1
|
Flieger J, Forma A, Flieger W, Flieger M, Gawlik PJ, Dzierżyński E, Maciejewski R, Teresiński G, Baj J. Carotenoid Supplementation for Alleviating the Symptoms of Alzheimer's Disease. Int J Mol Sci 2024; 25:8982. [PMID: 39201668 PMCID: PMC11354426 DOI: 10.3390/ijms25168982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/12/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
Alzheimer's disease (AD) is characterized by, among other things, dementia and a decline in cognitive performance. In AD, dementia has neurodegenerative features and starts with mild cognitive impairment (MCI). Research indicates that apoptosis and neuronal loss occur in AD, in which oxidative stress plays an important role. Therefore, reducing oxidative stress with antioxidants is a natural strategy to prevent and slow down the progression of AD. Carotenoids are natural pigments commonly found in fruits and vegetables. They include lipophilic carotenes, such as lycopene, α- and β-carotenes, and more polar xanthophylls, for example, lutein, zeaxanthin, canthaxanthin, and β-cryptoxanthin. Carotenoids can cross the blood-brain barrier (BBB) and scavenge free radicals, especially singlet oxygen, which helps prevent the peroxidation of lipids abundant in the brain. As a result, carotenoids have neuroprotective potential. Numerous in vivo and in vitro studies, as well as randomized controlled trials, have mostly confirmed that carotenoids can help prevent neurodegeneration and alleviate cognitive impairment in AD. While carotenoids have not been officially approved as an AD therapy, they are indicated in the diet recommended for AD, including the consumption of products rich in carotenoids. This review summarizes the latest research findings supporting the potential use of carotenoids in preventing and alleviating AD symptoms. A literature review suggests that a diet rich in carotenoids should be promoted to avoid cognitive decline in AD. One of the goals of the food industry should be to encourage the enrichment of food products with functional substances, such as carotenoids, which may reduce the risk of neurodegenerative diseases.
Collapse
Affiliation(s)
- Jolanta Flieger
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Alicja Forma
- Department of Forensic Medicine, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland; (A.F.); (M.F.); (G.T.)
| | - Wojciech Flieger
- Department of Plastic Surgery, St. John’s Cancer Center, ul. Jaczewskiego 7, 20-090 Lublin, Poland; (W.F.)
| | - Michał Flieger
- Department of Forensic Medicine, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland; (A.F.); (M.F.); (G.T.)
| | - Piotr J. Gawlik
- Department of Plastic Surgery, St. John’s Cancer Center, ul. Jaczewskiego 7, 20-090 Lublin, Poland; (W.F.)
| | - Eliasz Dzierżyński
- Department of Plastic Surgery, St. John’s Cancer Center, ul. Jaczewskiego 7, 20-090 Lublin, Poland; (W.F.)
| | - Ryszard Maciejewski
- Institute of Health Sciences, John Paul II Catholic University of Lublin, Konstantynów 1 H, 20-708 Lublin, Poland;
| | - Grzegorz Teresiński
- Department of Forensic Medicine, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland; (A.F.); (M.F.); (G.T.)
| | - Jacek Baj
- Department of Correct, Clinical and Imaging Anatomy, Medical University of Lublin, ul. Jaczewskiego 4, 20-090 Lublin, Poland;
| |
Collapse
|
2
|
Roselli V, Pugliese G, Leuci R, Brunetti L, Gambacorta L, Tufarelli V, Piemontese L. Green Methods to Recover Bioactive Compounds from Food Industry Waste: A Sustainable Practice from the Perspective of the Circular Economy. Molecules 2024; 29:2682. [PMID: 38893556 PMCID: PMC11173532 DOI: 10.3390/molecules29112682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/02/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
The worrying and constant increase in the quantities of food and beverage industry by-products and wastes is one of the main factors contributing to global environmental pollution. Since this is a direct consequence of continuous population growth, it is imperative to reduce waste production and keep it under control. Re-purposing agro-industrial wastes, giving them new life and new directions of use, is a good first step in this direction, and, in global food production, vegetables and fruits account for a significant percentage. In this paper, brewery waste, cocoa bean shells, banana and citrus peels and pineapple wastes are examined. These are sources of bioactive molecules such as polyphenols, whose regular intake in the human diet is related to the prevention of various diseases linked to oxidative stress. In order to recover such bioactive compounds using more sustainable methods than conventional extraction, innovative solutions have been evaluated in the past decades. Of particular interest is the use of deep eutectic solvents (DESs) and compressed solvents, associated with green techniques such as microwave-assisted extraction (MAE), ultrasonic-assisted extraction (UAE), pressurized liquid extraction (PLE) and pulsed-electric-field-assisted extraction (PEF). These novel techniques are gaining importance because, in most cases, they allow for optimizing the extraction yield, quality, costs and time.
Collapse
Affiliation(s)
- Vincenzo Roselli
- Department of Pharmacy-Pharmaceutical Science, University of Bari Aldo Moro, Campus E. Quagliariello, Via E. Orabona 4, 70126 Bari, Italy
| | - Gianluca Pugliese
- Department of Precision and Regenerative Medicine and Jonian Area (DiMePRe-J), Section of Veterinary Science and Animal Production, University of Bari Aldo Moro, 70010 Valenzano, Italy
| | - Rosalba Leuci
- Department of Pharmacy-Pharmaceutical Science, University of Bari Aldo Moro, Campus E. Quagliariello, Via E. Orabona 4, 70126 Bari, Italy
| | - Leonardo Brunetti
- Department of Pharmacy-Pharmaceutical Science, University of Bari Aldo Moro, Campus E. Quagliariello, Via E. Orabona 4, 70126 Bari, Italy
| | - Lucia Gambacorta
- Institute of Science of Food Production (ISPA), Research National Council (CNR), Via Amendola 122/O, 70126 Bari, Italy
| | - Vincenzo Tufarelli
- Department of Precision and Regenerative Medicine and Jonian Area (DiMePRe-J), Section of Veterinary Science and Animal Production, University of Bari Aldo Moro, 70010 Valenzano, Italy
| | - Luca Piemontese
- Department of Pharmacy-Pharmaceutical Science, University of Bari Aldo Moro, Campus E. Quagliariello, Via E. Orabona 4, 70126 Bari, Italy
| |
Collapse
|
3
|
Chen F, Zhang T, Xiao P, Shao L, Zhang X, Wang L, Ren X, Qin C, Jiao Y. Occurrence and health risk of pesticide residues in Chinese herbal medicines from Shandong Province, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:25940-25951. [PMID: 38491238 DOI: 10.1007/s11356-024-32693-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/25/2024] [Indexed: 03/18/2024]
Abstract
Pesticide residue was one of the stress factors affecting quality and safety of Chinese herbal medicines (CHMs). The present study was designed to investigate the occurrence and dietary exposure of 70 pesticide residues in 307 samples of CHMs, including 104 American ginseng, 100 Ganoderma lucidum (G. lucidum), and 103 Dendrobium officinale (D. officinale) in Shandong Province, China. The study revealed that a total of 29 pesticides were detected in the majority (92.5%) of samples, and the pesticide residues of 85 (27.7%) samples exceeded the maximum residue levels (MRLs). Particularly, the maximum concentration of chlorpyrifos was 23.8 mg kg-1, almost 50 times of the MRLs in food in GB 2763-2021, while there's no standard restrictions specified in CHMs in China. The chronic, acute, and cumulative risk assessment results indicated that risk exposure of the three types of CHMs were unlikely to pose a health risk to consumers. However, more attention should be paid to the multiple residues with the presence of four or more pesticides in one sample and high over-standard rate of pesticides. The pesticide users and the government should pay more attention to the pesticides used in CHMs and regularly monitor the presence of these compounds. The study recommended the MRLs of these pesticides in CHMs should be established and perfected by the relevant departments in China.
Collapse
Affiliation(s)
- Fangfang Chen
- Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, Jinan, People's Republic of China
- Academy of Preventive Medicine, Shandong University, Jinan, People's Republic of China
| | - Tianliang Zhang
- Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, Jinan, People's Republic of China
- Academy of Preventive Medicine, Shandong University, Jinan, People's Republic of China
| | - Peirui Xiao
- Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, Jinan, People's Republic of China
- Academy of Preventive Medicine, Shandong University, Jinan, People's Republic of China
| | - Lijun Shao
- Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, Jinan, People's Republic of China
- Academy of Preventive Medicine, Shandong University, Jinan, People's Republic of China
| | - Xinxin Zhang
- Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, Jinan, People's Republic of China
- Academy of Preventive Medicine, Shandong University, Jinan, People's Republic of China
| | - Lin Wang
- Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, Jinan, People's Republic of China
- Academy of Preventive Medicine, Shandong University, Jinan, People's Republic of China
| | - Xiaofei Ren
- Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, Jinan, People's Republic of China
- Academy of Preventive Medicine, Shandong University, Jinan, People's Republic of China
| | - Chuan Qin
- School of Public Health, Shandong University, Jinan, People's Republic of China
| | - Yanni Jiao
- Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, Jinan, People's Republic of China.
- Academy of Preventive Medicine, Shandong University, Jinan, People's Republic of China.
| |
Collapse
|
4
|
Brunetti L, Leuci R, Colonna MA, Carrieri R, Celentano FE, Bozzo G, Loiodice F, Selvaggi M, Tufarelli V, Piemontese L. Food Industry Byproducts as Starting Material for Innovative, Green Feed Formulation: A Sustainable Alternative for Poultry Feeding. Molecules 2022; 27:4735. [PMID: 35897911 PMCID: PMC9332232 DOI: 10.3390/molecules27154735] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 12/03/2022] Open
Abstract
Rising global populations and enhanced standards of living in so-called developing countries have led to an increased demand of food, in particular meat, worldwide. While increasing the production of broiler meat could be a potential solution to this problem, broiler meat is plagued by health concerns, such as the development of antimicrobial resistance and lower meat quality. For this reason, the supplementation of poultry feed with vitamins and antioxidant compounds, such as polyphenols, has become an attractive prospect for research in this sector. Such supplements could be obtained by extraction of agricultural byproducts (in particular, grape pomaces and artichoke leaves and bracts), thus contributing to reductions in the total amount of waste biomass produced by the agricultural industry. In this review, the effects of poultry feed supplementation with bioactive extracts from grape pomace (skins and/or seeds), as well as extracts from artichoke leaves and bracts, were explored. Moreover, the various methods that have been employed to obtain extracts from these and other agricultural byproducts were listed and described, with a particular focus on novel, eco-friendly extraction methods (using, for example, innovative and biocompatible solvents like Deep Eutectic Solvents (DESs)) that could reduce the costs and energy consumption of these procedures, with similar or higher yields compared to standard methods.
Collapse
Affiliation(s)
- Leonardo Brunetti
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy; (L.B.); (R.L.); (R.C.); (F.L.)
| | - Rosalba Leuci
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy; (L.B.); (R.L.); (R.C.); (F.L.)
| | - Maria Antonietta Colonna
- Department of Agricultural and Environmental Science (DISAAT), University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy; (M.A.C.); (M.S.)
| | - Rossana Carrieri
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy; (L.B.); (R.L.); (R.C.); (F.L.)
| | | | - Giancarlo Bozzo
- Department of Veterinary Medicine, University of Bari Aldo Moro, Strada Provinciale per Casamassima, km 3, 70010 Valenzano, Italy;
| | - Fulvio Loiodice
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy; (L.B.); (R.L.); (R.C.); (F.L.)
| | - Maria Selvaggi
- Department of Agricultural and Environmental Science (DISAAT), University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy; (M.A.C.); (M.S.)
| | - Vincenzo Tufarelli
- Department of DETO, Section of Veterinary Science and Animal Production, University of Study of Bari “Aldo Moro”, Strada Provinciale per Casamassima, km 3, 70010 Valenzano, Italy;
| | - Luca Piemontese
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy; (L.B.); (R.L.); (R.C.); (F.L.)
| |
Collapse
|
5
|
Alzheimer’s Disease and Toxins Produced by Marine Dinoflagellates: An Issue to Explore. Mar Drugs 2022; 20:md20040253. [PMID: 35447926 PMCID: PMC9029327 DOI: 10.3390/md20040253] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/21/2022] [Accepted: 03/30/2022] [Indexed: 12/10/2022] Open
Abstract
This paper examined the toxins naturally produced by marine dinoflagellates and their effects on increases in β-amyloid plaques along with tau protein hyperphosphorylation, both major drivers of Alzheimer’s disease (AD). This approach is in line with the demand for certain natural compounds, namely those produced by marine invertebrates that have the potential to be used in the treatment of AD. Current advances in AD treatment are discussed as well as the main factors that potentially affect the puzzling global AD pattern. This study focused on yessotoxins (YTXs), gymnodimine (GYM), spirolides (SPXs), and gambierol, all toxins that have been shown to reduce β-amyloid plaques and tau hyperphosphorylation, thus preventing the neuronal or synaptic dysfunction that ultimately causes the cell death associated with AD (or other neurodegenerative diseases). Another group of toxins described, okadaic acid (OA) and its derivatives, inhibit protein phosphatase activity, which facilitates the presence of phosphorylated tau proteins. A few studies have used OA to trigger AD in zebrafish, providing an opportunity to test in vivo the effectiveness of new drugs in treating or attenuating AD. Constraints on the production of marine toxins for use in these tests have been considered. Different lines of research are anticipated regarding the action of the two groups of toxins.
Collapse
|
6
|
Wang Y, Gou Y, Zhang L, Li C, Wang Z, Liu Y, Geng Z, Shen M, Sun L, Wei F, Zhou J, Gu L, Jin H, Ma S. Levels and Health Risk of Pesticide Residues in Chinese Herbal Medicines. Front Pharmacol 2022; 12:818268. [PMID: 35177984 PMCID: PMC8844025 DOI: 10.3389/fphar.2021.818268] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 12/16/2021] [Indexed: 12/19/2022] Open
Abstract
In the present study, 168 pesticides in 1,017 samples of 10 Chinese herbal medicines (CHMs) were simultaneously determined by high-performance liquid (HPLC-MS/MS) and gas (GC-MS/MS) chromatography–tandem mass spectrometry. A total of 89.2% of the samples encompassed one or multiple pesticide residues, and the residue concentrations in 60.5% of samples were less than 0.02 mg kg−1, revealing the relatively low residue levels. The hazard quotient and hazard index methods were used to estimate the health risk for consumers. For a more accurate risk assessment, the exposure frequency and exposure duration of CHMs were involved into the exposure assessment, which was obtained from a questionnaire data of 20,917 volunteers. The results of chronic, acute, and cumulative risk assessment indicated that consumption of CHMs is unlikely to pose a health risk to consumers. Ranking the risk of detected pesticides revealed that phorate, BHC, triazophos, methidathion, terbufos, and omethoate posed the highest risk. Our results also showed that pollution of the aboveground medicinal part was more serious. Although exposure to pesticides in tested CHMs was below dangerous levels, more strict controlled management should be carried out for banned pesticides due to the high detection rate and illegal use in the actual planting practice.
Collapse
Affiliation(s)
- Ying Wang
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China
| | - Yan Gou
- Sichuan Institute for Drug Control, Sichuan Testing Center of Medical Devices/NMPA Key Laboratory of Quality Evaluation of Chinese Patent Medicines, Chengdu, China
| | - Lei Zhang
- China National Center for Food Safety Risk Assessment, Beijing, China
| | - Chun Li
- Guangzhou Institute for Drug Control, NMPA Key Laboratory for Quality Evaluation of Traditional Medicine, Guangzhou, China
| | - Zhao Wang
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China
| | - Yuanxi Liu
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China
| | - Zhao Geng
- Sichuan Institute for Drug Control, Sichuan Testing Center of Medical Devices/NMPA Key Laboratory of Quality Evaluation of Chinese Patent Medicines, Chengdu, China
| | - Mingrui Shen
- Chinese Pharmacopoeia Commission, Beijing, China
| | - Lei Sun
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China
| | - Feng Wei
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China
| | - Juan Zhou
- Sichuan Institute for Drug Control, Sichuan Testing Center of Medical Devices/NMPA Key Laboratory of Quality Evaluation of Chinese Patent Medicines, Chengdu, China
| | - Lihong Gu
- Guangzhou Institute for Drug Control, NMPA Key Laboratory for Quality Evaluation of Traditional Medicine, Guangzhou, China
| | - Hongyu Jin
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China
| | - Shuangcheng Ma
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China
| |
Collapse
|
7
|
Samtiya M, Aluko RE, Dhewa T, Moreno-Rojas JM. Potential Health Benefits of Plant Food-Derived Bioactive Components: An Overview. Foods 2021; 10:foods10040839. [PMID: 33921351 PMCID: PMC8068854 DOI: 10.3390/foods10040839] [Citation(s) in RCA: 163] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/28/2021] [Accepted: 04/06/2021] [Indexed: 12/22/2022] Open
Abstract
Plant foods are consumed worldwide due to their immense energy density and nutritive value. Their consumption has been following an increasing trend due to several metabolic disorders linked to non-vegetarian diets. In addition to their nutritive value, plant foods contain several bioactive constituents that have been shown to possess health-promoting properties. Plant-derived bioactive compounds, such as biologically active proteins, polyphenols, phytosterols, biogenic amines, carotenoids, etc., have been reported to be beneficial for human health, for instance in cases of cancer, cardiovascular diseases, and diabetes, as well as for people with gut, immune function, and neurodegenerative disorders. Previous studies have reported that bioactive components possess antioxidative, anti-inflammatory, and immunomodulatory properties, in addition to improving intestinal barrier functioning etc., which contribute to their ability to mitigate the pathological impact of various human diseases. This review describes the bioactive components derived from fruit, vegetables, cereals, and other plant sources with health promoting attributes, and the mechanisms responsible for the bioactive properties of some of these plant components. This review mainly compiles the potential of food derived bioactive compounds, providing information for researchers that may be valuable for devising future strategies such as choosing promising bioactive ingredients to make functional foods for various non-communicable disorders.
Collapse
Affiliation(s)
- Mrinal Samtiya
- Department of Nutrition Biology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, Haryana 123031, India;
| | - Rotimi E. Aluko
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
| | - Tejpal Dhewa
- Department of Nutrition Biology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, Haryana 123031, India;
- Correspondence: (T.D.); (J.M.M.-R.)
| | - José Manuel Moreno-Rojas
- Department of Food Science and Health, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Alameda del Obispo, Avda. Menéndez Pidal, SN, 14004 Córdoba, Spain
- Correspondence: (T.D.); (J.M.M.-R.)
| |
Collapse
|
8
|
Zhang X, Du J, Wu D, Long X, Wang D, Xiong J, Xiong W, Liao X. Anchoring Metallic MoS 2 Quantum Dots over MWCNTs for Highly Sensitive Detection of Postharvest Fungicide in Traditional Chinese Medicines. ACS OMEGA 2021; 6:1488-1496. [PMID: 33490808 PMCID: PMC7818587 DOI: 10.1021/acsomega.0c05253] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/25/2020] [Indexed: 06/01/2023]
Abstract
Carbendazim, a very common contamination to the traditional Chinese medicines (TCMs), has posed serious threat to the environment and human health. However, sensitive and selective detection of carbendazim (MBC) in the TCMs is a big challenge for their complex chemical constituents. In this work, a 0D/1D nanohybrid was developed by anchoring 1T-phased MoS2 quantum dots (QDs) over multiwall carbon nanotubes (MWCNTs) via a facile assembly method. High-resolution transmission electron microscopy (HRTEM), Raman spectroscopy, X-ray photoelectron spectroscopy, and thermogravimetric analysis (TGA) together with EIS reveal that the 1T-phased QDs can anchor over MWCNTs via van der Waals forces, and the anchoring improves the nanohybrid surface area and conductivity. Therefore, the electrochemical sensor fabricated based on the MoS2 QDs@MWCNT nanohybrid shows excellent catalytic activity to MBC oxidation. Under optimized conditions, the sensor presents a linear voltammetry response to MBC concentration from 0.04 to 1.00 μmol·L-1, a low detection limit of 2.6 × 10-8 mol·L-1, as well as high selectivity, good reproducibility, and long-term stability. Moreover, the sensor has been successfully employed to determine MBC in two typical TCMs and the obtained recoveries are in good accordance with the results achieved by HPLC, showing that the constructed sensor plate holds great practical application in MBC analysis with complex matrix.
Collapse
Affiliation(s)
- Xue Zhang
- Collaborative
Innovation Center of Postharvest Key Technology and Quality Safety
of Fruits and Vegetables in Jiangxi Province, Nanchang 330045, P. R. China
- Department
of Chemistry, Jiangxi Agricultural University, Nanchang 330045, P. R. China
| | - Juan Du
- College
of Food Science and Engineering, Jiangxi
Agricultural University, Nanchang 330045, P. R. China
| | - Dongping Wu
- Department
of Chemistry, Jiangxi Agricultural University, Nanchang 330045, P. R. China
| | - Xiaoyi Long
- Department
of Chemistry, Jiangxi Agricultural University, Nanchang 330045, P. R. China
| | - Dan Wang
- College
of Food Science and Engineering, Jiangxi
Agricultural University, Nanchang 330045, P. R. China
| | - Jianhua Xiong
- College
of Food Science and Engineering, Jiangxi
Agricultural University, Nanchang 330045, P. R. China
| | - Wanming Xiong
- Department
of Chemistry, Jiangxi Agricultural University, Nanchang 330045, P. R. China
| | - Xiaoning Liao
- Collaborative
Innovation Center of Postharvest Key Technology and Quality Safety
of Fruits and Vegetables in Jiangxi Province, Nanchang 330045, P. R. China
- Department
of Chemistry, Jiangxi Agricultural University, Nanchang 330045, P. R. China
- Key
Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry
of Education, Jiangxi Agricultural University, Nanchang 330045, P. R. China
| |
Collapse
|
9
|
Natural Compounds for the Prevention and Treatment of Cardiovascular and Neurodegenerative Diseases. Foods 2020; 10:foods10010029. [PMID: 33374186 PMCID: PMC7824130 DOI: 10.3390/foods10010029] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/15/2020] [Accepted: 12/22/2020] [Indexed: 12/12/2022] Open
Abstract
Secondary metabolites from plants and fungi are stimulating growing interest in consumers and, consequently, in the food and supplement industries. The beneficial effects of these natural compounds are being thoroughly studied and there are frequent updates about the biological activities of old and new molecules isolated from plants and fungi. In this article, we present a review of the most recent literature regarding the recent discovery of secondary metabolites through isolation and structural elucidation, as well as the in vitro and/or in vivo evaluation of their biological effects. In particular, the possibility of using these bioactive molecules in the prevention and/or treatment of widely spread pathologies such as cardiovascular and neurodegenerative diseases is discussed.
Collapse
|
10
|
Vasefi M, Ghaboolian-Zare E, Abedelwahab H, Osu A. Environmental toxins and Alzheimer's disease progression. Neurochem Int 2020; 141:104852. [PMID: 33010393 DOI: 10.1016/j.neuint.2020.104852] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/05/2020] [Accepted: 09/18/2020] [Indexed: 12/29/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia, which causes progressive memory loss and cognitive decline. Effective strategies to treat or prevent remains one of the most challenging undertakings in the medical field. AD is a complex and multifactorial disease that involves several risk factors. Aging and genetic factors both play important roles in the onset of the AD, however; certain environmental factors have been reported to increase the risk of AD. Chronic exposure to toxins has been seen as an environmental factor that may increase the risk of developing a neurodegenerative disease such as AD. Exposure to metals and biotoxins produced by bacteria, molds, and viruses may contribute to the cognitive decline and pathophysiology associated with AD. Toxins may contribute to the pathology of the disease through various mechanisms such as deposition of amyloid-beta (Aβ) plaques and tangles in the brain, induction of apoptosis, inflammation, or oxidative damage. Here, we will review how toxins affect brain physiology with a focus on mechanisms by which toxins may contribute to the development and progression of AD. A better understanding of these mechanisms may help contribute towards the development of an effective strategy to slow the progression of AD.
Collapse
Affiliation(s)
- Maryam Vasefi
- Department Biology, Lamar University, Beaumont, TX, United States.
| | | | | | - Anthony Osu
- Department Biology, Lamar University, Beaumont, TX, United States
| |
Collapse
|
11
|
Ratajczak M, Kaminska D, Światły-Błaszkiewicz A, Matysiak J. Quality of Dietary Supplements Containing Plant-Derived Ingredients Reconsidered by Microbiological Approach. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17186837. [PMID: 32962120 PMCID: PMC7558626 DOI: 10.3390/ijerph17186837] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 06/11/2023]
Abstract
Dietary supplements cover a wide range of products, the most popular are those containing plant-based ingredients. Supplements are consumed by consumers of all ages as well as by both healthy and sick people. The lack of unified regulation in this sector increases the probability that supplements are poor chemical and microbiological quality and can be dangerous for patients. The aim of this paper is to highlight selected issues associated with the microbiological quality of dietary supplements containing plant materials. We focus on the most recent reports referring to bacterial and fungal contaminations as well as the presence of mycotoxins. Dietary supplements containing plant ingredients commonly show a variety of microbial contaminants, which might be crucial for consumer safety. They often contain microorganisms potentially pathogenic to humans. Metabolites produced by microorganisms may pose a threat to the health of consumers. Because of that, in this review, we emphasize the risk that may be associated with the lack of appropriate studies of the quality of the supplements.
Collapse
Affiliation(s)
- Magdalena Ratajczak
- Chair and Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, Swiecickiego 4, 60-781 Poznan, Poland;
| | - Dorota Kaminska
- Chair and Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, Swiecickiego 4, 60-781 Poznan, Poland;
| | - Agata Światły-Błaszkiewicz
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland; (A.Ś.-B.); (J.M.)
| | - Jan Matysiak
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland; (A.Ś.-B.); (J.M.)
| |
Collapse
|
12
|
Quality of New Functional Powdered Beverages Enriched with Lyophilized Fruits—Potentially Bioaccessible Antioxidant Properties, Nutritional Value, and Consumer Analysis. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10113668] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
This study evaluates nutrients and health-promoting compounds responsible for antioxidant capacity in eight novel formulations based on lyophilized fruit and vegetable powders. The composition contained lyophilized carrot, pumpkin, lentil sprouts, raspberry, strawberry, and apple. The effect of functional additives on the antioxidant, nutritional, and functional characteristics of powdered beverages was determined in the powders and after rehydration followed by in vitro digestion. The antioxidant activity, phenols, vitamin C, and reducing power were significantly higher in the powders enriched with additives having potential functional properties. Furthermore, the analyses indicated that all the powdered formulations may be potential sources of total starch (100–112 mg/100 mL) and proteins (125–139 mg/100 mL). The designed powdered beverages after reconstitution exhibited high antioxidant content, reasonable consumer acceptance, and good in vitro bioaccessibility. The best results of antioxidant capacity were obtained for beverages enriched with raspberry, i.e., 10.4 mg Trolox equivalent (TE)/100 mL and 12.1 mg TE/100 mL rehydrated at 20 °C and 80 °C, respectively. Additionally, color characteristics were used as indicators of the quality of the powdered beverages. This research promotes the reduction of food waste, since whole plant tissues are used, thus allowing maximum exploitation of food raw materials; moreover, drying provides stable shelf life.
Collapse
|
13
|
Leuci R, Brunetti L, Laghezza A, Tortorella P, Loiodice F, Piemontese L. A Review of Recent Patents (2016-2019) on Plant Food Supplements with Potential Application in the Treatment of Neurodegenerative and Metabolic Disorders. Recent Pat Food Nutr Agric 2020; 11:145-153. [PMID: 32167437 DOI: 10.2174/2212798411666200313145824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/09/2020] [Accepted: 02/14/2020] [Indexed: 12/11/2022]
Abstract
In the near future, it is expected that the prevalence of illnesses related to the increasing life expectancies and quality of life, such as neurodegenerative diseases and cardiovascular diseases related to metabolic disorders, will soar to unprecedented levels, leading to high socioeconomic costs. To address this rising threat, natural products are emerging as a novel strategy for the prevention and therapy of these ages- and lifestyle-related diseases, thanks to their high marketability and few side effects. In this patent review, we summarize selected patents for food supplements, functional and fortified foods, filed from 2016 to 2019, categorizing them based on the biological activity of their components.
Collapse
Affiliation(s)
- Rosalba Leuci
- Dipartimento di Farmacia-Scienze del Farmaco, Universita degli Studi di Bari "Aldo Moro", Via E. Orabona 4, I-70125 Bari, Italy
| | - Leonardo Brunetti
- Dipartimento di Farmacia-Scienze del Farmaco, Universita degli Studi di Bari "Aldo Moro", Via E. Orabona 4, I-70125 Bari, Italy
| | - Antonio Laghezza
- Dipartimento di Farmacia-Scienze del Farmaco, Universita degli Studi di Bari "Aldo Moro", Via E. Orabona 4, I-70125 Bari, Italy
| | - Paolo Tortorella
- Dipartimento di Farmacia-Scienze del Farmaco, Universita degli Studi di Bari "Aldo Moro", Via E. Orabona 4, I-70125 Bari, Italy
| | - Fulvio Loiodice
- Dipartimento di Farmacia-Scienze del Farmaco, Universita degli Studi di Bari "Aldo Moro", Via E. Orabona 4, I-70125 Bari, Italy
| | - Luca Piemontese
- Dipartimento di Farmacia-Scienze del Farmaco, Universita degli Studi di Bari "Aldo Moro", Via E. Orabona 4, I-70125 Bari, Italy
| |
Collapse
|
14
|
Costa JG, Vidovic B, Saraiva N, do Céu Costa M, Del Favero G, Marko D, Oliveira NG, Fernandes AS. Contaminants: a dark side of food supplements? Free Radic Res 2019; 53:1113-1135. [PMID: 31500469 DOI: 10.1080/10715762.2019.1636045] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Food supplements (FS) are often consumed as one of the strategies to fight ageing-associated pathologies, especially in the case of oxidative stress-related diseases. Despite the popularity of FS, some concerns about their quality and safety have been raised, especially regarding the presence of contaminants. This paper reviews and discusses the occurrence of contaminants in marketed samples of FS in the last two decades, considering both scientific literature and notifications registered on RASFF portal. The most relevant classes of contaminants were included namely metals, toxins, pesticides, dioxins and PCBs, as well as pharmacologically active ingredients. Variable amounts of contaminants were reported in a significant number of commercially available FS. Although the presence of contaminants does not necessarily mean that their levels exceed the regulatory limits or that the FS intake constitutes a risk to human health, it alerts for the need to further monitor FS safety. The evaluation of the risk associated to the consumption of FS, especially in the elderly population, is particularly challenging due to the frequent exposure to multiple toxicants and to different exposure sources, as well as due to possible pre-existing diseases and respective therapeutics. Therefore, improved quality control procedures and monitoring programs should be pursued in order to avoid undesirable products and assure the safety of FS.
Collapse
Affiliation(s)
- João Guilherme Costa
- CBIOS, Universidade Lusófona Research Center for Biosciences & Health Technologies, Lisboa, Portugal
| | - Bojana Vidovic
- Department of Bromatology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Nuno Saraiva
- CBIOS, Universidade Lusófona Research Center for Biosciences & Health Technologies, Lisboa, Portugal
| | - Maria do Céu Costa
- CBIOS, Universidade Lusófona Research Center for Biosciences & Health Technologies, Lisboa, Portugal.,ASAE/ONRE, National Observatory for Emerging Risks, Lisboa, Portugal
| | - Giorgia Del Favero
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Doris Marko
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Nuno G Oliveira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Ana Sofia Fernandes
- CBIOS, Universidade Lusófona Research Center for Biosciences & Health Technologies, Lisboa, Portugal.,ASAE/ONRE, National Observatory for Emerging Risks, Lisboa, Portugal
| |
Collapse
|
15
|
Xiao J, Xu X, Wang F, Ma J, Liao M, Shi Y, Fang Q, Cao H. Analysis of exposure to pesticide residues from Traditional Chinese Medicine. JOURNAL OF HAZARDOUS MATERIALS 2019; 365:857-867. [PMID: 30497040 DOI: 10.1016/j.jhazmat.2018.11.075] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 11/16/2018] [Accepted: 11/17/2018] [Indexed: 05/11/2023]
Abstract
The safety of Traditional Chinese Medicine (TCM) is of concern worldwide. Herein, Paeoniae Radix Alba, Chaenomelis Fructus and Moutan Cortex, representing three medicinal components, were subjected to toxicological analysis to investigate possible pesticide contamination. Exposure using a point estimate model identified 47 residues that were simultaneously validated by the QuEChERS-UPLC-MS/MS method, which is sufficiently reliable for measuring residue concentrations. Of the 313 samples tested, 94.57% contained pesticide residues, with concentrations ranging from 0.10 to 1199.84 μg kg-1, of which >83.17% contained 4-15 different residues. Carbendazim was the most frequently detected pesticide (>85%), and procymidone, pendimethalin and phoxim were also abundant (median concentration = 15.33-623.12 μg kg-1). Risk assessment based on the hazard quotient/hazard index (HQ/HI) approach revealed that exposure to pesticide residues in all three TCMs (95th percentile) were far below levels that might pose a health risk. However, insecticides contributed to cumulative exposure, especially phoxim, and worryingly, several banned pesticides were detected. The results are of theoretical and practical value for evaluating the safety TCMs, and could improve their quality and safety.
Collapse
Affiliation(s)
- Jinjing Xiao
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Provincial Key Laboratory for Agri-Food Safety, Anhui Province 230036, China
| | - Xing Xu
- Provincial Key Laboratory for Agri-Food Safety, Anhui Province 230036, China
| | - Fan Wang
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China
| | - Jinjuan Ma
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China
| | - Min Liao
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Provincial Key Laboratory for Agri-Food Safety, Anhui Province 230036, China
| | - Yanhong Shi
- Provincial Key Laboratory for Agri-Food Safety, Anhui Province 230036, China
| | - Qingkui Fang
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Provincial Key Laboratory for Agri-Food Safety, Anhui Province 230036, China
| | - Haiqun Cao
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Provincial Key Laboratory for Agri-Food Safety, Anhui Province 230036, China.
| |
Collapse
|
16
|
Torres-León C, Ramírez-Guzman N, Londoño-Hernandez L, Martinez-Medina GA, Díaz-Herrera R, Navarro-Macias V, Alvarez-Pérez OB, Picazo B, Villarreal-Vázquez M, Ascacio-Valdes J, Aguilar CN. Food Waste and Byproducts: An Opportunity to Minimize Malnutrition and Hunger in Developing Countries. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2018. [DOI: 10.3389/fsufs.2018.00052] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
17
|
Natural Scaffolds with Multi-Target Activity for the Potential Treatment of Alzheimer's Disease. Molecules 2018; 23:molecules23092182. [PMID: 30158491 PMCID: PMC6225478 DOI: 10.3390/molecules23092182] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 08/22/2018] [Accepted: 08/27/2018] [Indexed: 11/17/2022] Open
Abstract
A few symptomatic drugs are currently available for Alzheimer’s Disease (AD) therapy, but these molecules are only able to temporary improve the cognitive capacity of the patients if administered in the first stages of the pathology. Recently, important advances have been achieved about the knowledge of this complex condition, which is now considered a multi-factorial disease. Researchers are, thus, more oriented toward the preparation of molecules being able to contemporaneously act on different pathological features. To date, the inhibition of acetylcholinesterase (AChE) and of β-amyloid (Aβ) aggregation as well as the antioxidant activity and the removal and/or redistribution of metal ions at the level of the nervous system are the most common investigated targets for the treatment of AD. Since many natural compounds show multiple biological properties, a series of secondary metabolites of plants or fungi with suitable structural characteristics have been selected and assayed in order to evaluate their potential role in the preparation of multi-target agents. Out of six compounds evaluated, 1 showed the best activity as an antioxidant (EC50 = 2.6 ± 0.2 μmol/µmol of DPPH) while compound 2 proved to be effective in the inhibition of AChE (IC50 = 6.86 ± 0.67 μM) and Aβ1–40 aggregation (IC50 = 74 ± 1 μM). Furthermore, compound 6 inhibited BChE (IC50 = 1.75 ± 0.59 μM) with a good selectivity toward AChE (IC50 = 86.0 ± 15.0 μM). Moreover, preliminary tests on metal chelation suggested a possible interaction between compounds 1, 3 and 4 and copper (II). Molecules with the best multi-target profiles will be used as starting hit compounds to appropriately address future studies of Structure-Activity Relationships (SARs).
Collapse
|
18
|
Catani MV, Gasperi V, Bisogno T, Maccarrone M. Essential Dietary Bioactive Lipids in Neuroinflammatory Diseases. Antioxid Redox Signal 2018; 29:37-60. [PMID: 28637354 PMCID: PMC5984567 DOI: 10.1089/ars.2016.6958] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 06/19/2017] [Accepted: 06/20/2017] [Indexed: 12/13/2022]
Abstract
SIGNIFICANCE Under physiological conditions, neurons and glia are in a healthy, redox-balanced environment; when injury perturbs this equilibrium, a neuroinflammatory state is established by activated microglia that triggers pro-inflammatory responses and alters the oxidant/antioxidant balance, thus leading to neuronal loss and neurodegeneration. In neurodegenerative diseases (such as Alzheimer's disease, Parkinson's disease, amyothrophic lateral sclerosis, and multiple sclerosis), the brain is in a constitutively self-sustaining cycle of inflammation and oxidative stress that prompts and amplifies brain damage. Recent Advances: Recently, an increasing amount of scientific data highlight the ability of specific nutrients to cross the blood-brain barrier, and to modulate inflammatory and oxidative pathways. Therefore, nutritional approaches may contribute to restore the lost equilibrium among factors accounting for neurodegeneration. CRITICAL ISSUES Herein, we critically examine how essential lipids (including fatty acids, liposoluble vitamins and phytosterols) might contribute to accelerate or prevent the onset and progression of such pathologies. In particular, we highlight that experimental and clinical findings, although promising, are still inadequate to draw definitive conclusions. FUTURE DIRECTIONS More research is warranted in order to establish the real impact of lipid intake on brain health, especially when redox balance and inflammatory responses have been already compromised. In the future, it would be hoped to gain a detailed knowledge of chemical modifications and dynamic properties of such nutrients, before planning to exploit them as potential therapeutics. Antioxid. Redox Signal. 29, 37-60.
Collapse
Affiliation(s)
- Maria Valeria Catani
- Department of Experimental Medicine and Surgery, Tor Vergata University of Rome, Rome, Italy
| | - Valeria Gasperi
- Department of Experimental Medicine and Surgery, Tor Vergata University of Rome, Rome, Italy
| | - Tiziana Bisogno
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, National Research Council, Pozzuoli, Italy
- Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy
| | - Mauro Maccarrone
- Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy
- European Center for Brain Research/Santa Lucia Foundation IRCCS, Rome, Italy
| |
Collapse
|
19
|
Panzella L, Eidenberger T, Napolitano A. Anti-Amyloid Aggregation Activity of Black Sesame Pigment: Toward a Novel Alzheimer's Disease Preventive Agent. Molecules 2018; 23:E676. [PMID: 29547584 PMCID: PMC6017763 DOI: 10.3390/molecules23030676] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 03/14/2018] [Accepted: 03/15/2018] [Indexed: 12/18/2022] Open
Abstract
Black sesame pigment (BSP) represents a low cost, easily accessible material of plant origin exhibiting marked antioxidant and heavy metal-binding properties with potential as a food supplement. We report herein the inhibitory properties of the potentially bioaccessible fraction of BSP following simulated gastrointestinal digestion against key enzymes involved in Alzheimer's disease (AD). HPLC analysis indicated that BSP is transformed under the pH conditions mimicking the intestinal environment and the most abundant of the released compounds was identified as vanillic acid. More than 80% inhibition of acetylcholinesterase-induced aggregation of the β-amyloid Aβ1-40 was observed in the presence of the potentially bioaccessible fraction of BSP, which also efficiently inhibited self-induced Aβ1-42 aggregation and β-secretase (BACE-1) activity, even at high dilution. These properties open new perspectives toward the use of BSP as an ingredient of functional food or as a food supplement for the prevention of AD.
Collapse
Affiliation(s)
- Lucia Panzella
- Department of Chemical Sciences, University of Naples "Federico II", Via Cintia 4, I-80126 Naples, Italy.
| | - Thomas Eidenberger
- School of Engineering and Environmental Sciences, Upper Austria University of Applied Sciences, Stelzhamerstraße 23, 4600 Wels, Austria.
| | - Alessandra Napolitano
- Department of Chemical Sciences, University of Naples "Federico II", Via Cintia 4, I-80126 Naples, Italy.
| |
Collapse
|
20
|
The Role of Food Antioxidants, Benefits of Functional Foods, and Influence of Feeding Habits on the Health of the Older Person: An Overview. Antioxidants (Basel) 2017; 6:antiox6040081. [PMID: 29143759 PMCID: PMC5745491 DOI: 10.3390/antiox6040081] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 10/17/2017] [Accepted: 10/18/2017] [Indexed: 02/07/2023] Open
Abstract
This overview was directed towards understanding the relationship of brain functions with dietary choices mainly by older humans. This included food color, flavor, and aroma, as they relate to dietary sufficiency or the association of antioxidants with neurodegenerative diseases such as dementia and Alzheimer’s disease. Impairment of olfactory and gustatory function in relation to these diseases was also explored. The role of functional foods was considered as a potential treatment of dementia and Alzheimer’s disease through inhibition of acetylcholinesterase as well as similar treatments based on herbs, spices and antioxidants therein. The importance of antioxidants for maintaining the physiological functions of liver, kidney, digestive system, and prevention of cardiovascular diseases and cancer has also been highlighted. Detailed discussion was focused on health promotion of the older person through the frequency and patterns of dietary intake, and a human ecology framework to estimate adverse risk factors for health. Finally, the role of the food industry, mass media, and apps were explored for today’s new older person generation.
Collapse
|
21
|
Eiser AR. Why does Finland have the highest dementia mortality rate? Environmental factors may be generalizable. Brain Res 2017; 1671:14-17. [DOI: 10.1016/j.brainres.2017.06.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 06/28/2017] [Accepted: 06/30/2017] [Indexed: 12/12/2022]
|
22
|
Herranz-López M, Olivares-Vicente M, Encinar JA, Barrajón-Catalán E, Segura-Carretero A, Joven J, Micol V. Multi-Targeted Molecular Effects of Hibiscus sabdariffa Polyphenols: An Opportunity for a Global Approach to Obesity. Nutrients 2017; 9:nu9080907. [PMID: 28825642 PMCID: PMC5579700 DOI: 10.3390/nu9080907] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 08/11/2017] [Accepted: 08/14/2017] [Indexed: 12/30/2022] Open
Abstract
Improper diet can alter gene expression by breaking the energy balance equation and changing metabolic and oxidative stress biomarkers, which can result in the development of obesity-related metabolic disorders. The pleiotropic effects of dietary plant polyphenols are capable of counteracting by modulating different key molecular targets at the cell, as well as through epigenetic modifications. Hibiscus sabdariffa (HS)-derived polyphenols are known to ameliorate various obesity-related conditions. Recent evidence leads to propose the complex nature of the underlying mechanism of action. This multi-targeted mechanism includes the regulation of energy metabolism, oxidative stress and inflammatory pathways, transcription factors, hormones and peptides, digestive enzymes, as well as epigenetic modifications. This article reviews the accumulated evidence on the multiple anti-obesity effects of HS polyphenols in cell and animal models, as well as in humans, and its putative molecular targets. In silico studies reveal the capacity of several HS polyphenols to act as putative ligands for different digestive and metabolic enzymes, which may also deserve further attention. Therefore, a global approach including integrated and networked omics techniques, virtual screening and epigenetic analysis is necessary to fully understand the molecular mechanisms of HS polyphenols and metabolites involved, as well as their possible implications in the design of safe and effective polyphenolic formulations for obesity.
Collapse
Affiliation(s)
- María Herranz-López
- Instituto de Biología Molecular y Celular (IBMC), Universidad Miguel Hernández (UMH), Edificio Torregaitán, Elche 03202, Spain.
| | - Mariló Olivares-Vicente
- Instituto de Biología Molecular y Celular (IBMC), Universidad Miguel Hernández (UMH), Edificio Torregaitán, Elche 03202, Spain.
| | - José Antonio Encinar
- Instituto de Biología Molecular y Celular (IBMC), Universidad Miguel Hernández (UMH), Edificio Torregaitán, Elche 03202, Spain.
| | - Enrique Barrajón-Catalán
- Instituto de Biología Molecular y Celular (IBMC), Universidad Miguel Hernández (UMH), Edificio Torregaitán, Elche 03202, Spain.
| | - Antonio Segura-Carretero
- Department of Analytical Chemistry, University of Granada, Avda. Fuentenueva s/n, Granada 18071, Spain.
- Research and Development of Functional Food Centre (CIDAF), PTS Granada, Avda. del Conocimiento s/n., Edificio BioRegión, Granada 18016, Spain.
| | - Jorge Joven
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus 43201, Spain.
| | - Vicente Micol
- Instituto de Biología Molecular y Celular (IBMC), Universidad Miguel Hernández (UMH), Edificio Torregaitán, Elche 03202, Spain.
- CIBER: CB12/03/30038, Fisiopatología de la Obesidad y la Nutrición, CIBERobn, Instituto de Salud Carlos III (ISCIII), Palma de Mallorca 07122, Spain.
| |
Collapse
|
23
|
Inhibitory Effect of Lycopene on Amyloid-β-Induced Apoptosis in Neuronal Cells. Nutrients 2017; 9:nu9080883. [PMID: 28813012 PMCID: PMC5579676 DOI: 10.3390/nu9080883] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 07/17/2017] [Accepted: 08/11/2017] [Indexed: 12/29/2022] Open
Abstract
Alzheimer′s disease (AD) is a fatal neurodegenerative disease. Brain amyloid-β deposition is a crucial feature of AD, causing neuronal cell death by inducing oxidative damage. Reactive oxygen species (ROS) activate NF-κB, which induces expression of Nucling. Nucling is a pro-apoptotic factor recruiting the apoptosome complex. Lycopene is an antioxidant protecting from oxidative stress-induced cell damage. We investigated whether lycopene inhibits amyloid-β-stimulated apoptosis through reducing ROS and inhibiting mitochondrial dysfunction and NF-κB-mediated Nucling expression in neuronal SH-SY5Y cells. We prepared cells transfected with siRNA for Nucling or nontargeting control siRNA to determine the role of Nucling in amyloid-β-induced apoptosis. The amyloid-β increased intracellular and mitochondrial ROS levels, apoptotic indices (p53, Bax/Bcl-2 ratio, caspase-3 cleavage), NF-kB activation and Nucling expression, while cell viability, mitochondrial membrane potential, and oxygen consumption rate decreased in SH-SY5Y cells. Lycopene inhibited these amyloid-β-induced alterations. However, amyloid-β did not induce apoptosis, determined by cell viability and apoptotic indices (p53, Bax/Bcl-2 ratio, caspase-3 cleavage), in the cells transfected with siRNA for Nucling. Lycopene inhibited apoptosis by reducing ROS, and by inhibiting mitochondrial dysfunction and NF-κB-target gene Nucling expression in neuronal cells. Lycopene may be beneficial for preventing oxidative stress-mediated neuronal death in patients with neurodegeneration.
Collapse
|
24
|
Hiremathad A, Piemontese L. Heterocyclic compounds as key structures for the interaction with old and new targets in Alzheimer's disease therapy. Neural Regen Res 2017; 12:1256-1261. [PMID: 28966636 PMCID: PMC5607816 DOI: 10.4103/1673-5374.213541] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2017] [Indexed: 12/18/2022] Open
Abstract
Nowadays, Alzheimer's disease (AD) is widely recognized as a real social problem. In fact, only five drugs are FDA approved for the therapy of this widespread neurodegenerative disease, but with low results so far. Three of them (rivastigmine, donepezil and galantamine) are acetylcholinesterase inhibitors, memantine is a N-methyl-D-aspartate receptor antagonist, whereas the fifth formulation is a combination of donepezil with memantine. The prevention and treatment of AD is the new challenge for pharmaceutical industry, as well as for public institutions, physicians, patients, and their families. The discovery of a new and safe way to cure this neurodegenerative disease is urgent and should not be delayed further. Because of the multiple origin of this pathology, a multi-target strategy is currently strongly pursued by researchers. In this review, we have discussed new structures designed to better the activity on the classical AD targets. We have also examined old and new potential drugs that could prove useful future for the therapy of the pathology by acting on innovative, not usual, and not yet fully explored targets like peroxisome proliferator-activated receptor (PPARs).
Collapse
Affiliation(s)
- Asha Hiremathad
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Kanakapura, Ramanagaram, Bangalore, India
| | - Luca Piemontese
- Dipartimento di Farmacia–Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, Bari, Italy
| |
Collapse
|
25
|
Deep Eutectic Solvents as Novel and Effective Extraction Media for Quantitative Determination of Ochratoxin A in Wheat and Derived Products. Molecules 2017; 22:molecules22010121. [PMID: 28085112 PMCID: PMC6155845 DOI: 10.3390/molecules22010121] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 01/03/2017] [Accepted: 01/10/2017] [Indexed: 12/28/2022] Open
Abstract
An unprecedented, environmentally friendly, and faster method for the determination of Ochratoxin A (OTA) (a mycotoxin produced by several species of Aspergillus and Penicillium and largely widespread in nature, in wheat and derived products) has, for the first time, been set up and validated using choline chloride (ChCl)-based deep eutectic solvents (DESs) (e.g., ChCl/glycerol (1:2) and ChCl/ urea (1:2) up to 40% (w/w) water) as privileged, green, and biodegradable extraction solvents. This also reduces worker exposure to toxic chemicals. Results are comparable to those obtained using conventional, hazardous and volatile organic solvents (VOCs) typical of the standard and official methods. OTA recovery from spiked durum wheat samples, in particular, was to up to 89% versus 93% using the traditional acetonitrile-water mixture with a repeatability of the results (RSDr) of 7%. Compatibility of the DES mixture with the antibodies of the immunoaffinity column was excellent as it was able to retain up to 96% of the OTA. Recovery and repeatability for durum wheat, bread crumbs, and biscuits proved to be within the specifications required by the current European Commission (EC) regulation. Good results in terms of accuracy and precision were achieved with mean recoveries between 70% (durum wheat) and 88% (bread crumbs) and an RSDr between 2% (biscuits) and 7% (bread).
Collapse
|
26
|
Piemontese L. New approaches for prevention and treatment of Alzheimer's disease: a fascinating challenge. Neural Regen Res 2017; 12:405-406. [PMID: 28469653 PMCID: PMC5399716 DOI: 10.4103/1673-5374.202942] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Luca Piemontese
- Dipartimento Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", Bari, Italy; Centro de Química Estrutural, Instituto Superior Técnico-Universidade Técnica de Lisboa, Lisboa, Portugal
| |
Collapse
|