetamol use for dental pain and ingested higher doses for longer durations. Over half of those hospitalised (52%) were treated with the antidote (N-acetylcysteine), and 6% of exposures developed hepatotoxicity. CONCLUSION Paracetamol dosing errors continue to occur, with relatively high rates of hospitalisation and liver injury. Many hospitalisations involved use for dental pain. Possible preventative measures include ingredient name prominence and increased education on appropriate dosing.
Collapse
Affiliation(s)
- Annabelle S Chidiac
- School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.
- New South Wales Poisons Information Centre, The Children's Hospital at Westmead, Sydney, NSW, Australia.
| | - Nicholas A Buckley
- School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- New South Wales Poisons Information Centre, The Children's Hospital at Westmead, Sydney, NSW, Australia
| | - Firouzeh Noghrehchi
- School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Rose Cairns
- School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- New South Wales Poisons Information Centre, The Children's Hospital at Westmead, Sydney, NSW, Australia
| |
Collapse
|
21
|
Zhou Y, Dliso S, Craske J, Gill A, Bracken L, Landa K, Arnold P, Walker L, Grasim I, Seddon G, Chen T, Davison AS, Sham TT, Smith B, Hawcutt DB, Maher S. Rapid and non-invasive analysis of paracetamol overdose using paper arrow-mass spectrometry: a prospective observational study. BMC Med 2024; 22:553. [PMID: 39587595 PMCID: PMC11590362 DOI: 10.1186/s12916-024-03776-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 11/14/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND Paracetamol is the most consumed medicine globally. Its accessibility contributes to common overdose. Paracetamol overdose is responsible for > 50% of acute liver failure cases, making it the second most common reason for a liver transplant. Rapid quantitation of paracetamol is crucial to guide treatment of paracetamol overdose. Current tests require invasive sampling and relatively long turnaround times. Paper arrow-mass spectrometry (PA-MS) combines sample collection, extraction, separation, enrichment and ionisation onto a single paper strip, achieving rapid, accurate, cost-effective and eco-friendly analysis direct from raw human saliva. METHODS To validate PA-MS against an established test, 17 healthy adults were recruited. Samples were collected before and at 15, 30, 60, 120 and 240 min after ingesting 1 g of paracetamol. Plasma measured with an established clinical test served as the reference standard to validate PA-MS with three biofluids-plasma, resting saliva (RS) and stimulated saliva (SS). Participants' views of blood, RS and SS sampling procedures were assessed qualitatively. Cross-validation was assessed using Lin's concordance correlation coefficients (CCC), Bland-Altman difference plots, and ratios of PA-MS to the reference standard test. RESULTS PA-MS using stimulated saliva offers a reliable alternative to intravenous blood sampling. The CCC is 0.93, the mean difference with the reference test is - 0.14 mg/L, and the ratios compared to the reference test are 0.84-1.27 from correlated samples collected at 5 intervals over 4 h for each participant. CONCLUSIONS Paracetamol detection from SS with PA-MS provides a reliable result that can aid timely treatment decisions. Differences between paracetamol concentration in resting and stimulated saliva were also identified for the first time, highlighting the importance of standardising saliva collection methods in general. This study marks a major milestone towards rapid and convenient saliva analysis.
Collapse
Affiliation(s)
- Yufeng Zhou
- Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool, L69 3GJ, UK
| | - Silothabo Dliso
- Alder Hey Children's NHS Foundation Trust, Eaton Road, Liverpool, L12 2AP, UK
| | - Jennie Craske
- Alder Hey Children's NHS Foundation Trust, Eaton Road, Liverpool, L12 2AP, UK
| | - Andrea Gill
- Alder Hey Children's NHS Foundation Trust, Eaton Road, Liverpool, L12 2AP, UK
| | - Louise Bracken
- Alder Hey Children's NHS Foundation Trust, Eaton Road, Liverpool, L12 2AP, UK
| | - Kiran Landa
- Alder Hey Children's NHS Foundation Trust, Eaton Road, Liverpool, L12 2AP, UK
| | - Philip Arnold
- Alder Hey Children's NHS Foundation Trust, Eaton Road, Liverpool, L12 2AP, UK
| | - Laura Walker
- Alder Hey Children's NHS Foundation Trust, Eaton Road, Liverpool, L12 2AP, UK
| | - Ionela Grasim
- Alder Hey Children's NHS Foundation Trust, Eaton Road, Liverpool, L12 2AP, UK
| | - Gabrielle Seddon
- Alder Hey Children's NHS Foundation Trust, Eaton Road, Liverpool, L12 2AP, UK
| | - Tao Chen
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Andrew S Davison
- Department of Clinical Biochemistry and Metabolic Medicine, Liverpool Clinical Laboratories, Royal Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| | - Tung-Ting Sham
- Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool, L69 3GJ, UK
| | - Barry Smith
- Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool, L69 3GJ, UK
| | - Daniel B Hawcutt
- Alder Hey Children's NHS Foundation Trust, Eaton Road, Liverpool, L12 2AP, UK.
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L7 8TX, UK.
- NIHR Alder Hey Clinical Research Facility, Liverpool, L12 2AP, UK.
| | - Simon Maher
- Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool, L69 3GJ, UK.
| |
Collapse
|
22
|
Chomchai S, Mekavuthikul P, Phuditshinnapatra J, Chomchai C. Augmenting the sensitivity for hepatotoxicity prediction in acute paracetamol overdose: combining psi (ψ) parameter and paracetamol concentration aminotransferase activity multiplication product. Clin Toxicol (Phila) 2024:1-12. [PMID: 39494725 DOI: 10.1080/15563650.2024.2412208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 09/13/2024] [Accepted: 09/28/2024] [Indexed: 11/05/2024]
Abstract
INTRODUCTION While factors like high serum paracetamol (acetaminophen) concentration and delayed acetylcysteine treatment increase hepatotoxicity risk, existing predictive tools, such as the paracetamol concentration aminotransferase activity multiplication product and the psi (ψ) parameter, lack definitive accuracy. This study evaluated the paracetamol psi parameter multiplication product addition against the psi parameter and the paracetamol concentration aminotransferase activity multiplication product for predicting hepatotoxicity following an acute paracetamol overdose. METHODS A retrospective analysis of patients with acute paracetamol overdose from January 2007 to December 2016 was conducted. The paracetamol psi parameter multiplication product addition, calculated by summing the psi parameter (mmol/L × h) and the paracetamol concentration aminotransferase activity multiplication product (g U/L2), was used. Hepatotoxicity was defined as aspartate or alanine aminotransferase activities ≥1,000 U/L. Diagnostic accuracy was assessed through sensitivity, specificity, the area under the receiver operating characteristic curve, and their corresponding 95% CI, with the optimal cutoff determined using the maximum Youden index method. RESULTS The study comprised 421 patients, mostly female (82.9%) with a median age of 23 years. Hepatotoxicity occurred in 13.5% (57 patients). The paracetamol psi parameter multiplication product addition showed an area under the receiver operating characteristic curve of 0.989 (95% CI: 0.974-0.997), with an optimal cutoff at 9.723, providing 96.5% sensitivity and 97.3% specificity. The paracetamol psi parameter multiplication product addition demonstrated superior performance in area under the receiver operating characteristic curve compared to the individual assessments of the psi parameter (0.916; 95% CI: 0.885-0.941) and the paracetamol concentration aminotransferase activity multiplication product (0.901; 95% CI: 0.868-0.928). DISCUSSION The paracetamol psi parameter multiplication product addition appears to be a more effective diagnostic tool than the psi parameter or the paracetamol concentration aminotransferase activity multiplication product alone. CONCLUSION Incorporating the paracetamol psi parameter multiplication product addition into clinical protocols could improve paracetamol overdose management by enabling precise identification of individuals at heightened risk for hepatotoxicity, thereby facilitating the customization of treatment approaches.
Collapse
Affiliation(s)
- Summon Chomchai
- Department of Preventive and Social Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pattaraporn Mekavuthikul
- Department of Preventive and Social Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Jariya Phuditshinnapatra
- Department of Preventive and Social Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Chulathida Chomchai
- Division of Science, Mahidol University International College, Nakhon Pathom, Thailand
| |
Collapse
|
23
|
Zhuang J, Zhang H, Wu J, Hu D, Meng T, Xue J, Xu H, Wang G, Wang H, Zhang G. Redox-Responsive AIEgen Diselenide-Covalent Organic Framework Composites Targeting Hepatic Macrophages for Treatment of Drug-induced Liver Injury. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402656. [PMID: 39140196 DOI: 10.1002/smll.202402656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/03/2024] [Indexed: 08/15/2024]
Abstract
The escalating misuse of antipyretic and analgesic drugs, alongside the rising incidents of acute drug-induced liver injury, underscores the need for a precisely targeted drug delivery system. Herein, two isoreticular covalent organic frameworks (Se-COF and Se-BCOF) are developed by Schiff-base condensation of emissive tetraphenylethylene and diselenide-bridged monomers. Leveraging the specific affinity of macrophages for mannose, the first precise targeting of these COFs to liver macrophages is achieved. The correlation is also explored between the therapeutic effects of COFs and the NLRP3/ASC/Caspase-1 signaling pathway. Utilizing this innovative delivery vehicle, the synergistic delivery of matrine and berberine are accomplished, compounds extracted from traditional Chinese medicine. This approach not only demonstrated the synergistic effects of the drugs but also mitigated their toxicity. Notably, berberine, through phosphorylation of JNK and up-regulation of nuclear Nrf-2 and its downstream gene Mn-SOD expression, simultaneously countered excessive ROS and suppressed the activation of the NLRP3/ASC/Caspase-1 signaling pathway in injured liver tissues. This multifaceted approach proved highly effective in safeguarding against acute drug-induced liver injury, ultimately restoring liver health to normalcy. These findings present a novel and promising strategy for the treatment of acute drug-induced liver injury.
Collapse
Affiliation(s)
- Jialu Zhuang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032, China
| | - Hao Zhang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032, China
| | - Jin Wu
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Danyou Hu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032, China
| | - Tao Meng
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Jing Xue
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Hanyang Xu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032, China
| | - Gang Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230032, China
| | - Hua Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032, China
| | - Guiyang Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| |
Collapse
|
24
|
Li Q, Xu Q, Shi J, Dong W, Jin J, Zhang C. FAK inhibition delays liver repair after acetaminophen-induced acute liver injury by suppressing hepatocyte proliferation and macrophage recruitment. Hepatol Commun 2024; 8:e0531. [PMID: 39761008 PMCID: PMC11495758 DOI: 10.1097/hc9.0000000000000531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/13/2024] [Indexed: 01/07/2025] Open
Abstract
BACKGROUND Overdose of acetaminophen (APAP), a commonly used antipyretic analgesic, can lead to severe liver injury and failure. Current treatments are only effective in the early stages of APAP-induced acute liver injury (ALI). Therefore, a detailed examination of the mechanisms involved in liver repair following APAP-induced ALI could provide valuable insights for clinical interventions. METHODS 4D-label-free proteomics analysis was used to identify dysregulated proteins in the liver of APAP-treated mice. RNA-Seq, hematoxylin-eosin staining, immunohistochemical staining, immunofluorescence staining, quantitative PCR, western blotting, transwell were used to explore the underlying mechanisms. RESULTS Utilizing high throughput 4D-label-free proteomics analysis, we observed a notable increase in proteins related to the "focal adhesion" pathway in the livers of APAP-treated mice. Inhibiting focal adhesion kinase (FAK) activation with a specific inhibitor, 1,2,4,5-Benzenetetraamine tetrahydrochloride (also called Y15), resulted in reduced macrophage numbers, delayed necrotic cell clearance, and inhibited liver cell proliferation in the necrotic regions of APAP-treated mice. RNA-Seq analysis demonstrated that Y15 downregulated genes associated with "cell cycle" and "phagosome" pathways in the livers of APAP-treated mice. Furthermore, blocking extracellular matrix (ECM)-integrin activation with a competitive peptide inhibitor, Gly-Arg-Gly-Asp-Ser (GRGDS), suppressed FAK activation and liver cell proliferation without affecting macrophage recruitment to necrotic areas. Mechanistically, ECM-induced FAK activation upregulated growth-promoting cell cycle genes, leading to hepatocyte proliferation, while CCL2 enhanced FAK activation and subsequent macrophage recruitment via F-actin rearrangement. CONCLUSIONS Overall, these findings underscore the pivotal role of FAK activation in liver repair post-APAP overdose by promoting liver cell proliferation and macrophage recruitment.
Collapse
Affiliation(s)
- Qing Li
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
- Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
- Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
- China-USA Lipids in Health and Disease Research Center, Guilin Medical University, Guilin, Guangxi, China
| | - Qi Xu
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Jialin Shi
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Wei Dong
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Junfei Jin
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
- Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
- Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
- China-USA Lipids in Health and Disease Research Center, Guilin Medical University, Guilin, Guangxi, China
| | - Chong Zhang
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
- Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
- Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
- China-USA Lipids in Health and Disease Research Center, Guilin Medical University, Guilin, Guangxi, China
| |
Collapse
|
25
|
Hu J, Nieminen AL, Zhong Z, Lemasters JJ. Role of Mitochondrial Iron Uptake in Acetaminophen Hepatotoxicity. LIVERS 2024; 4:333-351. [PMID: 39554796 PMCID: PMC11567147 DOI: 10.3390/livers4030024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2024] Open
Abstract
Overdose of acetaminophen (APAP) produces fulminant hepatic necrosis. The underlying mechanism of APAP hepatotoxicity involves mitochondrial dysfunction, including mitochondrial oxidant stress and the onset of mitochondrial permeability transition (MPT). Reactive oxygen species (ROS) play an important role in APAP-induced hepatotoxicity, and iron is a critical catalyst for ROS formation. This review summarizes the role of mitochondrial ROS formation in APAP hepatotoxicity and further focuses on the role of iron. Normally, hepatocytes take up Fe3+-transferrin bound to transferrin receptors via endocytosis. Concentrated into lysosomes, the controlled release of iron is required for the mitochondrial biosynthesis of heme and non-heme iron-sulfur clusters. After APAP overdose, the toxic metabolite, NAPQI, damages lysosomes, causing excess iron release and the mitochondrial uptake of Fe2+ by the mitochondrial calcium uniporter (MCU). NAPQI also inhibits mitochondrial respiration to promote ROS formation, including H2O2, with which Fe2+ reacts to form highly reactive •OH through the Fenton reaction. •OH, in turn, causes lipid peroxidation, the formation of toxic aldehydes, induction of the MPT, and ultimately, cell death. Fe2+ also facilitates protein nitration. Targeting pathways of mitochondrial iron movement and consequent iron-dependent mitochondrial ROS formation is a promising strategy to intervene against APAP hepatotoxicity in a clinical setting.
Collapse
Affiliation(s)
- Jiangting Hu
- Center for Cell Death, Injury & Regeneration, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Anna-Liisa Nieminen
- Center for Cell Death, Injury & Regeneration, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Zhi Zhong
- Center for Cell Death, Injury & Regeneration, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - John J Lemasters
- Center for Cell Death, Injury & Regeneration, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
26
|
Liu Q, Wang S, Fu J, Chen Y, Xu J, Wei W, Song H, Zhao X, Wang H. Liver regeneration after injury: Mechanisms, cellular interactions and therapeutic innovations. Clin Transl Med 2024; 14:e1812. [PMID: 39152680 PMCID: PMC11329751 DOI: 10.1002/ctm2.1812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/27/2024] [Accepted: 08/03/2024] [Indexed: 08/19/2024] Open
Abstract
The liver possesses a distinctive capacity for regeneration within the human body. Under normal circumstances, liver cells replicate themselves to maintain liver function. Compensatory replication of healthy hepatocytes is sufficient for the regeneration after acute liver injuries. In the late stage of chronic liver damage, a large number of hepatocytes die and hepatocyte replication is blocked. Liver regeneration has more complex mechanisms, such as the transdifferentiation between cell types or hepatic progenitor cells mediated. Dysregulation of liver regeneration causes severe chronic liver disease. Gaining a more comprehensive understanding of liver regeneration mechanisms would facilitate the advancement of efficient therapeutic approaches. This review provides an overview of the signalling pathways linked to different aspects of liver regeneration in various liver diseases. Moreover, new knowledge on cellular interactions during the regenerative process is also presented. Finally, this paper explores the potential applications of new technologies, such as nanotechnology, stem cell transplantation and organoids, in liver regeneration after injury, offering fresh perspectives on treating liver disease.
Collapse
Affiliation(s)
- Qi Liu
- Translational Medicine CentreThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina
| | - Senyan Wang
- Translational Medicine CentreThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina
| | - Jing Fu
- International Cooperation Laboratory on Signal TransductionNational Center for Liver CancerMinistry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver CancerShanghai Key Laboratory of Hepato‐biliary Tumor BiologyEastern Hepatobiliary Surgery Hospital, Second Military Medical University/NAVAL Medical UniversityShanghaiChina
| | - Yao Chen
- International Cooperation Laboratory on Signal TransductionNational Center for Liver CancerMinistry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver CancerShanghai Key Laboratory of Hepato‐biliary Tumor BiologyEastern Hepatobiliary Surgery Hospital, Second Military Medical University/NAVAL Medical UniversityShanghaiChina
| | - Jing Xu
- Translational Medicine CentreThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina
| | - Wenjuan Wei
- Translational Medicine CentreThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina
| | - Hao Song
- Translational Medicine CentreThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina
| | - Xiaofang Zhao
- Translational Medicine CentreThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina
| | - Hongyang Wang
- International Cooperation Laboratory on Signal TransductionNational Center for Liver CancerMinistry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver CancerShanghai Key Laboratory of Hepato‐biliary Tumor BiologyEastern Hepatobiliary Surgery Hospital, Second Military Medical University/NAVAL Medical UniversityShanghaiChina
| |
Collapse
|
27
|
Balkrishna A, Sharma S, Gohel V, Singh R, Tomer M, Dev R, Sinha S, Varshney A. Fevogrit, a polyherbal medicine, mitigates endotoxin (lipopolysaccharide)-induced fever in Wistar rats by regulating pro-inflammatory cytokine levels. Animal Model Exp Med 2024. [PMID: 39021318 DOI: 10.1002/ame2.12472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/27/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND Fever is characterized by an upregulation of the thermoregulatory set-point after the body encounters any pathological challenge. It is accompanied by uncomfortable sickness behaviors and may be harmful in patients with other comorbidities. We have explored the impact of an Ayurvedic medicine, Fevogrit, in an endotoxin (lipopolysaccharide)-induced fever model in Wistar rats. METHODS Active phytoconstituents of Fevogrit were identified and quantified using ultra-high-performance liquid chromatography (UHPLC) platform. For the in-vivo study, fever was induced in male Wistar rats by the intraperitoneal administration of lipopolysaccharide (LPS), obtained from Escherichia coli. The animals were allocated to normal control, disease control, Paracetamol treated and Fevogrit treated groups. The rectal temperature of animals was recorded at different time points using a digital thermometer. At the 6-h time point, levels of TNF-α, IL-1β and IL-6 cytokines were analyzed in serum. Additionally, the mRNA expression of these cytokines was determined in hypothalamus, 24 h post-LPS administration. RESULTS UHPLC analysis of Fevogrit revealed the presence of picroside I, picroside II, vanillic acid, cinnamic acid, magnoflorine and cordifolioside A, as bioactive constituents with known anti-inflammatory properties. Fevogrit treatment efficiently reduces the LPS-induced rise in the rectal temperature of animals. The levels and gene expression of TNF-α, IL-1β and IL-6 in serum and hypothalamus, respectively, was also significantly reduced by Fevogrit treatment. CONCLUSION The findings of the study demonstrated that Fevogrit can suppress LPS-induced fever by inhibiting peripheral or central inflammatory signaling pathways and could well be a viable treatment for infection-induced increase in body temperatures.
Collapse
Affiliation(s)
- Acharya Balkrishna
- Drug Discovery and Development Division, Patanjali Research Foundation, Haridwar, India
- Department of Allied and Applied Sciences, University of Patanjali, Haridwar, India
- Patanjali UK Trust, Glasgow, UK
- Patanjali Yogpeeth Nepal, Mandikhatar, Kathmandu, Nepal
| | - Sonam Sharma
- Drug Discovery and Development Division, Patanjali Research Foundation, Haridwar, India
| | - Vivek Gohel
- Drug Discovery and Development Division, Patanjali Research Foundation, Haridwar, India
| | - Rani Singh
- Drug Discovery and Development Division, Patanjali Research Foundation, Haridwar, India
| | - Meenu Tomer
- Drug Discovery and Development Division, Patanjali Research Foundation, Haridwar, India
| | - Rishabh Dev
- Drug Discovery and Development Division, Patanjali Research Foundation, Haridwar, India
| | - Sandeep Sinha
- Drug Discovery and Development Division, Patanjali Research Foundation, Haridwar, India
| | - Anurag Varshney
- Drug Discovery and Development Division, Patanjali Research Foundation, Haridwar, India
- Department of Allied and Applied Sciences, University of Patanjali, Haridwar, India
- Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
28
|
Li Y, Deng X, Hu Q, Chen Y, Zhang W, Qin X, Wei F, Lu X, Ma X, Zeng J, Efferth T. Paeonia lactiflora Pall. ameliorates acetaminophen-induced oxidative stress and apoptosis via inhibiting the PKC-ERK pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 329:118107. [PMID: 38599475 DOI: 10.1016/j.jep.2024.118107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/14/2024] [Accepted: 03/23/2024] [Indexed: 04/12/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Paeonia lactiflora Pall. (PLP), a traditional Chinese medicine, is recognized for its antioxidative and anti-apoptotic properties. Despite its potential medicinal value, the mechanisms underlying its efficacy have been less explored, particularly in alleviating acute liver injury (ALI) caused by excessive intake of acetaminophen (APAP). AIM OF THE STUDY This study aims to elucidate the role and mechanisms of PLP in mitigating oxidative stress and apoptosis induced by APAP. MATERIALS AND METHODS C57BL/6 male mice were pre-treated with PLP for seven consecutive days, followed by the induction of ALI using APAP. Liver pathology was assessed using HE staining. Serum indicators, immunofluorescence (IF), immunohistochemical (IHC), and transmission electron microscopy were employed to evaluate levels of oxidative stress, ferroptosis and apoptosis. Differential expression proteins (DEPs) in the APAP-treated and PLP pre-treated groups were analyzed using quantitative proteomics. Subsequently, the potential mechanisms of PLP pre-treatment in treating ALI were validated using western blotting, molecular docking, molecular dynamics simulations, and surface plasmon resonance (SPR) analysis. RESULTS The UHPLC assay confirmed the presence of three compounds, i.e., albiflorin, paeoniflorin, and oxypaeoniflorin. Pre-treatment with PLP was observed to ameliorate liver tissue pathological damage through HE staining. Further confirmation of efficacy of PLP in alleviating APAP-induced liver injury and oxidative stress was established through liver function serum biochemical indicators, IF of reactive oxygen species (ROS) and IHC of glutathione peroxidase 4 (GPX4) detection. However, PLP did not demonstrate a significant effect in alleviating APAP-induced ferroptosis. Additionally, transmission electron microscopy and TUNEL staining indicated that PLP can mitigate hepatocyte apoptosis. PKC-ERK pathway was identified by proteomics, and subsequent molecular docking, molecular dynamics simulations, and SPR verified binding of the major components of PLP to ERK protein. Western blotting demonstrated that PLP suppressed protein kinase C (PKC) phosphorylation, blocking extracellular signal-regulated kinase (ERK) phosphorylation and inhibiting oxidative stress and cell apoptosis. CONCLUSION This study demonstrates that PLP possesses hepatoprotective abilities against APAP-induced ALI, primarily by inhibiting the PKC-ERK cascade to suppress oxidative stress and cell apoptosis.
Collapse
Affiliation(s)
- Yubing Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Xinyu Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Qichao Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Yuan Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Wenwen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Xuhua Qin
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Feng Wei
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Xiaohua Lu
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany.
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Jinhao Zeng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
29
|
Ali T, Jan I, Bashir R, Mir SA, Ali S, Bader GN. Attenuation of paracetamol-induced hepatotoxicity in Ajuga bracteosa extract treated mice. Heliyon 2024; 10:e33998. [PMID: 39055821 PMCID: PMC11269879 DOI: 10.1016/j.heliyon.2024.e33998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Ajuga bracteosa (Ab) has tremendous medicinal value with long-established disease curing potential. The present study aimed to assess the hepatoprotective potential of Ab extracts in paracetamol-induced hepatotoxicity in mice. Group I (normal control) were treated with saline 1 ml/kg BW orally for 7 days while Group II (toxicant control) received saline 1 ml/kg BW for 6 days and Paracetamol (1000 mg/kg BW) on day7of the treatment. Group III received Standard drug silymarin (100 mg/kg BW) for 6 days and Paracetamol (1000 mg/kg BW) on day 7of treatment. Groups IV andV were administered with methanol extract (ME) 200 mg/kg BW and aqueous extract (AE) 1000 mg/kg BW for 6 days and Paracetamol (1000 mg/kg BW) on day 7th of the study. Both extracts showed hepatoprotective potential against the toxic effects of paracetamol, evidenced by serum analysis of biomarkers involved in liver injury and histopathological findings. Hepatotoxic mice pretreated with Ab plant extract or silymarin exhibited significant decrease in ALP, AST, and ALT enzyme level while GSH levels were markedly increased. According to histological observations, groups treated with PCM (toxicant control) showed significant necrosis and lymphocyte infiltration, while groups treated with silymarin and Ajuga bracteosa plant extract showed preservation of the normal liver structural features. The phytochemical analysis of ME and AE of Ab showed the presence of glycosides, phenolic compounds, tannins, fats, saponins, flavonoids, terpenes, oils, and fats. The antioxidant activity of these two extracts was determined by nitric oxide assay, DPPH assay, and ferric reducing power assay. The methanolic extract exhibited the highest antioxidant potential (78.09 ± 0.0806). The antioxidant potential of aqueous extract was 73.08 ± 0.248. The reducing power for methanolic extract and ascorbic acid (standard) 500 μg/ml was 0.933 and 0.987 respectively. The anti-inflammatory activity of both extracts was demonstrated by in vitro methods, namely albumin denaturation, proteinase inhibition, and membrane stabilization assays. The study suggests that Ab extracts have competence for attenuating inflammation, oxidants, and hepatotoxicity.
Collapse
Affiliation(s)
- Tabasum Ali
- Department of Pharmaceutical Sciences, School of Applied Science and Technology, University of Kashmir, Srinagar, 190006, Jammu and Kashmir, India
| | - Ifat Jan
- Department of Pharmaceutical Sciences, School of Applied Science and Technology, University of Kashmir, Srinagar, 190006, Jammu and Kashmir, India
| | - Rabiah Bashir
- Department of Pharmaceutical Sciences, School of Applied Science and Technology, University of Kashmir, Srinagar, 190006, Jammu and Kashmir, India
| | - Suhail Ahmad Mir
- Department of Pharmaceutical Sciences, School of Applied Science and Technology, University of Kashmir, Srinagar, 190006, Jammu and Kashmir, India
| | - Shafat Ali
- Cytogenetics and Molecular Biology Laboratory, Centre for Research for Development, University of Kashmir, Srinagar, 190006, Jammu and Kashmir, India
| | - Ghulam Nabi Bader
- Department of Pharmaceutical Sciences, School of Applied Science and Technology, University of Kashmir, Srinagar, 190006, Jammu and Kashmir, India
| |
Collapse
|
30
|
Simeone B, Rocco E, Biondi-Zoccai G, Versaci F. N-Acetylcysteine: The Next Best Thing for Cardiovascular Interventions and Surgery? J Cardiovasc Pharmacol 2024; 83:534-536. [PMID: 38547513 DOI: 10.1097/fjc.0000000000001558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Affiliation(s)
| | | | - Giuseppe Biondi-Zoccai
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy; and
- UOC UTIC Emodinamica e Cardiologia, Ospedale Santa Maria Goretti, Latina, Italy
| | - Francesco Versaci
- UOC UTIC Emodinamica e Cardiologia, Ospedale Santa Maria Goretti, Latina, Italy
| |
Collapse
|
31
|
Jiang W, Wang J, Wang J, Chen X, Fang Z, Hu C. A Review of the Role of Caveolin-1 in Acetaminophen-Induced Liver Injury. Pharmacology 2024; 109:194-201. [PMID: 38657589 DOI: 10.1159/000538017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 02/14/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND Acetaminophen (APAP) is commonly used as an antipyretic and analgesic agent. Excessive APAP can induce liver toxicity, known as APAP-induced liver injury (ALI). The metabolism and pathogenesis of APAP have been extensively studied in recent years, and many cellular processes such as autophagy, mitochondrial oxidative stress, mitochondrial dysfunction, and liver regeneration have been identified to be involved in the pathogenesis of ALI. Caveolin-1 (CAV-1) as a scaffold protein has also been shown to be involved in the development of various diseases, especially liver disease and tumorigenesis. The role of CAV-1 in the development of liver disease and the association between them remains a challenging and uncharted territory. SUMMARY In this review, we briefly explore the potential therapeutic effects of CAV-1 on ALI through autophagy, oxidative stress, and lipid metabolism. Further research to better understand the mechanisms by which CAV-1 regulates liver injury will not only enhance our understanding of this important cellular process, but also help develop new therapies for human disease by targeting CAV-1 targets. KEY MESSAGES This review briefly summarizes the potential protective mechanisms of CAV-1 against liver injury caused by APAP.
Collapse
Affiliation(s)
- Wei Jiang
- Pharmacy Center, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, China,
- Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei, China,
| | - Junping Wang
- Pharmacy Center, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, China
| | - Jiarong Wang
- Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei, China
- Pharmacy Center, Shanghai Fengxian District Central Hospital, Shanghai, China
| | - Xueran Chen
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Hefei, China
| | - Zhiyou Fang
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Hefei, China
| | - Chengmu Hu
- Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei, China
| |
Collapse
|
32
|
Stoess C, Choi YK, Onyuru J, Friess H, Hoffman HM, Hartmann D, Feldstein AE. Cell Death in Liver Disease and Liver Surgery. Biomedicines 2024; 12:559. [PMID: 38540172 PMCID: PMC10968531 DOI: 10.3390/biomedicines12030559] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/15/2024] [Accepted: 02/17/2024] [Indexed: 01/03/2025] Open
Abstract
Cell death is crucial for maintaining tissue balance and responding to diseases. However, under pathological conditions, the surge in dying cells results in an overwhelming presence of cell debris and the release of danger signals. In the liver, this gives rise to hepatic inflammation and hepatocellular cell death, which are key factors in various liver diseases caused by viruses, toxins, metabolic issues, or autoimmune factors. Both clinical and in vivo studies strongly affirm that hepatocyte death serves as a catalyst in the progression of liver disease. This advancement is characterized by successive stages of inflammation, fibrosis, and cirrhosis, culminating in a higher risk of tumor development. In this review, we explore pivotal forms of cell death, including apoptosis, pyroptosis, and necroptosis, examining their roles in both acute and chronic liver conditions, including liver cancer. Furthermore, we discuss the significance of cell death in liver surgery and ischemia-reperfusion injury. Our objective is to illuminate the molecular mechanisms governing cell death in liver diseases, as this understanding is crucial for identifying therapeutic opportunities aimed at modulating cell death pathways.
Collapse
Affiliation(s)
- Christian Stoess
- Department of Pediatric Gastroenterology, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA; (C.S.)
- Department of Surgery, TUM School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Yeon-Kyung Choi
- Department of Pediatric Gastroenterology, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA; (C.S.)
- Department of Internal Medicine, School of Medicine, Kyungpook National University Chilgok Hospital, Kyungpook National University, Daegu 41404, Republic of Korea
| | - Janset Onyuru
- Department of Pediatric Allergy, Immunology and Rheumatology, University of California San Diego, La Jolla, CA 92093, USA
| | - Helmut Friess
- Department of Surgery, TUM School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Hal M. Hoffman
- Department of Pediatric Allergy, Immunology and Rheumatology, University of California San Diego, La Jolla, CA 92093, USA
| | - Daniel Hartmann
- Department of Surgery, TUM School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Ariel E. Feldstein
- Department of Pediatric Gastroenterology, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA; (C.S.)
- Novo Nordisk, Global Drug Discovery, Ørestads Boulevard 108, 2300 Copenhagen, Denmark
| |
Collapse
|
33
|
Nouh RA, Kamal A, Oyewole O, Abbas WA, Abib B, Omar A, Mansour ST, Abdelnaser A. Unveiling the Potential of Cannabinoids in Multiple Sclerosis and the Dawn of Nano-Cannabinoid Medicine. Pharmaceutics 2024; 16:241. [PMID: 38399295 PMCID: PMC10891830 DOI: 10.3390/pharmaceutics16020241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/23/2023] [Accepted: 11/30/2023] [Indexed: 02/25/2024] Open
Abstract
Multiple sclerosis is the predominant autoimmune disorder affecting the central nervous system in adolescents and adults. Specific treatments are categorized as disease-modifying, whereas others are symptomatic treatments to alleviate painful symptoms. Currently, no singular conventional therapy is universally effective for all patients across all stages of the illness. Nevertheless, cannabinoids exhibit significant promise in their capacity for neuroprotection, anti-inflammation, and immunosuppression. This review will examine the traditional treatment for multiple sclerosis, the increasing interest in using cannabis as a treatment method, its role in protecting the nervous system and regulating the immune system, commercially available therapeutic cannabinoids, and the emerging use of cannabis in nanomedicine. In conclusion, cannabinoids exhibit potential as a disease-modifying treatment rather than merely symptomatic relief. However, further research is necessary to unveil their role and establish the safety and advancements in nano-cannabinoid medicine, offering the potential for reduced toxicity and fewer adverse effects, thereby maximizing the benefits of cannabinoids.
Collapse
Affiliation(s)
- Roua A. Nouh
- Biotechnology Graduate Program, School of Sciences and Engineering, The American University in Cairo, P.O. Box 74, New Cairo 11835, Egypt; (R.A.N.); (O.O.); (W.A.A.); (A.O.)
| | - Ahmed Kamal
- Biochemistry Department, Faculty of Science, Suez University, P.O. Box 43221, Suez 43533, Egypt;
| | - Oluwaseyi Oyewole
- Biotechnology Graduate Program, School of Sciences and Engineering, The American University in Cairo, P.O. Box 74, New Cairo 11835, Egypt; (R.A.N.); (O.O.); (W.A.A.); (A.O.)
| | - Walaa A. Abbas
- Biotechnology Graduate Program, School of Sciences and Engineering, The American University in Cairo, P.O. Box 74, New Cairo 11835, Egypt; (R.A.N.); (O.O.); (W.A.A.); (A.O.)
| | - Bishoy Abib
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo, P.O. Box 74, New Cairo 11835, Egypt; (B.A.); (S.T.M.)
| | - Abdelrouf Omar
- Biotechnology Graduate Program, School of Sciences and Engineering, The American University in Cairo, P.O. Box 74, New Cairo 11835, Egypt; (R.A.N.); (O.O.); (W.A.A.); (A.O.)
| | - Somaia T. Mansour
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo, P.O. Box 74, New Cairo 11835, Egypt; (B.A.); (S.T.M.)
| | - Anwar Abdelnaser
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, P.O. Box 74, New Cairo 11835, Egypt
| |
Collapse
|
34
|
Suárez J, de Ceglia M, Rodríguez-Pozo M, Vargas A, Santos I, Melgar-Locatelli S, Castro-Zavala A, Castilla-Ortega E, Rodríguez de Fonseca F, Decara J, Rivera P. Inhibition of Adult Neurogenesis in Male Mice after Repeated Exposure to Paracetamol Overdose. Int J Mol Sci 2024; 25:1964. [PMID: 38396643 PMCID: PMC10888347 DOI: 10.3390/ijms25041964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/24/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Paracetamol, or acetaminophen (N-acetyl-para-aminophenol, APAP), is an analgesic and antipyretic drug that is commonly used worldwide, implicated in numerous intoxications due to overdose, and causes serious liver damage. APAP can cross the blood-brain barrier and affects brain function in numerous ways, including pain signals, temperature regulation, neuroimmune response, and emotional behavior; however, its effect on adult neurogenesis has not been thoroughly investigated. We analyze, in a mouse model of hepatotoxicity, the effect of APAP overdose (750 mg/kg/day) for 3 and 4 consecutive days and after the cessation of APAP administration for 6 and 15 days on cell proliferation and survival in two relevant neurogenic zones: the subgranular zone of the dentate gyrus and the hypothalamus. The involvement of liver damage (plasma transaminases), neuronal activity (c-Fos), and astroglia (glial fibrillar acidic protein, GFAP) were also evaluated. Our results indicated that repeated APAP overdoses are associated with the inhibition of adult neurogenesis in the context of elevated liver transaminase levels, neuronal hyperactivity, and astrogliosis. These effects were partially reversed after the cessation of APAP administration for 6 and 15 days. In conclusion, these results suggest that APAP overdose impairs adult neurogenesis in the hippocampus and hypothalamus, a fact that may contribute to the effects of APAP on brain function.
Collapse
Affiliation(s)
- Juan Suárez
- Departamento de Anatomía Humana, Medicina Legal e Historia de la Ciencia, Facultad de Medicina, Universidad de Málaga, 29071 Málaga, Spain; (J.S.); (M.R.-P.); (I.S.)
- Grupo de Neuropsicofarmacología, Instituto IBIMA-Plataforma BIONAND, Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Av. de Carlos Haya, 29010 Málaga, Spain; (M.d.C.); (A.V.); (S.M.-L.); (A.C.-Z.); (E.C.-O.); (F.R.d.F.)
| | - Marialuisa de Ceglia
- Grupo de Neuropsicofarmacología, Instituto IBIMA-Plataforma BIONAND, Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Av. de Carlos Haya, 29010 Málaga, Spain; (M.d.C.); (A.V.); (S.M.-L.); (A.C.-Z.); (E.C.-O.); (F.R.d.F.)
| | - Miguel Rodríguez-Pozo
- Departamento de Anatomía Humana, Medicina Legal e Historia de la Ciencia, Facultad de Medicina, Universidad de Málaga, 29071 Málaga, Spain; (J.S.); (M.R.-P.); (I.S.)
- Grupo de Neuropsicofarmacología, Instituto IBIMA-Plataforma BIONAND, Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Av. de Carlos Haya, 29010 Málaga, Spain; (M.d.C.); (A.V.); (S.M.-L.); (A.C.-Z.); (E.C.-O.); (F.R.d.F.)
| | - Antonio Vargas
- Grupo de Neuropsicofarmacología, Instituto IBIMA-Plataforma BIONAND, Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Av. de Carlos Haya, 29010 Málaga, Spain; (M.d.C.); (A.V.); (S.M.-L.); (A.C.-Z.); (E.C.-O.); (F.R.d.F.)
| | - Ignacio Santos
- Departamento de Anatomía Humana, Medicina Legal e Historia de la Ciencia, Facultad de Medicina, Universidad de Málaga, 29071 Málaga, Spain; (J.S.); (M.R.-P.); (I.S.)
| | - Sonia Melgar-Locatelli
- Grupo de Neuropsicofarmacología, Instituto IBIMA-Plataforma BIONAND, Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Av. de Carlos Haya, 29010 Málaga, Spain; (M.d.C.); (A.V.); (S.M.-L.); (A.C.-Z.); (E.C.-O.); (F.R.d.F.)
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Facultad de Psicología, Universidad de Málaga, 29010 Málaga, Spain
| | - Adriana Castro-Zavala
- Grupo de Neuropsicofarmacología, Instituto IBIMA-Plataforma BIONAND, Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Av. de Carlos Haya, 29010 Málaga, Spain; (M.d.C.); (A.V.); (S.M.-L.); (A.C.-Z.); (E.C.-O.); (F.R.d.F.)
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Facultad de Psicología, Universidad de Málaga, 29010 Málaga, Spain
| | - Estela Castilla-Ortega
- Grupo de Neuropsicofarmacología, Instituto IBIMA-Plataforma BIONAND, Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Av. de Carlos Haya, 29010 Málaga, Spain; (M.d.C.); (A.V.); (S.M.-L.); (A.C.-Z.); (E.C.-O.); (F.R.d.F.)
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Facultad de Psicología, Universidad de Málaga, 29010 Málaga, Spain
| | - Fernando Rodríguez de Fonseca
- Grupo de Neuropsicofarmacología, Instituto IBIMA-Plataforma BIONAND, Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Av. de Carlos Haya, 29010 Málaga, Spain; (M.d.C.); (A.V.); (S.M.-L.); (A.C.-Z.); (E.C.-O.); (F.R.d.F.)
- Unidad Clínica de Neurología, Hospital Regional Universitario de Málaga, Instituto IBMA-Plataforma BIONAND, 29010 Málaga, Spain
| | - Juan Decara
- Grupo de Neuropsicofarmacología, Instituto IBIMA-Plataforma BIONAND, Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Av. de Carlos Haya, 29010 Málaga, Spain; (M.d.C.); (A.V.); (S.M.-L.); (A.C.-Z.); (E.C.-O.); (F.R.d.F.)
| | - Patricia Rivera
- Grupo de Neuropsicofarmacología, Instituto IBIMA-Plataforma BIONAND, Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Av. de Carlos Haya, 29010 Málaga, Spain; (M.d.C.); (A.V.); (S.M.-L.); (A.C.-Z.); (E.C.-O.); (F.R.d.F.)
| |
Collapse
|
35
|
Chao X, Niu M, Wang S, Ma X, Yang X, Sun H, Hu X, Wang H, Zhang L, Huang R, Xia M, Ballabio A, Jaeschke H, Ni HM, Ding WX. High-throughput screening of novel TFEB agonists in protecting against acetaminophen-induced liver injury in mice. Acta Pharm Sin B 2024; 14:190-206. [PMID: 38261809 PMCID: PMC10793101 DOI: 10.1016/j.apsb.2023.10.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 01/25/2024] Open
Abstract
Macroautophagy (referred to as autophagy hereafter) is a major intracellular lysosomal degradation pathway that is responsible for the degradation of misfolded/damaged proteins and organelles. Previous studies showed that autophagy protects against acetaminophen (APAP)-induced injury (AILI) via selective removal of damaged mitochondria and APAP protein adducts. The lysosome is a critical organelle sitting at the end stage of autophagy for autophagic degradation via fusion with autophagosomes. In the present study, we showed that transcription factor EB (TFEB), a master transcription factor for lysosomal biogenesis, was impaired by APAP resulting in decreased lysosomal biogenesis in mouse livers. Genetic loss-of and gain-of function of hepatic TFEB exacerbated or protected against AILI, respectively. Mechanistically, overexpression of TFEB increased clearance of APAP protein adducts and mitochondria biogenesis as well as SQSTM1/p62-dependent non-canonical nuclear factor erythroid 2-related factor 2 (NRF2) activation to protect against AILI. We also performed an unbiased cell-based imaging high-throughput chemical screening on TFEB and identified a group of TFEB agonists. Among these agonists, salinomycin, an anticoccidial and antibacterial agent, activated TFEB and protected against AILI in mice. In conclusion, genetic and pharmacological activating TFEB may be a promising approach for protecting against AILI.
Collapse
Affiliation(s)
- Xiaojuan Chao
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Mengwei Niu
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Shaogui Wang
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Xiaowen Ma
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Xiao Yang
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hua Sun
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230032, China
| | - Xujia Hu
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Hua Wang
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230032, China
| | - Li Zhang
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ruili Huang
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Menghang Xia
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine, TIGEM, Pozzuoli, Naples 80131, Italy
- Medical Genetics, Department of Translational Medicine, Federico II University, Naples 80131, Italy
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Hong-Min Ni
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Department of Internal Medicine, Division of Gastroenterology, Hepatology & Motility, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
36
|
Ramos-Tovar E, Muriel P. NLRP3 inflammasome in hepatic diseases: A pharmacological target. Biochem Pharmacol 2023; 217:115861. [PMID: 37863329 DOI: 10.1016/j.bcp.2023.115861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 10/22/2023]
Abstract
The NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome pathway is mainly responsible for the activation and release of a cascade of proinflammatory mediators that contribute to the development of hepatic diseases. During alcoholic liver disease development, the NLRP3 inflammasome pathway contributes to the maturation of caspase-1, interleukin (IL)-1β, and IL-18, which induce a robust inflammatory response, leading to fibrosis by inducing profibrogenic hepatic stellate cell (HSC) activation. Substantial evidence demonstrates that nonalcoholic fatty liver disease (NAFLD) progresses to nonalcoholic steatohepatitis (NASH) via NLRP3 inflammasome activation, ultimately leading to fibrosis and hepatocellular carcinoma (HCC). Activation of the NLRP3 inflammasome in NASH can be attributed to several factors, such as reactive oxygen species (ROS), gut dysbiosis, leaky gut, which allow triggers such as cardiolipin, cholesterol crystals, endoplasmic reticulum stress, and uric acid to reach the liver. Because inflammation triggers HSC activation, the NLRP3 inflammasome pathway performs a central function in fibrogenesis regardless of the etiology. Chronic hepatic activation of the NLRP3 inflammasome can ultimately lead to HCC; however, inflammation also plays a role in decreasing tumor growth. Some data indicate that NLRP3 inflammasome activation plays an important role in autoimmune hepatitis, but the evidence is scarce. Most researchers have reported that NLRP3 inflammasome activation is essential in liver injury induced by a variety of drugs and hepatotropic virus infection; however, few reports indicate that this pathway can play a beneficial role by inducing liver regeneration. Modulation of the NLRP3 inflammasome appears to be a suitable strategy to treat liver diseases.
Collapse
Affiliation(s)
- Erika Ramos-Tovar
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina-IPN, Apartado Postal 11340, Plan de San Luis y Díaz Mirón s/n, Casco de Santo Tomás, Ciudad de México, México
| | - Pablo Muriel
- Laboratorio de Hepatología Experimental, Departamento de Farmacología, Cinvestav-IPN, Apartado Postal 14-740, Ciudad de México, México.
| |
Collapse
|
37
|
Kryl’skii ED, Kravtsova SE, Popova TN, Matasova LV, Shikhaliev KS, Medvedeva SM. 6-Hydroxy-2,2,4-trimethyl-1,2-dihydroquinoline Demonstrates Anti-Inflammatory Properties and Reduces Oxidative Stress in Acetaminophen-Induced Liver Injury in Rats. Curr Issues Mol Biol 2023; 45:8321-8336. [PMID: 37886968 PMCID: PMC10605539 DOI: 10.3390/cimb45100525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/04/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023] Open
Abstract
We examined the effects of 6-hydroxy-2,2,4-trimethyl-1,2-dihydroquinoline on markers of liver injury, oxidative status, and the extent of inflammatory and apoptotic processes in rats with acetaminophen-induced liver damage. The administration of acetaminophen caused the accumulation of 8-hydroxy-2-deoxyguanosine and 8-isoprostane in the liver and serum, as well as an increase in biochemiluminescence indicators. Oxidative stress resulted in the activation of pro-inflammatory cytokine and NF-κB factor mRNA synthesis and increased levels of immunoglobulin G, along with higher activities of caspase-3, caspase-8, and caspase-9. The administration of acetaminophen also resulted in the development of oxidative stress, leading to a decrease in the level of reduced glutathione and an imbalance in the function of antioxidant enzymes. This study discovered that 6-hydroxy-2,2,4-trimethyl-1,2-dihydroquinoline reduced oxidative stress by its antioxidant activity, hence reducing the level of pro-inflammatory cytokine and NF-κB mRNA, as well as decreasing the concentration of immunoglobulin G. These changes resulted in a reduction in the activity of caspase-8 and caspase-9, which are involved in the activation of ligand-induced and mitochondrial pathways of apoptosis and inhibited the effector caspase-3. In addition, 6-hydroxy-2,2,4-trimethyl-1,2-dihydroquinoline promoted the normalization of antioxidant system function in animals treated with acetaminophen. As a result, the compound being tested alleviated inflammation and apoptosis by decreasing oxidative stress, which led to improved liver marker indices and ameliorated histopathological alterations.
Collapse
Affiliation(s)
- Evgenii D. Kryl’skii
- Department of Medical Biochemistry, Molecular and Cell Biology, Voronezh State University, Universitetskaya sq. 1, 394018 Voronezh, Russia; (E.D.K.)
| | - Svetlana E. Kravtsova
- Department of Medical Biochemistry, Molecular and Cell Biology, Voronezh State University, Universitetskaya sq. 1, 394018 Voronezh, Russia; (E.D.K.)
| | - Tatyana N. Popova
- Department of Medical Biochemistry, Molecular and Cell Biology, Voronezh State University, Universitetskaya sq. 1, 394018 Voronezh, Russia; (E.D.K.)
| | - Larisa V. Matasova
- Department of Medical Biochemistry, Molecular and Cell Biology, Voronezh State University, Universitetskaya sq. 1, 394018 Voronezh, Russia; (E.D.K.)
| | - Khidmet S. Shikhaliev
- Department of Organic Chemistry, Voronezh State University, Universitetskaya sq. 1, 394018 Voronezh, Russia
| | - Svetlana M. Medvedeva
- Department of Organic Chemistry, Voronezh State University, Universitetskaya sq. 1, 394018 Voronezh, Russia
| |
Collapse
|