1
|
Grzeczka A, Graczyk S, Kordowitzki P. Involvement of TGF-β, mTOR, and inflammatory mediators in aging alterations during myxomatous mitral valve disease in a canine model. GeroScience 2025:10.1007/s11357-025-01520-0. [PMID: 39865135 DOI: 10.1007/s11357-025-01520-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 01/07/2025] [Indexed: 01/28/2025] Open
Abstract
Inflammaging, a state of chronic low-grade inflammation associated with aging, has been linked to the development and progression of various disorders. Cellular senescence, a state of irreversible growth arrest, is another characteristic of aging that contributes to the pathogenesis of cardiovascular pathology. Senescent cells accumulate in tissues over time and secrete many inflammatory mediators, further exacerbating the inflammatory environment. This senescence-associated secretory phenotype can promote tissue dysfunction and remodeling, ultimately leading to the development of age-related cardiovascular pathologies, such as mitral valve myxomatous degeneration. The species-specific form of canine myxomatous mitral valve disease (MMVD) provides a unique opportunity to investigate the early causes of induction of ECM remodeling in mitral valve leaflets in the human form of MMVD. Studies have shown that in both humans and dogs, the microenvironment of the altered leaflets is inflammatory. More recently, the focus has been on the mechanisms leading to the transformation of resting VICs (qVICs) to myofibroblast-like VICs (aVICs). Cells affected by stress fall into a state of cell cycle arrest and become senescent cells. aVICs, under the influence of TGF-β signaling pathways and the mTOR complex, enhance ECM alteration and accumulation of systemic inflammation. This review aims to create a fresh new view of the complex interaction between aging, inflammation, immunosenescence, and MMVD in a canine model, as the domestic dog is a promising model of human aging and age-related diseases.
Collapse
Affiliation(s)
- Arkadiusz Grzeczka
- Department for Basic and Preclinical Sciences, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, 87-100, Torun, Poland
| | - Szymon Graczyk
- Department for Basic and Preclinical Sciences, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, 87-100, Torun, Poland
| | - Pawel Kordowitzki
- Department for Basic and Preclinical Sciences, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, 87-100, Torun, Poland.
| |
Collapse
|
2
|
Nair SK, Hersh EV, Margulies KB, Daniell H. Clinical studies in Myxomatous Mitral Valve Disease dogs: most prescribed ACEI inhibits ACE2 enzyme activity and ARB increases AngII pool in plasma. Hypertens Res 2025:10.1038/s41440-025-02109-y. [PMID: 39837966 DOI: 10.1038/s41440-025-02109-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/15/2024] [Accepted: 01/02/2025] [Indexed: 01/23/2025]
Abstract
The hypertension patient population has doubled since 1990, affecting 1.3 billion globally and >75% live in low-and middle-income countries. Angiotensin Converting Enzyme Inhibitors (ACEI) and Angiotensin Receptor Blockers (ARB) are the most prescribed drugs (>160 million times in the US), but mortality increased >30% since 1990s globally. Clinical relevance of Myxomatous Mitral Valve Disease (MMVD) is directly linked to WHO group 2 pulmonary hypertension, with no disease specific therapies. Therefore, MMVD pet dogs with elevated systolic blood pressure treated with ACEI/ARB, were supplemented with oral ACE2 enzyme and Angiotensin1-7 (Ang1-7) bioencapsulated in plant cells. The oral ACE2/Ang1-7 was well tolerated by healthy and MMVD dogs with no adverse events and increased sACE2 activity by 670-755% with ARB (Telmisartan) than with ACEI (Enalapril) background therapy. In vitro rhACE2 activity was inhibited >90% by ACEIs enalapril/benazeprilat at higher doses but lisinopril inhibited at much lower doses. Membrane ACE2 activity evaluated in exosomes was 43-fold higher than the sACE2 and this was also inhibited 211% by ACEI, when compared to ARB. Background ACEI treatment reduced the Ang-II pool by 11-20-fold and proportionately decreased the abundance of Ang1-7 + Ang1-5 peptides. In contrast, ARB treatment increased Ang-II pool 11-20-fold and Ang1-7 + Ang1-5 by 160-260%. Systolic blood pressure was regulated by ARB better than ACEI, despite very high Ang-II levels. This first report on evaluation of metabolic pools in the RAS pathway identifies surprising interactions between ACEI/ARB/ACE2 and significant changes in key molecular dynamics. Affordable biologics developed in plant cells may offer potential new treatment options for hypertension.
Collapse
Affiliation(s)
- Smruti K Nair
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elliot V Hersh
- Department of Oral Surgery and Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kenneth B Margulies
- Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Henry Daniell
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
3
|
Celeski M, Segreti A, Crisci F, Cricco R, Piscione M, Di Gioia G, Nusca A, Fossati C, Pigozzi F, Ussia GP, Solaro RJ, Grigioni F. The Role of Cardiac Troponin and Other Emerging Biomarkers Among Athletes and Beyond: Underlying Mechanisms, Differential Diagnosis, and Guide for Interpretation. Biomolecules 2024; 14:1630. [PMID: 39766337 PMCID: PMC11727179 DOI: 10.3390/biom14121630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/11/2024] [Accepted: 12/17/2024] [Indexed: 01/15/2025] Open
Abstract
Cardiovascular (CV) disease remains the leading cause of morbidity and mortality worldwide, highlighting the necessity of understanding its underlying molecular and pathophysiological pathways. Conversely, physical activity (PA) and exercise are key strategies in reducing CV event risks. Detecting latent CV conditions in apparently healthy individuals, such as athletes, presents a unique challenge. The early identification and treatment of CV disorders are vital for long-term health and patient survival. Cardiac troponin is currently the most commonly used biomarker for assessing CV changes in both athletes and the general population. However, there remains considerable debate surrounding the mechanisms underlying exercise-induced troponin elevations and its release in non-ischemic contexts. Thus, there is a pressing need to identify and implement more sensitive and specific biomarkers for CV disorders in clinical practice. Indeed, research continues to explore reliable biomarkers for evaluating the health of athletes and the effectiveness of physical exercise. It is essential to analyze current evidence on troponin release in non-ischemic conditions, post-strenuous exercise, and the complex biological pathways that influence its detection. Furthermore, this study summarizes current research on cytokines and exosomes, including their physiological roles and their relevance in various CV conditions, especially in athletes. In addition, this paper gives special attention to underlying mechanisms, potential biomarkers, and future perspectives.
Collapse
Affiliation(s)
- Mihail Celeski
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy (R.C.)
- Unit of Cardiovascular Sciences, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| | - Andrea Segreti
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy (R.C.)
- Unit of Cardiovascular Sciences, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Piazza Lauro de Bosis 6, 00135 Roma, Italy
| | - Filippo Crisci
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy (R.C.)
- Unit of Cardiovascular Sciences, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| | - Riccardo Cricco
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy (R.C.)
- Unit of Cardiovascular Sciences, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| | - Mariagrazia Piscione
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy (R.C.)
- Unit of Cardiovascular Sciences, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| | - Giuseppe Di Gioia
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Piazza Lauro de Bosis 6, 00135 Roma, Italy
- Institute of Sports Medicine and Science, Italian National Olympic Committee, Largo Piero Gabrielli 1, 00197 Roma, Italy
| | - Annunziata Nusca
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy (R.C.)
- Unit of Cardiovascular Sciences, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| | - Chiara Fossati
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Piazza Lauro de Bosis 6, 00135 Roma, Italy
| | - Fabio Pigozzi
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Piazza Lauro de Bosis 6, 00135 Roma, Italy
| | - Gian Paolo Ussia
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy (R.C.)
- Unit of Cardiovascular Sciences, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| | - Ross John Solaro
- Department of Physiology and Biophysics and Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA;
| | - Francesco Grigioni
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy (R.C.)
- Unit of Cardiovascular Sciences, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| |
Collapse
|
4
|
Palarea-Albaladejo J, Bode EF, Partington C, Basili M, Mederska E, Hodgkiss-Geere H, Capewell P, Chauché C, Coultous RM, Hanks E, Dukes-McEwan J. Assessing the use of blood microRNA expression patterns for predictive diagnosis of myxomatous mitral valve disease in dogs. Front Vet Sci 2024; 11:1443847. [PMID: 39553198 PMCID: PMC11565599 DOI: 10.3389/fvets.2024.1443847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/30/2024] [Indexed: 11/19/2024] Open
Abstract
Background Myxomatous mitral valve disease (MMVD) is a common, acquired, and progressive canine heart disease. The presence of heart murmur and current cardiac biomarkers are useful in MMVD cases but are not sufficiently discriminatory for staging an individual patient. Objectives This study aimed to conduct a preliminary assessment of canine serum and plasma expression profiles of 15 selected miRNA markers for accurate discrimination between MMVD patients and healthy controls. Additionally, we aim to evaluate the effectiveness of this method in differentiating between pre-clinical (stage B1/B2) and clinical (stage C/D) MMVD patients. Animals Client-owned dogs (n = 123) were recruited for the study. Following sample exclusions (n = 26), healthy controls (n = 50) and MMVD cases (n = 47) were analyzed. Methods A multicenter, cross-sectional, prospective investigation was conducted. MicroRNA expression profiles were compared among dogs, and these profiles were used as input for predictive modeling. This approach aimed to distinguish between healthy controls and MMVD patients, as well as to achieve a more fine-grained differentiation between pre-clinical and clinical MMVD patients. Results Performance metrics revealed a compelling ability of the method to differentiate healthy controls from dogs with MMVD (sensitivity 0.85; specificity 0.82; and accuracy 0.83). For the discrimination between the pre-clinical (n = 29) and clinical (n = 18) MMVD cases, the results were promising (sensitivity 0.61; specificity 0.79; and accuracy 0.73). Conclusion and clinical importance The use of miRNA expression profiles in combination with customized probabilistic predictive modeling shows good scope to devise a reliable diagnostic tool to distinguish healthy controls from MMVD cases (stages B1 to D). Investigation into the ability to discriminate between the pre-clinical and clinical MMVD cases using the same method yielded promising early results, which could be further enhanced with data from an increased study population.
Collapse
Affiliation(s)
- Javier Palarea-Albaladejo
- Department of Computer Science, Applied Mathematics and Statistics, University of Girona, Girona, Spain
| | - Elizabeth F. Bode
- Department of Small Animal Clinical Science, School of Veterinary Science, Leahurst Campus, University of Liverpool, Neston, United Kingdom
| | - Catheryn Partington
- Department of Small Animal Clinical Science, School of Veterinary Science, Leahurst Campus, University of Liverpool, Neston, United Kingdom
| | - Mattia Basili
- Department of Small Animal Clinical Science, School of Veterinary Science, Leahurst Campus, University of Liverpool, Neston, United Kingdom
| | - Elzbieta Mederska
- Department of Small Animal Clinical Science, School of Veterinary Science, Leahurst Campus, University of Liverpool, Neston, United Kingdom
| | - Hannah Hodgkiss-Geere
- Department of Small Animal Clinical Science, School of Veterinary Science, Leahurst Campus, University of Liverpool, Neston, United Kingdom
| | - Paul Capewell
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Caroline Chauché
- Centre for Inflammation Research, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Eve Hanks
- MI:RNA Ltd, Edinburgh, United Kingdom
| | - Joanna Dukes-McEwan
- Department of Small Animal Clinical Science, School of Veterinary Science, Leahurst Campus, University of Liverpool, Neston, United Kingdom
| |
Collapse
|
5
|
Heidarpour M, Krockenberger M, Bennett P. Review of exosomes and their potential for veterinary medicine. Res Vet Sci 2024; 168:105141. [PMID: 38218063 DOI: 10.1016/j.rvsc.2024.105141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 12/15/2023] [Accepted: 01/03/2024] [Indexed: 01/15/2024]
Abstract
Small extracellular vesicles called exosomes are released by almost all cell types and play a crucial role in both healthy and pathological circumstances. Exosomes, found in biological fluids (including plasma, urine, milk, semen, saliva, abdominal fluid and cervical vaginal fluid) and ranging in size from 50 to 150 nm, are critical for intercellular communication. Analysis of exosomal cargos, including micro RNAs (miRNAs), proteins and lipids, has been proposed as valuable diagnostic and prognostic biomarkers of disease. Exosomes can also be used as novel, cell-free, treatment strategies. In this review, we discuss the role, significance and application of exosomes and their cargos in diseases of animals.
Collapse
Affiliation(s)
- Mohammad Heidarpour
- Department of Clinical Sciences, School of Veterinary Medicine, Ferdowsi University of Mashhad, PO Box 91775-1793, Mashhad, Iran; Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Sydney, New South Wales 2006, Australia.
| | - Mark Krockenberger
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Sydney, New South Wales 2006, Australia.
| | - Peter Bennett
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Sydney, New South Wales 2006, Australia.
| |
Collapse
|
6
|
Yang VK, Moyer N, Zhou R, Carnevale SZ, Meola DM, Robinson SR, Li G, Das S. Defining the Role of the miR-145-KLF4-αSMA Axis in Mitral Valvular Interstitial Cell Activation in Myxomatous Mitral Valve Prolapse Using the Canine Model. Int J Mol Sci 2024; 25:1468. [PMID: 38338749 PMCID: PMC10855421 DOI: 10.3390/ijms25031468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/16/2024] [Accepted: 01/21/2024] [Indexed: 02/12/2024] Open
Abstract
Mitral valve prolapse (MVP) is a common valvular disease, affecting 2-3% of the adult human population and is a degenerative condition. A total of 5-10% of the afflicted will develop severe mitral regurgitation, cardiac dysfunction, congestive heart failure, and sudden cardiac death. Naturally occurring myxomatous MVP in dogs closely resembles MVP in humans structurally, and functional consequences are similar. In both species, valvular interstitial cells (VICs) in affected valves exhibit phenotype consistent with activated myofibroblasts with increased alpha-smooth muscle actin (αSMA) expression. Using VICs collected from normal and MVP-affected valves of dogs, we analyzed the miRNA expression profile of the cells and their associated small extracellular vesicles (sEV) using RNA sequencing to understand the role of non-coding RNAs and sEV in MVP pathogenesis. miR-145 was shown to be upregulated in both the affected VICs and sEV, and overexpression of miR-145 by mimic transfection in quiescent VIC recapitulates the activated myofibroblastic phenotype. Concurrently, KLF4 expression was noted to be suppressed by miR-145, confirming the miR-145-KLF4-αSMA axis. Targeting this axis may serve as a potential therapy in controlling pathologic abnormalities found in MVP valves.
Collapse
Affiliation(s)
- Vicky K. Yang
- Department of Clinical Science, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA (S.R.R.)
| | - Nicole Moyer
- Department of Clinical Science, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA (S.R.R.)
| | - Runzi Zhou
- Department of Clinical Science, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA (S.R.R.)
| | - Sally Z. Carnevale
- Department of Clinical Science, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA (S.R.R.)
| | - Dawn M. Meola
- Department of Clinical Science, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA (S.R.R.)
| | - Sally R. Robinson
- Department of Clinical Science, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA (S.R.R.)
| | - Guoping Li
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Saumya Das
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
7
|
Amirzadeh Gougheri K, Ahmadi A, Ahmadabadi MG, Babajani A, Yazdanpanah G, Bahrami S, Hassani M, Niknejad H. Exosomal Cargo: Pro-angiogeneic, anti-inflammatory, and regenerative effects in ischemic and non-ischemic heart diseases - A comprehensive review. Biomed Pharmacother 2023; 168:115801. [PMID: 37918257 DOI: 10.1016/j.biopha.2023.115801] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/17/2023] [Accepted: 10/26/2023] [Indexed: 11/04/2023] Open
Abstract
Heart diseases are the primary cause of mortality and morbidity worldwide which inflict a heavy social and economic burden. Among heart diseases, most deaths are due to myocardial infarction (MI) or heart attack, which occurs when a decrement in blood flow to the heart causes injury to cardiac tissue. Despite several available diagnostic, therapeutic, and prognostic approaches, heart disease remains a significant concern. Exosomes are a kind of small extracellular vesicles released by different types of cells that play a part in intercellular communication by transferring bioactive molecules important in regenerative medicine. Many studies have reported the diagnostic, therapeutic, and prognostic role of exosomes in various heart diseases. Herein, we reviewed the roles of exosomes as new emerging agents in various types of heart diseases, including ischemic heart disease, cardiomyopathy, arrhythmia, and valvular disease, focusing on pathogenesis, therapeutic, diagnostic, and prognostic roles in different areas. We have also mentioned different routes of exosome delivery to target tissues, the effects of preconditioning and modification on exosome's capability, exosome production in compliance with good manufacturing practice (GMP), and their ongoing clinical applications in various medical contexts to shed light on possible clinical translation.
Collapse
Affiliation(s)
- Kowsar Amirzadeh Gougheri
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Armin Ahmadi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Amirhesam Babajani
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghasem Yazdanpanah
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, 1855 W. Taylor Street, MC 648, Chicago, IL 60612, USA
| | - Soheyl Bahrami
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in AUVA Research Center, Vienna, Austria
| | - Mohammad Hassani
- Department of Vascular and Endovascular Surgery, Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hassan Niknejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Xu Y, Wan W, Zeng H, Xiang Z, Li M, Yao Y, Li Y, Bortolanza M, Wu J. Exosomes and their derivatives as biomarkers and therapeutic delivery agents for cardiovascular diseases: Situations and challenges. J Transl Int Med 2023; 11:341-354. [PMID: 38130647 PMCID: PMC10732499 DOI: 10.2478/jtim-2023-0124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Microvesicles known as exosomes have a diameter of 40 to 160 nm and are derived from small endosomal membranes. Exosomes have attracted increasing attention over the past ten years in part because they are functional vehicles that can deliver a variety of lipids, proteins, and nucleic acids to the target cells they encounter. Because of this function, exosomes may be used for the diagnosis, prognosis and treatment of many diseases. All throughout the world, cardiovascular diseases (CVDs) continue to be a significant cause of death. Because exosomes are mediators of communication between cells, which contribute to many physiological and pathological aspects, they may aid in improving CVD therapies as biomarkers for diagnosing and predicting CVDs. Many studies demonstrated that exosomes are associated with CVDs, such as coronary artery disease, heart failure, cardiomyopathy and atrial fibrillation. Exosomes participate in the progression or inhibition of these diseases mainly through the contents they deliver. However, the application of exosomes in diferent CVDs is not very mature. So further research is needed in this field.
Collapse
Affiliation(s)
- Yunyang Xu
- Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China
| | - Weimin Wan
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou215008, Jiangsu Province, China
| | - Huixuan Zeng
- Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China
| | - Ze Xiang
- Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China
| | - Mo Li
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou215008, Jiangsu Province, China
| | - Yiwen Yao
- Department of Internal Medicine V-Pulmonology, Allergology, Respiratory Intensive Care Medicine, Saarland University Hospital, 66424Homburg, Germany
| | - Yuan Li
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou215008, Jiangsu Province, China
| | - Mariza Bortolanza
- Department of Internal Medicine V-Pulmonology, Allergology, Respiratory Intensive Care Medicine, Saarland University Hospital, 66424Homburg, Germany
| | - Jian Wu
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou215008, Jiangsu Province, China
| |
Collapse
|
9
|
Varvil MS, dos Santos AP. A review on microRNA detection and expression studies in dogs. Front Vet Sci 2023; 10:1261085. [PMID: 37869503 PMCID: PMC10585042 DOI: 10.3389/fvets.2023.1261085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/12/2023] [Indexed: 10/24/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that function by post-transcriptional regulation of gene expression. Their stability and abundance in tissue and body fluids makes them promising potential tools for both the diagnosis and prognosis of diseases and attractive therapeutic targets in humans and dogs. Studies of miRNA expression in normal and disease processes in dogs are scarce compared to studies published on miRNA expression in human disease. In this literature review, we identified 461 peer-reviewed papers from database searches using the terms "canine," "dog," "miRNA," and "microRNA"; we screened 244 for inclusion criteria and then included a total of 148 original research peer-reviewed publications relating to specific miRNA expression in canine samples. We found an overlap of miRNA expression changes between the four groups evaluated (normal processes, non-infectious and non-inflammatory conditions, infectious and/or inflammatory conditions, and neoplasia) in 39 miRNAs, 83 miRNAs in three of the four groups, 110 miRNAs in two of the three groups, where 158 miRNAs have only been reported in one of the groups. Additionally, the mechanism of action of these overlapping miRNAs varies depending on the disease process, elucidating a need for characterization of the mechanism of action of each miRNA in each disease process being evaluated. Herein we also draw attention to the lack of standardization of miRNA evaluation, consistency within a single evaluation method, and the need for standardized methods for a direct comparison.
Collapse
Affiliation(s)
- Mara S. Varvil
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, United States
- Department of Veterinary Clinical Sciences, Washington State University, Pullman, WA, United States
| | - Andrea Pires dos Santos
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
10
|
Li N, Zhang T, Zhu L, Sun L, Shao G, Gao J. Recent Advances of Using Exosomes as Diagnostic Markers and Targeting Carriers for Cardiovascular Disease. Mol Pharm 2023; 20:4354-4372. [PMID: 37566627 DOI: 10.1021/acs.molpharmaceut.3c00268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2023]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of human death worldwide. Exosomes act as endogenous biological vectors; they possess advantages of low immunogenicity and low safety risks, also providing tissue selectivity, including the inherent targeting the to heart. Therefore, exosomes not only have been applied as biomarkers for diagnosis and therapeutic outcome confirmation but also showed potential as drug carriers for cardiovascular targeting delivery. This review aims to summarize the progress and challenges of exosomes as novel biomarkers, especially many novel exosomal noncoding RNAs (ncRNAs), and also provides an overview of the improved targeting functions of exosomes by unique engineered approaches, the latest developed administration methods, and the therapeutic effects of exosomes used as the biocarriers of medications for cardiovascular disease treatment. Also, the possible therapeutic mechanisms and the potentials for transferring exosomes to the clinic for CVD treatment are discussed. The advances, in vivo and in vitro applications, modifications, mechanisms, and challenges summarized in this review will provide a general understanding of this promising strategy for CVD treatment.
Collapse
Affiliation(s)
- Ni Li
- Department of Cardiothoracic Surgery, Ningbo Medical Centre Lihuili Hospital, Ningbo University, Ningbo, Zhejiang 315041, China
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Tianyuan Zhang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Linwen Zhu
- Department of Cardiothoracic Surgery, Ningbo Medical Centre Lihuili Hospital, Ningbo University, Ningbo, Zhejiang 315041, China
| | - Lebo Sun
- Department of Cardiothoracic Surgery, Ningbo Medical Centre Lihuili Hospital, Ningbo University, Ningbo, Zhejiang 315041, China
| | - Guofeng Shao
- Department of Cardiothoracic Surgery, Ningbo Medical Centre Lihuili Hospital, Ningbo University, Ningbo, Zhejiang 315041, China
| | - Jianqing Gao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
11
|
Tian C, Ziegler JN, Zucker IH. Extracellular Vesicle MicroRNAs in Heart Failure: Pathophysiological Mediators and Therapeutic Targets. Cells 2023; 12:2145. [PMID: 37681877 PMCID: PMC10486980 DOI: 10.3390/cells12172145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/20/2023] [Accepted: 08/22/2023] [Indexed: 09/09/2023] Open
Abstract
Extracellular vesicles (EVs) are emerging mediators of intracellular and inter-organ communications in cardiovascular diseases (CVDs), especially in the pathogenesis of heart failure through the transference of EV-containing bioactive substances. microRNAs (miRNAs) are contained in EV cargo and are involved in the progression of heart failure. Over the past several years, a growing body of evidence has suggested that the biogenesis of miRNAs and EVs is tightly regulated, and the sorting of miRNAs into EVs is highly selective and tightly controlled. Extracellular miRNAs, particularly circulating EV-miRNAs, have shown promising potential as prognostic and diagnostic biomarkers for heart failure and as therapeutic targets. In this review, we summarize the latest progress concerning the role of EV-miRNAs in HF and their application in a therapeutic strategy development for heart failure.
Collapse
Affiliation(s)
- Changhai Tian
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA;
| | - Jessica N. Ziegler
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA;
| | - Irving H. Zucker
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| |
Collapse
|
12
|
Li K, Ma L, Lu Z, Yan L, Chen W, Wang B, Xu H, Asemi Z. Apoptosis and heart failure: The role of non-coding RNAs and exosomal non-coding RNAs. Pathol Res Pract 2023; 248:154669. [PMID: 37422971 DOI: 10.1016/j.prp.2023.154669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/01/2023] [Accepted: 07/02/2023] [Indexed: 07/11/2023]
Abstract
Heart failure is a condition that affects the cardio vascular system and occurs if the heart cannot adequately pump the oxygen and blood to the body. Myocardial infarction, reperfusion injury, and this disease is the only a few examples of the numerous cardiovascular illnesses that are impacted by the closely controlled cell deletion process known as apoptosis. Attention has been paid to the creation of alternative diagnostic and treatment modalities for the condition. Recent evidences have shown that some non-coding RNAs (ncRNAs) influence the stability of proteins, control of transcription factors, and HF apoptosis through a variety of methods. Exosomes make a significant paracrine contribution to the regulation of illnesses as well as to the communication between nearby and distant organs. However, it has not yet been determined whether exosomes regulate the cardiomyocyte-tumor cell interaction in ischemia HF to limit the vulnerability of malignancy to ferroptosis. Here, we list the numerous ncRNAs in HF that are connected to apoptosis. In addition, we emphasize the significance of exosomal ncRNAs in the HF.
Collapse
Affiliation(s)
- Ketao Li
- Department of cardiology, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, Zhejiang 310022, China
| | - Liping Ma
- Department of cardiology, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, Zhejiang 310022, China
| | - Zhiwei Lu
- Hangzhou Heyunjia Hospital, Hangzhou, Zhe'jiang 310000, China
| | - Laixing Yan
- Department of cardiology, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, Zhejiang 310022, China
| | - Wan Chen
- Department of Cardiology, Jiulongpo First People's Hospital, Chongqing 400051, China
| | - Bing Wang
- Department of cardiology, Zouping People's Hospital, Zouping, Shandong 256299, China
| | - Huiju Xu
- Department of cardiology, Hangzhou Mingzhou Hospital, Hangzhou, Zhe'jiang 311215, China.
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran.
| |
Collapse
|
13
|
Zamboni C, Zamarian V, Stefanello D, Ferrari R, Auletta L, Milanesi S, Mauri S, Grieco V, Ceciliani F, Lecchi C. Plasma small extracellular vesicles from dogs affected by cutaneous mast cell tumors deliver high levels of miR-21-5p. Front Vet Sci 2023; 9:1083174. [PMID: 36704706 PMCID: PMC9871458 DOI: 10.3389/fvets.2022.1083174] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/13/2022] [Indexed: 01/11/2023] Open
Abstract
Small extracellular vesicles (sEV) are a class of extracellular vesicles (30-150 nm), delivering molecules including proteins, metabolites, and microRNAs (miRNAs), involved in physiological intercellular crosstalk and disease pathogenesis. The present pilot study aims are (I) to develop an easy and fast protocol for the isolation of sEV from plasma of mast cell tumor (MCT)-affected dogs; (II) to evaluate if miR-21-5p (sEV-miR-21-5p), a miRNA overexpressed by MCT, is associated with sEV. Seventeen dogs have been enrolled in the study: 4 healthy and 13 (6 with and 7 without nodal metastasis) MCT-affected dogs. sEV were isolated using size exclusion chromatography (SEC) (IZON column 35nm) and were characterized by Western blot, Nanoparticle tracking analysis, and transmission electron microscopy. sEV-miR-21-5p was quantified using digital PCR. sEV expressed the specific markers CD9 and TSG101, and a marker of mast cell tryptase. The sEV mean concentration and size were 2.68E + 10 particles/ml, and 99.6 nm, 2.89E + 10 particles/ml and 101.7 nm, and 3.21E + 10 particles/ml and 124 nm in non-metastatic, nodal metastatic, and healthy samples, respectively. The comparative analysis demonstrated that the level of sEV-miR-21-5p was significantly higher in dogs with nodal metastasis compared to healthy (P = 0.038) and without nodal metastasis samples (P = 0.007). In conclusion, the present work demonstrated that a pure population of sEV can be isolated from the plasma of MCT-affected dogs using the SEC approach and that the level of sEV-miR-21-5p is higher in nodal metastatic MCT-affected dogs compared with healthy and MCT-affected dogs without nodal involvement.
Collapse
Affiliation(s)
- Clarissa Zamboni
- Dipartimento di Medicina Veterinaria e Scienze Animali, Università degli Studi di Milano, Milan, Italy
| | - Valentina Zamarian
- Dipartimento di Medicina Veterinaria e Scienze Animali, Università degli Studi di Milano, Milan, Italy,Diabetes Research Institute, IRCCS San Raffaele Hospital, Milan, Italy
| | - Damiano Stefanello
- Dipartimento di Medicina Veterinaria e Scienze Animali, Università degli Studi di Milano, Milan, Italy
| | - Roberta Ferrari
- Dipartimento di Medicina Veterinaria e Scienze Animali, Università degli Studi di Milano, Milan, Italy
| | - Luigi Auletta
- Dipartimento di Medicina Veterinaria e Scienze Animali, Università degli Studi di Milano, Milan, Italy
| | - Samantha Milanesi
- Leukocytes Biology Group, IRCCS Humanitas Clinical and Research Center, Milan, Italy,Department of Medical Biotechnologies and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Samuele Mauri
- Dipartimento di Medicina Veterinaria e Scienze Animali, Università degli Studi di Milano, Milan, Italy
| | - Valeria Grieco
- Dipartimento di Medicina Veterinaria e Scienze Animali, Università degli Studi di Milano, Milan, Italy
| | - Fabrizio Ceciliani
- Dipartimento di Medicina Veterinaria e Scienze Animali, Università degli Studi di Milano, Milan, Italy
| | - Cristina Lecchi
- Dipartimento di Medicina Veterinaria e Scienze Animali, Università degli Studi di Milano, Milan, Italy,*Correspondence: Cristina Lecchi ✉
| |
Collapse
|
14
|
Cui J, Li Y, Zhu M, Liu Y, Liu Y. Analysis of the Research Hotspot of Exosomes in Cardiovascular Disease: A Bibliometric-based Literature Review. Curr Vasc Pharmacol 2023; 21:316-345. [PMID: 37779407 DOI: 10.2174/0115701611249727230920042944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 08/21/2023] [Accepted: 08/29/2023] [Indexed: 10/03/2023]
Abstract
OBJECTIVE To investigate the current status and development trend of research on exosomes in cardiovascular disease (CVD) using bibliometric analysis and to elucidate trending research topics. METHODS Research articles on exosomes in CVD published up to April 2022 were retrieved from the Web of Science database. Data were organized using Microsoft Office Excel 2019. CiteSpace 6.1 and VOSviewer 1.6.18 were used for bibliometric analysis and result visualization. RESULTS Overall, 256 original research publications containing 190 fundamental research publications and 66 clinical research publications were included. "Extracellular vesicle" was the most frequent research keyword, followed by "microrna," "apoptosis," and "angiogenesis." Most publications were from China (187, 73.05%), followed by the United States (57, 22.27%), the United Kingdom (7, 2.73%), and Japan (7, 2.73%). A systematic review of the publications revealed that myocardial infarction and stroke were the most popular topics and that exosomes and their contents, such as microRNAs (miRNAs), play positive roles in neuroprotection, inhibition of autophagy and apoptosis, promotion of angiogenesis, and protection of cardiomyocytes. CONCLUSION Research on exosomes in CVD has attracted considerable attention, with China having the most published studies. Fundamental research has focused on CVD pathogenesis; exosomes regulate the progression of CVD through biological processes, such as the inflammatory response, autophagy, and apoptosis. Clinical research has focused on biomarkers for CVD; studies on using miRNAs in exosomes as disease markers for diagnosis could become a future trend.
Collapse
Affiliation(s)
- Jing Cui
- National Clinical Research Centre for Chinese Medicine Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Yiwen Li
- National Clinical Research Centre for Chinese Medicine Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Mengmeng Zhu
- National Clinical Research Centre for Chinese Medicine Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanfei Liu
- National Clinical Research Centre for Chinese Medicine Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
- Second Department of Geriatrics, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Yue Liu
- National Clinical Research Centre for Chinese Medicine Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
15
|
Prospective pilot study on the predictive significance of plasma miR-30b-5p through the study of echocardiographic modifications in Cavalier King Charles Spaniels affected by different stages of myxomatous mitral valve disease: The PRIME study. PLoS One 2022; 17:e0274724. [PMID: 36574372 PMCID: PMC9794076 DOI: 10.1371/journal.pone.0274724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 12/11/2022] [Indexed: 12/29/2022] Open
Abstract
Specific microRNAs expressions may accurately characterize different stages of canine myxomatous mitral valve disease. This preliminary pilot study aimed to (1) describe the clinical and echocardiographic parameters of Cavalier King Charles Spaniels affected by myxomatous mitral valve disease at different American College of Veterinary Internal Medicine (ACVIM) stages (B1, B2 and C) and healthy control group (ACVIM A), comparing the parameters collected during the first examination (T0) and the end of the follow-up (T1); (2) assess the association between the values of echocardiographic parameters at T1 and the expression profile of miR-30b-5p at T0. Thirty-five Cavalier King Charles Spaniels (median age 4.29 years and median weight 9 Kg) in different ACVIM stages were included (7 A, 19 B1, 6 B2 and 3 C). Inverse probability weighting analysis was performed to estimate the association of the exposure variable (miR-30b-5p) with the outcome variables (clinical and echocardiographic variables). Time was included as variable. The results pointed out that high levels of plasma miR-30b-5p corresponded to lower values of left ventricular end-diastolic diameter normalized for body weight, end-diastolic and end-systolic volumes indexed for body weight, and left atrium-to aortic root ratio. Hence, higher miR-30b-5p expressions were associated with milder forms of mitral valve disease in our study population. In contrast, the results obtained for the intensity of heart murmur, the mitral regurgitation severity, and the Mitral INsufficiency Echocardiographic score) were not statistically significant. A relationship between high abundance of miR-30b-5p and myxomatous mitral valve disease that appear echocardiographically more stable over time has been demonstrated. In conclusion, Cavalier King Charles Spaniels affected by myxomatous mitral valve disease that at the first cardiologic evaluation showed an upregulation of miR-30b-5p are expected to experience lesser variations on their echocardiographic examination between T0 and T1.
Collapse
|
16
|
Reis-Ferreira A, Neto-Mendes J, Brás-Silva C, Lobo L, Fontes-Sousa AP. Emerging Roles of Micrornas in Veterinary Cardiology. Vet Sci 2022; 9:533. [PMID: 36288146 PMCID: PMC9607079 DOI: 10.3390/vetsci9100533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 11/29/2022] Open
Abstract
Over the last years, the importance of microRNAs (miRNAs) has increasingly been recognised. Each miRNA is a short sequence of non-coding RNA that influences countless genes' expression and, thereby, contributes to several physiological pathways and diseases. It has been demonstrated that miRNAs participate in the development of many cardiovascular diseases (CVDs). This review synopsises the most recent studies emphasising miRNA's influence in several CVDs affecting dogs and cats. It provides a concise outline of miRNA's biology and function, the diagnostic potential of circulating miRNAs as biomarkers, and their role in different CVDs. It also discusses known and future roles for miRNAs as potential clinical biomarkers and therapeutic targets. So, this review gives a comprehensive outline of the most relevant miRNAs related to CVDs in Veterinary Medicine.
Collapse
Affiliation(s)
- Ana Reis-Ferreira
- Hospital Veterinário do Porto, Travessa Silva Porto 174, 4250-475 Porto, Portugal
- ICBAS-UP, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Joana Neto-Mendes
- ICBAS-UP, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Carmen Brás-Silva
- UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, 4200-319 Porto, Portugal
| | - Luís Lobo
- Hospital Veterinário do Porto, Travessa Silva Porto 174, 4250-475 Porto, Portugal
- Faculdade de Medicina Veterinária, Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal
- Centro de Estudos de Ciência Animal, Campus Agrário de Vairão, 4480-009 Vila do Conde, Portugal
| | - Ana Patrícia Fontes-Sousa
- ICBAS-UP, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Departamento de Imuno-Fisiologia e Farmacologia, Centro de Investigação Farmacológica e Inovação Medicamentosa (MedInUP), Universidade do Porto, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
- UPVET, Hospital Veterinário da Universidade do Porto, Rua Jorge de Viterbo Ferreira 132, 4050-313 Porto, Portugal
| |
Collapse
|
17
|
Systematic analysis of different degrees of haemolysis on miRNA levels in serum and serum-derived extracellular vesicles from dogs. BMC Vet Res 2022; 18:355. [PMID: 36138476 PMCID: PMC9494854 DOI: 10.1186/s12917-022-03445-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 09/06/2022] [Indexed: 11/29/2022] Open
Abstract
Background Circulating microRNAs (miRNAs) are described as promising non-invasive biomarkers for diagnostics and therapeutics. Human studies have shown that haemolysis occurring during blood collection or due to improper sample processing/storage significantly alters the miRNA content in plasma and serum. Nevertheless, no similar research has been performed in dogs so far. We therefore investigated the effects of different degrees of haemolysis on the levels of selected miRNAs in serum and serum-derived extracellular vesicles (EVs) from dogs, by inducing a controlled in vitro haemolysis experiment. Results The abundance of miR-16, miR-92a, miR-191, miR-451 and miR-486 was significantly sensitive to haemolysis in serum and serum-derived EVs, while other selected miRNAs were not influenced by haemolysis. Furthermore, we found that the abundance of some canine miRNAs differs from data reported in the human system. Conclusions Our results describe for the first time the impact of haemolysis on circulating miRNAs not only in whole serum, but also in serum-derived EVs from dogs. Hence, we provide novel data for further analyses in the discovery of canine circulating biomarkers. Our findings suggest that haemolysis should be carefully assessed to assure accuracy when investigating circulating miRNA in serum or plasma-based tests. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-022-03445-8.
Collapse
|
18
|
Pizzino F, Furini G, Casieri V, Mariani M, Bianchi G, Storti S, Chiappino D, Maffei S, Solinas M, Aquaro GD, Lionetti V. Late plasma exosome microRNA-21-5p depicts magnitude of reverse ventricular remodeling after early surgical repair of primary mitral valve regurgitation. Front Cardiovasc Med 2022; 9:943068. [PMID: 35966562 PMCID: PMC9373041 DOI: 10.3389/fcvm.2022.943068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/04/2022] [Indexed: 12/11/2022] Open
Abstract
Introduction Primary mitral valve regurgitation (MR) results from degeneration of mitral valve apparatus. Mechanisms leading to incomplete postoperative left ventricular (LV) reverse remodeling (Rev-Rem) despite timely and successful surgical mitral valve repair (MVR) remain unknown. Plasma exosomes (pEXOs) are smallest nanovesicles exerting early postoperative cardioprotection. We hypothesized that late plasma exosomal microRNAs (miRs) contribute to Rev-Rem during the late postoperative period. Methods Primary MR patients (n = 19; age, 45-71 years) underwent cardiac magnetic resonance imaging and blood sampling before (T0) and 6 months after (T1) MVR. The postoperative LV Rev-Rem was assessed in terms of a decrease in LV end-diastolic volume and patients were stratified into high (HiR-REM) and low (LoR-REM) LV Rev-Rem subgroups. Isolated pEXOs were quantified by nanoparticle tracking analysis. Exosomal microRNA (miR)-1, -21-5p, -133a, and -208a levels were measured by RT-qPCR. Anti-hypertrophic effects of pEXOs were tested in HL-1 cardiomyocytes cultured with angiotensin II (AngII, 1 μM for 48 h). Results Surgery zeroed out volume regurgitation in all patients. Although preoperative pEXOs were similar in both groups, pEXO levels increased after MVR in HiR-REM patients (+0.75-fold, p = 0.016), who showed lower cardiac mass index (-11%, p = 0.032). Postoperative exosomal miR-21-5p values of HiR-REM patients were higher than other groups (p < 0.05). In vitro, T1-pEXOs isolated from LoR-REM patients boosted the AngII-induced cardiomyocyte hypertrophy, but not postoperative exosomes of HiR-REM. This adaptive effect was counteracted by miR-21-5p inhibition. Summary/Conclusion High levels of miR-21-5p-enriched pEXOs during the late postoperative period depict higher LV Rev-Rem after MVR. miR-21-5p-enriched pEXOs may be helpful to predict and to treat incomplete LV Rev-Rem after successful early surgical MVR.
Collapse
Affiliation(s)
- Fausto Pizzino
- Unit of Translational Critical Care Medicine, Scuola Superiore Sant'Anna, Pisa, Italy.,Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Giulia Furini
- Unit of Translational Critical Care Medicine, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Valentina Casieri
- Unit of Translational Critical Care Medicine, Scuola Superiore Sant'Anna, Pisa, Italy
| | | | | | | | | | | | | | | | - Vincenzo Lionetti
- Unit of Translational Critical Care Medicine, Scuola Superiore Sant'Anna, Pisa, Italy.,Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| |
Collapse
|
19
|
Bagardi M, Ghilardi S, Zamarian V, Ceciliani F, Brambilla PG, Lecchi C. Circulating MiR-30b-5p is upregulated in Cavalier King Charles Spaniels affected by early myxomatous mitral valve disease. PLoS One 2022; 17:e0266208. [PMID: 35816500 PMCID: PMC9273067 DOI: 10.1371/journal.pone.0266208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 06/24/2022] [Indexed: 01/12/2023] Open
Abstract
There is a growing interest in developing new molecular markers of heart disease in young dogs affected by myxomatous mitral valve disease. The study aimed to measure 3 circulating microRNAs and their application as potential biomarkers in the plasma of Cavalier King Charles Spaniels with early asymptomatic myxomatous mitral valve disease. The hypothesis is that healthy Cavalier King Charles Spaniels have different microRNA expression profiles than affected dogs in American College of Veterinary Internal Medicine (ACVIM) stage B1. The profiles can differ within the same class among subjects of different ages. This is a prospective cross-sectional study. Thirty-three Cavalier King Charles Spaniels in ACVIM stage B1 were divided into three groups (11 younger than 3 years, 11 older than 3 years and younger than 7 years, and 11 older than 7 years), and 11 healthy (ACVIM stage A) dogs of the same breed were included as the control group. Three circulating microRNAs (miR-1-3p, miR30b-5p, and miR-128-3p) were measured by quantitative real-time PCR using TaqMan® probes. Diagnostic performance was evaluated by calculating the area under the receiver operating curve (AUC). MiR-30b-5p was significantly higher in ACVIM B1 dogs than in ACVIM A subjects, and the area under the receiver operating curve was 0.79. According to the age of dogs, the amount of miR-30b-5p was statistically significantly higher in group B1<3y (2.3 folds, P = 0.034), B1 3-7y (2.2 folds, P = 0.028), and B1>7y (2.7 folds, P = 0.018) than in group A. The area under the receiver operating curves were fair in discriminating between group B1<3y and group A (AUC 0.780), between B1 3-7y and A (AUC 0.78), and good in discriminating between group B1>7y and A (AUC 0.822). Identifying dogs with early asymptomatic myxomatous mitral valve disease through the evaluation of miR-30b-5p represents an intriguing possibility that certainly merits further research. Studies enrolling a larger number of dogs with preclinical stages of myxomatous mitral valve disease are needed to expand further and validate conclusively the preliminary findings from this report.
Collapse
Affiliation(s)
- Mara Bagardi
- Department of Veterinary Medicine and Animal Science, University of Milan, Lodi, Italy
| | - Sara Ghilardi
- Department of Veterinary Medicine and Animal Science, University of Milan, Lodi, Italy
| | | | - Fabrizio Ceciliani
- Department of Veterinary Medicine and Animal Science, University of Milan, Lodi, Italy
| | - Paola G. Brambilla
- Department of Veterinary Medicine and Animal Science, University of Milan, Lodi, Italy
- * E-mail:
| | - Cristina Lecchi
- Department of Veterinary Medicine and Animal Science, University of Milan, Lodi, Italy
| |
Collapse
|
20
|
Petroušková P, Hudáková N, Maloveská M, Humeník F, Cizkova D. Non-Exosomal and Exosome-Derived miRNAs as Promising Biomarkers in Canine Mammary Cancer. Life (Basel) 2022; 12:life12040524. [PMID: 35455015 PMCID: PMC9032658 DOI: 10.3390/life12040524] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 02/06/2023] Open
Abstract
Canine mammary cancer (CMC), similar to human breast cancer (HBC) in many aspects, is the most common neoplasm associated with significant mortality in female dogs. Due to the limited therapy options, biomarkers are highly desirable for early clinical diagnosis or cancer progression monitoring. Since the discovery of microRNAs (miRNAs or miRs) as post-transcriptional gene regulators, they have become attractive biomarkers in oncological research. Except for intracellular miRNAs and cell-free miRNAs, exosome-derived miRNAs (exomiRs) have drawn much attention in recent years as biomarkers for cancer detection. Analysis of exosomes represents a non-invasive, pain-free, time- and money-saving alternative to conventional tissue biopsy. The purpose of this review is to provide a summary of miRNAs that come from non-exosomal sources (canine mammary tumor, mammary tumor cell lines or canine blood serum) and from exosomes as promising biomarkers of CMC based on the current literature. As is discussed, some of the miRNAs postulated as diagnostic or prognostic biomarkers in CMC were also altered in HBC (such as miR-21, miR-29b, miR-141, miR-429, miR-200c, miR-497, miR-210, miR-96, miR-18a, miR19b, miR-20b, miR-93, miR-101, miR-105a, miR-130a, miR-200c, miR-340, miR-486), which may be considered as potential disease-specific biomarkers in both CMC and HBC.
Collapse
Affiliation(s)
- Patrícia Petroušková
- Centre of Experimental and Clinical Regenerative Medicine, The University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovakia; (P.P.); (N.H.); (M.M.); (F.H.)
| | - Nikola Hudáková
- Centre of Experimental and Clinical Regenerative Medicine, The University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovakia; (P.P.); (N.H.); (M.M.); (F.H.)
| | - Marcela Maloveská
- Centre of Experimental and Clinical Regenerative Medicine, The University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovakia; (P.P.); (N.H.); (M.M.); (F.H.)
| | - Filip Humeník
- Centre of Experimental and Clinical Regenerative Medicine, The University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovakia; (P.P.); (N.H.); (M.M.); (F.H.)
| | - Dasa Cizkova
- Centre of Experimental and Clinical Regenerative Medicine, The University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovakia; (P.P.); (N.H.); (M.M.); (F.H.)
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dúbravská Cesta 9, 845 10 Bratislava, Slovakia
- Correspondence: ; Tel.: +421-918-752-157
| |
Collapse
|
21
|
Gupta S, Mazumder P. Exosomes as diagnostic tools. Adv Clin Chem 2022; 110:117-144. [DOI: 10.1016/bs.acc.2022.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
22
|
Jadli AS, Parasor A, Gomes KP, Shandilya R, Patel VB. Exosomes in Cardiovascular Diseases: Pathological Potential of Nano-Messenger. Front Cardiovasc Med 2021; 8:767488. [PMID: 34869682 PMCID: PMC8632805 DOI: 10.3389/fcvm.2021.767488] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/06/2021] [Indexed: 12/15/2022] Open
Abstract
Cardiovascular diseases (CVDs) represent a major global health problem, due to their continued high incidences and mortality. The last few decades have witnessed new advances in clinical research which led to increased survival and recovery in CVD patients. Nevertheless, elusive and multifactorial pathophysiological mechanisms of CVD development perplexed researchers in identifying efficacious therapeutic interventions. Search for novel and effective strategies for diagnosis, prevention, and intervention for CVD has shifted research focus on extracellular vesicles (EVs) in recent years. By transporting molecular cargo from donor to recipient cells, EVs modulate gene expression and influence the phenotype of recipient cells, thus EVs prove to be an imperative component of intercellular signaling. Elucidation of the role of EVs in intercellular communications under physiological conditions implied the enormous potential of EVs in monitoring and treatment of CVD. The EVs secreted from the myriad of cells in the cardiovascular system such as cardiomyocytes, cardiac fibroblasts, cardiac progenitor cells, endothelial cells, inflammatory cells may facilitate the communication in physiological and pathological conditions. Understanding EVs-mediated cellular communication may delineate the mechanism of origin and progression of cardiovascular diseases. The current review summarizes exosome-mediated paracrine signaling leading to cardiovascular disease. The mechanistic role of exosomes in cardiovascular disease will provide novel avenues in designing diagnosis and therapeutic interventions.
Collapse
Affiliation(s)
- Anshul S Jadli
- Department of Physiology and Pharmacology, Cumming School of Medicine, Calgary, AB, Canada.,Libin Cardiovascular Institute, University of Calgary, Calgary, AB, Canada
| | - Ananya Parasor
- Department of Physiology and Pharmacology, Cumming School of Medicine, Calgary, AB, Canada.,Libin Cardiovascular Institute, University of Calgary, Calgary, AB, Canada
| | - Karina P Gomes
- Department of Physiology and Pharmacology, Cumming School of Medicine, Calgary, AB, Canada.,Libin Cardiovascular Institute, University of Calgary, Calgary, AB, Canada
| | - Ruchita Shandilya
- Department of Physiology and Pharmacology, Cumming School of Medicine, Calgary, AB, Canada.,Libin Cardiovascular Institute, University of Calgary, Calgary, AB, Canada
| | - Vaibhav B Patel
- Department of Physiology and Pharmacology, Cumming School of Medicine, Calgary, AB, Canada.,Libin Cardiovascular Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
23
|
Ro WB, Kang MH, Song DW, Kim HS, Lee GW, Park HM. Identification and Characterization of Circulating MicroRNAs as Novel Biomarkers in Dogs With Heart Diseases. Front Vet Sci 2021; 8:729929. [PMID: 34708100 PMCID: PMC8542680 DOI: 10.3389/fvets.2021.729929] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/07/2021] [Indexed: 01/19/2023] Open
Abstract
Background: Previous studies in humans have confirmed dysregulations of circulating microRNAs (miRNAs) in patients with various cardiovascular diseases. However, studies on circulating miRNAs in dogs with various heart diseases are limited in number. This study aimed to identify significantly dysregulated circulating miRNAs and characterize them as novel biomarkers in dogs with heart diseases. Materials and Methods: Circulating levels of 11 miRNAs were investigated in serum samples of 82 dogs (72 with heart diseases and 10 healthy dogs) using quantitative reverse transcription-polymerase chain reaction. The results were correlated to clinical data including echocardiographic results and N-terminal pro B-type natriuretic peptide (NT-proBNP) levels. Results: Upregulation of cfa-miR-130b was observed in dogs with myxomatous mitral valve degeneration (MMVD) stage B, patent ductus arteriosus, and pulmonic stenosis. In dogs with MMVD stage B, cfa-miR-130b was upregulated and correlated with clinical indices. In receiver operating characteristic (ROC) analysis, cfa-miR-130b accurately distinguished dogs with diseases from healthy dogs. We also observed that cfa-miR-375 and cfa-let-7b were upregulated in dogs with concentric cardiac hypertrophy. The cfa-miR-375 was correlated with concentric hypertrophy indices and was an accurate indicator of concentric hypertrophy in ROC analysis. Conclusions: The miRNAs identified in this study may be used as novel biomarkers and possible candidates for therapeutic targets in various canine heart diseases.
Collapse
Affiliation(s)
- Woong-Bin Ro
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Konkuk University, Seoul, South Korea
| | - Min-Hee Kang
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Konkuk University, Seoul, South Korea
| | - Doo-Won Song
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Konkuk University, Seoul, South Korea
| | - Heyong-Seok Kim
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Konkuk University, Seoul, South Korea
| | - Ga-Won Lee
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Konkuk University, Seoul, South Korea
| | - Hee-Myung Park
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Konkuk University, Seoul, South Korea
| |
Collapse
|
24
|
Zhuo Z, Wang J, Luo Y, Zeng R, Zhang C, Zhou W, Guo K, Wu H, Sha W, Chen H. Targeted extracellular vesicle delivery systems employing superparamagnetic iron oxide nanoparticles. Acta Biomater 2021; 134:13-31. [PMID: 34284151 DOI: 10.1016/j.actbio.2021.07.027] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 02/05/2023]
Abstract
In the past decade, the study of extracellular vesicles (EVs), especially exosomes (50-150 nm) have attracted growing interest in numerous areas of cancer and tissue regeneration due to their unique biological features. A low isolation yield and insufficient targeting abilities limit their therapeutic applicability. Recently, superparamagnetic iron oxide nanoparticles (SPIONs) with magnetic navigation have been exploited to enhance the targeting ability of EVs. To construct targeted EV delivery systems engineered by SPIONs, several groups have pioneered the use of different techniques, such as electroporation, natural incubation, and cell extrusion, to directly internalize SPIONs into EVs. Furthermore, some endogenous ligands, such as transferrins, antibodies, aptamers, and streptavidin, were shown to enable modification of SPIONs, which increases binding with EVs. In this review, we summarized recent advances in targeted EV delivery systems engineered by SPIONs and focused on the key methodological approaches and the current applications of magnetic EVs. This report aims to address the existing challenges and provide comprehensive insights into targeted EV delivery systems. STATEMENT OF SIGNIFICANCE: Targeted extracellular vesicle (EV) delivery systems engineered by superparamagnetic iron oxide nanoparticles (SPIONs) have attracted wide attention and research interest in recent years. Such strategies employ external magnet fields to manipulate SPION-functionalized EVs remotely, aiming to enhance their accumulation and penetration in vivo. Although iron oxide nanoparticle laden EVs are interesting, they are controversial at present, hampering the progress in their clinical application. A thorough integration of these studies is needed for an advanced insight and rational design of targeted EV delivery systems. In this review, we summarize the latest advances in the design strategies of targeted EV delivery systems engineered by SPIONs with a focus on their key methodological approaches, current applications, limitation and future perspectives, which may facilitate the development of natural theranostic nanoplatforms.
Collapse
Affiliation(s)
- Zewei Zhuo
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China; School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China
| | - Jinghua Wang
- Department of Hematology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Yujun Luo
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China; Shantou University Medical College, Shantou 515041, China
| | - Ruijie Zeng
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China; Shantou University Medical College, Shantou 515041, China
| | - Chen Zhang
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Weijie Zhou
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Kehang Guo
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Huihuan Wu
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Weihong Sha
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.
| | - Hao Chen
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.
| |
Collapse
|
25
|
Henderson J, Dubey PK, Patil M, Singh S, Dubey S, Namakkal Soorappan R, Kannappan R, Sethu P, Qin G, Zhang J, Krishnamurthy P. microRNA-377 Signaling Modulates Anticancer Drug-Induced Cardiotoxicity in Mice. Front Cardiovasc Med 2021; 8:737826. [PMID: 34485421 PMCID: PMC8415717 DOI: 10.3389/fcvm.2021.737826] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 07/26/2021] [Indexed: 11/13/2022] Open
Abstract
Doxorubicin (DOX, an anthracycline) is a widely used chemotherapy agent against various forms of cancer; however, it is also known to induce dose-dependent cardiotoxicity leading to adverse complications. Investigating the underlying molecular mechanisms and strategies to limit DOX-induced cardiotoxicity might have potential clinical implications. Our previous study has shown that expression of microRNA-377 (miR-377) increases in cardiomyocytes (CMs) after cardiac ischemia-reperfusion injury in mice, but its specific role in DOX-induced cardiotoxicity has not been elucidated. In the present study, we investigated the effect of anti-miR-377 on DOX-induced cardiac cell death, remodeling, and dysfunction. We evaluated the role of miR-377 in CM apoptosis, its target analysis by RNA sequencing, and we tested the effect of AAV9-anti-miR-377 on DOX-induced cardiotoxicity and mortality. DOX administration in mice increases miR-377 expression in the myocardium. miR-377 inhibition in cardiomyocyte cell line protects against DOX-induced cell death and oxidative stress. Furthermore, RNA sequencing and Gene Ontology (GO) analysis revealed alterations in a number of cell death/survival genes. Intriguingly, we observed accelerated mortality and enhanced myocardial remodeling in the mice pretreated with AAV9-anti-miR-377 followed by DOX administration as compared to the AAV9-scrambled-control-pretreated mice. Taken together, our data suggest that in vitro miR-377 inhibition protects against DOX-induced cardiomyocyte cell death. On the contrary, in vivo administration of AAV9-anti-miR-377 increases mortality in DOX-treated mice.
Collapse
Affiliation(s)
- John Henderson
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Praveen K Dubey
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Mallikarjun Patil
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Sarojini Singh
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Shubham Dubey
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Rajasekaran Namakkal Soorappan
- Division of Molecular & Cellular Pathology, Department of Pathology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Ramaswamy Kannappan
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Palaniappan Sethu
- Division of Cardiovascular Disease, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Gangjian Qin
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jianyi Zhang
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Prasanna Krishnamurthy
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
26
|
TRPV1 Receptor Identification in Bovine and Canine Mitral Valvular Interstitial Cells. Vet Sci 2021; 8:vetsci8090183. [PMID: 34564577 PMCID: PMC8473199 DOI: 10.3390/vetsci8090183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/24/2021] [Accepted: 09/01/2021] [Indexed: 11/19/2022] Open
Abstract
Myxomatous mitral valve degeneration (MMVD) is the most common acquired cardiac disease in canine species, and valvular interstitial cells (VICs) are considered the main responsible for the development of this pathology. The scientific interest is focused on isolating and characterizing these cells. The aims of the present study were to verify a novel VICs mechanical isolation method and to characterize isolated cells using immunocytochemistry and immunofluorescence, with parallel histological and immunohistochemistry assays on bovine and canine healthy and MMVD mitral valves. Antibodies against vimentin (VIM), smooth muscle actin (SMA), von Willebrand (vW) factor, Transforming Growth Factor (TGF) β1, and Transient Receptor Potential Vanilloid 1 (TRPV1) were used. The isolation method was considered reliable and able to isolate only VICs. The different assays demonstrated a different expression of SMA in healthy and MMVD mitral valves, and TRPV1 was isolated for the first time from bovine and canine VICs and the correspondent mitral valve leaflets. The novelties of the present study are the new isolation method, that may allow correlations between laboratory and clinical conditions, and the identification of TRPV1, which will lead to further investigations to understand its function and possible role in the etiology of MMVD and to the design of new therapeutic strategies.
Collapse
|
27
|
Diomaiuto E, Principe V, De Luca A, Laperuta F, Alterisio C, Di Loria A. Exosomes in Dogs and Cats: An Innovative Approach to Neoplastic and Non-Neoplastic Diseases. Pharmaceuticals (Basel) 2021; 14:ph14080766. [PMID: 34451863 PMCID: PMC8400600 DOI: 10.3390/ph14080766] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/08/2021] [Accepted: 08/03/2021] [Indexed: 12/20/2022] Open
Abstract
Exosomes are extracellular vesicles with a diameter between 40 and 120 nm, which are derived from all types of cells and released into all biological fluids, such as blood plasma, serum, urine, breast milk, colostrum, and more. They contain proteins, nucleic acids (mRNA, miRNA, other non-coding RNA, and DNA), and lipids. Exosomes represent a potentially accurate footprint of the miRNA profile of the parental cell and can therefore be proposed as potential and sensitive biomarkers, both in diagnosing and monitoring a variety of diseases in humans and animals. Liquid biopsy offers itself as a non-invasive or minimally invasive, pain-free, time-saving alternative to conventional tissue biopsy. Exosomes in both human and veterinary medicine find their major application in neoplastic diseases, but applications in the field of veterinary cardiology, nephrology, reproduction, parasitology, and regenerative medicine are currently being explored. Exosomes can therefore be used as diagnostic, prognostic, and, in some cases, therapeutic tools for several conditions. The aim of this review was to assess the current applications of exosomes in veterinary medicine, particularly in dog and cat patients.
Collapse
|
28
|
Wang QG, Cheng BCY, He YZ, Li LJ, Ling Y, Luo G, Wang L, Liang S, Zhang Y. miR-320a in serum exosomes promotes myocardial fibroblast proliferation via regulating the PIK3CA/Akt/mTOR signaling pathway in HEH2 cells. Exp Ther Med 2021; 22:873. [PMID: 34194551 PMCID: PMC8237386 DOI: 10.3892/etm.2021.10305] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 03/25/2021] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs/miRs) serve an important role in the pathogenesis of chronic heart failure (CHF). A number of reports have illustrated the regulatory effect of serum exosomal miRNA on myocardial fibrosis. The present study aimed to investigate the expression of miR-320a in serum exosomes, as well as the effect of miR-320a on myocardial fibroblast proliferation. Serum exosome samples from 10 patients with CHF and 5 healthy volunteers were obtained and characterized. mRNA and protein expression levels were measured via reverse transcription-quantitative PCR and western blotting, respectively. The content of soluble growth stimulation expressed gene 2 (sST2) was determined via ELISA. HEH2 cell viability and apoptosis were detected by performing MTT assays and flow cytometry, respectively. The results demonstrated that serum miR-320a expression levels and sST2 content were significantly increased in patients with CHF compared with healthy controls, and the expression of serum miR-320a was significantly correlated with clinical CHF indexes. miR-320a expression levels were significantly increased in exosomes isolated from patients with CHF compared with those isolated from healthy controls. Phosphoinositide-3-kinase catalytic α polypeptide gene (PIK3CA) expression levels and sST2 content were increased in HEH2 cells following transfection with miR-320a mimics compared with NC-mimic, whereas miR-320a inhibitor displayed contrasting effects by reduced the cell viability and apoptosis in myocardial fibroblasts compared with the NC-inhibitor group. The protein expression levels of collagen I, collagen III, α-smooth muscle actin, phosphorylated (p)-mTOR (ser 2448)/mTOR, p-Akt (ser 473)/Akt, p-Akt (thr 308)/Akt and PIK3CA were significantly increased in miR-320a mimic-transfected HEH2 cells compared with the NC-mimics groups. By contrast, miR-320a inhibitor notably downregulated the expression levels of these proteins compared with the NC-inhibitor group. Collectively, the results of the present study demonstrated that miR-320a promoted myocardial fibroblast proliferation via regulating the PIK3CA/Akt/mTOR signaling pathway in HEH2 cells, suggesting that serum exosomal miR-320a may serve as a potential biomarker for the diagnosis of CHF.
Collapse
Affiliation(s)
- Qing-Gao Wang
- Department of Cardiology, First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, Guangxi Zhuang Autonomous Region 530023, P.R. China
| | - Brian Chi-Yan Cheng
- College of Professional and Continuing Education, The Hong Kong Polytechnic University, Hong Kong 999077, SAR, P.R. China
| | - Ya-Zhou He
- Department of Cardiology, First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, Guangxi Zhuang Autonomous Region 530023, P.R. China
| | - Li-Juan Li
- Department of Cardiology, First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, Guangxi Zhuang Autonomous Region 530023, P.R. China
| | - Yun Ling
- School of Nursing, Guangxi University of Chinese Medicine, Nanning, Guangxi Zhuang Autonomous Region 530200, P.R. China
| | - Gan Luo
- Department of Pharmacology, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, P.R. China
| | - Li Wang
- Department of Pharmacology, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, P.R. China
| | - Shan Liang
- Department of Cardiology, First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, Guangxi Zhuang Autonomous Region 530023, P.R. China
| | - Yi Zhang
- Department of Pharmacology, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, P.R. China
| |
Collapse
|
29
|
O'Brien MJ, Beijerink NJ, Wade CM. Genetics of canine myxomatous mitral valve disease. Anim Genet 2021; 52:409-421. [PMID: 34028063 DOI: 10.1111/age.13082] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2021] [Indexed: 12/26/2022]
Abstract
Myxomatous mitral valve disease (MMVD) is the most common heart disease and cause of cardiac death in domestic dogs. MMVD is characterised by slow progressive myxomatous degeneration from the tips of the mitral valves onwards with subsequent mitral valve regurgitation, and left atrial and ventricular dilatation. Although the disease usually has a long asymptomatic period, in dogs with severe disease, mortality is typically secondary to left-sided congestive heart failure. Although it is not uncommon for dogs to survive long enough in the asymptomatic period to die from unrelated causes; a proportion of dogs rapidly advance into congestive heart failure. Heightened prevalence in certain breeds, such as the Cavalier King Charles Spaniel, has indicated that MMVD is under a genetic influence. The genetic characterisation of the factors that underlie the difference in progression of disease is of strong interest to those concerned with dog longevity and welfare. Advanced genomic technologies have the potential to provide information that may impact treatment, prevalence, or severity of MMVD through the elucidation of pathogenic mechanisms and the detection of predisposing genetic loci of major effect. Here we describe briefly the clinical nature of the disorder and consider the physiological mechanisms that might impact its occurrence in the domestic dog. Using results from comparative genomics we suggest possible genetic approaches for identifying genetic risk factors within breeds. The Cavalier King Charles Spaniel breed represents a robust resource for uncovering the genetic basis of MMVD.
Collapse
Affiliation(s)
- M J O'Brien
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - N J Beijerink
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Sydney, NSW, 2006, Australia.,Veterinaire Specialisten Vught, Reutsedijk 8a, Vught, 5264 PC, The Netherlands
| | - C M Wade
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|
30
|
Ro WB, Kang MH, Song DW, Lee SH, Park HM. Expression Profile of Circulating MicroRNAs in Dogs With Cardiac Hypertrophy: A Pilot Study. Front Vet Sci 2021; 8:652224. [PMID: 33898546 PMCID: PMC8062772 DOI: 10.3389/fvets.2021.652224] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/15/2021] [Indexed: 01/19/2023] Open
Abstract
This study aimed to identify the expression profile of circulating microRNAs in dogs with eccentric or concentric cardiac hypertrophy. A total of 291 microRNAs in serum samples of five dogs with myxomatous mitral valve degeneration (MMVD) and five dogs with pulmonic stenosis (PS) were compared with those of five healthy dogs using microarray analysis. Results of microarray analysis revealed up-regulation of cfa-miR-130b [fold change (FC) = 2.13, p = 0.014), down-regulation of cfa-miR-375 (FC = 1.51, p = 0.014), cfa-miR-425 (FC = 2.56, p = 0.045), cfa-miR-30d (FC = 3.02, p = 0.047), cfa-miR-151 (FC = 1.89, p = 0.023), cfa-miR-19b (FC = 3.01, p = 0.008), and cfa-let-7g (FC = 2.53, p = 0.015) in MMVD group which showed eccentric cardiac hypertrophy, up-regulation of cfa-miR-346 (FC = 2.74, p = 0.032), down-regulation of cfa-miR-505 (FC = 1.56, p = 0.016) in PS group which showed concentric cardiac hypertrophy, and down-regulation of cfa-miR-30c (FC = 3.45, p = 0.013 in MMVD group; FC = 3.31, p = 0.014 in PS group) and cfa-let-7b (FC = 11.42, p = 0.049 in MMVD group; FC = 5.88, p = 0.01 in PS group) in both MMVD and PS groups. In addition, the unsupervised hierarchical clustering of differentially expressed microRNAs in each group resulted in complete separation of healthy dogs from dogs with heart diseases. Therefore, eleven microRNAs among 291 microRNAs were identified as differentially expressed circulating microRNAs related to MMVD or PS in dogs. This pilot study demonstrates that the microRNAs identified in this study could be possible candidates for novel biomarker or therapeutic target related to cardiac hypertrophy in dogs.
Collapse
Affiliation(s)
- Woong-Bin Ro
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Konkuk University, Seoul, South Korea
| | - Min-Hee Kang
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Konkuk University, Seoul, South Korea
| | - Doo-Won Song
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Konkuk University, Seoul, South Korea
| | - Sung-Hun Lee
- Department of Cancer Genome Research, Cancer Research Institute, Clinomics Inc., Seoul, South Korea
| | - Hee-Myung Park
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Konkuk University, Seoul, South Korea
| |
Collapse
|
31
|
Bongiovanni L, Andriessen A, Wauben MHM, Hoen ENMN', de Bruin A. Extracellular Vesicles: Novel Opportunities to Understand and Detect Neoplastic Diseases. Vet Pathol 2021; 58:453-471. [PMID: 33813952 PMCID: PMC8064535 DOI: 10.1177/0300985821999328] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
With a size range from 30 to 1000 nm, extracellular vesicles (EVs) are one of the smallest cell components able to transport biologically active molecules. They mediate intercellular communications and play a fundamental role in the maintenance of tissue homeostasis and pathogenesis in several types of diseases. In particular, EVs actively contribute to cancer initiation and progression, and there is emerging understanding of their role in creation of the metastatic niche. This fact underlies the recent exponential growth in EV research, which has improved our understanding of their specific roles in disease and their potential applications in diagnosis and therapy. EVs and their biomolecular cargo reflect the state of the diseased donor cells, and can be detected in body fluids and exploited as biomarkers in cancer and other diseases. Relatively few studies have been published on EVs in the veterinary field. This review provides an overview of the features and biology of EVs as well as recent developments in EV research including techniques for isolation and analysis, and will address the way in which the EVs released by diseased tissues can be studied and exploited in the field of veterinary pathology. Uniquely, this review emphasizes the important contribution that pathologists can make to the field of EV research: pathologists can help EV scientists in studying and confirming the role of EVs and their molecular cargo in diseased tissues and as biomarkers in liquid biopsies.
Collapse
Affiliation(s)
- Laura Bongiovanni
- 90051Utrecht University, Utrecht, the Netherlands.,University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.,Present address: Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
| | | | | | | | - Alain de Bruin
- 90051Utrecht University, Utrecht, the Netherlands.,University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
32
|
Kwon JS, Schumacher SM, Gao E, Chuprun JK, Ibetti J, Roy R, Khan M, Kishore R, Koch WJ. Characterization of βARKct engineered cellular extracellular vesicles and model specific cardioprotection. Am J Physiol Heart Circ Physiol 2021; 320:H1276-H1289. [PMID: 33513081 PMCID: PMC8260382 DOI: 10.1152/ajpheart.00571.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 01/20/2021] [Accepted: 01/20/2021] [Indexed: 12/17/2022]
Abstract
Recent data supporting any benefit of stem cell therapy for ischemic heart disease have suggested paracrine-based mechanisms via extracellular vesicles (EVs) including exosomes. We have previously engineered cardiac-derived progenitor cells (CDCs) to express a peptide inhibitor, βARKct, of G protein-coupled receptor kinase 2, leading to improvements in cell proliferation, survival, and metabolism. In this study, we tested whether βARKct-CDC EVs would be efficacious when applied to stressed myocytes in vitro and in vivo. When isolated EVs from βARKct-CDCs and control GFP-CDCs were added to cardiomyocytes in culture, they both protected against hypoxia-induced apoptosis. We tested whether these EVs could protect the mouse heart in vivo, following exposure either to myocardial infarction (MI) or acute catecholamine toxicity. Both types of EVs significantly protected against ischemic injury and improved cardiac function after MI compared with mice treated with EVs from mouse embryonic fibroblasts; however, βARKct EVs treated mice did display some unique beneficial properties including significantly altered pro- and anti-inflammatory cytokines. Importantly, in a catecholamine toxicity model of heart failure (HF), myocardial injections of βARKct-containing EVs were superior at preventing HF compared with control EVs, and this catecholamine toxicity protection was recapitulated in vitro. Therefore, introduction of the βARKct into cellular EVs can have improved reparative properties in the heart especially against catecholamine damage, which is significant as sympathetic nervous system activity is increased in HF.NEW & NOTEWORTHY βARKct, the peptide inhibitor of GRK2, improves survival and metabolic functions of cardiac-derived progenitor cells. As any benefit of stem cells in the ischemic and injured heart suggests paracrine mechanisms via secreted EVs, we investigated whether CDC-βARKct engineered EVs would show any benefit over control CDC-EVs. Compared with control EVs, βARKct-containing EVs displayed some unique beneficial properties that may be due to altered pro- and anti-inflammatory cytokines within the vesicles.
Collapse
Affiliation(s)
- Jin-Sook Kwon
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Sarah M Schumacher
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | | | - J Kurt Chuprun
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Jessica Ibetti
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Rajika Roy
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Mohsin Khan
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Raj Kishore
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Walter J Koch
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
33
|
Qin Z, Liao R, Xiong Y, Jiang L, Li J, Wang L, Han M, Sun S, Geng J, Yang Q, Zhang Z, Li Y, Du H, Su B. A narrative review of exosomes in vascular calcification. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:579. [PMID: 33987277 DOI: 10.21037/atm-20-7355] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Vascular calcification (VC) is the abnormal deposition of calcium, phosphorus, and other minerals in the vessel wall and can be commonly observed in diabetes, chronic kidney disease, and chronic inflammatory disease. It is closely associated with mortality from cardiovascular events. Traditionally, calcification is considered as a degenerative disease associated with the aging process, while increasing evidence has shown that the occurrence and development of calcification is an active biological process, which is highly regulated by multiple factors. The molecular mechanisms of VC have not yet been fully elucidated. Exosomes, as important transporters of substance transport and intercellular communication, have been shown to participate in VC. The regulation of VC by exosomes involves a number of complex biological processes, which occur through a variety of interaction mechanisms. However, the specific role and mechanism of exosomes in the process of VC are still not fully understood and require further study. This review will briefly describe the roles of exosomes in the process of VC including in the promotion of extracellular mineral deposits, induction of phenotypic conversion of vascular smooth muscle cells (VSMCs), transport of microRNA between cells, and regulation on autophagy and oxidative stress, with the aim of providing novel ideas for the clinical diagnosis and treatment of VC.
Collapse
Affiliation(s)
- Zheng Qin
- Department of nephrology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Ruoxi Liao
- Department of nephrology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Yuqin Xiong
- Department of nephrology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Luojia Jiang
- Department of nephrology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Jiameng Li
- Department of nephrology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Liya Wang
- Department of nephrology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Mei Han
- Department of nephrology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Si Sun
- Department of nephrology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Jiwen Geng
- Department of nephrology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Qinbo Yang
- Department of nephrology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Zhuyun Zhang
- Department of nephrology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Yupei Li
- Department of nephrology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China.,Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu, China
| | - Heyue Du
- Department of nephrology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Baihai Su
- Department of nephrology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
34
|
Taghiyar L, Jahangir S, Khozaei Ravari M, Shamekhi MA, Eslaminejad MB. Cartilage Repair by Mesenchymal Stem Cell-Derived Exosomes: Preclinical and Clinical Trial Update and Perspectives. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1326:73-93. [PMID: 33629260 DOI: 10.1007/5584_2021_625] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Osteoarthritis (OA) and other degenerative joint diseases are characterized by articular cartilage destruction, synovial inflammation, sclerosis of subchondral bone, and loss of extracellular matrix (ECM). Worldwide, these diseases are major causes of disability. Cell therapies have been considered to be the best therapeutic strategies for long-term treatment of articular cartilage diseases. It has been suggested that the mechanism of stem cell-based therapy is related to paracrine secretion of extracellular vesicles (EVs), which are recognized as the main secretion factors of stem cells. EVs, and in particular the subclass exosomes (Exos), are novel therapeutic approaches for treatment of cartilage lesions and OA. The results of recent studies have shown that EVs isolated from mesenchymal stem cells (MSCs) could inhibit OA progression. EVs isolated from various stem cell sources, such as MSCs, may contribute to tissue regeneration of the limbs, skin, heart, and other tissues. Here, we summarize recent findings of preclinical and clinical studies on different MSC-derived EVs and their effectiveness as a treatment for damaged cartilage. The Exos isolation techniques in OA treatment are also highlighted.
Collapse
Affiliation(s)
- Leila Taghiyar
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Shahrbano Jahangir
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mojtaba Khozaei Ravari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | | | - Mohamadreza Baghaban Eslaminejad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
35
|
Xue R, Tan W, Wu Y, Dong B, Xie Z, Huang P, He J, Dong Y, Liu C. Role of Exosomal miRNAs in Heart Failure. Front Cardiovasc Med 2020; 7:592412. [PMID: 33392270 PMCID: PMC7773699 DOI: 10.3389/fcvm.2020.592412] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/26/2020] [Indexed: 12/16/2022] Open
Abstract
Heart failure is the terminal outcome of the majority of cardiovascular diseases, which lacks specific diagnostic biomarkers and therapeutic targets. It contributes to most of cardiovascular hospitalizations and death despite of the current therapy. Therefore, it is important to explore potential molecules improving the diagnosis and treatment of heart failure. MicroRNAs (miRNAs) are small non-coding RNAs that have been reported to be involved in regulating processes of heart failure. After the discovery of miRNAs in exosomes, the subcellular distribution analysis of miRNAs is raising researchers' attention. Growing evidence demonstrates that exosomal miRNAs may be promising diagnostic and therapeutic molecules for heart failure. This review summarizes the role of exosomal miRNAs in heart failure in the prospect of molecular and clinical researches.
Collapse
Affiliation(s)
- Ruicong Xue
- Department of Cardiology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Weiping Tan
- Department of Respiratory, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yuzhong Wu
- Department of Cardiology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Bin Dong
- Department of Cardiology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zengshuo Xie
- Department of Cardiology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Peisen Huang
- Department of Cardiology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jiangui He
- Department of Cardiology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yugang Dong
- Department of Cardiology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Chen Liu
- Department of Cardiology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
36
|
Zarà M, Amadio P, Campodonico J, Sandrini L, Barbieri SS. Exosomes in Cardiovascular Diseases. Diagnostics (Basel) 2020; 10:E943. [PMID: 33198302 PMCID: PMC7696149 DOI: 10.3390/diagnostics10110943] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/08/2020] [Accepted: 11/10/2020] [Indexed: 02/07/2023] Open
Abstract
Exosomes are nano-sized biovesicles of endocytic origin physiologically released by nearly all cell types into surrounding body fluids. They carry cell-specific cargos of protein, lipids, and genetic materials and can be selectively taken up by neighboring or distant cells. Since the intrinsic properties of exosomes are strictly influenced by the state of the parental cell and by the cellular microenvironment, the analysis of exosome origin and content, and their cell-targeting specificity, make them attractive as possible diagnostic and prognostic biomarkers. While the possible role of exosomes as messengers and a regenerative tool in cardiovascular diseases (CVDs) is actively investigated, the evidence about their usefulness as biomarkers is still limited and incomplete. Further complications are due to the lack of consensus regarding the most appropriate approach for exosome isolation and characterization, both important issues for their effective clinical translation. As a consequence, in this review, we will discuss the few information currently accessible about the diagnostic/prognostic potential of exosomes in CVDs and on the methodologies available for exosome isolation, analysis, and characterization.
Collapse
Affiliation(s)
- Marta Zarà
- Unit of Brain-Heart axis: Cellular and Molecular Mechanisms, Centro Cardiologico Monzino IRCCS, via Parea 4, 20138 Milan, Italy; (P.A.); (L.S.)
| | - Patrizia Amadio
- Unit of Brain-Heart axis: Cellular and Molecular Mechanisms, Centro Cardiologico Monzino IRCCS, via Parea 4, 20138 Milan, Italy; (P.A.); (L.S.)
| | - Jeness Campodonico
- Intensive Cardiac Care Unit, Centro Cardiologico Monzino IRCCS, via Parea 4, 20138 Milan, Italy;
| | - Leonardo Sandrini
- Unit of Brain-Heart axis: Cellular and Molecular Mechanisms, Centro Cardiologico Monzino IRCCS, via Parea 4, 20138 Milan, Italy; (P.A.); (L.S.)
| | - Silvia S. Barbieri
- Unit of Brain-Heart axis: Cellular and Molecular Mechanisms, Centro Cardiologico Monzino IRCCS, via Parea 4, 20138 Milan, Italy; (P.A.); (L.S.)
| |
Collapse
|
37
|
Zhou R, Wang L, Zhao G, Chen D, Song X, Momtazi-Borojeni AA, Yuan H. Circulating exosomal microRNAs as emerging non-invasive clinical biomarkers in heart failure: Mega bio-roles of a nano bio-particle. IUBMB Life 2020; 72:2546-2562. [PMID: 33053610 DOI: 10.1002/iub.2396] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 09/22/2020] [Accepted: 10/02/2020] [Indexed: 12/12/2022]
Abstract
Exosomes are nano-sized extracellular vesicles containing a cell-specific biologically active cargo of proteins and genetic materials. Exosomes are constitutively released from almost all cell-types and affect neighboring or distant cells through a complex intercellular exchange of the genetic information and/or regulation of certain gene expressions that change the function and behavior of recipient cells. Those released into body fluids are the major mediators of intercellular communications. The success of the biological functions of exosomes is highly mediated by the effective transfer of microRNAs (miRs). Exosomes secreted by a damaged or diseased heart can exhibit alterations in the miRs' profile that may reflect the cellular origin and (patho)physiological state, as a "signature" or "fingerprint" of the donor cell. It has been shown that the transportation of cardiac-specific miRs in exosomes can be rapidly detected and measured, holding great potential as biomarkers in heart diseases. Currently, the search for new biomarkers of heart diseases remains a large and increasing enterprise. Notably, circulating exosomal miRs (Exo-miRs) have successfully gained huge interests for their diagnostic and prognostic potentials. The present review highlights circulating Exo-miRs explored for diagnosis/prognosis and outcome prediction in patients with heart failure (HF). To this end, we explain the feasibility of exosomes as clinical biomarkers, discuss the priority of circulating Exo-miRs over non-exosomal ones as a biomarker, and then outline reported circulating Exo-miRs having the biomarker function in HF patients, together with their mechanism of action. In conclusion, circulating Exo-miRs represent emerging diagnostic (Exo-miR-92b-5p, Exo-miR-146a, Exo-miR-181c, and Exo-miR-495) and prognostic (Exo-miR-192, Exo-miR-194, Exo-miR-34a, Exo-miR-425, Exo-miR-744) biomarkers for HF.
Collapse
Affiliation(s)
- Runfa Zhou
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.,Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Leiyan Wang
- Clinical Skill Training Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Gang Zhao
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Dan Chen
- Department of Cardiology Electrocardiogram Room, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xiaoning Song
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.,Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Amir A Momtazi-Borojeni
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Haitao Yuan
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
38
|
Lan S, Zhou L, Wang Y, Fang L, Yang L, Zheng S, Zhou X, Tang B, Duan J, Wu X, Yang C, Hong T. miRNA Profiling of Circulating Small Extracellular Vesicles From Subarachnoid Hemorrhage Rats Using Next-Generation Sequencing. Front Cell Neurosci 2020; 14:242. [PMID: 32903819 PMCID: PMC7439219 DOI: 10.3389/fncel.2020.00242] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 07/13/2020] [Indexed: 12/31/2022] Open
Abstract
Background Extracellular vesicles (EVs) are produced during abnormal and normal physiological conditions. Understanding the expression profile of microRNA (miRNA) in plasma-derived small extracellular vesicles (sEVs) and their roles in subarachnoid hemorrhage (SAH) that cause cerebral vasospasm (CVS) is imperative. Methods Sprague Dawley rats (250–300 g) were allocated to sham or SAH groups established using endovascular perforation method. miRNA expression profiles of plasma sEVs in both groups (each n = 4) were evaluated using next-generation sequencing (NGS). Results There were 142 microRNAs (miRNAs) significantly expressed differently between the two groups, of which 73 were up-regulated while 69 were down-regulated in SAH sEVs compared with those of sham (p < 0.05; fold change ≥ 2). The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Gene Ontology (GO) analyses of differently expressed (DE) miRNAs revealed signaling pathways and target genes (TGs) in the SAH group. rno-miR-185-5p, rno-miR-103-3p, rno-miR-15b-3p, rno-miR-93-5p, and rno-miR-98-5p were the top five most up-regulated sEVs miRNAs. Conclusion Our results suggest that miRNA can be selectively packaged into sEVs under SAH, and this could help develop potential targets for the prevention, diagnosis, and treatment of CVS after this condition.
Collapse
Affiliation(s)
- Shihai Lan
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Lin Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yimei Wang
- Department of Plastic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Linchun Fang
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Le Yang
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Suyue Zheng
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - XinHui Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Bin Tang
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jian Duan
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiao Wu
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chengxing Yang
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Tao Hong
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
39
|
Narita M, Nishida H, Asahina R, Nakata K, Yano H, Dickinson PJ, Tanaka T, Akiyoshi H, Maeda S, Kamishina H. Expression of microRNAs in plasma and in extracellular vesicles derived from plasma for dogs with glioma and dogs with other brain diseases. Am J Vet Res 2020; 81:355-360. [PMID: 32228257 DOI: 10.2460/ajvr.81.4.355] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To measure expression of microRNAs (miRNAs) in plasma and in extracellular vesicles (EVs) derived from plasma for dogs with glioma and dogs with other brain diseases. SAMPLE Plasma samples from 11 dogs with glioma and 19 control dogs with various other brain diseases. PROCEDURES EVs were isolated from plasma samples by means of ultracentrifugation. Expression of 4 candidate reference miRNAs (let-7a, miR-16, miR-26a, and miR-103) and 4 candidate target miRNAs (miR-15b, miR-21, miR-155, and miR-342-3p) was quantified with reverse transcription PCR assays. Three software programs were used to select the most suitable reference miRNAs from among the 4 candidate reference miRNAs. Expression of the 4 target miRNAs was then calculated relative to expression of the reference genes in plasma and EVs, and relative expression was compared between dogs with glioma and control dogs with other brain diseases. RESULTS The most suitable reference miRNAs were miR-16 for plasma and let-7a for EVs. Relative expression of miR-15b in plasma and in EVs was significantly higher in dogs with glioma than in control dogs. Relative expression of miR-342-3p in EVs was significantly higher in dogs with glioma than in control dogs. CONCLUSIONS AND CLINICAL RELEVANCE Results suggested that miR-15b and miR-342-3p have potential as noninvasive biomarkers for differentiating glioma from other intracranial diseases in dogs. However, more extensive analysis of expression in specific glioma subtypes and grades, compared with expression in more defined control populations, will be necessary to assess their clinical relevance.
Collapse
|
40
|
Oh JG, Lee P, Gordon RE, Sahoo S, Kho C, Jeong D. Analysis of extracellular vesicle miRNA profiles in heart failure. J Cell Mol Med 2020; 24:7214-7227. [PMID: 32485073 PMCID: PMC7339231 DOI: 10.1111/jcmm.15251] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/25/2020] [Accepted: 03/13/2020] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) have recently emerged as an important carrier for various genetic materials including microRNAs (miRs). Growing evidences suggested that several miRs transported by EVs were particularly involved in modulating cardiac function. However, it has remained unclear what miRs are enriched in EVs and play an important role in the pathological condition. Therefore, we established the miR expression profiles in EVs from murine normal and failing hearts and consecutively identified substantially altered miRs. In addition, we have performed bioinformatics approach to predict potential cardiac outcomes through the identification of miR targets. Conclusively, we observed approximately 63% of predicted targets were validated with previous reports. Notably, the predicted targets by this approach were often involved in both beneficial and malicious signalling pathways, which may reflect heterogeneous cellular origins of EVs in tissues. Lastly, there has been an active debate on U6 whether it is a proper control. Through further analysis of EV miR profiles, miR‐676 was identified as a superior reference control due to its consistent and abundant expressions. In summary, our results contribute to identifying specific EV miRs for the potential therapeutic targets in heart failure and suggest that miR‐676 as a new reference control for the EV miR studies.
Collapse
Affiliation(s)
- Jae Gyun Oh
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Philyoung Lee
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ronald E Gordon
- Pathology Department, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Susmita Sahoo
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Changwon Kho
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Division of Applied Medicine, School of Korean Medicine, Pusan National University, Republic of Korea
| | - Dongtak Jeong
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
41
|
Tran PHL, Xiang D, Nguyen TNG, Tran TTD, Chen Q, Yin W, Zhang Y, Kong L, Duan A, Chen K, Sun M, Li Y, Hou Y, Zhu Y, Ma Y, Jiang G, Duan W. Aptamer-guided extracellular vesicle theranostics in oncology. Theranostics 2020; 10:3849-3866. [PMID: 32226524 PMCID: PMC7086349 DOI: 10.7150/thno.39706] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 12/20/2019] [Indexed: 12/14/2022] Open
Abstract
In the past decade, the study of exosomes, nanosized vesicles (50-150 nm) released into the extracellular space via the fusion of multivesicular bodies with the plasma membrane, has burgeoned with impressive achievements in theranostics applications. These nanosized vesicles have emerged as key players in homeostasis and in the pathogenesis of diseases owing to the variety of the cargos they can carry, the nature of the molecules packaged inside the vesicles, and the robust interactions between exosomes and target cells or tissues. Accordingly, the development of exosome-based liquid biopsy techniques for early disease detection and for monitoring disease progression marks a new era of precision medicine in the 21st century. Moreover, exosomes possess intrinsic properties - a nanosized structure and unique "homing effects" - that make them outstanding drug delivery vehicles. In addition, targeted exosome-based drug delivery systems can be further optimized using active targeting ligands such as nucleic acid aptamers. Indeed, the aptamers themselves can function as therapeutic and/or diagnostic tools based on their attributes of unique target-binding and non-immunogenicity. This review aims to provide readers with a current picture of the research on exosomes and aptamers and their applications in cancer theranostics, highlighting recent advances in their transition from the bench to the clinic.
Collapse
Affiliation(s)
- Phuong H-L Tran
- School of Medicine and Centre for Molecular and Medical Research, Deakin University, Waurn Ponds, Victoria, Australia
| | - Dongxi Xiang
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital/Harvard Medical School, 77 Avenue Louise Pasteur, Boston, MA 02115, USA
| | - Tuong N-G Nguyen
- School of Medicine and Centre for Molecular and Medical Research, Deakin University, Waurn Ponds, Victoria, Australia
| | - Thao T-D Tran
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Qian Chen
- Translational Medical Center, The Chinese People's Liberation Army General Hospital, 28 Fuxing Road, Haidian District, Beijing, China, 100853
| | - Wang Yin
- School of Medicine and Centre for Molecular and Medical Research, Deakin University, Waurn Ponds, Victoria, Australia
| | - Yumei Zhang
- School of Medicine and Centre for Molecular and Medical Research, Deakin University, Waurn Ponds, Victoria, Australia
| | - Lingxue Kong
- Institute for Frontier Materials, Deakin University, Waurn Ponds, Victoria, 3216, Australia
| | - Andrew Duan
- School of Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, 27 Rainforest Walk, Clayton VIC 3800, Australia
| | - Kuisheng Chen
- Department of Pathology, The First Affiliated Hospital, Zhengzhou University, He'nan Key Laboratory of Tumor Pathology, Zhengzhou 450052, China
| | - Miomio Sun
- Department of Pathology, The First Affiliated Hospital, Zhengzhou University, He'nan Key Laboratory of Tumor Pathology, Zhengzhou 450052, China
| | - Yong Li
- Cancer Care Centre, St George Hospital, Kogarah, and St George and Sutherland Clinical School, University of New South Wales, Kensington, NSW, Australia
| | - Yingchun Hou
- Laboratory of Tumor Molecular and Cellular Biology, College of Life Sciences, Shaanxi Normal University, 620 West Chang'an Avenue, Xi'an, Shaanxi 710119, China
| | - Yimin Zhu
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Yongchao Ma
- Clinical School, Luohe Medical College, 148, Daxue Road, Luohe City, Henan Province, 462000, China
| | - Guoqin Jiang
- Department of General Surgery, Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, P.R. China, 215004
| | - Wei Duan
- School of Medicine and Centre for Molecular and Medical Research, Deakin University, Waurn Ponds, Victoria, Australia
- GenePharma-Deakin Joint Laboratory of Aptamer Medicine, Suzhou 215123, China and Waurn Ponds, Victoria 3216, Australia
| |
Collapse
|
42
|
Sosanya NM, Kumar R, Clifford JL, Chavez R, Dimitrov G, Srinivasan S, Gautam A, Trevino AV, Williams M, Hammamieh R, Cheppudira BP, Christy RJ, Crimmins SL. Identifying Plasma Derived Extracellular Vesicle (EV) Contained Biomarkers in the Development of Chronic Neuropathic Pain. THE JOURNAL OF PAIN 2020; 21:82-96. [DOI: 10.1016/j.jpain.2019.05.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 05/09/2019] [Accepted: 05/24/2019] [Indexed: 12/29/2022]
|
43
|
Sándor S, Kubinyi E. Genetic Pathways of Aging and Their Relevance in the Dog as a Natural Model of Human Aging. Front Genet 2019; 10:948. [PMID: 31681409 PMCID: PMC6813227 DOI: 10.3389/fgene.2019.00948] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 09/05/2019] [Indexed: 12/15/2022] Open
Abstract
Aging research has experienced a burst of scientific efforts in the last decades as the growing ratio of elderly people has begun to pose an increased burden on the healthcare and pension systems of developed countries. Although many breakthroughs have been reported in understanding the cellular mechanisms of aging, the intrinsic and extrinsic factors that contribute to senescence on higher biological levels are still barely understood. The dog, Canis familiaris, has already served as a valuable model of human physiology and disease. The possible role the dog could play in aging research is still an open question, although utilization of dogs may hold great promises as they naturally develop age-related cognitive decline, with behavioral and histological characteristics very similar to those of humans. In this regard, family dogs may possess unmatched potentials as models for investigations on the complex interactions between environmental, behavioral, and genetic factors that determine the course of aging. In this review, we summarize the known genetic pathways in aging and their relevance in dogs, putting emphasis on the yet barely described nature of certain aging pathways in canines. Reasons for highlighting the dog as a future aging and gerontology model are also discussed, ranging from its unique evolutionary path shared with humans, its social skills, and the fact that family dogs live together with their owners, and are being exposed to the same environmental effects.
Collapse
Affiliation(s)
- Sára Sándor
- Department of Ethology, Eötvös Loránd University, Budapest, Hungary
| | | |
Collapse
|
44
|
Soler-Botija C, Gálvez-Montón C, Bayés-Genís A. Epigenetic Biomarkers in Cardiovascular Diseases. Front Genet 2019; 10:950. [PMID: 31649728 PMCID: PMC6795132 DOI: 10.3389/fgene.2019.00950] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 09/05/2019] [Indexed: 12/16/2022] Open
Abstract
Cardiovascular diseases are the number one cause of death worldwide and greatly impact quality of life and medical costs. Enormous effort has been made in research to obtain new tools for efficient and quick diagnosis and predicting the prognosis of these diseases. Discoveries of epigenetic mechanisms have related several pathologies, including cardiovascular diseases, to epigenetic dysregulation. This has implications on disease progression and is the basis for new preventive strategies. Advances in methodology and big data analysis have identified novel mechanisms and targets involved in numerous diseases, allowing more individualized epigenetic maps for personalized diagnosis and treatment. This paves the way for what is called pharmacoepigenetics, which predicts the drug response and develops a tailored therapy based on differences in the epigenetic basis of each patient. Similarly, epigenetic biomarkers have emerged as a promising instrument for the consistent diagnosis and prognosis of cardiovascular diseases. Their good accessibility and feasible methods of detection make them suitable for use in clinical practice. However, multicenter studies with a large sample population are required to determine with certainty which epigenetic biomarkers are reliable for clinical routine. Therefore, this review focuses on current discoveries regarding epigenetic biomarkers and its controversy aiming to improve the diagnosis, prognosis, and therapy in cardiovascular patients.
Collapse
Affiliation(s)
- Carolina Soler-Botija
- Heart Failure and Cardiac Regeneration (ICREC) Research Program, Health Science Research Institute Germans Trias i Pujol (IGTP), Badalona, Spain
- CIBERCV, Instituto de Salud Carlos III, Madrid, Spain
| | - Carolina Gálvez-Montón
- Heart Failure and Cardiac Regeneration (ICREC) Research Program, Health Science Research Institute Germans Trias i Pujol (IGTP), Badalona, Spain
- CIBERCV, Instituto de Salud Carlos III, Madrid, Spain
| | - Antoni Bayés-Genís
- Heart Failure and Cardiac Regeneration (ICREC) Research Program, Health Science Research Institute Germans Trias i Pujol (IGTP), Badalona, Spain
- CIBERCV, Instituto de Salud Carlos III, Madrid, Spain
- Cardiology Service, HUGTiP, Badalona, Spain
- Department of Medicine, Barcelona Autonomous University (UAB), Badalona, Spain
| |
Collapse
|
45
|
Cao Z, Jia Y, Zhu B. BNP and NT-proBNP as Diagnostic Biomarkers for Cardiac Dysfunction in Both Clinical and Forensic Medicine. Int J Mol Sci 2019; 20:ijms20081820. [PMID: 31013779 PMCID: PMC6515513 DOI: 10.3390/ijms20081820] [Citation(s) in RCA: 170] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/09/2019] [Accepted: 04/11/2019] [Indexed: 12/23/2022] Open
Abstract
Currently, brain natriuretic peptide (BNP) and N-terminal proBNP (NT-proBNP) are widely used as diagnostic biomarkers for heart failure (HF) and cardiac dysfunction in clinical medicine. They are also used as postmortem biomarkers reflecting cardiac function of the deceased before death in forensic medicine. Several previous studies have reviewed BNP and NT-proBNP in clinical medicine, however, few articles have reviewed their application in forensic medicine. The present article reviews the biological features, the research and application status, and the future research prospects of BNP and NT-proBNP in both clinical medicine and forensic medicine, thereby providing valuable assistance for clinicians and forensic pathologists.
Collapse
Affiliation(s)
- Zhipeng Cao
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang 110122, China.
| | - Yuqing Jia
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang 110122, China.
| | - Baoli Zhu
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang 110122, China.
| |
Collapse
|
46
|
Keene BW, Atkins CE, Bonagura JD, Fox PR, Häggström J, Fuentes VL, Oyama MA, Rush JE, Stepien R, Uechi M. ACVIM consensus guidelines for the diagnosis and treatment of myxomatous mitral valve disease in dogs. J Vet Intern Med 2019; 33:1127-1140. [PMID: 30974015 PMCID: PMC6524084 DOI: 10.1111/jvim.15488] [Citation(s) in RCA: 391] [Impact Index Per Article: 65.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 03/13/2019] [Indexed: 01/25/2023] Open
Abstract
This report, issued by the ACVIM Specialty of Cardiology consensus panel, revises guidelines for the diagnosis and treatment of myxomatous mitral valve disease (MMVD, also known as endocardiosis and degenerative or chronic valvular heart disease) in dogs, originally published in 2009. Updates were made to diagnostic, as well as medical, surgical, and dietary treatment recommendations. The strength of these recommendations was based on both the quantity and quality of available evidence supporting diagnostic and therapeutic decisions. Management of MMVD before the onset of clinical signs of heart failure has changed substantially compared with the 2009 guidelines, and new strategies to diagnose and treat advanced heart failure and pulmonary hypertension are reviewed.
Collapse
Affiliation(s)
- Bruce W Keene
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - Clarke E Atkins
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - John D Bonagura
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina.,Department of Veterinary Clinical Sciences, The Ohio State University, Columbus, Ohio
| | - Philip R Fox
- The Elmer and Mamdouha Bobst Hospital, The Animal Medical Center, New York, New York
| | - Jens Häggström
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Virginia Luis Fuentes
- Department of Clinical Science and Services, Royal Veterinary College, London, United Kingdom
| | - Mark A Oyama
- Department of Clinical Sciences and Advanced Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - John E Rush
- Department of Clinical Sciences, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts
| | - Rebecca Stepien
- Department of Medical Sciences, University of Wisconsin, Madison, Wisconsin
| | - Masami Uechi
- Jasmine Veterinary Cardiovascular Medical Center, Yokohama, Japan
| |
Collapse
|
47
|
Li J, Ling Y, Huang W, Sun L, Li Y, Wang C, Zhang Y, Wang X, Dahlgren RA, Wang H. Regulatory mechanisms of miR-96 and miR-184 abnormal expressions on otic vesicle development of zebrafish following exposure to β-diketone antibiotics. CHEMOSPHERE 2019; 214:228-238. [PMID: 30265930 DOI: 10.1016/j.chemosphere.2018.09.118] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 09/17/2018] [Accepted: 09/18/2018] [Indexed: 06/08/2023]
Abstract
Chronic ototoxicity of β-diketone antibiotics (DKAs) to zebrafish (Danio rerio) was explored in detail by following abnormal expressions of two hearing-related miRNAs. Dose-dependent down-regulation of miR-96 and miR-184 was observed in otoliths during embryonic-larval development. Continuous DKA exposure to 120-hpf larva decreased sensitivity to acoustic stimulation. Development of otolith was delayed in treatment groups, showing unclear boundaries and vacuolization at 72-hpf, and utricular enlargement as well as decreased saccular volume in 96-hpf or latter larval otoliths. If one miRNA was knocked-down and another over-expressed, only a slight influence on morphological development of the otic vesicle occurred, but knocked-down or over-expressed miRNA both significantly affected zebrafish normal development. Injection of miR-96, miR-184 or both micRNA mimics to yolk sac resulted in marked improvement of otic vesicle phenotype. However, hair cell staining showed that only the injected miR-96 mimic restored hair cell numbers after DKA exposure, demonstrating that miR-96 played an important role in otic vesicle development and formation of hearing, while miR-184 was only involved in otic vesicle construction during embryonic development. These observations advance our understanding of hearing loss owing to acute antibiotic exposure and provide theoretical guidance for early intervention and gene therapy for drug-induced diseases.
Collapse
Affiliation(s)
- Jieyi Li
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China; Beijing Key Laboratory of Cardiometabolic Molecular Medicine, State Key Laboratory of Natural and Biomimetic Drugs, Institute of Molecular Medicine, Peking University, Beijing, 100871, China
| | - Yuhang Ling
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Wenhao Huang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Limei Sun
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Yanyan Li
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Caihong Wang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Yuhuan Zhang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Xuedong Wang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - Randy A Dahlgren
- Department of Land, Air and Water Resources, University of California-Davis, CA, 95616, USA
| | - Huili Wang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| |
Collapse
|
48
|
Ghafarian F, Pashirzad M, Khazaei M, Rezayi M, Hassanian SM, Ferns GA, Avan A. The clinical impact of exosomes in cardiovascular disorders: From basic science to clinical application. J Cell Physiol 2018; 234:12226-12236. [PMID: 30536994 DOI: 10.1002/jcp.27964] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 11/19/2018] [Indexed: 12/13/2022]
Abstract
Cardiovascular disease (CVD) is the major cause of death globally; therefore, there is a need for the identification of a valid biomarker that accurately predicts the risk of developing CVD, and novel therapeutic approaches for its treatment. Exosomes are very small extracellular vesicles containing protein, lipid, transcription factors, messenger RNAs, noncoding RNA, and nucleic acid contents that are important players in intercellular communication, and that act via long-range signals or cell-to-cell contact. The discovery of exosomes provides potential strategies for the diagnosis and treatment of CVD. In the current review, we have explored the potential impact of exosomes on cardiovascular physiology, and their therapeutic potential in cardiovascular disorders with an emphasis on the existing preclinical studies.
Collapse
Affiliation(s)
- Farzaneh Ghafarian
- Department of Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehran Pashirzad
- Department of Medical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Khazaei
- Department of Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Rezayi
- Department of Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Department of Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Department of Division of Medical Education, Falmer, Brighton, Sussex, UK
| | - Amir Avan
- Department of Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
49
|
Fish EJ, Irizarry KJ, DeInnocentes P, Ellis CJ, Prasad N, Moss AG, Curt Bird R. Malignant canine mammary epithelial cells shed exosomes containing differentially expressed microRNA that regulate oncogenic networks. BMC Cancer 2018; 18:832. [PMID: 30126376 PMCID: PMC6102898 DOI: 10.1186/s12885-018-4750-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 08/14/2018] [Indexed: 12/18/2022] Open
Abstract
Background Breast (mammary) cancers in human (BC) and canine (CMT) patients share clinical, pathological, and molecular similarities that suggest dogs may be a useful translational model. Many cancers, including BC, shed exosomes that contain microRNAs (miRs) into the microenvironment and circulation, and these may represent biomarkers of metastasis and tumor phenotype. Methods Three normal canine mammary epithelial cell (CMEC) cultures and 5 CMT cell lines were grown in serum-free media. Exosomes were isolated from culture media by ultracentrifugation then profiled by transmission electron microscopy, dynamic light scattering, and Western blot. Exosomal small RNA was deep-sequenced on an Illumina HiSeq2500 sequencer and validated by qRT-PCR. In silico bioinformatic analysis was carried out to determine microRNA gene and pathway targets. Results CMEC and CMT cell lines shed round, “cup-shaped” exosomes approximately 150–200 nm, and were immunopositive for exosomal marker CD9. Deep-sequencing averaged ~ 15 million reads/sample. Three hundred thirty-eight unique miRs were detected, with 145 having > ±1.5-fold difference between one or more CMT and CMEC samples. Gene ontology analysis revealed that the upregulated miRs in this exosomal population regulate a number of relevant oncogenic networks. Several miRNAs including miR-18a, miR-19a and miR-181a were predicted in silico to target the canine estrogen receptor (ESR1α). Conclusions CMEC and CMT cells shed exosomes in vitro that contain differentially expressed miRs. CMT exosomal RNA expresses a limited number of miRs that are up-regulated relative to CMEC, and these are predicted to target biologically relevant hormone receptors and oncogenic pathways. These results may inform future studies of circulating exosomes and the utility of miRs as biomarkers of breast cancer in women and dogs. Electronic supplementary material The online version of this article (10.1186/s12885-018-4750-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Eric J Fish
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, 166 Greene Hall, Auburn, AL, 36849, USA.
| | - Kristopher J Irizarry
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA, 91766, USA
| | - Patricia DeInnocentes
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, 166 Greene Hall, Auburn, AL, 36849, USA
| | - Connor J Ellis
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA, 91766, USA
| | - Nripesh Prasad
- Genomic Services Laboratory, Hudson Alpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | - Anthony G Moss
- Department of Biology, College of Science and Mathematics, Auburn University, Auburn, AL, 36849, USA
| | - R Curt Bird
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, 166 Greene Hall, Auburn, AL, 36849, USA
| |
Collapse
|
50
|
Momen-Heravi F, Getting SJ, Moschos SA. Extracellular vesicles and their nucleic acids for biomarker discovery. Pharmacol Ther 2018; 192:170-187. [PMID: 30081050 DOI: 10.1016/j.pharmthera.2018.08.002] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Extracellular vesicles (EVs) are a heterogenous population of vesicles originate from cells. EVs are found in different biofluids and carry different macromolecules, including proteins, lipids, and nucleic acids, providing a snap shot of the parental cells at the time of release. EVs have the ability to transfer molecular cargoes to other cells and can initiate different physiological and pathological processes. Mounting lines of evidence demonstrated that EVs' cargo and machinery is affected in disease states, positioning EVs as potential sources for the discovery of novel biomarkers. In this review, we demonstrate a conceptual overview of the EV field with particular focus on their nucleic acid cargoes. Current knowledge of EV subtypes, nucleic acid cargo and pathophysiological roles are outlined, with emphasis placed on advantages against competing analytes. We review the utility of EVs and their nucleic acid cargoes as biomarkers and critically assess the newly available advances in the field of EV biomarkers and high throughput technologies. Challenges to achieving the diagnostic potential of EVs, including sample handling, EV isolation, methodological considerations, and bioassay reproducibility are discussed. Future implementation of 'omics-based technologies and integration of systems biology approaches for the development of EV-based biomarkers and personalized medicine are also considered.
Collapse
Affiliation(s)
- Fatemeh Momen-Heravi
- Division of Periodontics, Section of Oral and Diagnostic Sciences, Columbia University, College of Dental Medicine, New York, NY, USA; Department of Biomedical Sciences, University of Westminster, London, UK.
| | - Stephen J Getting
- Department of Biomedical Sciences, University of Westminster, London, UK; Department of Life Sciences, University of Westminster, London, UK
| | - Sterghios Athanasios Moschos
- Department of Biomedical Sciences, University of Westminster, London, UK; Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle, UK
| |
Collapse
|