1
|
Zhao Y, Wang Y, Zhang Y, Bai X, Hou W, Huang Y. A novel isophorone-based fluorescent probe for recognizing Al 3+ and its bioimaging in plants. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:2120-2126. [PMID: 38516903 DOI: 10.1039/d4ay00023d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Aluminium ions (Al3+) are widely present in industries and daily life and are closely related to human health and environmental protection. Therefore, it is crucial to detect their concentration. In this paper, a convenient and reliable small molecule fluorescent probe based on a dicyanoisophorone Schiff base and 2-pyridinecarbohydrazide has been developed. The probe is capable of selectively detecting Al3+ with the advantages of near-infrared emission (maximum emission wavelength of 625 nm), good selectivity, high sensitivity (detection limit of 2.18 × 10-7 M) and fast response time (15 s). It has good potential for rapid detection and visual tracking of Al3+ in aqueous solutions and plant bodies.
Collapse
Affiliation(s)
- Yanna Zhao
- Department of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China.
| | - Yuqi Wang
- Department of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China.
| | - Yingying Zhang
- Department of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China.
| | - Xiaowei Bai
- Department of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China.
| | - Wentong Hou
- Department of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China.
| | - Yuqing Huang
- Department of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China.
| |
Collapse
|
2
|
Ding F, Wang H, Li Y, Leng X, Gao J, Huang D. Polystyrene microplastics with absorbed nonylphenol induce intestinal dysfunction in human Caco-2 cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 107:104426. [PMID: 38527597 DOI: 10.1016/j.etap.2024.104426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 03/21/2024] [Indexed: 03/27/2024]
Abstract
Due to the massive production and use of plastic, the chronic and evolving exposure to microplastics in our daily lives is omnipresent. Nonylphenol (NP), a persistent organic pollutant, may change toxicity when it co-exists with microplastics. In this study, polystyrene microplastics (PS-MPs), either alone or with pre-absorbed NP, generated oxidative stress and inflammatory lesions to Caco-2 cells, as well as affecting proliferation via the MAPK signaling pathway and causing apoptosis. Damage to cell membrane integrity and intestinal barrier (marked by lower transepithelial electric resistance, greater bypass transport, and tight junction structural changes) leads to enhanced internalization risk of PS-MPs. Some important intestinal functions including nutrient absorption and xenobiotic protection were also harmed. It is worth noting that the exposure of PS-MPs with a diameter of 0.1 μm improved intestinal functions quickly but acted as a chemosensitizer for a long time, inhibiting cell perception of other toxic substances and making the cells more vulnerable.
Collapse
Affiliation(s)
- Fangfang Ding
- State Key Laboratory of Food Science and Resource, International Institute of Food Innovation Co., Ltd., China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Huimei Wang
- State Key Laboratory of Food Science and Resource, International Institute of Food Innovation Co., Ltd., China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Yingzhi Li
- State Key Laboratory of Food Science and Resource, International Institute of Food Innovation Co., Ltd., China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Xueping Leng
- State Key Laboratory of Food Science and Resource, International Institute of Food Innovation Co., Ltd., China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Jiaming Gao
- State Key Laboratory of Food Science and Resource, International Institute of Food Innovation Co., Ltd., China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Danfei Huang
- State Key Laboratory of Food Science and Resource, International Institute of Food Innovation Co., Ltd., China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| |
Collapse
|
3
|
Sieg H, Schaar C, Fouquet N, Böhmert L, Thünemann AF, Braeuning A. Particulate iron oxide food colorants (E 172) during artificial digestion and their uptake and impact on intestinal cells. Toxicol In Vitro 2024; 96:105772. [PMID: 38199585 DOI: 10.1016/j.tiv.2024.105772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/22/2023] [Accepted: 01/05/2024] [Indexed: 01/12/2024]
Abstract
Iron oxide of various structures is frequently used as food colorant (E 172). The spectrum of colors ranges from yellow over orange, red, and brown to black, depending on the chemical structure of the material. E 172 is mostly sold as solid powder. Recent studies have demonstrated the presence of nanoscaled particles in E 172 samples, often to a very high extent. This makes it necessary to investigate the fate of these particles after oral uptake. In this study, 7 differently structured commercially available E 172 food colorants (2 x Yellow FeO(OH), 2 x Red Fe2O3, 1 x Orange Fe2O3 + FeO(OH) and 2 x Black Fe3O4) were investigated for particle dissolution, ion release, cellular uptake, crossing of the intestinal barrier and toxicological impact on intestinal cells. Dissolution was analyzed in water, cell culture medium and artificial digestion fluids. Small-angle X-ray scattering (SAXS) was employed for determination of the specific surface area of the colorants in the digestion fluids. Cellular uptake, transport and toxicological effects were studied using human differentiated Caco-2 cells as an in vitro model of the intestinal barrier. For all materials, a strong interaction with the intestinal cells was observed, albeit there was only a limited dissolution, and no toxic in vitro effects on human cells were recorded.
Collapse
Affiliation(s)
- Holger Sieg
- German Federal Institute for Risk Assessment, Department of Food Safety, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany.
| | - Caroline Schaar
- German Federal Institute for Risk Assessment, Department of Food Safety, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Nicole Fouquet
- German Federal Institute for Risk Assessment, Department of Food Safety, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Linda Böhmert
- German Federal Institute for Risk Assessment, Department of Food Safety, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany.
| | - Andreas F Thünemann
- German Federal Institute for Materials Research and Testing (BAM), Unter den Eichen 87, 12205 Berlin, Germany.
| | - Albert Braeuning
- German Federal Institute for Risk Assessment, Department of Food Safety, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany.
| |
Collapse
|
4
|
Boyadzhiev A, Wu D, Avramescu ML, Williams A, Rasmussen P, Halappanavar S. Toxicity of Metal Oxide Nanoparticles: Looking through the Lens of Toxicogenomics. Int J Mol Sci 2023; 25:529. [PMID: 38203705 PMCID: PMC10779048 DOI: 10.3390/ijms25010529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/12/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
The impact of solubility on the toxicity of metal oxide nanoparticles (MONPs) requires further exploration to ascertain the impact of the dissolved and particulate species on response. In this study, FE1 mouse lung epithelial cells were exposed for 2-48 h to 4 MONPs of varying solubility: zinc oxide, nickel oxide, aluminum oxide, and titanium dioxide, in addition to microparticle analogues and metal chloride equivalents. Previously published data from FE1 cells exposed for 2-48 h to copper oxide and copper chloride were examined in the context of exposures in the present study. Viability was assessed using Trypan Blue staining and transcriptomic responses via microarray analysis. Results indicate material solubility is not the sole property governing MONP toxicity. Transcriptional signaling through the 'HIF-1α Signaling' pathway describes the response to hypoxia, which also includes genes associated with processes such as oxidative stress and unfolded protein responses and represents a conserved response across all MONPs tested. The number of differentially expressed genes (DEGs) in this pathway correlated with apical toxicity, and a panel of the top ten ranked DEGs was constructed (Hmox1, Hspa1a, Hspa1b, Mmp10, Adm, Serpine1, Slc2a1, Egln1, Rasd1, Hk2), highlighting mechanistic differences among tested MONPs. The HIF-1α pathway is proposed as a biomarker of MONP exposure and toxicity that can help prioritize MONPs for further evaluation and guide specific testing strategies.
Collapse
Affiliation(s)
- Andrey Boyadzhiev
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON K1A 0K9, Canada; (A.B.); (D.W.); (M.-L.A.); (A.W.); (P.R.)
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Dongmei Wu
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON K1A 0K9, Canada; (A.B.); (D.W.); (M.-L.A.); (A.W.); (P.R.)
| | - Mary-Luyza Avramescu
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON K1A 0K9, Canada; (A.B.); (D.W.); (M.-L.A.); (A.W.); (P.R.)
| | - Andrew Williams
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON K1A 0K9, Canada; (A.B.); (D.W.); (M.-L.A.); (A.W.); (P.R.)
| | - Pat Rasmussen
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON K1A 0K9, Canada; (A.B.); (D.W.); (M.-L.A.); (A.W.); (P.R.)
- Department of Earth and Environmental Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Sabina Halappanavar
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON K1A 0K9, Canada; (A.B.); (D.W.); (M.-L.A.); (A.W.); (P.R.)
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
5
|
He Y, Li Z, Xu T, Luo D, Chi Q, Zhang Y, Li S. Polystyrene nanoplastics deteriorate LPS-modulated duodenal permeability and inflammation in mice via ROS drived-NF-κB/NLRP3 pathway. CHEMOSPHERE 2022; 307:135662. [PMID: 35830933 DOI: 10.1016/j.chemosphere.2022.135662] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/04/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
The widespread occurrence of nanoplastics (NPs), has markedly affected the ecosystem and has become a global threat to animals and human health. There is growing evidence showing that polystyrene nanoparticles (PSNPs) exposure induced enteritis and the intestinal barrier disorder. Lipopolysaccharide (LPS) can trigger the inflammation burden of various tissues. Whether PSNPs deteriorate LPS-induced intestinal damage via ROS drived-NF-κB/NLRP3 pathway is remains unknown. In this study, PSNPs exposure/PSNPs and LPS co-exposure mice model were duplicated by intraperitoneal injection. The results showed that exposure to PSNPs/LPS caused duodenal inflammation and increased permeability. We evaluated the change of duodenum structure, oxidative stress parameters, inflammatory factors, and tight junction protein in the duodenum. We found that PSNPs/LPS could aggravate the production of ROS and oxidative stress in cells, activate NF-κB/NLRP3 pathway, decrease the expression tight junction proteins (ZO-1, Claudin 1, and Occludin) levels, promote inflammatory factors (TNF-α, IL-6, and IFN-γ) expressions. Duodenal oxidative stress and inflammation in PS + LPS group were more serious than those in single exposure group, which could be alleviated by NF-kB inhibitor QNZ. Collectively, the results verified that PSNPs deteriorated LPS-induced inflammation and increasing permeability in mice duodenum via ROS drived-NF-κB/NLRP3 pathway. The current study indicated the relationship and molecular mechanism between PSNPs and intestinal injury, providing novel insights into the adverse effects of PSNPs exposure on mammals and humans.
Collapse
Affiliation(s)
- Yujiao He
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Zhe Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Tong Xu
- College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Dongliu Luo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Qianru Chi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yiming Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Shu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
6
|
Tschiche HR, Bierkandt FS, Creutzenberg O, Fessard V, Franz R, Greiner R, Gruber-Traub C, Haas KH, Haase A, Hartwig A, Hesse B, Hund-Rinke K, Iden P, Kromer C, Loeschner K, Mutz D, Rakow A, Rasmussen K, Rauscher H, Richter H, Schoon J, Schmid O, Som C, Spindler LM, Tovar GEM, Westerhoff P, Wohlleben W, Luch A, Laux P. Analytical and toxicological aspects of nanomaterials in different product groups: Challenges and opportunities. NANOIMPACT 2022; 28:100416. [PMID: 35995388 DOI: 10.1016/j.impact.2022.100416] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 07/15/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
The widespread integration of engineered nanomaterials into consumer and industrial products creates new challenges and requires innovative approaches in terms of design, testing, reliability, and safety of nanotechnology. The aim of this review article is to give an overview of different product groups in which nanomaterials are present and outline their safety aspects for consumers. Here, release of nanomaterials and related analytical challenges and solutions as well as toxicological considerations, such as dose-metrics, are discussed. Additionally, the utilization of engineered nanomaterials as pharmaceuticals or nutraceuticals to deliver and release cargo molecules is covered. Furthermore, critical pathways for human exposure to nanomaterials, namely inhalation and ingestion, are discussed in the context of risk assessment. Analysis of NMs in food, innovative medicine or food contact materials is discussed. Specific focus is on the presence and release of nanomaterials, including whether nanomaterials can migrate from polymer nanocomposites used in food contact materials. With regard to the toxicology and toxicokinetics of nanomaterials, aspects of dose metrics of inhalation toxicity as well as ingestion toxicology and comparison between in vitro and in vivo conclusions are considered. The definition of dose descriptors to be applied in toxicological testing is emphasized. In relation to potential exposure from different products, opportunities arising from the use of advanced analytical techniques in more unique scenarios such as release of nanomaterials from medical devices such as orthopedic implants are addressed. Alongside higher product performance and complexity, further challenges regarding material characterization and safety, as well as acceptance by the general public are expected.
Collapse
Affiliation(s)
- Harald R Tschiche
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Berlin, Germany.
| | - Frank S Bierkandt
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Berlin, Germany
| | - Otto Creutzenberg
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
| | - Valerie Fessard
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Fougères Laboratory, Toxicology of contaminants Unit, Fougères, France
| | - Roland Franz
- Fraunhofer Institute for Process Engineering and Packaging (IVV), Freising, Germany
| | - Ralf Greiner
- Department of Food Technology and Bioprocess Engineering, Max Rubner-Institut, Karlsruhe, Germany
| | - Carmen Gruber-Traub
- Fraunhofer Institute for Interfacial Engineering and Biotechnology (IGB), Stuttgart, Germany
| | - Karl-Heinz Haas
- Fraunhofer Institute for Silicate Research (ISC), Würzburg, Germany
| | - Andrea Haase
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Berlin, Germany
| | - Andrea Hartwig
- Karlsruhe Institute of Technology (KIT), Institute of Applied Biosciences (IAB), Food Chemistry and Toxicology, Germany
| | - Bernhard Hesse
- European Synchrotron Radiation Facility, Grenoble, France
| | - Kerstin Hund-Rinke
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Schmallenberg, Germany
| | | | - Charlotte Kromer
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Berlin, Germany
| | - Katrin Loeschner
- National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | - Diana Mutz
- German Federal Institute for Risk Assessment (BfR), Research Strategy and Coordination, Berlin, Germany
| | - Anastasia Rakow
- Charité - Universitätsmedizin Berlin, Center for Musculoskeletal Surgery, Berlin, Germany; Center for Orthopaedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, Greifswald, Germany
| | | | - Hubert Rauscher
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Hannes Richter
- Fraunhofer IKTS - Institute for Ceramic Technologies and Systems, Hermsdorf, Germany
| | - Janosch Schoon
- Center for Orthopaedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, Greifswald, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany
| | - Otmar Schmid
- Comprehensive Pneumology Center (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany; Institute of Lung Health and Immunity, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Claudia Som
- Technology and Society Laboratory, Swiss Federal Laboratories for Materials Science and Technology (Empa), St. Gallen, Switzerland
| | - Lena M Spindler
- Fraunhofer Institute for Interfacial Engineering and Biotechnology (IGB), Stuttgart, Germany; University of Stuttgart, Institute of Interfacial Process Engineering and Plasma Technology (IGVP), Stuttgart, Germany
| | - Günter E M Tovar
- Fraunhofer Institute for Interfacial Engineering and Biotechnology (IGB), Stuttgart, Germany; University of Stuttgart, Institute of Interfacial Process Engineering and Plasma Technology (IGVP), Stuttgart, Germany
| | - Paul Westerhoff
- Arizona State University, Tempe, AZ, United States of America
| | | | - Andreas Luch
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Berlin, Germany
| | - Peter Laux
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Berlin, Germany
| |
Collapse
|
7
|
Sieg H, Klusmann L, Kreß L, Ellermann AL, Böhmert L, Thünemann AF, Braeuning A. Counterions determine uptake and effects of aluminum in human intestinal and liver cells. Toxicol In Vitro 2021; 79:105295. [PMID: 34896600 DOI: 10.1016/j.tiv.2021.105295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/30/2021] [Accepted: 12/06/2021] [Indexed: 10/19/2022]
Abstract
Aluminum (Al) is highly abundant in the biosphere and can occur in different physico-chemical states. It is present in human food and undergoes transitions between dissolved and particulate species during the passage of the gastrointestinal tract. Moreover, in a complex matrix such as food different inorganic and organic counterions can affect the chemical behavior of Al following oral uptake. In this work, the effects of different counterions, namely chloride, citrate, sulfate, lactate and acetylacetonate, on Al uptake and toxicity in the human intestine are studied. The respective Al salts showed different dissolution behavior in biological media and formed nanoscaled particles correlating in reverse with the amount of their dissolved fraction. The passage through the intestinal barrier was studied using a Caco-2 Transwell® system, showing counterion-dependent variance in cellular uptake and transport. In addition, Al toxicity was investigated using Al species (Al3+, metallic Al0 and oxidic γAl2O3 nanoparticles) and counterions individually or in mixtures on Caco-2 and HepG2 cells. The strongest toxicity was observed using a combination of Al species, depending on solubility, and the lipophilic counterion acetylacetonate. Notably, only the combination of both led to toxicity, while both substances individually did not show toxic effects. A toxification of previously non-toxic Al-species by the presence of acetylacetonate is shown here for the first time. The dependency on the concentration of free Al ions was demonstrated using sodium hydrogen phosphate, which was able to counteract the toxic effects by complexing free Al ions. These findings, using Al salts as an example for a common food contaminant, underline the importance of a consideration of the chemical properties of human nutrition, especially dissolution and hydrophobicity, which can significantly influence the cellular uptake and effects of xenobiotic substances.
Collapse
Affiliation(s)
- Holger Sieg
- Department of Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany.
| | - Lisa Klusmann
- Department of Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Lola Kreß
- Department of Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Anna Lena Ellermann
- Department of Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Linda Böhmert
- Department of Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Andreas F Thünemann
- German Federal Institute for Materials Research and Testing (BAM), Unter den Eichen 87, 12205 Berlin, Germany
| | - Albert Braeuning
- Department of Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| |
Collapse
|
8
|
Jalili P, Huet S, Burel A, Krause BC, Fontana C, Chevance S, Gauffre F, Guichard Y, Lampen A, Laux P, Luch A, Hogeveen K, Fessard V. Genotoxic impact of aluminum-containing nanomaterials in human intestinal and hepatic cells. Toxicol In Vitro 2021; 78:105257. [PMID: 34688838 DOI: 10.1016/j.tiv.2021.105257] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/28/2021] [Accepted: 10/08/2021] [Indexed: 11/27/2022]
Abstract
Exposure of consumers to aluminum-containing nanomaterials (Al NMs) is an area of concern for public health agencies. As the available data on the genotoxicity of Al2O3 and Al0 NMs are inconclusive or rare, the present study investigated their in vitro genotoxic potential in intestinal and liver cell models, and compared with the ionic form AlCl3. Intestinal Caco-2 and hepatic HepaRG cells were exposed to Al0 and Al2O3 NMs (0.03 to 80 μg/cm2). Cytotoxicity, oxidative stress and apoptosis were measured using High Content Analysis. Genotoxicity was investigated through γH2AX labelling, the alkaline comet and micronucleus assays. Moreover, oxidative DNA damage and carcinogenic properties were assessed using the Fpg-modified comet assay and the cell transforming assay in Bhas 42 cells respectively. The three forms of Al did not induce chromosomal damage. However, although no production of oxidative stress was detected, Al2O3 NMs induced oxidative DNA damage in Caco-2 cells but not likely related to ion release in the cell media. Considerable DNA damage was observed with Al0 NMs in both cell lines in the comet assay, likely due to interference with these NMs. No genotoxic effects were observed with AlCl3. None of the Al compounds induced cytotoxicity, apoptosis, γH2AX or cell transformation.
Collapse
Affiliation(s)
- Pégah Jalili
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Fougères Laboratory, Toxicology of Contaminants Unit, 10B rue C. Bourgelat, 35306 Fougères, France
| | - Sylvie Huet
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Fougères Laboratory, Toxicology of Contaminants Unit, 10B rue C. Bourgelat, 35306 Fougères, France
| | - Agnès Burel
- MRic Cell Imaging Platform, BIOSIT, University of Rennes 1, campus Santé de Villejean, 2 avenue du Pr Léon Bernard - CS, 34317, 35043 Rennes, France
| | - Benjamin-Christoph Krause
- Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Caroline Fontana
- INRS, 1, rue du Morvan - CS 60027, 54519 Vandoeuvre les Nancy, France
| | - Soizic Chevance
- Université de Rennes 1, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR6226, F-35000 Rennes, France
| | - Fabienne Gauffre
- Université de Rennes 1, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR6226, F-35000 Rennes, France
| | - Yves Guichard
- INRS, 1, rue du Morvan - CS 60027, 54519 Vandoeuvre les Nancy, France
| | - Alfonso Lampen
- Federal Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Peter Laux
- Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Andreas Luch
- Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Kevin Hogeveen
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Fougères Laboratory, Toxicology of Contaminants Unit, 10B rue C. Bourgelat, 35306 Fougères, France
| | - Valérie Fessard
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Fougères Laboratory, Toxicology of Contaminants Unit, 10B rue C. Bourgelat, 35306 Fougères, France.
| |
Collapse
|
9
|
Krause BC, Kriegel FL, Tartz V, Jungnickel H, Reichardt P, Singh AV, Laux P, Shemis M, Luch A. Combinatory Effects of Cerium Dioxide Nanoparticles and Acetaminophen on the Liver-A Case Study of Low-Dose Interactions in Human HuH-7 Cells. Int J Mol Sci 2021; 22:6866. [PMID: 34202329 PMCID: PMC8268126 DOI: 10.3390/ijms22136866] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/18/2021] [Accepted: 06/23/2021] [Indexed: 12/12/2022] Open
Abstract
The interactions between pharmaceuticals and nanomaterials and its potentially resulting toxicological effects in living systems are only insufficiently investigated. In this study, two model compounds, acetaminophen, a pharmaceutical, and cerium dioxide, a manufactured nanomaterial, were investigated in combination and individually. Upon inhalation, cerium dioxide nanomaterials were shown to systemically translocate into other organs, such as the liver. Therefore we picked the human liver cell line HuH-7 cells as an in vitro system to investigate liver toxicity. Possible synergistic or antagonistic metabolic changes after co-exposure scenarios were investigated. Toxicological data of the water soluble tetrazolium (WST-1) assay for cell proliferation and genotoxicity assessment using the Comet assay were combined with an untargeted as well as a targeted lipidomics approach. We found an attenuated cytotoxicity and an altered metabolic profile in co-exposure experiments with cerium dioxide, indicating an interaction of both compounds at these endpoints. Single exposure against cerium dioxide showed a genotoxic effect in the Comet assay. Conversely, acetaminophen exhibited no genotoxic effect. Comet assay data do not indicate an enhancement of genotoxicity after co-exposure. The results obtained in this study highlight the advantage of investigating co-exposure scenarios, especially for bioactive substances.
Collapse
Affiliation(s)
- Benjamin C. Krause
- Department of Chemical & Product Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany; (F.L.K.); (V.T.); (H.J.); (P.R.); (A.V.S.); (P.L.); (A.L.)
| | - Fabian L. Kriegel
- Department of Chemical & Product Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany; (F.L.K.); (V.T.); (H.J.); (P.R.); (A.V.S.); (P.L.); (A.L.)
- NUVISAN ICB GmbH, Preclinical Compound Profiling, Muellerstrasse 178, 13353 Berlin, Germany
| | - Victoria Tartz
- Department of Chemical & Product Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany; (F.L.K.); (V.T.); (H.J.); (P.R.); (A.V.S.); (P.L.); (A.L.)
| | - Harald Jungnickel
- Department of Chemical & Product Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany; (F.L.K.); (V.T.); (H.J.); (P.R.); (A.V.S.); (P.L.); (A.L.)
| | - Philipp Reichardt
- Department of Chemical & Product Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany; (F.L.K.); (V.T.); (H.J.); (P.R.); (A.V.S.); (P.L.); (A.L.)
| | - Ajay Vikram Singh
- Department of Chemical & Product Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany; (F.L.K.); (V.T.); (H.J.); (P.R.); (A.V.S.); (P.L.); (A.L.)
| | - Peter Laux
- Department of Chemical & Product Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany; (F.L.K.); (V.T.); (H.J.); (P.R.); (A.V.S.); (P.L.); (A.L.)
| | - Mohamed Shemis
- Department of Biochemistry & Molecular Biology, Theodor Bilharz Research Institute, Warak El-Hadar, Kornish El-Nile, P.O. Box 30 Imbaba, Giza 12411, Egypt;
| | - Andreas Luch
- Department of Chemical & Product Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany; (F.L.K.); (V.T.); (H.J.); (P.R.); (A.V.S.); (P.L.); (A.L.)
| |
Collapse
|
10
|
Uptake and cellular effects of PE, PP, PET and PVC microplastic particles. Toxicol In Vitro 2021; 70:105021. [DOI: 10.1016/j.tiv.2020.105021] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/06/2020] [Accepted: 10/08/2020] [Indexed: 01/19/2023]
|
11
|
Leibrock LB, Jungnickel H, Tentschert J, Katz A, Toman B, Petersen EJ, Bierkandt FS, Singh AV, Laux P, Luch A. Parametric Optimization of an Air-Liquid Interface System for Flow-Through Inhalation Exposure to Nanoparticles: Assessing Dosimetry and Intracellular Uptake of CeO 2 Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2369. [PMID: 33260672 PMCID: PMC7760223 DOI: 10.3390/nano10122369] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 12/11/2022]
Abstract
Air-liquid interface (ALI) systems have been widely used in recent years to investigate the inhalation toxicity of many gaseous compounds, chemicals, and nanomaterials and represent an emerging and promising in vitro method to supplement in vivo studies. ALI exposure reflects the physiological conditions of the deep lung more closely to subacute in vivo inhalation scenarios compared to submerged exposure. The comparability of the toxicological results obtained from in vivo and in vitro inhalation data is still challenging. The robustness of ALI exposure scenarios is not yet well understood, but critical for the potential standardization of these methods. We report a cause-and-effect (C&E) analysis of a flow through ALI exposure system. The influence of five different instrumental and physiological parameters affecting cell viability and exposure parameters of a human lung cell line in vitro (exposure duration, relative humidity, temperature, CO2 concentration and flow rate) was investigated. After exposing lung epithelia cells to a CeO2 nanoparticle (NP) aerosol, intracellular CeO2 concentrations reached values similar to those found in a recent subacute rat inhalation study in vivo. This is the first study showing that the NP concentration reached in vitro using a flow through ALI system were the same as those in an in vivo study.
Collapse
Affiliation(s)
- Lars B. Leibrock
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany; (H.J.); (J.T.); (A.K.); (F.S.B.); (A.V.S.); (P.L.); (A.L.)
| | - Harald Jungnickel
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany; (H.J.); (J.T.); (A.K.); (F.S.B.); (A.V.S.); (P.L.); (A.L.)
| | - Jutta Tentschert
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany; (H.J.); (J.T.); (A.K.); (F.S.B.); (A.V.S.); (P.L.); (A.L.)
| | - Aaron Katz
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany; (H.J.); (J.T.); (A.K.); (F.S.B.); (A.V.S.); (P.L.); (A.L.)
| | - Blaza Toman
- Information Technology Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaitherburg, MD 20899-8311, USA;
| | - Elijah J. Petersen
- Materials Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaitherburg, MD 20899-8311, USA;
| | - Frank S. Bierkandt
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany; (H.J.); (J.T.); (A.K.); (F.S.B.); (A.V.S.); (P.L.); (A.L.)
| | - Ajay Vikram Singh
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany; (H.J.); (J.T.); (A.K.); (F.S.B.); (A.V.S.); (P.L.); (A.L.)
| | - Peter Laux
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany; (H.J.); (J.T.); (A.K.); (F.S.B.); (A.V.S.); (P.L.); (A.L.)
| | - Andreas Luch
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany; (H.J.); (J.T.); (A.K.); (F.S.B.); (A.V.S.); (P.L.); (A.L.)
| |
Collapse
|
12
|
Calderón-Garcidueñas L, Torres-Jardón R, Franco-Lira M, Kulesza R, González-Maciel A, Reynoso-Robles R, Brito-Aguilar R, García-Arreola B, Revueltas-Ficachi P, Barrera-Velázquez JA, García-Alonso G, García-Rojas E, Mukherjee PS, Delgado-Chávez R. Environmental Nanoparticles, SARS-CoV-2 Brain Involvement, and Potential Acceleration of Alzheimer's and Parkinson's Diseases in Young Urbanites Exposed to Air Pollution. J Alzheimers Dis 2020; 78:479-503. [PMID: 32955466 DOI: 10.3233/jad-200891] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alzheimer's and Parkinson's diseases (AD, PD) have a pediatric and young adult onset in Metropolitan Mexico City (MMC). The SARS-CoV-2 neurotropic RNA virus is triggering neurological complications and deep concern regarding acceleration of neuroinflammatory and neurodegenerative processes already in progress. This review, based on our MMC experience, will discuss two major issues: 1) why residents chronically exposed to air pollution are likely to be more susceptible to SARS-CoV-2 systemic and brain effects and 2) why young people with AD and PD already in progress will accelerate neurodegenerative processes. Secondary mental consequences of social distancing and isolation, fear, financial insecurity, violence, poor health support, and lack of understanding of the complex crisis are expected in MMC residents infected or free of SARS-CoV-2. MMC residents with pre-SARS-CoV-2 accumulation of misfolded proteins diagnostic of AD and PD and metal-rich, magnetic nanoparticles damaging key neural organelles are an ideal host for neurotropic SARS-CoV-2 RNA virus invading the body through the same portals damaged by nanoparticles: nasal olfactory epithelium, the gastrointestinal tract, and the alveolar-capillary portal. We urgently need MMC multicenter retrospective-prospective neurological and psychiatric population follow-up and intervention strategies in place in case of acceleration of neurodegenerative processes, increased risk of suicide, and mental disease worsening. Identification of vulnerable populations and continuous effort to lower air pollution ought to be critical steps.
Collapse
Affiliation(s)
| | - Ricardo Torres-Jardón
- Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Maricela Franco-Lira
- Colegio de Bachilleres Militarizado, "General Mariano Escobedo", Monterrey, N.L., México
| | - Randy Kulesza
- Auditory Research Center, Lake Erie College of Osteopathic Medicine, Erie, PA, USA
| | | | | | | | | | | | | | | | | | - Partha S Mukherjee
- Interdisciplinary Statistical Research Unit, Indian Statistical Institute, Kolkata, India
| | | |
Collapse
|
13
|
Shopova S, Sieg H, Braeuning A. Risk assessment and toxicological research on micro- and nanoplastics after oral exposure via food products. EFSA J 2020; 18:e181102. [PMID: 33294041 PMCID: PMC7691612 DOI: 10.2903/j.efsa.2020.e181102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Plastics are used ubiquitously and have become part of our everyday life. The global production of plastics is rising, which in consequence is leading to increasing amounts of plastics being released into the environment. Recently, the issue of human exposure to micro- and nanoplastic particles and potentially resulting toxicological consequences has been broached, triggered by the discovery of microplastics in foodstuff. In addition to dietary exposure via contaminated food and beverages, other exposure paths such as via air and cosmetics, have to be considered. Currently there is no legislation for microplastics and nanoplastics as contaminants in food. Substantial data gaps with respect to exposure as well as toxicity of such particles impede the risk assessment. Within this EU-FORA fellowship project, a comprehensive data mining approach was followed, focusing on up-to-date knowledge on the occurrence and possible toxic effects associated with micro- and nanoplastics after oral exposure, especially via food products and beverages, in order to provide a basis for risk assessment and to identify important research gaps. The fellowship project was further complemented by practical work aimed at the determination of in vitro toxicity of micro-sized polylactic acid particles.
Collapse
|
14
|
Voss L, Hsiao IL, Ebisch M, Vidmar J, Dreiack N, Böhmert L, Stock V, Braeuning A, Loeschner K, Laux P, Thünemann AF, Lampen A, Sieg H. The presence of iron oxide nanoparticles in the food pigment E172. Food Chem 2020; 327:127000. [PMID: 32454284 DOI: 10.1016/j.foodchem.2020.127000] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/31/2020] [Accepted: 05/06/2020] [Indexed: 01/19/2023]
Abstract
Iron oxides used as food colorants are listed in the European Union with the number E172. However, there are no specifications concerning the fraction of nanoparticles in these pigments. Here, seven E172 products were thoroughly characterized. Samples of all colors were analyzed with a broad spectrum of methods to assess their physico-chemical properties. Small-Angle X-ray Scattering (SAXS), Dynamic Light Scattering (DLS), Transmission Electron Microscopy (TEM), zeta-potential, Inductively Coupled Plasma-Mass Spectrometry (ICP-MS), X-ray diffraction (XRD), Brunauer-Emmett-Teller analysis (BET), Asymmetric Flow Field-Flow Fractionation (AF4) and in vitro cell viability measurements were used. Nanoparticles were detected in all E172 samples by TEM or SAXS measurements. Quantitative results from both methods were comparable. Five pigments were evaluated by TEM, of which four had a size median below 100 nm, while SAXS showed a size median below 100 nm for six evaluated pigments. Therefore, consumers may be exposed to iron oxide nanoparticles through the consumption of food pigments.
Collapse
Affiliation(s)
- Linn Voss
- German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany.
| | - I-Lun Hsiao
- School of Food Safety, College of Nutrition, Taipei Medical University, Taipei, Taiwan; Master Program in Food Safety, College of Nutrition, Taipei Medical University, Taipei, Taiwan.
| | - Maximilian Ebisch
- German Federal Institute of Material Research and Testing (BAM), Unter den Eichen 87, 12205 Berlin, Germany.
| | - Janja Vidmar
- National Food Institute, Technical University of Denmark, Kemitorvet, Building 201, 2800 Kgs. Lyngby, Denmark.
| | - Nadine Dreiack
- German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany.
| | - Linda Böhmert
- German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany.
| | - Valerie Stock
- German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany.
| | - Albert Braeuning
- German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany.
| | - Katrin Loeschner
- National Food Institute, Technical University of Denmark, Kemitorvet, Building 201, 2800 Kgs. Lyngby, Denmark.
| | - Peter Laux
- German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany.
| | - Andreas F Thünemann
- German Federal Institute of Material Research and Testing (BAM), Unter den Eichen 87, 12205 Berlin, Germany.
| | - Alfonso Lampen
- German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany.
| | - Holger Sieg
- German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany.
| |
Collapse
|
15
|
Tada-Oikawa S, Eguchi M, Yasuda M, Izuoka K, Ikegami A, Vranic S, Boland S, Tran L, Ichihara G, Ichihara S. Functionalized Surface-Charged SiO 2 Nanoparticles Induce Pro-Inflammatory Responses, but Are Not Lethal to Caco-2 Cells. Chem Res Toxicol 2020; 33:1226-1236. [PMID: 32319286 DOI: 10.1021/acs.chemrestox.9b00478] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Nanoparticles (NPs) are widely used in food, and analysis of their potential gastrointestinal toxicity is necessary. The present study was designed to determine the effects of silica dioxide (SiO2), titanium dioxide (TiO2), and zinc oxide (ZnO) NPs on cultured THP-1 monocyte-derived macrophages and human epithelial colorectal adenocarcinoma (Caco-2) cells. Exposure to ZnO NPs for 24 h increased the production of redox response species (ROS) and reduced cell viability in a dose-dependent manner in THP-1 macrophages and Caco-2 cells. Although TiO2 and SiO2 NPs induced oxidative stress, they showed no apparent cytotoxicity against both cell types. The effects of functionalized SiO2 NPs on undifferentiated and differentiated Caco-2 cells were investigated using fluorescently labeled SiO2 NPs with neutral, positive, or negative surface charge. Exposure of both types of cells to the three kinds of SiO2 NPs significantly increased their interaction in a dose-dependent manner. The largest interaction with both types of cells was noted with exposure to more negatively surface-charged SiO2 NPs. Exposure to either positively or negatively, but not neutrally, surface-charged SiO2 NPs increased NO levels in differentiated Caco-2 cells. Exposure of differentiated Caco-2 cells to positively or negatively surface-charged SiO2 NPs also upregulated interleukin-8 expression. We conclude that functionalized surface-charged SiO2 NPs can induce pro-inflammatory responses but are noncytotoxic.
Collapse
Affiliation(s)
- Saeko Tada-Oikawa
- Graduate School of Regional Innovation Studies, Mie University, 1577 Kurimamachiya-cho, Tsu 514-8507, Japan.,School of Life Studies, Sugiyama Jogakuen University, 17-3 Hoshigaokamotomachi, Nagoya 464-0802, Japan
| | - Mana Eguchi
- School of Life Studies, Sugiyama Jogakuen University, 17-3 Hoshigaokamotomachi, Nagoya 464-0802, Japan
| | - Michiko Yasuda
- School of Life Studies, Sugiyama Jogakuen University, 17-3 Hoshigaokamotomachi, Nagoya 464-0802, Japan
| | - Kiyora Izuoka
- Graduate School of Regional Innovation Studies, Mie University, 1577 Kurimamachiya-cho, Tsu 514-8507, Japan
| | - Akihiko Ikegami
- Department of Environmental and Preventive Medicine, Jichi Medical University School of Medicine, 3311-1 Shimotsuke, Shimotsuke 329-0498, Japan
| | - Sandra Vranic
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Nagoya 466-8550, Japan
| | - Sonja Boland
- Unit of Functional and Adaptive Biology (BFA), Laboratory of Molecular and Cellular Responses to Xenobiotics, CNRS UMR 8251, Université de Paris, F-75013 Paris, France
| | - Lang Tran
- Institute of Occupational Medicine, Research Avenue North, Riccarton, EH14 4AP Edinburgh, United Kingdom
| | - Gaku Ichihara
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Nagoya 466-8550, Japan
| | - Sahoko Ichihara
- Graduate School of Regional Innovation Studies, Mie University, 1577 Kurimamachiya-cho, Tsu 514-8507, Japan.,Department of Environmental and Preventive Medicine, Jichi Medical University School of Medicine, 3311-1 Shimotsuke, Shimotsuke 329-0498, Japan
| |
Collapse
|
16
|
Cui X, Bao L, Wang X, Chen C. The Nano-Intestine Interaction: Understanding the Location-Oriented Effects of Engineered Nanomaterials in the Intestine. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1907665. [PMID: 32347646 DOI: 10.1002/smll.201907665] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/13/2020] [Accepted: 02/18/2020] [Indexed: 06/11/2023]
Abstract
Engineered nanomaterials (ENMs) are used in food additives, food packages, and therapeutic purposes owing to their useful properties, Therefore, human beings are orally exposed to exogenous nanomaterials frequently, which means the intestine is one of the primary targets of nanomaterials. Consequently, it is of great importance to understand the interaction between nanomaterials and the intestine. When nanomaterials enter into gut lumen, they inevitably interact with various components and thereby display different effects on the intestine based on their locations; these are known as location-oriented effects (LOE). The intestinal LOE confer a new biological-effect profile for nanomaterials, which is dependent on the involvement of the following biological processes: nano-mucus interaction, nano-intestinal epithelial cells (IECs) interaction, nano-immune interaction, and nano-microbiota interaction. A deep understanding of NM-induced LOE will facilitate the design of safer NMs and the development of more efficient nanomedicine for intestine-related diseases. Herein, recent progress in this field is reviewed in order to better understand the LOE of nanomaterials. The distant effects of nanomaterials coupling with microbiota are also highlighted. Investigation of the interaction of nanomaterials with the intestine will stimulate other new research areas beyond intestinal nanotoxicity.
Collapse
Affiliation(s)
- Xuejing Cui
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Lin Bao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoyu Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- GBA Research Innovation Institute for Nanotechnology, Guangdong, 510700, China
| |
Collapse
|
17
|
Böhmert L, Voß L, Stock V, Braeuning A, Lampen A, Sieg H. Isolation methods for particle protein corona complexes from protein-rich matrices. NANOSCALE ADVANCES 2020; 2:563-582. [PMID: 36133244 PMCID: PMC9417621 DOI: 10.1039/c9na00537d] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 01/08/2020] [Indexed: 05/20/2023]
Abstract
Background: Nanoparticles become rapidly encased by a protein layer when they are in contact with biological fluids. This protein shell is called a corona. The composition of the corona has a strong influence on the surface properties of the nanoparticles. It can affect their cellular interactions, uptake and signaling properties. For this reason, protein coronae are investigated frequently as an important part of particle characterization. Main body of the abstract: The protein corona can be analyzed by different methods, which have their individual advantages and challenges. The separation techniques to isolate corona-bound particles from the surrounding matrices include centrifugation, magnetism and chromatographic methods. Different organic matrices, such as blood, blood serum, plasma or different complex protein mixtures, are used and the approaches vary in parameters such as time, concentration and temperature. Depending on the investigated particle type, the choice of separation method can be crucial for the subsequent results. In addition, it is important to include suitable controls to avoid misinterpretation and false-positive or false-negative results, thus allowing the achievement of a valuable protein corona analysis result. Conclusion: Protein corona studies are an important part of particle characterization in biological matrices. This review gives a comparative overview about separation techniques, experimental parameters and challenges which occur during the investigation of the protein coronae of different particle types.
Collapse
Affiliation(s)
- Linda Böhmert
- German Federal Institute for Risk Assessment, Dept. Food Safety Max-Dohrn-Str. 8-10 10589 Berlin Germany +49 (30) 18412-25800
| | - Linn Voß
- German Federal Institute for Risk Assessment, Dept. Food Safety Max-Dohrn-Str. 8-10 10589 Berlin Germany +49 (30) 18412-25800
| | - Valerie Stock
- German Federal Institute for Risk Assessment, Dept. Food Safety Max-Dohrn-Str. 8-10 10589 Berlin Germany +49 (30) 18412-25800
| | - Albert Braeuning
- German Federal Institute for Risk Assessment, Dept. Food Safety Max-Dohrn-Str. 8-10 10589 Berlin Germany +49 (30) 18412-25800
| | - Alfonso Lampen
- German Federal Institute for Risk Assessment, Dept. Food Safety Max-Dohrn-Str. 8-10 10589 Berlin Germany +49 (30) 18412-25800
| | - Holger Sieg
- German Federal Institute for Risk Assessment, Dept. Food Safety Max-Dohrn-Str. 8-10 10589 Berlin Germany +49 (30) 18412-25800
| |
Collapse
|
18
|
Krause BC, Kriegel FL, Rosenkranz D, Dreiack N, Tentschert J, Jungnickel H, Jalili P, Fessard V, Laux P, Luch A. Aluminum and aluminum oxide nanomaterials uptake after oral exposure - a comparative study. Sci Rep 2020; 10:2698. [PMID: 32060369 PMCID: PMC7021764 DOI: 10.1038/s41598-020-59710-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/03/2020] [Indexed: 02/04/2023] Open
Abstract
The knowledge about a potential in vivo uptake and subsequent toxicological effects of aluminum (Al), especially in the nanoparticulate form, is still limited. This paper focuses on a three day oral gavage study with three different Al species in Sprague Dawley rats. The Al amount was investigated in major organs in order to determine the oral bioavailability and distribution. Al-containing nanoparticles (NMs composed of Al0 and aluminum oxide (Al2O3)) were administered at three different concentrations and soluble aluminum chloride (AlCl3·6H2O) was used as a reference control at one concentration. A microwave assisted acid digestion approach followed by inductively coupled plasma mass spectrometry (ICP-MS) analysis was developed to analyse the Al burden of individual organs. Special attention was paid on how the sample matrix affected the calibration procedure. After 3 days exposure, AlCl3·6H2O treated animals showed high Al levels in liver and intestine, while upon treatment with Al0 NMs significant amounts of Al were detected only in the latter. In contrast, following Al2O3 NMs treatment, Al was detected in all investigated organs with particular high concentrations in the spleen. A rapid absorption and systemic distribution of all three Al forms tested were found after 3-day oral exposure. The identified differences between Al0 and Al2O3 NMs point out that both, particle shape and surface composition could be key factors for Al biodistribution and accumulation.
Collapse
Affiliation(s)
- Benjamin C Krause
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Max-Dohrn-Straße 8-10, 10589, Berlin, Germany.
| | - Fabian L Kriegel
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Max-Dohrn-Straße 8-10, 10589, Berlin, Germany
| | - Daniel Rosenkranz
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Max-Dohrn-Straße 8-10, 10589, Berlin, Germany
| | - Nadine Dreiack
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Max-Dohrn-Straße 8-10, 10589, Berlin, Germany
| | - Jutta Tentschert
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Max-Dohrn-Straße 8-10, 10589, Berlin, Germany
| | - Harald Jungnickel
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Max-Dohrn-Straße 8-10, 10589, Berlin, Germany
| | - Pegah Jalili
- ANSES, French Agency for Food, Environmental and Occupational Health and Safety, Fougères Laboratory, 10B rue Claude Bourgelat, 35306, Fougères Cedex, France
| | - Valerie Fessard
- ANSES, French Agency for Food, Environmental and Occupational Health and Safety, Fougères Laboratory, 10B rue Claude Bourgelat, 35306, Fougères Cedex, France
| | - Peter Laux
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Max-Dohrn-Straße 8-10, 10589, Berlin, Germany
| | - Andreas Luch
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Max-Dohrn-Straße 8-10, 10589, Berlin, Germany
| |
Collapse
|
19
|
Kriegel FL, Krause BC, Reichardt P, Singh AV, Tentschert J, Laux P, Jungnickel H, Luch A. The Vitamin A and D Exposure of Cells Affects the Intracellular Uptake of Aluminum Nanomaterials and its Agglomeration Behavior: A Chemo-Analytic Investigation. Int J Mol Sci 2020; 21:E1278. [PMID: 32074956 PMCID: PMC7072912 DOI: 10.3390/ijms21041278] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/07/2020] [Accepted: 02/12/2020] [Indexed: 01/26/2023] Open
Abstract
Aluminum (Al) is extensively used for the production of different consumer products, agents, as well as pharmaceuticals. Studies that demonstrate neurotoxicity and a possible link to Alzheimer's disease trigger concern about potential health risks due to high Al intake. Al in cosmetic products raises the question whether a possible interaction between Al and retinol (vitamin A) and cholecalciferol (vitamin D3) metabolism might exist. Understanding the uptake mechanisms of ionic or elemental Al and Al nanomaterials (Al NMs) in combination with bioactive substances are important for the assessment of possible health risk associated. Therefore, we studied the uptake and distribution of Al oxide (Al2O3) and metallic Al0 NMs in the human keratinocyte cell line HaCaT. Possible alterations of the metabolic pattern upon application of the two Al species together with vitamin A or D3 were investigated. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) imaging and inductively coupled plasma mass spectrometry (ICP-MS) were applied to quantify the cellular uptake of Al NMs.
Collapse
Affiliation(s)
- Fabian L. Kriegel
- German Federal Institute for Risk Assessment, Department of Chemical & Product Safety, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany; (B.-C.K.); (P.R.); (A.V.S.); (J.T.); (P.L.); (H.J.); (A.L.)
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Singh AV, Jungnickel H, Leibrock L, Tentschert J, Reichardt P, Katz A, Laux P, Luch A. ToF-SIMS 3D imaging unveils important insights on the cellular microenvironment during biomineralization of gold nanostructures. Sci Rep 2020; 10:261. [PMID: 31937806 PMCID: PMC6959255 DOI: 10.1038/s41598-019-57136-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 12/23/2019] [Indexed: 11/09/2022] Open
Abstract
The biomolecular imaging of cell-nanoparticle (NP) interactions using time-of-flight secondary ion mass spectrometry (ToF-SIMS) represents an evolving tool in nanotoxicology. In this study we present the three dimensional (3D) distribution of nanomaterials within biomolecular agglomerates using ToF-SIMS imaging. This novel approach was used to model the resistance of human alveolar A549 cells against gold (Au) ion toxicity through intra- and extracellular biomineralization. At low Au concentrations (≤1 mM HAuCl4) 3D-ToF-SIMS imaging reveals a homogenous intracellular distribution of Au-NPs in combination with polydisperse spherical NPs biomineralized in different layers on the cell surface. However, at higher precursor concentrations (≥2 mM) supplemented with biogenic spherical NPs as seeds, cells start to biosynthesize partially embedded long aspect ratio fiber-like Au nanostructures. Most interestingly, A549 cells seem to be able to sense the enhanced Au concentration. They change the chemical composition of the extracellular NP agglomerates from threonine-O-3-phosphate aureate to an arginine-Au(I)-imine. Furthermore they adopt the extracellular mineralization process from spheres to irregular structures to nanoribbons in a dose-dependent manner with increasing Au concentrations. The results achieved regarding size, shape and chemical specificity were cross checked by SEM-EDX and single particle (sp-)ICP-MS. Our findings demonstrate the potential of ToF-SIMS 3D imaging to better understand cell-NP interactions and their impact in nanotoxicology.
Collapse
Affiliation(s)
- Ajay Vikram Singh
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany.
| | - Harald Jungnickel
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany
| | - Lars Leibrock
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany
| | - Jutta Tentschert
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany
| | - Philipp Reichardt
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany
| | - Aaron Katz
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany
| | - Peter Laux
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany
| | - Andreas Luch
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany
| |
Collapse
|
21
|
Calderón-Garcidueñas L, Reynoso-Robles R, González-Maciel A. Combustion and friction-derived nanoparticles and industrial-sourced nanoparticles: The culprit of Alzheimer and Parkinson's diseases. ENVIRONMENTAL RESEARCH 2019; 176:108574. [PMID: 31299618 DOI: 10.1016/j.envres.2019.108574] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/11/2019] [Accepted: 07/02/2019] [Indexed: 05/20/2023]
Abstract
Redox-active, strongly magnetic, combustion and friction-derived nanoparticles (CFDNPs) are abundant in particulate matter air pollution. Urban children and young adults with Alzheimer disease Continuum have higher numbers of brain CFDNPs versus clean air controls. CFDNPs surface charge, dynamic magnetic susceptibility, iron content and redox activity contribute to ROS generation, neurovascular unit (NVU), mitochondria, and endoplasmic reticulum (ER) damage, and are catalysts for protein misfolding, aggregation and fibrillation. CFDNPs respond to external magnetic fields and are involved in cell damage by agglomeration/clustering, magnetic rotation and/or hyperthermia. This review focus in the interaction of CFDNPs, nanomedicine and industrial NPs with biological systems and the impact of portals of entry, particle sizes, surface charge, biomolecular corona, biodistribution, mitochondrial dysfunction, cellular toxicity, anterograde and retrograde axonal transport, brain dysfunction and pathology. NPs toxicity information come from researchers synthetizing particles and improving their performance for drug delivery, drug targeting, magnetic resonance imaging and heat mediators for cancer therapy. Critical information includes how these NPs overcome all barriers, the NPs protein corona changes as they cross the NVU and the complexity of NPs interaction with soluble proteins and key organelles. Oxidative, ER and mitochondrial stress, and a faulty complex protein quality control are at the core of Alzheimer and Parkinson's diseases and NPs mechanisms of action and toxicity are strong candidates for early development and progression of both fatal diseases. Nanoparticle exposure regardless of sources carries a high risk for the developing brain homeostasis and ought to be included in the AD and PD research framework.
Collapse
Affiliation(s)
- Lilian Calderón-Garcidueñas
- The University of Montana, Missoula, MT, 59812, USA; Universidad Del Valle de México, 04850, Mexico City, Mexico.
| | | | | |
Collapse
|
22
|
Wagener S, Jungnickel H, Dommershausen N, Fischer T, Laux P, Luch A. Determination of Nanoparticle Uptake, Distribution, and Characterization in Plant Root Tissue after Realistic Long-Term Exposure to Sewage Sludge Using Information from Mass Spectrometry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:5416-5426. [PMID: 30964664 DOI: 10.1021/acs.est.8b07222] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The use of nanoparticles (NPs) in numerous products and their potential accumulation causes major concern for humans and the environment. Until now, the uptake of NPs in plant tissue was mostly shown under greenhouse conditions at high doses and short exposure periods. Here, we present results on the uptake of particulate silver (Ag) and cerium dioxide (CeO2) in the tissues of Triticum aestivum, Brassica napus, and Hordeum vulgare, after exposure to sewage sludge treated with nano-Ag (NM300 K at 1.8 and 7.0 mg/kg sludge per dm soil) and nano-CeO2 (NM212 at 10 and 50 mg/kg sludge per dm soil). All plants were cultivated in a rural area near the German town Schmallenberg according to the common regional crop rotation on outdoor lysimeters. The highest concentrations measured were 86.4 mg/kg for Ag ( Hordeum vulgare) and 94 mg/kg for Ce ( Triticum sativum). Analysis of plant samples revealed the presence of Ag mainly in its ionic form. However, the occurrence of nano- and larger sized particles of Ag and CeO2 was observed as well. Quantitative shares of the particulate fraction of the total element concentration were estimated up to 22.4% for Ag and up to 85.1% for CeO2. A high abundance of particle agglomerates in the phloem suggests upward transport of the nanoparticles to other plant parts. A small number of agglomerates in the xylem suggests a downward transport and subsequent accumulation in the root phloem. Exemplary investigations of Brassica napus root exposed to nano-CeO2 revealed no accumulation of the pristine material in the cell nucleus; however, CePO4 was found. The presence of this substance points to a dissolution of the low soluble CeO2 in planta and subsequent precipitation. Furthermore, for the first time, mixed NP-salt agglomerates, composed of Ca3PO4+ and K3SO4+ NPs, could be observed within Brassica napus root tissue.
Collapse
Affiliation(s)
- Sandra Wagener
- Department of Chemical and Product Safety , German Federal Institute for Risk Assessment (BfR) , Max-Dohrn-Strasse 8-10 , D-10589 , Berlin , Germany
| | - Harald Jungnickel
- Department of Chemical and Product Safety , German Federal Institute for Risk Assessment (BfR) , Max-Dohrn-Strasse 8-10 , D-10589 , Berlin , Germany
| | - Nils Dommershausen
- Department of Chemical and Product Safety , German Federal Institute for Risk Assessment (BfR) , Max-Dohrn-Strasse 8-10 , D-10589 , Berlin , Germany
| | - Thomas Fischer
- Department of Chemical and Product Safety , German Federal Institute for Risk Assessment (BfR) , Max-Dohrn-Strasse 8-10 , D-10589 , Berlin , Germany
| | - Peter Laux
- Department of Chemical and Product Safety , German Federal Institute for Risk Assessment (BfR) , Max-Dohrn-Strasse 8-10 , D-10589 , Berlin , Germany
| | - Andreas Luch
- Department of Chemical and Product Safety , German Federal Institute for Risk Assessment (BfR) , Max-Dohrn-Strasse 8-10 , D-10589 , Berlin , Germany
| |
Collapse
|
23
|
Sieg H, Ellermann AL, Maria Kunz B, Jalili P, Burel A, Hogeveen K, Böhmert L, Chevance S, Braeuning A, Gauffre F, Fessard V, Lampen A. Aluminum in liver cells - the element species matters. Nanotoxicology 2019; 13:909-922. [PMID: 30938204 DOI: 10.1080/17435390.2019.1593542] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aluminum (Al) can be ingested from food and released from packaging and can reach key organs involved in human metabolism, including the liver via systemic distribution. Recent studies discuss the occurrence of chemically distinct Al-species and their interconversion by contact with biological fluids. These Al species can vary with regard to their intestinal uptake, systemic transport, and therefore could have species-specific effects on different organs and tissues. This work aims to assess the in vitro hepatotoxic hazard potential of three different relevant Al species: soluble AlCl3 and two nanoparticulate Al species were applied, representing for the first time an investigation of metallic nanoparticles besides to mineral bound γ-Al2O3 on hepatic cell lines. To investigate the uptake and toxicological properties of the Al species, we used two different human hepatic cell lines: HepG2 and differentiated HepaRG cells. Cellular uptake was determined by different methods including light microscopy, transmission electron microscopy, side-scatter analysis, and elemental analysis. Oxidative stress, mitochondrial dysfunction, cell death mechanisms, and DNA damage were monitored as cellular parameters. While cellular uptake into hepatic cell lines occurred predominantly in the particle form, only ionic AlCl3 caused cellular effects. Since it is known, that Al species can convert one into another, and mechanisms including 'trojan-horse'-like uptake can lead to an Al accumulation in the cells. This could result in the slow release of Al ions, for which reason further hazard cannot be excluded. Therefore, individual investigation of the different Al species is necessary to assess the toxicological potential of Al particles.
Collapse
Affiliation(s)
- Holger Sieg
- Department of Food Safety, German Federal Institute for Risk Assessment , Berlin , Germany
| | - Anna Lena Ellermann
- Department of Food Safety, German Federal Institute for Risk Assessment , Berlin , Germany
| | - Birgitta Maria Kunz
- Department of Food Safety, German Federal Institute for Risk Assessment , Berlin , Germany
| | - Pégah Jalili
- ANSES, French Agency for Food, Environmental and Occupational Health Safety, Fougères Laboratory , Fougères Cedex , France
| | | | - Kevin Hogeveen
- ANSES, French Agency for Food, Environmental and Occupational Health Safety, Fougères Laboratory , Fougères Cedex , France.,ASPIC Cellular Imaging Platform , Fougères , France
| | - Linda Böhmert
- Department of Food Safety, German Federal Institute for Risk Assessment , Berlin , Germany
| | - Soizic Chevance
- University of Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) , Rennes , France
| | - Albert Braeuning
- Department of Food Safety, German Federal Institute for Risk Assessment , Berlin , Germany
| | - Fabienne Gauffre
- University of Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) , Rennes , France
| | - Valérie Fessard
- ANSES, French Agency for Food, Environmental and Occupational Health Safety, Fougères Laboratory , Fougères Cedex , France
| | - Alfonso Lampen
- Department of Food Safety, German Federal Institute for Risk Assessment , Berlin , Germany
| |
Collapse
|