1
|
Lattar SM, Schneider RP, Eugenio VJ, Padilla G. High release of Candida albicans eDNA as protection for the scaffolding of polymicrobial biofilm formed with Staphylococcus aureus and Streptococcus mutans against the enzymatic activity of DNase I. Braz J Microbiol 2024:10.1007/s42770-024-01550-4. [PMID: 39480631 DOI: 10.1007/s42770-024-01550-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 10/16/2024] [Indexed: 11/02/2024] Open
Abstract
This study aimed to determine the protective role of the high release of C. albicans extracellular DNA (eDNA) in a polymicrobial biofilm formed by S. aureus and S. mutans in the course of DNase I treatment. A tube-flow biofilm bioreactor was developed to mimic biofilm formation in the oral cavity. eDNA release was quantified by real-time PCR (qPCR) and confocal microscopy analysis were used to determine the concentration and distribution of eDNA and intracellular DNA (iDNA). The mean amount of eDNA released by each species in the polymicrobial was higher than that in monospecies biofilms (S. aureus: 3.1 × 10-2 ng/μl polymicrobial versus 5.1 × 10-4 ng/μl monospecies; S. mutans: 3 × 10-1 ng/μl polymicrobial versus 2.97 × 10-2 ng/μl monospecies; C. albicans: 8.35 ng/μl polymicrobial versus 4.85 ng/μl monospecies). The large amounts of eDNA released by C. albicans (96%) in polymicrobial biofilms protects the S. aureus and S. mutans cells against the degradation by DNase I and dampens the effect of clindamycin.
Collapse
Affiliation(s)
- Santiago M Lattar
- Cell Biology of Microorganism Laboratory, Department of Microbiology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, BH, Brazil.
| | | | - Vidal Jorge Eugenio
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Gabriel Padilla
- Bioproducts Laboratory, Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
2
|
Alves GDSG, de Oliveira AMP, Roseno ACB, Ribeiro NP, Alves MDS, Sampaio C, do Prado RL, Pessan JP, Monteiro DR. Interkingdom biofilm of Streptococcus pyogenes and Candida albicans: establishment of an in vitro model and dose-response validation of antimicrobials. BIOFOULING 2024; 40:580-592. [PMID: 39193785 DOI: 10.1080/08927014.2024.2395390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/18/2024] [Accepted: 08/18/2024] [Indexed: 08/29/2024]
Abstract
Although Streptococcus pyogenes and Candida albicans may colonize tonsillar tissues, the interaction between them in mixed biofilms has been poorly explored. This study established an interkingdom biofilm model of S. pyogenes and C. albicans and verified the dose-response validation of antimicrobials. Biofilms were formed on microplates, in the presence or absence of a conditioning layer of human saliva, using Brain Heart Infusion (BHI) broth or artificial saliva (AS) as a culture medium, and with variations in the microorganism inoculation sequence. Biofilms grown in AS showed higher mass than those grown in BHI broth, and an opposite trend was observed for metabolism. The number of S. pyogenes colonies was lower in AS. Amoxicillin and nystatin showed dose-dependent effects. The inoculation of the two species at the same time, without prior exposure to saliva, and using BHI broth would be the model of choice for future studies assessing the effects of antimicrobials on dual S. pyogenes/C. albicans biofilms.
Collapse
Affiliation(s)
| | | | - Ana Carolyna Becher Roseno
- School of Dentistry, Araçatuba, Department of Preventive and Restorative Dentistry, São Paulo State University (UNESP), Araçatuba/São Paulo, Brazil
| | - Natália Pereira Ribeiro
- School of Dentistry, Araçatuba, Department of Preventive and Restorative Dentistry, São Paulo State University (UNESP), Araçatuba/São Paulo, Brazil
| | - Maria do Socorro Alves
- Postgraduate Program in Animal Science, University of Western São Paulo (UNOESTE), Presidente Prudente/São Paulo, Brazil
| | - Caio Sampaio
- School of Dentistry, Araçatuba, Department of Preventive and Restorative Dentistry, São Paulo State University (UNESP), Araçatuba/São Paulo, Brazil
| | - Rosana Leal do Prado
- School of Dentistry, Department of Community and Preventive Dentistry, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Juliano Pelim Pessan
- School of Dentistry, Araçatuba, Department of Preventive and Restorative Dentistry, São Paulo State University (UNESP), Araçatuba/São Paulo, Brazil
| | - Douglas Roberto Monteiro
- School of Dentistry, Araçatuba, Department of Diagnosis and Surgery, São Paulo State University (UNESP), Araçatuba/São Paulo, Brazil
| |
Collapse
|
3
|
Huang Q, Zhu L, Huang F, Zhao Y, Wang H, Luan S, Xiao C. Novel quinazolin-6-yl Isoindolinone: Altering polysaccharide chemstructure for antibacterial efficacy against Staphylococcus aureus. Int J Biol Macromol 2024; 280:135650. [PMID: 39278453 DOI: 10.1016/j.ijbiomac.2024.135650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/03/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
The ongoing development of novel strategies to combat Staphylococcus aureus and eliminate its biofilm formation has gained significant attention for human health. Antibiotic-resistant S. aureus necessitates the development of novel antibacterial agents with new mechanism of action. This study introduced a promising recently synthesized quinazolin-6-yl isoindolinone (IQE-X1), which exhibited potent antibacterial and antibiofilm efficacy with average median inhibitory concentration (IC50) of 3.37 μg mL-1 and minimal inhibitory concentration (MIC) of 12.5 μg mL-1, coupled with its ability to reduce cell surface hydrophobicity. IQE-X1 dose-dependently decreased extracellular polysaccharides (EPS) and its component monosaccharides, including rhamnose, arabinose, glucosamine, galactose, glucose, xylose, mannose, and ribose, accompanied by an increase in capsular polysaccharides (CP) and its individual monosaccharides, especially glucosamine. IQE-X1 demonstrated specificity in modulating the structural profiles of EPS and CP by altering the compositional ratios of their component monosaccharides. The potential mechanism of polysaccharide modulation was preliminarily elucidated through the response of β-N-acetylaminoglucosidase to IQE-X1 and their direct binding interaction. These findings provide new insights into the potential manipulation of the chemstructure of these biologically important macromolecules, EPS and CP, and highlight the antibacterial potential of IQE-X1 as a polysaccharide modulator for the development of more effective polysaccharide-targeted strategies against S. aureus.
Collapse
Affiliation(s)
- Qingchun Huang
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China.
| | - Lisong Zhu
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China
| | - Fengcheng Huang
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China
| | - Yanjun Zhao
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China
| | - Hongye Wang
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China
| | - Shaorong Luan
- School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Ciying Xiao
- School of Biotechnology, East China University of Science and Technology, Shanghai 200237, PR China
| |
Collapse
|
4
|
Katsipoulaki M, Stappers MHT, Malavia-Jones D, Brunke S, Hube B, Gow NAR. Candida albicans and Candida glabrata: global priority pathogens. Microbiol Mol Biol Rev 2024; 88:e0002123. [PMID: 38832801 PMCID: PMC11332356 DOI: 10.1128/mmbr.00021-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
SUMMARYA significant increase in the incidence of Candida-mediated infections has been observed in the last decade, mainly due to rising numbers of susceptible individuals. Recently, the World Health Organization published its first fungal pathogen priority list, with Candida species listed in medium, high, and critical priority categories. This review is a synthesis of information and recent advances in our understanding of two of these species-Candida albicans and Candida glabrata. Of these, C. albicans is the most common cause of candidemia around the world and is categorized as a critical priority pathogen. C. glabrata is considered a high-priority pathogen and has become an increasingly important cause of candidemia in recent years. It is now the second most common causative agent of candidemia in many geographical regions. Despite their differences and phylogenetic divergence, they are successful as pathogens and commensals of humans. Both species can cause a broad variety of infections, ranging from superficial to potentially lethal systemic infections. While they share similarities in certain infection strategies, including tissue adhesion and invasion, they differ significantly in key aspects of their biology, interaction with immune cells, host damage strategies, and metabolic adaptations. Here we provide insights on key aspects of their biology, epidemiology, commensal and pathogenic lifestyles, interactions with the immune system, and antifungal resistance.
Collapse
Affiliation(s)
- Myrto Katsipoulaki
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Mark H. T. Stappers
- MRC Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Dhara Malavia-Jones
- MRC Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
- Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Neil A. R. Gow
- MRC Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
5
|
Hamion G, Aucher W, Mercier A, Tewes F, Menard M, Bertaux J, Girardot M, Imbert C. Insights into betulinic acid as a promising molecule to fight the interkingdom biofilm Staphylococcus aureus-Candida albicans. Int J Antimicrob Agents 2024; 63:107166. [PMID: 38570017 DOI: 10.1016/j.ijantimicag.2024.107166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/18/2024] [Accepted: 03/28/2024] [Indexed: 04/05/2024]
Abstract
The demand for antibiofilm molecules has increased over several years due to their potential to fight biofilm-associated infections, such as those including the interkingdom Staphylococcus aureus-Candida albicans occurring in clinical settings worldwide. Recently, we identified a pentacyclic triterpenoid compound, betulinic acid, from invasive macrophytes, with interesting antibiofilm properties. The aim of the present study was to provide insights into the mechanism of action of betulinic acid against the clinically relevant bi-species S. aureus-C. albicans biofilms. Microscopy examinations, flow cytometry and crystal violet assays confirmed that betulinic acid was effective at damaging mature S. aureus-C. albicans biofilms or inhibiting their formation, reducing biofilm biomass by 70% on average and without microbicidal activity. The results suggested an action of betulinic acid on cell membranes, inducing changes in properties such as composition, hydrophobicity and fluidity as observed in C. albicans, which may hinder the early adhesion step, biofilm growth and the physical interactions of both microbial species. Further results of real-time polymerase chain reaction argued in favour of a reduction in S. aureus-C. albicans physical interaction due to betulinic acid by the modulation of biofilm-related gene expression, as observed in early stages of biofilm formation. This study revealed the potential of betulinic acid as a candidate agent for the prevention and treatment of S. aureus-C. albicans biofilm-related infections.
Collapse
Affiliation(s)
- Guillaume Hamion
- Ecology and Biology of Interactions, University of Poitiers, UMR CNRS 7267, Poitiers, France.
| | - Willy Aucher
- Ecology and Biology of Interactions, University of Poitiers, UMR CNRS 7267, Poitiers, France
| | - Anne Mercier
- Ecology and Biology of Interactions, University of Poitiers, UMR CNRS 7267, Poitiers, France
| | - Frederic Tewes
- Pharmacology of Antimicrobial Agents and Antibioresistance, University of Poitiers, INSERM U1070, Poitiers, France
| | - Maëlenn Menard
- Ecology and Biology of Interactions, University of Poitiers, UMR CNRS 7267, Poitiers, France
| | - Joanne Bertaux
- Ecology and Biology of Interactions, University of Poitiers, UMR CNRS 7267, Poitiers, France
| | - Marion Girardot
- Ecology and Biology of Interactions, University of Poitiers, UMR CNRS 7267, Poitiers, France
| | - Christine Imbert
- Ecology and Biology of Interactions, University of Poitiers, UMR CNRS 7267, Poitiers, France
| |
Collapse
|
6
|
Bényei ÉB, Nazeer RR, Askenasy I, Mancini L, Ho PM, Sivarajan GAC, Swain JEV, Welch M. The past, present and future of polymicrobial infection research: Modelling, eavesdropping, terraforming and other stories. Adv Microb Physiol 2024; 85:259-323. [PMID: 39059822 DOI: 10.1016/bs.ampbs.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Over the last two centuries, great advances have been made in microbiology as a discipline. Much of this progress has come about as a consequence of studying the growth and physiology of individual microbial species in well-defined laboratory media; so-called "axenic growth". However, in the real world, microbes rarely live in such "splendid isolation" (to paraphrase Foster) and more often-than-not, share the niche with a plethora of co-habitants. The resulting interactions between species (and even between kingdoms) are only very poorly understood, both on a theoretical and experimental level. Nevertheless, the last few years have seen significant progress, and in this review, we assess the importance of polymicrobial infections, and show how improved experimental traction is advancing our understanding of these. A particular focus is on developments that are allowing us to capture the key features of polymicrobial infection scenarios, especially as those associated with the human airways (both healthy and diseased).
Collapse
Affiliation(s)
| | | | - Isabel Askenasy
- Department of Biochemistry, Tennis Court Road, Cambridge, United Kingdom
| | - Leonardo Mancini
- Department of Biochemistry, Tennis Court Road, Cambridge, United Kingdom
| | - Pok-Man Ho
- Department of Biochemistry, Tennis Court Road, Cambridge, United Kingdom
| | | | - Jemima E V Swain
- Department of Biochemistry, Tennis Court Road, Cambridge, United Kingdom
| | - Martin Welch
- Department of Biochemistry, Tennis Court Road, Cambridge, United Kingdom.
| |
Collapse
|
7
|
Hibbert T, Krpetic Z, Latimer J, Leighton H, McHugh R, Pottenger S, Wragg C, James CE. Antimicrobials: An update on new strategies to diversify treatment for bacterial infections. Adv Microb Physiol 2024; 84:135-241. [PMID: 38821632 DOI: 10.1016/bs.ampbs.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
Ninety-five years after Fleming's discovery of penicillin, a bounty of antibiotic compounds have been discovered, modified, or synthesised. Diversification of target sites, improved stability and altered activity spectra have enabled continued antibiotic efficacy, but overwhelming reliance and misuse has fuelled the global spread of antimicrobial resistance (AMR). An estimated 1.27 million deaths were attributable to antibiotic resistant bacteria in 2019, representing a major threat to modern medicine. Although antibiotics remain at the heart of strategies for treatment and control of bacterial diseases, the threat of AMR has reached catastrophic proportions urgently calling for fresh innovation. The last decade has been peppered with ground-breaking developments in genome sequencing, high throughput screening technologies and machine learning. These advances have opened new doors for bioprospecting for novel antimicrobials. They have also enabled more thorough exploration of complex and polymicrobial infections and interactions with the healthy microbiome. Using models of infection that more closely resemble the infection state in vivo, we are now beginning to measure the impacts of antimicrobial therapy on host/microbiota/pathogen interactions. However new approaches are needed for developing and standardising appropriate methods to measure efficacy of novel antimicrobial combinations in these contexts. A battery of promising new antimicrobials is now in various stages of development including co-administered inhibitors, phages, nanoparticles, immunotherapy, anti-biofilm and anti-virulence agents. These novel therapeutics need multidisciplinary collaboration and new ways of thinking to bring them into large scale clinical use.
Collapse
Affiliation(s)
- Tegan Hibbert
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool, UK
| | - Zeljka Krpetic
- School of Science, Engineering, and Environment, University of Salford, Salford, UK
| | - Joe Latimer
- School of Science, Engineering, and Environment, University of Salford, Salford, UK
| | - Hollie Leighton
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool, UK
| | - Rebecca McHugh
- School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - Sian Pottenger
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool, UK
| | - Charlotte Wragg
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool, UK
| | - Chloë E James
- School of Science, Engineering, and Environment, University of Salford, Salford, UK.
| |
Collapse
|
8
|
Bharathi D, Lee JH, Lee J. Enhancement of antimicrobial and antibiofilm activities of liposomal fatty acids. Colloids Surf B Biointerfaces 2024; 234:113698. [PMID: 38070368 DOI: 10.1016/j.colsurfb.2023.113698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/27/2023] [Accepted: 12/04/2023] [Indexed: 02/09/2024]
Abstract
Microbial biofilms are protected surface-attached communities of bacteria or fungi with high drug tolerance that typically cause persistent infections. Smart drug carriers are being explored as a promising platform of antimicrobials to address their recalcitrance to antibiotic agents and minimize the side effects of current therapies. In this study, soy lecithin liposomes loaded with lauric acid (LA) and myristoleic acid (MA) were formulated using an emulsification method, and their antibiofilm properties were evaluated. The physio-chemical properties of the most potent liposome were characterized using a zeta sizer, transmission electron microscopy (TEM), fourier transform infrared spectroscopy, and nuclear magnetic resonance spectroscopy. TEM and zeta sizer analysis of the liposome revealed a homogeneous spherical structure with an average size of 159.2 nm and zeta potential of - 5.4 mV. The unilamellar liposomes loaded with LA at 0.1-0.5 µg/mL achieved obvious antibiofilm efficiency against Staphylococcus aureus and Candida albicans and their dual biofilms. Also, LA-loaded liposome formulation efficiently disrupted preformed biofilms of S. aureus and C. albicans. Furthermore, formulated liposomal LA (0.1 µg/mL) exhibited 100-fold increased dual biofilm inhibition compared to LA alone. The single biofilms and dual biofilm formation on polystyrene were reduced as determined by 3D-bright field and scanning electron microscopy. Zeta potential measurements exhibited neutralized surface charge of S. aureus, and the liposomes inhibited hyphae formation in C. albicans. These findings demonstrated that the LA-incorporated liposomes have great potential to become a new, effective, and good antibiofilm agent for treating S. aureus and C. albicans infections.
Collapse
Affiliation(s)
- Devaraj Bharathi
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea
| | - Jin-Hyung Lee
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
9
|
da Silva CR, Rebouças JDDO, Cabral VPDF, Rodrigues DS, Barbosa AD, Moreira LEA, Barroso FDD, Coutinho TDNP, de Lima EA, de Andrade CR, de Andrade Neto JB, Lima ISP, Nobre Júnior HV, Gurgel do Amaral Valente Sá L. Promising activity of etomidate against mixed biofilms of fluconazole-resistant Candida albicans and methicillin-resistant Staphylococcus aureus. J Med Microbiol 2024; 73. [PMID: 38385528 DOI: 10.1099/jmm.0.001810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024] Open
Abstract
Introduction. Candida albicans and Staphylococcus aureus are recognized for their development of resistance and biofilm formation. New therapeutic alternatives are necessary in this context.Hypothesis. Etomidate shows potential application in catheters against mixed biofilms of fluconazole-resistant C. albicans and methicillin-resistant S. aureus (MRSA).Aim. The present study aimed to evaluate the activity of etomidate against mixed biofilms of fluconazole-resistant C. albicans and MRSA.Methodology. The action of etomidate against mature biofilms was verified through the evaluation of biomass and cell viability, and its ability to prevent biofilm formation in peripheral venous catheters was determined based on counts of colony forming units (c.f.u.) and confirmed by morphological analysis through scanning electron microscopy (SEM).Results. Etomidate generated a reduction (P<0.05) in biomass and cell viability starting from a concentration of 250 µg ml-1. In addition, it showed significant ability to prevent the formation of mixed biofilms in a peripheral venous catheter, as shown by a reduction in c.f.u. SEM revealed that treatment with etomidate caused substantial damage to the fungal cells.Conclusion. The results showed the potential of etomidate against polymicrobial biofilms of fluconazole-resistant C. albicans and MRSA.
Collapse
Affiliation(s)
- Cecília Rocha da Silva
- School of Pharmacy, Laboratory of Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
| | | | - Vitória Pessoa de Farias Cabral
- School of Pharmacy, Laboratory of Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
| | - Daniel Sampaio Rodrigues
- School of Pharmacy, Laboratory of Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
| | - Amanda Dias Barbosa
- School of Pharmacy, Laboratory of Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
| | - Lara Elloyse Almeida Moreira
- School of Pharmacy, Laboratory of Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
| | - Fátima Daiana Dias Barroso
- School of Pharmacy, Laboratory of Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Christus University Center (UNICHRISTUS), Fortaleza, CE, Brazil
| | | | - Elaine Aires de Lima
- School of Pharmacy, Laboratory of Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
| | | | - João Batista de Andrade Neto
- School of Pharmacy, Laboratory of Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Christus University Center (UNICHRISTUS), Fortaleza, CE, Brazil
| | - Iri Sandro Pampolha Lima
- Department of Pharmacology, School of Medicine, Federal University of Ceará, Barbalha, CE, Brazil
| | - Hélio Vitoriano Nobre Júnior
- School of Pharmacy, Laboratory of Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
| | - Lívia Gurgel do Amaral Valente Sá
- School of Pharmacy, Laboratory of Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Christus University Center (UNICHRISTUS), Fortaleza, CE, Brazil
| |
Collapse
|
10
|
Kurakado S, Matsumoto Y, Eshima S, Sugita T. Antimicrobial Tolerance in Cross-Kingdom Dual-Species Biofilms Formed by Fungi and Bacteria. Med Mycol J 2024; 65:49-57. [PMID: 39218647 DOI: 10.3314/mmj.24.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Candida albicans, the most common pathogenic fungus, can form biofilms on the surface of medical devices and often causes bloodstream infections. Biofilms have a complex structure composed of microorganisms and a surrounding extracellular matrix. Biofilms are difficult to treat because they are resistant to antifungal drugs and the host environment. Nearly one in four patients with candidemia have a polymicrobial infection. These polymicrobial biofilms, especially those comprising cross-kingdom species of fungi and bacteria, can lead to long hospital stays and high mortality rates. This review outlines the unique interactions of dual-species biofilms with Candida albicans and the clinically important bacteria Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli.
Collapse
Affiliation(s)
- Sanae Kurakado
- Department of Microbiology, Meiji Pharmaceutical University
| | | | | | - Takashi Sugita
- Department of Microbiology, Meiji Pharmaceutical University
| |
Collapse
|
11
|
Zhang J, Shen L, Zhou P, Chen S, Wang B, Wan C, Han W, Rao L, Zhao H, Wang X, Wu C, Shi J, Xiao Y, Song Z, Yu F, Lin C. A novel small-molecule compound S-342-3 effectively inhibits the biofilm formation of Staphylococcus aureus. Microbiol Spectr 2023; 11:e0159623. [PMID: 37819121 PMCID: PMC10714762 DOI: 10.1128/spectrum.01596-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 09/06/2023] [Indexed: 10/13/2023] Open
Abstract
IMPORTANCE Biofilms are an important virulence factor in Staphylococcus aureus and are characterized by a structured microbial community consisting of bacterial cells and a secreted extracellular polymeric matrix. Inhibition of biofilm formation is an effective measure to control S. aureus infection. Here, we have synthesized a small molecule compound S-342-3, which exhibits potent inhibition of biofilm formation in both MRSA and MSSA. Further investigations revealed that S-342-3 exerts inhibitory effects on biofilm formation by reducing the production of polysaccharide intercellular adhesin and preventing bacterial adhesion. Our study has confirmed that the inhibitory effect of S-342-3 on biofilm is achieved by downregulating the expression of genes responsible for biofilm formation. In addition, S-342-3 is non-toxic to Galleria mellonella larvae and A549 cells. Consequently, this study demonstrates the efficacy of a biologically safe compound S-342-3 in inhibiting biofilm formation in S. aureus, thereby providing a promising antibiofilm agent for further research.
Collapse
Affiliation(s)
- Jiao Zhang
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Li Shen
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Peiyao Zhou
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shuying Chen
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Bingjie Wang
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Cailin Wan
- Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, China
| | - Weihua Han
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lulin Rao
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Huilin Zhao
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xinyi Wang
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chunyang Wu
- Department of Respiratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Junhong Shi
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yanghua Xiao
- Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, China
| | - Zengqiang Song
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Fangyou Yu
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chunchan Lin
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
12
|
Khan F, Jeong GJ, Javaid A, Thuy Nguyen Pham D, Tabassum N, Kim YM. Surface adherence and vacuolar internalization of bacterial pathogens to the Candida spp. cells: Mechanism of persistence and propagation. J Adv Res 2023; 53:115-136. [PMID: 36572338 PMCID: PMC10658324 DOI: 10.1016/j.jare.2022.12.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/17/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The co-existence of Candida albicans with the bacteria in the host tissues and organs displays interactions at competitive, antagonistic, and synergistic levels. Several pathogenic bacteria take advantage of such types of interaction for their survival and proliferation. The chemical interaction involves the signaling molecules produced by the bacteria or Candida spp., whereas the physical attachment occurs by involving the surface proteins of the bacteria and Candida. In addition, bacterial pathogens have emerged to internalize inside the C. albicans vacuole, which is one of the inherent properties of the endosymbiotic relationship between the bacteria and the eukaryotic host. AIM OF REVIEW The interaction occurring by the involvement of surface protein from diverse bacterial species with Candida species has been discussed in detail in this paper. An in silico molecular docking study was performed between the surface proteins of different bacterial species and Als3P of C. albicans to explain the molecular mechanism involved in the Als3P-dependent interaction. Furthermore, in order to understand the specificity of C. albicans interaction with Als3P, the evolutionary relatedness of several bacterial surface proteins has been investigated. Furthermore, the environmental factors that influence bacterial pathogen internalization into the Candida vacuole have been addressed. Moreover, the review presented future perspectives for disrupting the cross-kingdom interaction and eradicating the endosymbiotic bacterial pathogens. KEY SCIENTIFIC CONCEPTS OF REVIEW With the involvement of cross-kingdom interactions and endosymbiotic relationships, the bacterial pathogens escape from the environmental stresses and the antimicrobial activity of the host immune system. Thus, the study of interactions between Candida and bacterial pathogens is of high clinical significance.
Collapse
Affiliation(s)
- Fazlurrahman Khan
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea.
| | - Geum-Jae Jeong
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Aqib Javaid
- Department of Biotechnology and Bioinformatics, University of Hyderabad, India
| | - Dung Thuy Nguyen Pham
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City 70000, Vietnam
| | - Nazia Tabassum
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Young-Mog Kim
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea; Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea.
| |
Collapse
|
13
|
Kumar D, Kumar A. Cellular Attributes of Candida albicans Biofilm-Associated in Resistance Against Multidrug and Host Immune System. Microb Drug Resist 2023; 29:423-437. [PMID: 37428599 DOI: 10.1089/mdr.2022.0347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023] Open
Abstract
One of the ubiquitous hospital-acquired infections is associated with Candida albicans fungus. Usually, this commensal fungus causes no harm to its human host, as it lives mutually with mucosal/epithelial tissue surface cells. Nevertheless, due to the activity of various immune weakening factors, this commensal starts reinforcing its virulence attributes with filamentation/hyphal growth and building an absolute microcolony composed of yeast, hyphal, and pseudohyphal cells, which is suspended in an extracellular gel-like polymeric substance (EPS) called biofilms. This polymeric substance is the mixture of the secreted compounds from C. albicans as well as several host cell proteins. Indeed, the presence of these host factors makes their identification and differentiation process difficult by host immune components. The gel-like texture of the EPS makes it sticky, which adsorbs most of the extracolonial compounds traversing through it that aid in penetration hindrance. All these factors further contribute to the multidrug resistance phenotype of C. albicans biofilm that is spotlighted in this article. The mechanisms it employs to escape the host immune system are also addressed effectively. The article focuses on cellular and molecular determinants involved in the resistance of C. albicans biofilm against multidrug and the host immune system.
Collapse
Affiliation(s)
- Dushyant Kumar
- Department of Biotechnology, National Institute of Technology, Raipur, India
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology, Raipur, India
| |
Collapse
|
14
|
Ye R, Tomo C, Chan N, Wolfe BE. Penicillium molds impact the transcriptome and evolution of the cheese bacterium Staphylococcus equorum. mSphere 2023; 8:e0004723. [PMID: 37219436 PMCID: PMC10449494 DOI: 10.1128/msphere.00047-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/17/2023] [Indexed: 05/24/2023] Open
Abstract
The observation that Penicillium molds can inhibit the growth of Staphylococcus was a catalyst for the antibiotic revolution. Considerable attention has been paid to purified Penicillium metabolites that inhibit bacteria, but little is known about how Penicillium species impact the ecology and evolution of bacteria in multispecies microbial communities. Here, we investigated how four different species of Penicillium can impact global transcription and evolution of a widespread Staphylococcus species (S. equorum) using the cheese rind model microbiome. Through RNA sequencing, we identified a core transcriptional response of S. equorum against all five tested Penicillium strains, including upregulation of thiamine biosynthesis, fatty acid degradation, and amino acid metabolism as well as downregulation of genes involved in the transport of siderophores. In a 12-week evolution experiment where we co-cultured S. equorum with the same Penicillium strains, we observed surprisingly few non-synonymous mutations across S. equorum populations evolved with the Penicillium species. A mutation in a putative DHH family phosphoesterase gene only occurred in populations evolved without Penicillium and decreased the fitness of S. equorum when co-cultured with an antagonistic Penicillium strain. Our results highlight the potential for conserved mechanisms of Staphylococcus-Penicillium interactions and demonstrate how fungal biotic environments may constrain the evolution of bacterial species.IMPORTANCEFungi and bacteria are commonly found co-occurring both in natural and synthetic microbiomes, but our understanding of fungal-bacterial interactions is limited to a handful of species. Conserved mechanisms of interactions and evolutionary consequences of fungal-bacterial interactions are largely unknown. Our RNA sequencing and experimental evolution data with Penicillium species and the bacterium S. equorum demonstrate that divergent fungal species can elicit conserved transcriptional and genomic responses in co-occurring bacteria. Penicillium molds are integral to the discovery of novel antibiotics and production of certain foods. By understanding how Penicillium species affect bacteria, our work can further efforts to design and manage Penicillium-dominated microbial communities in industry and food production.
Collapse
Affiliation(s)
- Ruby Ye
- Department of Biology, Tufts University, Medford, Massachusetts, USA
| | - Christopher Tomo
- Department of Biology, Tufts University, Medford, Massachusetts, USA
| | - Neal Chan
- Department of Biology, Tufts University, Medford, Massachusetts, USA
| | - Benjamin E. Wolfe
- Department of Biology, Tufts University, Medford, Massachusetts, USA
| |
Collapse
|
15
|
Desrini S, Ducloux J, Hamion G, Bodet C, Labanowski J, Mustofa M, Nuryastuti T, Imbert C, Girardot M. Antibiofilm Activity of Invasive Plants against Candida albicans: Focus on Baccharis halimifolia Essential Oil and Its Compounds. Chem Biodivers 2023; 20:e202300130. [PMID: 37452792 DOI: 10.1002/cbdv.202300130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023]
Abstract
The extracts of five invasive plants were investigated for antifungal and antibiofilm activities against Candida albicans, C. glabrata, C. krusei, and C. parapsilosis. The antifungal activity was evaluated using the microdilution assay and the antibiofilm effect by measurement of the metabolic activity. Ethanol and ethanol-water extracts of Reynoutria japonica leaves inhibited 50 % of planktonic cells at 250 μg mL-1 and 15.6 μg mL-1 , respectively. Ethanol and ethanol-water extracts of Baccharis halimifolia inhibited >75 % of the mature biofilm of C. albicans at 500 μg mL-1 . The essential oil (EO) of B. halimifolia leaves was the most active (50 % inhibition (IC50 ) at 4 and 74 μg mL-1 against the maturation phase and 24 h old-biofilms of C. albicans, respectively). Oxygenated sesquiterpenes were the primary contents in this EO (62.02 %), with β-caryophyllene oxide as the major component (37 %). Aromadendrene oxide-(2), β-caryophyllene oxide, and (±)-β-pinene displayed significant activities against the maturation phase (IC50 =9-310 μ mol l-1 ) and preformed 24 h-biofilm (IC50 =38-630 μ mol l-1 ) of C. albicans with very low cytotoxicity for the first two compounds. C. albicans remained the most susceptible species to this EO and its components. This study highlighted for the first time the antibiofilm potential of B. halimifolia, its EO and some of its components.
Collapse
Affiliation(s)
- Sufi Desrini
- Department of Pharmacology, Faculty of Medicine, Universitas Islam Indonesia, 55584, Yogyakarta, Indonesia
- Doctoral Programme of Faculty Medicine, Public Health and Nursing, Universitas Gadjah Mada, Indonesia
- Laboratoire Ecologie et Biologie des Interactions -, UMR CNRS 7267, Université de Poitiers, Poitiers, France
| | - Julien Ducloux
- Laboratoire Ecologie et Biologie des Interactions -, UMR CNRS 7267, Université de Poitiers, Poitiers, France
| | - Guillaume Hamion
- Laboratoire Ecologie et Biologie des Interactions -, UMR CNRS 7267, Université de Poitiers, Poitiers, France
| | - Charles Bodet
- Laboratoire Inflammation, Tissus Epithéliaux et Cytokines UR 15560, Université de Poitiers, Poitiers, France
| | | | - Mustofa Mustofa
- Department of Pharmacology and Therapy, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Indonesia
- Indonesia Biofilm Research Collaboration Center UGM-BRIN, Yogyakarta, Indonesia
| | - Titik Nuryastuti
- Department of Microbiology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Indonesia
- Indonesia Biofilm Research Collaboration Center UGM-BRIN, Yogyakarta, Indonesia
| | - Christine Imbert
- Laboratoire Ecologie et Biologie des Interactions -, UMR CNRS 7267, Université de Poitiers, Poitiers, France
| | - Marion Girardot
- Laboratoire Ecologie et Biologie des Interactions -, UMR CNRS 7267, Université de Poitiers, Poitiers, France
| |
Collapse
|
16
|
Ramachandra SS, Wright P, Han P, Abdal‐hay A, Lee RSB, Ivanovski S. Evaluating models and assessment techniques for understanding oral biofilm complexity. Microbiologyopen 2023; 12:e1377. [PMID: 37642488 PMCID: PMC10464519 DOI: 10.1002/mbo3.1377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/07/2023] [Accepted: 08/17/2023] [Indexed: 08/31/2023] Open
Abstract
Oral biofilms are three-dimensional (3D) complex entities initiating dental diseases and have been evaluated extensively in the scientific literature using several biofilm models and assessment techniques. The list of biofilm models and assessment techniques may overwhelm a novice biofilm researcher. This narrative review aims to summarize the existing literature on biofilm models and assessment techniques, providing additional information on selecting an appropriate model and corresponding assessment techniques, which may be useful as a guide to the beginner biofilm investigator and as a refresher to experienced researchers. The review addresses previously established 2D models, outlining their advantages and limitations based on the growth environment, availability of nutrients, and the number of bacterial species, while also exploring novel 3D biofilm models. The growth of biofilms on clinically relevant 3D models, particularly melt electrowritten fibrous scaffolds, is discussed with a specific focus that has not been previously reported. Relevant studies on validated oral microcosm models that have recently gaining prominence are summarized. The review analyses the advantages and limitations of biofilm assessment methods, including colony forming unit culture, crystal violet, 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide inner salt assays, confocal microscopy, fluorescence in situ hybridization, scanning electron microscopy, quantitative polymerase chain reaction, and next-generation sequencing. The use of more complex models with advanced assessment methodologies, subject to the availability of equipment/facilities, may help in developing clinically relevant biofilms and answering appropriate research questions.
Collapse
Affiliation(s)
- Srinivas Sulugodu Ramachandra
- Centre for Orofacial Regeneration, Rehabilitation and Reconstruction (COR3), School of Dentistry, Faculty of Health and Behavioural SciencesThe University of QueenslandBrisbaneAustralia
- Preventive Dental Sciences, College of DentistryGulf Medical UniversityAjmanUnited Arab Emirates
| | - Patricia Wright
- Centre for Orofacial Regeneration, Rehabilitation and Reconstruction (COR3), School of Dentistry, Faculty of Health and Behavioural SciencesThe University of QueenslandBrisbaneAustralia
- School of Dentistry, Faculty of Health and Behavioural SciencesThe University of QueenslandBrisbaneAustralia
| | - Pingping Han
- Centre for Orofacial Regeneration, Rehabilitation and Reconstruction (COR3), School of Dentistry, Faculty of Health and Behavioural SciencesThe University of QueenslandBrisbaneAustralia
- School of Dentistry, Faculty of Health and Behavioural SciencesThe University of QueenslandBrisbaneAustralia
| | - Abdalla Abdal‐hay
- Centre for Orofacial Regeneration, Rehabilitation and Reconstruction (COR3), School of Dentistry, Faculty of Health and Behavioural SciencesThe University of QueenslandBrisbaneAustralia
- Department of Engineering Materials and Mechanical Design, Faculty of EngineeringSouth Valley UniversityQenaEgypt
- Faculty of Industry and Energy Technology, Mechatronics Technology ProgramNew Cairo Technological University, New Cairo‐Fifth SettlementCairoEgypt
| | - Ryan S. B. Lee
- Centre for Orofacial Regeneration, Rehabilitation and Reconstruction (COR3), School of Dentistry, Faculty of Health and Behavioural SciencesThe University of QueenslandBrisbaneAustralia
- School of Dentistry, Faculty of Health and Behavioural SciencesThe University of QueenslandBrisbaneAustralia
| | - Saso Ivanovski
- Centre for Orofacial Regeneration, Rehabilitation and Reconstruction (COR3), School of Dentistry, Faculty of Health and Behavioural SciencesThe University of QueenslandBrisbaneAustralia
- School of Dentistry, Faculty of Health and Behavioural SciencesThe University of QueenslandBrisbaneAustralia
| |
Collapse
|
17
|
Wang F, Wang Z, Tang J. The interactions of Candida albicans with gut bacteria: a new strategy to prevent and treat invasive intestinal candidiasis. Gut Pathog 2023; 15:30. [PMID: 37370138 DOI: 10.1186/s13099-023-00559-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND The gut microbiota plays an important role in human health, as it can affect host immunity and susceptibility to infectious diseases. Invasive intestinal candidiasis is strongly associated with gut microbiota homeostasis. However, the nature of the interaction between Candida albicans and gut bacteria remains unclear. OBJECTIVE This review aimed to determine the nature of interaction and the effects of gut bacteria on C. albicans so as to comprehend an approach to reducing intestinal invasive infection by C. albicans. METHODS This review examined 11 common gut bacteria's interactions with C. albicans, including Escherichia coli, Pseudomonas aeruginosa, Acinetobacter baumannii, Enterococcus faecalis, Staphylococcus aureus, Salmonella spp., Helicobacter pylori, Lactobacillus spp., Bacteroides spp., Clostridium difficile, and Streptococcus spp. RESULTS Most of the studied bacteria demonstrated both synergistic and antagonistic effects with C. albicans, and just a few bacteria such as P. aeruginosa, Salmonella spp., and Lactobacillus spp. demonstrated only antagonism against C. albicans. CONCLUSIONS Based on the nature of interactions reported so far by the literature between gut bacteria and C. albicans, it is expected to provide new ideas for the prevention and treatment of invasive intestinal candidiasis.
Collapse
Affiliation(s)
- Fei Wang
- Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, 128 Ruili Road, Shanghai, 200240, China
| | - Zetian Wang
- Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, 128 Ruili Road, Shanghai, 200240, China.
| | - Jianguo Tang
- Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, 128 Ruili Road, Shanghai, 200240, China.
| |
Collapse
|
18
|
Kulshrestha A, Gupta P. Combating polymicrobial biofilm: recent approaches. Folia Microbiol (Praha) 2023:10.1007/s12223-023-01070-y. [PMID: 37310652 DOI: 10.1007/s12223-023-01070-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 06/04/2023] [Indexed: 06/14/2023]
Abstract
The polymicrobial biofilm (PMBF) is formed when microbes from multiple species co-aggregate into an envelope made of extra polymeric substances (EPS) that keep the microbes safe from external stresses. The formation of PMBF has been linked to a variety of human infections, including cystic fibrosis, dental caries, urinary tract infections, etc. Multiple microbial species co-aggregation during an infection results in a recalcitrant biofilm formation, which is a seriously threatening phenomenon. It is challenging to treat polymicrobial biofilms since they contain multiple microbes which show drug resistance to various antibiotics/antifungals. The present study discusses various approaches by which an antibiofilm compound works. Depending on their mode of action, antibiofilm compounds can block the adhesion of cells to one another, modify membranes/walls, or disrupt quorum-sensing systems.
Collapse
Affiliation(s)
- Anmol Kulshrestha
- Department of Biotechnology, National Institute of Technology, Raipur, India
| | - Pratima Gupta
- Department of Biotechnology, National Institute of Technology, Raipur, India.
| |
Collapse
|
19
|
Felix L, Whitely C, Tharmalingam N, Mishra B, Vera-Gonzalez N, Mylonakis E, Shukla A, Fuchs BB. Auranofin coated catheters inhibit bacterial and fungal biofilms in a murine subcutaneous model. Front Cell Infect Microbiol 2023; 13:1135942. [PMID: 37313344 PMCID: PMC10258325 DOI: 10.3389/fcimb.2023.1135942] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 04/24/2023] [Indexed: 06/15/2023] Open
Abstract
Microbe entry through catheter ports can lead to biofilm accumulation and complications from catheter-related bloodstream infection and ultimately require antimicrobial treatment and catheter replacement. Although strides have been made with microbial prevention by applying standardized antiseptic techniques during catheter implantation, both bacterial and fungal microbes can present health risks to already sick individuals. To reduce microbial adhesion, murine and human catheters were coated with polyurethane and auranofin using a dip coating method and compared to non-coated materials. Upon passage of fluid through the coated material in vitro, flow dynamics were not impacted. The unique antimicrobial properties of the coating material auranofin has shown inhibitory activity against bacteria such as Staphylococcus aureus and fungi such as Candida albicans. Auranofin coating on catheters at 10mg/mL reduced C. albicans accumulation in vitro from 2.0 x 108 to 7.8 x 105 CFU for mouse catheters and from 1.6 x 107 to 2.8 x 106 for human catheters, showing an impact to mature biofilms. Assessment of a dual microbe biofilm on auranofin-coated catheters resulted in a 2-log reduction in S. aureus and a 3-log reduction in C. albicans compared to uncoated catheters. In vivo assessment in a murine subcutaneous model demonstrated that catheters coated with 10 mg/mL auranofin reduced independent S. aureus and C. albicans accumulation by 4-log and 1-log, respectively, compared to non-coated catheters. In conclusion, the auranofin-coated catheters demonstrate proficiency at inhibiting multiple pathogens by decreasing S. aureus and C. albicans biofilm accumulation.
Collapse
Affiliation(s)
- LewisOscar Felix
- Division of Infectious Diseases, Rhode Island Hospital, The Miriam Hospital, Alpert Medical School and Brown University, Providence, RI, United States
| | - Cutler Whitely
- Center for Biomedical Engineering, School of Engineering, Institute for Molecular and Nanoscale Innovation, Brown University, Providence, RI, United States
| | - Nagendran Tharmalingam
- Division of Infectious Diseases, Rhode Island Hospital, The Miriam Hospital, Alpert Medical School and Brown University, Providence, RI, United States
| | - Biswajit Mishra
- Division of Infectious Diseases, Rhode Island Hospital, The Miriam Hospital, Alpert Medical School and Brown University, Providence, RI, United States
| | - Noel Vera-Gonzalez
- Center for Biomedical Engineering, School of Engineering, Institute for Molecular and Nanoscale Innovation, Brown University, Providence, RI, United States
| | - Eleftherios Mylonakis
- Division of Infectious Diseases, Rhode Island Hospital, The Miriam Hospital, Alpert Medical School and Brown University, Providence, RI, United States
| | - Anita Shukla
- Center for Biomedical Engineering, School of Engineering, Institute for Molecular and Nanoscale Innovation, Brown University, Providence, RI, United States
| | - Beth Burgwyn Fuchs
- Division of Infectious Diseases, Rhode Island Hospital, The Miriam Hospital, Alpert Medical School and Brown University, Providence, RI, United States
| |
Collapse
|
20
|
Kaur J, Nobile CJ. Antifungal drug-resistance mechanisms in Candida biofilms. Curr Opin Microbiol 2023; 71:102237. [PMID: 36436326 DOI: 10.1016/j.mib.2022.102237] [Citation(s) in RCA: 49] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/23/2022] [Accepted: 10/27/2022] [Indexed: 11/27/2022]
Abstract
Infections caused by the Candida species of human fungal pathogens are a significant medical problem because they can disseminate to nearly every organ of the body. In addition, there are only a few classes of antifungal drugs available to treat patients with invasive fungal infections. Candida infections that are associated with biofilms can withstand much higher concentrations of antifungal drugs compared with infections caused by planktonic cells, thus making biofilm infections particularly challenging to treat. Candida albicans is among the most prevalent fungal species of the human microbiota, asymptomatically colonizing several niches of the body, including the gastrointestinal tract, genitourinary tract, mouth, and skin. Immunocompromised health conditions, dysbiosis of the microbiota, or environmental changes, however, can lead to C. albicans overgrowth, causing infections that range from superficial mucosal infections to severe hematogenously disseminated infections. Here, we review the current knowledge of antifungal drug-resistance mechanisms occurring in Candida biofilms.
Collapse
Affiliation(s)
- Jaspreet Kaur
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California Merced, Merced, CA, USA
| | - Clarissa J Nobile
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California Merced, Merced, CA, USA; Health Sciences Research Institute, University of California Merced, Merced, CA, USA.
| |
Collapse
|
21
|
There Is More to Wounds than Bacteria: Fungal Biofilms in Chronic Wounds. CURRENT CLINICAL MICROBIOLOGY REPORTS 2023. [DOI: 10.1007/s40588-022-00187-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Abstract
Purpose of Review
The management of chronic wounds, a debilitating condition, presents a considerable challenge to healthcare professionals and a significant burden on services. When these wounds are exposed to the external environment, they are susceptible to microbial infection, which further complicates their management and worsens clinical outcomes.
Recent Findings
Bacteria typically exist in wounds as part of a biofilm, which is often polymicrobial in nature, alongside bacteria and fungi that are described as being more virulent and tolerant towards antimicrobials and antiseptics. Despite advancing knowledge in polymicrobial biofilm wound infections with respect to bacteria, the role of fungi is largely ignored, and their influence in chronicity and clinical management is not fully appreciated or understood.
Summary
The purpose of this review is to explore the significance of fungi within chronic wound environments and, in doing so, understand the importance of interkingdom interactions in wound management.
Collapse
|
22
|
Sulaiman R, Trizna E, Kolesnikova A, Khabibrakhmanova A, Kurbangalieva A, Bogachev M, Kayumov A. Antimicrobial and Biofilm-Preventing Activity of l-Borneol Possessing 2(5H)-Furanone Derivative F131 against S. aureus—C. albicans Mixed Cultures. Pathogens 2022; 12:pathogens12010026. [PMID: 36678375 PMCID: PMC9866062 DOI: 10.3390/pathogens12010026] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/15/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Candida albicans and Staphylococcus aureus are human pathogens that are able to form mixed biofilms on the surface of mucous membranes, implants and catheters. In biofilms, these pathogens have increased resistance to antimicrobials, leading to extreme difficulties in the treatment of mixed infections. The growing frequency of mixed infections caused by S. aureus and C. albicans requires either the development of new antimicrobials or the proposal of alternative approaches to increase the efficiency of conventional ones. Here, we show the antimicrobial, biofilm-preventing and biofilm-eradicating activity of 2(5H)-furanone derivative F131, containing an l-borneol fragment against S. aureus-C. albicans mixed biofilms. Furanone F131 is also capable of inhibiting the formation of monospecies and mixed biofilms by S. aureus and C. albicans. The minimal biofilm-prevention concentration (MBPC) of this compound was 8-16 μg/mL for S. aureus and C. albicans mono- and two-species biofilms. While the compound demonstrates slightly lower activity compared to conventional antimicrobials (gentamicin, amikacin, fluconazole, terbinafine and benzalkonium chloride), F131 also increases the antimicrobial activity of fluconazole-gentamicin and benzalkonium chloride against mixed biofilms of S. aureus-C. albicans, thus reducing MBPC of fluconazole-gentamicin by 4-16 times and benzalkonium chloride twofold. F131 does not affect the transcription of the MDR1, CDR1 and CDR2 genes, thus suggesting a low risk of micromycete resistance to this compound. Altogether, combined use of antibiotics with a F131 could be a promising option to reduce the concentration of fluconazole used in antiseptic compositions and reduce the toxic effect of benzalkonium chloride and gentamicin. This makes them an attractive starting point for the development of alternative antimicrobials for the treatment of skin infections caused by S. aureus-C. albicans mixed biofilms.
Collapse
Affiliation(s)
- Rand Sulaiman
- Laboratory of Molecular Genetics of Microorganisms, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Elena Trizna
- Laboratory of Molecular Genetics of Microorganisms, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Alena Kolesnikova
- Laboratory of Molecular Genetics of Microorganisms, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Alsu Khabibrakhmanova
- Biofunctional Chemistry Laboratory, Alexander Butlerov Institute of Chemistry, Kazan Federal University, 420008 Kazan, Russia
| | - Almira Kurbangalieva
- Biofunctional Chemistry Laboratory, Alexander Butlerov Institute of Chemistry, Kazan Federal University, 420008 Kazan, Russia
| | - Mikhail Bogachev
- Biomedical Engineering Research Centre, St. Petersburg Electrotechnical University, 197022 St. Petersburg, Russia
| | - Airat Kayumov
- Laboratory of Molecular Genetics of Microorganisms, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
- Correspondence:
| |
Collapse
|
23
|
Essential Fitness Repertoire of Staphylococcus aureus during Co-infection with Acinetobacter baumannii In Vivo. mSystems 2022; 7:e0033822. [PMID: 36040021 PMCID: PMC9600432 DOI: 10.1128/msystems.00338-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Staphylococcus aureus represents a major human pathogen that is frequently involved in polymicrobial infections. However, the prevalence and role of co-infectious microbes on the pathogenesis and fitness essentiality of S. aureus in vivo remain largely unknown. In this study, we firstly performed a retrospective surveillance of 760 clinical samples and revealed a notable predominance of co-infection with S. aureus and Acinetobacter baumannii. The high-density S. aureus transposon mutant library coupled to transposon insertion sequencing (Tn-Seq) further identified a core set of genes enriched in metabolism of inorganic ions, amino acids, and carbohydrates, which are essential for infection and tissue colonization of S. aureus in the murine systemic infection model. Notably, we revealed a differential requirement of fitness factors for S. aureus in tissue-specific (liver and kidney) and infection-type-specific manner (mono- and co-infection). Co-infection with A. baumannii dramatically altered the fitness requirements of S. aureus in vivo; 49% of the mono-infection fitness genes in S. aureus strain Newman were converted to non-essential, and the functionality of ATP-binding cassette (ABC) transporters was significantly elicited during co-infection. Furthermore, the number of genes essential during co-infection (503) outnumbers the genes essential during mono-infection (362). In addition, the roles of 3 infection-type-specific genes in S. aureus during mono-infection or co-infection with A. baumannii were validated with competitive experiments in vivo. Our data indicated a high incidence and clinical relevance of S. aureus and A. baumannii co-infection, and provided novel insights into establishing antimicrobial regimens to control co-infections. IMPORTANCE Polymicrobial infections are widespread in clinical settings, which potentially correlate with increased infection severity and poor clinical outcomes. Staphylococcus aureus is a formidable human pathogen that causes a variety of diseases in polymicrobial nature. Co-infection and interaction of S. aureus have been described with limited pathogens, mainly including Pseudomonas aeruginosa, Candida albicans, and influenza A virus. Thus far, the prevalence and role of co-infectious microbes on the pathogenesis and fitness essentiality of S. aureus in vivo remain largely unknown. Understanding the polymicrobial composition and interaction, from a community and genome-wide perspective, is thus crucial to shed light on S. aureus pathogenesis strategy. Here, our findings demonstrated, for the first time, that a high incidence rate and clinical relevance of co-infection was caused by S. aureus and Acinetobacter baumannii, illustrating the importance of polymicrobial nature in investigating S. aureus pathogenesis. The infection-type-specific genes likely serve as potential therapeutic targets to control S. aureus infections, either in mono- or co-infection situation, providing novel insights into the development of antimicrobial regimens to control co-infections.
Collapse
|
24
|
Durand BARN, Pouget C, Magnan C, Molle V, Lavigne JP, Dunyach-Remy C. Bacterial Interactions in the Context of Chronic Wound Biofilm: A Review. Microorganisms 2022; 10:microorganisms10081500. [PMID: 35893558 PMCID: PMC9332326 DOI: 10.3390/microorganisms10081500] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/15/2022] [Accepted: 07/21/2022] [Indexed: 02/04/2023] Open
Abstract
Chronic wounds, defined by their resistance to care after four weeks, are a major concern, affecting millions of patients every year. They can be divided into three types of lesions: diabetic foot ulcers (DFU), pressure ulcers (PU), and venous/arterial ulcers. Once established, the classical treatment for chronic wounds includes tissue debridement at regular intervals to decrease biofilm mass constituted by microorganisms physiologically colonizing the wound. This particular niche hosts a dynamic bacterial population constituting the bed of interaction between the various microorganisms. The temporal reshuffle of biofilm relies on an organized architecture. Microbial community turnover is mainly associated with debridement (allowing transitioning from one major representant to another), but also with microbial competition and/or collaboration within wounds. This complex network of species and interactions has the potential, through diversity in antagonist and/or synergistic crosstalk, to accelerate, delay, or worsen wound healing. Understanding these interactions between microorganisms encountered in this clinical situation is essential to improve the management of chronic wounds.
Collapse
Affiliation(s)
- Benjamin A. R. N. Durand
- Bacterial Virulence and Chronic Infections, UMR 1047, Université Montpellier, INSERM, Service de Microbiologie et Hygiène Hospitalière, CHU Nîmes, 30908 Nîmes, France; (B.A.R.N.D.); (C.P.); (C.M.); (J.-P.L.)
| | - Cassandra Pouget
- Bacterial Virulence and Chronic Infections, UMR 1047, Université Montpellier, INSERM, Service de Microbiologie et Hygiène Hospitalière, CHU Nîmes, 30908 Nîmes, France; (B.A.R.N.D.); (C.P.); (C.M.); (J.-P.L.)
| | - Chloé Magnan
- Bacterial Virulence and Chronic Infections, UMR 1047, Université Montpellier, INSERM, Service de Microbiologie et Hygiène Hospitalière, CHU Nîmes, 30908 Nîmes, France; (B.A.R.N.D.); (C.P.); (C.M.); (J.-P.L.)
| | - Virginie Molle
- Laboratory of Pathogen Host Interactions, Université de Montpellier, CNRS, UMR 5235, 34000 Montpellier, France;
| | - Jean-Philippe Lavigne
- Bacterial Virulence and Chronic Infections, UMR 1047, Université Montpellier, INSERM, Service de Microbiologie et Hygiène Hospitalière, CHU Nîmes, 30908 Nîmes, France; (B.A.R.N.D.); (C.P.); (C.M.); (J.-P.L.)
| | - Catherine Dunyach-Remy
- Bacterial Virulence and Chronic Infections, UMR 1047, Université Montpellier, INSERM, Service de Microbiologie et Hygiène Hospitalière, CHU Nîmes, 30908 Nîmes, France; (B.A.R.N.D.); (C.P.); (C.M.); (J.-P.L.)
- Correspondence: ; Tel.: +33-466-683-202
| |
Collapse
|
25
|
Dardouri M, Aljnadi IM, Deuermeier J, Santos C, Costa F, Martin V, Fernandes MH, Gonçalves L, Bettencourt A, Gomes PS, Ribeiro IA. Bonding antimicrobial rhamnolipids onto medical grade PDMS: A strategy to overcome multispecies vascular catheter-related infections. Colloids Surf B Biointerfaces 2022; 217:112679. [DOI: 10.1016/j.colsurfb.2022.112679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/30/2022] [Accepted: 06/28/2022] [Indexed: 01/06/2023]
|
26
|
Sadiq FA, Hansen MF, Burmølle M, Heyndrickx M, Flint S, Lu W, Chen W, Zhang H. Towards understanding mechanisms and functional consequences of bacterial interactions with members of various kingdoms in complex biofilms that abound in nature. FEMS Microbiol Rev 2022; 46:6595875. [PMID: 35640890 DOI: 10.1093/femsre/fuac024] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/11/2022] [Accepted: 05/27/2022] [Indexed: 11/12/2022] Open
Abstract
The microbial world represents a phenomenal diversity of microorganisms from different kingdoms of life which occupy an impressive set of ecological niches. Most, if not all, microorganisms once colonise a surface develop architecturally complex surface-adhered communities which we refer to as biofilms. They are embedded in polymeric structural scaffolds serve as a dynamic milieu for intercellular communication through physical and chemical signalling. Deciphering microbial ecology of biofilms in various natural or engineered settings has revealed co-existence of microorganisms from all domains of life, including Bacteria, Archaea and Eukarya. The coexistence of these dynamic microbes is not arbitrary, as a highly coordinated architectural setup and physiological complexity show ecological interdependence and myriads of underlying interactions. In this review, we describe how species from different kingdoms interact in biofilms and discuss the functional consequences of such interactions. We highlight metabolic advances of collaboration among species from different kingdoms, and advocate that these interactions are of great importance and need to be addressed in future research. Since trans-kingdom biofilms impact diverse contexts, ranging from complicated infections to efficient growth of plants, future knowledge within this field will be beneficial for medical microbiology, biotechnology, and our general understanding of microbial life in nature.
Collapse
Affiliation(s)
- Faizan Ahmed Sadiq
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology & Food Sciences Unit, Melle, Belgium
| | - Mads Frederik Hansen
- Section of Microbiology, Department of Biology, University of Copenhagen, Denmark
| | - Mette Burmølle
- Section of Microbiology, Department of Biology, University of Copenhagen, Denmark
| | - Marc Heyndrickx
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology & Food Sciences Unit, Melle, Belgium.,Department of Pathology, Bacteriology and Poultry Diseases, Ghent University, Merelbeke, Belgium
| | - Steve Flint
- School of Food and Advanced Technology, Massey University, Private Bag, 11222, Palmerston North, New Zealand
| | - Wenwei Lu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Wei Chen
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Hao Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
27
|
Chitosan-gum arabic embedded alizarin nanocarriers inhibit biofilm formation of multispecies microorganisms. Carbohydr Polym 2022; 284:118959. [DOI: 10.1016/j.carbpol.2021.118959] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/17/2021] [Accepted: 11/28/2021] [Indexed: 01/09/2023]
|
28
|
Roszak M, Dołęgowska B, Cecerska-Heryć E, Serwin N, Jabłońska J, Grygorcewicz B. Bacteriophage–Ciprofloxacin Combination Effectiveness Depends on Staphylococcus aureus– Candida albicans Dual-Species Communities’ Growth Model. Microb Drug Resist 2022; 28:613-622. [DOI: 10.1089/mdr.2021.0324] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Marta Roszak
- Department of Laboratory Medicine, Chair of Microbiology, Immunology and Laboratory Medicine, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Barbara Dołęgowska
- Department of Laboratory Medicine, Chair of Microbiology, Immunology and Laboratory Medicine, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Elżbieta Cecerska-Heryć
- Department of Laboratory Medicine, Chair of Microbiology, Immunology and Laboratory Medicine, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Natalia Serwin
- Department of Laboratory Medicine, Chair of Microbiology, Immunology and Laboratory Medicine, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Joanna Jabłońska
- Department of Chemical and Process Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Szczecin, Poland
| | - Bartłomiej Grygorcewicz
- Department of Laboratory Medicine, Chair of Microbiology, Immunology and Laboratory Medicine, Pomeranian Medical University in Szczecin, Szczecin, Poland
| |
Collapse
|
29
|
Competition for Iron during Polymicrobial Infections May Increase Antifungal Drug Susceptibility-How Will It Impact Treatment Options? Infect Immun 2022; 90:e0005722. [PMID: 35289634 DOI: 10.1128/iai.00057-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Interaction between microbes may influence antimicrobial susceptibility of one or more of the microbes, with studies pointing to increased resistance in these scenarios. Hattab et al. provided a novel perspective by identifying synergism between fluconazole and bacterial antagonism in the context of Candida albicans-Pseudomonas aeruginosa co-infection. Further research is required to translate these findings to the clinical setting, especially in the era of increasing antifungal resistance.
Collapse
|
30
|
Pohl CH. Recent Advances and Opportunities in the Study of Candida albicans Polymicrobial Biofilms. Front Cell Infect Microbiol 2022; 12:836379. [PMID: 35252039 PMCID: PMC8894716 DOI: 10.3389/fcimb.2022.836379] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/26/2022] [Indexed: 01/11/2023] Open
Abstract
It is well known that the opportunistic pathogenic yeast, Candida albicans, can form polymicrobial biofilms with a variety of bacteria, both in vitro and in vivo, and that these polymicrobial biofilms can impact the course and management of disease. Although specific interactions are often described as either synergistic or antagonistic, this may be an oversimplification. Polymicrobial biofilms are complex two-way interacting communities, regulated by inter-domain (inter-kingdom) signaling and various molecular mechanisms. This review article will highlight advances over the last six years (2016-2021) regarding the unique biology of polymicrobial biofilms formed by C. albicans and bacteria, including regulation of their formation. In addition, some of the consequences of these interactions, such as the influence of co-existence on antimicrobial susceptibility and virulence, will be discussed. Since the aim of this knowledge is to inform possible alternative treatment options, recent studies on the discovery of novel anti-biofilm compounds will also be included. Throughout, an attempt will be made to identify ongoing challenges in this area.
Collapse
|
31
|
|
32
|
Pharmacodynamics of Moxifloxacin, Meropenem, Caspofungin and their Combinations Against In Vitro Polymicrobial Inter-kingdom Biofilms. Antimicrob Agents Chemother 2021; 66:e0214921. [PMID: 34930026 DOI: 10.1128/aac.02149-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Biofilms colonize medical devices and are often recalcitrant to antibiotics. Inter-kingdom biofilms, when at least a bacterium and a fungus are co-isolated, increase the likelihood of therapeutic failures. In this work, a three-species in vitro biofilm model including S. aureus, E. coli and C. albicans was used to study the activity of the antibiotics moxifloxacin and meropenem, the antifungal caspofungin, and combinations of them against inter-kingdom biofilms. The culturable cells and total biomass were evaluated to determine the pharmacodynamic parameters of the drug response for the incubation with the drugs alone. The synergic or antagonistic effects (increased/decreased effects) of the combination of drugs were analysed with the highest single agent method. Biofilms were imaged in confocal microscopy after live/dead staining. The drugs had limited activity when used alone against single-, dual- or three-species biofilms. When used in combination, additive effects were observed against single- or dual-species biofilms, and increased effects (synergy) against biomass of three-species biofilms. In addition, the two antibiotics showed different patterns, moxifloxacin being more active when targeting S. aureus and meropenem when targeting E. coli. All these observations were confirmed by confocal microscopy images. Our findings highlight the interest in combining caspofungin with antibiotics against inter-kingdom biofilms.
Collapse
|
33
|
Enhanced Virulence of Candida albicans by Staphylococcus aureus: Evidence in Clinical Bloodstream Infections and Infected Zebrafish Embryos. J Fungi (Basel) 2021; 7:jof7121099. [PMID: 34947081 PMCID: PMC8706905 DOI: 10.3390/jof7121099] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/10/2021] [Accepted: 12/16/2021] [Indexed: 11/16/2022] Open
Abstract
Coinfection with Candida and Staphylococcus results in higher mortality in animal studies. However, the pathogenesis and interplay between C. albicans and S. aureus in bloodstream infections (BSIs) is unclear. This study determines the clinical features and outcomes of mixed C. albicans/S. aureus (CA/SA) BSIs and biofilm formation on pathogenesis during coinfection. Demographics and outcomes for mixed BSIs and monomicrobial candidemia were compared. Compared to 115 monomicrobial C. albicans BSIs, 22 patients with mixed CA/SA BSIs exhibited a significantly higher mortality rate and shorter survival time. In vitro and in vivo biofilm analysis showed that C. albicans accounted for the main biofilm architecture, and S. aureus increased its amount. Antibiotic tolerance in S. aureus, which adhered to Candida hyphae observed by scanning electron microscope, was demonstrated by the presence of wild-type C. albicans co-biofilm. Upregulation in exotoxin genes of S. aureus was evidenced by quantitative RT-PCR when a co-biofilm was formed with C. albicans. Mixed CA/SA BSIs result in a higher mortality rate in patients and in vivo surrogate models experiments. This study demonstrates that the virulence enhancement of C. albicans and S. aureus during co-biofilm formation contributes to the high mortality rate.
Collapse
|
34
|
Short B, Delaney C, McKloud E, Brown JL, Kean R, Litherland GJ, Williams C, Martin SL, MacKay WG, Ramage G. Investigating the Transcriptome of Candida albicans in a Dual-Species Staphylococcus aureus Biofilm Model. Front Cell Infect Microbiol 2021; 11:791523. [PMID: 34888261 PMCID: PMC8650683 DOI: 10.3389/fcimb.2021.791523] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 10/27/2021] [Indexed: 11/27/2022] Open
Abstract
Candida albicans is an opportunistic pathogen found throughout multiple body sites and is frequently co-isolated from infections of the respiratory tract and oral cavity with Staphylococcus aureus. Herein we present the first report of the effects that S. aureus elicits on the C. albicans transcriptome. Dual-species biofilms containing S. aureus and C. albicans mutants defective in ALS3 or ECE1 were optimised and characterised, followed by transcriptional profiling of C. albicans by RNA-sequencing (RNA-seq). Altered phenotypes in C. albicans mutants revealed specific interaction profiles between fungus and bacteria. The major adhesion and virulence proteins Als3 and Ece1, respectively, were found to have substantial effects on the Candida transcriptome in early and mature biofilms. Despite this, deletion of ECE1 did not adversely affect biofilm formation or the ability of S. aureus to interact with C. albicans hyphae. Upregulated genes in dual-species biofilms corresponded to multiple gene ontology terms, including those attributed to virulence, biofilm formation and protein binding such as ACE2 and multiple heat-shock protein genes. This shows that S. aureus pushes C. albicans towards a more virulent genotype, helping us to understand the driving forces behind the increased severity of C. albicans-S. aureus infections.
Collapse
Affiliation(s)
- Bryn Short
- Institute of Biomedical and Environmental Health Research, School of Health and Life Sciences, University of the West of Scotland, Paisley, United Kingdom.,School of Medicine, Dentistry and Nursing, University of Glasgow, Glasgow, United Kingdom.,Glasgow Biofilms Research Network, Glasgow, United Kingdom
| | - Christopher Delaney
- School of Medicine, Dentistry and Nursing, University of Glasgow, Glasgow, United Kingdom.,Glasgow Biofilms Research Network, Glasgow, United Kingdom
| | - Emily McKloud
- School of Medicine, Dentistry and Nursing, University of Glasgow, Glasgow, United Kingdom.,Glasgow Biofilms Research Network, Glasgow, United Kingdom
| | - Jason L Brown
- School of Medicine, Dentistry and Nursing, University of Glasgow, Glasgow, United Kingdom.,Glasgow Biofilms Research Network, Glasgow, United Kingdom
| | - Ryan Kean
- Glasgow Biofilms Research Network, Glasgow, United Kingdom.,Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, United Kingdom
| | - Gary J Litherland
- Institute of Biomedical and Environmental Health Research, School of Health and Life Sciences, University of the West of Scotland, Paisley, United Kingdom
| | - Craig Williams
- School of Medicine, Dentistry and Nursing, University of Glasgow, Glasgow, United Kingdom.,Glasgow Biofilms Research Network, Glasgow, United Kingdom
| | - S Lorraine Martin
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, Ireland
| | - William G MacKay
- Institute of Biomedical and Environmental Health Research, School of Health and Life Sciences, University of the West of Scotland, Paisley, United Kingdom.,Glasgow Biofilms Research Network, Glasgow, United Kingdom
| | - Gordon Ramage
- School of Medicine, Dentistry and Nursing, University of Glasgow, Glasgow, United Kingdom.,Glasgow Biofilms Research Network, Glasgow, United Kingdom
| |
Collapse
|
35
|
Phuengmaung P, Panpetch W, Singkham-In U, Chatsuwan T, Chirathaworn C, Leelahavanichkul A. Presence of Candida tropicalis on Staphylococcus epidermidis Biofilms Facilitated Biofilm Production and Candida Dissemination: An Impact of Fungi on Bacterial Biofilms. Front Cell Infect Microbiol 2021; 11:763239. [PMID: 34746032 PMCID: PMC8569676 DOI: 10.3389/fcimb.2021.763239] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/04/2021] [Indexed: 12/28/2022] Open
Abstract
While Staphylococcus epidermidis (SE) is a common cause of infections in implanted prostheses and other indwelling devices, partly due to the biofilm formation, Candida tropicalis (CT) is an emerging Candida spp. with a potent biofilm-producing property. Due to the possible coexistence between SE and CT infection in the same patient, characteristics of the polymicrobial biofilms from both organisms might be different from those of the biofilms of each organism. Then, the exploration on biofilms, from SE with or without CT, and an evaluation on l-cysteine (an antibiofilm against both bacteria and fungi) were performed. As such, Candida incubation in preformed SE biofilms (SE > CT) produced higher biofilms than the single- (SE or CT) or mixed-organism (SE + CT) biofilms as determined by crystal violet staining and fluorescent confocal images with z-stack thickness analysis. In parallel, SE > CT biofilms demonstrated higher expression of icaB and icaC than other groups at 20 and 24 h of incubation, suggesting an enhanced matrix polymerization and transportation, respectively. Although organism burdens (culture method) from single-microbial biofilms (SE or CT) were higher than multi-organism biofilms (SE + CT and SE > CT), macrophage cytokine responses (TNF-α and IL-6) against SE > CT biofilms were higher than those in other groups in parallel to the profound biofilms in SE > CT. Additionally, sepsis severity in mice with subcutaneously implanted SE > CT catheters was more severe than in other groups as indicated by mortality rate, fungemia, serum cytokines (TNF-α and IL-6), and kidney and liver injury. Although CT grows upon preformed SE-biofilm production, the biofilm structures interfered during CT morphogenesis leading to the frailty of biofilm structure and resulting in the prominent candidemia. However, l-cysteine incubation together with the organisms in catheters reduced biofilms, microbial burdens, macrophage responses, and sepsis severity. In conclusion, SE > CT biofilms prominently induced biofilm matrix, fungemia, macrophage responses, and sepsis severity, whereas the microbial burdens were lower than in the single-organism biofilms. All biofilms were attenuated by l-cysteine.
Collapse
Affiliation(s)
- Pornpimol Phuengmaung
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Wimonrat Panpetch
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Uthaibhorn Singkham-In
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Tanittha Chatsuwan
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Antimicrobial Resistance and Stewardship Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Chintana Chirathaworn
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Asada Leelahavanichkul
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Translational Research in Inflammation and Immunology Research Unit (TRIRU), Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
36
|
Zhang G, Wan Z, Wang X, Huang Y, Zhou Y, Chen Y, Lei Y, Qiao L. [ In vivo study on the effects of intercellular adhesion operon of Staphylococcus epidermidis on the inflammation associated with bacteria-fungal mixed biofilm]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2021; 35:1328-1335. [PMID: 34651489 DOI: 10.7507/1002-1892.202104061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Objective To study the effect of intercellular adhesion (ica) operon of Staphylococcus epidermidis on the inflammation associated with mixed biofilm of Staphylococcus epidermidis and Candida albicans on endotracheal tube material in rabbits. Methods The standard strains of Staphylococcus epidermidis RP62A (ica operon positive, positive group) and ATCC12228 (ica operon negative, negative group) were taken to prepare a bacterial solution with a concentration of 1×10 6 CFU/mL, respectively. Then, the two bacterial solutions were mixed with the standard strain of Candida albicans ATCC10231 of the same concentration to prepare a mixed culture solution at a ratio of 1∶1, respectively. The mixed culture solution was incubated with endotracheal tube material for 24 hours. The formation of mixed biofilm on the surface of the material was observed by scanning electron microscope. Thirty New Zealand rabbits, aged 4-6 months, were divided into two groups ( n=15), and the endotracheal tube materials of the positive group and the negative group that were incubated for 24 hours were implanted beside the trachea. The body mass of rabbits in the two groups was measured before operation and at 1, 3, and 7 days after operation. At 1, 3, and 7 days after operation, the levels of interleukin 1β (IL-1β), IL-6, tumor necrosis factor α (TNF-α), and monocytechemotactic protein 1 (MCP-1) were detected by using an ELISA test kit. At 7 days after operation, the formation of mixed biofilm on the surface of the endotracheal tube materials was observed by scanning electron microscope, the inflammation and infiltration of tissues around the materials were observed by HE staining, and the bacterial infections in heart, lung, liver, and kidney were observed by plate colony counting method. Results Scanning electron microscope observation showed that the mixed biofilm structure was obvious in the positive group after 24 hours in vitro incubation, but no mixed biofilm formation was observed in the negative group. In vivo studies showed that there was no significant difference in body mass between the two groups before operation and at 1, 3, and 7 days after operation ( P>0.05). Compared with the negative group, the levels of MCP-1 and IL-1β at 1 day, and the levels of IL-1β, MCP-1, IL-6, and TNF-α at 3 and 7 days in the positive group all increased, with significant differences ( P<0.05). Scanning electron microscope observation showed that a large amount of Staphylococcus epidermis and mixed biofilm structure were observed in the positive group, and a very small amount of bacteria was observed in the negative group with no mixed biofilm structure. HE staining of surrounding tissue showed inflammatory cell infiltration in both groups, and neutrophils and lymphocytes were more in the positive group than in the negative group. There was no significant difference in the number of bacterial infections in heart and liver between the two groups ( P>0.05). The number of bacterial infections in lung and kidney in the positive group was higher than that in negative group ( P<0.05). Conclusion In the mixed infection of Staphylococcus epidermidis and Candida albicans, the ica operon may strengthen the structure of the biofilm and the spread of the biofilm in vivo, leading to increased inflammatory factors, and the bacteria are difficult to remove and persist.
Collapse
Affiliation(s)
- Guojing Zhang
- Department of Cardiovascular Surgery, Yan'an Hospital Affiliated to Kunming Medical University, Kunming Yunnan, 650051, P.R.China
| | - Zilin Wan
- Department of Cardiovascular Surgery, Yan'an Hospital Affiliated to Kunming Medical University, Kunming Yunnan, 650051, P.R.China
| | - Xiaoyan Wang
- Department of Cardiovascular Surgery, Yan'an Hospital Affiliated to Kunming Medical University, Kunming Yunnan, 650051, P.R.China
| | - Yunchao Huang
- Department of Cardiovascular Thoracic Surgery, the Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming Yunnan, 650118, P.R.China
| | - Youquan Zhou
- Department of Clinical Laboratory, the Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming Yunnan, 650118, P.R.China
| | - Ying Chen
- Department of Cardiovascular Thoracic Surgery, the Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming Yunnan, 650118, P.R.China
| | - Yujie Lei
- Department of Cardiovascular Thoracic Surgery, the Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming Yunnan, 650118, P.R.China
| | - Limei Qiao
- Department of Cardiovascular Surgery, Yan'an Hospital Affiliated to Kunming Medical University, Kunming Yunnan, 650051, P.R.China
| |
Collapse
|
37
|
Palková Z, Váchová L. Spatially structured yeast communities: Understanding structure formation and regulation with omics tools. Comput Struct Biotechnol J 2021; 19:5613-5621. [PMID: 34712401 PMCID: PMC8529026 DOI: 10.1016/j.csbj.2021.10.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/06/2021] [Accepted: 10/06/2021] [Indexed: 01/08/2023] Open
Abstract
Single-celled yeasts form spatially structured populations - colonies and biofilms, either alone (single-species biofilms) or in cooperation with other microorganisms (mixed-species biofilms). Within populations, yeast cells develop in a coordinated manner, interact with each other and differentiate into specialized cell subpopulations that can better adapt to changing conditions (e.g. by reprogramming metabolism during nutrient deficiency) or protect the overall population from external influences (e.g. via extracellular matrix). Various omics tools together with specialized techniques for separating differentiated cells and in situ microscopy have revealed important processes and cell interactions in these structures, which are summarized here. Nevertheless, current knowledge is still only a small part of the mosaic of complexity and diversity of the multicellular structures that yeasts form in different environments. Future challenges include the use of integrated multi-omics approaches and a greater emphasis on the analysis of differentiated cell subpopulations with specific functions.
Collapse
Affiliation(s)
- Zdena Palková
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, 12800 Prague, Czech Republic
| | - Libuše Váchová
- Institute of Microbiology of the Czech Academy of Sciences, BIOCEV, 14220 Prague, Czech Republic
| |
Collapse
|
38
|
Porterfield HS, Maakestad LJ, LaMarche MM, Thurman AL, Kienenberger ZE, Pitcher NJ, Hansen AR, Zirbes CF, Boyken L, Muyskens BL, Pezzulo AA, Singh SB, Twait E, Ford B, Diekema DJ, Reeb V, Fischer AJ. MRSA strains with distinct accessory genes predominate at different ages in cystic fibrosis. Pediatr Pulmonol 2021; 56:2868-2878. [PMID: 34219414 PMCID: PMC8395597 DOI: 10.1002/ppul.25559] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 01/30/2023]
Abstract
RATIONALE Methicillin resistant Staphylococcus aureus (MRSA) is prevalent and consequential in cystic fibrosis (CF). Whole genome sequencing (WGS) could reveal genomic differences in MRSA associated with poorer outcomes or detect MRSA transmission. OBJECTIVES To identify MRSA genes associated with low lung function and potential MRSA transmission in CF. METHODS We collected 97 MRSA isolates from 74 individuals with CF from 2017 and performed short-read WGS. We determined sequence type (ST) and the phylogenetic relationship between isolates. We aligned accessory genes from 25 reference genomes to genome assemblies, classified isolates by accessory gene content, and correlated the accessory genome to clinical outcomes. RESULTS The most prevalent ST were ST5 (N = 55), ST8 (N = 15), and ST105 (N = 14). Closely related MRSA strains were shared by family members with CF, but rarely between unrelated individuals. Three clusters of MRSA were identified by accessory genome content. Cluster A, including ST5 and ST105, was highly prevalent at all ages. Cluster B, including ST8, was more limited to younger patients. Cluster C included 6 distantly related strains. Patients 20 years old and younger infected with Cluster A had lower forced expiratory volume in the first second (FEV1 ) and higher sputum biomass compared to similar-aged patients with Cluster B. CONCLUSIONS In this CF cohort, we identified MRSA subtypes that predominate at different ages and differ by accessory gene content. The most prevalent cluster of MRSA, including ST5 and ST105, was associated with lower FEV1 . ST8 MRSA was more common in younger patients and thus has the potential to rise in prevalence as these patients age.
Collapse
Affiliation(s)
- Harry S Porterfield
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA.,Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, Maryland, USA
| | - Lucas J Maakestad
- Stead Family Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Mason M LaMarche
- Stead Family Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Andrew L Thurman
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Zoe E Kienenberger
- Stead Family Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Nicholas J Pitcher
- Stead Family Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Alexis R Hansen
- Stead Family Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Christian F Zirbes
- Stead Family Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Linda Boyken
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Bethany L Muyskens
- Stead Family Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Alejandro A Pezzulo
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Sachinkumar B Singh
- Stead Family Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Erik Twait
- State Hygienic Laboratory at the University of Iowa, Iowa City, Iowa, USA
| | - Bradley Ford
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Daniel J Diekema
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Valérie Reeb
- State Hygienic Laboratory at the University of Iowa, Iowa City, Iowa, USA
| | - Anthony J Fischer
- Stead Family Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| |
Collapse
|