1
|
Aldali F, Deng C, Nie M, Chen H. Advances in therapies using mesenchymal stem cells and their exosomes for treatment of peripheral nerve injury: state of the art and future perspectives. Neural Regen Res 2025; 20:3151-3171. [PMID: 39435603 PMCID: PMC11881730 DOI: 10.4103/nrr.nrr-d-24-00235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/26/2024] [Accepted: 08/26/2024] [Indexed: 10/23/2024] Open
Abstract
"Peripheral nerve injury" refers to damage or trauma affecting nerves outside the brain and spinal cord. Peripheral nerve injury results in movements or sensation impairments, and represents a serious public health problem. Although severed peripheral nerves have been effectively joined and various therapies have been offered, recovery of sensory or motor functions remains limited, and efficacious therapies for complete repair of a nerve injury remain elusive. The emerging field of mesenchymal stem cells and their exosome-based therapies hold promise for enhancing nerve regeneration and function. Mesenchymal stem cells, as large living cells responsive to the environment, secrete various factors and exosomes. The latter are nano-sized extracellular vesicles containing bioactive molecules such as proteins, microRNA, and messenger RNA derived from parent mesenchymal stem cells. Exosomes have pivotal roles in cell-to-cell communication and nervous tissue function, offering solutions to changes associated with cell-based therapies. Despite ongoing investigations, mesenchymal stem cells and mesenchymal stem cell-derived exosome-based therapies are in the exploratory stage. A comprehensive review of the latest preclinical experiments and clinical trials is essential for deep understanding of therapeutic strategies and for facilitating clinical translation. This review initially explores current investigations of mesenchymal stem cells and mesenchymal stem cell-derived exosomes in peripheral nerve injury, exploring the underlying mechanisms. Subsequently, it provides an overview of the current status of mesenchymal stem cell and exosome-based therapies in clinical trials, followed by a comparative analysis of therapies utilizing mesenchymal stem cells and exosomes. Finally, the review addresses the limitations and challenges associated with use of mesenchymal stem cell-derived exosomes, offering potential solutions and guiding future directions.
Collapse
Affiliation(s)
- Fatima Aldali
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Chunchu Deng
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Mingbo Nie
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Hong Chen
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
2
|
Zhang AY, Xie QZ, Guo SZ, Liu X, Yu YH, Tang H, Yao H, Guo L, Xu SB, Bian XT, Tao X. Platelet-rich plasma-derived exosomes have the novel ability to alleviate insertional Achilles tendinopathy by promoting tenogenesis in tendon stem/progenitor cells. BIOMATERIALS ADVANCES 2025; 173:214272. [PMID: 40081287 DOI: 10.1016/j.bioadv.2025.214272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/01/2025] [Accepted: 03/06/2025] [Indexed: 03/16/2025]
Abstract
Insertional Achilles tendinopathy (IAT) is a highly prevalent overuse injury affecting the foot and ankle in clinical settings. Currently, the primary management approach is conservative treatment. Platelet-rich plasma-derived exosomes (PRP-Exos) effectively preserve essential growth factors and other vital components inherent in PRP, thereby optimizing overall treatment outcomes. Furthermore, the standardized microinjection technique for PRP-Exos significantly enhances the treatment experience for patients. In this study, PRP-Exos were isolated from SD rats, and their effects on proliferation, migration, differentiation, apoptosis and other physiological processes in tendon-derived stem cells (TDSCs) in an IL-1β-induced inflammatory state were investigated in vitro. In this context, we conducted a thorough investigation of the impact of PRP-Exos on the tendinogenic differentiation of TDSCs under inflammatory conditions and explored the underlying mechanisms through cellular RNA sequencing. In vivo, the therapeutic effects of PRP-Exos on IAT at different times after treatment were evaluated comprehensively via histological analysis, behavioral tests and biomechanical tests. The results showed that PRP-Exos significantly increased the proliferation and migration of TDSCs in an inflammatory state in vitro and promoted their differentiation into tendon cells. Animal experiments confirmed that the histology, biomechanical performance and behavior of the animals in the PRP-Exos group were significantly normalized. This work demonstrated that the topical use of PRP-Exos at the insertion site of the Achilles tendon is an effective strategy for regulating proliferation and tendinogenic differentiation and represents a novel treatment approach for IAT.
Collapse
Affiliation(s)
- An-Yang Zhang
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Orthopedics/Sports Medicine Center, First Affiliated Hospital of Army Medical University, Chongqing 400038, China
| | - Qi-Zhong Xie
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Orthopedics/Sports Medicine Center, First Affiliated Hospital of Army Medical University, Chongqing 400038, China
| | - Shi-Zhen Guo
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Orthopedics/Sports Medicine Center, First Affiliated Hospital of Army Medical University, Chongqing 400038, China
| | - Xiao Liu
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Orthopedics/Sports Medicine Center, First Affiliated Hospital of Army Medical University, Chongqing 400038, China
| | - Yi-Hang Yu
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Orthopedics/Sports Medicine Center, First Affiliated Hospital of Army Medical University, Chongqing 400038, China
| | - Hong Tang
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Orthopedics/Sports Medicine Center, First Affiliated Hospital of Army Medical University, Chongqing 400038, China
| | - Hang Yao
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Orthopedics/Sports Medicine Center, First Affiliated Hospital of Army Medical University, Chongqing 400038, China
| | - Lin Guo
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Orthopedics/Sports Medicine Center, First Affiliated Hospital of Army Medical University, Chongqing 400038, China
| | - Shi-Bo Xu
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Orthopedics/Sports Medicine Center, First Affiliated Hospital of Army Medical University, Chongqing 400038, China.
| | - Xu-Ting Bian
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Orthopedics/Sports Medicine Center, First Affiliated Hospital of Army Medical University, Chongqing 400038, China; Shigatse Branch, Xinjian Hospital, Third Military Medical University, Shigatse 857000, China.
| | - Xu Tao
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Orthopedics/Sports Medicine Center, First Affiliated Hospital of Army Medical University, Chongqing 400038, China; Foot, Ankle and Hand Surgery Department, Shenzhen Second People's Hospital, Shenzhen 518035, China.
| |
Collapse
|
3
|
Chen J, Li Y, Quan X, Chen J, Han Y, Yang L, Zhou M, Mok GSP, Wang R, Zhao Y. Utilizing engineered extracellular vesicles as delivery vectors in the management of ischemic stroke: a special outlook on mitochondrial delivery. Neural Regen Res 2025; 20:2181-2198. [PMID: 39101653 PMCID: PMC11759020 DOI: 10.4103/nrr.nrr-d-24-00243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/03/2024] [Accepted: 06/22/2024] [Indexed: 08/06/2024] Open
Abstract
Ischemic stroke is a secondary cause of mortality worldwide, imposing considerable medical and economic burdens on society. Extracellular vesicles, serving as natural nano-carriers for drug delivery, exhibit excellent biocompatibility in vivo and have significant advantages in the management of ischemic stroke. However, the uncertain distribution and rapid clearance of extracellular vesicles impede their delivery efficiency. By utilizing membrane decoration or by encapsulating therapeutic cargo within extracellular vesicles, their delivery efficacy may be greatly improved. Furthermore, previous studies have indicated that microvesicles, a subset of large-sized extracellular vesicles, can transport mitochondria to neighboring cells, thereby aiding in the restoration of mitochondrial function post-ischemic stroke. Small extracellular vesicles have also demonstrated the capability to transfer mitochondrial components, such as proteins or deoxyribonucleic acid, or their sub-components, for extracellular vesicle-based ischemic stroke therapy. In this review, we undertake a comparative analysis of the isolation techniques employed for extracellular vesicles and present an overview of the current dominant extracellular vesicle modification methodologies. Given the complex facets of treating ischemic stroke, we also delineate various extracellular vesicle modification approaches which are suited to different facets of the treatment process. Moreover, given the burgeoning interest in mitochondrial delivery, we delved into the feasibility and existing research findings on the transportation of mitochondrial fractions or intact mitochondria through small extracellular vesicles and microvesicles to offer a fresh perspective on ischemic stroke therapy.
Collapse
Affiliation(s)
- Jiali Chen
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macao Special Administrative Region, China
| | - Yiyang Li
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macao Special Administrative Region, China
| | - Xingping Quan
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macao Special Administrative Region, China
| | - Jinfen Chen
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macao Special Administrative Region, China
| | - Yan Han
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macao Special Administrative Region, China
| | - Li Yang
- Department of Pharmacy, Hunan Provincial People’s Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, China
| | - Manfei Zhou
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macao Special Administrative Region, China
| | - Greta Seng Peng Mok
- Department of Electrical and Computer Engineering, University of Macau, Taipa, Macao Special Administrative Region, China
| | - Ruibing Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macao Special Administrative Region, China
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macao Special Administrative Region, China
| | - Yonghua Zhao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macao Special Administrative Region, China
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macao Special Administrative Region, China
| |
Collapse
|
4
|
Bonizzi A, Signati L, Grimaldi M, Truffi M, Piccotti F, Gagliardi S, Dotti G, Mazzucchelli S, Albasini S, Cazzola R, Bhowmik D, Narayana C, Corsi F, Morasso C. Exploring breast cancer-related biochemical changes in circulating extracellular vesicles using Raman spectroscopy. Biosens Bioelectron 2025; 278:117287. [PMID: 40023908 DOI: 10.1016/j.bios.2025.117287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/31/2024] [Accepted: 02/18/2025] [Indexed: 03/04/2025]
Abstract
Extracellular vesicles (EVs) are a subgroup of the circulating particles, released by cells in both normal and diseased states, carrying active biomolecules. They have gained significant attention as potential cancer biomarkers, particularly in breast cancer (BC). Previous research showed variations in EVs content and quantity between BC patients and healthy controls (HC). However, studying the biochemical profile of EVs remains challenging due to their low abundance and complex composition. Additionally, EVs may interact with other plasma components, like lipoproteins (LPs), forming a so called "biomolecular corona" that further complicates their analysis. Here, Raman spectroscopy (RS) is proposed as a fast tool to obtain the biochemical profile of circulating EVs in the context of BC. RS was employed to differentiate various extracellular particles (EPs) in blood, including LPs and EVs. The study also evaluated RS's capability to quantify major classes of biomolecules and compared these results with those obtained by traditional biochemical assays. Finally, compositional differences in large EVs (lEVs) and small EVs (sEVs) were assessed between HC and BC patients. RS revealed the existence of distinct biochemical signatures associated with BC, highlighting increased levels of nucleic acids and lipids in the BC group.
Collapse
Affiliation(s)
- Arianna Bonizzi
- Department of Biomedical and Clinical Sciences, Università di Milano, 20157, Milano, Via Giovanni Battista Grassi, 74, 20157, Milan, Italy; Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 4, Pavia, 27100, Italy
| | - Lorena Signati
- Department of Biomedical and Clinical Sciences, Università di Milano, 20157, Milano, Via Giovanni Battista Grassi, 74, 20157, Milan, Italy; Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 4, Pavia, 27100, Italy
| | - Maria Grimaldi
- Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 4, Pavia, 27100, Italy
| | - Marta Truffi
- Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 4, Pavia, 27100, Italy
| | - Francesca Piccotti
- Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 4, Pavia, 27100, Italy
| | - Stella Gagliardi
- Molecular Biology and Transcriptomics Unit, IRCCS Mondino Foundation, Via Mondino 2, Pavia, 27100, Italy
| | - Giulia Dotti
- Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 4, Pavia, 27100, Italy
| | - Serena Mazzucchelli
- Department of Biomedical and Clinical Sciences, Università di Milano, 20157, Milano, Via Giovanni Battista Grassi, 74, 20157, Milan, Italy
| | - Sara Albasini
- Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 4, Pavia, 27100, Italy
| | - Roberta Cazzola
- Department of Biomedical and Clinical Sciences, Università di Milano, 20157, Milano, Via Giovanni Battista Grassi, 74, 20157, Milan, Italy
| | - Debanjan Bhowmik
- Transdisciplinary Biology Program, Rajiv Gandhi Centre for Biotechnology, Thycaud P.O., Poojappura, Thiruvananthapuram, 695014, India
| | - Chandrabhas Narayana
- Transdisciplinary Biology Program, Rajiv Gandhi Centre for Biotechnology, Thycaud P.O., Poojappura, Thiruvananthapuram, 695014, India; Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore, 560064, India
| | - Fabio Corsi
- Department of Biomedical and Clinical Sciences, Università di Milano, 20157, Milano, Via Giovanni Battista Grassi, 74, 20157, Milan, Italy; Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 4, Pavia, 27100, Italy.
| | - Carlo Morasso
- Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 4, Pavia, 27100, Italy.
| |
Collapse
|
5
|
Getachew H, Mehrotra S, Kaur T, Fernandez-Godino R, Pierce EA, Garita-Hernandez M. The RNA content of extracellular vesicles from gene-edited PRPF31 +/- hiPSC-RPE show potential as biomarkers of retinal degeneration. Mol Ther Methods Clin Dev 2025; 33:101452. [PMID: 40231248 PMCID: PMC11995067 DOI: 10.1016/j.omtm.2025.101452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 03/13/2025] [Indexed: 04/16/2025]
Abstract
Retinitis pigmentosa (RP) is the most common inherited retinal degeneration (IRD), causing vision loss via the dysfunction and death of photoreceptors and retinal pigment epithelium (RPE). Mutations in the PRPF31 gene are associated with autosomal dominant RP, impairing RPE function. While adeno-associated virus (AAV)-mediated gene therapy shows promise for treating IRDs, the slow progression of these diseases often makes timely measurement of clinical efficacy challenging. Extracellular vesicles (EVs) are lipid enclosed vesicles secreted by cells, and their RNA contents are being explored as circulating biomarkers for other diseases. We hypothesize that EV RNAs could serve as biomarkers of the health status of the neural retina and RPE. To test this, we used PRPF31 +/+ and PRPF31 +/- human induced pluripotent stem cell (hiPSC)-derived RPE (hi-RPE) to investigate the RNAs contained in RPE-derived EVs and how they change in disease. We also compared the RNA contents of RPE-EVs with the RNAs of the hi-RPE cells themselves. We found that EVs from mutant PRPF31 hi-RPE cells have distinct RNA profiles compared to those from control cells, suggesting that EV RNA contents change during disease. Additionally, we identified 18 miRNAs and 865 poly(A) RNAs enriched in EVs from PRPF31 +/- hi-RPE, which could serve as biomarkers for RPE degeneration.
Collapse
Affiliation(s)
- Heran Getachew
- Ocular Genomics Institute, Department of Ophthalmology, Mass Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Sudeep Mehrotra
- Ocular Genomics Institute, Department of Ophthalmology, Mass Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Tarandeep Kaur
- Ocular Genomics Institute, Department of Ophthalmology, Mass Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Rosario Fernandez-Godino
- Ocular Genomics Institute, Department of Ophthalmology, Mass Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Eric A. Pierce
- Ocular Genomics Institute, Department of Ophthalmology, Mass Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Marcela Garita-Hernandez
- Ocular Genomics Institute, Department of Ophthalmology, Mass Eye and Ear, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
6
|
Saint-Pol J, Culot M. Minimum information for studies of extracellular vesicles (MISEV) as toolbox for rigorous, reproducible and homogeneous studies on extracellular vesicles. Toxicol In Vitro 2025; 106:106049. [PMID: 40074066 DOI: 10.1016/j.tiv.2025.106049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/04/2025] [Accepted: 03/06/2025] [Indexed: 03/14/2025]
Abstract
Studies based on extracellular vesicles (EVs) have been multiplying exponentially for almost two decades, since they were first identified as vectors of cell-cell communication. However, several of these studies display a lack of rigor in EVs characterization and isolation, without discriminating between the different EV populations, thus generating conflicting and unreproducible results. There is therefore a strong need for standardization and guidelines to conduct studies that are rigorous, transparent, reproducible and comply with certain nomenclatures concerning the type of EVs used. The International Society for Extracellular Vesicles (ISEV) published the Minimum Information for Studies of Extracellular Vesicles (MISEV) in 2014, updating it in 2018 and 2023 to reflect different study contexts and technical advancements. The primary objective of this review is to inform future authors about EVs, including their history, nomenclature, and technical recommendations for the for isolation and functionality analysis for conducing EV-based studies according to current standards. Additionally, it aims to inform reviewers about the key parameters required for characterizing EV preparations.
Collapse
Affiliation(s)
- Julien Saint-Pol
- Univ. Artois, UR 2465, Blood-Brain Barrier laboratory (LBHE), F-62300 Lens, France.
| | - Maxime Culot
- Univ. Artois, UR 2465, Blood-Brain Barrier laboratory (LBHE), F-62300 Lens, France
| |
Collapse
|
7
|
Liu YJ, Miao HB, Lin S, Chen Z. Exosomes derived let-7f-5p is a potential biomarker of SLE with anti-inflammatory function. Noncoding RNA Res 2025; 12:116-131. [PMID: 40144341 PMCID: PMC11938083 DOI: 10.1016/j.ncrna.2025.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/27/2025] [Accepted: 02/17/2025] [Indexed: 03/28/2025] Open
Abstract
This study found that in patients with SLE (n = 5), lethal (let)-7f-5p expression was significantly downregulated in peripheral blood mononuclear cells. Further, high-throughput RNA sequencing was used to mine the differential transcriptome expression in renal tissue exosomes of systemic lupus erythematosus (SLE)-prone mice, and bioinformatics was utilized to analyze non-coding RNAs and coding RNAs in exosomes for their possible roles in SLE. In renal tissues of MRL/lpr SLE-prone mice with exosomes and Pristane-induced SLE mice, we also demonstrated aberrant expression levels of microRNA (miRNA) let-7f-5p. Meanwhile, in the macrophage inflammation model, the expression levels of let-7f-5p were downregulated, that of guanylate binding protein (Gbp2 and Gbp7) were upregulated, and the inflammatory state of macrophages was alleviated following transfection with the let-7f-5p mimic. Co-culturing mesenchymal stem cells with a macrophage model of inflammation resulted in increased let-7f-5p expression and downregulated inflammatory factors, Gbp2 and Gbp7 expression in macrophages. Dual luciferase reporter gene assays confirmed that let-7f-5p directly binds to the 3' UTR of Gbp7 to regulate its expression. Let-7f-5p regulation of the Gbp family is involved in SLE pathogenesis and is a biomarker associated with the inflammatory response with potential clinical applications.
Collapse
Affiliation(s)
- Yi-jing Liu
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Hai-bing Miao
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Shu Lin
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
- Group of Neuroendocrinology, Garvan Institute of Medical Research, Sydney, Australia
| | - Zhen Chen
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| |
Collapse
|
8
|
Li LY, Liang SY, Cai MP, Ge JC, Tan HS, Wang CB, Xu B. Engineered extracellular vesicles as imaging biomarkers and therapeutic applications for urological diseases. Mater Today Bio 2025; 32:101646. [PMID: 40160248 PMCID: PMC11953971 DOI: 10.1016/j.mtbio.2025.101646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 02/23/2025] [Accepted: 03/07/2025] [Indexed: 04/02/2025] Open
Abstract
With the ever-increasing burden of urological diseases, the need for developing novel imaging biomarkers and therapeutics to manage these disorders has never been greater. Extracellular vesicles (EVs) are natural membranous nanoparticles and widely applied in both diagnostics and therapeutics for many diseases. A growing body of research has demonstrated that EVs can be engineered to enhance their efficiency, specificity, and safety. We systematically examine the strategies for achieving targeted delivery of EVs as well as the techniques for engineering them in this review, with a particular emphasis on cargo loading and transportation. Additionally, this review highlights and summarizes the wide range of imaging biomarkers and therapeutic applications of engineered EVs in the context of urological diseases, emphasizing the potential applications in urological malignancy and kidney diseases.
Collapse
Affiliation(s)
- Liao-Yuan Li
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Si-Yuan Liang
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Mao-Ping Cai
- Department of Urology, Cancer Center, Fudan University, Shanghai, China
| | - Jian-Chao Ge
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hai-Song Tan
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Cheng-Bang Wang
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Bin Xu
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
9
|
Shah KA, Ali T, Hussain Y, Dormocara A, You B, Cui JH. Isolation, characterization and therapeutic potentials of exosomes in lung cancer: Opportunities and challenges. Biochem Biophys Res Commun 2025; 759:151707. [PMID: 40153996 DOI: 10.1016/j.bbrc.2025.151707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/08/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
Lung cancer (LC) signifies the primary cause of cancer-related mortality, representing 24 % of all cancer fatalities. LC is intricate and necessitates innovative approaches for early detection, precise diagnosis, and tailored treatment. Exosomes (EXOs), a subclass of extracellular vesicles (EVs), are integral to LC advancement, intercellular communication, tumor spread, and resistance to anticancer therapies. EXOs represent a viable drug delivery strategy owing to their distinctive biological characteristics, such as natural origin, biocompatibility, stability in blood circulation, minimal immunogenicity, and potential for modification. They can function as vehicles for targeted pharmaceuticals and facilitate the advancement of targeted therapeutics. EXOs are pivotal in the metastatic cascade, facilitating communication between cancer cells and augmenting their invasive capacity. Nonetheless, obstacles such as enhancing cargo loading efficiency, addressing homogeneity concerns during preparation, and facilitating large-scale clinical translation persist. Interdisciplinary collaboration in research is crucial for enhancing the efficacy of EXOs drug delivery systems. This review explores the role of EXOs in LC, their potential as therapeutic agents, and challenges in their development, aiming to advance targeted treatments. Future research should concentrate on engineering optimization and developing innovative EXOs to improve flexibility and effectiveness in clinical applications.
Collapse
Affiliation(s)
- Kiramat Ali Shah
- College of Pharmaceutical Science, Soochow University, Renai Road 199, SIP, 215213, Suzhou, Jiangsu, China
| | - Tariq Ali
- Department of Civil and Environmental Engineering, Shantou University, Shantou, Guangdong, 515063, China
| | - Yaseen Hussain
- College of Pharmaceutical Science, Soochow University, Renai Road 199, SIP, 215213, Suzhou, Jiangsu, China
| | - Amos Dormocara
- College of Pharmaceutical Science, Soochow University, Renai Road 199, SIP, 215213, Suzhou, Jiangsu, China
| | - Bengang You
- College of Pharmaceutical Science, Soochow University, Renai Road 199, SIP, 215213, Suzhou, Jiangsu, China
| | - Jing-Hao Cui
- College of Pharmaceutical Science, Soochow University, Renai Road 199, SIP, 215213, Suzhou, Jiangsu, China.
| |
Collapse
|
10
|
Yi K, Zhang Z, Chen P, Xi X, Zhao X, Rong Y, Long F, Zhang Q, Zhang Y, Gao M, Liu W, Liu BF, Zhu Z, Wang F. Tidal microfluidic chip-based isolation and transcriptomic profiling of plasma extracellular vesicles for clinical monitoring of high-risk patients with hepatocellular carcinoma-associated precursors. Biosens Bioelectron 2025; 276:117228. [PMID: 39954520 DOI: 10.1016/j.bios.2025.117228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 12/02/2024] [Accepted: 02/02/2025] [Indexed: 02/17/2025]
Abstract
Hepatocellular carcinoma (HCC) poses a significant global health burden, with escalating incidence rates and substantial mortality. The predominant etiological factors include liver cirrhosis (LC) and chronic hepatitis B infections (CHB). Surveillance primarily relies on ultrasound and Alpha-fetoprotein (AFP), yet their efficacy, particularly in early HCC detection, is limited. Hence, there is a critical need for accurate non-invasive biomarkers to enhance surveillance and early diagnosis. Extracellular vesicles (EVs) hold promises as stable carriers of signaling molecules, offering potential in tumor diagnosis. Our study developed a novel tidal microfluidic chip for label-free EV isolation, enabling rapid and efficient enrichment from small plasma volumes. Through transcriptome sequencing and single-cell analysis, we identified HMMR and B4GALT2 as promising HCC-associated biomarkers in EVs. In a comprehensive clinical evaluation, bi-mRNAs in EVs exhibited superior diagnostic performance over AFP, particularly in distinguishing early-stage HCC or AFP-negative cases from high-risk individuals (CHB/LC). Notably, our study demonstrated the potential of bi-mRNAs to complement imaging examinations, enabling early detection of HCC lesions. In conclusion, the tidal microfluidic chip offers a practical solution for EV isolation, with the integration of EV-based biomarkers presenting opportunities for improved early detection and management of HCC in clinical practice.
Collapse
Affiliation(s)
- Kezhen Yi
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, PR China
| | - Zhonglin Zhang
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, PR China
| | - Peng Chen
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Xiaodan Xi
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, PR China
| | - Xudong Zhao
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Yuan Rong
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, PR China
| | - Fei Long
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, PR China
| | - Qian Zhang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, PR China
| | - Ying Zhang
- Department of General Surgery, The 5th Center of Chinese PLA General Hospital, Beijing, PR China
| | - Menglu Gao
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, PR China
| | - Weihuang Liu
- Medical Research Center for Structural Biology, School of Basic Medical Sciences, Wuhan University, PR China
| | - Bi-Feng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, PR China.
| | - Zhenyu Zhu
- Department of Hepatobiliary Surgery, Senior Department of Hepatology, The Fifth Medical Center of PLA Central Hospital, Beijing, PR China.
| | - Fubing Wang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, PR China; Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, PR China; Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, PR China.
| |
Collapse
|
11
|
Jain S, Murmu A, Chauhan A. Advancing Alzheimer's disease therapy through engineered exosomal Macromolecules. Brain Res 2025; 1855:149590. [PMID: 40120708 DOI: 10.1016/j.brainres.2025.149590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/03/2025] [Accepted: 03/18/2025] [Indexed: 03/25/2025]
Abstract
Exosomes are a subject of continuous investigation due to their function as extracellular vesicles (EVs) that significantly contribute to the pathophysiology of certain neurodegenerative disorders (NDD), including Alzheimer's disease (AD). Exosomes have shown the potential to carry both therapeutic and pathogenic materials; hence, researchers have used exosomes for medication delivery applications. Exosomes have reduced immunogenicity when used as natural drug delivery vehicles. This guarantees the efficient delivery of the medication without causing significant side reactions. Exosomes have lately enabled the potential for drug delivery in AD, along with promising future therapeutic uses for the detection of neurodegenerative disorders. Furthermore, exosomes have been examined for their prospective use in illness diagnosis and prediction before the manifestation of symptoms. This review will document prior studies and will concentrate on the rationale behind the substantial potential of exosomes in the treatment of AD and their prospective use as a diagnostic and predictive tool for this condition.
Collapse
Affiliation(s)
- Smita Jain
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Kishangarh, Rajasthan, India.
| | - Ankita Murmu
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Kishangarh, Rajasthan, India
| | - Aparna Chauhan
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Kishangarh, Rajasthan, India
| |
Collapse
|
12
|
Li LS, Chen XH, Pei Y, Xie XL, Wu CT, Cai S, Li J, Gong W. A label-free fluorescence aptasensor for salivary exosomes based on a nano-micro dual-scale signal amplification strategy. Talanta 2025; 287:127638. [PMID: 39893729 DOI: 10.1016/j.talanta.2025.127638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/28/2024] [Accepted: 01/23/2025] [Indexed: 02/04/2025]
Abstract
Oral squamous cell carcinoma (OSCC) is the most prevalent histological subtype of oral cancer and urgently requires a noninvasive approach for timely detection to improve patients' prognose. Salivary exosome act as a promising biomarker, while the complex and expensive analytical methods impeded its popularization in clinical applications. In this study, we developed a label-free aptasensor for salivary exosomes that utilizes a "one exosome to multiple carbon dots" signal conversion method along with nano-micro dual-scale signal amplification strategy. SiO2 microspheres served as substrates, while carbon dots acted as luminophores, with CD63 aptamers functioning as selective recognition elements. Exosomes compete to bind with the aptamers, thereby leading to the release of non-specifically adsorbed carbon dots from the substrates. The concentration of exosomes is proportional to the variation in fluorescence intensity, enabling highly sensitive detection in artificial saliva samples, with a favorable linearity range of 2.5 × 102∼5 × 108 particles/mL and a relatively low LOD of 100 particles/mL. The anti-interference ability is deemed acceptable, and the fabrication process is affordable coupled with a straightforward signal output mode. The aptasensor was applied successfully to distinguish OSCC patients from healthy individuals, suggesting its potential for screening OSCC in physical examination centers and communities.
Collapse
Affiliation(s)
- Lu-Shuang Li
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou, 570228, China
| | - Xiao-Hao Chen
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou, 570228, China
| | - Yu Pei
- Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441021, China
| | - Xiao-Lin Xie
- Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441021, China
| | - Cong-Ting Wu
- Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441021, China
| | - Shuang Cai
- Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441021, China
| | - Jing Li
- Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441021, China; Institute of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441021, China.
| | - Wei Gong
- Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441021, China; Institute of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441021, China.
| |
Collapse
|
13
|
Britton CJ, Andrews JR, Arafa A, Kim Y, Latuche LR, Schulte PJ, Joshi VB, Ahmed ME, Jeffrey Karnes R, Lucien F. Prostate Extracellular Vesicles and Prognostic Biomarkers of Clinically Significant Prostate Cancer: A Prospective Single-Institution Pilot Study. Prostate 2025; 85:594-602. [PMID: 39980247 DOI: 10.1002/pros.24861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 12/30/2024] [Accepted: 01/20/2025] [Indexed: 02/22/2025]
Abstract
BACKGROUND Commercial biomarkers and multiparametric MRI (mpMRI) have been utilized to triage men with elevated prostate specific antigen (PSA) and determine patients most likely to harbor clinically-significant prostate cancer (csPCa). We studied combinations of mpMRI, PSA-based and novel extracellular vesicle (EV)-based biomarkers to determine the optimal pre-biopsy testing to predict csPCa at biopsy. METHODS Men presenting with elevated PSA (≥ 2 ng/mL) were prospectively enrolled and all men underwent clinically indicated mpMRI and blinded study blood draws to determine PSA, prostate health index (PHI) scoring, and EV serum levels. MRI-fusion transperineal prostate biopsy was performed in all patients. Sensitivity, specificity, positive predictive value, and negative predictive value were calculated, and receiver operator characteristic (ROC) curves were constructed. Bootstrapping analysis was performed to provide more accurate assessment of predictive abilities. RESULTS Ultimately, 175 consecutive men were prospectively enrolled. Median age in the study population was 65 years. Combinations of biomarkers and MRI demonstrated better predictive ability for csPCa on biopsy than individual modalities. Predictive ability was greatest for PHI density (PHID)-mpMRI with an AUC of 0.86 (95% CI: 0.80-0.92) while combinations of PSA density -mpMRI (AUC: 0.81; 95% CI: 0.73-0.89) and STEAP1-mpMRI (AUC: 0.77; 95% CI: 0.70-0.86) demonstrated similar ability to predict csPCa. The study is limited by small, predominantly white patient cohort and requires external validation. CONCLUSIONS Inclusion of prostate density with biomarkers increases prognostic ability for detecting csPCa. EV density can refine prediction of csPCa and in combination with PHID-mpMRI leads to superior specificity, thereby decreasing unnecessary biopsies.
Collapse
Affiliation(s)
| | - Jack R Andrews
- Department of Urology, Mayo Clinic, Scottsdale, Arizona, USA
| | - Ali Arafa
- Department of Urology, Mayo Clinic, Rochester, Minnesota, USA
| | - Yohan Kim
- Department of Urology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Phillip J Schulte
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
| | - Vidhu B Joshi
- Department of Urology, Mayo Clinic, Rochester, Minnesota, USA
| | - Mohamed E Ahmed
- Department of Urology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Fabrice Lucien
- Department of Urology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
14
|
Joshi T, Chan YO, Qiao Z, Kheirandish-Gozal L, Gozal D, Khalyfa A. Circulating exosomes in pediatric obstructive sleep apnea with or without neurocognitive deficits and their effects on a 3D-blood-brain barrier spheroid model. Exp Neurol 2025; 387:115188. [PMID: 39986553 DOI: 10.1016/j.expneurol.2025.115188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 01/31/2025] [Accepted: 02/16/2025] [Indexed: 02/24/2025]
Abstract
Obstructive sleep apnea (OSA) in children is linked to cognitive impairments, potentially due to blood-brain barrier (BBB) dysfunction. Exosomes, small vesicles released by most cells, reflect cellular changes. This study examined the effects of exosomes from children with OSA, with or without cognitive deficits, on neurovascular unit (NVU) models. Twenty-six children were categorized into three groups: healthy controls (Cont, n = 6), OSA without cognitive deficits (OSA-NG, n = 10), and OSA with neurocognitive deficits (OSA-POS, n = 10). Plasma exosomes were characterized and applied to human 3D NVU spheroids for 24 h. Barrier integrity, permeability, and angiogenesis were assessed using trans-endothelial electrical resistance (TEER), tight junction integrity, and tube formation assays. Single-nucleus RNA sequencing (snRNA-seq) and bioinformatics, including CellChat analysis, identified intercellular signaling pathways. Results showed that exosomes from OSA-POS children disrupted TEER, increased permeability, and impaired ZO1 staining in spheroids, compared to the other groups. Both OSA-POS and OSA-NG exosomes increased permeability in NVU cells in monolayer and microfluidic BBB models. snRNA-seq analysis further revealed distinct cell clusters and pathways associated with the different groups. This 3D NVU spheroid model provides a robust platform to study BBB properties and the role of exosomes in OSA. These findings suggest that integrating snRNA-seq with exosome studies can uncover mechanisms underlying neurocognitive dysfunction in pediatric OSA, potentially leading to personalized therapeutic approaches.
Collapse
Affiliation(s)
- Trupti Joshi
- MU Institute for Data Science and Informatics, University of Missouri, Columbia, MO, USA; Christophers S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA.
| | - Yen On Chan
- MU Institute for Data Science and Informatics, University of Missouri, Columbia, MO, USA; Christophers S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA.
| | - Zhuanhong Qiao
- Department of Neurology, School of Medicine, University of Missouri, Columbia, MO, USA
| | | | - David Gozal
- Department of Pediatrics, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, USA
| | - Abdelnaby Khalyfa
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, United States of America.
| |
Collapse
|
15
|
Phongpao K, Kheansaard W, Pholngam N, Sriwantana T, Paiboonsukwong K, Fucharoen S, Pattanapanyasat K, Sibmooh N, Chaichompoo P, Svasti S. Extracellular vesicles modulate endothelial nitric oxide production in patients with β‑thalassaemia/HbE. Biomed Rep 2025; 22:79. [PMID: 40093508 PMCID: PMC11904759 DOI: 10.3892/br.2025.1957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 02/17/2025] [Indexed: 03/19/2025] Open
Abstract
Thrombosis is a significant complication in patients with β-thalassaemia/haemoglobin E (HbE), particularly in splenectomised patients. The endothelium is a key regulator of vascular haemostasis and homeostasis, through the secretion of various regulatory molecules. Nitric oxide (NO), produced by endothelial cells (ECs), regulates vascular functions by acting as a potent vasodilator and an inhibitor of platelet activation. Decreased NO bioavailability, a marker of vascular dysfunction, could be a contributing factor leading to thrombosis. Microparticles or medium extracellular vesicles (mEVs) are associated with thrombosis and vasculopathy in various diseases. Furthermore, elevated levels of mEVs have been observed in splenectomised patients with β-thalassaemia/HbE and could induce the expression of coagulation proteins, inflammatory cytokines and adhesion molecules in ECs. However, the effects of mEVs on NO regulation by ECs is currently unclear. In the present study, mEVs obtained from splenectomised patients with β-thalassaemia/HbE had significantly decreased NO production in human pulmonary artery ECs without affecting endothelial nitric oxide synthase expression or phosphorylation. Decreased NO production was attributed to increased haemoglobin levels in mEVs from splenectomised patients, leading to enhanced NO scavenging. These findings highlight a mechanism whereby haemoglobin-carrying mEVs directly scavenge NO, contributing to vascular dysfunction in β-thalassaemia/HbE disease.
Collapse
Affiliation(s)
- Kunwadee Phongpao
- Graduate Program in Molecular Medicine, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Wasinee Kheansaard
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Nuttanan Pholngam
- Graduate Program in Molecular Medicine, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Thanaporn Sriwantana
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan 10540, Thailand
| | - Kittiphong Paiboonsukwong
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Suthat Fucharoen
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Kovit Pattanapanyasat
- Center of Excellence for Microparticle and Exosome in Diseases, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Nuthawut Sibmooh
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan 10540, Thailand
| | - Pornthip Chaichompoo
- Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Saovaros Svasti
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
16
|
Yin W, Ma H, Qu Y, Ren J, Sun Y, Guo ZN, Yang Y. Exosomes: the next-generation therapeutic platform for ischemic stroke. Neural Regen Res 2025; 20:1221-1235. [PMID: 39075892 PMCID: PMC11624871 DOI: 10.4103/nrr.nrr-d-23-02051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/05/2024] [Accepted: 03/19/2024] [Indexed: 07/31/2024] Open
Abstract
Current therapeutic strategies for ischemic stroke fall short of the desired objective of neurological functional recovery. Therefore, there is an urgent need to develop new methods for the treatment of this condition. Exosomes are natural cell-derived vesicles that mediate signal transduction between cells under physiological and pathological conditions. They have low immunogenicity, good stability, high delivery efficiency, and the ability to cross the blood-brain barrier. These physiological properties of exosomes have the potential to lead to new breakthroughs in the treatment of ischemic stroke. The rapid development of nanotechnology has advanced the application of engineered exosomes, which can effectively improve targeting ability, enhance therapeutic efficacy, and minimize the dosages needed. Advances in technology have also driven clinical translational research on exosomes. In this review, we describe the therapeutic effects of exosomes and their positive roles in current treatment strategies for ischemic stroke, including their anti-inflammation, anti-apoptosis, autophagy-regulation, angiogenesis, neurogenesis, and glial scar formation reduction effects. However, it is worth noting that, despite their significant therapeutic potential, there remains a dearth of standardized characterization methods and efficient isolation techniques capable of producing highly purified exosomes. Future optimization strategies should prioritize the exploration of suitable isolation techniques and the establishment of unified workflows to effectively harness exosomes for diagnostic or therapeutic applications in ischemic stroke. Ultimately, our review aims to summarize our understanding of exosome-based treatment prospects in ischemic stroke and foster innovative ideas for the development of exosome-based therapies.
Collapse
Affiliation(s)
- Wenjing Yin
- Stroke Center, Department of Neurology, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Hongyin Ma
- Stroke Center, Department of Neurology, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Yang Qu
- Stroke Center, Department of Neurology, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Jiaxin Ren
- Stroke Center, Department of Neurology, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Yingying Sun
- Stroke Center, Department of Neurology, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Zhen-Ni Guo
- Stroke Center, Department of Neurology, First Hospital of Jilin University, Changchun, Jilin Province, China
- Neuroscience Research Center, Department of Neurology, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Yi Yang
- Stroke Center, Department of Neurology, First Hospital of Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
17
|
Park S, Yoon YJ, Hong Y, Yu J, Cho JM, Jeong YJ, Yu H, Jeong H, Lee H, Hwang S, Koh WG, Yang JY, Hyun KA, Jung HI, Lim JY. CD9-enriched extracellular vesicles from chemically reprogrammed basal progenitors of salivary glands mitigate salivary gland fibrosis. Bioact Mater 2025; 47:229-247. [PMID: 39925710 PMCID: PMC11803853 DOI: 10.1016/j.bioactmat.2025.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 12/07/2024] [Accepted: 01/16/2025] [Indexed: 02/11/2025] Open
Abstract
Extracellular vesicles (EVs) derived from stem cells offer promising potential for cell-free therapy. However, refining their cargo for precise disease targeting and delivery remains challenging. This study employed chemical reprogramming via dual inhibition of transforming growth factor beta (TGFβ) and bone morphogenetic protein (BMP) to expand salivary gland basal progenitor cells (sgBPCs). CD9-enriched (CD9+) EVs were then isolated from the sgBPC secretome concentrate using a dual microfluidic chip. Notably, CD9+ EVs demonstrated superior uptake by salivary epithelial cells compared to CD9-depleted (CD9-) EVs and total EVs. In vivo studies using a salivary gland (SG) obstruction mouse model and ex vivo studies in SG fibrosis organoids revealed that CD9+ EVs significantly enhanced anti-fibrotic effects over CD9- EVs and control treatments. The presence of miR-3162 and miR-1290 in CD9+ EVs supported their anti-fibrotic properties by downregulating ACVR1 expression. The chemical reprogramming culture method effectively expanded sgBPCs, enabling consistent and scalable EV production. Utilizing microfluidic chip-isolated CD9+ EVs and ductal delivery presents a targeted and efficient approach for anti-fibrotic SG regeneration.
Collapse
Affiliation(s)
- Sunyoung Park
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seoul, 03722, Republic of Korea
- The DABOM Inc., 50 Yonsei-ro, Seoul, 03722, Republic of Korea
| | - Yeo-Jun Yoon
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Yongpyo Hong
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Jianning Yu
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seoul, 03722, Republic of Korea
- Department of Biomedical Laboratory Science, Yonsei University, 1 Yeonsedae-gil, Wonju, Gangwon-do, 26493, Republic of Korea
| | - Jae-Min Cho
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Ye Jin Jeong
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Haeun Yu
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seoul, 03722, Republic of Korea
| | - Hyorim Jeong
- The DABOM Inc., 50 Yonsei-ro, Seoul, 03722, Republic of Korea
| | - Hyunjin Lee
- The DABOM Inc., 50 Yonsei-ro, Seoul, 03722, Republic of Korea
| | - Seungyeon Hwang
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Won-Gun Koh
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seoul, 03722, Republic of Korea
| | - Ji Yeong Yang
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seoul, 03722, Republic of Korea
- The DABOM Inc., 50 Yonsei-ro, Seoul, 03722, Republic of Korea
| | - Kyung-A Hyun
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seoul, 03722, Republic of Korea
- Korea Electronics Technology Institute (KETI), Seongnam, Gyeonggi-do, 13509, Republic of Korea
| | - Hyo-Il Jung
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seoul, 03722, Republic of Korea
- The DABOM Inc., 50 Yonsei-ro, Seoul, 03722, Republic of Korea
| | - Jae-Yol Lim
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| |
Collapse
|
18
|
Korgan AC, Prendergast K, Rosenhauer AM, Morrison KE, Jovanovic T, Bale TL. Trauma and Sensory Systems: Biological Mechanisms Involving the Skin and the 17q21 Gene Cluster. Biol Psychiatry 2025; 97:854-861. [PMID: 39521032 PMCID: PMC11991886 DOI: 10.1016/j.biopsych.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 08/30/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Childhood trauma experience increases risk for neuropsychiatric and neurodevelopmental disorders, including posttraumatic stress disorder, autism spectrum disorder, and attention-deficit/hyperactivity disorder. While the biological mechanisms connecting adverse experiences with later disease presentation are not clear, the concept of gene × environment × development interactions has significant implications for improving our understanding of these diseases. We recently used this approach in a study where we found that women exposed to interpersonal violence trauma (environment) uniquely during adolescence (development), but not childhood or adulthood, had novel protein biomarkers (gene) associated with a sensory cell system in the skin, Merkel cells. Merkel cell mechanosensory signaling is important in gentle and social touch, inflammation-induced pain, and the neuroendocrine stress response of the skin. Further, keratinocyte-derived Merkel cell final maturation occurs during the identified vulnerable period of adolescence. Interestingly, many of the genes identified in our study belong to a known 17q21 gene cluster, suggesting an identifiable location in the genome permanently altered by adolescent trauma. These results form a potential functional link between mechanosensory Merkel cells and the pathology and sensory symptoms in posttraumatic stress disorder. Future research directions could identify specific mechanisms involved in tactile alterations following trauma in hopes of revealing additional biomarkers and potentially leading to novel tactile-involved therapies (e.g., massage, electroacupuncture, or focused ultrasound).
Collapse
Affiliation(s)
- Austin C Korgan
- Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Kathryn Prendergast
- Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Anna M Rosenhauer
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, Michigan
| | - Kathleen E Morrison
- Department of Psychology, West Virginia University, Morgantown, West Virginia
| | - Tanja Jovanovic
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, Michigan
| | - Tracy L Bale
- Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
| |
Collapse
|
19
|
Jung D, Kim NE, Kim S, Bae JH, Jung IY, Doh KW, Lee B, Kim DK, Cho YE, Baek MC. Plant-derived nanovesicles and therapeutic application. Pharmacol Ther 2025; 269:108832. [PMID: 40023319 DOI: 10.1016/j.pharmthera.2025.108832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/27/2025] [Accepted: 02/23/2025] [Indexed: 03/04/2025]
Abstract
Plant-derived nanovesicles (PDNVs) are becoming more popular as promising therapeutic tools owing to their diversity, cost-effectiveness, and biocompatibility with very low toxicity. Therefore, this review aims to discuss the methods for isolating and characterizing PDNVs and emphasize their versatile roles in direct therapeutic applications and drug delivery systems. Their ability to effectively encapsulate and deliver large nucleic acids, proteins, and small-molecule drugs was highlighted. Moreover, advanced engineering strategies, such as surface modification and fusion with other vesicles, have been developed to enhance the therapeutic effects of PDNVs. Additionally, we describe key challenges related to this field, encouraging further research to optimize PDNVs for various clinical applications for prevention and therapeutic purposes. The distinctive properties and diverse applications of PDNVs could play a crucial role in the future of personalized medicine, fostering the development of innovative therapeutic strategies.
Collapse
Affiliation(s)
- Dokyung Jung
- Department of Molecular Medicine, CMRI, Exosome Convergence Research Center (ECRC), School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Na-Eun Kim
- Department of Molecular Medicine, CMRI, Exosome Convergence Research Center (ECRC), School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Sua Kim
- Department of Molecular Medicine, CMRI, Exosome Convergence Research Center (ECRC), School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Ju-Hyun Bae
- Department of Molecular Medicine, CMRI, Exosome Convergence Research Center (ECRC), School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Il-Young Jung
- Department of Molecular Medicine, CMRI, Exosome Convergence Research Center (ECRC), School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Kyung-Won Doh
- Department of Molecular Medicine, CMRI, Exosome Convergence Research Center (ECRC), School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Byungheon Lee
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Do-Kyun Kim
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan 54531, Republic of Korea
| | - Young-Eun Cho
- Department of Food and Nutrition, Andong National University, Andong 36729, Republic of Korea
| | - Moon-Chang Baek
- Department of Molecular Medicine, CMRI, Exosome Convergence Research Center (ECRC), School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea.
| |
Collapse
|
20
|
Machimbirike VI, Onireti O, Chukwu-Osazuwa J, Cao T, Vasquez I, Rise ML, Kumar S, Santander J. Proteomics analysis of extracellular vesicles during Vibrio anguillarum infection in lumpfish (Cyclopterus lumpus). FISH & SHELLFISH IMMUNOLOGY 2025; 160:110205. [PMID: 39970972 DOI: 10.1016/j.fsi.2025.110205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/27/2025] [Accepted: 02/17/2025] [Indexed: 02/21/2025]
Abstract
Lumpfish (Cyclopterus lumpus) is a native fish of the North Atlantic Ocean used as sea lice biocontrol in Atlantic salmon farms. Lumpfish also has been used as model for marine infectious diseases and immunity. Lumpfish is susceptible to Vibrio anguillarum infection, and upon infection, lumpfish immunity is activated to preclude the disease progression. Extracellular vesicles (EVs) play an important role in early immune cellular communication. Lumpfish EVs and their potential role in immunity have not been explored. Herein, EVs where isolated from serum of naïve lumpfish and from lumpfish infected with V. anguillarum at 5 and 10 days post infection (dpi). EVs characteristics were studied by electron microscopy and nanoparticle tracking, and protein cargo was analysed by Western blot and proteomic analysis. The isolated EVs showed a spherical shape ranging from ∼30 nm to 300 nm in diameter, but at 5 dpi the size variation was higher. A total of 395 proteins were identified. Upregulated proteins were linked to complement pathway/innate immunity, heme/iron binding, defense response to bacterium, apoptotic signaling pathway, and actin binding. Downregulated proteins were associated with ribonucleoprotein/ribosomal protein, transport and translation elongation factor activity, acute phase, protein phosphorylation and apoptotic process. Upon infection V. anguillarum infection, lumpfish EVs cargo was modified, from transporting metabolic proteins to proteins related to immunity. Characterization of peripheral lumpfish EVs protein profile during V. anguillarum infection provided with potential biomarkers repertoire that could be utilised in the development of novel tools to diagnose and control of V. anguillarum infection in finfish aquaculture.
Collapse
Affiliation(s)
- V I Machimbirike
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, A1C 5S7, St. John's, Newfoundland and Labrador, Canada
| | - O Onireti
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, A1C 5S7, St. John's, Newfoundland and Labrador, Canada
| | - J Chukwu-Osazuwa
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, A1C 5S7, St. John's, Newfoundland and Labrador, Canada
| | - T Cao
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, A1C 5S7, St. John's, Newfoundland and Labrador, Canada
| | - I Vasquez
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, A1C 5S7, St. John's, Newfoundland and Labrador, Canada
| | - M L Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, A1C 5S7, Canada
| | - S Kumar
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, A1C 5S7, Canada
| | - J Santander
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, A1C 5S7, St. John's, Newfoundland and Labrador, Canada.
| |
Collapse
|
21
|
Kashkoulinejad Kouhi T. Exosome-mediated communication between T cells and dendritic cells: Implications for therapeutic strategies. Cytokine 2025; 189:156914. [PMID: 40073808 DOI: 10.1016/j.cyto.2025.156914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 02/16/2025] [Accepted: 03/07/2025] [Indexed: 03/14/2025]
Abstract
Cell communication is crucial for coordinating physiological functions in multicellular organisms, with exosomes playing a significant role. Exosomes mediate intercellular communication by transporting proteins, lipids, and nucleic acids between cells. These small, membrane-bound vesicles, derived from the endosomal pathway, are integral to various biological processes, including signal transmission and cellular behavior modulation. Recent advances highlight the potential of exosomes, especially dendritic cell-derived exosomes (DEXs), for diagnostic and therapeutic applications, particularly in cancer immunotherapy. DEXs are distinguished by their ability to present antigens and stimulate immune responses more effectively than exosomes from other cell types. They carry a cargo rich in immunostimulatory molecules and MHC-peptide complexes, which facilitate robust T-cell activation and enhance tumor-specific immune responses. The unique properties of DEXs, such as their ability to cross biological barriers and resist tumor-induced immunosuppression, position them as promising candidates for therapeutic applications. Here, I review the reports on the bidirectional interaction between dendritic cells and T cells through exosomes and their role in medicine.
Collapse
Affiliation(s)
- Tahereh Kashkoulinejad Kouhi
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada; CTOAM | Cancer Treatment Options & Management, Vancouver, British Columbia, Canada.
| |
Collapse
|
22
|
Chan HY, Wang Q, Howie A, Bucci J, Graham P, Li Y. Extracellular vesicle biomarkers redefine prostate cancer radiotherapy. Cancer Lett 2025; 616:217568. [PMID: 39978570 DOI: 10.1016/j.canlet.2025.217568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 02/04/2025] [Accepted: 02/16/2025] [Indexed: 02/22/2025]
Abstract
Radiotherapy (RT) remains a cornerstone in the treatment of prostate cancer (PCa). Extracellular vesicles (EVs), nano-sized particles secreted by cells, play important roles in intercellular communication within the tumour microenvironment (TME) and contribute to tumour growth, metastasis, and therapy resistance. Recent advancements demonstrate the potential of EVs as biomarkers for cancer diagnosis, prognosis, and treatment monitoring. Accumulating evidence supports the role of EVs in modulating RT outcomes by shaping the TME, mediating radioresistance, and influencing cancer metastasis. Despite substantial progress, challenges remain, including the heterogeneity of EV biogenesis, variability in cargo composition, and the absence of standardised methods for EV isolation and characterisation. While the therapeutic and diagnostic prospects of EVs in PCa management are promising, further research is needed to clarify the mechanisms through which EVs impact RT and to translate these findings into clinical practice. Incorporating EV research into PCa treatment paradigms could enhance diagnostic accuracy, enable real-time monitoring of RT responses, and support the development of new targeted therapeutic strategies. This review discusses recent progress in understanding EVs in the context of RT for PCa, focuses on their roles in modulating tumour growth, contributing to radioresistance within the TME, and facilitating the monitoring of RT efficacy and recurrence. In addition, the potential of EVs as biomarkers for liquid biopsy and their applications in enhancing radiosensitivity or overcoming radioresistance is also explored.
Collapse
Affiliation(s)
- Hei Yeung Chan
- St George and Sutherland Clinical Campuses, School of Clinical Medicine, UNSW Sydney, Kensington, NSW, 2052, Australia; Cancer Care Centre, St George Hospital, Kogarah, NSW, 2217, Australia
| | - Qi Wang
- St George and Sutherland Clinical Campuses, School of Clinical Medicine, UNSW Sydney, Kensington, NSW, 2052, Australia; Cancer Care Centre, St George Hospital, Kogarah, NSW, 2217, Australia
| | - Andrew Howie
- Cancer Care Centre, St George Hospital, Kogarah, NSW, 2217, Australia
| | - Joseph Bucci
- St George and Sutherland Clinical Campuses, School of Clinical Medicine, UNSW Sydney, Kensington, NSW, 2052, Australia; Cancer Care Centre, St George Hospital, Kogarah, NSW, 2217, Australia
| | - Peter Graham
- St George and Sutherland Clinical Campuses, School of Clinical Medicine, UNSW Sydney, Kensington, NSW, 2052, Australia; Cancer Care Centre, St George Hospital, Kogarah, NSW, 2217, Australia
| | - Yong Li
- St George and Sutherland Clinical Campuses, School of Clinical Medicine, UNSW Sydney, Kensington, NSW, 2052, Australia; Cancer Care Centre, St George Hospital, Kogarah, NSW, 2217, Australia.
| |
Collapse
|
23
|
Wang J, Moosavizadeh S, Jammes M, Tabasi A, Bach T, Ryan AE, Ritter T. Comparison of in-vitro immunomodulatory capacity between large and small apoptotic bodies from human bone marrow mesenchymal stromal cells. Int Immunopharmacol 2025; 153:114480. [PMID: 40101418 DOI: 10.1016/j.intimp.2025.114480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/26/2025] [Accepted: 03/10/2025] [Indexed: 03/20/2025]
Abstract
BACKGROUND Mesenchymal stromal cell (MSC) apoptosis is essential for their therapeutic effects, including immunomodulation. Previous studies have shown that MSC-derived apoptotic bodies (ApoBDs) also possess immunomodulatory properties. However, compared to small extracellular vesicles, the preparation, characterization, and biological properties of ApoBDs remain underexplored. RESULTS ApoBDs were isolated from the conditioned medium of staurosporine-induced apoptotic human MSCs and categorized into large (∼700 nm) and small (∼500 nm) groups. Both types expressed CD90, CD44, and CD73, with low levels of PD-L1, CD11b, and HLA-DR, mirroring their parental MSCs. Functional assays revealed that both ApoBDs inhibited allogeneic T-cell proliferation, with large ApoBDs demonstrating superior efficacy. In macrophage co-culture experiments, both ApoBDs polarized M1 macrophages toward an M2-like phenotype, with large ApoBDs more effectively upregulating CD163 expression. Additionally, both ApoBDs suppressed the proliferation of murine primary T cells. Furthermore, large ApoBDs exhibited enhanced macrophage uptake, as confirmed by flow cytometry and immunocytochemistry. Importantly, no cytotoxicity was observed for either ApoBD type following staurosporine treatment. CONCLUSIONS Staurosporine-induced ApoBDs are non-cytotoxic and exhibit significant immunomodulatory potential in vitro. Large ApoBDs are more effective than small ApoBDs in T-cell suppression and M2 macrophage polarization, suggesting their potential as an alternative to MSC-based therapies in future studies.
Collapse
Affiliation(s)
- Jiemin Wang
- Regenerative Medicine Institute, School of Medicine, University of Galway, Galway, Ireland; CURAM Centre for Research in Medical Devices, University of Galway, Galway, Ireland
| | - Seyedmohammad Moosavizadeh
- Regenerative Medicine Institute, School of Medicine, University of Galway, Galway, Ireland; CURAM Centre for Research in Medical Devices, University of Galway, Galway, Ireland
| | - Manon Jammes
- Regenerative Medicine Institute, School of Medicine, University of Galway, Galway, Ireland
| | - Abbas Tabasi
- Regenerative Medicine Institute, School of Medicine, University of Galway, Galway, Ireland
| | - Trung Bach
- Regenerative Medicine Institute, School of Medicine, University of Galway, Galway, Ireland
| | - Aideen E Ryan
- Regenerative Medicine Institute, School of Medicine, University of Galway, Galway, Ireland; CURAM Centre for Research in Medical Devices, University of Galway, Galway, Ireland; Discipline of Pharmacology and Therapeutics, School of Medicine, University of Galway, Galway, Ireland.
| | - Thomas Ritter
- Regenerative Medicine Institute, School of Medicine, University of Galway, Galway, Ireland; CURAM Centre for Research in Medical Devices, University of Galway, Galway, Ireland.
| |
Collapse
|
24
|
Du G, He J, Zhan Y, Chen L, Hu Y, Qian J, Huang H, Meng F, Shan L, Chen Z, Hu D, Zhu C, Yue M, Qi Y, Tan W. Changes and application prospects of biomolecular materials in small extracellular vesicles (sEVs) after flavivirus infection. Eur J Med Res 2025; 30:275. [PMID: 40229861 DOI: 10.1186/s40001-025-02539-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 03/31/2025] [Indexed: 04/16/2025] Open
Abstract
Small extracellular vesicles (sEVs), also known as exosomes, are membranous vesicles filled with various proteins and nucleic acids, serving as a communication vector between cells. Recent research has highlighted their role in viral diseases. This review synthesizes current understanding of viral sEVs and includes recent findings on sEVs infected with flaviviruses. It discusses the implications of viral sEVs research for advancing arbovirus sEVs research and anticipates the potential applications of sEVs in flavivirus infections.
Collapse
Affiliation(s)
- Gengting Du
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, People's Republic of China
- Nanjing Bioengineering (Gene) Technology Center for Medicines, Nanjing, People's Republic of China
| | - Junhua He
- Nanjing Jinling Hospital, Nanjing, Jiangsu, People's Republic of China
| | - Yan Zhan
- Nanjing Jinling Hospital, Nanjing, Jiangsu, People's Republic of China
| | - Leru Chen
- Nanjing Bioengineering (Gene) Technology Center for Medicines, Nanjing, People's Republic of China
| | - Yue Hu
- Nanjing Jinling Hospital, Nanjing, Jiangsu, People's Republic of China
| | - Jiaojiao Qian
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China
| | - Huan Huang
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China
| | - Fanjin Meng
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China
| | - Laiyou Shan
- Nanjing Jinling Hospital, Nanjing, Jiangsu, People's Republic of China
| | - Zhiyu Chen
- Nanjing Jinling Hospital, Nanjing, Jiangsu, People's Republic of China
| | | | - Changqiang Zhu
- Nanjing Bioengineering (Gene) Technology Center for Medicines, Nanjing, People's Republic of China
| | - Ming Yue
- Department of Infectious Diseases, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yong Qi
- Nanjing Bioengineering (Gene) Technology Center for Medicines, Nanjing, People's Republic of China
| | - Weilong Tan
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
- Nanjing Bioengineering (Gene) Technology Center for Medicines, Nanjing, People's Republic of China.
- Nanjing Jinling Hospital, Nanjing, Jiangsu, People's Republic of China.
| |
Collapse
|
25
|
Zhang Y, Yue NN, Chen LY, Tian CM, Yao J, Wang LS, Liang YJ, Wei DR, Ma HL, Li DF. Exosomal biomarkers: A novel frontier in the diagnosis of gastrointestinal cancers. World J Gastrointest Oncol 2025; 17:103591. [DOI: 10.4251/wjgo.v17.i4.103591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/24/2025] [Accepted: 02/25/2025] [Indexed: 03/25/2025] Open
Abstract
Gastrointestinal (GI) cancers, which predominantly manifest in the stomach, colorectum, liver, esophagus, and pancreas, accounting for approximately 35% of global cancer-related mortality. The advent of liquid biopsy has introduced a pivotal diagnostic modality for the early identification of premalignant GI lesions and incipient cancers. This non-invasive technique not only facilitates prompt therapeutic intervention, but also serves as a critical adjunct in prognosticating the likelihood of tumor recurrence. The wealth of circulating exosomes present in body fluids is often enriched with proteins, lipids, microRNAs, and other RNAs derived from tumor cells. These specific cargo components are reflective of processes involved in GI tumorigenesis, tumor progression, and response to treatment. As such, they represent a group of promising biomarkers for aiding in the diagnosis of GI cancer. In this review, we delivered an exhaustive overview of the composition of exosomes and the pathways for cargo sorting within these vesicles. We laid out some of the clinical evidence that supported the utilization of exosomes as diagnostic biomarkers for GI cancers and discussed their potential for clinical application. Furthermore, we addressed the challenges encountered when harnessing exosomes as diagnostic and predictive instruments in the realm of GI cancers.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Gastroenterology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518000, Guangdong Province, China
- Department of Medical Administration, Huizhou Institute for Occupational Health, Huizhou 516000, Guangdong Province, China
| | - Ning-Ning Yue
- Department of Gastroenterology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University), Shenzhen 518000, Guangdong Province, China
| | - Li-Yu Chen
- Department of Gastroenterology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518000, Guangdong Province, China
| | - Cheng-Mei Tian
- Department of Emergency, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518000, Guangdong Province, China
| | - Jun Yao
- Department of Gastroenterology, Shenzhen People’s Hospital (Jinan University of Second Clinical Medical Sciences), Shenzhen 518000, Guangdong Province, China
| | - Li-Sheng Wang
- Department of Gastroenterology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518000, Guangdong Province, China
| | - Yu-Jie Liang
- Department of Child and Adolescent Psychiatry, Shenzhen Kangning Hospital, Shenzhen 518000, Guangdong Province, China
| | - Dao-Ru Wei
- Department of Rehabilitation, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518000, Guangdong Province, China
| | - Hua-Lin Ma
- Department of Nephrology, The Second Clinical Medical College, Jinan University, Shenzhen 518020, Guangdong Province, China
| | - De-Feng Li
- Department of Gastroenterology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518000, Guangdong Province, China
| |
Collapse
|
26
|
Li F, Song L, He Y, Chen P, Wang J, Zeng M, Li C, Chen J, Chen H, Guo Q, Fan J, Huang X, Wang Q, Zhang Q. FLT1-enriched extracellular vesicles induce a positive feedback loop between nasopharyngeal carcinoma cells and endothelial cells to promote angiogenesis and tumour metastasis. Oncogene 2025:10.1038/s41388-025-03389-x. [PMID: 40223024 DOI: 10.1038/s41388-025-03389-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 03/29/2025] [Accepted: 04/01/2025] [Indexed: 04/15/2025]
Abstract
Distant metastasis is one of the main reasons for treatment failure in nasopharyngeal carcinoma (NPC) patients. Tumour angiogenesis is a key basis for the distant metastasis of NPC. However, the molecular mechanisms underlying the mutual interaction between endothelial and NPC cells in tumour angiogenesis and NPC metastasis are still unclear. Here, we found that extracellular vesicles (EVs) mediate intercellular communication between endothelial cells and NPC cells, thereby promoting NPC cell migration, invasion, colony formation, and angiogenesis. Further experiments indicated that EV-mediated information exchange between endothelial cells and NPC cells upregulated the expression of the vascular endothelial growth factor receptor FLT1 in both types of cells. Mechanistically, FLT1-enriched EVs promoted NPC metastasis through the PI3K/AKT pathway and increased tumour angiogenesis, tumour growth, and distant lung and liver metastasis of NPC in xenografted mice. This effect was achieved through the delivery and upregulation of FLT1 in both endothelial and NPC cells. Thus, our findings reveal that FLT1-enriched EVs induce a positive feedback loop between NPC cells and endothelial cells to promote tumour angiogenesis and tumour metastasis. These results increase our understanding of the intricate interplay between tumour angiogenesis and distant metastasis and have major implications for the diagnosis and management of NPC patients with increased levels of FLT1-enriched EVs.
Collapse
Affiliation(s)
- Fei Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Lin Song
- School of Life Sciences, Huizhou University, Huizhou, China
| | - Yue He
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Peiling Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jiasheng Wang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Maozhen Zeng
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Chunmou Li
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Junru Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Haisheng Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qiqi Guo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jiaxi Fan
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xuan Huang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qi Wang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qing Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.
- Research Institute of Sun Yat-sen University in Shenzhen, Shenzhen, China.
| |
Collapse
|
27
|
Acevedo-Sánchez V, Rodríguez-Hernández RM, Aguilar-Ruíz SR, Torres-Aguilar H, Pina-Canseco S, Chávez-Olmos P, Garrido E, Baltiérrez-Hoyos R, Romero-Tlalolini MA. Keratinocyte-derived extracellular vesicles induce macrophage polarization toward an M1-like phenotype. Biochem Biophys Res Commun 2025; 758:151659. [PMID: 40121968 DOI: 10.1016/j.bbrc.2025.151659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/04/2025] [Accepted: 03/17/2025] [Indexed: 03/25/2025]
Abstract
Multiple reports have shown an effect of keratinocyte-derived extracellular vesicles (EVs) on keratinocytes and other cell types. However, the contribution of keratinocyte-derived EVs under physiological and pathological conditions is not fully elucidated. Therefore, whether there is an effect of EVs on macrophages in cervical cancer (CC) is also unknown. Here, we evaluated the effect of tumor and non-tumor keratinocyte-derived EVs on the polarization of peripheral blood mononuclear cells (PBMCs)-derived macrophages and THP-1 cell line. Flow cytometric evaluation of macrophages cultured in the presence of keratinocyte-derived EVs mainly indicated an increase in classical activation markers CD80 and CD86 (M1 phenotype) and little or no modification of alternative activation markers (M2 phenotype). ELISA evaluation of macrophage supernatants revealed an increase in the secretion of proinflammatory cytokines such as IL-1β and IL-6. On the other hand, TGF-β was not significantly modified and only EVs derived from non-cancerous keratinocytes induced a significant increase in IL-10. The expression levels of transcripts associated with the M1 phenotype were also evaluated by qRT-PCR with similar results to ELISA for TGF-β and IL-10; but also an increase in the expression of HLA-DRα and TNF-α was observed, and no statistically significant changes in ARG1. The ROS production was also evaluated and this increase mainly in macrophages treated with CC keratinocytes-derived EVs. So, our results suggest that the uptake of EVs derived from released by non-tumor and cervical cancer keratinocytes promotes in macrophages their polarization to an M1-like phenotype.
Collapse
Affiliation(s)
- V Acevedo-Sánchez
- Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Ex Hacienda de Aguilera S/N, Calz. San Felipe del Agua, Oaxaca de Juárez, 68120, Oaxaca, Mexico.
| | - R M Rodríguez-Hernández
- Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Ex Hacienda de Aguilera S/N, Calz. San Felipe del Agua, Oaxaca de Juárez, 68120, Oaxaca, Mexico.
| | - S R Aguilar-Ruíz
- Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Ex Hacienda de Aguilera S/N, Calz. San Felipe del Agua, Oaxaca de Juárez, 68120, Oaxaca, Mexico.
| | - H Torres-Aguilar
- Facultad de Ciencias Químicas, Universidad Autónoma Benito Juárez de Oaxaca, Av. Universidad S/N, Cinco Señores, Oaxaca de Juárez, 68120, Oaxaca, Mexico.
| | - S Pina-Canseco
- Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Ex Hacienda de Aguilera S/N, Calz. San Felipe del Agua, Oaxaca de Juárez, 68120, Oaxaca, Mexico.
| | - P Chávez-Olmos
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Delegación, Gustavo A. Madero, 07360, Mexico City, Mexico.
| | - E Garrido
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Delegación, Gustavo A. Madero, 07360, Mexico City, Mexico.
| | - R Baltiérrez-Hoyos
- Facultad de Medicina y Cirugía, CONAHCYT-Universidad Autónoma Benito Juárez de Oaxaca, Ex Hacienda de Aguilera S/N, Calz. San Felipe del Agua, Oaxaca de Juárez, 68120, Oaxaca, Mexico.
| | - M A Romero-Tlalolini
- Facultad de Medicina y Cirugía, CONAHCYT-Universidad Autónoma Benito Juárez de Oaxaca, Ex Hacienda de Aguilera S/N, Calz. San Felipe del Agua, Oaxaca de Juárez, 68120, Oaxaca, Mexico.
| |
Collapse
|
28
|
Sabatke B, Rossi IV, Bonato L, Fucio S, Cortés A, Marcilla A, Ramirez MI. Host-Pathogen Cellular Communication: The Role of Dynamin, Clathrin, and Macropinocytosis in the Uptake of Giardia-Derived Extracellular Vesicles. ACS Infect Dis 2025; 11:954-962. [PMID: 40155351 DOI: 10.1021/acsinfecdis.4c00996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2025]
Abstract
Giardia intestinalis, a protozoan causing giardiasis, disrupts gastrointestinal health through complex host-parasite interactions. This study explores the differential uptake mechanisms of extracellular vesicles (EVs) derived from Giardia (gEVs), host cells (hEVs), and the host-parasite interaction (intEVs) in intestinal Caco-2 cells. Results show that intEVs are internalized more rapidly than gEVs and hEVs, underscoring their pivotal role in pathogenesis. To delineate uptake pathways, various endocytosis inhibitors were applied, and clathrin-mediated endocytosis inhibition using monodansylcadaverine (MDC) significantly reduced intEV and gEV uptake, confirming the role of clathrin-mediated endocytosis (CME). The use of dynasore, a dynamin inhibitor, strongly reduced the internalization of all EV types, demonstrating that uptake is dynamin-dependent. In contrast, methyl-β-cyclodextrin (MβCD), which disrupts lipid rafts and caveolae-mediated pathways, had no effect on EV uptake, indicating that caveolae are not involved in this process. Furthermore, inhibition of Na+/H+ exchange and phosphoinositide 3-kinase activity, both essential for macropinocytosis, also led to a significant reduction in intEV internalization. These findings strongly support that gEVs are internalized primarily through a dynamin- and clathrin-dependent pathway, independent of caveolae and lipid rafts, but modulated by tyrosine kinase signaling and macropinocytosis. These insights into selective and comprehensive inhibition pathways offer promising therapeutic targets to mitigate giardiasis.
Collapse
Affiliation(s)
- Bruna Sabatke
- Graduate Program in Microbiology, Pathology and Parasitology, Federal University of Paraná, Curitiba, PR 81350-010, Brazil
- EVAHPI-Extracellular Vesicles and Host-Parasite Interactions Research Group, Carlos Chagas Institute (Fiocruz-PR), Curitiba, PR 81350-010, Brazil
| | - Izadora V Rossi
- Graduate Program in Microbiology, Pathology and Parasitology, Federal University of Paraná, Curitiba, PR 81350-010, Brazil
- EVAHPI-Extracellular Vesicles and Host-Parasite Interactions Research Group, Carlos Chagas Institute (Fiocruz-PR), Curitiba, PR 81350-010, Brazil
| | - Leticia Bonato
- Graduate Program in Microbiology, Pathology and Parasitology, Federal University of Paraná, Curitiba, PR 81350-010, Brazil
- EVAHPI-Extracellular Vesicles and Host-Parasite Interactions Research Group, Carlos Chagas Institute (Fiocruz-PR), Curitiba, PR 81350-010, Brazil
| | - Sarah Fucio
- EVAHPI-Extracellular Vesicles and Host-Parasite Interactions Research Group, Carlos Chagas Institute (Fiocruz-PR), Curitiba, PR 81350-010, Brazil
- Graduate Program in Cell and Molecular Biology, Federal University of Paraná, Curitiba, PR 81350-010, Brazil
| | - Alba Cortés
- Department of Parasitology and Cellular Biology, Faculty of Pharmacy, University of Valencia, Valencia 46010, Spain
| | - Antonio Marcilla
- Department of Parasitology and Cellular Biology, Faculty of Pharmacy, University of Valencia, Valencia 46010, Spain
| | - Marcel I Ramirez
- EVAHPI-Extracellular Vesicles and Host-Parasite Interactions Research Group, Carlos Chagas Institute (Fiocruz-PR), Curitiba, PR 81350-010, Brazil
| |
Collapse
|
29
|
Hasan R, Zhao Z, Li Y, Liu Y, Zhang Y, Cheng K. Small extracellular vesicles (sEVs) in pancreatic cancer progression and diagnosis. J Control Release 2025; 380:269-282. [PMID: 39889882 PMCID: PMC11908897 DOI: 10.1016/j.jconrel.2025.01.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/16/2025] [Accepted: 01/24/2025] [Indexed: 02/03/2025]
Abstract
Pancreatic cancer is one of the most aggressive malignancies with poor prognostic outcomes, necessitating the exploration of novel biomarkers and therapeutic targets for early detection and effective treatment. Small extracellular vesicles (sEVs) secreted by cells, have gained considerable attention in cancer research due to their role in intercellular communication and their potential as non-invasive biomarkers. This review focuses on the role of sEVs in the progression of pancreatic cancer and their application as biomarkers. We delve into the biogenesis, composition, and functional implications of sEVs in pancreatic tumor biology, emphasizing their involvement in processes such as tumor growth, metastasis, immune modulation, and chemotherapy resistance. In addition, we discuss the challenges in isolating and characterizing sEVs. The review also highlights recent advances in the utilization of sEV-derived biomarkers for the early diagnosis, prognosis, and monitoring of pancreatic cancer. By synthesizing the latest findings, we aim to underscore the significance of sEVs in pancreatic cancer and their potential to revolutionize patient management through improved diagnostics and targeted therapies.
Collapse
Affiliation(s)
- Reaid Hasan
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Zhen Zhao
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Yuanke Li
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Yanli Liu
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Yuanyuan Zhang
- Institute for Regenerative Medicine, Wake Forest University, Winston-Salem, NC, USA
| | - Kun Cheng
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA.
| |
Collapse
|
30
|
Praveena G, Jayachandran A, Manda Venkata S, Asthana A. From bench to bedside: The evolution of extracellular vesicle diagnostics through microfluidic and paper-based technologies. Colloids Surf B Biointerfaces 2025; 252:114675. [PMID: 40222114 DOI: 10.1016/j.colsurfb.2025.114675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/15/2025] [Accepted: 03/29/2025] [Indexed: 04/15/2025]
Abstract
"Extracellular vesicles (EVs) have emerged as key mediators of intercellular communication and valuable biomarkers for various diseases. However, traditional EV isolation and detection methods often struggle with efficiency, scalability, and purity, limiting their clinical utility. Recent advances in microfluidic and paper-based technologies offer innovative solutions that enhance EV isolation and detection by reducing sample volume, accelerating processing times, and integrating multiple analytical steps into compact platforms. These technologies hold significant promise for advancing point-of-care diagnostics, enabling rapid disease detection, personalized treatment monitoring, and better patient outcomes. For example, early detection of cancer biomarkers through EVs can facilitate timely intervention, potentially improving survival rates, while rapid infectious disease diagnostics can support prompt treatment. Despite their potential, challenges such as standardization, scalability, and regulatory hurdles remain. This review discusses recent advancements in microfluidic and paper-based EV diagnostic technologies, their comparative advantages over traditional methods, and their transformative potential in clinical practice."
Collapse
Affiliation(s)
- Ganji Praveena
- Urvogelbio Private Limited, AHERF, Film Nagar, Hyderabad, Telangana 500033, India
| | - Arjun Jayachandran
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research, Hyderabad (NIPER - Hyderabad), Balanagar, Hyderabad, Telangana 500037, India
| | - Sasidhar Manda Venkata
- Urvogelbio Private Limited, AHERF, Film Nagar, Hyderabad, Telangana 500033, India; Apollo Hospitals Educational and Research Foundation (AHERF), Cell and Molecular Biology Research Lab, Hyderabad, India.
| | - Amit Asthana
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research, Hyderabad (NIPER - Hyderabad), Balanagar, Hyderabad, Telangana 500037, India.
| |
Collapse
|
31
|
Wylie C, Rowan R, Malinova D, Crawford L. Extracellular vesicles in multiple myeloma: pathogenesis and therapeutic application. FEBS J 2025. [PMID: 40205752 DOI: 10.1111/febs.70093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 03/06/2025] [Accepted: 04/01/2025] [Indexed: 04/11/2025]
Abstract
Multiple myeloma (MM), characterised by the clonal proliferation of plasma cells in the bone marrow, is the second most common haematological malignancy worldwide. Although there is now an impressive artillery of therapeutics to tackle this condition, resistance remains a prevalent issue. The bone marrow microenvironment performs a crucial role in supporting MM pathogenesis and promoting the development of therapeutic resistance. Extracellular vesicles (EVs), small vesicles that carry bioactive molecules, are a key component of cell-to-cell communication within the bone marrow microenvironment. In this review, we summarise the contribution of EVs to disease progression and anticancer treatment resistance and discuss the potential therapeutic applications of EVs in MM.
Collapse
Affiliation(s)
- Chloe Wylie
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, UK
| | - Rebecca Rowan
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, UK
| | - Dessi Malinova
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, UK
| | - Lisa Crawford
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, UK
| |
Collapse
|
32
|
Pan X, Huang C, Bai X, Li F. Causal relationship between breast cancer and acute myeloid leukemia based on two-sample bidirectional Mendelian randomization and transcriptome overlap analysis. Discov Oncol 2025; 16:492. [PMID: 40198525 PMCID: PMC11979033 DOI: 10.1007/s12672-025-02288-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 04/01/2025] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND Breast cancer is the most prevalent malignancy and the leading cause of cancer-related deaths among women worldwide. Several case reports have shown that some breast cancer patients subsequently develop acute myeloid leukemia (AML) within a short period. However, the causal relationship and pathogenic mechanisms between breast cancer and AML remain incompletely understood. METHODS Mendelian randomization (MR) analyses were conducted to explore the bidirectional causal relationships between breast cancer and AML. Additionally, we applied the Bayesian Weighted Mendelian Randomization (BWMR) approach to validate the results of the MR analysis. Subsequently, we utilized RNA-seq data from various sources to explore the potential molecular signaling pathways between breast cancer and AML. RESULTS Both IVW method and BWMR approach demonstrated that data from three distinct sources consistently indicated breast cancer as a risk factor for AML, with all sources showing statistically significant results (all P < 0.05, Odds Ratios [ORs] > 1). Bioinformatic analyses suggested that extracellular vesicle functions and p53 signaling pathway may mediate molecular links between breast cancer and AML. Using machine learning, we identified 8 genes with high diagnostic efficacy for predicting the occurrence of AML in breast cancer patients. CONCLUSIONS MR analyses indicated a causal relationship between breast cancer and AML. Additionally, transcriptome analysis offered a theoretical basis for understanding the potential mechanisms and therapeutic targets of AML in breast cancer patients.
Collapse
Affiliation(s)
- Xin'an Pan
- Department of Hematology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17 Yongwai Zheng Street, East Lake District, Nanchang City, 330006, Jiangxi Province, China
| | - Cuihan Huang
- The First Clinical Medical College of Nanchang University, Xuefu Road, Nanchang, 330006, Jiangxi, China
| | - Xinyi Bai
- School of Public, Health of Nanchang University, Xuefu Road, Nanchang, 330006, Jiangxi, China
| | - Fei Li
- Department of Hematology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17 Yongwai Zheng Street, East Lake District, Nanchang City, 330006, Jiangxi Province, China.
- Jiangxi Clinical Research Center for Hematologic Disease, Nanchang, China.
| |
Collapse
|
33
|
Zhang J, Weng S, Fan Z, Hu D, Le J, Sheng K. Migrasomes: Critical players in intercellular nanovesicle communication. Cell Signal 2025; 132:111796. [PMID: 40209968 DOI: 10.1016/j.cellsig.2025.111796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 03/24/2025] [Accepted: 04/06/2025] [Indexed: 04/12/2025]
Abstract
Migrasomes are vesicular structures that form on elongated tethers originating from the tips or junctions of cellular tails during migration. These organelles, named for their vesicle rich lumen and release during cell movement, have gained attention for their role in intercellular communication and signal transduction. Migrasome formation is closely associated with the dynamic and active movement of cells, as well as with the intrinsic properties of cells and the extracellular microenvironment under various pathophysiological conditions. This review provides a comprehensive overview of migrasome dynamics, examining the mechanisms and distinct features of nanoscale vesicle-mediated intercellular signaling. It also highlights the influence of microscopic secretory factors on migrasome generation and formation. By comparing migrasomes with other active extracellular vesicles, this review highlights the advantages of migrasomes and addresses future challenges.
Collapse
Affiliation(s)
- Jiayu Zhang
- Department of ECG, Sir Run Run Shaw Hospital, Sir Run Run Shaw Institute of Clinical Medicine of Zhejiang University, Hangzhou, China
| | - Shoutao Weng
- Department of Orthopaedics, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Zaiwei Fan
- Department of Orthopedics, The Second Affiliated Hospital, Jiangxi Medical College Nanchang University, Nanchang, Jiangxi 330006, China
| | - Dongyang Hu
- Department of Orthopaedics, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Jiadi Le
- Department of Orthopaedics, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Kongsheng Sheng
- Department of Pharmacy, Taizhou Municipal Hospital, Taizhou 318000, China.
| |
Collapse
|
34
|
Mateos H, Mallardi A, Serrano-Pertierra E, Blanco-López MC, Liguori M, Antonacci Y, Casiello M, Palazzo G. Hetero Sandwich Immunoassay as Tool to Probe the Composition of the Extracellular Vesicles Membranes: The Case Study of L1CAM Localization. ACS OMEGA 2025; 10:12983-12992. [PMID: 40224478 PMCID: PMC11983164 DOI: 10.1021/acsomega.4c09363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 02/16/2025] [Accepted: 03/20/2025] [Indexed: 04/15/2025]
Abstract
Lateral flow immunoassays (LFIAs) are widely used for point-of-care diagnostic devices due to their simplicity, low cost, and rapid results. In this work, we demonstrate that a heterosandwich design LFIA can be an effective tool for verifying the presence of different proteins on the same particles. As a case study, we address a recent controversy regarding the presence of the protein L1CAM on the extracellular vesicles (EVs). EVs are crucial for cell communication and may serve as valuable disease biomarkers, including for neurodegenerative disorders. EVs from neuronal cells can cross the blood-brain barrier and be selectively isolated from plasma. Although L1CAM has been suggested as a marker for neuron-derived EVs, recent studies report that L1CAM exists as a cleaved soluble protein in plasma, not associated with EVs. We propose a heterosandwich LFIA to detect and quantify L1CAM and a confirmed EV marker, tetraspanin CD63 or CD9, on the same EV. This assay, together with several control experiments on EVs isolated from plasma by size exclusion chromatography (SEC), demonstrates that although most L1CAM in plasma is present as soluble cleaved proteins, 13% of the EVs are strongly associated with this protein. This evidence is confirmed by dynamic light scattering measurements, showing a significant size increase of gold nanoparticles conjugated with L1CAM antibodies when exposed to EVs but not to cleaved soluble L1CAM. Our results validate the selective immune-isolation of L1CAM-EVs, resolving the controversy by confirming that L1CAM is indeed associated with a significant fraction of EVs despite the presence of its soluble form in plasma.
Collapse
Affiliation(s)
- Helena Mateos
- Dipartimento
di Chimica and CSGI (Center for Colloid and Surface Science), Università degli Studi di Bari “Aldo
Moro”, Via Orabona n. 4 70125 Bari, Italy
| | - Antonia Mallardi
- CNR-IPCF,
Institute for Physical and Chemical Processes—Bari Division,
National Research Council (CNR), 00185 Rome, Italy
| | - Esther Serrano-Pertierra
- Departamento
de Bioquímica y Biología Molecular & Instituto Universitario
de Biotecnología de Asturias, Universidad
de Oviedo, 33006 Oviedo, Spain
| | - Maria Carmen Blanco-López
- Departamento
de Química Física y Analítica & Instituto
Universitario de Biotecnología de Asturias, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Maria Liguori
- CNR-ITB,
Institute of Biomedical Technologies—Bari Unit, National Research
Council (CNR), Via Amendola
n. 122, 70125 Bari, Italy
| | - Ylenia Antonacci
- CNR-ITB,
Institute of Biomedical Technologies—Bari Unit, National Research
Council (CNR), Via Amendola
n. 122, 70125 Bari, Italy
| | - Michele Casiello
- Dipartimento
di Chimica and CSGI (Center for Colloid and Surface Science), Università degli Studi di Bari “Aldo
Moro”, Via Orabona n. 4 70125 Bari, Italy
| | - Gerardo Palazzo
- Dipartimento
di Chimica and CSGI (Center for Colloid and Surface Science), Università degli Studi di Bari “Aldo
Moro”, Via Orabona n. 4 70125 Bari, Italy
| |
Collapse
|
35
|
Tarin M, Oryani MA, Javid H, Karimi-Shahri M. Exosomal PD-L1 in non-small cell lung Cancer: Implications for immune evasion and resistance to immunotherapy. Int Immunopharmacol 2025; 155:114519. [PMID: 40199140 DOI: 10.1016/j.intimp.2025.114519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 03/11/2025] [Accepted: 03/17/2025] [Indexed: 04/10/2025]
Abstract
Exosomes, characterized by their bilayer lipid structure, are crucial in mediating intercellular signaling and contributing to various physiological processes. Tumor cells produce distinct exosomes facilitating cancer progression, angiogenesis, and metastasis by conveying signaling molecules. A notable feature of these tumor-derived exosomes is the presence of programmed death-ligand 1 (PD-L1) on their surface. The PD-L1/programmed cell death receptor-1 (PD-1) signaling axis serves as a critical immune checkpoint, enabling tumors to evade immune detection and antitumor activity. The advancement of immunotherapy targeting the PD-1/PD-L1 pathway has significantly impacted the treatment landscape for non-small cell lung cancer (NSCLC). Despite its promise, evidence indicates that many patients experience limited responses or develop resistance to PD-1/PD-L1 inhibitors. Recent studies suggest that exosomal PD-L1 contributes to this resistance by modulating immune responses and tumor adaptability. This study reviews the PD-1/PD-L1 pathway's characteristics, current clinical findings on PD-L1 inhibitors in NSCLC, and exosome-specific attributes, with a particular focus on exosomal PD-L1. Furthermore, it examines the growing body of research investigating the role of exosomal PD-L1 in cancer progression and response to immunotherapy, underscoring its potential as a target for overcoming resistance in NSCLC treatment.
Collapse
Affiliation(s)
- Mojtaba Tarin
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mahsa Akbari Oryani
- Department of Pathology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Javid
- Department of Medical Laboratory Sciences, Varastegan Institute for Medical Sciences, Mashhad, Iran; Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mehdi Karimi-Shahri
- Department of Pathology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pathology, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran.
| |
Collapse
|
36
|
Kozela E, Petrovich-Kopitman E, Berger Y, Camacho AC, Shoham Y, Morandi MI, Rosenhek-Goldian I, Rotkopf R, Regev-Rudzki N. Spectral flow cytometry for detecting DNA cargo in malaria parasite-derived extracellular vesicles. J Biol Chem 2025:108481. [PMID: 40199399 DOI: 10.1016/j.jbc.2025.108481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 03/11/2025] [Accepted: 03/31/2025] [Indexed: 04/10/2025] Open
Abstract
Cells across biological kingdoms release extracellular vesicles (EVs) as a means of communication with other cells, be their friends or foes. This is indeed true for the intracellular malaria parasite Plasmodium falciparum (Pf), which utilizes EVs to transport bioactive molecules to various human host systems. Yet, the study of this mode of communication in malaria research is currently constrained due to limitations in high-resolution tools and the absence of commercial antibodies. Here, we demonstrate the power of an advanced spectral flow cytometry approach to robustly detect secreted EVs, isolated from Pf-infected red blood cells. By labeling both EV membrane lipids and the DNA cargo within (non-antibody staining approach), we were able to detect a subpopulation of parasitic-derived EVs enriched in DNA. Furthermore, we could quantitatively measure the DNA-carrying EVs isolated from two distinct blood stages of the parasite: rings and trophozoites. Our findings showcase the potential of spectral flow cytometry to monitor dynamic changes in nucleic acid cargo within pathogenic EVs.
Collapse
Affiliation(s)
- Ewa Kozela
- Department of Biomolecular Sciences, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot, Israel
| | | | - Yuval Berger
- Department of Biomolecular Sciences, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Abel Cruz Camacho
- Department of Biomolecular Sciences, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Yaara Shoham
- Department of Biomolecular Sciences, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Mattia I Morandi
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Science, Prague, Czech Republic; The International Institute of Molecular Mechanisms and Machines, Polish Academy of Sciences, Warsaw, Poland
| | - Irit Rosenhek-Goldian
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Ron Rotkopf
- Bioinformatics Unit, Life Science Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Neta Regev-Rudzki
- Department of Biomolecular Sciences, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
37
|
Zhao M, Wang J, Zhu S, Zhang S, Han C, Tan C, Huang Y, Sun Z, Wang L, Liu J. Human neural stem cell-derived exosomes activate PINK1/Parkin pathway to protect against oxidative stress-induced neuronal injury in ischemic stroke. J Transl Med 2025; 23:402. [PMID: 40188077 PMCID: PMC11971779 DOI: 10.1186/s12967-025-06283-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 02/20/2025] [Indexed: 04/07/2025] Open
Abstract
BACKGROUND Mitochondria play a critical role in oxidative stress (OS)-induced neuronal injury during ischemic stroke (IS), making them promising therapeutic targets. Mounting evidence underscores the extraordinary therapeutic promise of exosomes derived from human neural stem cells (hNSCs) in the management of central nervous system (CNS) diseases. Nonetheless, the precise mechanisms by which these exosomes target mitochondria to ameliorate the effects of IS remain only partially elucidated. This study investigates the protective effects of hNSC derived exosomes (hNSC-Exos) on neuronal damage. METHODS Using a rat model of middle cerebral artery occlusion (MCAO) in vivo and OS-induced HT22 cells in vitro. Firstly, our research group independently isolated human neural stem cells (hNSCs) and subsequently prepared hNSC-Exos. In vivo, MCAO rats were restored to blood flow perfusion to simulate ischemia-reperfusion injury, and hNSC-Exos were injected through stereotaxic injection into the brain. Subsequently, the protective effects of hNSC-Exos on MCAO rats were evaluated, including histological studies, behavioral assessments. In vivo, H2O2 was used in HT22 cells to simulate the OS environment in MCAO, and then its protective effects on HT22 were evaluated by co-culturing with hNSC-Exos, including immunofluorescence staining, western blotting (WB), quantitative real time PCR (qRT-PCR). In the process of exploring specific mechanisms, we utilized RNA sequencing (RNA-seq) to detect the potential induction of mitophagy in OS-induced HT22 cells. Afterwards, we employed a series of mitochondrial function assessments and autophagy related detection techniques, including measuring mitochondrial membrane potential, reactive oxygen species (ROS) levels, transmission electron microscopy (TEM) imaging, monodansylcadaverine (MDC) staining, and mCherry-GFP-LC3B staining. In addition, we further investigated the regulatory pathway of hNSC-Exos by using autophagy inhibitor mdivi-1 and knocking out PTEN induced kinase 1 (PINK1) in HT22 cells. RESULTS Administration of hNSC-Exos significantly ameliorated brain tissue damage and enhanced behavioral outcomes in MCAO rats. This treatment led to a reduction in brain tissue apoptosis and facilitated the normalization of impaired neurogenesis and neuroplasticity. Notably, the application of hNSC-Exos in vitro resulted in an upregulation of mitophagy in HT22 cells, thereby remedying mitochondrial dysfunction. We demonstrate that hNSC-Exos activate mitophagy via the PINK1/Parkin pathway, improving mitochondrial function and reducing neuronal apoptosis. CONCLUSIONS These findings suggest that hNSC-Exos alleviate OS-induced neuronal damage by regulating the PINK1/Parkin pathway. These reveals a novel role of stem cell-derived mitochondrial therapy in promoting neuroprotection and suggest their potential as a therapeutic approach for OS-associated CNS diseases, including IS.
Collapse
Affiliation(s)
- Mengke Zhao
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian, 116011, People's Republic of China
- National Local Joint Engineering Laboratory, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian, 116011, People's Republic of China
- National Genetic Test Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian, 116011, People's Republic of China
- Liaoning Key Laboratory of Frontier Technology of Stem Cell and Precision Medicine, Dalian Innovation Institute of Stem Cell and Precision Medicine, No. 57, Xinda Street, High-Tech Park, Dalian, 116023, People's Republic of China
| | - Jiayi Wang
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian, 116011, People's Republic of China
- National Local Joint Engineering Laboratory, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian, 116011, People's Republic of China
- National Genetic Test Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian, 116011, People's Republic of China
- Liaoning Key Laboratory of Frontier Technology of Stem Cell and Precision Medicine, Dalian Innovation Institute of Stem Cell and Precision Medicine, No. 57, Xinda Street, High-Tech Park, Dalian, 116023, People's Republic of China
| | - Shuaiyu Zhu
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian, 116011, People's Republic of China
- National Local Joint Engineering Laboratory, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian, 116011, People's Republic of China
- National Genetic Test Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian, 116011, People's Republic of China
- Liaoning Key Laboratory of Frontier Technology of Stem Cell and Precision Medicine, Dalian Innovation Institute of Stem Cell and Precision Medicine, No. 57, Xinda Street, High-Tech Park, Dalian, 116023, People's Republic of China
| | - Shensen Zhang
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian, 116011, People's Republic of China
- National Local Joint Engineering Laboratory, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian, 116011, People's Republic of China
- National Genetic Test Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian, 116011, People's Republic of China
- Liaoning Key Laboratory of Frontier Technology of Stem Cell and Precision Medicine, Dalian Innovation Institute of Stem Cell and Precision Medicine, No. 57, Xinda Street, High-Tech Park, Dalian, 116023, People's Republic of China
| | - Chao Han
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian, 116011, People's Republic of China
- National Local Joint Engineering Laboratory, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian, 116011, People's Republic of China
- National Genetic Test Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian, 116011, People's Republic of China
- Liaoning Key Laboratory of Frontier Technology of Stem Cell and Precision Medicine, Dalian Innovation Institute of Stem Cell and Precision Medicine, No. 57, Xinda Street, High-Tech Park, Dalian, 116023, People's Republic of China
| | - Chengcheng Tan
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian, 116011, People's Republic of China
- National Local Joint Engineering Laboratory, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian, 116011, People's Republic of China
- National Genetic Test Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian, 116011, People's Republic of China
- Liaoning Key Laboratory of Frontier Technology of Stem Cell and Precision Medicine, Dalian Innovation Institute of Stem Cell and Precision Medicine, No. 57, Xinda Street, High-Tech Park, Dalian, 116023, People's Republic of China
| | - Yubing Huang
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian, 116011, People's Republic of China
- National Local Joint Engineering Laboratory, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian, 116011, People's Republic of China
- National Genetic Test Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian, 116011, People's Republic of China
- Liaoning Key Laboratory of Frontier Technology of Stem Cell and Precision Medicine, Dalian Innovation Institute of Stem Cell and Precision Medicine, No. 57, Xinda Street, High-Tech Park, Dalian, 116023, People's Republic of China
| | - Zhaokai Sun
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian, 116011, People's Republic of China
- National Local Joint Engineering Laboratory, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian, 116011, People's Republic of China
- National Genetic Test Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian, 116011, People's Republic of China
- Liaoning Key Laboratory of Frontier Technology of Stem Cell and Precision Medicine, Dalian Innovation Institute of Stem Cell and Precision Medicine, No. 57, Xinda Street, High-Tech Park, Dalian, 116023, People's Republic of China
| | - Liang Wang
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian, 116011, People's Republic of China.
- National Local Joint Engineering Laboratory, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian, 116011, People's Republic of China.
- National Genetic Test Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian, 116011, People's Republic of China.
- Liaoning Key Laboratory of Frontier Technology of Stem Cell and Precision Medicine, Dalian Innovation Institute of Stem Cell and Precision Medicine, No. 57, Xinda Street, High-Tech Park, Dalian, 116023, People's Republic of China.
| | - Jing Liu
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian, 116011, People's Republic of China.
- National Local Joint Engineering Laboratory, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian, 116011, People's Republic of China.
- National Genetic Test Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian, 116011, People's Republic of China.
- Liaoning Key Laboratory of Frontier Technology of Stem Cell and Precision Medicine, Dalian Innovation Institute of Stem Cell and Precision Medicine, No. 57, Xinda Street, High-Tech Park, Dalian, 116023, People's Republic of China.
| |
Collapse
|
38
|
Wang J, Li Y, Wang Y, Wang G, Zhao C, Zhang Y, Lu H. Comparison of Protein Solubilization and Normalization Methods for Proteomics Analysis of Extracellular Vesicles from Urine. J Proteome Res 2025. [PMID: 40184522 DOI: 10.1021/acs.jproteome.4c01085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2025]
Abstract
Extracellular vesicles (EVs) play a vital role in numerous biological processes. Proteomic research of EVs is crucial for understanding their functions and potential therapeutic implications. Despite many sample preparation protocols for mass spectrometry-based proteomics of EVs being described, the variability in protein extraction across different protocols has not been extensively investigated. Moreover, given the inherent heterogeneity of EVs, it is vital to conduct a thorough evaluation of normalization methods. Here, we present a comprehensive comparison of three widely used lysis agents─sodium dodecyl sulfate (SDS), urea, and sodium deoxycholate (SDC)─for protein extraction from EVs. We also assess the impact of different normalization strategies on protein quantification, which is crucial for ensuring reliable results. Our results show that method-dependent differences in protein recovery were observed, particularly for membrane-associated proteins. We also find that common normalization strategies, such as urine creatinine and EV markers, did not significantly stabilize protein quantification, indicating that these methods are not universally applicable as normalization standards. Our work thereby provides a reference for the selection of MS sample preparation and normalization strategies for a given EV proteomics project.
Collapse
Affiliation(s)
- Jun Wang
- Liver Cancer Institute, Zhongshan Hospital and Department of Chemistry, Fudan University, Shanghai 200032, P. R. China
| | - Yang Li
- Institutes of Biomedical Sciences and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200032, P. R. China
| | - Yisheng Wang
- Liver Cancer Institute, Zhongshan Hospital and Department of Chemistry, Fudan University, Shanghai 200032, P. R. China
| | - Guoli Wang
- Institutes of Biomedical Sciences and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200032, P. R. China
| | - Chenyang Zhao
- Institutes of Biomedical Sciences and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200032, P. R. China
| | - Ying Zhang
- Liver Cancer Institute, Zhongshan Hospital and Department of Chemistry, Fudan University, Shanghai 200032, P. R. China
- Institutes of Biomedical Sciences and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200032, P. R. China
| | - Haojie Lu
- Liver Cancer Institute, Zhongshan Hospital and Department of Chemistry, Fudan University, Shanghai 200032, P. R. China
- Institutes of Biomedical Sciences and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200032, P. R. China
| |
Collapse
|
39
|
Rydland A, Heinicke F, Nyman TA, Trøseid AMS, Flåm ST, Stensland M, Gehin J, Eikeland J, Øvstebø R, Mjaavatten MD, Lie BA. Newly-diagnosed rheumatoid arthritis patients have elevated levels of plasma extracellular vesicles with protein cargo altered towards inflammatory processes. Sci Rep 2025; 15:11632. [PMID: 40185859 PMCID: PMC11971360 DOI: 10.1038/s41598-025-96325-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 03/27/2025] [Indexed: 04/07/2025] Open
Abstract
Extracellular vesicles (EVs) are implicated in rheumatoid arthritis (RA) but have mainly been assessed in RA patients taking disease modifying anti-rheumatic drugs. EVs are nanoparticles important in cell-cell communication and their molecular cargo are biomarker candidates. We characterized the protein profiles of EVs from blood plasma from newly diagnosed, treatment naïve RA patients (N = 32) and compared them to healthy controls (N = 20), by size exclusion chromatography-based EV enrichment coupled with high-resolution quantitative proteomics. The RA patients had higher EV concentration and larger EVs than controls. A total of 682 EV proteins were reliably quantified, and the overall profiles were distinctly different between patients and controls. Specifically, 26 proteins were significantly upregulated and 31 downregulated in RA patients, with several proteins acting in inflammatory networks and with immunologically important upstream regulators. The RA associated EVs appear, based on the tissue expression of their cargo proteins, to originate mainly from hepatocytes or immune cells, like neutrophils. Interestingly, the strongest RA associated EV proteins were inflammatory molecules, like SAA1 and S100A9, already suggested as biomarkers in RA. Furthermore, the RA associated EV proteins were generally not correlated with total serum protein levels, stressing the importance of EV transport of inflammatory proteins in RA pathogenesis.
Collapse
Affiliation(s)
- Anne Rydland
- Department of Medical Genetics, University of Oslo and Oslo University Hospital, Postboks 4956 Nydalen, OUS HF Ullevål sykehus, 0424, Oslo, Norway.
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
- Center for Treatment of Rheumatic and Musculoskeletal Diseases (REMEDY), Diakonhjemmet Hospital, Oslo, Norway.
| | - Fatima Heinicke
- Department of Medical Genetics, University of Oslo and Oslo University Hospital, Postboks 4956 Nydalen, OUS HF Ullevål sykehus, 0424, Oslo, Norway
- Center for Treatment of Rheumatic and Musculoskeletal Diseases (REMEDY), Diakonhjemmet Hospital, Oslo, Norway
- Department of Biostatistics, Institute of Basic Medical Sciences, Oslo Centre for Biostatistics and Epidemiology, University of Oslo, Oslo, Norway
| | - Tuula A Nyman
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Anne-Marie Siebke Trøseid
- The Blood Cell Research Group, Department of Medical Biochemistry, Oslo University Hospital, Ullevål, Oslo, Norway
| | - Siri T Flåm
- Department of Medical Genetics, University of Oslo and Oslo University Hospital, Postboks 4956 Nydalen, OUS HF Ullevål sykehus, 0424, Oslo, Norway
- Center for Treatment of Rheumatic and Musculoskeletal Diseases (REMEDY), Diakonhjemmet Hospital, Oslo, Norway
| | - Maria Stensland
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Johanna Gehin
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - Joakim Eikeland
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - Reidun Øvstebø
- The Blood Cell Research Group, Department of Medical Biochemistry, Oslo University Hospital, Ullevål, Oslo, Norway
| | - Maria Dahl Mjaavatten
- Center for Treatment of Rheumatic and Musculoskeletal Diseases (REMEDY), Diakonhjemmet Hospital, Oslo, Norway
- Division of Rheumatology, Diakonhjemmet Hospital, Oslo, Norway
| | - Benedicte A Lie
- Department of Medical Genetics, University of Oslo and Oslo University Hospital, Postboks 4956 Nydalen, OUS HF Ullevål sykehus, 0424, Oslo, Norway.
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
- Center for Treatment of Rheumatic and Musculoskeletal Diseases (REMEDY), Diakonhjemmet Hospital, Oslo, Norway.
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
40
|
Manolopoulos A, Yao PJ, Kapogiannis D. Extracellular vesicles: translational research and applications in neurology. Nat Rev Neurol 2025:10.1038/s41582-025-01080-z. [PMID: 40181198 DOI: 10.1038/s41582-025-01080-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2025] [Indexed: 04/05/2025]
Abstract
Over the past few decades, extensive basic, translational and clinical research has been devoted to deciphering the physiological and pathogenic roles of extracellular vesicles (EVs) in the nervous system. The presence of brain cell-derived EVs in the blood, carrying diverse cargoes, has enabled the development of predictive, diagnostic, prognostic, disease-monitoring and treatment-response biomarkers for various neurological disorders. In this Review, we consider how EV biomarkers can bring us closer to understanding the complex pathogenesis of neurological disorders such as Alzheimer disease, Parkinson disease, stroke, traumatic brain injury, amyotrophic lateral sclerosis and multiple sclerosis. We describe how translational research on EVs might unfold bidirectionally, proceeding from basic to clinical studies but also in the opposite direction, with biomarker findings in the clinic leading to novel hypotheses that can be tested in the laboratory. We demonstrate the potential value of EVs across all stages of the therapeutic development pipeline, from identifying therapeutic targets to the use of EVs as reporters in model systems and biomarkers in clinical research. Finally, we discuss how the cargo and physicochemical properties of naturally occurring and custom-engineered EVs can be leveraged as novel treatments and vehicles for drug delivery, potentially revolutionizing neurotherapeutics.
Collapse
Affiliation(s)
- Apostolos Manolopoulos
- Laboratory of Clinical Investigation, Intramural Research Program, National Institute on Aging, Baltimore, MD, USA
| | - Pamela J Yao
- Laboratory of Clinical Investigation, Intramural Research Program, National Institute on Aging, Baltimore, MD, USA
| | - Dimitrios Kapogiannis
- Laboratory of Clinical Investigation, Intramural Research Program, National Institute on Aging, Baltimore, MD, USA.
| |
Collapse
|
41
|
Tiwari A, Soni N, Dongre S, Chaudhary M, Bissa B. The role of plant-derived extracellular vesicles in ameliorating chronic diseases. Mol Biol Rep 2025; 52:360. [PMID: 40180626 DOI: 10.1007/s11033-025-10466-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 03/24/2025] [Indexed: 04/05/2025]
Abstract
Plant-derived extracellular vesicles (PDEVs) have been shown to have a promising role in treating chronic illnesses. Plants secrete these vesicles containing bioactive chemicals such as proteins, lipids, nucleic acids, and small metabolites. Because of their unique structure, PDEVs affect many biological processes, which makes them an ideal candidate for treating the complex pathophysiology of chronic diseases. Recent studies have shown that PDEVs have anti-inflammatory and antioxidant properties. Extracellular vesicles (EVs) possess diverse therapeutic potential, including anti-inflammatory, antioxidant, and regenerative properties. By regulating immune responses, scavenging free radicals, and promoting tissue repair, EVs can address various chronic diseases such as cardiovascular disorders, neurological conditions, skin diseases, and inflammatory ailments. In preclinical models, PDEVs have been demonstrated to improve heart function and minimize the size of myocardial infarctions. In neurodegenerative illnesses, they can pass through the blood-brain barrier and deliver neuroprotective medicines to the brain. Furthermore, PDEVs have shown promise in enhancing insulin sensitivity and lowering hyperglycemia in diabetic animals. In this review article, we attempt to explain the diverse therapeutic potential of PDEVs in ameliorating chronic diseases.
Collapse
Affiliation(s)
- Ashwani Tiwari
- Department of Biochemistry, Central University of Rajasthan, Ajmer, India
| | - Naveen Soni
- Department of Biochemistry, Central University of Rajasthan, Ajmer, India
| | - Shweta Dongre
- Department of Biochemistry, Central University of Rajasthan, Ajmer, India
| | - Megha Chaudhary
- Department of Biochemistry, Central University of Rajasthan, Ajmer, India
| | - Bhawana Bissa
- Department of Biochemistry, Central University of Rajasthan, Ajmer, India.
| |
Collapse
|
42
|
Cho H, Ju H, Ahn Y, Jang J, Cho J, Park E, Kang SM, Lee J, Seo D, Baek MC, Yea K. Engineered extracellular vesicles with surface FGF21 and enclosed miR-223 for treating metabolic dysfunction-associated steatohepatitis. Biomaterials 2025; 321:123321. [PMID: 40209593 DOI: 10.1016/j.biomaterials.2025.123321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/22/2025] [Accepted: 04/03/2025] [Indexed: 04/12/2025]
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH) is a progressive liver disorder with a complex pathogenesis that requires combination therapies rather than monotherapies. Extracellular vesicles (EVs) exhibit inherently efficient delivery to the liver and can be engineered to carry various therapeutic substances, making them promising agents. In this study, EVs were engineered to display fibroblast growth factor 21 (FGF21) on their surface and encapsulate miR-223 (223/F-EVs), aiming to improve steatosis and alleviate inflammation and fibrosis, respectively. Introducing the 223/F-EVs into human liver cell lines significantly reduced both basal and induced levels of lipid storage, inflammation, and fibrosis markers. Furthermore, using an FGF21-blocking antibody or miR-223 inhibitor effectively diminished the efficacy of the 223/F-EVs, confirming the essential roles of FGF21 and miR-223 in these processes. In a Choline-Deficient, l-Amino acid-defined, High-Fat Diet (CDAHFD)-fed mouse model, intravenously administered 223/F-EVs demonstrated liver-preferential delivery and a marked reduction in the MASH phenotype without compromising bone density, unlike conventional FGF21 treatment. Collectively, 223/F-EVs convey FGF21 and miR-223 exclusively to the liver, offering strategic advantages by mitigating MASH progression via multiple pathways. This study lays a solid foundation for further investigation of engineered EVs as a transformative therapeutic approach for treating MASH.
Collapse
Affiliation(s)
- Hanchae Cho
- Department of Biomedical Science, Kyungpook National University School of Medicine, Daegu, 41944, Republic of Korea
| | - Hyunji Ju
- Department of Molecular Medicine, CMRI, Kyungpook National University School of Medicine, Daegu, 41944, Republic of Korea
| | - Yongdeok Ahn
- Department of Physics and Chemistry, Daegu Gyeongbuk Institute of Science & Technology, Daegu, 42988, Republic of Korea
| | - Juhee Jang
- Department of Physics and Chemistry, Daegu Gyeongbuk Institute of Science & Technology, Daegu, 42988, Republic of Korea
| | - Juhyeong Cho
- Department of Physics and Chemistry, Daegu Gyeongbuk Institute of Science & Technology, Daegu, 42988, Republic of Korea
| | - Eunju Park
- Department of New Biology, Daegu Gyeongbuk Institute of Science & Technology, Daegu, 42988, Republic of Korea
| | - Sung-Min Kang
- Department of Molecular Medicine, CMRI, Kyungpook National University School of Medicine, Daegu, 41944, Republic of Korea
| | - Jaemin Lee
- Department of New Biology, Daegu Gyeongbuk Institute of Science & Technology, Daegu, 42988, Republic of Korea
| | - Daeha Seo
- Department of Physics and Chemistry, Daegu Gyeongbuk Institute of Science & Technology, Daegu, 42988, Republic of Korea
| | - Moon-Chang Baek
- Department of Molecular Medicine, CMRI, Kyungpook National University School of Medicine, Daegu, 41944, Republic of Korea.
| | - Kyungmoo Yea
- Department of New Biology, Daegu Gyeongbuk Institute of Science & Technology, Daegu, 42988, Republic of Korea; New Biology Research Center, Daegu Gyeongbuk Institute of Science & Technology, Daegu, 43024, Republic of Korea.
| |
Collapse
|
43
|
Kim J, Park H, Park NY, Hwang SI, Kim YE, Sung SI, Chang YS, Koh A. Functional maturation of preterm intestinal epithelium through CFTR activation. Commun Biol 2025; 8:540. [PMID: 40169914 PMCID: PMC11961738 DOI: 10.1038/s42003-025-07944-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 03/17/2025] [Indexed: 04/03/2025] Open
Abstract
Preterm birth disrupts intestinal epithelial maturation, impairing digestive and absorptive functions. This study integrates analysis of single-cell RNA sequencing datasets, spanning fetal to adult stages, with human preterm intestinal models derived from the ileal tissue of preterm infants. We investigate the potential of extracellular vesicles (EVs) derived from human Wharton's jelly mesenchymal stem cells to promote intestinal maturation. Distinct enterocyte differentiation trajectories are identified during the transition from immature to mature stages of human intestinal development. EV treatment, particularly with the EV39 line, significantly upregulates maturation-specific gene expression related to enterocyte function. Gene set enrichment analysis reveals an enrichment of TGFβ1 signaling pathways, and proteomic analysis identifies TGFβ1 and FGF2 as key mediators of EV39's effects. These treatments enhance cell proliferation, epithelial barrier integrity, and fatty acid uptake, primarily through CFTR-dependent mechanisms-unique to human preterm models, not observed in mouse intestinal organoids. This highlights the translational potential of EV39 and CFTR activation in promoting the functional maturation of the premature human intestine.
Collapse
Affiliation(s)
- Jihyun Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Hyunji Park
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Na-Young Park
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Se In Hwang
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Seoul, 06351, South Korea
| | - Young Eun Kim
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul, 06351, South Korea
| | - Se In Sung
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, South Korea.
| | - Yun Sil Chang
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Seoul, 06351, South Korea.
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul, 06351, South Korea.
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, South Korea.
| | - Ara Koh
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea.
| |
Collapse
|
44
|
Yu Z, Swift KA, Hedges MA, Theiss AL, Andres SF. Microscopic messengers: Extracellular vesicles shaping gastrointestinal health and disease. Physiol Rep 2025; 13:e70292. [PMID: 40165585 PMCID: PMC11959161 DOI: 10.14814/phy2.70292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 03/10/2025] [Accepted: 03/13/2025] [Indexed: 04/02/2025] Open
Abstract
The field of extracellular vesicles (EVs) is advancing rapidly, and this review aims to synthesize the latest research connected to EVs and the gastrointestinal tract. We will address new and emerging roles for EVs derived from internal sources such as the pancreas and immune system and how these miniature messengers alter organismal health or the inflammatory response within the GI tract. We will examine what is known about external EVs from dietary and bacterial sources and the immense anti-inflammatory, immune-modulatory, and proliferative potential within these nano-sized information carriers. EV interactions with the intestinal and colonic epithelium and associated immune cells at homeostatic and disease states, such as necrotizing enterocolitis (NEC) and inflammatory bowel disease (IBD) will also be covered. We will discuss how EVs are being leveraged as therapeutics or for drug delivery and conclude with a series of unanswered questions in the field.
Collapse
Affiliation(s)
- Zhantao Yu
- Division of Gastroenterology and Hepatology, Department of Medicine and the Mucosal Inflammation ProgramUniversity of Colorado School of MedicineAuroraColoradoUSA
| | - Kevin A. Swift
- Department of Pediatrics, Pediatric GI Division, School of MedicineOregon Health and Science UniversityPortlandOregonUSA
| | - Madeline A. Hedges
- Department of Neonatology, School of MedicineOregon Health and Science UniversityPortlandOregonUSA
| | - Arianne L. Theiss
- Division of Gastroenterology and Hepatology, Department of Medicine and the Mucosal Inflammation ProgramUniversity of Colorado School of MedicineAuroraColoradoUSA
- Rocky Mountain Regional Veterans Affairs Medical CenterAuroraColoradoUSA
| | - Sarah F. Andres
- Department of Pediatrics, Pediatric GI Division, School of MedicineOregon Health and Science UniversityPortlandOregonUSA
| |
Collapse
|
45
|
Bare Y, Defourny K, Bretou M, Van Niel G, Nolte-'t Hoen E, Gaudin R. The endoplasmic reticulum as a cradle for virus and extracellular vesicle secretion. Trends Cell Biol 2025; 35:282-293. [PMID: 39730274 DOI: 10.1016/j.tcb.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/08/2024] [Accepted: 11/25/2024] [Indexed: 12/29/2024]
Abstract
Extracellular vesicles (EVs) are small membranous carriers of protein, lipid, and nucleic acid cargoes and play a key role in intercellular communication. Recent work has revealed the previously under-recognized participation of endoplasmic reticulum (ER)-associated proteins (ERAPs) during EV secretion, using pathways reminiscent of viral replication and secretion. Here, we present highlights of the literature involving ER/ERAPs in EV biogenesis and propose mechanistic parallels with ERAPs exploited during viral infections. We propose that ERAPs play an active role in the release of EVs and viral particles, and we present views on whether viruses hijack or enhance pre-existing ERAP-dependent secretory machineries or whether they repurpose ERAPs to create new secretory pathways.
Collapse
Affiliation(s)
- Yonis Bare
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS UMR9004, Université Montpellier, Montpellier, France.
| | - Kyra Defourny
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands; VIB Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Marine Bretou
- Université Paris Cité, Institut de Psychiatrie et Neurosciences de Paris (IPNP), INSERM U1266, Paris, France
| | - Guillaume Van Niel
- CRCI2NA, Nantes Université, INSERM UMR1307, CNRS UMR6075, Université d'Angers, Nantes, France; GHU-Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, Paris, France
| | - Esther Nolte-'t Hoen
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Raphael Gaudin
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS UMR9004, Université Montpellier, Montpellier, France.
| |
Collapse
|
46
|
Tao K, Tao K, Wang J. The potential mechanisms of extracellular vesicles in transfusion-related adverse reactions: Recent advances. Transfus Clin Biol 2025:S1246-7820(25)00049-7. [PMID: 40180029 DOI: 10.1016/j.tracli.2025.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/15/2025] [Accepted: 03/25/2025] [Indexed: 04/05/2025]
Abstract
Blood transfusion is an irreplaceable clinical treatment. Blood components are differentiated and stored according to specific guidelines. Storage temperatures and times vary depending on the blood component, but they all release extracellular vesicles (EVs) during storage. Although blood transfusions can be life-saving, they can also cause many adverse transfusion reactions, among which the effects of EVs are of increasing interest to researchers. EVs are submicron particles that vary in size, composition, and surface biomarkers, are encapsulated by a lipid bilayer, and are not capable of self-replication. EVs released by blood cells are important contributors to pathophysiologic states through proinflammatory, coagulant, and immunosuppressive effects, which in turn promote or inhibit the associated disease phenotype. Therefore, this review explores the potential mechanisms of hematopoietic-derived EVs in transfusion-associated adverse reactions and discusses the potential of the latest proteomics tools to be applied to the analysis of EVs in the field of transfusion medicine with a view to reducing the risk of blood transfusion.
Collapse
Affiliation(s)
- Keyi Tao
- Panzhihua University, Panzhihua 617000 Sichuan, China
| | - Keran Tao
- Institute of Medicine and Nursing, Hubei University of Medicine, Shiyan 442000 Hubei, China
| | - Jing Wang
- Southwest Medical University, Luzhou 646000 Sichuan, China; Department of Blood Transfusion, The Affiliated Hospital of Southwest Medical University, Luzhou Sichuan, 646000 China.
| |
Collapse
|
47
|
Khorrami-Nejad M, Hashemian H, Majdi A, Jadidi K, Aghamollaei H, Hadi A. Application of stem cell-derived exosomes in anterior segment eye diseases: A comprehensive update review. Ocul Surf 2025; 36:209-219. [PMID: 39884389 DOI: 10.1016/j.jtos.2025.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 01/11/2025] [Accepted: 01/23/2025] [Indexed: 02/01/2025]
Abstract
Mesenchymal stem cell (MSC) therapy has emerged as a promising approach for addressing various eye-related conditions. Yet, its clinical application faces challenges due to issues such as limited biocompatibility and difficulties in effectively delivering treatment to specific ocular tissues. Recent studies have shifted attention towards MSC-derived exosomes, which share similar regenerative, reparative, and immunomodulatory capabilities with their origin cells. This review delves into the latest research on the use of MSC-derived exosomes for treating anterior segment diseases of the eye. It explores the exosomes' composition, biological functions, and the methods used for their isolation, as well as their roles in disease progression, diagnosis, and therapy. The review critically assesses the therapeutic advantages and mechanisms of action of MSC-derived exosomes in treating conditions like dry eye disease, Sjogren's syndrome, keratoconus, corneal lesions, and corneal allograft rejection. Additionally, it discusses the obstacles and future prospects of employing MSC-derived exosomes as innovative therapies for anterior segment eye diseases. This comprehensive overview underscores the significant potential of MSC-derived exosomes in transforming the treatment paradigm for anterior segment eye disorders, while also highlighting the necessity for further research to enhance their clinical application.
Collapse
Affiliation(s)
- Masoud Khorrami-Nejad
- Optometry Department, School of Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran; Translational Ophthalmology Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| | - Hesam Hashemian
- Translational Ophthalmology Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Majdi
- Optical Techniques Department, College of Health and Medical Techniques, Al-Mustaqbal University, 51001, Babylon, Iraq
| | - Khosrow Jadidi
- Vision Health Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Hossein Aghamollaei
- Vision Health Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Ali Hadi
- Optometry Department, School of Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
48
|
Brugière O, Dreyfuss D, Guilet R, Rong S, Hirschi S, Renaud-Picard B, Reynaud-Gaubert M, Coiffard B, Bunel V, Messika J, Demant X, Le Pavec J, Dauriat G, Saint Raymond C, Falque L, Mornex JF, Tissot A, Lair D, Le Borgne Krams A, Bousseau V, Magnan A, Picard C, Roux A, Glorion M, Carmagnat M, Gazeau F, Aubertin K, Carosella E, Vallée A, Landais C, Rouas-Freiss N, LeMaoult J. Circulating Vesicular-bound HLA-G as Noninvasive Predictive Biomarker of CLAD After Lung Transplantation. Transplantation 2025; 109:736-745. [PMID: 39294868 DOI: 10.1097/tp.0000000000005175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
BACKGROUND Circulating extracellular vesicles (EVs) have shown promising results as noninvasive biomarkers for predicting disease outcomes in solid organ transplantation. Because in situ graft cell expression of the tolerogenic molecule HLA-G is associated with acceptance after lung transplantation (LTx), we hypothesized that plasma EV-bound HLA-G (HLA-G EV ) levels could predict chronic lung allograft dysfunction (CLAD) development. METHODS We analyzed 78 LTx recipients from the Cohort-for-Lung-Transplantation cohort, all in a stable (STA) state within the first year post-LTx. At 3 y, 41 patients remained STA, and 37 had CLAD (bronchiolitis obliterans syndrome, BOS, [n = 32] or restrictive allograft syndrome [n = 5]). HLA-G EV plasma levels were measured at month 6 (M6) and M12 in 78 patients. CLAD occurrence and graft failure at 3 y post-LTx were assessed according to early HLA-G EV plasma levels. RESULTS In patients with subsequent BOS, (1) HLA-G EV levels at M12 were significantly lower than those in STA patients ( P = 0.013) and (2) also significantly lower than their previous levels at M6 ( P = 0.04).A lower incidence of CLAD and BOS and higher graft survival at 3 y were observed in patients with high HLA-G EV plasma levels at M12 (high versus low HLA-G EVs patients [cutoff 21.3 ng/mL]: freedom from CLAD, P = 0.002; freedom from BOS, P < 0.001; and graft survival, P = 0.04, [log-rank]). Furthermore, in multivariate analyses, low HLA-G EV levels at M12 were independently associated with a subsequent risk of CLAD, BOS, and graft failure at 3 y ( P = 0.015, P = 0.036, and P = 0.026, respectively [Cox models]). CONCLUSIONS This exploratory study suggests the potential of EV-bound HLA-G plasma levels as a liquid biopsy in predicting CLAD/BOS onset and subsequent graft failure.
Collapse
Affiliation(s)
- Olivier Brugière
- Service de Pneumologie et Transplantation Pulmonaire, Hôpital Foch, Suresnes, France
- CEA, DRF-Institut de Biologie Francois Jacob, Service de Recherches en Hémato-Immunologie, Hôpital Saint-Louis, Paris, France
- U976 HIPI, IRSL, Université Paris Cité, Paris, France
| | - Dora Dreyfuss
- CEA, DRF-Institut de Biologie Francois Jacob, Service de Recherches en Hémato-Immunologie, Hôpital Saint-Louis, Paris, France
- U976 HIPI, IRSL, Université Paris Cité, Paris, France
| | - Ronan Guilet
- CEA, DRF-Institut de Biologie Francois Jacob, Service de Recherches en Hémato-Immunologie, Hôpital Saint-Louis, Paris, France
- U976 HIPI, IRSL, Université Paris Cité, Paris, France
| | - Sophie Rong
- CEA, DRF-Institut de Biologie Francois Jacob, Service de Recherches en Hémato-Immunologie, Hôpital Saint-Louis, Paris, France
- U976 HIPI, IRSL, Université Paris Cité, Paris, France
| | - Sandrine Hirschi
- Department of Pneumology, Strasbourg Lung Transplant Program, Strasbourg University Hospital, Strasbourg, France
- INSERM UMR 1260, Regenerative Nanomedicine, University of Strasbourg, Strasbourg, France
| | - Benjamin Renaud-Picard
- Department of Pneumology, Strasbourg Lung Transplant Program, Strasbourg University Hospital, Strasbourg, France
- INSERM UMR 1260, Regenerative Nanomedicine, University of Strasbourg, Strasbourg, France
| | | | - Benjamin Coiffard
- Service de Pneumologie et Transplantation Pulmonaire, CHU de Marseille, Marseille, France
| | - Vincent Bunel
- APHP.Nord-Université de Paris, Hôpital Bichat-Claude Bernard, Service de Pneumologie B et Transplantation Pulmonaire, Paris, France
| | - Jonathan Messika
- APHP.Nord-Université de Paris, Hôpital Bichat-Claude Bernard, Service de Pneumologie B et Transplantation Pulmonaire, Paris, France
| | - Xavier Demant
- Service de Pneumologie et Transplantation Pulmonaire, CHU de Bordeaux, Bordeaux, France
| | - Jérôme Le Pavec
- Service de Pneumologie et Transplantation Pulmonaire, Hôpital Marie-Lannelongue, Le Plessis-Robinson, France
| | - Gaelle Dauriat
- Service de Pneumologie et Transplantation Pulmonaire, Hôpital Marie-Lannelongue, Le Plessis-Robinson, France
| | - Christel Saint Raymond
- Service Hospitalier Universitaire de Pneumologie et Physiologie, Pôle Thorax et Vaisseaux, CHU Grenoble Alpes, Échirolles, France
| | - Loic Falque
- Service Hospitalier Universitaire de Pneumologie et Physiologie, Pôle Thorax et Vaisseaux, CHU Grenoble Alpes, Échirolles, France
| | - Jean-Francois Mornex
- Université Claude Bernard Lyon1, INRAE, IVPC, Lyon, France
- Hospices Civils de Lyon, Inserm CIC1407, Bron, France
| | - Adrien Tissot
- Nantes Université, CHU Nantes, INSERM, Service de Pneumologie, l'institut du thorax, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - David Lair
- Nantes Université, CHU Nantes, INSERM, Service de Pneumologie, l'institut du thorax, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | | | - Veronique Bousseau
- Service de Pneumologie et Transplantation Pulmonaire, Hôpital HEGP, Paris, France
| | - Antoine Magnan
- Service de Pneumologie et Transplantation Pulmonaire, Hôpital Foch, Suresnes, France
| | - Clément Picard
- Service de Pneumologie et Transplantation Pulmonaire, Hôpital Foch, Suresnes, France
| | - Antoine Roux
- Service de Pneumologie et Transplantation Pulmonaire, Hôpital Foch, Suresnes, France
| | | | | | - Florence Gazeau
- Université Paris Cité, MSC et intégrateur IVETh, CNRS UMR7057, Paris, France
| | - Kelly Aubertin
- Université Paris Cité, MSC et intégrateur IVETh, CNRS UMR7057, Paris, France
| | - Edgardo Carosella
- CEA, DRF-Institut de Biologie Francois Jacob, Service de Recherches en Hémato-Immunologie, Hôpital Saint-Louis, Paris, France
- U976 HIPI, IRSL, Université Paris Cité, Paris, France
| | - Alexandre Vallée
- Service d'épidémiologie et santé publique, Hôpital Foch, Suresnes, France
| | - Cecile Landais
- Departement de biostatistiques, DRCI Hôpital Foch, Suresnes, France
| | - Nathalie Rouas-Freiss
- CEA, DRF-Institut de Biologie Francois Jacob, Service de Recherches en Hémato-Immunologie, Hôpital Saint-Louis, Paris, France
- U976 HIPI, IRSL, Université Paris Cité, Paris, France
| | - Joel LeMaoult
- CEA, DRF-Institut de Biologie Francois Jacob, Service de Recherches en Hémato-Immunologie, Hôpital Saint-Louis, Paris, France
- U976 HIPI, IRSL, Université Paris Cité, Paris, France
| |
Collapse
|
49
|
Peng J, He J, Lin L, Li Y, Xia Y. Neural Stem Cell Extracellular Vesicles Carrying YBX1 Inhibited Neuronal Pyroptosis Through Increasing m6A-modified GPR30 Stability and Expression in Ischemic Stroke. Transl Stroke Res 2025; 16:262-279. [PMID: 37966628 DOI: 10.1007/s12975-023-01210-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 10/12/2023] [Accepted: 10/26/2023] [Indexed: 11/16/2023]
Abstract
Neural stem cell-derived extracellular vesicles (NSC-derived EVs) alleviated ischemic stroke (IS) by suppressing the activation of nucleotide-binding domain leucine-rich repeats family protein 3 (NLRP3) inflammasome and neuronal pyroptosis. However, the specific mechanism needs further investigation. qRT-qPCR, Western blotting, and immunofluorescence detected related gene expression. Immunofluorescent analyzed the expression of Ki-67, βIII-Tubulin (Tuj1), and GFAP. Lactate dehydrogenase (LDH) release and IL-1β and IL-18 levels were analyzed by LDH and ELISA kits. TTC staining evaluated the infarction of brain tissues. Flow cytometric analysis measured caspase-1 activity. M6A methylated RNA immunoprecipitation PCR (MeRIP-PCR) measured methylation levels of G protein-coupled receptor 30 (GPR30). RIP and Co-IP analyzed the interactions of Y box binding protein (YBX1)/GPR30, YBX1/IGF2BP1 and NLRP3/speckle-type POZ protein (SPOP), as well as the ubiquitination levels of NLRP3. NSC-derived EVs inhibited the ischemia-reperfusion (I/R) injury of rats and the neuronal pyroptosis induced by oxygen-glucose deprivation/reoxygenation (OGD/R). Knockdown of EVs carrying YBX1 or GPR30 silencing abolished these inhibiting effects. GPR30 mRNA and IGF2BP1 protein were enriched by YBX1 antibody. YBX1 enhanced the stability of m6A-modified GPR30 by interacting with IGF2BP1 and thus promoting GPR30 expression. Knockdown of IGF2BP1 suppressed the binding between YBX1 and GPR30 mRNA. GPR30 promoted NLRP3 ubiquitination by interacting with SPOP. EVs carrying YBX1 could reduce the infarction of brain tissues and inhibit neuronal pyroptosis in rats with I/R injury. NSC-derived EVs carrying YBX1 increased the stability of m6A-modified GPR30 by interacting with IGF2BP1; the upregulation of GPR30 inhibited the activation of NLRP3 inflammasome through promoting NLRP3 ubiquitination by SPOP, ultimately suppressing the neuronal pyroptosis in IS.
Collapse
Affiliation(s)
- Jun Peng
- Department of Neurosurgery, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Hainan Province, Haikou, 570208, People's Republic of China
| | - Jun He
- Department of Neurosurgery, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Hainan Province, Haikou, 570208, People's Republic of China
| | - Long Lin
- Department of Neurosurgery, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Hainan Province, Haikou, 570208, People's Republic of China
| | - You Li
- Department of Neurosurgery, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Hainan Province, Haikou, 570208, People's Republic of China
| | - Ying Xia
- Department of Neurosurgery, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Hainan Province, Haikou, 570208, People's Republic of China.
| |
Collapse
|
50
|
Zhang J, Liu J, Zhang H, Liu B, Li L, Li Y, Pei J, Lin Q, Chen Q, Lin J. Lymph node-targeted delivery of Lonicera japonica thunb. polysaccharides for enhancing antitumor immunotherapy. Mater Today Bio 2025; 31:101559. [PMID: 40026631 PMCID: PMC11871467 DOI: 10.1016/j.mtbio.2025.101559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/15/2025] [Accepted: 02/04/2025] [Indexed: 03/05/2025] Open
Abstract
Dendritic cells (DCs) are crucial for the initiation and regulation of innate and adaptive immunity. Their maturity and infiltration in the tumor largely determine the efficiency of antigen presentation, the CTL responses, and the prognosis of tumors. However, the application of common immunoregulatory plant polysaccharides to DCs in vivo still represents major challenges due to the off-target effect and short biological lifespan. Lonicera japonica Thunb. polysaccharides (LJP) were found to exert benign immunoregulatory ability, but the effectiveness of utilizing LJP alone is unsatisfactory. As a result, we innovatively encapsulated LJP in into the exosomes derived from mouse bone mesenchymal stem cells (BMSCs) to form a DC-activated inducer (LJP-exosome). LJP-exosomes possessed a profound ability to target lymph nodes and the co-stimulatory capability of DCs compared with the application of LJP alone. Adequate results have shown that DCs primed by LJP-exosomes enhanced the tumor-reactive CD8+ T cell responses, leading to prophylactic tumor inhibition in an immunologically ignorant tumor model. The study proposed offers a promising strategy for enhancing the immune activation efficacy of extracted polysaccharides of traditional Chinese medicine by building the patients' immunity, thus consolidating the overall prognosis.
Collapse
Affiliation(s)
- Jiatong Zhang
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, No. 2, Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Jintong Liu
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, No. 2, Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Hong Zhang
- The Eighth Medical Center of the Chinese People's Liberation Army General Hospital, Beijing, China
| | - Biao Liu
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, No. 2, Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Lujie Li
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, No. 2, Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Yifan Li
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, No. 2, Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Jingrou Pei
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, No. 2, Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Qiao Lin
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, No. 2, Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Qi Chen
- Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
| | - Jiahao Lin
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, No. 2, Yuanmingyuan West Road, Haidian District, Beijing 100193, China
- Center of Research and Innovation of Chinese Traditional Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|