1
|
Ricci V, de Berardis D, Martinotti G, Maina G. Neurotrophic Factors in Cannabis-induced Psychosis: An Update. Curr Top Med Chem 2024; 24:1757-1772. [PMID: 37644743 DOI: 10.2174/1568026623666230829152150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/21/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023]
Abstract
BACKGROUND Cannabis is the most widely used illicit substance. Numerous scientific evidence confirm the strong association between cannabis and psychosis. Exposure to cannabis can induce the development of psychosis and schizophrenia in vulnerable individuals. However, the neurobiological processes underlying this relationship are unknown. Neurotrophins are a class of proteins that serve as survival factors for central nervous system (CNS) neurons. In particular, Nerve Growth Factor (NGF) plays an important role in the survival and function of cholinergic neurons while Brain Derived Neurotrophic Factor (BDNF) is involved in synaptic plasticity and the maintenance of midbrain dopaminergic and cholinergic neurons. Glial Cell Derived Neurotrophic Factor (GDNF) promotes the survival of midbrain dopaminergic neurons and Neuregulin 1 (NrG- 1) contributes to glutamatergic signals regulating the N-methyl-D-aspartate (NMDA). They have a remarkable influence on the neurons involved in the Δ-9-THC (tethra-hydro-cannabinol) action, such as dopaminergic and glutamatergic neurons, and can play dual roles: first, in neuronal survival and death, and, second, in activity-dependent plasticity. METHODS In this brief update, reviewing in a narrative way the relevant literature, we will focus on the effects of cannabis on this class of proteins, which may be implicated, at least in part, in the mechanism of the psychostimulant-induced neurotoxicity and psychosis. CONCLUSION Since altered levels of neurotrophins may participate in the pathogenesis of psychotic disorders which are common in drug users, one possible hypothesis is that repeated cannabis exposure can cause psychosis by interfering with neurotrophins synthesis and utilization by CNS neurons.
Collapse
Affiliation(s)
- Valerio Ricci
- Psychiatric Service for Diagnosis and Treatment, San Luigi Gonzaga Hospital, University of Turin, 10043 Orbassano, Turin, Italy
| | - Domenico de Berardis
- NHS, Department of Mental Health, Psychiatric Service for Diagnosis and Treatment, Hospital "G. Mazzini", ASL 4, 64100, Teramo, Italy
| | - Giovanni Martinotti
- Department of Neurosciences, Imaging and Clinical Sciences, University of Chieti-Pescara, 66100, Chieti, Italy
| | - Giuseppe Maina
- Department of Neurosciences "Rita Levi Montalcini", University of Turin, Italy
| |
Collapse
|
2
|
Fliss Isakov N, Seidenberg C, Meiri D, Yackobovitch-Gavan M, Maharshak N, Hirsch A. Medical Cannabis Increases Appetite but Not Body Weight in Patients with Inflammatory Bowel Diseases. Nutrients 2023; 16:78. [PMID: 38201908 PMCID: PMC10781068 DOI: 10.3390/nu16010078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
We aimed to elucidate the effect of Medical Cannabis (MC) on appetite and nutritional status among patients with inflammatory bowel disease (IBD). A case series of patients with IBD were initiating treatment with MC for disease-related symptoms, at the IBD clinic of a tertiary referral medical center. Patients' demographics, anthropometrics, medical history and treatment and MC use were systematically recorded. An appetite and food frequency questionnaire (SNAQ and FFQ) were filled before, and at 3 and 6 months of treatment. Patients with IBD initiating MC were enrolled (n = 149, age 39.0 ± 14.1 years, 42.3% female), and 33.6% (n = 50) were treated for improvement of nutritional status. A modest increase in appetite after 3 months was detected among all patients enrolled (Pv = 0.08), but there were no significant differences in energy or macronutrient intake, and in patients' body mass index (BMI). A significant appetite improvement after 3 months was detected among 34.0% (n = 17) of patients, but this was not associated with increased caloric intake or BMI at 3 or 6 months. Among patients without increased appetite after 3 months of MC therapy, BMI decreased at 6 months (24.1 ± 3.7 vs. 23.4 ± 3.6, Pv = 0.010). MC may be a potential strategy to improve appetite among some patients with IBD, but not caloric intake or BMI.
Collapse
Affiliation(s)
- Naomi Fliss Isakov
- Department of Health Promotion, School of Public Health, Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Department of Gastroenterology and Liver Diseases, Tel Aviv Medical Center, Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (N.M.); (A.H.)
| | - Chen Seidenberg
- School of Pharmacy, Hebrew University of Jerusalem, Jerusalem 9112002, Israel;
| | - David Meiri
- The Laboratory of Cancer Biology and Natural Drug Discovery, Faculty of Biology, Technion—Israel Institute of Technology, Haifa 3200003, Israel;
| | - Michal Yackobovitch-Gavan
- Department of Epidemiology and Preventive Medicine, School of Public Health, Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel;
| | - Nitsan Maharshak
- Department of Gastroenterology and Liver Diseases, Tel Aviv Medical Center, Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (N.M.); (A.H.)
| | - Ayal Hirsch
- Department of Gastroenterology and Liver Diseases, Tel Aviv Medical Center, Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (N.M.); (A.H.)
| |
Collapse
|
3
|
Luz-Veiga M, Azevedo-Silva J, Fernandes JC. Beyond Pain Relief: A Review on Cannabidiol Potential in Medical Therapies. Pharmaceuticals (Basel) 2023; 16:155. [PMID: 37259306 PMCID: PMC9958812 DOI: 10.3390/ph16020155] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/11/2023] [Accepted: 01/17/2023] [Indexed: 07/30/2023] Open
Abstract
The phytocannabinoid cannabidiol (CBD) is receiving increasing attention due to its pharmacological properties. Although CBD is extracted from Cannabis sativa, it lacks the psychoactive effects of Δ9-tetrahydrocannabinol (THC) and has become an attractive compound for pharmacological uses due to its anti-inflammatory, antioxidant, anticonvulsant, and anxiolytic potential. The molecular mechanisms involved in CBD's biological effects are not limited to its interaction with classical cannabinoid receptors, exerting anti-inflammatory or pain-relief effects. Several pieces of evidence demonstrate that CBD interacts with other receptors and cellular signaling cascades, which further support CBD's therapeutic potential beyond pain management. In this review, we take a closer look at the molecular mechanisms of CBD and its potential therapeutic application in the context of cancer, neurodegeneration, and autoimmune diseases.
Collapse
Affiliation(s)
- Mariana Luz-Veiga
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, 4169-005 Porto, Portugal
| | - João Azevedo-Silva
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, 4169-005 Porto, Portugal
| | - João C. Fernandes
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, 4169-005 Porto, Portugal
- Amyris Bio Products Portugal, Unipessoal Lda, 4169-005 Porto, Portugal
| |
Collapse
|
4
|
Abstract
PURPOSE OF REVIEW There have been many debates, discussions, and published writings about the therapeutic value of cannabis plant and the hundreds of cannabinoids it contains. Many states and countries have attempted, are attempting, or have already passed bills to allow legal use of cannabinoids, especially cannabidiol (CBD), as medicines to treat a wide range of clinical conditions without having been approved by a regulatory body. Therefore, by using PubMed and Google Scholar databases, we have reviewed published papers during the past 30 years on cannabinoids as medicines and comment on whether there is sufficient clinical evidence from well-designed clinical studies and trials to support the use of CBD or any other cannabinoids as medicines. RECENT FINDINGS Current research shows that CBD and other cannabinoids currently are not ready for formal indications as medicines to treat a wide range of clinical conditions as promoted except for several exceptions including limited use of CBD for treating two rare forms of epilepsy in young children and CBD in combination with THC for treating multiple-sclerosis-associated spasticity. SUMMARY Research indicates that CBD and several other cannabinoids have potential to treat multiple clinical conditions, but more preclinical, and clinical studies and clinical trials, which follow regulatory guidelines, are needed to formally recommend CBD and other cannabinoids as medicines.
Collapse
|
5
|
Kaddour H, McDew-White M, Madeira MM, Tranquille MA, Tsirka SE, Mohan M, Okeoma CM. Chronic delta-9-tetrahydrocannabinol (THC) treatment counteracts SIV-induced modulation of proinflammatory microRNA cargo in basal ganglia-derived extracellular vesicles. J Neuroinflammation 2022; 19:225. [PMID: 36096938 PMCID: PMC9469539 DOI: 10.1186/s12974-022-02586-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 08/24/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Early invasion of the central nervous system (CNS) by human immunodeficiency virus (HIV) (Gray et al. in Brain Pathol 6:1-15, 1996; An et al. in Ann Neurol 40:611-6172, 1996), results in neuroinflammation, potentially through extracellular vesicles (EVs) and their micro RNAs (miRNA) cargoes (Sharma et al. in FASEB J 32:5174-5185, 2018; Hu et al. in Cell Death Dis 3:e381, 2012). Although the basal ganglia (BG) is a major target and reservoir of HIV in the CNS (Chaganti et al. in Aids 33:1843-1852, 2019; Mintzopoulos et al. in Magn Reson Med 81:2896-2904, 2019), whether BG produces EVs and the effect of HIV and/or the phytocannabinoid-delta-9-tetrahydrocannabinol (THC) on BG-EVs and HIV neuropathogenesis remain unknown. METHODS We used the simian immunodeficiency virus (SIV) model of HIV and THC treatment in rhesus macaques (Molina et al. in AIDS Res Hum Retroviruses 27:585-592, 2011) to demonstrate for the first time that BG contains EVs (BG-EVs), and that BG-EVs cargo and function are modulated by SIV and THC. We also used primary astrocytes from the brains of wild type (WT) and CX3CR1+/GFP mice to investigate the significance of BG-EVs in CNS cells. RESULTS Significant changes in BG-EV-associated miRNA specific to SIV infection and THC treatment were observed. BG-EVs from SIV-infected rhesus macaques (SIV EVs) contained 11 significantly downregulated miRNAs. Remarkably, intervention with THC led to significant upregulation of 37 miRNAs in BG-EVs (SIV-THC EVs). Most of these miRNAs are predicted to regulate pathways related to inflammation/immune regulation, TLR signaling, Neurotrophin TRK receptor signaling, and cell death/response. BG-EVs activated WT and CX3CR1+/GFP astrocytes and altered the expression of CD40, TNFα, MMP-2, and MMP-2 gene products in primary mouse astrocytes in an EV and CX3CR1 dependent manners. CONCLUSIONS Our findings reveal a role for BG-EVs as a vehicle with potential to disseminate HIV- and THC-induced changes within the CNS.
Collapse
Affiliation(s)
- Hussein Kaddour
- Department of Pharmacology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY 11794-8651 USA
- Present Address: Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591 USA
| | - Marina McDew-White
- Host Pathogen Interaction Program, Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227-5302 USA
| | - Miguel M. Madeira
- Department of Pharmacology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY 11794-8651 USA
| | - Malik A. Tranquille
- Department of Pharmacology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY 11794-8651 USA
| | - Stella E. Tsirka
- Department of Pharmacology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY 11794-8651 USA
| | - Mahesh Mohan
- Host Pathogen Interaction Program, Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227-5302 USA
| | - Chioma M. Okeoma
- Department of Pharmacology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY 11794-8651 USA
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Valhalla, NY 10595-1524 USA
| |
Collapse
|
6
|
Khalsa JH, Bunt G, Blum K, Maggirwar SB, Galanter M, Potenza MN. Review: Cannabinoids as Medicinals. CURRENT ADDICTION REPORTS 2022; 9:630-646. [PMID: 36093358 PMCID: PMC9449267 DOI: 10.1007/s40429-022-00438-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2022] [Indexed: 12/04/2022]
Abstract
Purpose of review
There have been many debates, discussions, and published writings about the therapeutic value of cannabis plant and the hundreds of cannabinoids it contains. Many states and countries have attempted, are attempting, or have already passed bills to allow legal use of cannabinoids, especially cannabidiol (CBD), as medicines to treat a wide range of clinical conditions without having been approved by a regulatory body. Therefore, by using PubMed and Google Scholar databases, we have reviewed published papers during the past 30 years on cannabinoids as medicines and comment on whether there is sufficient clinical evidence from well-designed clinical studies and trials to support the use of CBD or any other cannabinoids as medicines. Recent findings Current research shows that CBD and other cannabinoids currently are not ready for formal indications as medicines to treat a wide range of clinical conditions as promoted except for several exceptions including limited use of CBD for treating two rare forms of epilepsy in young children and CBD in combination with THC for treating multiple-sclerosis-associated spasticity. Summary Research indicates that CBD and several other cannabinoids have potential to treat multiple clinical conditions, but more preclinical, and clinical studies and clinical trials, which follow regulatory guidelines, are needed to formally recommend CBD and other cannabinoids as medicines.
Collapse
Affiliation(s)
- Jag H. Khalsa
- Division of Therapeutics and Medical Consequences, Medical Consequences of Drug Abuse and Infections Branch, National Institute on Drug Abuse, NIH, Special Volunteer, 16071 Industrial Drive, Gaithersburg, MD 20877 USA
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University School of Medicine, Ross Hall Room 502A, 2300 I Street, Washington, NWDC 20037 USA
- Drug Addiction and Co-occurring Infections, Aldie, VA 20105-5572 USA
| | - Gregory Bunt
- Samaritan Day Top Village, NYU School of Medicine, 550 First Ave, New York, NY 10016 USA
| | - Kenneth Blum
- Center for Behavioral Health & Sports, Western University Health Sciences, Pomona, CA USA
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
- Division of Nutrigenomics, Precision Translational Medicine, LLC, San Antonio, TX USA
- Division of Nutrigenomics, Institute of Behavior & Neurogenetics, LLC, San Antonio, TX USA
- Department of Psychiatry, University of Vermont, Burlington, VT USA
- Department of Psychiatry, Wright University Boonshoff School of Medicine, Dayton, OH USA
| | - Sanjay B. Maggirwar
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University School of Medicine, Ross Hall Room 502A, 2300 I Street, Washington, NWDC 20037 USA
| | - Marc Galanter
- Department of Psychiatry, NYU School of Medicine, 550 First Avenue, Room NBV20N28, New York, NY 10016 USA
| | - Marc N. Potenza
- Departments of Psychiatry and Neuroscience and the Child Study Center, Yale School of Medicine, 1 Church Street, Rm726, New Haven, CT 06510 USA
| |
Collapse
|
7
|
Srivastava RK, Lutz B, Ruiz de Azua I. The Microbiome and Gut Endocannabinoid System in the Regulation of Stress Responses and Metabolism. Front Cell Neurosci 2022; 16:867267. [PMID: 35634468 PMCID: PMC9130962 DOI: 10.3389/fncel.2022.867267] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/14/2022] [Indexed: 11/26/2022] Open
Abstract
The endocannabinoid system, with its receptors and ligands, is present in the gut epithelium and enteroendocrine cells, and is able to modulate brain functions, both indirectly through circulating gut-derived factors and directly through the vagus nerve, finally acting on the brain’s mechanisms regarding metabolism and behavior. The gut endocannabinoid system also regulates gut motility, permeability, and inflammatory responses. Furthermore, microbiota composition has been shown to influence the activity of the endocannabinoid system. This review examines the interaction between microbiota, intestinal endocannabinoid system, metabolism, and stress responses. We hypothesize that the crosstalk between microbiota and intestinal endocannabinoid system has a prominent role in stress-induced changes in the gut-brain axis affecting metabolic and mental health. Inter-individual differences are commonly observed in stress responses, but mechanisms underlying resilience and vulnerability to stress are far from understood. Both gut microbiota and the endocannabinoid system have been implicated in stress resilience. We also discuss interventions targeting the microbiota and the endocannabinoid system to mitigate metabolic and stress-related disorders.
Collapse
Affiliation(s)
- Raj Kamal Srivastava
- Department of Zoology, Indira Gandhi National Tribal University, Anuppur, India
- *Correspondence: Raj Kamal Srivastava,
| | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- Leibniz Institute for Resilience Research (LIR), Mainz, Germany
| | - Inigo Ruiz de Azua
- Leibniz Institute for Resilience Research (LIR), Mainz, Germany
- Inigo Ruiz de Azua,
| |
Collapse
|
8
|
Laudanski K, Wain J. Considerations for Cannabinoids in Perioperative Care by Anesthesiologists. J Clin Med 2022; 11:jcm11030558. [PMID: 35160010 PMCID: PMC8836924 DOI: 10.3390/jcm11030558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 02/07/2023] Open
Abstract
Increased usage of recreational and medically indicated cannabinoid compounds has been an undeniable reality for anesthesiologists in recent years. These compounds’ complicated pharmacology, composition, and biological effects result in challenging issues for anesthesiologists during different phases of perioperative care. Here, we review the existing formulation of cannabinoids and their biological activity to put them into the context of the anesthesia plan execution. Perioperative considerations should include a way to gauge the patient’s intake of cannabinoids, the ability to gain consent properly, and vigilance to the increased risk of pulmonary and airway problems. Intraoperative management in individuals with cannabinoid use is complicated by the effects cannabinoids have on general anesthetics and depth of anesthesia monitoring while simultaneously increasing the potential occurrence of intraoperative hemodynamic instability. Postoperative planning should involve higher vigilance to the risk of postoperative strokes and acute coronary syndromes. However, most of the data are not up to date, rending definite conclusions on the importance of perioperative cannabinoid intake on anesthesia management difficult.
Collapse
Affiliation(s)
- Krzysztof Laudanski
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA 19104, USA
- Correspondence: (K.L.); (J.W.)
| | - Justin Wain
- School of Osteopathic Medicine, Campbell University, Buies Creek, NC 27506, USA
- Correspondence: (K.L.); (J.W.)
| |
Collapse
|
9
|
Lalsare S. Cannabinoids: Legal aspects, pharmacology, phytochemistry, probable targets from biological system, and therapeutic potential. ASIAN JOURNAL OF PHARMACEUTICAL RESEARCH AND HEALTH CARE 2022. [DOI: 10.4103/ajprhc.ajprhc_9_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Hryhorowicz S, Kaczmarek-Ryś M, Zielińska A, Scott RJ, Słomski R, Pławski A. Endocannabinoid System as a Promising Therapeutic Target in Inflammatory Bowel Disease - A Systematic Review. Front Immunol 2021; 12:790803. [PMID: 35003109 PMCID: PMC8727741 DOI: 10.3389/fimmu.2021.790803] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/29/2021] [Indexed: 12/20/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a general term used to describe a group of chronic inflammatory conditions of the gastrointestinal tract of unknown etiology, including two primary forms: Crohn's disease (CD) and ulcerative colitis (UC). The endocannabinoid system (ECS) plays an important role in modulating many physiological processes including intestinal homeostasis, modulation of gastrointestinal motility, visceral sensation, or immunomodulation of inflammation in IBD. It consists of cannabinoid receptors (CB1 and CB2), transporters for cellular uptake of endocannabinoid ligands, endogenous bioactive lipids (Anandamide and 2-arachidonoylglycerol), and the enzymes responsible for their synthesis and degradation (fatty acid amide hydrolase and monoacylglycerol lipase), the manipulation of which through agonists and antagonists of the system, shows a potential therapeutic role for ECS in inflammatory bowel disease. This review summarizes the role of ECS components on intestinal inflammation, suggesting the advantages of cannabinoid-based therapies in inflammatory bowel disease.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents/pharmacology
- Anti-Inflammatory Agents/therapeutic use
- Cannabinoid Receptor Agonists/pharmacology
- Cannabinoid Receptor Agonists/therapeutic use
- Cannabinoid Receptor Antagonists/pharmacology
- Cannabinoid Receptor Antagonists/therapeutic use
- Colitis, Ulcerative/drug therapy
- Colitis, Ulcerative/immunology
- Colitis, Ulcerative/pathology
- Crohn Disease/drug therapy
- Crohn Disease/immunology
- Crohn Disease/pathology
- Disease Models, Animal
- Drug Evaluation, Preclinical
- Endocannabinoids/agonists
- Endocannabinoids/antagonists & inhibitors
- Endocannabinoids/metabolism
- Gastrointestinal Motility/drug effects
- Humans
- Intestinal Mucosa/drug effects
- Intestinal Mucosa/immunology
- Intestinal Mucosa/pathology
- Randomized Controlled Trials as Topic
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB2/agonists
- Receptor, Cannabinoid, CB2/antagonists & inhibitors
- Receptor, Cannabinoid, CB2/metabolism
- Signal Transduction/drug effects
- Signal Transduction/immunology
- Treatment Outcome
Collapse
Affiliation(s)
| | | | | | - Rodney J. Scott
- Discipline of Medical Genetics and Centre for Information-Based Medicine, The University of Newcastle and Hunter Medical Research Institute, Newcastle, NSW, Australia
- Division of Molecular Medicine, New South Wales Health Pathology North, Newcastle, NSW, Australia
| | - Ryszard Słomski
- Institute of Human Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Andrzej Pławski
- Institute of Human Genetics, Polish Academy of Sciences, Poznań, Poland
| |
Collapse
|
11
|
Lian J, Casari I, Falasca M. Modulatory role of the endocannabinoidome in the pathophysiology of the gastrointestinal tract. Pharmacol Res 2021; 175:106025. [PMID: 34883211 DOI: 10.1016/j.phrs.2021.106025] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/29/2021] [Accepted: 12/05/2021] [Indexed: 12/13/2022]
Abstract
Originating from Eastern Asia, the plant Cannabis sativa has been used for centuries as a medicinal treatment. The unwanted psychotropic effects of one of its major components, Δ9-tetrahydrocannabinol, discouraged its therapeutic employment until, recently, the discovery of cannabinoids receptors and their endogenous ligands endocannabinoids reignited the interest. The endocannabinoid system has lately been found to play an important role in the maintenance of human health, both centrally and peripherally. However, the initial idea of the endocannabinoid system structure has been quickly understood to be too simplistic and, as new receptors, mediators, and enzymes have been discovered to participate in a complex relationship, the new, more comprehensive term "expanded endocannabinoid system" or "endocannabinoidome", has taken over. The discovery of other endocannabinoid-like receptors, such as the G protein-coupled receptor 119 and G protein-coupled receptor 55, has opened the way to the development of potential therapeutic targets for the treatment of various metabolic disorders. In addition, recent findings have also provided evidence suggesting the potential therapeutic link between the endocannabinoidome and various inflammatory-based gut diseases, such as inflammatory bowel disease and cancer. This review will provide an introduction to the endocannabinoidome, focusing on its modulatory role in the gastrointestinal tract and on the interest generated by the link between gut microbiota, the endocannabinoid system and metabolic diseases such as inflammatory bowel disease, type-2 diabetes and obesity. In addition, we will look at the potential novel aspects and benefits of drugs targeting the endocannabinoid system.
Collapse
Affiliation(s)
- Jerome Lian
- Metabolic Signalling Group, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia 6102, Australia
| | - Ilaria Casari
- Metabolic Signalling Group, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia 6102, Australia
| | - Marco Falasca
- Metabolic Signalling Group, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia 6102, Australia.
| |
Collapse
|
12
|
D'Antongiovanni V, Pellegrini C, Antonioli L, Benvenuti L, Di Salvo C, Flori L, Piccarducci R, Daniele S, Martelli A, Calderone V, Martini C, Fornai M. Palmitoylethanolamide Counteracts Enteric Inflammation and Bowel Motor Dysfunctions in a Mouse Model of Alzheimer's Disease. Front Pharmacol 2021; 12:748021. [PMID: 34658885 PMCID: PMC8511319 DOI: 10.3389/fphar.2021.748021] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/20/2021] [Indexed: 12/20/2022] Open
Abstract
Palmitoylethanolamide (PEA), an endogenous lipid mediator, is emerging as a promising pharmacological agent in multiple neurodegenerative disorders for its anti-inflammatory and neuroprotective properties. However, its effects on enteric inflammation and colonic dysmotility associated with Alzheimer’s disease (AD) are lacking. This study was designed to investigate the beneficial effect of PEA administration in counteracting the enteric inflammation and relieving the bowel motor dysfunctions in an AD mouse model, SAMP8 mice. In addition, the ability of PEA in modulating the activation of enteric glial cells (EGCs), pivotally involved in the pathophysiology of bowel dysfunctions associated with inflammatory conditions, has also been examined. SAMP8 mice at 4 months of age were treated orally with PEA (5 mg/kg/day) for 2 months. SAMR1 animals were employed as controls. At the end of treatment, parameters dealing with colonic motility, inflammation, barrier integrity and AD protein accumulation were evaluated. The effect of PEA on EGCs was tested in cultured cells treated with lipopolysaccharide (LPS) plus β-amyloid 1–42 (Aβ). SAMP8 treated with PEA displayed: 1) an improvement of in vitro colonic motor activity, citrate synthase activity and intestinal epithelial barrier integrity and 2) a decrease in colonic Aβ and α-synuclein (α-syn) accumulation, S100-β expression as well as enteric IL-1β and circulating LPS levels, as compared with untreated SAMP8 mice. In EGCs, treatment with PEA counteracted the increment of S100-β, TLR-4, NF-κB p65 and IL-1β release induced by LPS and Aβ. These results suggest that PEA, under a condition of cognitive decline, prevents the enteric glial hyperactivation, reduces AD protein accumulation and counteracts the onset and progression of colonic inflammatory condition, as well as relieves intestinal motor dysfunctions and improves the intestinal epithelial barrier integrity. Therefore, PEA represents a viable approach for the management of the enteric inflammation and motor contractile abnormalities associated with AD.
Collapse
Affiliation(s)
| | - Carolina Pellegrini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Luca Antonioli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Laura Benvenuti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Clelia Di Salvo
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Lorenzo Flori
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | | | | | - Alma Martelli
- Department of Pharmacy, University of Pisa, Pisa, Italy.,Interdepartmental Research Center "Nutrafood: Nutraceutica e Alimentazione per la Salute", University of Pisa, Pisa, Italy.,Interdepartmental Research Center "Biology and Pathology of Ageing", University of Pisa, Pisa, Italy
| | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, Pisa, Italy.,Interdepartmental Research Center "Nutrafood: Nutraceutica e Alimentazione per la Salute", University of Pisa, Pisa, Italy.,Interdepartmental Research Center "Biology and Pathology of Ageing", University of Pisa, Pisa, Italy
| | | | - Matteo Fornai
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
13
|
Lowe H, Toyang N, Steele B, Bryant J, Ngwa W. The Endocannabinoid System: A Potential Target for the Treatment of Various Diseases. Int J Mol Sci 2021; 22:9472. [PMID: 34502379 PMCID: PMC8430969 DOI: 10.3390/ijms22179472] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 02/06/2023] Open
Abstract
The Endocannabinoid System (ECS) is primarily responsible for maintaining homeostasis, a balance in internal environment (temperature, mood, and immune system) and energy input and output in living, biological systems. In addition to regulating physiological processes, the ECS directly influences anxiety, feeding behaviour/appetite, emotional behaviour, depression, nervous functions, neurogenesis, neuroprotection, reward, cognition, learning, memory, pain sensation, fertility, pregnancy, and pre-and post-natal development. The ECS is also involved in several pathophysiological diseases such as cancer, cardiovascular diseases, and neurodegenerative diseases. In recent years, genetic and pharmacological manipulation of the ECS has gained significant interest in medicine, research, and drug discovery and development. The distribution of the components of the ECS system throughout the body, and the physiological/pathophysiological role of the ECS-signalling pathways in many diseases, all offer promising opportunities for the development of novel cannabinergic, cannabimimetic, and cannabinoid-based therapeutic drugs that genetically or pharmacologically modulate the ECS via inhibition of metabolic pathways and/or agonism or antagonism of the receptors of the ECS. This modulation results in the differential expression/activity of the components of the ECS that may be beneficial in the treatment of a number of diseases. This manuscript in-depth review will investigate the potential of the ECS in the treatment of various diseases, and to put forth the suggestion that many of these secondary metabolites of Cannabis sativa L. (hereafter referred to as "C. sativa L." or "medical cannabis"), may also have potential as lead compounds in the development of cannabinoid-based pharmaceuticals for a variety of diseases.
Collapse
Affiliation(s)
- Henry Lowe
- Biotech R & D Institute, University of the West Indies, Mona 99999, Jamaica; (H.L.); (J.B.)
- Vilotos Pharmaceuticals Inc., Baltimore, MD 21202, USA;
- Flavocure Biotech Inc., Baltimore, MD 21202, USA
- Department of Medicine, University of Maryland Medical School, Baltimore, MD 21202, USA
| | - Ngeh Toyang
- Vilotos Pharmaceuticals Inc., Baltimore, MD 21202, USA;
- Flavocure Biotech Inc., Baltimore, MD 21202, USA
| | - Blair Steele
- Biotech R & D Institute, University of the West Indies, Mona 99999, Jamaica; (H.L.); (J.B.)
| | - Joseph Bryant
- Biotech R & D Institute, University of the West Indies, Mona 99999, Jamaica; (H.L.); (J.B.)
| | - Wilfred Ngwa
- Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA;
- Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
| |
Collapse
|
14
|
Kumar P, Mahato DK, Kamle M, Borah R, Sharma B, Pandhi S, Tripathi V, Yadav HS, Devi S, Patil U, Xiao J, Mishra AK. Pharmacological properties, therapeutic potential, and legal status of Cannabis sativa L.: An overview. Phytother Res 2021; 35:6010-6029. [PMID: 34237796 DOI: 10.1002/ptr.7213] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 06/04/2021] [Accepted: 06/24/2021] [Indexed: 02/05/2023]
Abstract
Marijuana, or Cannabis sativa L., is a common psychoactive plant used for both recreational and medicinal purposes. In many countries, cannabis-based medicines have been legalized under certain conditions because of their immense prospects in medicinal applications. With a comprehensive insight into the prospects and challenges associated with the pharmacological use and global trade of C. sativa, this mini-review focuses on the medicinal importance of the plant and its legal status worldwide; the pharmacological compounds and its therapeutic potential along with the underlying public health concerns and future perspective are herein discussed. The existence of major compounds including Δ9 -tetrahydrocannabinol (Δ9 -THC), cannabidiol, cannabinol, and cannabichromene contributes to the medicinal effects of the cannabis plant. These compounds are also involved in the treatment of various types of cancer, epilepsy, and Parkinson's disease displaying several mechanisms of action. Cannabis sativa is a plant with significant pharmacological potential. However, several aspects of the plant need an in-depth understanding of the drug mechanism and its interaction with other drugs. Only after addressing these health concerns, legalization of cannabis could be utilized to its full potential as a future medicine.
Collapse
Affiliation(s)
- Pradeep Kumar
- Applied Microbiology Laboratory, Department of Forestry, North Eastern Regional Institute of Science and Technology, Nirjuli, India
| | - Dipendra Kumar Mahato
- CASS Food Research Centre, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Victoria, Australia
| | - Madhu Kamle
- Applied Microbiology Laboratory, Department of Forestry, North Eastern Regional Institute of Science and Technology, Nirjuli, India
| | - Rituraj Borah
- Applied Microbiology Laboratory, Department of Forestry, North Eastern Regional Institute of Science and Technology, Nirjuli, India
| | - Bharti Sharma
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Shikha Pandhi
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Vijay Tripathi
- Department of Molecular and Cellular Engineering, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture Technology and Sciences, Prayagraj, India
| | - Hardeo Singh Yadav
- Department of Chemistry, North Eastern Regional Institute of Science and Technology, Nirjuli, India
| | - Sheetal Devi
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management (NIFTEM), Sonipat, India
| | - Umesh Patil
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau
| | - Jianbo Xiao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau
| | | |
Collapse
|
15
|
Holloman BL, Nagarkatti M, Nagarkatti P. Epigenetic Regulation of Cannabinoid-Mediated Attenuation of Inflammation and Its Impact on the Use of Cannabinoids to Treat Autoimmune Diseases. Int J Mol Sci 2021; 22:ijms22147302. [PMID: 34298921 PMCID: PMC8307988 DOI: 10.3390/ijms22147302] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/01/2021] [Accepted: 07/05/2021] [Indexed: 12/15/2022] Open
Abstract
Chronic inflammation is considered to be a silent killer because it is the underlying cause of a wide range of clinical disorders, from cardiovascular to neurological diseases, and from cancer to obesity. In addition, there are over 80 different types of debilitating autoimmune diseases for which there are no cure. Currently, the drugs that are available to suppress chronic inflammation are either ineffective or overtly suppress the inflammation, thereby causing increased susceptibility to infections and cancer. Thus, the development of a new class of drugs that can suppress chronic inflammation is imperative. Cannabinoids are a group of compounds produced in the body (endocannabinoids) or found in cannabis (phytocannabinoids) that act through cannabinoid receptors and various other receptors expressed widely in the brain and immune system. In the last decade, cannabinoids have been well established experimentally to mediate anti-inflammatory properties. Research has shown that they suppress inflammation through multiple pathways, including apoptosis and inducing immunosuppressive T regulatory cells (Tregs) and myeloid-derived suppressor cells (MDSCs). Interestingly, cannabinoids also mediate epigenetic alterations in genes that regulate inflammation. In the current review, we highlight how the epigenetic modulations caused by cannabinoids lead to the suppression of inflammation and help identify novel pathways that can be used to target autoimmune diseases.
Collapse
|
16
|
Neufeld T, Pfuhlmann K, Stock-Schröer B, Kairey L, Bauer N, Häuser W, Langhorst J. Cannabis use of patients with inflammatory bowel disease in Germany: a cross-sectional survey. ZEITSCHRIFT FUR GASTROENTEROLOGIE 2021; 59:1068-1077. [PMID: 34157755 DOI: 10.1055/a-1400-2768] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND AND AIMS Progressive legalization and increasing utilization of medical cannabis open up potential new applications, including for inflammatory bowel disease (IBD). This study aimed to collect current figures on the use of and experience with cannabis among IBD patients in Germany. METHODS A 71-item questionnaire was mailed to a randomly selected representative sample of 1000 IBD patients. RESULTS Questionnaires were returned by 417 patients (mean age 49.1 ± 17.0 years; 55.8 % women; 43.4 % ulcerative colitis and 54.7 % Crohn's disease). Seventy-three respondents (17.5 %) stated past cannabis use for recreational purposes, while 12 users mentioned usage at the time the questionnaire was completed (2.9 %). Seventeen patients (4.1 %) indicated past use of cannabis, and 18 participants (4.3 %) reported current use of cannabis to treat IBD. Perceived benefits of cannabis use by its users included reduced abdominal pain, improved sleep quality, and relief of unease and worry. They reported lower quality of life and higher levels of anxiety or depression than non-users. Of notice, 52.9 % of cannabis users obtained their cannabis from the black market. A total of 76.5 % of former and 50 % of current users did not report their cannabis use to the physician. CONCLUSION This survey reveals the largest data set on cannabis use among IBD patients in Germany, with the potential for further research. Cannabis is mainly procured from the black market, with unknown quality.
Collapse
Affiliation(s)
- Tanja Neufeld
- Department for Internal and Integrative Medicine, Sozialstiftung Bamberg, Bamberg, Germany.,Chair for Integrative Medicine, University of Duisburg-Essen, Bamberg, Germany
| | - Katrin Pfuhlmann
- Department for Internal and Integrative Medicine, Sozialstiftung Bamberg, Bamberg, Germany.,Chair for Integrative Medicine, University of Duisburg-Essen, Bamberg, Germany
| | - Beate Stock-Schröer
- University of Witten/Herdecke, Faculty of Health/Department of Human Medicine, Witten/Herdecke, Germany
| | - Lana Kairey
- Department for Internal and Integrative Medicine, Sozialstiftung Bamberg, Bamberg, Germany
| | - Nina Bauer
- Department for Internal and Integrative Medicine, Sozialstiftung Bamberg, Bamberg, Germany.,Chair for Integrative Medicine, University of Duisburg-Essen, Bamberg, Germany
| | - Winfried Häuser
- Department for Internal Medicine, Klinikum Saarbruecken, Saarbruecken, Germany
| | - Jost Langhorst
- Department for Internal and Integrative Medicine, Sozialstiftung Bamberg, Bamberg, Germany.,Chair for Integrative Medicine, University of Duisburg-Essen, Bamberg, Germany
| |
Collapse
|
17
|
Stasiłowicz A, Tomala A, Podolak I, Cielecka-Piontek J. Cannabis sativa L. as a Natural Drug Meeting the Criteria of a Multitarget Approach to Treatment. Int J Mol Sci 2021; 22:E778. [PMID: 33466734 PMCID: PMC7830475 DOI: 10.3390/ijms22020778] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/30/2020] [Accepted: 01/11/2021] [Indexed: 12/15/2022] Open
Abstract
Cannabis sativa L. turned out to be a valuable source of chemical compounds of various structures, showing pharmacological activity. The most important groups of compounds include phytocannabinoids and terpenes. The pharmacological activity of Cannabis (in epilepsy, sclerosis multiplex (SM), vomiting and nausea, pain, appetite loss, inflammatory bowel diseases (IBDs), Parkinson's disease, Tourette's syndrome, schizophrenia, glaucoma, and coronavirus disease 2019 (COVID-19)), which has been proven so far, results from the affinity of these compounds predominantly for the receptors of the endocannabinoid system (the cannabinoid receptor type 1 (CB1), type two (CB2), and the G protein-coupled receptor 55 (GPR55)) but, also, for peroxisome proliferator-activated receptor (PPAR), glycine receptors, serotonin receptors (5-HT), transient receptor potential channels (TRP), and GPR, opioid receptors. The synergism of action of phytochemicals present in Cannabis sp. raw material is also expressed in their increased bioavailability and penetration through the blood-brain barrier. This review provides an overview of phytochemistry and pharmacology of compounds present in Cannabis extracts in the context of the current knowledge about their synergistic actions and the implications of clinical use in the treatment of selected diseases.
Collapse
Affiliation(s)
- Anna Stasiłowicz
- Department of Pharmacognosy, Poznan University of Medical Sciences, Swiecickiego 4, 61-781 Poznan, Poland;
| | - Anna Tomala
- Department of Pharmacognosy, Medical College, Jagiellonian University, Medyczna 9, 30-688 Cracow, Poland; (A.T.); (I.P.)
| | - Irma Podolak
- Department of Pharmacognosy, Medical College, Jagiellonian University, Medyczna 9, 30-688 Cracow, Poland; (A.T.); (I.P.)
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy, Poznan University of Medical Sciences, Swiecickiego 4, 61-781 Poznan, Poland;
| |
Collapse
|
18
|
Tartakover Matalon S, Azar S, Meiri D, Hadar R, Nemirovski A, Abu Jabal N, Konikoff FM, Drucker L, Tam J, Naftali T. Endocannabinoid Levels in Ulcerative Colitis Patients Correlate With Clinical Parameters and Are Affected by Cannabis Consumption. Front Endocrinol (Lausanne) 2021; 12:685289. [PMID: 34531823 PMCID: PMC8438407 DOI: 10.3389/fendo.2021.685289] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/22/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Inflammatory bowel diseases (IBDs) are chronic, idiopathic, inflammatory, gastrointestinal disorders. The endocannabinoid system may have a role in the pathogenesis of IBD. We aimed to assess whether cannabis treatment influences endocannabinoids (eCBs) level and clinical symptoms of IBD patients. METHODS Blood samples and biopsies were taken from IBD patients treated by either cannabis or placebo for 8 weeks. Immunohistochemistry for N-acyl-phosphatidylethanolamine-selective phospholipase D (NAPE-PLD) and fatty acid amide hydrolase (FAAH) expression was done on colon biopsies, and sample levels of anandamide (AEA), eCB2-arachidonylglycerol (2-AG), arachidonic acid (AA), palmitoylethanolamine (PEA), and oleoylethanolamine (OEA) were measured in patient's sera before and after cannabis treatment. Caco-2 cells were cultured with extracts of cannabis with/without tetrahydrocannabinol (THC) and their proteins extracted, and Western blotting for NAPE-PLD and FAAH expression was done. RESULTS Thirteen patients with Crohn's disease (CD) and nine patients with ulcerative colitis (UC) were treated with cannabis. Seventeen patients with CD and 10 with UC served as placebo groups. In all CD patients, the levels of eCBs remained unaltered during the treatment period. In UC patients treated with placebo, but not in those treated with cannabis, the levels of PEA, AEA, and AA decreased significantly. The percent reduction in bowel movements was negatively correlated with changes observed in the circulating AEA and OEA, whereas improvement in quality of life was positively correlated with the levels of 2-AG. In the biopsies from UC patients, FAAH levels increased over the study period. In Caco-2 cells, both cannabis extracts increased NAPE-PLD levels but reduced FAAH expression levels. CONCLUSION Our study supports the notion that cannabis use affects eCB "tone" in UC patients and may have beneficial effects on disease symptoms in UC patients.
Collapse
Affiliation(s)
- Shelly Tartakover Matalon
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Institute of Gastroenterology and Hepatology, Meir Medical Center, Kfar Saba, Israel
| | - Shahar Azar
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - David Meiri
- Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Rivka Hadar
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Alina Nemirovski
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Narjes Abu Jabal
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Fred Meir Konikoff
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Institute of Gastroenterology and Hepatology, Meir Medical Center, Kfar Saba, Israel
| | - Liat Drucker
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Joseph Tam
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Timna Naftali
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Institute of Gastroenterology and Hepatology, Meir Medical Center, Kfar Saba, Israel
- *Correspondence: Timna Naftali,
| |
Collapse
|
19
|
Pagano E, Iannotti FA, Piscitelli F, Romano B, Lucariello G, Venneri T, Di Marzo V, Izzo AA, Borrelli F. Efficacy of combined therapy with fish oil and phytocannabinoids in murine intestinal inflammation. Phytother Res 2020; 35:517-529. [PMID: 32996187 DOI: 10.1002/ptr.6831] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/24/2020] [Accepted: 07/13/2020] [Indexed: 12/16/2022]
Abstract
Fish oil (FO) and phytocannabinoids have received considerable attention for their intestinal anti-inflammatory effects. We investigated whether the combination of FO with cannabigerol (CBG) and cannabidiol (CBD) or a combination of all three treatments results in a more pronounced intestinal antiinflammatory action compared to the effects achieved separately. Colitis was induced in mice by 2,4-dinitrobenzenesulfonic acid (DNBS). CBD and CBG levels were detected and quantified by liquid chromatography coupled with time of flight mass spectrometry and ion trap mass spectrometry (LC-MS-IT-TOF). Endocannabinoids and related mediators were assessed by LC-MS. DNBS increased colon weight/colon length ratio, myeloperoxidase activity, interleukin-1β, and intestinal permeability. CBG, but not CBD, given by oral gavage, ameliorated DNBS-induced colonic inflammation. FO pretreatment (at the inactive dose) increased the antiinflammatory action of CBG and rendered oral CBD effective while reducing endocannabinoid levels. Furthermore, the combination of FO, CBD, and a per se inactive dose of CBG resulted in intestinal anti-inflammatory effects. Finally, FO did not alter phytocannabinoid levels in the serum and in the colon. By highlighting the apparent additivity between phytocannabinoids and FO, our preclinical data support a novel strategy of combining these substances for the potential development of a treatment of inflammatory bowel disease.
Collapse
Affiliation(s)
- Ester Pagano
- Department of Pharmacy, School of Medicine and Pharmacy, University of Naples Federico II, Naples, Italy.,Endocannabinoid Research Group
| | - Fabio A Iannotti
- Endocannabinoid Research Group.,Institute of Biomolecular Chemistry, CNR, Pozzuoli, Italy
| | - Fabiana Piscitelli
- Endocannabinoid Research Group.,Institute of Biomolecular Chemistry, CNR, Pozzuoli, Italy
| | - Barbara Romano
- Department of Pharmacy, School of Medicine and Pharmacy, University of Naples Federico II, Naples, Italy.,Endocannabinoid Research Group
| | - Giuseppe Lucariello
- Department of Pharmacy, School of Medicine and Pharmacy, University of Naples Federico II, Naples, Italy
| | - Tommaso Venneri
- Department of Pharmacy, School of Medicine and Pharmacy, University of Naples Federico II, Naples, Italy.,Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, Institut Universitaire de Cardiologie et de Pneumologie de Québec and Institut sur la Nutrition et les Aliments Fonctionnels Centre NUTRISS, Université Laval, Quebec City, Canada
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group.,Institute of Biomolecular Chemistry, CNR, Pozzuoli, Italy.,Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, Institut Universitaire de Cardiologie et de Pneumologie de Québec and Institut sur la Nutrition et les Aliments Fonctionnels Centre NUTRISS, Université Laval, Quebec City, Canada
| | - Angelo A Izzo
- Department of Pharmacy, School of Medicine and Pharmacy, University of Naples Federico II, Naples, Italy.,Endocannabinoid Research Group
| | - Francesca Borrelli
- Department of Pharmacy, School of Medicine and Pharmacy, University of Naples Federico II, Naples, Italy.,Endocannabinoid Research Group
| |
Collapse
|
20
|
Szczepaniak A, Fichna J. What role do cannabinoids have in modern medicine as gastrointestinal anti-inflammatory drugs? Expert Opin Pharmacother 2020; 21:1931-1934. [DOI: 10.1080/14656566.2020.1795129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Adrian Szczepaniak
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Jakub Fichna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
21
|
Palmitoylethanolamide and Related ALIAmides: Prohomeostatic Lipid Compounds for Animal Health and Wellbeing. Vet Sci 2020; 7:vetsci7020078. [PMID: 32560159 PMCID: PMC7355440 DOI: 10.3390/vetsci7020078] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/12/2020] [Accepted: 06/13/2020] [Indexed: 02/07/2023] Open
Abstract
Virtually every cellular process is affected by diet and this represents the foundation of dietary management to a variety of small animal disorders. Special attention is currently being paid to a family of naturally occurring lipid amides acting through the so-called autacoid local injury antagonism, i.e., the ALIA mechanism. The parent molecule of ALIAmides, palmitoyl ethanolamide (PEA), has being known since the 1950s as a nutritional factor with protective properties. Since then, PEA has been isolated from a variety of plant and animal food sources and its proresolving function in the mammalian body has been increasingly investigated. The discovery of the close interconnection between ALIAmides and the endocannabinoid system has greatly stimulated research efforts in this field. The multitarget and highly redundant mechanisms through which PEA exerts prohomeostatic functions fully breaks with the classical pharmacology view of “one drug, one target, one disease”, opening a new era in the management of animals’ health, i.e., an according-to-nature biomodulation of body responses to different stimuli and injury. The present review focuses on the direct and indirect endocannabinoid receptor agonism by PEA and its analogues and also targets the main findings from experimental and clinical studies on ALIAmides in animal health and wellbeing.
Collapse
|
22
|
Huangfu S, Dou R, Zhong S, Guo M, Gu C, Jurczyszyn A, Yang Y, Jiang B. Modified Pulsatillae decoction inhibits DSS-induced ulcerative colitis in vitro and in vivo via IL-6/STAT3 pathway. BMC Complement Med Ther 2020; 20:179. [PMID: 32517784 PMCID: PMC7285600 DOI: 10.1186/s12906-020-02974-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 05/26/2020] [Indexed: 02/07/2023] Open
Abstract
Background Ulcerative colitis (UC) is a chronic inflammatory disorder of the colon and rectum, which is positively correlated with the occurrence of IBD-related colorectal cancer (IBD-CRC). Conventional therapies based on drugs such as corticosteroids, mesalamine, and immunosuppression have serious side effects. Pulsatillae decoction (PD) served as a classical prescription for the treatment of colitis in China, has been shown to exert prominent curative effects and good safety. Based on clinical experience and our amelioration, we added an extra herb into this classical prescription, but its therapeutic effect on UC and the underlying mechanism are still unclear. Results We first found the curative effect of modified PD on dextran sodium sulfate (DSS)-incubated NCM460 cells. Then C57BL/6 mice were administered DSS to induce UC to evaluate the therapeutic of modified PD. The results showed that modified PD alleviated the inflammatory injury, manifested in body weight, colon length, and disease activity index, with histological analysis of colon injury. Transcriptomic sequencing indicated that modified PD treatment downregulated the IL-6/STAT3 signaling pathway, and reduced the levels of p-NF-κB, IL-1β and NLRP3, which were confirmed by western blot. Conclusions Collectively, our results indict that modified PD could efficiently relieve clinical signs and inflammatory mediators of UC, providing evidence of the anti-colitis effect of modified PD, which might provide novel strategies for therapeutic intervention in UC, which may be applied to the prevention of IBD-CRC.
Collapse
Affiliation(s)
- Shaohua Huangfu
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Renjie Dou
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Sixia Zhong
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Mengjie Guo
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chunyan Gu
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China.,School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Artur Jurczyszyn
- Department of Hematology, Jagiellonian University Medical College, 30-051, Cracow, Poland
| | - Ye Yang
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China. .,Laboratory for Combination of Acupuncture and Chinese Materia Medica of Chinese Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Bin Jiang
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
23
|
Pauli CS, Conroy M, Vanden Heuvel BD, Park SH. Cannabidiol Drugs Clinical Trial Outcomes and Adverse Effects. Front Pharmacol 2020; 11:63. [PMID: 32161538 PMCID: PMC7053164 DOI: 10.3389/fphar.2020.00063] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/22/2020] [Indexed: 12/11/2022] Open
Abstract
This review aims to present completed clinical trial data surrounding the medicinal benefits and potential side effects of the increasingly popular cannabidiol (CBD)-based drug products, specifically Epidiolex. The article is divided into two sections based on if the ailment being treated by this cannabinoid is classified as either physiological or neurological conditions. In addition to describing the current status, we also examined the different primary and secondary outcomes recorded for each study, which varies greatly depending on the funding source of the clinical trial. With the recent FDA-approval of Epidiolex, this review mainly focused on trials involving this specific formulation since it is the only CBD-based drug currently available to clinicians, although all other clinically trialed CBD(A) drugs were also examined. We hope this review will help guide future research and clinical trials by providing the various outcomes measured in a single review.
Collapse
Affiliation(s)
- Christopher S Pauli
- Institute of Cannabis Research, Colorado State University-Pueblo, Pueblo, CO, United States
| | - Matthieu Conroy
- Institute of Cannabis Research, Colorado State University-Pueblo, Pueblo, CO, United States
| | | | - Sang-Hyuck Park
- Institute of Cannabis Research, Colorado State University-Pueblo, Pueblo, CO, United States.,Department of Biology, Colorado State University-Pueblo, Pueblo, CO, United States
| |
Collapse
|
24
|
Cannabidiol (CBD) Consumption and Perceived Impact on Extrahepatic Symptoms in Patients with Autoimmune Hepatitis. Dig Dis Sci 2020; 65:322-328. [PMID: 31363952 PMCID: PMC6943405 DOI: 10.1007/s10620-019-05756-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 07/19/2019] [Indexed: 12/09/2022]
Abstract
BACKGROUND AND AIMS Utilization and safety of cannabidiol (CBD) in patients with autoimmune hepatitis (AIH) are currently unknown. We aimed to identify the frequency of CBD use, impact on symptoms, and safety profile. METHODS An invitation to complete a CBD-specific questionnaire was posted every other day to well-established autoimmune hepatitis Facebook communities (combined membership of 2600 individuals) during a 10-day study period. Age ≥ 18 years and an AIH diagnosis by a physician were the eligibility criteria for participation in the survey. RESULTS In total, 371 AIH patients (median age 49 years, 32% reported advanced fibrosis) completed the questionnaire. Respondents were 91% women, 89% Caucasian, and 89% from North America. Ninety-three (25%) respondents were ever CBD users, with 55 of them (15% of the survey responders) identified as current users. Among ever users, 45.7% reported their treating doctors were aware of their CBD use. The most common reason cited for CBD use was pain (68%), poor sleep (62%), and fatigue (38%). Most respondents using CBD for these symptoms reported a significant improvement in pain (82%), sleep (87%), and fatigue (61%). In ever CBD users, 17.3% were able to stop a prescription medication because of CBD use: pain medication (47%), immunosuppression (24%), and sleep aids (12%). Side effects attributed to CBD use were reported in 3% of CBD users, yet there were no reported emergency department visits or hospitalizations. CONCLUSION CBD use was not uncommon in patients with AIH, and its use was associated with reports of improvement in extrahepatic symptoms.
Collapse
|
25
|
Benzofuran and pyrrole derivatives as cannabinoid receptor modulators with in vivo efficacy against ulcerative colitis. Future Med Chem 2019; 11:3139-3159. [DOI: 10.4155/fmc-2019-0172] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Aim: Highlighting the need for effective therapies for the treatment of ulcerative colitis, novel series of potential CB2 modulators (benzofuran and pyrrole carboxamides) were developed and tested for their functional activities on CB1/CB2 receptors. Results: In the benzofuran series, the cannabinoid (CB) receptor selectivity and the functional profile were dependent on the nature of the amide substituent and the position of the methoxy group, meanwhile the pyrrole derivatives, displayed an exclusive selectivity to the CB2 receptor and a functionality that is controlled by the nature of the pyrrole nitrogen substituent. Conclusion: Remarkably, we succeeded to develop potent and selective pyrrole-based CB2 receptor agonists, represented by compound 25a, which also demonstrated an exquisite anti-inflammatory effect in a dextran sodium sulfate-induced colitis model in mice.
Collapse
|
26
|
Tartakover Matalon S, Ringel Y, Konikoff F, Drucker L, Pery S, Naftali T. Cannabinoid receptor 2 agonist promotes parameters implicated in mucosal healing in patients with inflammatory bowel disease. United European Gastroenterol J 2019; 8:271-283. [PMID: 32213014 DOI: 10.1177/2050640619889773] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Cannabis benefits patients with inflammatory bowel disease (IBD). Cannabinoid receptors are expressed in gut immune cells and in epithelial cells of inflamed guts. Mucosal healing (MH) requires epithelial layer restoration. OBJECTIVE To analyze the effects of CB2 agonist on parameters implicated in gut inflammation and MH. METHODS Mucosal samples from areas of inflamed/uninflamed colon from 16 patients with IBD were cultured without/with cannabinoid receptor 2 (CB2) agonist (JWH-133, 10 µM, 6 hours (hr)), and analyzed for epithelial/stromal cell proliferation, apoptosis (secretome matrix metalloproteinase 9 (MMP9) activity, which impairs epithelial permeability) and interleukin-8 (IL-8) levels (n = 5-9). In addition, Caco-2 (colon carcinoma epithelial cells) were cultured with biopsy secretomes (48 hr), and analyzed for phenotype and protein markers of proliferation (proliferating cell nuclear antigen), autophagy (LC3IIB) and permeability (Zonula occludens-1) (n = 4-6). RESULTS Uninflamed tissue had higher epithelial proliferation (Ki67: 50%↑, p < 0.05), and reduced secretome MMP9 activity and IL-8 levels (>50%↓, p < 0.05) compared to inflamed tissue. Treatment with CB2 agonist had no effect on epithelial apoptosis, but increased epithelial Ki67 expression (25%), and reduced secretome MMP9 and IL-8 levels in inflamed biopsies. Secretomes of CB2-treated biopsies increased Caco-2 number, migration, proliferating cell nuclear antigen and LC3IIB expression (all, p < 0.05), but had no effect on ZO-1. CONCLUSION Using ex vivo and in vitro human models, we demonstrated that manipulating the cannabinoid system affects colon cells and secretome characteristics that facilitate MH in IBD.
Collapse
Affiliation(s)
- Shelly Tartakover Matalon
- Gastroenterology Laboratory, Meir Medical Center, Kfar Saba, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yehuda Ringel
- Gastroenterology Laboratory, Meir Medical Center, Kfar Saba, Israel.,Department of Gastroenterology and Hepatology, Meir Medical Center, Kfar Saba, Israel.,Division of Gastroenterology and Hepatology, Department of Medicine, University of North Carolina at Chapel Hill, 4107 Bioinformatics Building, 130 Mason Farm Road, Chapel Hill, NC, 27599-7080, USA
| | - Fred Konikoff
- Gastroenterology Laboratory, Meir Medical Center, Kfar Saba, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Gastroenterology and Hepatology, Meir Medical Center, Kfar Saba, Israel
| | - Liat Drucker
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Oncogenetics Laboratory, Meir Medical Center, Kfar Saba, Israel
| | - Shaul Pery
- Gastroenterology Laboratory, Meir Medical Center, Kfar Saba, Israel
| | - Timna Naftali
- Gastroenterology Laboratory, Meir Medical Center, Kfar Saba, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Gastroenterology and Hepatology, Meir Medical Center, Kfar Saba, Israel
| |
Collapse
|
27
|
Medical cannabis for inflammatory bowel disease: real-life experience of mode of consumption and assessment of side-effects. Eur J Gastroenterol Hepatol 2019; 31:1376-1381. [PMID: 31567639 DOI: 10.1097/meg.0000000000001565] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Use of medical cannabis for improving symptoms of inflammatory bowel disease is increasing. However, reports on long-term outcomes are lacking. This prospective, observational study assessed the effects of licensed cannabis use among patients with inflammatory bowel disease. METHODS Dose and mode of consumption, adverse events, use of other medications, and long-term effects were evaluated among 127 patients with inflammatory bowel disease using legalized medical cannabis. Blood count, albumin, and C-reactive protein were assessed before, 1 month, and at least 1 year after medical cannabis therapy was initiated. Questionnaires on disease activity, patient function, and signs of addiction were completed by patients and by a significant family member to assess its effects. RESULTS The average dose used was 31 ± 15 g/month. The average Harvey-Bradshaw index improved from 14 ± 6.7 to 7 ± 4.7 (P < 0.001) during a median follow-up of 44 months (interquartile range, 24-56 months). There was a slight, but statistically significant, average weight gain of 2 kg within 1 year of cannabis use. The need for other medications was significantly reduced. Employment among patients increased from 65 to 74% (P < 0.05). We conclude that the majority of inflammatory bowel disease patients using cannabis are satisfied with a dose of 30 g/month. We did not observe negative effects of cannabis use on the patients' social or occupational status. CONCLUSIONS Cannabis use by inflammatory bowel disease patients can induce clinical improvement and is associated with reduced use of medication and slight weight gain. Most patients respond well to a dose of 30 g/month, or 21 mg Δ9-tetra- hydrocannabinol (THC) and 170 mg Cannabidiol (CBD) per day.
Collapse
|
28
|
Giacovazzo G, Bisogno T, Piscitelli F, Verde R, Oddi S, Maccarrone M, Coccurello R. Different Routes to Inhibit Fatty Acid Amide Hydrolase: Do All Roads Lead to the Same Place? Int J Mol Sci 2019; 20:ijms20184503. [PMID: 31514437 PMCID: PMC6771131 DOI: 10.3390/ijms20184503] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/06/2019] [Accepted: 09/09/2019] [Indexed: 11/25/2022] Open
Abstract
There is robust evidence indicating that enhancing the endocannabinoid (eCB) tone has therapeutic potential in several brain disorders. The inhibition of eCBs degradation by fatty acid amide hydrolase (FAAH) blockade, is the best-known option to increase N-acyl-ethanolamines-(NAEs)-mediated signaling. Here, we investigated the hypothesis that intranasal delivery is an effective route for different FAAH inhibitors, such as URB597 and PF-04457845. URB597 and PF-04457845 were subchronically administered in C57BL/6 male mice every other day for 20 days for overall 10 drug treatment, and compared for their ability to inhibit FAAH activity by the way of three different routes of administration: intranasal (i.n.), intraperitoneal (i.p.) and oral (p.o.). Lastly, we compared the efficacy of the three routes in terms of URB597-induced increase of NAEs levels in liver and in different brain areas. Results: We show that PF-04457845 potently inhibits FAAH regardless the route selected, and that URB597 was less effective in the brain after p.o. administration while reached similar effects by i.n. and i.p. routes. Intranasal URB597 delivery always increased NAEs levels in brain areas, whereas a parallel increase was not observed in the liver. By showing the efficacy of intranasal FAAH inhibition, we provide evidence that nose-to-brain delivery is a suitable alternative to enhance brain eCB tone for the treatment of neurodegenerative disorders and improve patients’ compliance.
Collapse
Affiliation(s)
- Giacomo Giacovazzo
- Fondazione Santa Lucia IRCCS, Preclinical Neuroscience, Via del Fosso di Fiorano 64, 00143 Rome, Italy
| | - Tiziana Bisogno
- Endocannabinoid Research Group, Institute of Translational Pharmacology, CNR, Via Fosso del Cavaliere 100, 00133 Rome, Italy
| | - Fabiana Piscitelli
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, CNR, Via C. Flegrei 34, 80078 Pozzuoli, Italy
| | - Roberta Verde
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, CNR, Via C. Flegrei 34, 80078 Pozzuoli, Italy
| | - Sergio Oddi
- Fondazione Santa Lucia IRCCS, Preclinical Neuroscience, Via del Fosso di Fiorano 64, 00143 Rome, Italy
- Faculty of Veterinary Medicine, University of Teramo, via R. Balzarini 1, 64100 Teramo, Italy
| | - Mauro Maccarrone
- Fondazione Santa Lucia IRCCS, Preclinical Neuroscience, Via del Fosso di Fiorano 64, 00143 Rome, Italy.
- Department of Medicine, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy.
| | - Roberto Coccurello
- Fondazione Santa Lucia IRCCS, Preclinical Neuroscience, Via del Fosso di Fiorano 64, 00143 Rome, Italy.
- Institute for Complex Systems (ISC), C.N.R., Via dei Taurini 19, 00185 Rome, Italy.
| |
Collapse
|
29
|
Breyner NM, Vilas Boas PB, Fernandes G, de Carvalho RD, Rochat T, Michel ML, Chain F, Sokol H, de Azevedo M, Myioshi A, Azevedo VA, Langella P, Bermúdez-Humarán LG, Chatel JM. Oral delivery of pancreatitis-associated protein by Lactococcus lactis displays protective effects in dinitro-benzenesulfonic-acid-induced colitis model and is able to modulate the composition of the microbiota. Environ Microbiol 2019; 21:4020-4031. [PMID: 31325218 PMCID: PMC6899824 DOI: 10.1111/1462-2920.14748] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 07/14/2019] [Indexed: 12/26/2022]
Abstract
Antimicrobial peptides secreted by intestinal immune and epithelial cells are important effectors of innate immunity. They play an essential role in the maintenance of intestinal homeostasis by limiting microbial epithelium interactions and preventing unnecessary microbe‐driven inflammation. Pancreatitis‐associated protein (PAP) belongs to Regenerating islet‐derived III proteins family and is a C‐type (Ca+2 dependent) lectin. PAP protein plays a protective effect presenting anti‐inflammatory properties able to reduce the severity of colitis, preserving gut barrier and epithelial inflammation. Here, we sought to determine whether PAP delivered at intestinal lumen by recombinant Lactococcus lactis strain (LL‐PAP) before and after chemically induced colitis is able to reduce the severity in two models of colitis. After construction and characterization of our recombinant strains, we tested their effects in dinitro‐benzenesulfonic‐acid (DNBS) and Dextran sulfate sodium (DSS) colitis model. After the DNBS challenge, mice treated with LL‐PAP presented less severe colitis compared with PBS and LL‐empty‐treated mice groups. After the DSS challenge, no protective effects of LL‐PAP could be detected. We determined that after 5 days administration, LL‐PAP increase butyrate producer's bacteria, especially Eubacterium plexicaudatum. Based on our findings, we hypothesize that a treatment with LL‐PAP shifts the microbiota preventing the severity of colon inflammation in DNBS colitis model. These protective roles of LL‐PAP in DNBS colitis model might be through intestinal microbiota modulation.
Collapse
Affiliation(s)
- Natalia M Breyner
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France.,Federal University of Minas Gerais (UFMG-ICB), Belo Horizonte, MG, Brazil
| | - Priscilla Bagano Vilas Boas
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France.,Federal University of Minas Gerais (UFMG-ICB), Belo Horizonte, MG, Brazil
| | | | | | | | - Marie-Laure Michel
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Florian Chain
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Harry Sokol
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Marcela de Azevedo
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Anderson Myioshi
- Federal University of Minas Gerais (UFMG-ICB), Belo Horizonte, MG, Brazil
| | - Vasco A Azevedo
- Federal University of Minas Gerais (UFMG-ICB), Belo Horizonte, MG, Brazil
| | - Philippe Langella
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Luis G Bermúdez-Humarán
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Jean-Marc Chatel
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| |
Collapse
|
30
|
Pérez-Pérez M, Pérez-Rodríguez G, Fdez-Riverola F, Lourenço A. Using Twitter to Understand the Human Bowel Disease Community: Exploratory Analysis of Key Topics. J Med Internet Res 2019; 21:e12610. [PMID: 31411142 PMCID: PMC6711036 DOI: 10.2196/12610] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/23/2019] [Accepted: 04/26/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Nowadays, the use of social media is part of daily life, with more and more people, including governments and health organizations, using at least one platform regularly. Social media enables users to interact among large groups of people that share the same interests and suffer the same afflictions. Notably, these channels promote the ability to find and share information about health and medical conditions. OBJECTIVE This study aimed to characterize the bowel disease (BD) community on Twitter, in particular how patients understand, discuss, feel, and react to the condition. The main questions were as follows: Which are the main communities and most influential users?; Where are the main content providers from?; What are the key biomedical and scientific topics under discussion? How are topics interrelated in patient communications?; How do external events influence user activity?; What kind of external sources of information are being promoted? METHODS To answer these questions, a dataset of tweets containing terms related to BD conditions was collected from February to August 2018, accounting for a total of 24,634 tweets from 13,295 different users. Tweet preprocessing entailed the extraction of textual contents, hyperlinks, hashtags, time, location, and user information. Missing and incomplete information about the user profiles was completed using different analysis techniques. Semantic tweet topic analysis was supported by a lexicon-based entity recognizer. Furthermore, sentiment analysis enabled a closer look into the opinions expressed in the tweets, namely, gaining a deeper understanding of patients' feelings and experiences. RESULTS Health organizations received most of the communication, whereas BD patients and experts in bowel conditions and nutrition were among those tweeting the most. In general, the BD community was mainly discussing symptoms, BD-related diseases, and diet-based treatments. Diarrhea and constipation were the most commonly mentioned symptoms, and cancer, anxiety disorder, depression, and chronic inflammations were frequently part of BD-related tweets. Most patient tweets discussed the bad side of BD conditions and other related conditions, namely, depression, diarrhea, and fibromyalgia. In turn, gluten-free diets and probiotic supplements were often mentioned in patient tweets expressing positive emotions. However, for the most part, tweets containing mentions to foods and diets showed a similar distribution of negative and positive sentiments because the effects of certain food components (eg, fiber, iron, and magnesium) were perceived differently, depending on the state of the disease and other personal conditions of the patients. The benefits of medical cannabis for the treatment of different chronic diseases were also highlighted. CONCLUSIONS This study evidences that Twitter is becoming an influential space for conversation about bowel conditions, namely, patient opinions about associated symptoms and treatments. So, further qualitative and quantitative content analyses hold the potential to support decision making among health-related stakeholders, including the planning of awareness campaigns.
Collapse
Affiliation(s)
- Martín Pérez-Pérez
- Department of Computer Science, University of Vigo, Escuela Superior de Ingeniería Informática, Ourense, Spain.,Biomedical Research Centre, Campus Universitario Lagoas-Marcosende, Vigo, Spain.,Next Generation Computer Systems Group, School of Computer Engineering, Galicia Sur Health Research Institute, Galician Health Service - University of Vigo, Vigo, Spain
| | - Gael Pérez-Rodríguez
- Department of Computer Science, University of Vigo, Escuela Superior de Ingeniería Informática, Ourense, Spain.,Biomedical Research Centre, Campus Universitario Lagoas-Marcosende, Vigo, Spain.,Next Generation Computer Systems Group, School of Computer Engineering, Galicia Sur Health Research Institute, Galician Health Service - University of Vigo, Vigo, Spain
| | - Florentino Fdez-Riverola
- Department of Computer Science, University of Vigo, Escuela Superior de Ingeniería Informática, Ourense, Spain.,Biomedical Research Centre, Campus Universitario Lagoas-Marcosende, Vigo, Spain.,Next Generation Computer Systems Group, School of Computer Engineering, Galicia Sur Health Research Institute, Galician Health Service - University of Vigo, Vigo, Spain
| | - Anália Lourenço
- Department of Computer Science, University of Vigo, Escuela Superior de Ingeniería Informática, Ourense, Spain.,Biomedical Research Centre, Campus Universitario Lagoas-Marcosende, Vigo, Spain.,Next Generation Computer Systems Group, School of Computer Engineering, Galicia Sur Health Research Institute, Galician Health Service - University of Vigo, Vigo, Spain.,Centre of Biological Engineering, Campus de Gualtar, University of Minho, Braga, Portugal
| |
Collapse
|
31
|
Park SH, Staples SK, Gostin EL, Smith JP, Vigil JJ, Seifried D, Kinney C, Pauli CS, Heuvel BDV. Contrasting Roles of Cannabidiol as an Insecticide and Rescuing Agent for Ethanol-induced Death in the Tobacco Hornworm Manduca sexta. Sci Rep 2019; 9:10481. [PMID: 31324859 PMCID: PMC6642087 DOI: 10.1038/s41598-019-47017-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 06/20/2019] [Indexed: 12/17/2022] Open
Abstract
Cannabis sativa, also known as marijuana or hemp, produces a non-psychoactive compound cannabidiol (CBD). To investigate the defensive role of CBD, a feeding preference assay was performed with tobacco hornworm Manduca sexta. The larvae clearly show feeding preference towards the Cannabis tissue containing low CBD over high CBD. While the larva avoided the high CBD diet, we investigated detrimental effects of CBD in the insects' diet. Contrasted to the performance on low CBD-infused artificial diet (AD), larvae reared on the high CBD diet suffer significantly reduced growth and increased mortality. Through testing different carriers, we found that the increase of EtOH in the diet is negatively correlated with insect development and behaviors. Notably, CBD treatment significantly improved ethanol-intoxicated larval survival rate by 40% and also improved diet searching activity, resulting in increased diet consumption. Electrophysiology results revealed that the CBD-treated ganglia had delayed but much larger response with electric stimuli in comparison to the larvae reared on AD only and EtOH-added diet. Our results show CBDs' defensive role against pest insects, which suggests its possible use as an insecticide. We also provide evidence that CBD alleviates alcohol-induced stress; consequently, improving the performance and viability of M. sexta larvae.
Collapse
Affiliation(s)
- Sang-Hyuck Park
- Department of Biology, Colorado State University-Pueblo, Pueblo, CO, 81001, USA
- Institute of Cannabis Research, Colorado State University-Pueblo, Pueblo, CO, 81001, USA
| | - S Kyle Staples
- Department of Biology, Colorado State University-Pueblo, Pueblo, CO, 81001, USA
| | - Eric L Gostin
- Department of Biology, Colorado State University-Pueblo, Pueblo, CO, 81001, USA
| | - Jeffrey P Smith
- Department of Biology, Colorado State University-Pueblo, Pueblo, CO, 81001, USA
| | - Jose J Vigil
- Department of Biology, Colorado State University-Pueblo, Pueblo, CO, 81001, USA
| | - Dustin Seifried
- Department of Chemistry, Colorado State University-Pueblo, Pueblo, CO, 81001, USA
| | - Chad Kinney
- Institute of Cannabis Research, Colorado State University-Pueblo, Pueblo, CO, 81001, USA
- Department of Chemistry, Colorado State University-Pueblo, Pueblo, CO, 81001, USA
| | - Christopher S Pauli
- Institute of Cannabis Research, Colorado State University-Pueblo, Pueblo, CO, 81001, USA
| | | |
Collapse
|
32
|
Abstract
Background Daily cannabis assumption is currently associated with several physical and mental health problems, however in the past it was prescribed for a multitude of symptoms, including vomiting, abdominal pain and diarrhea. Through the years, the endocannabinoid system has been recognized in the homeostatic mechanisms of the gut, as well as in the physiological control of intestinal motility and secretion. Accordingly, cannabinoids may be a promising therapy against several gastrointestinal conditions, such as abdominal pain and motility-related disorders. Case presentation We retrospectively analysed the efficacy and safety of a CB1-receptor agonist administered in six patients with refractory chronic diarrhea, between April 2008 and July 2016. After three months of therapy, oral nabilone improved the health of nearly all patients, with visible improvements in reducing diarrheal symptoms and weight gain. Most of the benefits persisted through the three-month follow-up. Only one patient interrupted the treatment after one month, due to severe fatigue and mental confusion; the symptoms disappeared in the follow-up period. Conclusions These findings encourage the study of cannabinoids acting on CB1 receptors in chronic gastrointestinal disorders, especially in refractory chronic diarrhea, offering a chance for a substantial improvement in the quality of life of selected patients, with a reasonable safety profile.
Collapse
|
33
|
Kumar V, Torben W, Mansfield J, Alvarez X, Vande Stouwe C, Li J, Byrareddy SN, Didier PJ, Pahar B, Molina PE, Mohan M. Cannabinoid Attenuation of Intestinal Inflammation in Chronic SIV-Infected Rhesus Macaques Involves T Cell Modulation and Differential Expression of Micro-RNAs and Pro-inflammatory Genes. Front Immunol 2019; 10:914. [PMID: 31114576 PMCID: PMC6503054 DOI: 10.3389/fimmu.2019.00914] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 04/09/2019] [Indexed: 12/12/2022] Open
Abstract
Cannabis use is frequent in HIV-infected individuals for its appetite stimulation and anti-inflammatory effects. To identify the underlying molecular mechanisms associated with these effects, we simultaneously profiled micro-RNA (miRNA) and mRNA expression in the colon of chronically simian immunodeficiency virus (SIV)-infected rhesus macaques administered either vehicle (VEH/SIV; n = 9) or Δ9-tetrahydrocannabinol (Δ9-THC; THC/SIV; n = 8). Pro-inflammatory miR-130a, miR-222, and miR-29b, lipopolysaccharide-responsive miR-146b-5p and SIV-induced miR-190b were significantly upregulated in VEH/SIV rhesus macaques. Compared to VEH/SIV rhesus macaques, 10 miRNAs were significantly upregulated in THC/SIV rhesus macaques, among which miR-204 was confirmed to directly target MMP8, an extracellular matrix-degrading collagenase that was significantly downregulated in THC/SIV rhesus macaques. Moreover, THC/SIV rhesus macaques failed to upregulate pro-inflammatory miR-21, miR-141 and miR-222, and alpha/beta-defensins, suggesting attenuated intestinal inflammation. Further, THC/SIV rhesus macaques showed higher expression of tight junction proteins (occludin, claudin-3), anti-inflammatory MUC13, keratin-8 (stress protection), PROM1 (epithelial proliferation), and anti-HIV CCL5. Gomori one-step trichrome staining detected significant collagen deposition (fibrosis) in the paracortex and B cell follicular zones of axillary lymph nodes from all VEH/SIV but not in THC/SIV rhesus macaques, thus demonstrating the ability of Δ9-THC to prevent lymph node fibrosis, a serious irreversible consequence of HIV induced chronic inflammation. Furthermore, using flow cytometry, we showed that Δ9-THC suppressed intestinal T cell proliferation/activation (Ki67/HLA-DR) and PD-1 expression and increased the percentages of anti-inflammatory CD163+ macrophages. Finally, while Δ9-THC did not affect the levels of CD4+ T cells, it significantly reduced absolute CD8+ T cell numbers in peripheral blood at 14 and 150 days post-SIV infection. These translational findings strongly support a role for differential miRNA/gene induction and T cell activation in Δ9-THC-mediated suppression of intestinal inflammation in HIV/SIV and potentially other chronic inflammatory diseases of the intestine.
Collapse
Affiliation(s)
- Vinay Kumar
- Nektar Therapeutics, South San Francisco, CA, United States
| | - Workineh Torben
- Department of Biological Sciences, LSU, Alexandria, LA, United States
| | - Joshua Mansfield
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, United States
| | - Xavier Alvarez
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, United States
| | | | - Jian Li
- Department of Global Biostatistics and Data Science, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, United States
| | - Siddappa N Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Peter J Didier
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, United States
| | - Bapi Pahar
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, United States
| | - Patricia E Molina
- Department of Physiology, LSUHSC, New Orleans, LA, United States.,LSUHSC Alcohol and Drug Abuse Center, New Orleans, LA, United States
| | - Mahesh Mohan
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, United States
| |
Collapse
|
34
|
Halbmeijer N, Groeneweg M, De Ridder L. Cannabis, a potential treatment option in pediatric IBD? Still a long way to go. Expert Rev Clin Pharmacol 2019; 12:355-361. [PMID: 30767696 DOI: 10.1080/17512433.2019.1582330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
INTRODUCTION The onset of inflammatory bowel disease (IBD) in children is rising. Current treatment options are based on immunomodulatory therapy. Alternative treatment options are upcoming since they appear to be effective in individual patients. Cannabis might relief IBD symptoms in these cases and improve quality of life. Recent evidence suggests a potential anti-inflammatory effect of cannabis. Areas covered: This review presents an overview of recent literature on the use of cannabis in IBD focussing on pediatric IBD patients. Background information on the role of the endocannabinoid system within the gastrointestinal tract is presented. Other modalities of cannabis and its purified ingredients will be discussed as well, with attention to its applicability in children with IBD. Expert opinion: More research is needed on the efficacy and safety of cannabis in pediatric IBD. Studies are well underway, but until then the use of cannabis in pediatric IBD cannot be recommended.
Collapse
Affiliation(s)
- Nienke Halbmeijer
- a Department of Pediatrics , Maasstad Hospital , Rotterdam , The Netherlands
| | - Michael Groeneweg
- a Department of Pediatrics , Maasstad Hospital , Rotterdam , The Netherlands
| | - Lissy De Ridder
- b Department of Paediatric Gastroenterology , Erasmus MC-Sophia Children's Hospital , Rotterdam , The Netherlands
| |
Collapse
|
35
|
Silva RL, Silveira GT, Wanderlei CW, Cecilio NT, Maganin AGM, Franchin M, Marques LMM, Lopes NP, Crippa JA, Guimarães FS, Alves-Filho JCF, Cunha FQ, Cunha TM. DMH-CBD, a cannabidiol analog with reduced cytotoxicity, inhibits TNF production by targeting NF-kB activity dependent on A 2A receptor. Toxicol Appl Pharmacol 2019; 368:63-71. [PMID: 30796934 DOI: 10.1016/j.taap.2019.02.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 02/16/2019] [Accepted: 02/19/2019] [Indexed: 12/26/2022]
Abstract
Cannabidiol (CBD) is a natural compound with psychoactive therapeutic properties well described. Conversely, the immunological effects of CBD are still poorly explored. In this study, the potential anti-inflammatory effects and underlying mechanisms of CBD and its analog Dimethyl-Heptyl-Cannabidiol (DMH-CBD) were investigated using RAW 264.7 macrophages. CBD and DMH-CBD suppressed LPS-induced TNF production and NF-kB activity in a concentration-dependent manner. Both compounds reduced the NF-kB activity in a μM concentration range: CBD (IC50 = 15 μM) and DMH-CBD (IC50 = 38 μM). However, the concentrations of CBD that mediated NF-kB inhibition were similar to those that cause cytotoxicity (LC50 = 58 μM). Differently, DMH-CBD inhibited the NF-kB activation without cytotoxic effects at the same concentrations, although it provokes cytotoxicity at long-term exposure. The inhibitory action of the DMH-CBD on NF-kB activity was not related to the reduction in IkBα degradation or either p65 (NF-kB) translocation to the nucleus, although it decreased p38 MAP kinase phosphorylation. Additionally, 8-(3-Chlorostyryl) caffeine (CSC), an A2A antagonist, reversed the effect of DMH-CBD on NF-kB activity in a concentration-dependent manner. Collectively, our results demonstrated that CBD reduces NF-kB activity at concentrations intimately associated with those that cause cell death, whereas DMH-CBD decreases NF-kB activity at non-toxic concentrations in an A2A receptor dependent-manner.
Collapse
Affiliation(s)
- Rangel L Silva
- Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, Brazil
| | - Gabriela T Silveira
- Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, Brazil
| | - Carlos W Wanderlei
- Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, Brazil; Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Fortaleza, Brazil
| | - Nerry T Cecilio
- Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, Brazil
| | - Alexandre G M Maganin
- Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, Brazil
| | - Marcelo Franchin
- Piracicaba Dental School, University of Campinas, Piracicaba 13414-903, SP, Brazil
| | - Lucas M M Marques
- Department of Physical Chemistry, Faculty of Pharmaceutical Sciences of Ribeirao Preto, University of São Paulo, Ribeirao Preto, Brazil
| | - Norberto P Lopes
- Department of Physical Chemistry, Faculty of Pharmaceutical Sciences of Ribeirao Preto, University of São Paulo, Ribeirao Preto, Brazil
| | - José A Crippa
- Department of Neurosciences and Behavior, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, Brazil
| | - Francisco S Guimarães
- Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, Brazil
| | - José C F Alves-Filho
- Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, Brazil
| | - Fernando Q Cunha
- Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, Brazil
| | - Thiago M Cunha
- Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, Brazil.
| |
Collapse
|
36
|
Pacheco DDF, Romero TRL, Duarte IDG. Ketamine induces central antinociception mediated by endogenous cannabinoids and activation of CB 1 receptors. Neurosci Lett 2019; 699:140-144. [PMID: 30716423 DOI: 10.1016/j.neulet.2019.01.059] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 01/28/2019] [Accepted: 01/31/2019] [Indexed: 02/01/2023]
Abstract
The participation of endocannabinoids in central and peripheral antinociception induced by several compounds has been shown by our group. In this study, we investigated the effect of endocannabinoids on the central antinociception induced by ketamine. The nociceptive threshold for thermal stimulation was measured using the tail-flick test in Swiss mice. The drugs were administered intracerebroventricularly. Probabilities less than 5% (p < 0.05) were considered to be statistically significant (Two-way ANOVA/Bonferroni's test). The CB1-selective cannabinoid receptor antagonist AM251 (2 and 4 μg) completely reversed the central antinociception induced by ketamine (4 μg) in a dose-dependent manner. In contrast, the CB2-selective cannabinoid receptor antagonist AM630 (2 and 4 μg) did not antagonize this effect. Additionally, the administration of the anandamide amidase inhibitor MAFP (0.2 μg) and anandamide uptake inhibitor VDM11 (4 μg) significantly enhanced the antinociception induced by a low dose of ketamine (2 μg). It was concluded that central antinociception induced by ketamine involves the activation of CB1 cannabinoid receptors. Mobilization of cannabinoids might be required for the activation of those receptors, since inhibitors of the endogenous cannabinoids potentiate the effect of Ketamine.
Collapse
Affiliation(s)
- Daniela da Fonseca Pacheco
- Department of Pharmacology, Institute of Biological Sciences, UFMG, Av. Antônio Carlos, 6627, 31.270.100, Belo Horizonte, Brazil.
| | - Thiago Roberto Lima Romero
- Department of Pharmacology, Institute of Biological Sciences, UFMG, Av. Antônio Carlos, 6627, 31.270.100, Belo Horizonte, Brazil.
| | - Igor Dimitri Gama Duarte
- Department of Pharmacology, Institute of Biological Sciences, UFMG, Av. Antônio Carlos, 6627, 31.270.100, Belo Horizonte, Brazil.
| |
Collapse
|
37
|
Abstract
Complementary and alternative medicine (CAM) consists of products and practices that are not considered to be a part of conventional medicine. This article reviews pediatric studies on CAM in inflammatory bowel disease (IBD) along with relevant adult studies. Prevalence of CAM use ranges from 22% to 84% in children with IBD all over the world. CAM use in IBD includes diet changes, supplements, herbals, botanicals, and mind-body therapies. Common reasons for using CAM include severe disease and concern for adverse effects of conventional medicines. Despite widespread use, there are limited studies on efficacy and safety of CAM in children. Small studies suggest a favorable evidence for use of probiotics, fish oil, marijuana, and mind-body therapy in IBD. Adverse effects of CAM are reported but are rare. The article provides current state of knowledge on the topic and provides guidance to physicians to address CAM use in pediatric patients with IBD.
Collapse
|
38
|
Bonini SA, Premoli M, Tambaro S, Kumar A, Maccarinelli G, Memo M, Mastinu A. Cannabis sativa: A comprehensive ethnopharmacological review of a medicinal plant with a long history. JOURNAL OF ETHNOPHARMACOLOGY 2018; 227:300-315. [PMID: 30205181 DOI: 10.1016/j.jep.2018.09.004] [Citation(s) in RCA: 294] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 09/02/2018] [Accepted: 09/03/2018] [Indexed: 05/21/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cannabis sativa L. (C. sativa) is an annual dioecious plant, which shares its origins with the inception of the first agricultural human societies in Asia. Over the course of time different parts of the plant have been utilized for therapeutic and recreational purposes, for instance, extraction of healing oils from seed, or the use of inflorescences for their psychoactive effects. The key psychoactive constituent in C. sativa is called Δ-9-tetrahydrocannabinol (D9-THC). The endocannabinoid system seems to be phylogenetically ancient, as it was present in the most primitive vertebrates with a neuronal network. N-arachidonoylethanolamine (AEA) and 2-arachidonoyl glycerol (2-AG) are the main endocannabinoids ligands present in the animal kingdom, and the main endocannabinoid receptors are cannabinoid type-1 (CB1) receptor and cannabinoid type-2 (CB2) receptor. AIM OF THE STUDY The review aims to provide a critical and comprehensive evaluation, from the ancient times to our days, of the ethnological, botanical, chemical and pharmacological aspects of C. sativa, with a vision for promoting further pharmaceutical research to explore its complete potential as a therapeutic agent. MATERIALS AND METHODS This study was performed by reviewing in extensive details the studies on historical significance and ethnopharmacological applications of C. sativa by using international scientific databases, books, Master's and Ph.D. dissertations and government reports. In addition, we also try to gather relevant information from large regional as well as global unpublished resources. In addition, the plant taxonomy was validated using certified databases such as Medicinal Plant Names Services (MPNS) and The Plant List. RESULTS AND CONCLUSIONS A detailed comparative analysis of the available resources for C. sativa confirmed its origin and traditional spiritual, household and therapeutic uses and most importantly its popularity as a recreational drug. The result of several studies suggested a deeper involvement of phytocannabinoids (the key compounds in C. sativa) in several others central and peripheral pathophysiological mechanisms such as food intake, inflammation, pain, colitis, sleep disorders, neurological and psychiatric illness. However, despite their numerous medicinal benefits, they are still considered as a menace to the society and banned throughout the world, except for few countries. We believe that this review will help lay the foundation for promoting exhaustive pharmacological and pharmaceutical studies in order to better understand the clinical relevance and applications of non-psychoactive cannabinoids in the prevention and treatment of life-threatening diseases and help to improve the legal status of C. sativa.
Collapse
Affiliation(s)
- Sara Anna Bonini
- Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, Brescia, Italy
| | - Marika Premoli
- Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, Brescia, Italy
| | - Simone Tambaro
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, Huddinge, Sweden
| | - Amit Kumar
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Clinical Geriatrics, Karolinska Institutet, Huddinge, Sweden
| | - Giuseppina Maccarinelli
- Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, Brescia, Italy
| | - Maurizio Memo
- Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, Brescia, Italy
| | - Andrea Mastinu
- Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, Brescia, Italy.
| |
Collapse
|
39
|
Bruni N, Della Pepa C, Oliaro-Bosso S, Pessione E, Gastaldi D, Dosio F. Cannabinoid Delivery Systems for Pain and Inflammation Treatment. Molecules 2018; 23:molecules23102478. [PMID: 30262735 PMCID: PMC6222489 DOI: 10.3390/molecules23102478] [Citation(s) in RCA: 175] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 09/21/2018] [Accepted: 09/25/2018] [Indexed: 01/15/2023] Open
Abstract
There is a growing body of evidence to suggest that cannabinoids are beneficial for a range of clinical conditions, including pain, inflammation, epilepsy, sleep disorders, the symptoms of multiple sclerosis, anorexia, schizophrenia and other conditions. The transformation of cannabinoids from herbal preparations into highly regulated prescription drugs is therefore progressing rapidly. The development of such drugs requires well-controlled clinical trials to be carried out in order to objectively establish therapeutic efficacy, dose ranges and safety. The low oral bioavailability of cannabinoids has led to feasible methods of administration, such as the transdermal route, intranasal administration and transmucosal adsorption, being proposed. The highly lipophilic nature of cannabinoids means that they are seen as suitable candidates for advanced nanosized drug delivery systems, which can be applied via a range of routes. Nanotechnology-based drug delivery strategies have flourished in several therapeutic fields in recent years and numerous drugs have reached the market. This review explores the most recent developments, from preclinical to advanced clinical trials, in the cannabinoid delivery field, and focuses particularly on pain and inflammation treatment. Likely future directions are also considered and reported.
Collapse
Affiliation(s)
| | - Carlo Della Pepa
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy.
| | | | - Enrica Pessione
- Department of Life Sciences and Systems Biology, University of Turin, 10123 Turin, Italy.
| | - Daniela Gastaldi
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10125 Turin, Italy.
| | - Franco Dosio
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy.
| |
Collapse
|
40
|
Pesce M, Esposito G, Sarnelli G. Endocannabinoids in the treatment of gasytrointestinal inflammation and symptoms. Curr Opin Pharmacol 2018; 43:81-86. [PMID: 30218940 DOI: 10.1016/j.coph.2018.08.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 08/22/2018] [Indexed: 01/02/2023]
Abstract
The evolving policies regarding the use of therapeutic Cannabis have steadily increased the public interest in its use as a complementary and alternative medicine in several disorders, including inflammatory bowel disease. Endocannabinoids represent both an appealing therapeutic strategy and a captivating scientific dilemma. Results from clinical trials have to be carefully interpreted owing to possible reporting-biases related to cannabinoids psychotropic effects. Moreover, discriminating between symptomatic improvement and the real gain on the underlying inflammatory process is often challenging. This review summarizes the advances and latest discovery in this ever-changing field of investigation, highlighting the main limitations in the current use of these drugs in clinical practice and the possible future perspectives to overcome these flaws.
Collapse
Affiliation(s)
- Marcella Pesce
- Department of Clinical Medicine and Surgery, 'Federico II' University of Naples, Naples, Italy; GI Physiology Unit, University College London Hospital, London, UK
| | - Giuseppe Esposito
- Department of Physiology and Pharmacology, `Vittorio Erspamer', La Sapienza University of Rome, Rome, Italy
| | - Giovanni Sarnelli
- Department of Clinical Medicine and Surgery, 'Federico II' University of Naples, Naples, Italy.
| |
Collapse
|
41
|
Cellular localization and regulation of receptors and enzymes of the endocannabinoid system in intestinal and systemic inflammation. Histochem Cell Biol 2018; 151:5-20. [PMID: 30196316 PMCID: PMC6328631 DOI: 10.1007/s00418-018-1719-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2018] [Indexed: 12/26/2022]
Abstract
Surveys suggest that Cannabis provides benefit for people with inflammatory bowel disease. However, mechanisms underlying beneficial effects are not clear. We performed in situ hybridization RNAscope® combined with immunohistochemistry to show cell-specific distribution and regulation of cannabinoid receptor 1 and 2 (CB1, CB2), G protein-coupled receptor 55 (GPR55), and monoacylglycerol lipase (MGL) mRNA in immune cells using murine models of intestinal and systemic inflammation. In healthy animals, the presence in enteric ganglia is high for CB1 mRNA, but low for CB2 and GPR55 mRNAs. MGL mRNA is predominant throughout the intestinal wall including myenteric neurons, epithelium, circular and longitudinal muscular layers, and the lamina propria. Within the immune system, B220+ cells exhibit high gene expression for CB2 while the expression of CB2 in F4/80+ and CD3+ cells is less prominent. In contrast, GPR55 mRNA is highly present in F4/80+ and CD3+ cells. qRT-PCR of total colonic segments shows that the expression of GPR55 and MGL genes drops during intestinal inflammation. Also at cellular levels, GPR55 and MGL gene expression is reduced in F4/80+, but not CD3+ cells. As to systemic inflammation, reduced gene expression of MGL is observed in ileum by qRT-PCR, while at cellular levels, altered gene expression is also seen for CB1 and GPR55 in CD3+ but not F4/80+ cells. In summary, our study reveals changes in gene expression of members of the endocannabinoid system in situ attesting particularly GPR55 and MGL a distinct cellular role in the regulation of the immune response to intestinal and systemic inflammation.
Collapse
|
42
|
Gut microbiota, cannabinoid system and neuroimmune interactions: New perspectives in multiple sclerosis. Biochem Pharmacol 2018; 157:51-66. [PMID: 30171835 DOI: 10.1016/j.bcp.2018.08.037] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/22/2018] [Indexed: 02/07/2023]
Abstract
The gut microbiota plays a fundamental role on the education and function of the host immune system. Immunological dysregulation is the cause of numerous human disorders such as autoimmune diseases and metabolic disorders frequently associated with inflammatory processes therefore is critical to explore novel mechanisms involved in maintaining the immune system homeostasis. The cannabinoid system and related bioactive lipids participate in multiple central and peripheral physiological processes that affect metabolic, gastrointestinal and neuroimmune regulatory mechanisms displaying a modulatory role and contributing to the maintenance of the organism's homeostasis. In this review, we gather the knowledge on the gut microbiota-endocannabinoids interactions and their impact on autoimmune disorders such as inflammatory bowel disease, rheumatoid arthritis and particularly, multiple sclerosis (MS) as the best example of a CNS autoimmune disorder. Furthermore, we contribute to this field with new data on changes in many elements of the cannabinoid system in a viral model of MS after gut microbiota manipulation by both antibiotics and probiotics. Finally, we highlight new therapeutic opportunities, under an integrative view, targeting the eCBS and the commensal microbiota in the context of neuroinflammation and MS.
Collapse
|
43
|
Di Marzo V. New approaches and challenges to targeting the endocannabinoid system. Nat Rev Drug Discov 2018; 17:623-639. [DOI: 10.1038/nrd.2018.115] [Citation(s) in RCA: 256] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
44
|
Uranga JA, Vera G, Abalo R. Cannabinoid pharmacology and therapy in gut disorders. Biochem Pharmacol 2018; 157:134-147. [PMID: 30076849 DOI: 10.1016/j.bcp.2018.07.048] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 07/31/2018] [Indexed: 12/14/2022]
Abstract
Cannabis sp. and their products (marijuana, hashish…), in addition to their recreational, industrial and other uses, have a long history for their use as a remedy for symptoms related with gastrointestinal diseases. After many reports suggesting these beneficial effects, it was not surprising to discover that the gastrointestinal tract expresses endogenous cannabinoids, their receptors, and enzymes for their synthesis and degradation, comprising the so-called endocannabinoid system. This system participates in the control of tissue homeostasis and important intestinal functions like motor and sensory activity, nausea, emesis, the maintenance of the epithelial barrier integrity, and the correct cellular microenvironment. Thus, different cannabinoid-related pharmacological agents may be useful to treat the main digestive pathologies. To name a few examples, in irritable bowel syndrome they may normalize dysmotility and reduce pain, in inflammatory bowel disease they may decrease inflammation, and in colorectal cancer, apart from alleviating some symptoms, they may play a role in the regulation of the cell niche. This review summarizes the main recent findings on the role of cannabinoid receptors, their synthetic or natural ligands and their metabolizing enzymes in normal gastrointestinal function and in disorders including irritable bowel syndrome, inflammatory bowel disease, colon cancer and gastrointestinal chemotherapy-induced adverse effects (nausea/vomiting, constipation, diarrhea).
Collapse
Affiliation(s)
- J A Uranga
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Madrid, Spain; Unidad Asociada I+D+i al Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC), Spain; Grupo de Excelencia Investigadora URJC-Banco de Santander-Grupo Multidisciplinar de Investigación y Tratamiento del Dolor (i+DOL), Spain
| | - G Vera
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Madrid, Spain; Unidad Asociada I+D+i al Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC), Spain; Unidad Asociada I+D+i al Instituto de Química Médica, IQM (CSIC), Spain; Grupo de Excelencia Investigadora URJC-Banco de Santander-Grupo Multidisciplinar de Investigación y Tratamiento del Dolor (i+DOL), Spain
| | - R Abalo
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Madrid, Spain; Unidad Asociada I+D+i al Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC), Spain; Unidad Asociada I+D+i al Instituto de Química Médica, IQM (CSIC), Spain; Grupo de Excelencia Investigadora URJC-Banco de Santander-Grupo Multidisciplinar de Investigación y Tratamiento del Dolor (i+DOL), Spain.
| |
Collapse
|
45
|
The Use of Complementary and Alternative Medicine in Patients With Inflammatory Bowel Disease. Gastroenterol Hepatol (N Y) 2018. [PMID: 30166957 DOI: 10.1007/978-94-011-4002-7_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Complementary and alternative medicine (CAM) includes products or medical practices that encompass herbal and dietary supplements, probiotics, traditional Chinese medicines, and a variety of mind-body techniques. The use of CAM in patients with inflammatory bowel disease (IBD) is increasing as patients seek ways beyond conventional therapy to treat their chronic illnesses. The literature behind CAM therapies and their application, efficacy, and safety is limited when compared to studies of conventional, allopathic therapies. Thus, gastroenterologists are often ill equipped to engage with their patients in informed and meaningful discussions about the role of CAM in IBD. The aims of this article are to provide a comprehensive summary and discussion of various CAM modalities and to appraise the evidence for their use.
Collapse
|
46
|
|
47
|
Abdel-Salam O, Sleem A, Youness E, Morsy F. Preventive effects of cannabis on neurotoxic and hepatotoxic activities of malathion in rat. ASIAN PAC J TROP MED 2018. [DOI: 10.4103/1995-7645.231467] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|