1
|
Strunk T, Molloy EJ, Mishra A, Bhutta ZA. Neonatal bacterial sepsis. Lancet 2024; 404:277-293. [PMID: 38944044 DOI: 10.1016/s0140-6736(24)00495-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/06/2024] [Accepted: 03/07/2024] [Indexed: 07/01/2024]
Abstract
Neonatal sepsis remains one of the key challenges of neonatal medicine, and together with preterm birth, causes almost 50% of all deaths globally for children younger than 5 years. Compared with advances achieved for other serious neonatal and early childhood conditions globally, progress in reducing neonatal sepsis has been much slower, especially in low-resource settings that have the highest burden of neonatal sepsis morbidity and mortality. By contrast to sepsis in older patients, there is no universally accepted neonatal sepsis definition. This poses substantial challenges in clinical practice, research, and health-care management, and has direct practical implications, such as diagnostic inconsistency, heterogeneous data collection and surveillance, and inappropriate treatment, health-resource allocation, and education. As the clinical manifestation of neonatal sepsis is frequently non-specific and the current diagnostic standard blood culture has performance limitations, new improved diagnostic techniques are required to guide appropriate and warranted antimicrobial treatment. Although antimicrobial therapy and supportive care continue as principal components of neonatal sepsis therapy, refining basic neonatal care to prevent sepsis through education and quality improvement initiatives remains paramount.
Collapse
Affiliation(s)
- Tobias Strunk
- Neonatal Directorate, King Edward Memorial Hospital, Child and Adolescent Health Service, Perth, WA, Australia; Wesfarmers Centre for Vaccines and Infectious Diseases, Telethon Kids Institute, University of Western Australia, Perth, WA, Australia.
| | - Eleanor J Molloy
- Discipline of Paediatrics, Trinity College, University of Dublin and Trinity Research in Childhood Centre, Dublin, Ireland; Children's Health Hospital at Tallaght, Tallaght University Hospital, Dublin, Ireland; Trinity Translational Medicine Institute, St James Hospital, Dublin, Ireland; Neonatology, Children's Health Hospital at Crumlin, Dublin, Ireland; Paediatrics, Coombe Women's and Infant's University Hospital, Dublin, Ireland
| | - Archita Mishra
- Wesfarmers Centre for Vaccines and Infectious Diseases, Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
| | - Zulfiqar A Bhutta
- Centre for Global Child Health, Hospital for Sick Children, Toronto, ON, Canada; Institute for Global Health and Development, The Aga Khan University South-Central Asia, Karachi, Pakistan
| |
Collapse
|
2
|
Wang M, Feng J, Zhou D, Wang J. Bacterial lipopolysaccharide-induced endothelial activation and dysfunction: a new predictive and therapeutic paradigm for sepsis. Eur J Med Res 2023; 28:339. [PMID: 37700349 PMCID: PMC10498524 DOI: 10.1186/s40001-023-01301-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/18/2023] [Indexed: 09/14/2023] Open
Abstract
BACKGROUND Lipopolysaccharide, a highly potent endotoxin responsible for severe sepsis, is the major constituent of the outer membrane of gram-negative bacteria. Endothelial cells participate in both innate and adaptive immune responses as the first cell types to detect lipopolysaccharide or other foreign debris in the bloodstream. Endothelial cells are able to recognize the presence of LPS and recruit specific adaptor proteins to the membrane domains of TLR4, thereby initiating an intracellular signaling cascade. However, lipopolysaccharide binding to endothelial cells induces endothelial activation and even damage, manifested by the expression of proinflammatory cytokines and adhesion molecules that lead to sepsis. MAIN FINDINGS LPS is involved in both local and systemic inflammation, activating both innate and adaptive immunity. Translocation of lipopolysaccharide into the circulation causes endotoxemia. Endothelial dysfunction, including exaggerated inflammation, coagulopathy and vascular leakage, may play a central role in the dysregulated host response and pathogenesis of sepsis. By discussing the many strategies used to treat sepsis, this review attempts to provide an overview of how lipopolysaccharide induces the ever more complex syndrome of sepsis and the potential for the development of novel sepsis therapeutics. CONCLUSIONS To reduce patient morbidity and mortality, preservation of endothelial function would be central to the management of sepsis.
Collapse
Affiliation(s)
- Min Wang
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan, 430030, Hubei, People's Republic of China
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan, 430030, Hubei, People's Republic of China
| | - Jun Feng
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan, 430030, Hubei, People's Republic of China
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan, 430030, Hubei, People's Republic of China
| | - Daixing Zhou
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan, 430030, Hubei, People's Republic of China.
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan, 430030, Hubei, People's Republic of China.
| | - Junshuai Wang
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan, 430030, Hubei, People's Republic of China.
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan, 430030, Hubei, People's Republic of China.
| |
Collapse
|
3
|
Schrijver DP, Röring RJ, Deckers J, de Dreu A, Toner YC, Prevot G, Priem B, Munitz J, Nugraha EG, van Elsas Y, Azzun A, Anbergen T, Groh LA, Becker AMD, Pérez-Medina C, Oosterwijk RS, Novakovic B, Moorlag SJCFM, Jansen A, Pickkers P, Kox M, Beldman TJ, Kluza E, van Leent MMT, Teunissen AJP, van der Meel R, Fayad ZA, Joosten LAB, Fisher EA, Merkx M, Netea MG, Mulder WJM. Resolving sepsis-induced immunoparalysis via trained immunity by targeting interleukin-4 to myeloid cells. Nat Biomed Eng 2023; 7:1097-1112. [PMID: 37291433 PMCID: PMC10504080 DOI: 10.1038/s41551-023-01050-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 05/02/2023] [Indexed: 06/10/2023]
Abstract
Immunoparalysis is a compensatory and persistent anti-inflammatory response to trauma, sepsis or another serious insult, which increases the risk of opportunistic infections, morbidity and mortality. Here, we show that in cultured primary human monocytes, interleukin-4 (IL4) inhibits acute inflammation, while simultaneously inducing a long-lasting innate immune memory named trained immunity. To take advantage of this paradoxical IL4 feature in vivo, we developed a fusion protein of apolipoprotein A1 (apoA1) and IL4, which integrates into a lipid nanoparticle. In mice and non-human primates, an intravenously injected apoA1-IL4-embedding nanoparticle targets myeloid-cell-rich haematopoietic organs, in particular, the spleen and bone marrow. We subsequently demonstrate that IL4 nanotherapy resolved immunoparalysis in mice with lipopolysaccharide-induced hyperinflammation, as well as in ex vivo human sepsis models and in experimental endotoxemia. Our findings support the translational development of nanoparticle formulations of apoA1-IL4 for the treatment of patients with sepsis at risk of immunoparalysis-induced complications.
Collapse
Affiliation(s)
- David P Schrijver
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Rutger J Röring
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jeroen Deckers
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Anne de Dreu
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Yohana C Toner
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Geoffrey Prevot
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bram Priem
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medical Biochemistry, Amsterdam University Medical Centers, Amsterdam, the Netherlands
- Angiogenesis Laboratory, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Jazz Munitz
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eveline G Nugraha
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Yuri van Elsas
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Anthony Azzun
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tom Anbergen
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Laszlo A Groh
- Department of Surgery, Radboud University Medical Center, Nijmegen, the Netherlands
- Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Anouk M D Becker
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Tumor Immunology, RIMLS, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Carlos Pérez-Medina
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Roderick S Oosterwijk
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Boris Novakovic
- Epigenetics Group, Murdoch Children's Research Institute, Royal Children's Hospital and Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| | - Simone J C F M Moorlag
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Aron Jansen
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Intensive Care Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Peter Pickkers
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Intensive Care Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Matthijs Kox
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Intensive Care Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Thijs J Beldman
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Ewelina Kluza
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Mandy M T van Leent
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Abraham J P Teunissen
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Roy van der Meel
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Zahi A Fayad
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Leo A B Joosten
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Medical Genetics, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Edward A Fisher
- Division of Cardiology, Department of Medicine, Marc and Ruti Bell Program in Vascular Biology, New York University School of Medicine, New York, NY, USA
| | - Maarten Merkx
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands.
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands.
- Department for Genomics & Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany.
| | - Willem J M Mulder
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands.
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
4
|
Jerman A, Gubenšek J, Berden J, Peršič V. A matched case-control study on the effectiveness of extracorporeal cytokine adsorption in critically ill patients. Sci Rep 2023; 13:13464. [PMID: 37596304 PMCID: PMC10439174 DOI: 10.1038/s41598-023-40719-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 08/16/2023] [Indexed: 08/20/2023] Open
Abstract
Extracorporeal cytokine adsorption aims to reduce cytokine levels in critically ill patients. However, little convincing data exist to support its widespread use. This retrospective study compared interleukin-6 (IL-6) levels in patients treated with or without cytokine adsorber (CytoSorb®). Intensive care patients between Jan 2017 and Dec 2021 who had at least two IL-6 measurements were included. They were divided into an adsorber group and a standard of care group. We screened 3865 patients and included 52 patients in the adsorber group and 94 patients in the standard of care group. Matching was performed and the groups were compared regarding IL-6, lactate, CRP, procalcitonin, vasopressor requirement, and mortality rate. After matching, there were 21 patients in each group. Patients had similar age, ECMO and renal replacement therapy use, baseline noradrenaline requirement, serum lactate, pH, CRP, and IL-6 levels. There were no significant differences in the time course of IL-6, lactate, CRP, procalcitonin and noradrenaline requirement between groups. Two-day and ICU mortality and Kaplan-Meier estimated survival were also comparable. In this matched case-control study no difference in IL-6, inflammatory parameters, noradrenaline requirement or mortality was observed between patients treated with adsorber or standard of care.
Collapse
Affiliation(s)
- Alexander Jerman
- Department of Nephrology, University Medical Center Ljubljana, Ljubljana, Slovenia.
| | - Jakob Gubenšek
- Department of Nephrology, University Medical Center Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Jernej Berden
- Department for Intensive Internal Medicine, University Medical Center Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Vanja Peršič
- Department of Nephrology, University Medical Center Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
5
|
Scorcella C, Domizi R, Amoroso S, Carsetti A, Casarotta E, Castaldo P, D’angelo C, Damiani E, Gasparri F, Donati A, Adrario E. Pharmacogenetics in critical care: association between CYP3A5 rs776746 A/G genotype and acetaminophen response in sepsis and septic shock. BMC Anesthesiol 2023; 23:55. [PMID: 36797680 PMCID: PMC9933278 DOI: 10.1186/s12871-023-02018-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 02/10/2023] [Indexed: 02/18/2023] Open
Abstract
BACKGROUND Pharmacogenetics could represent a further resource to understand the interindividual heterogeneity of response of the host to sepsis and to provide a personalized approach to the critical care patient. METHODS Secondary analysis of data from the prospective observational study NCT02750163, in 50 adult septic and septic shock patients treated with Acetaminophen (ACT) for pyrexia. We investigated the presence of two polymorphisms, located respectively in the genes UGT1A1 and CYP3A5, that encode for proteins related to the hepatic metabolism of ACT. The main dependent variables explored were plasmatic concentration of ACT, body temperature and hepatic parameters. RESULTS 8% of the patients carried CYP3A5 rs776746 A/G genotypes and showed significantly higher plasma levels of ACT than GG wild type patients, and than patients with UGT1A1 rs8330 C/G genotypes. CONCLUSIONS Identifying specific genotypes of response to ACT may be helpful to guide a more personalized titration of therapy in sepsis and septic shock. CYP3A5 might be a good biomarker for ACT metabolism; however further studies are needed to confirm this result. TRIAL REGISTRATION NCT02750163.
Collapse
Affiliation(s)
- C. Scorcella
- Anesthesia and Intensive Care Unit, Azienda Ospedaliero Universitaria delle Marche, via Conca 71, Torrette di Ancona, 60126 Italy
| | - R. Domizi
- Anesthesia and Intensive Care Unit, Azienda Ospedaliero Universitaria delle Marche, via Conca 71, Torrette di Ancona, 60126 Italy
| | - S. Amoroso
- grid.7010.60000 0001 1017 3210Department of Biomedical Sciences and Public Health, Università Politecnica Delle Marche, via Tronto 10/a, Torrette di Ancona, 60020 Italy
| | - A. Carsetti
- Anesthesia and Intensive Care Unit, Azienda Ospedaliero Universitaria delle Marche, via Conca 71, Torrette di Ancona, 60126 Italy ,grid.7010.60000 0001 1017 3210Department of Biomedical Sciences and Public Health, Università Politecnica Delle Marche, via Tronto 10/a, Torrette di Ancona, 60020 Italy
| | - E. Casarotta
- Anesthesia and Intensive Care Unit, Azienda Ospedaliero Universitaria delle Marche, via Conca 71, Torrette di Ancona, 60126 Italy ,grid.7010.60000 0001 1017 3210Department of Biomedical Sciences and Public Health, Università Politecnica Delle Marche, via Tronto 10/a, Torrette di Ancona, 60020 Italy
| | - P. Castaldo
- grid.7010.60000 0001 1017 3210Department of Biomedical Sciences and Public Health, Università Politecnica Delle Marche, via Tronto 10/a, Torrette di Ancona, 60020 Italy
| | - C. D’angelo
- Anesthesia and Intensive Care Unit, Azienda Ospedaliero Universitaria delle Marche, via Conca 71, Torrette di Ancona, 60126 Italy ,grid.7010.60000 0001 1017 3210Department of Biomedical Sciences and Public Health, Università Politecnica Delle Marche, via Tronto 10/a, Torrette di Ancona, 60020 Italy
| | - E. Damiani
- Anesthesia and Intensive Care Unit, Azienda Ospedaliero Universitaria delle Marche, via Conca 71, Torrette di Ancona, 60126 Italy ,grid.7010.60000 0001 1017 3210Department of Biomedical Sciences and Public Health, Università Politecnica Delle Marche, via Tronto 10/a, Torrette di Ancona, 60020 Italy
| | - F. Gasparri
- Anesthesia and Intensive Care Unit, Azienda Ospedaliero Universitaria delle Marche, via Conca 71, Torrette di Ancona, 60126 Italy
| | - A. Donati
- Anesthesia and Intensive Care Unit, Azienda Ospedaliero Universitaria delle Marche, via Conca 71, Torrette di Ancona, 60126 Italy ,grid.7010.60000 0001 1017 3210Department of Biomedical Sciences and Public Health, Università Politecnica Delle Marche, via Tronto 10/a, Torrette di Ancona, 60020 Italy
| | - E. Adrario
- Anesthesia and Intensive Care Unit, Azienda Ospedaliero Universitaria delle Marche, via Conca 71, Torrette di Ancona, 60126 Italy ,grid.7010.60000 0001 1017 3210Department of Biomedical Sciences and Public Health, Università Politecnica Delle Marche, via Tronto 10/a, Torrette di Ancona, 60020 Italy
| |
Collapse
|
6
|
Yang J, Gong F, Shi X, Wang F, Qian J, Wan L, Chen Y, Chen H, Tong H. A nomogram based on lymphocyte percentage for predicting hospital mortality in exertional heatstroke patients: a 13-year retrospective study. World J Emerg Med 2023; 14:434-441. [PMID: 37969217 PMCID: PMC10632760 DOI: 10.5847/wjem.j.1920-8642.2023.101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 07/28/2023] [Indexed: 11/17/2023] Open
Abstract
BACKGROUND Exertional heatstroke (EHS) is a life-threatening disease without ideal prognostic markers for predicting hospital mortality. METHODS This is a single-center retrospective study. Clinical data from EHS patients admitted to the Intensive Care Unit (ICU) of the General Hospital of Southern Theatre Command between January 1, 2008, and December 31, 2020, were recorded and analyzed. Univariate and multivariate logistic regression were used to identify the factors for mortality. The prediction model was developed with the prognostic markers, and a nomogram was established. RESULTS The study ultimately enrolled 156 patients, and 15 (9.6%) of patients died before discharge. The lymphocyte count (Lym) and percentage (Lym%) were significantly lower in non-survivors (P<0.05). The univariate and multivariate logistic regression analyses indicated that Lym% at the third day of admission (Lym% D3) (OR=0.609, 95%CI: 0.454-0.816) and hematocrit (HCT) (OR=0.908, 95%CI: 0.834-0.988) were independent protective factors for hospital mortality. A nomogram incorporating Lym% D3 with HCT was developed and demonstrated good discrimination and calibration ability. The comparison between the prediction model and scoring systems revealed that the prediction model had the largest area under the curve (AUC) (0.948, 95%CI: 0.900-0.977), with 100.00% sensitivity and 83.69% specificity, and a greater clinical net benefit. CONCLUSION Severe EHS patients had a higher risk of experiencing prolonged lymphopenia. A nomogram based on Lym% D3 and HCT was developed to facilitate early identification and timely treatment of patients with potentially unfavorable prognoses.
Collapse
Affiliation(s)
- Jiale Yang
- Guangzhou University of Chinese Medicine, Guangzhou 510006, China
- Department of Intensive Care Unit, General Hospital of Southern Theatre Command of PLA, Guangzhou 510010, China
| | - Fanghe Gong
- Department of Neurosurgery, General Hospital of Southern Theatre Command of PLA, Guangzhou 510010, China
| | - Xuezhi Shi
- Department of Intensive Care Unit, General Hospital of Southern Theatre Command of PLA, Guangzhou 510010, China
| | - Fanfan Wang
- Department of Intensive Care Unit, General Hospital of Southern Theatre Command of PLA, Guangzhou 510010, China
| | - Jing Qian
- Guangzhou University of Chinese Medicine, Guangzhou 510006, China
- Department of Intensive Care Unit, General Hospital of Southern Theatre Command of PLA, Guangzhou 510010, China
| | - Lulu Wan
- Guangzhou University of Chinese Medicine, Guangzhou 510006, China
- Department of Intensive Care Unit, General Hospital of Southern Theatre Command of PLA, Guangzhou 510010, China
| | - Yi Chen
- Department of Intensive Care Unit, Dongguan Binhaiwan Central Hospital, Dongguan 523900, China
| | - Huaisheng Chen
- Department of Critical Care Medicine, Shenzhen People’s Hospital, Shenzhen 518020, China
| | - Huasheng Tong
- Guangzhou University of Chinese Medicine, Guangzhou 510006, China
- Department of Intensive Care Unit, General Hospital of Southern Theatre Command of PLA, Guangzhou 510010, China
| |
Collapse
|
7
|
Tim-3 Blockade Decreases the Apoptosis of CD8 + T Cells and Reduces the Severity of Sepsis in Mice. J Surg Res 2022; 279:8-16. [PMID: 35716447 DOI: 10.1016/j.jss.2022.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 04/05/2022] [Accepted: 05/21/2022] [Indexed: 11/23/2022]
Abstract
INTRODUCTION The T cell immunoglobulin and mucin domain 3 (Tim-3) mediated immunosuppressive pathway has been shown to play an essential role in the development of sepsis. However, the influence of Tim-3 blockade during sepsis and the possible effects on T cells' function remains largely unknown. Our study investigates the role of Tim-3 in cecal ligation and puncture (CLP)-induced sepsis in mice. METHODS Sepsis was induced in C57BL/6 male mice via CLP. The expression of Tim-3 in CD8+ T cells after CLP challenge was measured. A dose of 50 μg anti-Tim-3 antibodies was injected intraperitoneally 30 min after surgery. Postoperative survival, bacterial clearance in the blood and peritoneal lavage fluid, cytokine secretion in the blood, and lung and liver histology were evaluated. In addition, the apoptosis of immune cells in the spleen and thymus was examined, respectively. RESULTS Tim-3 expression was elevated in the splenic CD8+ T cells of septic mice. At the early stage of CLP-induced sepsis, blocking Tim-3 with anti-Tim-3 antibodies reduced the severity of sepsis. The anti-Tim-3 antibodies alleviated the morphology of lung and liver injuries in septic mice. The anti-Tim-3 antibodies also reduced the severity of the inflammatory responses and lymphocyte apoptosis in septic mice. CONCLUSIONS Anti-Tim-3 antibodies might be a potential therapeutic strategy for sepsis.
Collapse
|
8
|
Drewry AM, Mohr NM, Ablordeppey EA, Dalton CM, Doctor RJ, Fuller B, Kollef MH, Hotchkiss RS. Therapeutic Hyperthermia Is Associated With Improved Survival in Afebrile Critically Ill Patients With Sepsis: A Pilot Randomized Trial. Crit Care Med 2022; 50:924-934. [PMID: 35120040 PMCID: PMC9133030 DOI: 10.1097/ccm.0000000000005470] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
OBJECTIVES To test the hypothesis that forced-air warming of critically ill afebrile sepsis patients improves immune function compared to standard temperature management. DESIGN Single-center, prospective, open-label, randomized controlled trial. SETTING One thousand two hundred-bed academic medical center. PATIENTS Eligible patients were mechanically ventilated septic adults with: 1) a diagnosis of sepsis within 48 hours of enrollment; 2) anticipated need for mechanical ventilation of greater than 48 hours; and 3) a maximum temperature less than 38.3°C within the 24 hours prior to enrollment. Primary exclusion criteria included: immunologic diseases, immune-suppressing medications, and any existing condition sensitive to therapeutic hyperthermia (e.g., brain injury). The primary outcome was monocyte human leukocyte antigen (HLA)-DR expression, with secondary outcomes of CD3/CD28-induced interferon gamma (IFN-γ) production, mortality, and 28-day hospital-free days. INTERVENTIONS External warming using a forced-air warming blanket for 48 hours, with a goal temperature 1.5°C above the lowest temperature documented in the previous 24 hours. MEASUREMENTS AND MAIN RESULTS We enrolled 56 participants in the study. No differences were observed between the groups in HLA-DR expression (692 vs 2,002; p = 0.396) or IFN-γ production (31 vs 69; p = 0.678). Participants allocated to external warming had lower 28-day mortality (18% vs 43%; absolute risk reduction, 25%; 95% CI, 2-48%) and more 28-day hospital-free days (difference, 2.6 d; 95% CI, 0-11.6). CONCLUSIONS Participants randomized to external forced-air warming did not have a difference in HLA-DR expression or IFN-γ production. In this pilot study, however, 28-day mortality was lower in the intervention group. Future research should seek to better elucidate the impact of temperature modulation on immune and nonimmune organ failure pathways in sepsis.
Collapse
Affiliation(s)
- Anne M. Drewry
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Nicholas M. Mohr
- Department of Emergency Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
- Division of Critical Care, Department of Anesthesia, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
- Department of Epidemiology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Enyo A. Ablordeppey
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
- Department of Emergency Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Catherine M. Dalton
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Rebecca J. Doctor
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Brian Fuller
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Marin H. Kollef
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Richard S. Hotchkiss
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| |
Collapse
|
9
|
Association of monocyte HLA-DR expression over time with secondary infection in critically ill children: a prospective observational study. Eur J Pediatr 2022; 181:1133-1142. [PMID: 34755207 PMCID: PMC8897323 DOI: 10.1007/s00431-021-04313-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 10/26/2022]
Abstract
An impaired immune response could play a role in the acquisition of secondary infections in critically ill children. Human leukocyte antigen-DR expression on monocytes (mHLA-DR) has been proposed as marker to detect immunosuppression, but its potential to predict secondary infections in critically ill children is unclear. We aimed to assess the association between mHLA-DR expression at several timepoints and the change of mHLA-DR expression over time with the acquisition of secondary infections in critically ill children. In this prospective observational study, children < 18 years with fever and/or suspected infection (community-acquired or hospital-acquired) were included at a paediatric intensive care unit in the Netherlands. mHLA-DR expression was determined by flow cytometry on day 1, day 2-3 and day 4-7. The association between delta-mHLA-DR expression (difference between last and first measurement) and secondary infection was assessed by multivariable regression analysis, adjusted for age and Paediatric Logistic Organ Dysfunction-2 score. We included 104 patients at the PICU (median age 1.2 years [IQR 0.3-4.2]), of whom 28 patients (27%) developed a secondary infection. Compared to 93 healthy controls, mHLA-DR expression of critically ill children was significantly lower at all timepoints. mHLA-DR expression did not differ at any of the time points between patients with and without secondary infection. In addition, delta-mHLA-DR expression was not associated with secondary infection (aOR 1.00 [95% CI 0.96-1.04]).Conclusions: Our results confirm that infectious critically ill children have significantly lower mHLA-DR expression than controls. mHLA-DR expression was not associated with the acquisition of secondary infections. What is Known: • An impaired immune response, estimated by mHLA-DR expression, could play an essential role in the acquisition of secondary infections in critically ill children. • In critically ill children, large studies on the association of mHLA-DR expression with secondary infections are scarce. What is New: • Our study confirms that critically ill children have lower mHLA-DR expression than healthy controls. • mHLA-DR expression and change in mHLA-DR was not associated with the acquisition of secondary infection.
Collapse
|
10
|
Jones TK, Reilly JP, Anderson BJ, Miano TA, Dunn TG, Weisman AR, Agyekum R, Feng R, Ittner CA, Shashaty MG, Meyer NJ. Elevated Plasma Levels of Matrix Metalloproteinase-3 and Tissue-Inhibitor of Matrix Metalloproteinases-1 Associate With Organ Dysfunction and Mortality in Sepsis. Shock 2022; 57:41-47. [PMID: 34265829 PMCID: PMC8663538 DOI: 10.1097/shk.0000000000001833] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 06/23/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Matrix Metalloproteinases (MMP) respond to tissue damage during sepsis. Higher plasma concentrations of MMPs and the tissue-inhibitor of matrix metalloproteinases (TIMP) have been reported in sepsis compared with healthy controls. The objective of this study was to examine if plasma levels of MMP-3, MMP-9, and TIMP-1 associate with mortality and organ dysfunction during sepsis. METHODS We conducted a prospective cohort study of critically ill patients with sepsis adjudicated per Sepsis-3 criteria at a tertiary academic medical center. We measured plasma concentrations of MMP-3, MMP-9, and TIMP-1 on intensive care unit admission. We phenotyped the subjects for shock, acute respiratory distress syndrome (ARDS), acute kidney injury (AKI), and mortality at 30 days. We used logistic regression to test the associations between the MMPs and TIMP-1 with shock, ARDS, AKI, and mortality. RESULTS Higher plasma TIMP-1 levels were associated with shock (odds ratio [OR] 1.51 per log increase [95% CI 1.25, 1.83]), ARDS (OR 1.24 [95% CI 1.05, 1.46]), AKI (OR 1.18 [95% CI 1.01, 1.38]), and mortality (OR 1.20 [95% CI 1.05, 1.46]. Higher plasma MMP-3 concentrations were associated with shock (OR 1.40 [95% CI 1.12, 1.75]) and mortality (OR 1.24 [95% CI 1.03, 1.48]) whereas MMP-9 levels were not associated with outcomes. Higher plasma TIMP-1 to MMP-3 ratios were associated with shock (OR 1.41 [95% CI 1.15, 1.72], P = 0.02). CONCLUSION Elevated plasma concentrations of TIMP-1 associate with organ dysfunction and mortality in sepsis. Higher plasma levels of MMP-3 associate with shock and mortality. Plasma MMP and TIMP-1 may warrant further investigation as emerging sepsis theragnostic biomarkers.
Collapse
Affiliation(s)
- Tiffanie K. Jones
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - John P. Reilly
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Brian J. Anderson
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Todd A. Miano
- Division of Epidemiology, Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Thomas G. Dunn
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ariel R. Weisman
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Roseline Agyekum
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Rui Feng
- Division of Biostatistics, Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Caroline A.G. Ittner
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Michael G.S. Shashaty
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Nuala J. Meyer
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
11
|
Moioffer SJ, Danahy DB, van de Wall S, Jensen IJ, Sjaastad FV, Anthony SM, Harty JT, Griffith TS, Badovinac VP. Severity of Sepsis Determines the Degree of Impairment Observed in Circulatory and Tissue-Resident Memory CD8 T Cell Populations. THE JOURNAL OF IMMUNOLOGY 2021; 207:1871-1881. [PMID: 34479943 DOI: 10.4049/jimmunol.2001142] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 07/27/2021] [Indexed: 12/29/2022]
Abstract
Sepsis reduces the number and function of memory CD8 T cells within the host, contributing to the long-lasting state of immunoparalysis. Interestingly, the relative susceptibility of memory CD8 T cell subsets to quantitative/qualitative changes differ after cecal ligation and puncture (CLP)-induced sepsis. Compared with circulatory memory CD8 T cells (TCIRCM), moderate sepsis (0-10% mortality) does not result in numerical decline of CD8 tissue-resident memory T cells (TRM), which retain their "sensing and alarm" IFN-γ-mediated effector function. To interrogate this biologically important dichotomy, vaccinia virus-immune C57BL/6 (B6) mice containing CD8 TCIRCM and skin TRM underwent moderate or severe (∼50% mortality) sepsis. Severe sepsis led to increased morbidity and mortality characterized by increased inflammation compared with moderate CLP or sham controls. Severe CLP mice also displayed increased vascular permeability in the ears. Interestingly, skin CD103+ CD8 TRM, detected by i.v. exclusion or two-photon microscopy, underwent apoptosis and subsequent numerical loss following severe sepsis, which was not observed in mice that experienced moderate CLP or sham surgeries. Consequently, severe septic mice showed diminished CD8 T cell-mediated protection to localized skin reinfection. Finally, the relationship between severity of sepsis and demise in circulatory versus tissue-embedded memory CD8 T cell populations was confirmed by examining tumor-infiltrating and nonspecific CD8 T cells in B16 melanoma tumors. Thus, sepsis can differentially affect the presence and function of Ag-specific CD8 T cells that reside inside tissues/tumors depending on the severity of the insult, a notion with direct relevance to sepsis survivors and their ability to mount protective memory CD8 T cell-dependent responses to localized Ag re-encounter.
Collapse
Affiliation(s)
| | - Derek B Danahy
- Department of Pathology, University of Iowa, Iowa City, IA.,Interdisciplinary Program in Immunology, University of Iowa, Iowa City, IA
| | | | - Isaac J Jensen
- Department of Pathology, University of Iowa, Iowa City, IA.,Interdisciplinary Program in Immunology, University of Iowa, Iowa City, IA
| | | | | | - John T Harty
- Department of Pathology, University of Iowa, Iowa City, IA.,Interdisciplinary Program in Immunology, University of Iowa, Iowa City, IA
| | - Thomas S Griffith
- Department of Urology, University of Minnesota, Minneapolis, MN.,Minneapolis Veterans Affairs Health Care System, Minneapolis, MN; and
| | - Vladimir P Badovinac
- Department of Pathology, University of Iowa, Iowa City, IA; .,Interdisciplinary Program in Immunology, University of Iowa, Iowa City, IA.,Department of Microbiology and Immunology, University of Iowa, Iowa City, IA
| |
Collapse
|
12
|
Kimm MA, Klenk C, Alunni-Fabbroni M, Kästle S, Stechele M, Ricke J, Eisenblätter M, Wildgruber M. Tumor-Associated Macrophages-Implications for Molecular Oncology and Imaging. Biomedicines 2021; 9:biomedicines9040374. [PMID: 33918295 PMCID: PMC8066018 DOI: 10.3390/biomedicines9040374] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 12/21/2022] Open
Abstract
Tumor-associated macrophages (TAMs) represent the largest group of leukocytes within the tumor microenvironment (TME) of solid tumors and orchestrate the composition of anti- as well as pro-tumorigenic factors. This makes TAMs an excellent target for novel cancer therapies. The plasticity of TAMs resulting in varying membrane receptors and expression of intracellular proteins allow the specific characterization of different subsets of TAMs. Those markers similarly allow tracking of TAMs by different means of molecular imaging. This review aims to provides an overview of the origin of tumor-associated macrophages, their polarization in different subtypes, and how characteristic markers of the subtypes can be used as targets for molecular imaging and theranostic approaches.
Collapse
Affiliation(s)
- Melanie A. Kimm
- Department of Radiology, University Hospital, LMU Munich, 81377 Munich, Germany; (M.A.K.); (C.K.); (M.A.-F.); (S.K.); (M.S.); (J.R.)
| | - Christopher Klenk
- Department of Radiology, University Hospital, LMU Munich, 81377 Munich, Germany; (M.A.K.); (C.K.); (M.A.-F.); (S.K.); (M.S.); (J.R.)
| | - Marianna Alunni-Fabbroni
- Department of Radiology, University Hospital, LMU Munich, 81377 Munich, Germany; (M.A.K.); (C.K.); (M.A.-F.); (S.K.); (M.S.); (J.R.)
| | - Sophia Kästle
- Department of Radiology, University Hospital, LMU Munich, 81377 Munich, Germany; (M.A.K.); (C.K.); (M.A.-F.); (S.K.); (M.S.); (J.R.)
| | - Matthias Stechele
- Department of Radiology, University Hospital, LMU Munich, 81377 Munich, Germany; (M.A.K.); (C.K.); (M.A.-F.); (S.K.); (M.S.); (J.R.)
| | - Jens Ricke
- Department of Radiology, University Hospital, LMU Munich, 81377 Munich, Germany; (M.A.K.); (C.K.); (M.A.-F.); (S.K.); (M.S.); (J.R.)
| | - Michel Eisenblätter
- Department of Diagnostic and Interventional Radiology, Freiburg University Hospital, 79106 Freiburg, Germany;
| | - Moritz Wildgruber
- Department of Radiology, University Hospital, LMU Munich, 81377 Munich, Germany; (M.A.K.); (C.K.); (M.A.-F.); (S.K.); (M.S.); (J.R.)
- Correspondence: ; Tel.: +49-0-89-4400-76640
| |
Collapse
|
13
|
Córneo EDS, Michels M, Dal-Pizzol F. Sepsis, immunosuppression and the role of epigenetic mechanisms. Expert Rev Clin Immunol 2021; 17:169-176. [PMID: 33596148 DOI: 10.1080/1744666x.2021.1875820] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Introduction: Sepsis has pro- and anti-inflammatory processes caused by infectious agents. Sepsis survivors have impaired immune response due to immunosuppression. Gene expression during the inflammatory process is guided by transcriptional access to chromatin, with post-translational changes made in histones that determine whether the loci of the inflammatory gene are active, balanced, or suppressed. For this, a review literature was performed in PubMed included 'sepsis' and 'epigenetic' and 'immunosuppression' terms until May 2020.Areas covered: This review article explores the relationship between epigenetic mechanisms and the pathophysiology of sepsis. Epigenetic changes, vulnerable gene expression, and immunosuppression are related to inflammatory insults that can modify the dynamics of the central nervous system. Therefore, it is important to investigate the timing of these changes and their dynamics during the disease progression.Expert opinion: Epigenetic changes are associated with the main stages of sepsis, from the pathogen-host interaction to inflammation and immunosuppression. These changes are key regulators of gene expression during physiological and pathological conditions. Thus, epigenetic markers have significant prognostic and diagnostic potential in sepsis, and epigenetic changes can be explored in combination with therapeutic strategies in experimental models of the disease.
Collapse
Affiliation(s)
- Emily da Silva Córneo
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Monique Michels
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Felipe Dal-Pizzol
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| |
Collapse
|
14
|
Rethinking animal models of sepsis - working towards improved clinical translation whilst integrating the 3Rs. Clin Sci (Lond) 2021; 134:1715-1734. [PMID: 32648582 PMCID: PMC7352061 DOI: 10.1042/cs20200679] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 12/13/2022]
Abstract
Sepsis is a major worldwide healthcare issue with unmet clinical need. Despite extensive animal research in this area, successful clinical translation has been largely unsuccessful. We propose one reason for this is that, sometimes, the experimental question is misdirected or unrealistic expectations are being made of the animal model. As sepsis models can lead to a rapid and substantial suffering – it is essential that we continually review experimental approaches and undertake a full harm:benefit impact assessment for each study. In some instances, this may require refinement of existing sepsis models. In other cases, it may be replacement to a different experimental system altogether, answering a mechanistic question whilst aligning with the principles of reduction, refinement and replacement (3Rs). We discuss making better use of patient data to identify potentially useful therapeutic targets which can subsequently be validated in preclinical systems. This may be achieved through greater use of construct validity models, from which mechanistic conclusions are drawn. We argue that such models could provide equally useful scientific data as face validity models, but with an improved 3Rs impact. Indeed, construct validity models may not require sepsis to be modelled, per se. We propose that approaches that could support and refine clinical translation of research findings, whilst reducing the overall welfare burden on research animals.
Collapse
|
15
|
Deciphering heterogeneity of septic shock patients using immune functional assays: a proof of concept study. Sci Rep 2020; 10:16136. [PMID: 32999313 PMCID: PMC7527338 DOI: 10.1038/s41598-020-73014-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 08/26/2020] [Indexed: 02/06/2023] Open
Abstract
The complexity of sepsis pathophysiology hinders patient management and therapeutic decisions. In this proof-of-concept study we characterised the underlying host immune response alterations using a standardised immune functional assay (IFA) in order to stratify a sepsis population. In septic shock patients, ex vivo LPS and SEB stimulations modulated, respectively, 5.3% (1/19) and 57.1% (12/21) of the pathways modulated in healthy volunteers (HV), highlighting deeper alterations induced by LPS than by SEB. SEB-based clustering, identified 3 severity-based groups of septic patients significantly different regarding mHLA-DR expression and TNFα level post-LPS, as well as 28-day mortality, and nosocomial infections. Combining the results from two independent cohorts gathering 20 HV and 60 patients, 1 cluster grouped all HV with 12% of patients. The second cluster grouped 42% of patients and contained all non-survivors. The third cluster grouped 46% of patients, including 78% of those with nosocomial infections. The molecular features of these clusters indicated a distinctive contribution of previously described genes defining a “healthy-immune response” and a “sepsis-related host response”. The third cluster was characterised by potential immune recovery that underlines the possible added value of SEB-based IFA to capture the sepsis immune response and contribute to personalised management.
Collapse
|
16
|
Bonafè M, Prattichizzo F, Giuliani A, Storci G, Sabbatinelli J, Olivieri F. Inflamm-aging: Why older men are the most susceptible to SARS-CoV-2 complicated outcomes. Cytokine Growth Factor Rev 2020; 53:33-37. [PMID: 32389499 PMCID: PMC7252014 DOI: 10.1016/j.cytogfr.2020.04.005] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is characterized by a high mortality of elderly men with age-related comorbidities. In most of these patients, uncontrolled local and systemic hyperinflammation induces severe and often lethal outcomes. The aging process is characterized by the gradual development of a chronic subclinical systemic inflammation (inflamm-aging) and by acquired immune system impairment (immune senescence). Here, we advance the hypothesis that four well-recognized features of aging contribute to the disproportionate SARS-CoV-2 mortality suffered by elderly men: i. the presence of subclinical systemic inflammation without overt disease, ii. a blunted acquired immune system and type I interferon response due to the chronic inflammation; iii. the downregulation of ACE2 (i.e. the SARS-CoV-2 receptor); and iv. accelerated biological aging. The high mortality rate of SARS-CoV-2 infection suggests that clarification of the mechanisms of inflamm-aging and immune senescence can help combat not only age-related disorders but also SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Massimiliano Bonafè
- Department of Experimental, Diagnostic and Specialty Medicine, AlmaMater Studiorum, Università di Bologna, Bologna, Italy
| | | | - Angelica Giuliani
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy.
| | - Gianluca Storci
- Department of Experimental, Diagnostic and Specialty Medicine, AlmaMater Studiorum, Università di Bologna, Bologna, Italy
| | - Jacopo Sabbatinelli
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
| | - Fabiola Olivieri
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy; Center of Clinical Pathology and Innovative Therapy, IRCCS INRCA, Ancona, Italy
| |
Collapse
|
17
|
Beltrán-García J, Osca-Verdegal R, Romá-Mateo C, Carbonell N, Ferreres J, Rodríguez M, Mulet S, García-López E, Pallardó FV, García-Giménez JL. Epigenetic biomarkers for human sepsis and septic shock: insights from immunosuppression. Epigenomics 2020; 12:617-646. [PMID: 32396480 DOI: 10.2217/epi-2019-0329] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Sepsis is a life-threatening condition that occurs when the body responds to an infection damaging its own tissues. Sepsis survivors sometimes suffer from immunosuppression increasing the risk of death. To our best knowledge, there is no 'gold standard' for defining immunosuppression except for a composite clinical end point. As the immune system is exposed to epigenetic changes during and after sepsis, research that focuses on identifying new biomarkers to detect septic patients with immunoparalysis could offer new epigenetic-based strategies to predict short- and long-term pathological events related to this life-threatening state. This review describes the most relevant epigenetic mechanisms underlying alterations in the innate and adaptive immune responses described in sepsis and septic shock, and their consequences for immunosuppression states, providing several candidates to become epigenetic biomarkers that could improve sepsis management and help predict immunosuppression in postseptic patients.
Collapse
Affiliation(s)
- Jesús Beltrán-García
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia 46010, Spain.,Department of Physiology, Faculty of Medicine & Dentistry, University of Valencia, Valencia 46010, Spain.,INCLIVA Biomedical Research Institute, Valencia 46010, Spain.,EpiDisease S.L. (Spin-Off CIBER-ISCIII), Parc Científic de la Universitat de València, Paterna 46980, Valencia, Spain
| | - Rebeca Osca-Verdegal
- Department of Physiology, Faculty of Medicine & Dentistry, University of Valencia, Valencia 46010, Spain
| | - Carlos Romá-Mateo
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia 46010, Spain.,Department of Physiology, Faculty of Medicine & Dentistry, University of Valencia, Valencia 46010, Spain.,INCLIVA Biomedical Research Institute, Valencia 46010, Spain
| | - Nieves Carbonell
- INCLIVA Biomedical Research Institute, Valencia 46010, Spain.,Intensive Care Unit, Clinical University Hospital of Valencia, Valencia 46010, Spain
| | - José Ferreres
- INCLIVA Biomedical Research Institute, Valencia 46010, Spain.,Intensive Care Unit, Clinical University Hospital of Valencia, Valencia 46010, Spain
| | - María Rodríguez
- INCLIVA Biomedical Research Institute, Valencia 46010, Spain.,Intensive Care Unit, Clinical University Hospital of Valencia, Valencia 46010, Spain
| | - Sandra Mulet
- INCLIVA Biomedical Research Institute, Valencia 46010, Spain.,Intensive Care Unit, Clinical University Hospital of Valencia, Valencia 46010, Spain
| | - Eva García-López
- EpiDisease S.L. (Spin-Off CIBER-ISCIII), Parc Científic de la Universitat de València, Paterna 46980, Valencia, Spain
| | - Federico V Pallardó
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia 46010, Spain.,Department of Physiology, Faculty of Medicine & Dentistry, University of Valencia, Valencia 46010, Spain.,INCLIVA Biomedical Research Institute, Valencia 46010, Spain
| | - José Luis García-Giménez
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia 46010, Spain.,Department of Physiology, Faculty of Medicine & Dentistry, University of Valencia, Valencia 46010, Spain.,INCLIVA Biomedical Research Institute, Valencia 46010, Spain.,EpiDisease S.L. (Spin-Off CIBER-ISCIII), Parc Científic de la Universitat de València, Paterna 46980, Valencia, Spain
| |
Collapse
|
18
|
Leijte GP, Rimmelé T, Kox M, Bruse N, Monard C, Gossez M, Monneret G, Pickkers P, Venet F. Monocytic HLA-DR expression kinetics in septic shock patients with different pathogens, sites of infection and adverse outcomes. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2020; 24:110. [PMID: 32192532 PMCID: PMC7082984 DOI: 10.1186/s13054-020-2830-x] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 03/12/2020] [Indexed: 12/29/2022]
Abstract
Background Decreased monocytic (m)HLA-DR expression is the most studied biomarker of sepsis-induced immunosuppression. To date, little is known about the relationship between sepsis characteristics, such as the site of infection, causative pathogen, or severity of disease, and mHLA-DR expression kinetics. Methods We evaluated mHLA-DR expression kinetics in 241 septic shock patients with different primary sites of infection and pathogens. Furthermore, we used unsupervised clustering analysis to identify mHLA-DR trajectories and evaluated their association with outcome parameters. Results No differences in mHLA-DR expression kinetics were found between groups of patients with different sites of infection (abdominal vs. respiratory, p = 0.13; abdominal vs. urinary tract, p = 0.53) and between pathogen categories (Gram-positive vs. Gram-negative, p = 0.54; Gram-positive vs. negative cultures, p = 0.84). The mHLA-DR expression kinetics differed between survivors and non-survivors (p < 0.001), with an increase over time in survivors only. Furthermore, we identified three mHLA-DR trajectories (‘early improvers’, ‘delayed or non-improvers’ and ‘decliners’). The probability for adverse outcome (secondary infection or death) was higher in the delayed or non-improvers and decliners vs. the early improvers (delayed or non-improvers log-rank p = 0.03, adjusted hazard ratio 2.0 [95% CI 1.0–4.0], p = 0.057 and decliners log-rank p = 0.01, adjusted hazard ratio 2.8 [95% CI 1.1–7.1], p = 0.03). Conclusion Sites of primary infection or causative pathogens are not associated with mHLA-DR expression kinetics in septic shock patients. However, patients showing delayed or no improvement in or a declining mHLA-DR expression have a higher risk for adverse outcome compared with patients exhibiting a swift increase in mHLA-DR expression. Our study signifies that changes in mHLA-DR expression over time, and not absolute values or static measurements, are of clinical importance in septic shock patients.
Collapse
Affiliation(s)
- Guus P Leijte
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Thomas Rimmelé
- Pathophysiology of Injury-Induced Immunosuppression, Université Claude Bernard Lyon 1, Hospices Civils de Lyon, bioMérieux, Edouard Herriot Hospital, 5 place d'Arsonval, 69437, Lyon Cedex 03, France.,Anesthesia and Critical Care Medicine Department, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France
| | - Matthijs Kox
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Niklas Bruse
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Céline Monard
- Anesthesia and Critical Care Medicine Department, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France
| | - Morgane Gossez
- Pathophysiology of Injury-Induced Immunosuppression, Université Claude Bernard Lyon 1, Hospices Civils de Lyon, bioMérieux, Edouard Herriot Hospital, 5 place d'Arsonval, 69437, Lyon Cedex 03, France.,Immunology Laboratory, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France
| | - Guillaume Monneret
- Pathophysiology of Injury-Induced Immunosuppression, Université Claude Bernard Lyon 1, Hospices Civils de Lyon, bioMérieux, Edouard Herriot Hospital, 5 place d'Arsonval, 69437, Lyon Cedex 03, France.,Immunology Laboratory, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France
| | - Peter Pickkers
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Fabienne Venet
- Pathophysiology of Injury-Induced Immunosuppression, Université Claude Bernard Lyon 1, Hospices Civils de Lyon, bioMérieux, Edouard Herriot Hospital, 5 place d'Arsonval, 69437, Lyon Cedex 03, France. .,Immunology Laboratory, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France.
| |
Collapse
|
19
|
Trovato G. SEPSIS. Educational and Best Practice Frontiers. Beyond the Boundaries of Fatality, Enhancing Clinical Skills and Precision Medicine. Ther Clin Risk Manag 2020; 16:87-93. [PMID: 32103969 PMCID: PMC7024868 DOI: 10.2147/tcrm.s232530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/28/2020] [Indexed: 12/19/2022] Open
Abstract
Dissemination and exploitation of knowledge regarding affordable clinical skills and innovative precision medicine, two current topics in active development in medicine, may contribute to improve also sepsis management. Sepsis is a life-threatening organ dysfunction due to a dysregulated host response to infection. Sepsis is strongly related to all body organs or to systemic diseases and to the quality of the best-practice in use, which is particularly critical in surgical or intervention techniques. Trauma, surgical and mini-invasive procedures, vascular or endoscopic interventions, otolaryngology, obstetrics-gynecological and urological procedures, malnutrition, dental, skin, chronic liver, kidney and respiratory disease are frequently involved. Accordingly, apart from the clinical risk analysis and management of the process of care, the actual factors that may be easily neglected are the techniques used, the personal skills of the health professionals and the quality of the equipment. The quest for biomarkers consistent with the unmet needs of medical doctors and of their patient and the efforts for overcoming bacterial antibiotic resistances are currently the main foci of medical research. In addition, in this regard, research and innovation would benefit from greater knowledge, skills and use of bioinformatics and omics. The caveats related to in-silico approaches must be flagged: algorithms may equally warrant scientific innovations or hide the lack of them; a patient is more than a set of covariates. Epidemiology and prevention includes all the actions suitable for achieving an adequate hygiene and immunization of populations and for safer hospital policies and procedures during Patients’ stays. In any subset, the most unresolved critical point in sepsis is a timely diagnosis. This is impaired by low degrees of suspicion for the possibility of emerging sepsis, by the shortage of use of the simplest microbiological testing but, equally or more, by the insufficient diffusion of non-invasive imaging skills suitable to detect and monitor the emerging sites and sources of infection. In primary care, in emergency facilities, in hospital wards and in intensive care units, inclusion of appropriate knowledge, skills, expertise and imaging equipment must be extended as much as possible. The low cost of UltraSound machines and of increasing bioinformatics literacy by e-learning, makes such investments affordable even in limited-resources contexts. Frontier educational and best practice intervention enhancing affordable clinical skills and innovative precision medicine may lead beyond the boundaries of fatal outcomes in sepsis. ![]()
Point your SmartPhone at the code above. If you have a QR code reader the video abstract will appear. Or use: https://youtu.be/S7CuEYUwa1s
Collapse
Affiliation(s)
- Guglielmo Trovato
- The European Medical Association (EMA) and the School of Medicine, State University of Catania, Catania, Italy
| |
Collapse
|
20
|
Pittet LF, Abbas M, Siegrist CA, Pittet D. Missed vaccinations and critical care admission: all you may wish to know or rediscover-a narrative review. Intensive Care Med 2019; 46:202-214. [PMID: 31773179 PMCID: PMC7223872 DOI: 10.1007/s00134-019-05862-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 11/08/2019] [Indexed: 12/11/2022]
Abstract
Most vaccines are so effective that they could lead to the control/elimination of the diseases they target and directly impact on intensive care admissions or complications. This is best illustrated by the use of vaccines against Haemophilus influenzae type b, Streptococcus pneumoniae, zoster, yellow fever, Ebola virus, influenza or measles-but also by third party strategies such as maternal, toddler and care-giver immunization. However, each of these vaccine-induced protection is threatened by insufficient vaccine uptake. Here, we briefly discuss how vaccine hesitancy has led to the resurgence of diseases that were considered as controlled and explore the effect of vaccine-hesitant healthcare workers on nosocomial infections. As intensive care physicians are in charge of polymorbid patients, we briefly summarize the current recommendations for vaccinations in high-risk patients. We finally give some perspective on ongoing research, and discuss how institutional policies and intensive care physicians could play a role in increasing the impact of vaccination, overall and in intensive care units.
Collapse
Affiliation(s)
- Laure F Pittet
- Infectious Diseases Unit, Royal Children's Hospital Melbourne, Parkville, VIC, Australia.
- Department of Paediatrics, Division of General Paediatrics, Children's Hospital, Faculty of Medicine, University of Geneva Hospitals, Geneva, Switzerland.
| | - Mohamed Abbas
- Infection Control Programme, WHO Collaborating Centre on Patient Safety (Infection Control and Improving Practices), Faculty of Medicine, University of Geneva Hospitals, Geneva, Switzerland
| | - Claire-Anne Siegrist
- Department of Paediatrics, Division of General Paediatrics, Children's Hospital, Faculty of Medicine, University of Geneva Hospitals, Geneva, Switzerland
- Centre for Vaccinology, Departments of Pathology-Immunology and Paediatrics, University of Geneva, Geneva, Switzerland
| | - Didier Pittet
- Infection Control Programme, WHO Collaborating Centre on Patient Safety (Infection Control and Improving Practices), Faculty of Medicine, University of Geneva Hospitals, Geneva, Switzerland
| |
Collapse
|