1
|
Stepanova N. Probiotic interventions in peritoneal dialysis: A review of underlying mechanisms and therapeutic potentials. World J Nephrol 2024; 13:98719. [DOI: 10.5527/wjn.v13.i4.98719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/18/2024] [Accepted: 10/22/2024] [Indexed: 11/07/2024] Open
Abstract
Peritoneal dialysis (PD) is a commonly used modality for kidney replacement therapy for patients with end-stage kidney disease (ESKD). PD offers many benefits, including home-based care, greater flexibility, and preservation of residual kidney function compared to in-center hemodialysis. Nonetheless, patients undergoing PD often face significant challenges, including systemic inflammation, PD-related peritonitis, metabolic disorders, and cardiovascular issues that can negatively affect their quality of life and treatment outcomes. Recent studies have demonstrated the crucial role of the gut microbiome in overall health and treatment results, supporting the hypothesis that probiotics may bring potential benefits to the general population of ESKD patients. However, specific data on probiotic use in PD patients are limited. This opinion review aims to summarize the current knowledge on the relationship between PD and the gut microbiome and offers a novel perspective by specifically exploring how probiotic interventions could improve the outcomes of PD treatment. The review also outlines some clinical data supporting the effectiveness of probiotics in patients undergoing PD and considers the difficulties and restrictions in their application. Based on the current knowledge gaps, this study seeks to explore future research directions and their implications for clinical practice.
Collapse
Affiliation(s)
- Natalia Stepanova
- Department of Nephrology and Dialysis, State Institution “O.O. Shalimov National Scientific Center of Surgery and Transplantology of the National Academy of Medical Science of Ukraine", Kyiv 03680, Ukraine
- Department of Nephrology, Medical Center “Nephrocenter”, Kyiv 03057, Ukraine
| |
Collapse
|
2
|
Zhang S, Ma J, Ma Y, Yi J, Wang B, Wang H, Yang Q, Zhang K, Yan X, Sun D, You J. Engineering Probiotics for Diabetes Management: Advances, Challenges, and Future Directions in Translational Microbiology. Int J Nanomedicine 2024; 19:10917-10940. [PMID: 39493275 PMCID: PMC11530765 DOI: 10.2147/ijn.s492651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/08/2024] [Indexed: 11/05/2024] Open
Abstract
Background Diabetes Mellitus (DM) is a substantial health concern worldwide, and its incidence is progressively escalating. Conventional pharmacological interventions frequently entail undesirable side effects, and while probiotics offer benefits, they are hindered by constraints such as diminished stability and effectiveness within the gastrointestinal milieu. Given these complications, the advent of bioengineered probiotics is a promising alternative for DM management. Aim of Review The objective of this review is to provide an exhaustive synthesis of the most recent studies on the use of engineered probiotics in the management of DM. This study aimed to clarify the mechanisms through which these probiotics function, evaluate their clinical effectiveness, and enhance public awareness of their prospective advantages in the treatment of DM. Key Scientific Concepts of Review Scholarly critiques have explored diverse methodologies of probiotic engineering, including physical alteration, bioenrichment, and genetic manipulation. These techniques augment the therapeutic potency of probiotics by ameliorating gut microbiota, fortifying the intestinal barrier, modulating metabolic pathways, and regulating immune responses. Such advancements have established engineered probiotics as a credible therapeutic strategy for DM, potentially providing enhanced results compared to conventional treatments.
Collapse
Affiliation(s)
- Shenghao Zhang
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, People’s Republic of China
| | - Jiahui Ma
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, People’s Republic of China
| | - Yilei Ma
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, People’s Republic of China
| | - Jia Yi
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, People’s Republic of China
| | - Beier Wang
- Department of Hepatobiliary-Pancreatic Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People’s Republic of China
| | - Hanbing Wang
- Department of Biotechnology, The University of Hong Kong, Hong Kong SAR, 999077, People’s Republic of China
| | - Qinsi Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, People’s Republic of China
| | - Kun Zhang
- Chongqing Municipality Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing University Three Gorges Hospital, Chongqing, 404000, People’s Republic of China
| | - Xiaoqing Yan
- The Chinese-American Research Institute for Diabetic Complications, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, People’s Republic of China
| | - Da Sun
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, People’s Republic of China
- Department of Endocrinology, Yiwu Central Hospital, The Affiliated Yiwu hospital of Wenzhou Medical University, Yiwu, 322000, People’s Republic of China
| | - Jinfeng You
- Department of Obstetrics, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, 324000, People’s Republic of China
| |
Collapse
|
3
|
Amir I, Zuberi A, Kamran M, Nijabat A, Imran M, Siddiqa A, Ali A, Luna-Arias JP, Medina-Pérez G, Mashwani ZUR, Ahmad A. Comparative efficiency of Geotrichum candidum microcapsules prepared with alginate and in combination with other polymers: In vitro evaluation. Int J Biol Macromol 2024; 282:136901. [PMID: 39461649 DOI: 10.1016/j.ijbiomac.2024.136901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 10/29/2024]
Abstract
Microencapsulation is utilized to protect probiotics, such as Geotrichum candidum, ensuring their survival, stability, and targeted release. The encapsulation efficiency depends on factors such as the type and concentration of the polymers and the encapsulation method. In this study, G. candidum was encapsulated using alginate (Alg) combined with starch (AlgS) or xanthan (Alg-X) and coated with chitosan aand chitosan nanoparticles (AlgC, Alg-S-C, Alg-X-C, Alg-CN, Alg-S-CN, and Alg-X-CN) using a simple extrusion technique. The structural characteristics and surface morphology of the microcapsules were analyzed using Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM). Encapsulation efficiency (EE) and pH and temperature tolerances were assessed using in vitro assays. SEM results showed that the Alg-CN microcapsules were notably spherical and smooth, in contrast to the irregular and rough textures of the uncoated forms. Notably, Alg-CN exhibited the highest EE (99.3 %), followed by Alg-C (96.6 %) and Alg-X-CN (96.03 %). Moreover, chitosan-coated microcapsules, particularly Alg-CN, demonstrated superior viability at various pH levels and after exposure to 60 °C, along with extended shelf life at room temperature and 4 °C. These findings suggest that a 2 % alginate and 0.4 % chitosan combination is optimal for preserving G. candidum's viability in various applications.
Collapse
Affiliation(s)
- Imrana Amir
- Fisheries and Aquaculture Program, Department of Zoology, Quaid-I-Azam University, Islamabad 45320, Pakistan.; Department of Zoology, University of Mianwali, Mianwali, Punjab 42200, Pakistan.
| | - Amina Zuberi
- Fisheries and Aquaculture Program, Department of Zoology, Quaid-I-Azam University, Islamabad 45320, Pakistan..
| | - Muhammad Kamran
- Department of Biology, East Carolina University, Greenville, NC 27858-4353, USA
| | - Aneela Nijabat
- Department of Botany, University of Mianwali, Mianwali, Punjab 42200, Pakistan
| | - Muhammad Imran
- Department of Microbiology, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad 45320, Pakistan
| | - Ayesha Siddiqa
- Department of Botany, PMAS Arid Agriculture University Rawalpindi, Rawalpindi 46000, Pakistan
| | - Amir Ali
- Department of Botany, PMAS Arid Agriculture University Rawalpindi, Rawalpindi 46000, Pakistan; Department of Cell Biology, Nanoscience and Nanotechnology Ph.D. Program, Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City 07360, Mexico.
| | - Juan Pedro Luna-Arias
- Department of Cell Biology, Nanoscience and Nanotechnology Ph.D. Program, Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City 07360, Mexico
| | - Gabriela Medina-Pérez
- Institute of Agricultural Sciences, Autonomous University of the State of Hidalgo, Hidalgo 3600, Mexico
| | - Zia-Ur-Rehman Mashwani
- Department of Botany, PMAS Arid Agriculture University Rawalpindi, Rawalpindi 46000, Pakistan
| | - Ajaz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
4
|
Wang W, Li W, Huang Y, Yang Y, Liu H, Yu C, Yuan Q, He L, Hu Q, Li Y, Meng T, Chen H, Liao J, Chen O, Yu S, Zhang F. Optimisation of Lactobacillus fermentation conditions and its application in the fermentation of salt-free sauerkraut. Front Microbiol 2024; 15:1482163. [PMID: 39498136 PMCID: PMC11532087 DOI: 10.3389/fmicb.2024.1482163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 10/02/2024] [Indexed: 11/07/2024] Open
Abstract
To identify what are the dominant lactic acid bacteria (LAB) involved in the fermentation of salt-free sauerkraut, and optimize its industrial culture conditions, we isolated and identified a strain of LAB, which is referred to as Lactobacillus sp. DF_001, with the preservation number CCTCC NO: M20232593, from five different regions in Guizhou Province. Industrial culture conditions were optimized using Plackett-Burman and Central Composite design experiments, and the potential role of this LAB in salt-free sauerkraut fermentation was validated. Bioproduction was optimal with a culture time of 66 h, starch/water ratio of 1.7% and inoculum of 0.02%, which gave approximately three-fold higher yield than the basal culture medium DeMan-Rogosa-Sharpe medium (MRS). The LAB was used in small-scale industrial experiments. The Dafang LAB significantly enhanced the sensory score of the salt-free sauerkraut products by about 32% compared to the control group. The total acid content increased by about 32% and the sugar and nitrite contents were reduced by 67.27 and 69.58%, respectively. The total number of bacterial colonies decreased by 37.5%. All other indicators complied with the national standard, providing overall the basis to improve salt-free sauerkraut fermentation.
Collapse
Affiliation(s)
- Wenlun Wang
- Department of Food Science and Engineering, Moutai Institute, Zunyi, China
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, China
| | - Wenbing Li
- Department of Food Science and Engineering, Moutai Institute, Zunyi, China
| | - Yan Huang
- Department of Food Science and Engineering, Moutai Institute, Zunyi, China
| | - Ying Yang
- Department of Food Science and Engineering, Moutai Institute, Zunyi, China
| | - Hui Liu
- Department of Food Science and Engineering, Moutai Institute, Zunyi, China
| | - Chaohang Yu
- Department of Food Science and Engineering, Moutai Institute, Zunyi, China
| | - Qing Yuan
- Department of Food Science and Engineering, Moutai Institute, Zunyi, China
| | - Lianmin He
- Department of Food Science and Engineering, Moutai Institute, Zunyi, China
| | - Qianmin Hu
- Department of Food Science and Engineering, Moutai Institute, Zunyi, China
| | - Ye Li
- Department of Food Science and Engineering, Moutai Institute, Zunyi, China
| | - Taoyan Meng
- Department of Food Science and Engineering, Moutai Institute, Zunyi, China
| | - Huanhuan Chen
- Department of Food Science and Engineering, Moutai Institute, Zunyi, China
| | - Jiabi Liao
- Department of Food Science and Engineering, Moutai Institute, Zunyi, China
| | - Ou Chen
- Department of Food Science and Engineering, Moutai Institute, Zunyi, China
| | - Shirui Yu
- Department of Food Science and Engineering, Moutai Institute, Zunyi, China
| | - Feng Zhang
- Department of Food Science and Engineering, Moutai Institute, Zunyi, China
| |
Collapse
|
5
|
Al-Wraikat M, Zhang L, Li L, Abubaker MA, Liu Y. Recent advances in wolfberry polysaccharides and whey protein-based biopolymers for regulating the diversity of gut microbiota and its mechanism: A review. Int J Biol Macromol 2024; 281:136401. [PMID: 39383924 DOI: 10.1016/j.ijbiomac.2024.136401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 09/11/2024] [Accepted: 10/05/2024] [Indexed: 10/11/2024]
Abstract
Imbalances in gut microbiota diversity are associated with various health issues, including obesity and related disorders. There is a growing interest in developing synergistic biopolymers based on wolfberry polysaccharides and whey protein to address these problems due to their potential health benefits. This review explores recent advances in understanding how functional foods based on Lycium barbarum polysaccharides (LBP) and whey protein (WP) influence gut microbiota diversity and their underlying mechanisms. We examine the impact of these biopolymers on microbial composition and functionality, focusing on their roles in improving health by regulating gut microbiota. The combined effects of WP and LBP significantly enhance gut microbiome metabolic activities and taxonomic diversity, offering promising avenues for treating obesity and related disorders.
Collapse
Affiliation(s)
- Majida Al-Wraikat
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
| | - Lan Zhang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
| | - Linqiang Li
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
| | - Mohamed Aamer Abubaker
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
| | - Yongfeng Liu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China.
| |
Collapse
|
6
|
Kwon H, Nam EH, Kim H, Jo H, Bang WY, Lee M, Shin H, Kim D, Kim J, Kim H, Lee J, Jung YH, Yang J, Won DD, Shin M. Effect of Lacticaseibacillus rhamnosus IDCC 3201 on irritable bowel syndrome with constipation: a randomized, double-blind, and placebo-controlled trial. Sci Rep 2024; 14:22384. [PMID: 39333245 PMCID: PMC11437119 DOI: 10.1038/s41598-024-72887-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 09/11/2024] [Indexed: 09/29/2024] Open
Abstract
Irritable bowel syndrome is a chronic disorder affecting the gastrointestinal tract, negatively impacting patients' quality of life. Here, we aimed to evaluate the effects of Lacticaseibacillus rhamnosus IDCC 3201 (RH 3201) on irritable bowel syndrome with constipation (IBS-C). In this randomised, double-blind, placebo-controlled trial, a total of 30 subjects with IBS-C were randomly assigned (1:1) to receive 8 weeks of probiotics administration or placebo. Concerning bowel activities, both irritant bowel movements and discomfort caused by constipation showed significant improvement with RH 3201 at 8 weeks. Symptoms including severity of abdominal bloating, frequency of abdominal bloating, and satisfaction of bowel habits based on the irritable bowel syndrome-severity scoring system also ameliorated in the probiotic group. Analysis of the fecal microbiome revealed that the abundance of Bacteroides cellulosilyticus and Akkermansia muciniphila was higher during the period of RH 3201 administration compared to the placebo. Untargeted metabolome analysis further suggested a correlation between specific metabolites, such as N-acetylornithine, xanthine, and 3-phenylpropionic acid, and the improvement of clinical symptoms. These results indicate that RH 3201 was effective in ameliorating IBS-C, potentially by enriching beneficial microbes and associated metabolites in the gut environment.
Collapse
Affiliation(s)
- Hyeji Kwon
- Immunology Laboratory, Cancer Genomic Research Institute, Seoul Song Do Colorectal Hospital, Seoul, 04597, Republic of Korea
| | - Eoun Ho Nam
- Department of Microbiology, College of Medicine, Inha University, Incheon, 22212, Republic of Korea
- Department of Biomedical Science, Program in Biomedical Science and Engineering, Inha University, Incheon, 22212, Republic of Korea
| | - Hayoung Kim
- Ildong Bioscience, Pyeongtaek-si, Gyeonggi-do, 17957, Republic of Korea
| | - Haneul Jo
- Department of Microbiology, College of Medicine, Inha University, Incheon, 22212, Republic of Korea
- Department of Biomedical Science, Program in Biomedical Science and Engineering, Inha University, Incheon, 22212, Republic of Korea
| | - Won Yeong Bang
- Ildong Bioscience, Pyeongtaek-si, Gyeonggi-do, 17957, Republic of Korea
| | - Minjee Lee
- Ildong Bioscience, Pyeongtaek-si, Gyeonggi-do, 17957, Republic of Korea
| | - Hyeonmin Shin
- Immunology Laboratory, Cancer Genomic Research Institute, Seoul Song Do Colorectal Hospital, Seoul, 04597, Republic of Korea
| | - Dana Kim
- Immunology Laboratory, Cancer Genomic Research Institute, Seoul Song Do Colorectal Hospital, Seoul, 04597, Republic of Korea
| | - Jeongho Kim
- Digestive Endoscopic Center, Seoul Song Do Colorectal Hospital, Seoul, 04597, Republic of Korea
| | - Hyejin Kim
- Digestive Endoscopic Center, Seoul Song Do Colorectal Hospital, Seoul, 04597, Republic of Korea
| | - Jongkyun Lee
- Department of Surgery, Pelvic Floor Center, Seoul Song Do Colorectal Hospital, Seoul, 04597, Republic of Korea
| | - Young Hoon Jung
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, 41566, Republic of Korea
- Institute of Fermentation Biotechnology, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Jungwoo Yang
- Department of Microbiology, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju, 38066, Republic of Korea.
| | - Daeyoun David Won
- Department of Surgery, Pelvic Floor Center, Seoul Song Do Colorectal Hospital, Seoul, 04597, Republic of Korea.
| | - Minhye Shin
- Department of Microbiology, College of Medicine, Inha University, Incheon, 22212, Republic of Korea.
- Department of Biomedical Science, Program in Biomedical Science and Engineering, Inha University, Incheon, 22212, Republic of Korea.
| |
Collapse
|
7
|
Zhao M, Li Y, Zhang Y, Li G. Genomic analysis and functional properties of Lactobacillus johnsonii GJ231 isolated from healthy beagles. Front Microbiol 2024; 15:1437036. [PMID: 39355429 PMCID: PMC11442259 DOI: 10.3389/fmicb.2024.1437036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/30/2024] [Indexed: 10/03/2024] Open
Abstract
Probiotics are one of the management tools to improve the host's healthy microbiota. The positive effects of probiotics on host health are species-specific, so probiotics isolated from host's own gut may be most beneficial. Many of the metabolites (e.g., short-chain fatty acids, bacteriocins, and hydrogen peroxide) produced by Lactobacillus johnsonii have specific inhibitory profiles against invading pathogens. In this study, we isolated L. johnsonii GJ231 from the intestinal tract of healthy female beagles. The genome size of 1.763 M encoded a total of 1,691 predicted genes. Many carbohydrate-active enzymes responsible for carbohydrate degradation and the production of short-chain fatty acids were also predicted. The metabolic profile of short-chain fatty acids in L. johnsonii GJ231 was determined using LC-MS/MS. The bacteriocin-producing gene bacteriocin (lactacin F) in L. johnsonii GJ231 was also predicted. In vitro, experiments demonstrated that GJ231 can thrive in weak acids, 0.3% bile salts, and artificial gastrointestinal fluid models. It was tolerant of to high temperatures up to 70°C, was non- hemolytic, inhibited pathogenic bacteria, and had a high antioxidant capacity. In vivo safety experiments conducted in mice revealed that oral administration of GJ231 not only had no toxic side effect but also increased their antioxidant capacity. In conclusion, combining the above test results, which collectively demonstrate that canine-derived L. johnsonii GJ231 was a non-pathogenic, acid-tolerant and bile-salt-tolerant probiotic strain that inhibits pathogenic bacteria and improves host antioxidant function. This may make it a promising candidate for the development of innovative functional foods for pets.
Collapse
Affiliation(s)
- Mengdi Zhao
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Yueyao Li
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Yuanyuan Zhang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Guangyu Li
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
8
|
Obisesan AO, Abiodun OO, Ayeni FA. Lactic acid bacteria isolated from women' breast milk and infants' faeces have appreciable immunogenic and probiotic potentials against diarrheagenic E. coli strains. BMC Microbiol 2024; 24:350. [PMID: 39289612 PMCID: PMC11406810 DOI: 10.1186/s12866-024-03502-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 09/05/2024] [Indexed: 09/19/2024] Open
Abstract
Diarrheal diseases remain the leading cause of high mortality among the infants, particularly in the developing countries; Probiotic intervention for diarrhea has been an ongoing novel approach to diarrheal prevention and treatment. This study aims to characterize immunogenic and probiotic properties of lactic acid bacteria (LAB) isolated from human breast milk and neonates' faeces. The LAB isolates from 16 mothers' breast milk and 13 infants' faeces were screened and identified by 16 S rRNA gene partial sequencing. Their antimicrobial activities against 5 strains of diarrheagenic Escherichia coli were tested. Organic acids production was quantified by HPLC, and antibiotic resistance pattern were determined by VITEK®. Autoaggregation, co-aggregation and hydrophobicity properties were assessed by UV spectrophotometry and immunomodulatory effect was determined in mouse model. Ninety-three LAB of five genera were identified. The most abundant species was Lactiplantibacillus plantarum with inhibition zones ranged from 8.0 to 25.0 ± 1 mm. Lacticaseibacillus rhamnosus A012 had 76.8 mg/mL lactic acid, (the highest concentration), was susceptible to all antibiotics tested. L. plantarum A011 and L. rhamnosus A012 were highly resistance to gastrointestinal conditions. L. rhamnosus A012 produced hydrophobicity of 25.01% (n-hexadecane), 15.4% (xylene) and its autoaggregation was 32.52%. L. rhamnosus A012 and L. plantarum A011 exert immunomodulatory effects on the cyclophosphamide-treated mice by upregulating anti-inflammatory cytokine and downregulating proinflammatory cytokines. Lactobacillus sp. demonstrated good probiotic and immunomodulatory properties. Further works are ongoing on the practical use of the strains.
Collapse
Affiliation(s)
- Abiola O Obisesan
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Ibadan, Ibadan, Oyo State, Nigeria
- Department of Pharmaceutical Microbiology and Biotechnology, College of Pharmacy, Afe Babalola University, Ado Ekiti, Nigeria
| | - Oyindamola O Abiodun
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Funmilola A Ayeni
- Department of Environmental and Occupational Health, School of Public Health, Indiana University Bloomington, Bloomington, Indiana, USA.
| |
Collapse
|
9
|
Shen Y, Miao C, Ma M, Zhen Z, He J, Pei X, Zhang Y, Man C, Zhao Q, Jiang Y. Mechanistic insights into the changes of biological activity and physicochemical characteristics in Lacticaseibacillus paracasei fortified milk powder during storage. Food Chem 2024; 452:139501. [PMID: 38728887 DOI: 10.1016/j.foodchem.2024.139501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/03/2024] [Accepted: 04/25/2024] [Indexed: 05/12/2024]
Abstract
To clarify the change mechanism of biological activity and physicochemical characteristics in Lacticaseibacillus paracasei JY025 fortified milk powder (LFMP) during storage, morphological observation, JY025 survival, storage stability, and metabolomics of LFMP were determined during the storage period in this study. The results showed that the LFMP had a higher survival rate of JY025 compared with the bacterial powder of JY025 (LBP) during storage, which suggested that milk powder matrix could reduce strain JY025 mortality under prolonged storage in the LFMP samples. The fortification of strain JY025 also affected the stability of milk powder during the storage period. There was lower water activity and higher glass transition temperature in LFMP samples compared with blank control milk powder (BCMP) during storage. Moreover, the metabolomics results of LFMP indicated that vitamin degradation, Maillard reaction, lipid oxidation, tricarboxylic acid cycle, and lactobacilli metabolism are interrelated and influence each other to create complicated metabolism networks.
Collapse
Affiliation(s)
- Yu Shen
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Chao Miao
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Ming Ma
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Zizhu Zhen
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Jian He
- National Center of Technology Innovation for Dairy, Huhehaote 010000, China
| | - Xiaoyan Pei
- National Center of Technology Innovation for Dairy, Huhehaote 010000, China
| | - Yu Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Chaoxin Man
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Qianyu Zhao
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Yujun Jiang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China; Food Laboratory of Zhongyuan, Luohe, Henan 462300, China.
| |
Collapse
|
10
|
King ML, Xing X, Reintjes G, Klassen L, Low KE, Alexander TW, Waldner M, Patel TR, Wade Abbott D. In vitro and ex vivo metabolism of chemically diverse fructans by bovine rumen Bifidobacterium and Lactobacillus species. Anim Microbiome 2024; 6:50. [PMID: 39252059 PMCID: PMC11382395 DOI: 10.1186/s42523-024-00328-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/03/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND Inulin and inulin-derived fructooligosaccharides (FOS) are well-known prebiotics for use in companion animals and livestock. The mechanisms by which FOS contribute to health has not been fully established. Further, the fine chemistry of fructan structures from diverse sources, such as graminan-type fructans found in cereal crops, has not been fully elucidated. New methods to study fructan structure and microbial responses to these complex carbohydrates will be key for evaluating the prebiotic potency of cereal fructans found in cattle feeds. As the rumen microbiome composition is closely associated with their metabolic traits, such as feed utilization and waste production, prebiotics and probiotics represent promising additives to shift the microbial community toward a more productive state. RESULTS Within this study, inulin, levan, and graminan-type fructans from winter wheat, spring wheat, and barley were used to assess the capacity of rumen-derived Bifidobacterium boum, Bifidobacterium merycicum, and Lactobacillus vitulinus to metabolize diverse fructans. Graminan-type fructans were purified and structurally characterized from the stems and kernels of each plant. All three bacterial species grew on FOS, inulin, and cereal crop fructans in pure cultures. L. vitulinus was the only species that could metabolize levan, albeit its growth was delayed. Fluorescently labelled polysaccharides (FLAPS) were used to demonstrate interactions with Gram-positive bacteria and confirm fructan metabolism at the single-cell level; these results were in agreement with the individual growth profiles of each species. The prebiotic potential of inulin was further investigated within naïve rumen microbial communities, where increased relative abundance of Bifidobacterium and Lactobacillus species occurred in a dose-dependent and temporal-related manner. This was supported by in situ analysis of rumen microbiota from cattle fed inulin. FLAPS probe derived from inulin and fluorescent in situ hybridization using taxon-specific probes confirmed that inulin interacts with Bifidobacteria and Lactobacilli at the single-cell level. CONCLUSION This research revealed that rumen-derived Bifidobacteria and Lactobacilli vary in their metabolism of structurally diverse fructans, and that inulin has limited prebiotic potential in the rumen. This knowledge establishes new methods for evaluating the prebiotic potential of fructans from diverse plant sources as prebiotic candidates for use in ruminants and other animals.
Collapse
Affiliation(s)
- Marissa L King
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, Canada
| | - Xiaohui Xing
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Greta Reintjes
- Microbial-Carbohydrate Interactions Group, Department of Biology/Chemistry, University of Bremen, Bremen, Germany
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Leeann Klassen
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Kristin E Low
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Trevor W Alexander
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Matthew Waldner
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Trushar R Patel
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, Canada
| | - D Wade Abbott
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada.
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, Canada.
| |
Collapse
|
11
|
Bajinka O, Sylvain Dovi K, Simbilyabo L, Conteh I, Tan Y. The predicted mechanisms and evidence of probiotics on type 2 diabetes mellitus (T2DM). Arch Physiol Biochem 2024; 130:475-490. [PMID: 36630122 DOI: 10.1080/13813455.2022.2163260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 12/01/2022] [Accepted: 12/15/2022] [Indexed: 01/12/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is a serious endocrine and metabolic disease that is highly prevalent and causes high mortality and morbidity rates worldwide. This review aims to focus on the potential of probiotics in the management of T2DM and its complications and to summarise the various mechanisms of action of probiotics with respect to T2DM. In this review, experimental studies conducted between 2016 and 2022 were explored. The possible mechanisms of action are based on their ability to modulate the gut microbiota, boost the production of short-chain fatty acids (SCFAs) and glucagon-like peptides, inhibit α-glucosidase, elevate sirtuin 1 (SIRT1) levels while reducing fetuin-A levels, and regulate the level of inflammatory cytokines. This review recommends carrying out further studies, especially human trials, to provide robust evidence-based knowledge on the use of probiotics for the treatment of T2DM.IMPACT STATEMENTT2DM is prevalent worldwide causing high rates of morbidity and mortality.Gut microbiota play a significant role in the pathogenesis of T2DM.Probiotics can be used as possible therapeutic tools for the management of T2DM.The possible mechanisms of action of probiotics include modulation of the gut microbiota, production of SCFAs and glucagon-like peptides, inhibition of α-glucosidase, raising SIRT1, reducing fetuin-A levels, and regulating the level of inflammatory cytokines.
Collapse
Affiliation(s)
- Ousman Bajinka
- Department of Medical Microbiology, Central South University, Changsha, China
- China-Africa Research Center of Infectious Diseases, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Kodzovi Sylvain Dovi
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, P. R. China
| | - Lucette Simbilyabo
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha, China
| | - Ishmail Conteh
- Department of Epidemiology and Health Statistics, Xiangya School of public health central South University, Changsha, P. R. China
| | - Yurong Tan
- Department of Medical Microbiology, Central South University, Changsha, China
- China-Africa Research Center of Infectious Diseases, School of Basic Medical Sciences, Central South University, Changsha, China
| |
Collapse
|
12
|
Guo Y, Liu J, Tuo Q, Zhang D, Wanapat M, Xin G. The effect of dietary supplementation of Lycium barbarum leaves on the growth performance, organ indexes and intestinal microflora of rats. Front Vet Sci 2024; 11:1416793. [PMID: 39144075 PMCID: PMC11322056 DOI: 10.3389/fvets.2024.1416793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/11/2024] [Indexed: 08/16/2024] Open
Abstract
This study was conducted to investigate both fruit and different levels of leaf supplementation on the growth performance, organ indices and intestinal microflora of rats. Twenty-five healthy male Sprague-Dawley rats were randomly divided into five groups. The rats in the control (NC) and positive control (PC) groups were fed by gavage a basal diet and a basal diet with 4 g/kg of L. barbarum fruit homogenate, respectively. The test (LD, MD, and HD) groups were fed basal diets with additional 2, 4, and 8 g/kg of L. barbarum leaf homogenate, respectively. The feeding period was 35 d. The result revealed that the rats in the LD group had the highest average weight gain (p < 0.05). The cardiac and renal indexes in the LD and MD groups were significantly higher than in NC group, respectively (p < 0.05). Diversity analysis revealed that adding low concentrations of L. barbarum leaf homogenates markedly reduced the Shannon index of the rats cecum (p < 0.05). The relative abundance of Verrucomicrobiota was higher in the LD group than those in other groups (p < 0.05). The relative abundance of Actinobacteriota was found significantly higher in PC group than others (p < 0.05). The relative abundance of Akkermansia in LD group was the highest (p < 0.05). The relative abundance of Romboutsia in the PC group was considerably higher than that in other groups. The relative abundance of Candidatus_Saccharimonas in the supplementation groups was appreciably lower than those found in other groups. The relative abundance of Alloprevotella was significantly lower in PC, LD, and MD groups than in NC and HD groups (p < 0.05). The relative abundance of Oscillibacter was significantly higher in HD group than in other groups (p < 0.05). Thus, L. barbarum leaf homogenate fed to rats could increase their growth performance, internal organ weights and additionally enhance the relative abundance of beneficial bacteria. Therefore, based on the obtained data in the current study, a dose of L. barbarum leaf homogenate supplemented with 2 g/kg in diet is recommended, however, further studies are required to confirm, especially in animals.
Collapse
Affiliation(s)
- Yindi Guo
- School of Life Science, Ningxia University, Yinchuan, China
- Ningxia Feed Engineering Technology Research Center, Ningxia University, Yinchuan, China
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, China
| | - Jie Liu
- School of Life Science, Ningxia University, Yinchuan, China
- Ningxia Feed Engineering Technology Research Center, Ningxia University, Yinchuan, China
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, China
| | - Qiang Tuo
- Ningxia Feed Engineering Technology Research Center, Ningxia University, Yinchuan, China
- Agricultural College, Ningxia University, Yinchuan, China
| | - Dongtao Zhang
- School of Life Science, Ningxia University, Yinchuan, China
- Ningxia Feed Engineering Technology Research Center, Ningxia University, Yinchuan, China
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, China
| | - Metha Wanapat
- Ningxia Feed Engineering Technology Research Center, Ningxia University, Yinchuan, China
- Khon Kaen Univ, Fac Agr, Trop Feed Resources Res & Dev Ctr TROFREC, Dept Anim Sci, Khon Kaen, Thailand
| | - Guosheng Xin
- School of Life Science, Ningxia University, Yinchuan, China
- Ningxia Feed Engineering Technology Research Center, Ningxia University, Yinchuan, China
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, China
| |
Collapse
|
13
|
Kalam N, Balasubramaniam VRMT. Crosstalk between COVID-19 and the gut-brain axis: a gut feeling. Postgrad Med J 2024; 100:539-554. [PMID: 38493312 DOI: 10.1093/postmj/qgae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 02/15/2024] [Indexed: 03/18/2024]
Abstract
The microbes in the gut are crucial for maintaining the body's immune system and overall gut health. However, it is not fully understood how an unstable gut environment can lead to more severe cases of SARS-CoV-2 infection. The gut microbiota also plays a role in the gut-brain axis and interacts with the central nervous system through metabolic and neuroendocrine pathways. The interaction between the microbiota and the host's body involves hormonal, immune, and neural pathways, and any disruption in the balance of gut bacteria can lead to dysbiosis, which contributes to pathogen growth. In this context, we discuss how dysbiosis could contribute to comorbidities that increase susceptibility to SARS-CoV-2. Probiotics and fecal microbiota transplantation have successfully treated infectious and non-infectious inflammatory-related diseases, the most common comorbidities. These treatments could be adjuvant therapies for COVID-19 infection by restoring gut homeostasis and balancing the gut microbiota.
Collapse
Affiliation(s)
- Nida Kalam
- Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine & Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Malaysia
| | - Vinod R M T Balasubramaniam
- Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine & Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Malaysia
| |
Collapse
|
14
|
Chen Y, Lin S, Wang L, Zhang Y, Chen H, Fu Z, Zhang M, Luo H, Liu J. Reinforcement of the intestinal mucosal barrier via mucus-penetrating PEGylated bacteria. Nat Biomed Eng 2024; 8:823-841. [PMID: 38839928 DOI: 10.1038/s41551-024-01224-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 05/05/2024] [Indexed: 06/07/2024]
Abstract
The breakdown of the gut's mucosal barrier that prevents the infiltration of microorganisms, inflammatory cytokines and toxins into bodily tissues can lead to inflammatory bowel disease and to metabolic and autoimmune diseases. Here we show that the intestinal mucosal barrier can be reinforced via the oral administration of commensal bacteria coated with poly(ethylene glycol) (PEG) to facilitate their penetration into mucus. In mice with intestinal homoeostatic imbalance, mucus-penetrating PEGylated bacteria preferentially localized in mucus at the lower gastrointestinal tract, inhibited the invasion of pathogenic bacteria, maintained homoeostasis of the gut microbiota, stimulated the secretion of mucus and the expression of tight junctions, and prevented the mice from developing colitis and diabetes. Orally delivered PEGylated bacteria may help prevent and treat gastrointestinal disorders.
Collapse
Affiliation(s)
- Yanmei Chen
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Sisi Lin
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lu Wang
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yifan Zhang
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Huan Chen
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhenzhen Fu
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Mengmeng Zhang
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Huilong Luo
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jinyao Liu
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
15
|
Ortiz Moyano R, Dentice Maidana S, Imamura Y, Elean M, Namai F, Suda Y, Nishiyama K, Melnikov V, Kitazawa H, Villena J. Antagonistic Effects of Corynebacterium pseudodiphtheriticum 090104 on Respiratory Pathogens. Microorganisms 2024; 12:1295. [PMID: 39065064 PMCID: PMC11278748 DOI: 10.3390/microorganisms12071295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/04/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
In previous studies, it was demonstrated that Corynebacterium pseudodiphtheriticum 090104, isolated from the human nasopharynx, modulates respiratory immunity, improving protection against infections. Here, the antagonistic effect of the 090104 strain on respiratory pathogens, including Streptococcus pneumoniae, Staphylococcus aureus, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii, was explored. In a series of in vitro studies, the capacity of C. pseudodiphtheriticum 090104, its bacterium-like particles, and its culture supernatants to coaggregate, inhibit the growth, and change the virulent phenotype of pathogenic bacteria was evaluated. The results showed that the 090104 strain was able to exert a bacteriostatic effect on K. pneumoniae and S. pneumoniae growth. In addition, C. pseudodiphtheriticum 090104 coaggregated, inhibited biofilm formation, and induced phenotypic changes in all the respiratory pathogens evaluated. In conclusion, this work demonstrated that, in addition to its beneficial effects exerted by host-microbe interactions, C. pseudodiphtheriticum 090104 can enhance protection against respiratory pathogens through its microbe-microbe interactions. The mechanisms involved in such interactions should be evaluated in future research.
Collapse
Affiliation(s)
- Ramiro Ortiz Moyano
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), San Miguel de Tucumán 4000, Argentina; (R.O.M.); (S.D.M.); (M.E.)
| | - Stefania Dentice Maidana
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), San Miguel de Tucumán 4000, Argentina; (R.O.M.); (S.D.M.); (M.E.)
| | - Yoshiya Imamura
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (Y.I.); (F.N.); (K.N.)
- Livestock Immunology Unit, International Education and Research Centre for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Mariano Elean
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), San Miguel de Tucumán 4000, Argentina; (R.O.M.); (S.D.M.); (M.E.)
| | - Fu Namai
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (Y.I.); (F.N.); (K.N.)
- Livestock Immunology Unit, International Education and Research Centre for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Yoshihito Suda
- Department of Food, Agriculture and Environment, Miyagi University, Sendai 980-8572, Japan;
| | - Keita Nishiyama
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (Y.I.); (F.N.); (K.N.)
- Livestock Immunology Unit, International Education and Research Centre for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Vyacheslav Melnikov
- Gabrichevsky Research Institute for Epidemiology and Microbiology, 125212 Moscow, Russia
| | - Haruki Kitazawa
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (Y.I.); (F.N.); (K.N.)
- Livestock Immunology Unit, International Education and Research Centre for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Julio Villena
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), San Miguel de Tucumán 4000, Argentina; (R.O.M.); (S.D.M.); (M.E.)
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (Y.I.); (F.N.); (K.N.)
| |
Collapse
|
16
|
Urcan AC, Criste AD, Bobiș O, Cornea-Cipcigan M, Giurgiu AI, Dezmirean DS. Evaluation of Functional Properties of Some Lactic Acid Bacteria Strains for Probiotic Applications in Apiculture. Microorganisms 2024; 12:1249. [PMID: 38930631 PMCID: PMC11205645 DOI: 10.3390/microorganisms12061249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
This study evaluates the suitability of three lactic acid bacteria (LAB) strains-Lactiplantibacillus plantarum, Lactobacillus acidophilus, and Apilactobacillus kunkeei-for use as probiotics in apiculture. Given the decline in bee populations due to pathogens and environmental stressors, sustainable alternatives to conventional treatments are necessary. This study aimed to assess the potential of these LAB strains in a probiotic formulation for bees through various in vitro tests, including co-culture interactions, biofilm formation, auto-aggregation, antioxidant activity, antimicrobial activity, antibiotic susceptibility, and resistance to high osmotic concentrations. This study aimed to assess both the individual effects of the strains and their combined effects, referred to as the LAB mix. Results indicated no mutual antagonistic activity among the LAB strains, demonstrating their compatibility with multi-strain probiotic formulations. The LAB strains showed significant survival rates under high osmotic stress and simulated gastrointestinal conditions. The LAB mix displayed enhanced biofilm formation, antioxidant activity, and antimicrobial efficacy against different bacterial strains. These findings suggest that a probiotic formulation containing these LAB strains could be used for a probiotic formulation, offering a promising approach to mitigating the negative effects of pathogens. Future research should focus on in vivo studies to validate the efficacy of these probiotic bacteria in improving bee health.
Collapse
Affiliation(s)
- Adriana Cristina Urcan
- Department of Microbiology and Immunology, Faculty of Animal Science and Biotechnologies, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (A.C.U.); (A.D.C.)
| | - Adriana Dalila Criste
- Department of Microbiology and Immunology, Faculty of Animal Science and Biotechnologies, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (A.C.U.); (A.D.C.)
| | - Otilia Bobiș
- Department of Apiculture and Sericulture, Faculty of Animal Science and Biotechnologies, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (O.B.); (D.S.D.)
| | - Mihaiela Cornea-Cipcigan
- Department of Horticulture and Landscaping, Faculty of Horticulture, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania;
| | - Alexandru-Ioan Giurgiu
- Department of Apiculture and Sericulture, Faculty of Animal Science and Biotechnologies, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (O.B.); (D.S.D.)
| | - Daniel Severus Dezmirean
- Department of Apiculture and Sericulture, Faculty of Animal Science and Biotechnologies, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (O.B.); (D.S.D.)
| |
Collapse
|
17
|
Piewngam P, Otto M. Staphylococcus aureus colonisation and strategies for decolonisation. THE LANCET. MICROBE 2024; 5:e606-e618. [PMID: 38518792 PMCID: PMC11162333 DOI: 10.1016/s2666-5247(24)00040-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 03/24/2024]
Abstract
Staphylococcus aureus is a leading cause of death by infectious diseases worldwide. Treatment of S aureus infections is difficult due to widespread antibiotic resistance, necessitating alternative approaches and measures for prevention of infection. Because S aureus infections commonly arise from asymptomatic colonisation, decolonisation is considered a key approach for their prevention. Current decolonisation procedures include antibiotic-based and antiseptic-based eradication of S aureus from the nose and skin. However, despite the widespread implementation and partial success of such measures, S aureus infection rates remain worrisome, and resistance to decolonisation agents is on the rise. In this Review we outline the epidemiology and mechanisms of S aureus colonisation, describe how colonisation underlies infection, and discuss current and novel approaches for S aureus decolonisation, with a focus on the latest findings on probiotic strategies and the intestinal S aureus colonisation site.
Collapse
Affiliation(s)
- Pipat Piewngam
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, US National Institutes of Health, Bethesda, MD, USA
| | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, US National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
18
|
Kan L, Zheng Z, Fu W, Ma Y, Wang W, Qian H, Xu L. Recent progress on engineered micro/nanomaterials mediated modulation of gut microbiota for treating inflammatory bowel disease. J Control Release 2024; 370:43-65. [PMID: 38608876 DOI: 10.1016/j.jconrel.2024.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/15/2024] [Accepted: 04/05/2024] [Indexed: 04/14/2024]
Abstract
Inflammatory bowel disease (IBD) is a type of chronic recurrent inflammation disease that mainly includes Crohn's disease and ulcerative colitis. Currently, the treatments for IBD remain highly challenging, with clinical treatment drugs showing limited efficacy and adverse side effects. Thus, developing drug candidates with comprehensive therapeutic effects, high efficiency, and low toxicity is urgently needed. Recently, micro/nanomaterials have attracted considerable interest because of their bioavailability, multitarget and efficient effects on IBD. In addition, gut modulation plays a substantial role in restoring intestinal homeostasis. Therefore, efficient microbiota-based strategies modulating gut microenvironment have great potential in remarkably treating IBD. With the development of micro- and nanomaterials for the treatment of IBD and more in-depth studies of their therapeutic mechanisms, it has been found that these treatments also have a tendency to positively regulate the intestinal flora, resulting in an increase in the beneficial flora and a decrease in the level of pathogenic bacteria, thus regulating the composition of the intestinal flora to a normal state. In this review, we first present the interactions among the immune system, intestinal barrier, and gut microbiome. In addition, recent advances in administration routes and methods that positively arouse the regulation of intestinal flora for IBD using probiotics, prebiotics, and redox-active micro/nanomaterials have been reviewed. Finally, the key challenges and critical perspectives of gut microbiota-based micro/nanomaterial treatment are also discussed.
Collapse
Affiliation(s)
- Lingling Kan
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui 230032, PR China; Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui 230012, PR China
| | - Ziwen Zheng
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui 230032, PR China; Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui 230012, PR China
| | - Wanyue Fu
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui 230032, PR China; Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui 230012, PR China
| | - Yan Ma
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui 230032, PR China; Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui 230012, PR China
| | - Wanni Wang
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui 230032, PR China; Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui 230012, PR China.
| | - Haisheng Qian
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui 230032, PR China; Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui 230012, PR China.
| | - Lingling Xu
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui 230032, PR China; Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui 230012, PR China.
| |
Collapse
|
19
|
Jin T, Zhang Y, Yang Y, Teng Y, Yan C, Shan Z, Meng J, Xia X. Intestinal linoleic acid contributes to the protective effects of Akkermansia muciniphila against Listeria monocytogenes infection in mice. IMETA 2024; 3:e196. [PMID: 38898984 PMCID: PMC11183177 DOI: 10.1002/imt2.196] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 06/21/2024]
Abstract
Akkermansia muciniphila pretreatment mitigated Listeria monocytogenes infection in mice. A. muciniphila improved gut microbiota disturbed by L. monocytogenes infection and significantly increased the level of intestinal linoleic acid in mice. Linoleic acid strengthened the intestinal epithelial barrier and reduced pathogen translocation partly by regulating NF-κB/MLCK pathway in a GPR40-dependent manner.
Collapse
Affiliation(s)
- Tong Jin
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and TechnologyDalian Polytechnic UniversityDalianChina
- Department of Food Safety, College of Food Science and EngineeringNorthwest A&F UniversityXianyangChina
| | - Yingying Zhang
- Department of Food Safety, College of Food Science and EngineeringNorthwest A&F UniversityXianyangChina
| | - Yanpeng Yang
- Department of Food Safety, College of Food Science and EngineeringNorthwest A&F UniversityXianyangChina
| | - Yue Teng
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and TechnologyDalian Polytechnic UniversityDalianChina
| | - Chunhong Yan
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and TechnologyDalian Polytechnic UniversityDalianChina
| | - Zhongguo Shan
- Department of Food Safety, College of Food Science and EngineeringNorthwest A&F UniversityXianyangChina
| | - Jianghong Meng
- Department of Food Science and NutritionUniversity of MarylandCollege ParkMarylandUSA
| | - Xiaodong Xia
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and TechnologyDalian Polytechnic UniversityDalianChina
- Department of Food Safety, College of Food Science and EngineeringNorthwest A&F UniversityXianyangChina
| |
Collapse
|
20
|
Goh RCW, Maharajan MK, Gopinath D, Fang CM. The Therapeutic Effects of Probiotic on Systemic Lupus Erythematosus in Lupus Mice Models: A Systematic Review. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10297-1. [PMID: 38806966 DOI: 10.1007/s12602-024-10297-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2024] [Indexed: 05/30/2024]
Abstract
Increasing evidence suggests the beneficial immunomodulatory effects of probiotics can reduce inflammation in systemic lupus erythematosus (SLE). However, there is no summary of the existing evidence available. This study aims to investigate the therapeutic effects of probiotics on SLE in a lupus mouse model by examining various markers, including inflammatory cytokines, Treg cells, disease activity, and gut microbiota. A systematic search was conducted using three databases (Web of Science, PubMed, and Scopus) to identify animal studies that reported the therapeutic benefits of probiotics against SLE. Data extracted from the selected articles were qualitatively synthesized. The SYRCLE risk of bias tool was used to evaluate the risk of bias. Out of a total of 3205 articles, 12 met the inclusion criteria. Probiotic strains, quantities, and routes of administration varied among the studies. The treatment ranged from 8 to 47 weeks. Probiotic strains such as L. fermentum CECT5716, L. casei B255, L. reuteri DSM 17509, L. plantarum LP299v, and L. acidophilus can significantly reduce pro-inflammatory cytokines (TNF-α, IL-12, IL-6, IL-1β, IL-17, and IFN-γ) levels while increasing anti-inflammatory IL-10 and Treg cells. Probiotics also delay the production of autoantibodies, thus prolonging the remission period, decreasing flare frequency, and delaying disease progression. Furthermore, probiotic administration prevents gut dysbiosis, increases intestinal stability, and prevents pathogen colonization. In conclusion, probiotics can be considered a new alternative therapeutic approach for the management of SLE. Further clinical studies are required to investigate and validate the safety and effectiveness of probiotics in humans.
Collapse
Affiliation(s)
- Rachael Chaeh-Wen Goh
- Division of Biomedical Sciences, School of Pharmacy, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Malaysia
| | - Mari Kannan Maharajan
- School of Pharmacy, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Malaysia
| | - Divya Gopinath
- Basic Medical and Dental Sciences Department, College of Dentistry, Ajman University, P.O. Box 346, Ajman, United Arab Emirates
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Chee-Mun Fang
- Division of Biomedical Sciences, School of Pharmacy, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Malaysia.
| |
Collapse
|
21
|
Sall I, Foxall R, Felth L, Maret S, Rosa Z, Gaur A, Calawa J, Pavlik N, Whistler JL, Whistler CA. Gut dysbiosis was inevitable, but tolerance was not: temporal responses of the murine microbiota that maintain its capacity for butyrate production correlate with sustained antinociception to chronic voluntary morphine. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.15.589671. [PMID: 38659831 PMCID: PMC11042308 DOI: 10.1101/2024.04.15.589671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The therapeutic benefits of opioids are compromised by the development of analgesic tolerance, which necessitates higher dosing for pain management thereby increasing the liability for dependence and addiction. Rodent models indicate opposing roles of the gut microbiota in tolerance: morphine-induced gut dysbiosis exacerbates tolerance, whereas probiotics ameliorate tolerance. Not all individuals develop tolerance which could be influenced by differences in microbiota, and yet no study has capitalized upon this natural variation to identify specific features linked to tolerance. We leveraged this natural variation in a murine model of voluntary oral morphine self-administration to elucidate the mechanisms by which microbiota influences tolerance. Although all mice shared similar and predictive morphine-driven microbiota changes that largely masked informative associations with variability in tolerance, our high-resolution temporal analyses revealed a divergence in the progression of dysbiosis that best explained differences in the development in tolerance. Mice that did not develop tolerance also maintained a higher abundance of taxa capable of producing the short-chain fatty acid (SCFA) butyrate, known to bolster intestinal barriers, suppress inflammation, and promote neuronal homeostasis. Furthermore, dietary butyrate supplementation significantly reduced the development of tolerance. These findings could inform immediate therapies to extend the analgesic efficacy of opioids.
Collapse
Affiliation(s)
- Izabella Sall
- Department of Molecular, Cellular, & Biomedical Sciences, University of New Hampshire, Durham, NH, USA
- Graduate program in Molecular and Evolutionary Systems Biology, University of New Hampshire, Durham, NH, USA
| | - Randi Foxall
- Department of Molecular, Cellular, & Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | - Lindsey Felth
- Center for Neuroscience, University of California–Davis, Davis, CA, USA
| | - Soren Maret
- Department of Molecular, Cellular, & Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | - Zachary Rosa
- Center for Neuroscience, University of California–Davis, Davis, CA, USA
| | - Anirudh Gaur
- Center for Neuroscience, University of California–Davis, Davis, CA, USA
| | - Jennifer Calawa
- Department of Molecular, Cellular, & Biomedical Sciences, University of New Hampshire, Durham, NH, USA
- Microbiology Graduate Program, University of New Hampshire, Durham, NH, USA
| | - Nadia Pavlik
- Department of Molecular, Cellular, & Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | - Jennifer L. Whistler
- Center for Neuroscience, University of California–Davis, Davis, CA, USA
- Department of Physiology and Membrane Biology, UC Davis School of Medicine, Davis, CA, USA
| | - Cheryl A. Whistler
- Department of Molecular, Cellular, & Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| |
Collapse
|
22
|
Tian C, Wang L, Liu M, Liu J, Qiu M, Chen Y. Isolation and Identification of Chicken-Derived Lactic Acid Bacteria: In Vitro Probiotic Properties and Antagonistic Effects against Salmonella pullorum, Staphylococcus aureus, and Escherichia coli. Microorganisms 2024; 12:795. [PMID: 38674739 PMCID: PMC11052321 DOI: 10.3390/microorganisms12040795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 03/28/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
The development of probiotics capable of quickly colonizing the intestines of animals is important in promoting the healthy growth of livestock. The aim of this study was to screen lactic acid bacteria (LAB) from the intestinal microbiota of chickens with potential applications, and to evaluate their probiotic properties and antagonistic abilities against Salmonella pullorum, Staphylococcus aureus, and Escherichia coli. The results showed that a total of 79 strains with the characteristics of LAB were isolated from the chicken cecum microbiota, of which 7 strains exhibited strong inhibitory activity against S. pullorum, S. aureus, and E. coli. Performing 16s rDNA sequencing revealed that these seven strains were Lactiplantibacillus pentosus (n = 1), Lactiplantibacillus plantarum (n = 3), Lactiplantibacillus paraplantarum (n = 1), Lactiplantibacillus argentoratensis (n = 1), and Lactiplantibacillus fabifermentans (n = 1). Among them, L. pentosus R26 and L. plantarum R32 exhibited superior antibacterial activity. These two strains demonstrated high lactic acid production ability, with survival rates of 86.29% and 87.99% after 3 h of treatment at pH 1.5, 86.66% and 85.52% after 3 h of treatment with 0.5% bile salts, 90.03% and 88.16% after 2 h of treatment with simulated gastric fluid, and 98.92% and 98.22% after 2 h of treatment with simulated intestinal fluid, respectively. Co-cultivation with L. pentosus R26 for 24 h resulted in 50% of the pathogens being antagonized, while almost complete inhibition was observed following 72 h of co-cultivation. In conclusion, L. pentosus R26 and L. plantarum R32 exhibited high antibacterial activity and acid production capability, while also demonstrating satisfactory tolerance to low pH values and high concentrations of bile salts and digestive fluid. The probiotic characteristics and stress resistance of L. pentosus R26 were slightly superior to those of L. plantarum R32, indicating its potential for development as a probiotic.
Collapse
Affiliation(s)
| | | | | | | | | | - Yong Chen
- Xinjiang Key Laboratory of Herbivore Nutrition for Meat & Milk, College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (C.T.); (L.W.); (M.L.); (J.L.); (M.Q.)
| |
Collapse
|
23
|
Kumar S, Pattanaik AK, Jadhav SE, Jangir BL. Lactobacillus johnsonii CPN23 vis-à-vis Lactobacillus acidophilus NCDC15 Improves Gut Health, Intestinal Morphometry, and Histology in Weaned Wistar Rats. Probiotics Antimicrob Proteins 2024; 16:474-489. [PMID: 36976517 DOI: 10.1007/s12602-023-10063-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2023] [Indexed: 03/29/2023]
Abstract
The present investigation was carried out with the aim to establish the comparative efficacy of a canine-sourced probiotic meant for canine feeding and a conventional dairy-sourced probiotic. For this purpose, canine-origin Lactobacillus johnsonii CPN23 and dairy-origin Lactobacillus acidophilus NCDC15 were evaluated for potential probiotics health benefits in the rat model. Forty-eight weaned Wistar rats enrolled in this experiment of 8 weeks were fed a basal diet and divided into three dietary treatments. Rats of group I enrolled as control (CON) were given MRS placebo at 1 mL/head/day, while rats of group II (LAJ) and III (LAC) were administered with overnight MRS broth grown-culture of L. johnsonii CPN23 and L. acidophilus NCDC15, respectively, at 1 mL/head/day (108 cfu/mL). The average daily gain and net gain in body weight were significantly higher (p < 0.05) in LAJ and LAC than in CON. Fecal and digesta biochemical attributes altered (p < 0.05) positively in response to both probiotics. Total fecal and pooled digesta SCFAs were higher (p < 0.05) in both LAJ and LAC than in CON. The microbial population in cecal and colonic digesta responded (p < 0.05) positively to both probiotics. The diameter of intestinal segments was higher (p < 005) in LAJ as compared to CON. The number and height of villi in jejunum tended to be higher in LAJ as compared to CON. The humoral immune response to sheep erythrocytes as well as chicken egg-white lysozyme was higher in LAJ as compared to CON. Overall, the results of the study have demonstrated the effectiveness of the canine-sourced L. johnsonii CPN23 as a potential probiotic, with a comparatively better response than the dairy-sourced L. acidophilus NCDC15. It could thus be recommended for use in feeding dogs to help augment their health.
Collapse
Affiliation(s)
- Sachin Kumar
- Clinical and Pet Nutrition Laboratory, Division of Animal Nutrition, ICAR-Indian Veterinary Research Institute, Izatnagar, 243 122, India
- Animal Nutrition Division, ICAR-National Dairy Research Institute, Karnal, 132 001, India
| | - Ashok Kumar Pattanaik
- Clinical and Pet Nutrition Laboratory, Division of Animal Nutrition, ICAR-Indian Veterinary Research Institute, Izatnagar, 243 122, India.
| | - Sunil Ekanath Jadhav
- Clinical and Pet Nutrition Laboratory, Division of Animal Nutrition, ICAR-Indian Veterinary Research Institute, Izatnagar, 243 122, India
| | - Babu Lal Jangir
- Clinical and Pet Nutrition Laboratory, Division of Animal Nutrition, ICAR-Indian Veterinary Research Institute, Izatnagar, 243 122, India
- Department of Veterinary Pathology, College of Veterinary Sciences, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, 125 004, India
| |
Collapse
|
24
|
Mathan Muthu CM, Vickram AS, Bhavani Sowndharya B, Saravanan A, Kamalesh R, Dinakarkumar Y. A comprehensive review on the utilization of probiotics in aquaculture towards sustainable shrimp farming. FISH & SHELLFISH IMMUNOLOGY 2024; 147:109459. [PMID: 38369068 DOI: 10.1016/j.fsi.2024.109459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/06/2024] [Accepted: 02/16/2024] [Indexed: 02/20/2024]
Abstract
Probiotics in shrimp aquaculture have gained considerable attention as a potential solution to enhance production efficiency, disease management, and overall sustainability. Probiotics, beneficial microorganisms, have shown promising effects when administered to shrimp as dietary supplements or water additives. Their inclusion has been linked to improved gut health, nutrient absorption, and disease resistance in shrimp. Probiotics also play a crucial role in maintaining a balanced microbial community within the shrimp pond environment, enhancing water quality and reducing pathogen prevalence. This article briefly summarizes the many ways that probiotics are used in shrimp farming and the advantages that come with them. Despite the promising results, challenges such as strain selection, dosage optimization, and environmental conditions are carefully addressed for successful probiotic integration in shrimp aquaculture. The potential of probiotics as a sustainable and ecologically friendly method of promoting shrimp development and health while advancing environmentally friendly shrimp farming techniques is highlighted in this analysis. Further research is required to fully exploit probiotics' benefits and develop practical guidelines for their effective implementation in shrimp aquaculture.
Collapse
Affiliation(s)
- C M Mathan Muthu
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - A S Vickram
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India.
| | - B Bhavani Sowndharya
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - A Saravanan
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - R Kamalesh
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - Yuvaraj Dinakarkumar
- Department of Biotechnology, Vel Tech High Tech Dr. Rangarajan Dr. Sakunthala Engineering College, Chennai, India
| |
Collapse
|
25
|
Karimkhani MM, Jamshidi A, Nasrollahzadeh M, Armin M, Jafari SM, Zeinali T. Fermentation of Rubus dolichocarpus juice using Lactobacillus gasseri and Lacticaseibacillus casei and protecting phenolic compounds by Stevia extract during cold storage. Sci Rep 2024; 14:5711. [PMID: 38459201 PMCID: PMC10923800 DOI: 10.1038/s41598-024-56235-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/04/2024] [Indexed: 03/10/2024] Open
Abstract
This study aimed to investigate the biological activities of Lactobacillus gasseri SM 05 (L. gasseri) and Lacticaseibacillus casei subsp. casei PTCC 1608 (L. casei) in the black raspberry (Rubus dolichocarpus) juice (BRJ) environment, and also the anti-adhesion activity against Salmonella typhimurium (S. typhimurium) in fermented black raspberry juice (FBRJ). Results showed significant anti-adhesion activity in Caco-2 epithelial cells. In the anti-adhesion process, lactic acid bacteria (LAB) improve intestinal health by preventing the adhesion of pathogens. Adding LAB to BRJ produces metabolites with bacteriocin properties. Major findings of this research include improved intestinal health, improved antidiabetic properties, inhibition of degradation of amino acids, and increase in the nutritional value of foods that have been subjected to heat processing by preventing Maillard inhibition, and inhibition of oxidation of foodstuff by increased antioxidant activity of BRJ. Both species of Lactobacillus effectively controlled the growth of S. typhimurium during BRJ fermentation. Moreover, in all tests, as well as Maillard's and α-amylase inhibition, L. gasseri was more effective than L. casei. The phenolic and flavonoid compounds increased significantly after fermentation by both LAB (p < 0.05). Adding Stevia extract to FBRJ and performing the HHP process showed convenient protection of phenolic compounds compared to heat processing.
Collapse
Affiliation(s)
- Mohammad Mahdi Karimkhani
- Department of Food Hygiene and Aquaculture, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Abdollah Jamshidi
- Department of Food Hygiene and Aquaculture, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.
| | | | - Mohammad Armin
- Department of Agronomy, Sabzevar Branch, Islamic Azad University, Sabzevar, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
- Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran
| | - Tayebeh Zeinali
- Department of Nutrition and Food Hygiene, School of Health, Social Determinants of Health Research Center, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
26
|
Gupta N, El-Gawaad NSA, Mallasiy LO, Gupta H, Yadav VK, Alghamdi S, Qusty NF. Microbial dysbiosis and the aging process: a review on the potential age-deceleration role of Lactiplantibacillus plantarum. Front Microbiol 2024; 15:1260793. [PMID: 38440135 PMCID: PMC10909992 DOI: 10.3389/fmicb.2024.1260793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 02/01/2024] [Indexed: 03/06/2024] Open
Abstract
Gut microbiota dysbiosis has been a serious risk factor for several gastric and systemic diseases. Recently, gut microbiota's role in aging was discussed. Available preclinical evidence suggests that the probiotic bacteria Lactiplantibacillus plantarums (LP) may influence the aging process via modulation of the gut microbiota. The present review summarized compelling evidence of LP's potential effect on aging hallmarks such as oxidative stress, inflammation, DNA methylation, and mitochondrial dysfunction. LP gavage modulates gut microbiota and improves overall endurance in aging animal models. LP cell constituents exert considerable antioxidant potential which may reduce ROS levels directly. In addition, restored gut microbiota facilitate a healthy intestinal milieu and accelerate multi-channel communication via signaling factors such as SCFA and GABA. Signaling factors further activate specific transcription factor Nrf2 in order to reduce oxidative damage. Nrf2 regulates cellular defense systems involving anti-inflammatory cytokines, MMPs, and protective enzymes against MAPKs. We concluded that LP supplementation may be an effective approach to managing aging and associated health risks.
Collapse
Affiliation(s)
- Nishant Gupta
- Medical Research and Development, River Engineering, Noida, India
| | - N. S. Abd El-Gawaad
- Department of Physics, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - L. O. Mallasiy
- Department of Home Economics, Faculty of Science and Arts in Tihama, King Khalid University, Muhayil, Saudi Arabia
| | | | | | - Saad Alghamdi
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, University of Umm Al-Qura University, Makkah, Saudi Arabia
| | - Naeem F. Qusty
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, University of Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
27
|
Huang F, Zhao Y, Hou Y, Yang Y, Yue B, Zhang X. Unraveling the antimicrobial potential of Lactiplantibacillus plantarum strains TE0907 and TE1809 sourced from Bufo gargarizans: advancing the frontier of probiotic-based therapeutics. Front Microbiol 2024; 15:1347830. [PMID: 38419633 PMCID: PMC10899456 DOI: 10.3389/fmicb.2024.1347830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
Introduction In an era increasingly defined by the challenge of antibiotic resistance, this study offers groundbreaking insights into the antibacterial properties of two distinct Lactiplantibacillus plantarum strains, TE0907 and TE1809, hailing from the unique ecosystem of Bufo gargarizans. It uniquely focuses on elucidating the intricate components and mechanisms that empower these strains with their notable antibacterial capabilities. Methods The research employs a multi-omics approach, including agar diffusion tests to assess antibacterial efficacy and adhesion assays with HT-29 cells to understand the preliminary mechanisms. Additionally, gas chromatography-mass spectrometry (GC-MS) is employed to analyze the production of organic acids, notably acetic acid, and whole-genome sequencing is utilized to identify genes linked to the biosynthesis of antibiotics and bacteriocin-coding domains. Results The comparative analysis highlighted the exceptional antibacterial efficacy of strains TE0907 and TE1809, with mean inhibitory zones measured at 14.97 and 15.98 mm, respectively. A pivotal discovery was the significant synthesis of acetic acid in both strains, demonstrated by a robust correlation coefficient (cor ≥ 0.943), linking its abundance to their antimicrobial efficiency. Genomic exploration uncovered a diverse range of elements involved in the biosynthesis of antibiotics similar to tetracycline and vancomycin and potential regions encoding bacteriocins, including Enterolysin and Plantaricin. Conclusion This research illuminates the remarkable antibacterial efficacy and mechanisms intrinsic to L. plantarum strains TE0907 and TE1809, sourced from B. gargarizans. The findings underscore the strains' extensive biochemical and enzymatic armamentarium, offering valuable insights into their role in antagonizing enteric pathogens. These results lay down a comprehensive analytical foundation for the potential clinical deployment of these strains in safeguarding animal gut health, thereby enriching our understanding of the role of probiotic bacteria in the realm of antimicrobial interventions.
Collapse
Affiliation(s)
- Feiyun Huang
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Yanni Zhao
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Yusen Hou
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu Yang
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Bisong Yue
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Xiuyue Zhang
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
28
|
Liang X, Dai N, Yang F, Zhu H, Zhang G, Wang Y. Molecular identification and safety assessment of the potential probiotic strain Bacillus paralicheniformis HMPM220325 isolated from artisanal fruit dairy products. Food Funct 2024; 15:747-765. [PMID: 38117188 DOI: 10.1039/d3fo04625g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Bacillus probiotics exhibit considerable economic potential owing to their heightened resilience to external stressors and relatively lower costs related to production and preservation. Although Bacillus paralicheniformis has been acknowledged as a plant-promoting bacterium for a long time, understanding its potential as a probiotic is still in its nascent stages. In this study, the safety and probiotic characteristics of a strain of HMPM220325, isolated from artisanal fruit dairy products, were examined through whole-genome sequencing and phenotypic analysis. The whole genome of HMPM220325 was analyzed for antimicrobial resistance genes, pathogenicity factors, and genes associated with probiotic traits including stress resistance, spore formation, gut adhesion, competitive exclusion of pathogens, bacteriocin expression, and carbohydrate metabolism related to prebiotic utilization. Also, wet lab experiments were conducted for the characterization of probiotics. The identification of the organism as B. paralicheniformis was verified. Its safety was assessed through in silico analysis, the haemolytic activity test, and the acute oral toxicity test. B. paralicheniformis HMPM220325 demonstrated its ability to survive in the pH range of 4-10 and bile salt concentrations of 0-0.9% (w/v), tolerate temperatures between 20 and 60 °C, and exhibit a robust antioxidant capacity. Moreover, B. paralicheniformis HMPM220325 demonstrated a moderate level of hydrophobicity, had the ability to form biofilms, achieved a self-aggregation rate of 51.77 ± 1.01% within 6 hours, and successfully colonized the mouse intestine for a duration of up to 17 days. Additionally, the genome of B. paralicheniformis HMPM220325 contains three gene clusters associated with the biosynthesis of bacteriocins and exhibits co-aggregation with Staphylococcus aureus, Pseudomonas aeruginosa, and Salmonella enterica serovar Typhimurium. The findings of the genomic analysis align with those obtained from the experimental investigation, thereby substantiating the potential of B. paralicheniformis HMPM220325 as a probiotic suitable for incorporation in dairy functional foods and feed applications.
Collapse
Affiliation(s)
- Xiao Liang
- School of Life Sciences, Anhui University, Hefei, China.
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, China
| | - Nini Dai
- School of Life Sciences, Anhui University, Hefei, China.
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, China
| | - Fan Yang
- School of Life Sciences, Anhui University, Hefei, China.
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, China
| | - Haimei Zhu
- School of Life Sciences, Anhui University, Hefei, China.
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, China
| | - Guanghui Zhang
- School of Life Sciences, Anhui University, Hefei, China.
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, China
| | - Yongzhong Wang
- School of Life Sciences, Anhui University, Hefei, China.
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, China
| |
Collapse
|
29
|
Petrariu OA, Barbu IC, Niculescu AG, Constantin M, Grigore GA, Cristian RE, Mihaescu G, Vrancianu CO. Role of probiotics in managing various human diseases, from oral pathology to cancer and gastrointestinal diseases. Front Microbiol 2024; 14:1296447. [PMID: 38249451 PMCID: PMC10797027 DOI: 10.3389/fmicb.2023.1296447] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/18/2023] [Indexed: 01/23/2024] Open
Abstract
The imbalance of microbial composition and diversity in favor of pathogenic microorganisms combined with a loss of beneficial gut microbiota taxa results from factors such as age, diet, antimicrobial administration for different infections, other underlying medical conditions, etc. Probiotics are known for their capacity to improve health by stimulating the indigenous gut microbiota, enhancing host immunity resistance to infection, helping digestion, and carrying out various other functions. Concurrently, the metabolites produced by these microorganisms, termed postbiotics, which include compounds like bacteriocins, lactic acid, and hydrogen peroxide, contribute to inhibiting a wide range of pathogenic bacteria. This review presents an update on using probiotics in managing and treating various human diseases, including complications that may emerge during or after a COVID-19 infection.
Collapse
Affiliation(s)
- Oana-Alina Petrariu
- Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, Bucharest, Romania
- The Research Institute of the University of Bucharest, Bucharest, Romania
| | - Ilda Czobor Barbu
- Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, Bucharest, Romania
- The Research Institute of the University of Bucharest, Bucharest, Romania
- Academy of Romanian Scientists, Bucharest, Romania
| | - Adelina-Gabriela Niculescu
- The Research Institute of the University of Bucharest, Bucharest, Romania
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, Bucharest, Romania
| | - Marian Constantin
- The Research Institute of the University of Bucharest, Bucharest, Romania
- Institute of Biology of Romanian Academy, Bucharest, Romania
| | - Georgiana Alexandra Grigore
- Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, Bucharest, Romania
- The Research Institute of the University of Bucharest, Bucharest, Romania
- Academy of Romanian Scientists, Bucharest, Romania
- National Institute of Research and Development for Biological Sciences, Bucharest, Romania
| | - Roxana-Elena Cristian
- The Research Institute of the University of Bucharest, Bucharest, Romania
- National Institute of Research and Development for Biological Sciences, Bucharest, Romania
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Grigore Mihaescu
- Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Corneliu Ovidiu Vrancianu
- Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, Bucharest, Romania
- The Research Institute of the University of Bucharest, Bucharest, Romania
- National Institute of Research and Development for Biological Sciences, Bucharest, Romania
| |
Collapse
|
30
|
Ma H, Li Y, Han P, Zhang R, Yuan J, Sun Y, Li J, Chen J. Effects of Supplementing Drinking Water of Parental Pigeons with Enterococcus faecium and Bacillus subtilis on Antibody Levels and Microbiomes in Squabs. Animals (Basel) 2024; 14:178. [PMID: 38254347 PMCID: PMC10812638 DOI: 10.3390/ani14020178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/14/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
Enterococcus faecium (E. faecium) and Bacillus subtilis (B. subtilis) are widely used as probiotics to improve performance in animal production, but there have been few reports of their impacts on pigeon milk. In this study, twenty-four pairs of parental pigeons were randomly divided into four groups, with six replicates, and each pair feeding three squabs. The control group drank normal water. The E. faecium group, B. subtilis group, and mixed group drank water supplemented with 3 × 106 CFU/mL E. faecium, 2 × 107 CFU/mL B. subtilis, and a mixture of these two probiotics, respectively. The experiment lasted 19 days. The results demonstrated that the IgA and IgG levels were significantly higher in the milk of Group D pigeons than in the other groups. At the phylum level, Fimicutes, Actinobacteria, and Bacteroidetes were the three main phyla identified. At the genus level, Lactobacillus, Bifidobacterium, Veillonella, and Enterococcus were the four main genera identified. In conclusion, drinking water supplemented with E. faecium and B. subtilis could improve immunoglobulin levels in pigeon milk, and this could increase the ability of squabs to resist disease. E. faecium and B. subtilis could be used as probiotics in the pigeon industry.
Collapse
Affiliation(s)
- Hui Ma
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.M.); (Y.L.); (R.Z.); (J.Y.); (Y.S.)
| | - Yunlei Li
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.M.); (Y.L.); (R.Z.); (J.Y.); (Y.S.)
| | - Pengmin Han
- Ningxia Xiaoming Agriculture and Animal Husbandry Limited Company, Yinchuan 750000, China;
| | - Ran Zhang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.M.); (Y.L.); (R.Z.); (J.Y.); (Y.S.)
| | - Jingwei Yuan
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.M.); (Y.L.); (R.Z.); (J.Y.); (Y.S.)
| | - Yanyan Sun
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.M.); (Y.L.); (R.Z.); (J.Y.); (Y.S.)
| | - Jianhui Li
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030800, China
| | - Jilan Chen
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.M.); (Y.L.); (R.Z.); (J.Y.); (Y.S.)
| |
Collapse
|
31
|
Debnath N, Yadav P, Mehta PK, Gupta P, Kumar D, Kumar A, Gautam V, Yadav AK. Designer probiotics: Opening the new horizon in diagnosis and prevention of human diseases. Biotechnol Bioeng 2024; 121:100-117. [PMID: 37881101 DOI: 10.1002/bit.28574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 07/19/2023] [Accepted: 09/23/2023] [Indexed: 10/27/2023]
Abstract
Probiotic microorganisms have been used for therapeutic purposes for over a century, and recent advances in biotechnology and genetic engineering have opened up new possibilities for developing therapeutic approaches using indigenous probiotic microorganisms. Diseases are often related to metabolic and immunological factors, which play a critical role in their onset. With the help of advanced genetic tools, probiotics can be modified to produce or secrete important therapeutic peptides directly into mucosal sites, increasing their effectiveness. One potential approach to enhancing human health is through the use of designer probiotics, which possess immunogenic characteristics. These genetically engineered probiotics hold promise in providing novel therapeutic options. In addition to their immunogenic properties, designer probiotics can also be equipped with sensors and genetic circuits, enabling them to detect a range of diseases with remarkable precision. Such capabilities may significantly advance disease diagnosis and management. Furthermore, designer probiotics have the potential to be used in diagnostic applications, offering a less invasive and more cost-effective alternative to conventional diagnostic techniques. This review offers an overview of the different functional aspects of the designer probiotics and their effectiveness on different diseases and also, we have emphasized their limitations and future implications. A comprehensive understanding of these functional attributes may pave the way for new avenues of prevention and the development of effective therapies for a range of diseases.
Collapse
Affiliation(s)
- Nabendu Debnath
- Centre for Molecular Biology, Central University of Jammu, Samba, Jammu and Kashmir (UT), India
| | - Pooja Yadav
- Centre for Molecular Biology, Central University of Jammu, Samba, Jammu and Kashmir (UT), India
| | - Praveen K Mehta
- Centre for Molecular Biology, Central University of Jammu, Samba, Jammu and Kashmir (UT), India
| | - Priyamvada Gupta
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Deepak Kumar
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Ashwani Kumar
- Department of Nutrition Biology, Central University of Haryana, Mahendergarh, Haryana, India
| | - Vibhav Gautam
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Ashok K Yadav
- Centre for Molecular Biology, Central University of Jammu, Samba, Jammu and Kashmir (UT), India
| |
Collapse
|
32
|
Jiang S, Ma W, Ma C, Zhang Z, Zhang W, Zhang J. An emerging strategy: probiotics enhance the effectiveness of tumor immunotherapy via mediating the gut microbiome. Gut Microbes 2024; 16:2341717. [PMID: 38717360 PMCID: PMC11085971 DOI: 10.1080/19490976.2024.2341717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/08/2024] [Indexed: 05/12/2024] Open
Abstract
The occurrence and progression of tumors are often accompanied by disruptions in the gut microbiota. Inversely, the impact of the gut microbiota on the initiation and progression of cancer is becoming increasingly evident, influencing the tumor microenvironment (TME) for both local and distant tumors. Moreover, it is even suggested to play a significant role in the process of tumor immunotherapy, contributing to high specificity in therapeutic outcomes and long-term effectiveness across various cancer types. Probiotics, with their generally positive influence on the gut microbiota, may serve as effective agents in synergizing cancer immunotherapy. They play a crucial role in activating the immune system to inhibit tumor growth. In summary, this comprehensive review aims to provide valuable insights into the dynamic interactions between probiotics, gut microbiota, and cancer. Furthermore, we highlight recent advances and mechanisms in using probiotics to improve the effectiveness of cancer immunotherapy. By understanding these complex relationships, we may unlock innovative approaches for cancer diagnosis and treatment while optimizing the effects of immunotherapy.
Collapse
Affiliation(s)
- Shuaiming Jiang
- School of Food Science and Engineering, Hainan University, Haikou, PR China
| | - Wenyao Ma
- School of Food Science and Engineering, Hainan University, Haikou, PR China
| | - Chenchen Ma
- Department of Human Cell Biology and Genetics, Southern University of Science and Technology, Shenzhen, PR China
| | - Zeng Zhang
- School of Food Science and Engineering, Hainan University, Haikou, PR China
| | - Wanli Zhang
- School of Food Science and Engineering, Hainan University, Haikou, PR China
| | - Jiachao Zhang
- School of Food Science and Engineering, Hainan University, Haikou, PR China
| |
Collapse
|
33
|
Di Gesù CM, Buffington SA. The early life exposome and autism risk: a role for the maternal microbiome? Gut Microbes 2024; 16:2385117. [PMID: 39120056 PMCID: PMC11318715 DOI: 10.1080/19490976.2024.2385117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/10/2024] Open
Abstract
Autism spectrum disorders (ASD) are highly heritable, heterogeneous neurodevelopmental disorders characterized by clinical presentation of atypical social, communicative, and repetitive behaviors. Over the past 25 years, hundreds of ASD risk genes have been identified. Many converge on key molecular pathways, from translational control to those regulating synaptic structure and function. Despite these advances, therapeutic approaches remain elusive. Emerging data unearthing the relationship between genetics, microbes, and immunity in ASD suggest an integrative physiology approach could be paramount to delivering therapeutic breakthroughs. Indeed, the advent of large-scale multi-OMIC data acquisition, analysis, and interpretation is yielding an increasingly mechanistic understanding of ASD and underlying risk factors, revealing how genetic susceptibility interacts with microbial genetics, metabolism, epigenetic (re)programming, and immunity to influence neurodevelopment and behavioral outcomes. It is now possible to foresee exciting advancements in the treatment of some forms of ASD that could markedly improve quality of life and productivity for autistic individuals. Here, we highlight recent work revealing how gene X maternal exposome interactions influence risk for ASD, with emphasis on the intrauterine environment and fetal neurodevelopment, host-microbe interactions, and the evolving therapeutic landscape for ASD.
Collapse
Affiliation(s)
- Claudia M. Di Gesù
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
| | - Shelly A. Buffington
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
34
|
Guo S, Tong W, Qi Y, Jiang M, Li P, Zhang Z, Hu Q, Song Z, Ding B. Effects of Dietary Limosilactobacillus fermentum and Lacticaseibacillus paracasei Supplementation on the Intestinal Stem Cell Proliferation, Immunity, and Ileal Microbiota of Broiler Chickens Challenged by Coccidia and Clostridium perfringens. Animals (Basel) 2023; 13:3864. [PMID: 38136901 PMCID: PMC10740854 DOI: 10.3390/ani13243864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
This study was conducted to investigate effects of dietary Limosilactobacillus fermentum and Lacticaseibacillus paracasei supplementation on the intestinal stem cell proliferation, immunity, and ileal microbiota of broiler chickens challenged by coccidia and Clostridium perfringens. A total of 336 one-day-old Ross 308 chickens were randomly assigned into four groups. Chickens in the control (CTR) group were fed basal diet, and chickens in the three challenged groups were fed basal diets supplemented with nothing (CCP group), 1.0 × 109 CFU/kg L. fermentum (LF_CCP group), and 1.0 × 109 CFU/kg L. paracasei (LP_CCP group), respectively. All challenged birds were infected with coccildia on day 9 and Clostridium perfringens during days 13-18. The serum and intestinal samples were collected on days 13 and 19. The results showed that L. fermentum significantly increased jejunal gene expression of cdxB (one of the intestinal stem cell marker genes) on day 13. Additionally, L. fermentum significantly up-regulated mRNA levels of JAK3 and TYK2 and tended to increase STAT6 mRNA expression in jejunum on day 19. In the cecal tonsil, both L. fermentum and L. paracasei decreased mRNA expression of JAK2 on day 13, and L. fermentum down-regulated JAK1-2, STAT1, and STAT5-6 gene expressions on day 19. Ileal microbiological analysis showed that coccidial infection increased the Escherichia-Shigella, Lactobacillus, and Romboutsia abundance and decreased Candidatus_Arthromitus richness on day 13, which were reversed by Lactobacillus intervention. Moreover, Lactobacilli increased ileal Lactobacillus richness on day 19. In conclusion, Lactobacilli alleviated the impairment of intestinal stem cell proliferation and immunity in coccidia- and C. perfringens-challenged birds via modulating JAK/STAT signaling and reshaping intestinal microflora.
Collapse
Affiliation(s)
- Shuangshuang Guo
- Engineering Research Center of Feed Protein Resources on Agricultural by-Products, Ministry of Education, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China; (S.G.); (W.T.); (Y.Q.); (M.J.); (P.L.); (Z.Z.)
| | - Wenfei Tong
- Engineering Research Center of Feed Protein Resources on Agricultural by-Products, Ministry of Education, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China; (S.G.); (W.T.); (Y.Q.); (M.J.); (P.L.); (Z.Z.)
| | - Ya Qi
- Engineering Research Center of Feed Protein Resources on Agricultural by-Products, Ministry of Education, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China; (S.G.); (W.T.); (Y.Q.); (M.J.); (P.L.); (Z.Z.)
| | - Meihan Jiang
- Engineering Research Center of Feed Protein Resources on Agricultural by-Products, Ministry of Education, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China; (S.G.); (W.T.); (Y.Q.); (M.J.); (P.L.); (Z.Z.)
| | - Peng Li
- Engineering Research Center of Feed Protein Resources on Agricultural by-Products, Ministry of Education, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China; (S.G.); (W.T.); (Y.Q.); (M.J.); (P.L.); (Z.Z.)
| | - Zhengfan Zhang
- Engineering Research Center of Feed Protein Resources on Agricultural by-Products, Ministry of Education, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China; (S.G.); (W.T.); (Y.Q.); (M.J.); (P.L.); (Z.Z.)
| | - Qunbing Hu
- Hubei Horwath Biotechnology Co., Ltd., Xianning 437099, China;
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Zhuan Song
- Engineering Research Center of Feed Protein Resources on Agricultural by-Products, Ministry of Education, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China; (S.G.); (W.T.); (Y.Q.); (M.J.); (P.L.); (Z.Z.)
| | - Binying Ding
- Engineering Research Center of Feed Protein Resources on Agricultural by-Products, Ministry of Education, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China; (S.G.); (W.T.); (Y.Q.); (M.J.); (P.L.); (Z.Z.)
| |
Collapse
|
35
|
Yuan Y, Zhang X, Pan S, Xu X, Wu T. Effects and Mechanisms of Resveratrol on the Adhesion of Lactobacillus acidophilus NCFM. Probiotics Antimicrob Proteins 2023; 15:1529-1538. [PMID: 36376613 DOI: 10.1007/s12602-022-10007-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2022] [Indexed: 11/16/2022]
Abstract
Based on the adhesion and surface properties of Lactobacillus acidophilus NCFM, five common polyphenols in fruits and vegetables, including resveratrol, epicatechin, quercetin, hesperidin, and caffeic acid, were screened, and the reasons for resveratrol promoting adhesion were systematically explained. The results showed that resveratrol could significantly enhance NCFM adhesion to mucin (1.73 fold), followed by epicatechin (1.47 fold), caffeic acid (1.30 fold), and hesperidin (0.99 fold), while quercetin had a certain degree of inhibition (0.84 fold). The effects of these polyphenols on surface hydrophobicity and auto-aggregation of NCFM were consistent with adhesion results. Then, how resveratrol promotes NCFM adhesion was further explored. The results of the proteomic analysis showed that resveratrol changed the surface layer proteins of NCFM, involving 4 up-regulated proteins and 12 down-regulated proteins. In addition, resveratrol promoted the expression of mucin genes and the glycosylation of mucins on the HT-29 cell surface. Our results indicate that resveratrol changes the surface layer proteins of NCFM to modify surface properties and adhere to mucins. Meanwhile, resveratrol promotes expression and glycosylation of mucins in HT-29 cells. Our findings provide theoretical support for an in-depth explanation of the interaction among resveratrol, NCFM, and the HT-29 cells.
Collapse
Affiliation(s)
- Yanan Yuan
- Department of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Xinyue Zhang
- Department of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Siyi Pan
- Department of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Xiaoyun Xu
- Department of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Ting Wu
- Department of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
36
|
Nisa K, Arisandi R, Ibrahim N, Hardian H. Harnessing the power of probiotics to enhance neuroplasticity for neurodevelopment and cognitive function in stunting: a comprehensive review. Int J Neurosci 2023:1-11. [PMID: 37963096 DOI: 10.1080/00207454.2023.2283690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/10/2023] [Indexed: 11/16/2023]
Abstract
BACKGROUND Stunting become a global concern because it's not only affecting physical stature, but also affecting on neurodevelopment and cognitive function. These impacts are resulting in long-term consequences especially for human resources, such as poor-quality labor, decreased productivity due to decreasing of health quality, including immunity and cognitive aspect. DISCUSSION This comprehensive review found that based on many studies, there is an altered gut microbiota, or dysbiosis, in stunted children, causing the impairment of brain development through Microbiota-Gut Brain Axis (MGB Axis) mechanism. The administration of probiotics has been known affect MGBA by improving the physical and chemical gut barrier integrity, producing antimicrobial substance to inhibit pathogen, and recovering the healthy gut microbiota. Probiotics, along with healthy gut microbiota, produce SCFAs which have various positive impact on CNS, such as increase neurogenesis, support the development and function of microglia, reduce inflammatory signaling, improve the Blood Brain Barrier's (BBB's) integrity, produce neurotropic factors (e.g. BDNF, GDNF), and promote the formation of new synapse. Probiotics also could induce the production of IGF-1 by intestinal epithelial cells, which functioned as growth factor of multiple body tissues and resulted in improvement of linear growth as well as brain development. CONCLUSION These properties of probiotics made it become the promising and feasible new treatment approach for stunting. But since most of the studies in this field are conducted in animal models, it is necessary to translate animal data into human models and do additional study to identify the numerous components in the MGB axis and the effect of probiotics on human.
Collapse
Affiliation(s)
- Khairun Nisa
- Department of Physiology, University of Lampung, Bandar Lampung, Indonesia
| | - Rizki Arisandi
- Department of Physiology, University of Lampung, Bandar Lampung, Indonesia
| | - Nurhadi Ibrahim
- Department of Medical Physiology and Biophysics, Universitas Indonesia, Depok, Indonesia
| | - Hardian Hardian
- Department of Physiology, University of Diponegoro, Semarang, Indonesia
| |
Collapse
|
37
|
Zhang H, Wu J, Li N, Wu R, Chen W. Microbial influence on triggering and treatment of host cancer: An intestinal barrier perspective. Biochim Biophys Acta Rev Cancer 2023; 1878:188989. [PMID: 37742727 DOI: 10.1016/j.bbcan.2023.188989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 09/14/2023] [Accepted: 09/14/2023] [Indexed: 09/26/2023]
Abstract
Inflammatory bowel disease (IBD) is associated with complex complications that may lead to tumors. However, research on the mechanisms underlying susceptibility to chronic immune diseases and cancer pathogenesis triggered by the inflammatory environment remains limited. An imbalance in the host gut microbiota often accompanies intestinal inflammation. The delayed recovery of the dysregulated intestinal microbiota may exacerbate systemic inflammatory responses, multiorgan pathology, and metabolic disorders. This delay may also facilitate bacterial translocation. This review examined the relationship between gut barrier disruption and unbalanced microbial translocation and their impact on the brain, liver, and lungs. We also explored their potential roles in tumor initiation. Notably, the role of the intestinal microbiota in the development of inflammation is linked to the immune surveillance function of the small intestine and the repair status of the intestinal barrier. Moreover, adherence to a partially anti-inflammatory diet can aid in preventing the malignant transformation of inflammation by repairing the intestinal barrier and significantly reducing inflammation. In conclusion, enhancing intestinal barrier function may be a novel strategy for preventing and treating chronic malignancies in the intestine and other body areas.
Collapse
Affiliation(s)
- Henan Zhang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China; Engineering Research Center of Food Fermentation Technology, Shenyang 110161, PR China
| | - Junrui Wu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China; Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, Liaoning 110866, PR China
| | - Na Li
- Children's Neurorehabilitation Laboratory, Shenyang Children's Hospital, Shenyang, PR China
| | - Rina Wu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China; Engineering Research Center of Food Fermentation Technology, Shenyang 110161, PR China.
| | - Wei Chen
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.
| |
Collapse
|
38
|
Liu Y, Duan H, Chen Y, Zhang C, Zhao J, Narbad A, Tian F, Zhai Q, Yu L, Chen W. Intraspecific difference of Latilactobacillus sakei in inflammatory bowel diseases: Insights into potential mechanisms through comparative genomics and metabolomics analyses. IMETA 2023; 2:e136. [PMID: 38868211 PMCID: PMC10989848 DOI: 10.1002/imt2.136] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/22/2023] [Accepted: 08/30/2023] [Indexed: 06/14/2024]
Abstract
Inflammatory bowel diseases (IBDs) are chronic inflammatory diseases of the gastrointestinal tract that have become a global health burden. Studies have revealed that Latilactobacillus sakei can effectively alleviate various immune diseases, including colitis, rheumatoid arthritis, and metabolic disorders. Here, we obtained 72 strains of L. sakei from 120 fermentation and fecal samples across China. In total, 16 strains from different sources were initially screened in an in vitro Caco-2 model induced by dextran sulfate sodium. Subsequently, six strains (four exhibiting effectiveness and two exhibiting ineffectiveness) were selected for further validation in an in vivo colitis mouse model. The results demonstrated that L. sakei strains exhibited varying degrees of amelioration of the colitis disease process. Notably, L. sakei CCFM1267, the most effective strain, significantly restored colon length and tight-junction protein expression, and reduced the levels of cytokines and associated inflammatory enzymes. Moreover, L. sakei CCFM1267 upregulated the abundance of Enterorhabdus, Alloprevotella, and Roseburia, leading to increased levels of acetic acid and propionic acid. Conversely, the other four strains (L. sakei QJSSZ1L4, QJSSZ4L10, QGZZYRHMT1L6, and QGZZYRHMT2L6) only exhibited a partial remission effect, while L. sakei QJSNT1L10 displayed minimal impact. Therefore, L. sakei CCFM1267 and QJSNT1L10 were selected for further exploration of the mechanisms underlying their differential mitigating effects. Comparative genomics analysis revealed significant variations between the two strains, particularly in genes associated with carbohydrate-active enzymes, such as the glycoside hydrolase family, which potentially contribute to the diverse profiles of short-chain fatty acids in vivo. Additionally, metabolome analysis demonstrated that acetylcholine and indole-3-acetic acid were the main differentiating metabolites of the two strains. Therefore, the strains of L. sakei exhibited varying degrees of effectiveness in alleviating IBD-related symptoms, and the possible reasons for these variations were attributed to discrepancies in the carbohydrate-active enzymes and metabolites among the strains.
Collapse
Affiliation(s)
- Yaru Liu
- State Key Laboratory of Food Science and ResourcesJiangnan UniversityWuxiChina
- School of Food Science and TechnologyJiangnan UniversityWuxiChina
| | - Hui Duan
- State Key Laboratory of Food Science and ResourcesJiangnan UniversityWuxiChina
- School of Food Science and TechnologyJiangnan UniversityWuxiChina
| | - Ying Chen
- State Key Laboratory of Food Science and ResourcesJiangnan UniversityWuxiChina
- School of Food Science and TechnologyJiangnan UniversityWuxiChina
| | - Chengcheng Zhang
- State Key Laboratory of Food Science and ResourcesJiangnan UniversityWuxiChina
- School of Food Science and TechnologyJiangnan UniversityWuxiChina
| | - Jianxin Zhao
- State Key Laboratory of Food Science and ResourcesJiangnan UniversityWuxiChina
- School of Food Science and TechnologyJiangnan UniversityWuxiChina
- National Engineering Research Center for Functional FoodJiangnan UniversityWuxiChina
- International Joint Research Laboratory for ProbioticsJiangnan UniversityWuxiChina
| | - Arjan Narbad
- International Joint Research Laboratory for ProbioticsJiangnan UniversityWuxiChina
- Gut Health and Microbiome Institute Strategic ProgrammeQuadram Institute BioscienceNorwichUK
| | - Fengwei Tian
- State Key Laboratory of Food Science and ResourcesJiangnan UniversityWuxiChina
- School of Food Science and TechnologyJiangnan UniversityWuxiChina
- International Joint Research Laboratory for ProbioticsJiangnan UniversityWuxiChina
| | - Qixiao Zhai
- State Key Laboratory of Food Science and ResourcesJiangnan UniversityWuxiChina
- School of Food Science and TechnologyJiangnan UniversityWuxiChina
- International Joint Research Laboratory for ProbioticsJiangnan UniversityWuxiChina
| | - Leilei Yu
- State Key Laboratory of Food Science and ResourcesJiangnan UniversityWuxiChina
- School of Food Science and TechnologyJiangnan UniversityWuxiChina
- International Joint Research Laboratory for ProbioticsJiangnan UniversityWuxiChina
| | - Wei Chen
- State Key Laboratory of Food Science and ResourcesJiangnan UniversityWuxiChina
- School of Food Science and TechnologyJiangnan UniversityWuxiChina
- National Engineering Research Center for Functional FoodJiangnan UniversityWuxiChina
- International Joint Research Laboratory for ProbioticsJiangnan UniversityWuxiChina
| |
Collapse
|
39
|
Lin Z, Zhang X, Wu M, Ming Y, Wang X, Li H, Huang F, Gao F, Zhu Y. High-fiber diet and rope-skipping benefit cardiometabolic health and modulate gut microbiota in young adults: A randomized controlled trial. Food Res Int 2023; 173:113421. [PMID: 37803759 DOI: 10.1016/j.foodres.2023.113421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/27/2023] [Accepted: 08/29/2023] [Indexed: 10/08/2023]
Abstract
Previous studies have shown that high intake of dietary fiber (DF) and efficient levels of physical activity are beneficial for cardiometabolic health in middle-aged and elderly populations with cardiometabolic disease. However, evidence from young adults with low cardiometabolic risk is lacking. This study aimed to investigate the effects of various interventions including a high-fiber (HF) diet and the rope-skipping (RS) exercise on cardiometabolic risk factors (CRFs) and the composition of the gut microbiota in young adults. A 12-week parallel-designed randomized controlled trial was conducted in undergraduates (n = 96), who were randomly assigned to the HF group (≥20 g/d DF), the RS group (2000 jumps/week), and the control (CON) group. Among the 84 people who completed the trial, measurements of anthropometric characteristics, biochemical parameters, and gut microbiota were taken at the beginning and end of the intervention. After the intervention, the RS exercise led to a significant decrease in the heart rate and triglyceride levels compared to the CON group (all P < 0.05), but there was no significant difference in CRFs between the HF and CON groups. When compared to baseline, the 12-week HF diet intervention resulted in an increase in fat-free mass, and a decrease in the percentage of body fat and waist circumference (all P < 0.05). With regard to gut microbiota alterations after intervention, we found that compared with the CON group, the relative abundance of Lactobacillus decreased significantly in both the HF group and the RS group, Muribaculaceae decreased in the RS group, and Eubacterium_coprostanoligenes_group decreased in the HF group (all P < 0.05). Finally, shifts in 7 metabolic pathways were detected in the RS group using predictive functional profiling, while only one pathway was altered in the HF group (all P < 0.05). In conclusion, the RS exercise improved body composition compared to the CON group in young adults, while the HF diet just enhanced CRFs in contrast to baseline. Furthermore, both RS and HF interventions altered Lactobacillus and various other gut microbiota. The results indicated that the HF diet and RS exercise could partly benefit cardiometabolic health and modulate gut microbiota in young adults. Trial registration: ClinicalTrials.gov, NCT04834687.
Collapse
Affiliation(s)
- Zongyu Lin
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xin Zhang
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Miao Wu
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yingan Ming
- Department of Physical Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiaotong Wang
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Hailin Li
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Fenglian Huang
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Fei Gao
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Yanna Zhu
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China.
| |
Collapse
|
40
|
Kwon H, Lee EH, Choi J, Park JY, Kim YK, Han PL. Extracellular Vesicles Released by Lactobacillus paracasei Mitigate Stress-induced Transcriptional Changes and Depression-like Behavior in Mice. Exp Neurobiol 2023; 32:328-342. [PMID: 37927131 PMCID: PMC10628865 DOI: 10.5607/en23024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/04/2023] [Accepted: 10/12/2023] [Indexed: 11/07/2023] Open
Abstract
Various probiotic strains have been reported to affect emotional behavior. However, the underlying mechanisms by which specific probiotic strains change brain function are not clearly understood. Here, we report that extracellular vesicles derived from Lactobacillus paracasei (Lpc-EV) have an ability to produce genome-wide changes against glucocorticoid (GC)-induced transcriptional responses in HT22 hippocampal neuronal cells. Genome-wide analysis using microarray assay followed by Rank-Rank Hypergeometric Overlap (RRHO) method leads to identify the top 20%-ranked 1,754 genes up- or down-regulated following GC treatment and their altered expressions are reversed by Lpc-EV in HT22 cells. Serial k-means clustering combined with Gene Ontology enrichment analyses indicate that the identified genes can be grouped into multiple functional clusters that contain functional modules of "responses to stress or steroid hormones", "histone modification", and "regulating MAPK signaling pathways". While all the selected genes respond to GC and Lpc-EV at certain levels, the present study focuses on the clusters that contain Mkp-1, Fkbp5, and Mecp2, the genes characterized to respond to GC and Lpc-EV in opposite directions in HT22 cells. A translational study indicates that the expression levels of Mkp-1, Fkbp5, and Mecp2 are changed in the hippocampus of mice exposed to chronic stress in the same directions as those following GC treatment in HT22 cells, whereas Lpc-EV treatment restored stress-induced changes of those factors, and alleviated stress-induced depressive-like behavior. These results suggest that Lpc-EV cargo contains bioactive components that directly induce genome-wide transcriptional responses against GC-induced transcriptional and behavioral changes.
Collapse
Affiliation(s)
- Hyejin Kwon
- Department of Brain and Cognitive Sciences, Scranton College, Ewha Womans University, Seoul 03760, Korea
| | - Eun-Hwa Lee
- Department of Brain and Cognitive Sciences, Scranton College, Ewha Womans University, Seoul 03760, Korea
| | - Juli Choi
- Department of Brain and Cognitive Sciences, Scranton College, Ewha Womans University, Seoul 03760, Korea
| | - Jin-Young Park
- Department of Brain and Cognitive Sciences, Scranton College, Ewha Womans University, Seoul 03760, Korea
| | | | - Pyung-Lim Han
- Department of Brain and Cognitive Sciences, Scranton College, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
41
|
Fredua-Agyeman M, Stapleton P, Gaisford S. Growth assessment of mixed cultures of probiotics and common pathogens. Anaerobe 2023; 84:102790. [PMID: 39492420 DOI: 10.1016/j.anaerobe.2023.102790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 10/17/2023] [Accepted: 10/22/2023] [Indexed: 11/05/2024]
Abstract
OBJECTIVES In this work, an isothermal microcalorimeter was applied to investigate the antipathogenic activity of three probiotics (Lactobacillus acidophilus, Bifidobacterium lactis and Bifidobacterium bifidum) against Pseudomonas aeruginosa, Staphylococcus aureus and Escherichia coli using the probiotics in mixed culture with the pathogenic microorganisms. METHODS A microcalorimeter was used to monitor the growth of the microorganisms as pure cultures and as co-cultures at 37 °C. Relative growths of the probiotics and pathogenic species were determined after microcalorimetric measurements by serial dilution and plate incubation. Relative growth of mixed cultures of E. coli with L. acidophilus or B. lactis was also determined by traditional plate growth assay for 5.5 h. RESULTS The results showed growth profiles of the microorganisms that were characteristic and showed different lag and peak times for the species. The pathogenic species grew faster than the probiotic species. In the co-cultures, the growth profile of both pathogenic species and probiotics could be identified with the microcalorimeter. Although the pathogenic species grew faster, at the end of the assay, the results showed that the pathogenic species were inhibited in growth by the probiotics as no viable growth of the pathogenic species was detected whereas 107-108 CFU/mL of the probiotics were enumerated after the microcalorimetric assay. Using the traditional plate assay, the data confirmed co-growth of the probiotics and E. coli although cell numbers of E. coli were higher than the probiotics during 5.5 hours of co-culture incubation when both were inoculated at 106 CFU/mL. CONCLUSION The results demonstrate the antipathogenic effects of probiotics and highlights the potential of microcalorimetry in live mixed culture assays and its limitation.
Collapse
Affiliation(s)
- Mansa Fredua-Agyeman
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, United Kingdom; School of Pharmacy, University of Ghana, College of Health Sciences, LG43, Legon, Accra, Ghana.
| | - Paul Stapleton
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, United Kingdom
| | - Simon Gaisford
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, United Kingdom
| |
Collapse
|
42
|
Jansma J, Chatziioannou AC, Castricum K, van Hemert S, El Aidy S. Metabolic network construction reveals probiotic-specific alterations in the metabolic activity of a synthetic small intestinal community. mSystems 2023; 8:e0033223. [PMID: 37668401 PMCID: PMC10654062 DOI: 10.1128/msystems.00332-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/13/2023] [Indexed: 09/06/2023] Open
Abstract
IMPORTANCE The development of probiotic therapies targeted at the small intestinal microbiota represents a significant advancement in the field of probiotic interventions. This region poses unique opportunities due to its low number of gut microbiota, along with the presence of heightened immune and metabolic host responses. However, progress in this area has been hindered by a lack of detailed understanding regarding the molecular mechanisms through which probiotics exert their effects in the small intestine. Our study, utilizing a synthetic community of three small intestinal bacterial strains and the addition of two different probiotic species, and kynurenine as a representative dietary or endogenously produced compound, highlights the importance of selecting probiotic species with diverse genetic capabilities that complement the functional capacity of the resident microbiota, or alternatively, constructing a multispecies formula. This approach holds great promise for the development of effective probiotic therapies and underscores the need to consider the functional capacity of probiotic species when designing interventions.
Collapse
Affiliation(s)
- Jack Jansma
- Host-Microbe Interactions, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, the Netherlands
| | | | | | | | - Sahar El Aidy
- Host-Microbe Interactions, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, the Netherlands
| |
Collapse
|
43
|
Godur DA, Denton AJ, Eshraghi N, Mittal J, Cooper J, Moosa M, Mittal R. Modulation of Gut Microbiome as a Therapeutic Modality for Auditory Disorders. Audiol Res 2023; 13:741-752. [PMID: 37887847 PMCID: PMC10603848 DOI: 10.3390/audiolres13050066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 10/28/2023] Open
Abstract
The gut microbiome has been shown to play a pivotal role in health and disease. Recently, there has been increased interest within the auditory community to explore the role of the gut microbiome in the auditory system and its implications for hearing disorders such as sensorineural hearing loss (SNHL), otitis media, and tinnitus. Studies have suggested that modulating the gut microbiome using probiotics as well as with diets high in monounsaturated and omega-3 fatty acids is associated with a reduction in inflammation prevalence in auditory disorders. This review aims to evaluate the current literature on modulation of the gut microbiome and its effects on otological conditions. The probiotic conversion of nondigestible carbohydrates into short-chain fatty acids has been shown to provide benefits for improving hearing by maintaining an adequate vascular supply. For acute and secretory otitis media, studies have shown that a combination therapy of probiotics with a decreased dose of antibiotics yields better clinical outcomes than aggressive antibiotic treatment alone. Gut microbiome modulation also alters neurotransmitter levels and reduces neuroinflammation, which may provide benefits for tinnitus by preventing increased neuronal activity. Further studies are warranted to evaluate the efficacy of probiotics, natural health products, and micronutrients on auditory disorders, paving the way to develop novel interventions.
Collapse
Affiliation(s)
- Dimitri A. Godur
- Department of Otolaryngology, Hearing Research and Cochlear Implant Laboratory, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (D.A.G.); (A.J.D.); (N.E.); (J.M.); (J.C.); (M.M.)
| | - Alexa J. Denton
- Department of Otolaryngology, Hearing Research and Cochlear Implant Laboratory, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (D.A.G.); (A.J.D.); (N.E.); (J.M.); (J.C.); (M.M.)
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Nicolas Eshraghi
- Department of Otolaryngology, Hearing Research and Cochlear Implant Laboratory, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (D.A.G.); (A.J.D.); (N.E.); (J.M.); (J.C.); (M.M.)
| | - Jeenu Mittal
- Department of Otolaryngology, Hearing Research and Cochlear Implant Laboratory, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (D.A.G.); (A.J.D.); (N.E.); (J.M.); (J.C.); (M.M.)
| | - Jaimee Cooper
- Department of Otolaryngology, Hearing Research and Cochlear Implant Laboratory, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (D.A.G.); (A.J.D.); (N.E.); (J.M.); (J.C.); (M.M.)
- School of Medicine, New York Medical College, Valhalla, NY 10595, USA
| | - Moeed Moosa
- Department of Otolaryngology, Hearing Research and Cochlear Implant Laboratory, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (D.A.G.); (A.J.D.); (N.E.); (J.M.); (J.C.); (M.M.)
| | - Rahul Mittal
- Department of Otolaryngology, Hearing Research and Cochlear Implant Laboratory, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (D.A.G.); (A.J.D.); (N.E.); (J.M.); (J.C.); (M.M.)
| |
Collapse
|
44
|
Castro-López C, Romero-Luna HE, García HS, Vallejo-Cordoba B, González-Córdova AF, Hernández-Mendoza A. Key Stress Response Mechanisms of Probiotics During Their Journey Through the Digestive System: A Review. Probiotics Antimicrob Proteins 2023; 15:1250-1270. [PMID: 36001271 DOI: 10.1007/s12602-022-09981-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2022] [Indexed: 11/26/2022]
Abstract
The survival of probiotic microorganisms during their exposure to harsh environments plays a critical role in the fulfillment of their functional properties. In particular, transit through the human gastrointestinal tract (GIT) is considered one of the most challenging habitats that probiotics must endure, because of the particularly stressful conditions (e.g., oxygen level, pH variations, nutrient limitations, high osmolarity, oxidation, peristalsis) prevailing in the different sections of the GIT, which in turn can affect the growth, viability, physiological status, and functionality of microbial cells. Consequently, probiotics have developed a series of strategies, called "mechanisms of stress response," to protect themselves from these adverse conditions. Such mechanisms may include but are not limited to the induction of new metabolic pathways, formation/production of particular metabolites, and changes of transcription rates. It should be highlighted that some of such mechanisms can be conserved across several different strains or can be unique for specific genera. Hence, this review attempts to review the state-of-the-art knowledge of mechanisms of stress response displayed by potential probiotic strains during their transit through the GIT. In addition, evidence whether stress responses can compromise the biosafety of such strains is also discussed.
Collapse
Affiliation(s)
- Cecilia Castro-López
- Laboratorio de Química y Biotecnología de Productos Lácteos, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD), Gustavo Enrique Astiazarán Rosas 46, Hermosillo, Sonora, 83304, México
| | - Haydee E Romero-Luna
- Instituto Tecnológico Superior de Xalapa/Tecnológico Nacional de México, Reserva Territorial s/n Sección 5, Santa Bárbara, Xalapa-Enríquez, Veracruz, 91096, México
| | - Hugo S García
- Unidad de Investigación Y Desarrollo de Alimentos, Instituto Tecnológico de Veracruz/Tecnológico Nacional de México, Miguel Ángel de Quevedo 2779, Veracruz, Veracruz, 91897, México
| | - Belinda Vallejo-Cordoba
- Laboratorio de Química y Biotecnología de Productos Lácteos, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD), Gustavo Enrique Astiazarán Rosas 46, Hermosillo, Sonora, 83304, México
| | - Aarón F González-Córdova
- Laboratorio de Química y Biotecnología de Productos Lácteos, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD), Gustavo Enrique Astiazarán Rosas 46, Hermosillo, Sonora, 83304, México
| | - Adrián Hernández-Mendoza
- Laboratorio de Química y Biotecnología de Productos Lácteos, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD), Gustavo Enrique Astiazarán Rosas 46, Hermosillo, Sonora, 83304, México.
| |
Collapse
|
45
|
Mollova D, Gozmanova M, Apostolova E, Yahubyan G, Iliev I, Baev V. Illuminating the Genomic Landscape of Lactiplantibacillus plantarum PU3-A Novel Probiotic Strain Isolated from Human Breast Milk, Explored through Nanopore Sequencing. Microorganisms 2023; 11:2440. [PMID: 37894099 PMCID: PMC10609609 DOI: 10.3390/microorganisms11102440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/11/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
Lactiplantibacillus plantarum stands out as a remarkably diverse species of lactic acid bacteria, occupying a myriad of ecological niches. Particularly noteworthy is its presence in human breast milk, which can serve as a reservoir of probiotic bacteria, contributing significantly to the establishment and constitution of infant gut microbiota. In light of this, our study attempted to conduct an initial investigation encompassing both genomic and phenotypic aspects of the L. plantarum PU3 strain, that holds potential as a probiotic agent. By employing the cutting-edge third-generation Nanopore sequencing technology, L. plantarum PU3 revealed a circular chromosome of 3,180,940 bp and nine plasmids of various lengths. The L. plantarum PU3 genome has a total of 2962 protein-coding and non-coding genes. Our in-depth investigations revealed more than 150 probiotic gene markers that unfold the genetic determinants for acid tolerance, bile resistance, adhesion, and oxidative and osmotic stress. The in vivo analysis showed the strain's proficiency in utilizing various carbohydrates as growth substrates, complementing the in silico analysis of the genes involved in metabolic pathways. Notably, the strain demonstrated a pronounced affinity for D-sorbitol, D-mannitol, and D-Gluconic acid, among other carbohydrate sources. The in vitro experimental verification of acid, osmotic and bile tolerance validated the robustness of the strain in challenging environments. Encouragingly, no virulence factors were detected in the genome of PU3, suggesting its safety profile. In search of beneficial properties, we found potential bacteriocin biosynthesis clusters, suggesting its capability for antimicrobial activity. The characteristics exhibited by L. plantarum PU3 pave the way for promising strain potential, warranting further investigations to unlock its full capacity and contributions to probiotic and therapeutic avenues.
Collapse
Affiliation(s)
- Daniela Mollova
- Faculty of Biology, Department of Biochemistry and Microbiology, University of Plovdiv, Tzar Assen 24, 4000 Plovdiv, Bulgaria; (D.M.); (I.I.)
| | - Mariyana Gozmanova
- Faculty of Biology, Department of Plant Physiology and Molecular Biology, University of Plovdiv, Tzar Assen 24, 4000 Plovdiv, Bulgaria; (M.G.); (E.A.); (G.Y.)
| | - Elena Apostolova
- Faculty of Biology, Department of Plant Physiology and Molecular Biology, University of Plovdiv, Tzar Assen 24, 4000 Plovdiv, Bulgaria; (M.G.); (E.A.); (G.Y.)
| | - Galina Yahubyan
- Faculty of Biology, Department of Plant Physiology and Molecular Biology, University of Plovdiv, Tzar Assen 24, 4000 Plovdiv, Bulgaria; (M.G.); (E.A.); (G.Y.)
| | - Ilia Iliev
- Faculty of Biology, Department of Biochemistry and Microbiology, University of Plovdiv, Tzar Assen 24, 4000 Plovdiv, Bulgaria; (D.M.); (I.I.)
| | - Vesselin Baev
- Faculty of Biology, Department of Plant Physiology and Molecular Biology, University of Plovdiv, Tzar Assen 24, 4000 Plovdiv, Bulgaria; (M.G.); (E.A.); (G.Y.)
| |
Collapse
|
46
|
Suissa R, Olender T, Malitsky S, Golani O, Turjeman S, Koren O, Meijler MM, Kolodkin-Gal I. Metabolic inputs in the probiotic bacterium Lacticaseibacillus rhamnosus contribute to cell-wall remodeling and increased fitness. NPJ Biofilms Microbiomes 2023; 9:71. [PMID: 37752249 PMCID: PMC10522624 DOI: 10.1038/s41522-023-00431-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 08/24/2023] [Indexed: 09/28/2023] Open
Abstract
Lacticaseibacillus rhamnosus GG (LGG) is a Gram-positive beneficial bacterium that resides in the human intestinal tract and belongs to the family of lactic acid bacteria (LAB). This bacterium is a widely used probiotic and was suggested to provide numerous benefits for human health. However, as in most LAB strains, the molecular mechanisms that mediate the competitiveness of probiotics under different diets remain unknown. Fermentation is a fundamental process in LAB, allowing the oxidation of simple carbohydrates (e.g., glucose, mannose) for energy production under oxygen limitation, as in the human gut. Our results indicate that fermentation reshapes the metabolome, volatilome, and proteome architecture of LGG. Furthermore, fermentation alters cell envelope remodeling and peptidoglycan biosynthesis, which leads to altered cell wall thickness, aggregation properties, and cell wall composition. In addition, fermentable sugars induced the secretion of known and novel metabolites and proteins targeting the enteric pathogens Enterococcus faecalis and Salmonella enterica Serovar Typhimurium. Overall, our results link simple carbohydrates with cell wall remodeling, aggregation to host tissues, and biofilm formation in probiotic strains and connect them with the production of broad-spectrum antimicrobial effectors.
Collapse
Affiliation(s)
- Ronit Suissa
- Department of Chemistry, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Tsviya Olender
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Sergey Malitsky
- Life Science Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Ofra Golani
- Life Science Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Sondra Turjeman
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Omry Koren
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel.
| | - Michael M Meijler
- Department of Chemistry, Ben-Gurion University of the Negev, Be'er Sheva, Israel.
| | - Ilana Kolodkin-Gal
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel.
- The Scojen Institute for Synthetic Biology, Reichman University, Herzliya, Israel.
| |
Collapse
|
47
|
Song HY, Deng ML, Yang JF, Ma J, Shu FF, Cheng WJ, Zhu XQ, Zou FC, He JJ. Transcriptomic, 16S ribosomal ribonucleic acid and network pharmacology analyses shed light on the anticoccidial mechanism of green tea polyphenols against Eimeria tenella infection in Wuliangshan black-boned chickens. Parasit Vectors 2023; 16:330. [PMID: 37726789 PMCID: PMC10510215 DOI: 10.1186/s13071-023-05922-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 08/09/2023] [Indexed: 09/21/2023] Open
Abstract
BACKGROUND Eimeria tenella is an obligate intracellular parasitic protozoan that invades the chicken cecum and causes coccidiosis, which induces acute lesions and weight loss. Elucidating the anticoccidial mechanism of action of green tea polyphenols could aid the development of anticoccidial drugs and resolve the problem of drug resistance in E. tenella. METHODS We constructed a model of E. tenella infection in Wuliangshan black-boned chickens, an indigenous breed of Yunnan Province, China, to study the efficacy of green tea polyphenols against the infection. Alterations in gene expression and in the microbial flora in the cecum were analyzed by ribonucleic acid (RNA) sequencing and 16S ribosomal RNA (rRNA) sequencing. Quantitative real-time polymerase chain reaction was used to verify the host gene expression data obtained by RNA sequencing. Network pharmacology and molecular docking were used to clarify the interactions between the component green tea polyphenols and the targeted proteins; potential anticoccidial herbs were also analyzed. RESULTS Treatment with the green tea polyphenols led to a reduction in the lesion score and weight loss of the chickens induced by E. tenella infection. The expression of matrix metalloproteinase 7 (MMP7), MMP1, nitric oxide synthase 2 and ephrin type-A receptor 2 was significantly altered in the E. tenella infection plus green tea polyphenol-treated group and in the E. tenella infection group compared with the control group; these genes were also predicted targets of tea polyphenols. Furthermore, the tea polyphenol (-)-epigallocatechin gallate acted on most of the targets, and the molecular docking analysis showed that it has good affinity with interferon induced with helicase C domain 1 protein. 16S ribosomal RNA sequencing showed that the green tea polyphenols had a regulatory effect on changes in the fecal microbiota induced by E. tenella infection. In total, 171 herbs were predicted to act on two or three targets in MMP7, MMP1, nitric oxide synthase 2 and ephrin type-A receptor 2. CONCLUSIONS Green tea polyphenols can directly or indirectly regulate host gene expression and alter the growth of microbiota. The results presented here shed light on the mechanism of action of green tea polyphenols against E. tenella infection in chickens, and have implications for the development of novel anticoccidial products.
Collapse
Affiliation(s)
- Hai-Yang Song
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan, People's Republic of China
- Key Laboratory of Veterinary Public Health of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, People's Republic of China
| | - Meng-Ling Deng
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan, People's Republic of China
- Key Laboratory of Veterinary Public Health of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, People's Republic of China
| | - Jian-Fa Yang
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan, People's Republic of China
- Key Laboratory of Veterinary Public Health of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, People's Republic of China
| | - Jun Ma
- Key Laboratory of Veterinary Public Health of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, People's Republic of China
| | - Fan-Fan Shu
- Key Laboratory of Veterinary Public Health of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, People's Republic of China
| | - Wen-Jie Cheng
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan, People's Republic of China
| | - Xing-Quan Zhu
- Key Laboratory of Veterinary Public Health of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, People's Republic of China
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, People's Republic of China
| | - Feng-Cai Zou
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan, People's Republic of China.
- Key Laboratory of Veterinary Public Health of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, People's Republic of China.
| | - Jun-Jun He
- Key Laboratory of Veterinary Public Health of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, People's Republic of China.
| |
Collapse
|
48
|
Lima MDC, do Nascimento HMA, da Silva JYP, de Brito Alves JL, de Souza EL. Evidence for the Beneficial Effects of Brazilian Native Fruits and Their By-Products on Human Intestinal Microbiota and Repercussions on Non-Communicable Chronic Diseases-A Review. Foods 2023; 12:3491. [PMID: 37761200 PMCID: PMC10527964 DOI: 10.3390/foods12183491] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Non-communicable chronic diseases (NCDs) are the most widespread cause of mortality worldwide. Intestinal microbiota balance can be altered by changes in the abundance and/or diversity of intestinal microbiota, indicating a role of intestinal microbiota in NCD development. This review discusses the findings of in vitro studies, pre-clinical studies and clinical trials on the effects of Brazilian native fruits, their by-products, as well as their bioactive compounds on human intestinal microbiota and NCD. The major bioactive compounds in Brazilian native fruits and their by-products, and the impacts of their administration on outcomes linked to intestinal microbiota modulation are discussed. Mechanisms of intestinal microbiota affecting NCD could be linked to the modulation of absorption and energy balance, immune and endocrine systems, and inflammatory response. Brazilian native fruits, such as acerola, açaí, baru, buriti, guava, jabuticaba, juçara, and passion fruit, have several bioactive compounds, soluble and insoluble fibers, and a variety of phenolic compounds, which are capable of changing these key mechanisms. Brazilian native fruits and their by-products can help to promote positive intestinal and systemic health benefits by driving alterations in the composition of the human intestinal microbiota, and increasing the production of distinct short-chain fatty acids and phenolic metabolites, thereby enhancing intestinal integrity and homeostasis. Evidence from available literature shows that the modulatory impacts of Brazilian native fruits and their by-products on the composition and metabolic activity of the intestinal microbiota could improve several clinical repercussions associated with NCD, reinforcing the influence of intestinal microbiota in extra-intestinal outcomes.
Collapse
Affiliation(s)
| | | | | | | | - Evandro Leite de Souza
- Department of Nutrition, Health Science Center, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil; (M.d.C.L.); (H.M.A.d.N.); (J.Y.P.d.S.); (J.L.d.B.A.)
| |
Collapse
|
49
|
Mousa WK, Mousa S, Ghemrawi R, Obaid D, Sarfraz M, Chehadeh F, Husband S. Probiotics Modulate Host Immune Response and Interact with the Gut Microbiota: Shaping Their Composition and Mediating Antibiotic Resistance. Int J Mol Sci 2023; 24:13783. [PMID: 37762089 PMCID: PMC10531388 DOI: 10.3390/ijms241813783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
The consortium of microbes inhabiting the human body, together with their encoded genes and secreted metabolites, is referred to as the "human microbiome." Several studies have established a link between the composition of the microbiome and its impact on human health. This impact spans local gastrointestinal inflammation to systemic autoimmune disorders and neurodegenerative diseases such as Alzheimer's and Autism. Some of these links have been validated by rigorous experiments that identify specific strains as mediators or drivers of a particular condition. Consequently, the development of probiotics to compensate for a missing beneficial microbe(s) has advanced and become popular, especially in the treatment of irritable bowel diseases and to restore disrupted gut flora after antibiotic administration. The widespread use of probiotics is often advocated as a natural ecological therapy. However, this perception is not always accurate, as there is a potential for unexpected interactions when administering live microbial cultures. Here, we designed this research to explore the intricate interactions among probiotics, the host, and microbes through a series of experiments. Our objectives included assessing their immunomodulatory effects, response to oral medications, impact on microbial population dynamics, and mediation of antibiotic resistance. To achieve these goals, we employed diverse experimental protocols, including cell-based enzyme -linked immunosorbent assay (ELISA), antibiotic susceptibility testing, antimicrobial activity assays, computational prediction of probiotic genes responsible for antibiotic resistance, polymerase chain reaction (PCR)-based validation of predicted genes, and survival assays of probiotics in the presence of selected oral medications. Our findings highlight that more than half of the tested probiotics trigger an inflammatory response in the Caco-2 cell line, are influenced by oral medications, exhibit antibacterial activity, and possess genes encoding antimicrobial resistance. These results underscore the necessity for a reevaluation of probiotic usage and emphasize the importance of establishing regulations to govern probiotic testing, approval, and administration.
Collapse
Affiliation(s)
- Walaa K. Mousa
- College of Pharmacy, Al Ain University, Abu Dhabi P.O. Box 64141, United Arab Emirates; (S.M.); (R.G.); (D.O.); (M.S.)
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi P.O. Box 112612, United Arab Emirates
- College of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Sara Mousa
- College of Pharmacy, Al Ain University, Abu Dhabi P.O. Box 64141, United Arab Emirates; (S.M.); (R.G.); (D.O.); (M.S.)
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi P.O. Box 112612, United Arab Emirates
| | - Rose Ghemrawi
- College of Pharmacy, Al Ain University, Abu Dhabi P.O. Box 64141, United Arab Emirates; (S.M.); (R.G.); (D.O.); (M.S.)
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi P.O. Box 112612, United Arab Emirates
| | - Dana Obaid
- College of Pharmacy, Al Ain University, Abu Dhabi P.O. Box 64141, United Arab Emirates; (S.M.); (R.G.); (D.O.); (M.S.)
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi P.O. Box 112612, United Arab Emirates
| | - Muhammad Sarfraz
- College of Pharmacy, Al Ain University, Abu Dhabi P.O. Box 64141, United Arab Emirates; (S.M.); (R.G.); (D.O.); (M.S.)
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi P.O. Box 112612, United Arab Emirates
| | - Fadia Chehadeh
- Anschutz Medical Campus, Colorado School of Public Health, University of Colorado, Aurora, CO 173364, USA;
| | - Shannon Husband
- Department of Biology, Whitman College, Walla Walla, WA 99362, USA;
| |
Collapse
|
50
|
Yan XY, Yao JP, Li YQ, Xiao XJ, Yang WQ, Chen SJ, Tang TC, Yang YQ, Qu L, Hou YJ, Chen M, Li Y. Effects of acupuncture on gut microbiota and short-chain fatty acids in patients with functional constipation: a randomized placebo-controlled trial. Front Pharmacol 2023; 14:1223742. [PMID: 37719865 PMCID: PMC10502303 DOI: 10.3389/fphar.2023.1223742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/17/2023] [Indexed: 09/19/2023] Open
Abstract
Objective: To comprehensively evaluate the effect of acupuncture on gut microbiota, identify specific microbes closely related to the clinical efficacy of acupuncture, and explored the role of short-chain fatty acids (SCFAs). Methods: A randomized placebo-controlled trial was conducted with 80 FC patients and 28 healthy controls (HCs). FC patients randomly received 16 acupuncture (n = 40) or sham acupuncture (n = 40) sessions over 4 weeks; HCs received no treatment. The change in the proportion of patients with mean weekly complete spontaneous bowel movements (CSBMs) was considered as the primary outcome measure. Moreover, the composition and the predictive metabolic function of the gut microbiota from feceal samples were analyzed by 16S rRNA gene sequencing, while feceal SCFAs were identified via gas chromatography-mass spectrometry (GC-MS). Results: Compared to sham acupuncture, acupuncture significantly increased the proportion of CSBM responders, and improved spontaneous bowel movements (SBMs), straining, stool consistency, and quality of life. Moreover, Sequencing of 16S rRNA genes revealed that acupuncture improved β-diversity and restored the composition of gut microbiota. Specifically, the abundance of beneficial bacteria such as g_Lactobacillus increased while that of pathogenic bacteria such as g_Pseudomonas decreased after acupuncture, which were significantly correlated with alleviated symptoms. Moreover, ten microbes including g_Coprobacter, g_Lactobacillus, and g_Eubacterium_coprostanoligenes_group might be considered acupuncture-specific microbes, and formed a stable interaction network. Additionally, GC-MS analysis indicated that acupuncture increased the content of butyrate acid in the gut, which was positively correlated with an increase in defecation frequency and a decrease in acupuncture-related pathogens. Finally, acupuncture specific-microbes including g_Coprobacter, g_Lactobacillus, g_Pseudomonas, g_Eubacterium_coprostanoligenes_group, g_Erysipelotrichaceae_UCG.003, g_Prevotellaceae_UCG.001, and g_Rolstonia could accurately predict the clinical efficacy of acupuncture (AUC = 0.918). Conclusion: Acupuncture could effectively improve clinical symptoms in FC patients, and was associated with gut microbiota reshaping and increased butyrate acid levels. Moreover, key microbial genera such as g_Coprobacter and g_Lactobacillus was predictive of acupuncture efficacy in treating FC. Future studies are required to validate the causal relationship between key microbial genera and acupuncture clinical efficacy, and should explore further metabolic pathways for designing personalized treatment strategies. Clinical Trial Registration: http://www.chictr.org.cn, Identifier: ChiCTR2100048831.
Collapse
Affiliation(s)
- Xiang-Yun Yan
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jun-Peng Yao
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yan-Qiu Li
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xian-Jun Xiao
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wan-Qing Yang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Si-Jue Chen
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tai-Chun Tang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu-Qing Yang
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Liu Qu
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu-Jun Hou
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Min Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ying Li
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|