1
|
Chen J, Ren E, Tao Z, Lu H, Huang Y, Li J, Chen Y, Chen Z, She T, Yang H, Zhu H, Lu X. Orchestrating T and NK cells for tumor immunotherapy via NKG2A-targeted delivery of a de novo designed IL-2Rβγ agonist. Drug Deliv 2025; 32:2482195. [PMID: 40170468 PMCID: PMC11966987 DOI: 10.1080/10717544.2025.2482195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/19/2025] [Accepted: 03/16/2025] [Indexed: 04/03/2025] Open
Abstract
As T and NK cell exhaustion is attributed to increased expression of immune checkpoints and decreased production of proliferative cytokines by these cells, immune checkpoint-targeted delivery of proliferative cytokines might induce robust and sustained antitumor immune responses. Here, the expression profile of NKG2A was first found to be narrower than that of PD-1 in tumor-infiltrated immune cells. Moreover, unlike PD-1, NKG2A was predominantly co-expressed with IL-2Rβγ in tumor-infiltrated CD8+ T and NK cells, but not in Tregs, suggesting that NKG2A might be an ideal target for delivery of IL-2Rβγ agonists to overcome T and NK exhausting. For NKG2A-targeted delivery of an IL-2Rβγ agonist, a single molecule of de novo designed N215 endowed with Immunoglobin G(IgG)-binding ability was coupled to an antibody against NKG2A (αNKG2A) to produce αNKG2A-N215. NKG2A- and IL-2Rβγ-binding were well preserved in αNKG2A-N215, allowing αNKG2A-N215 to act as both an immune checkpoint inhibitor and a T and NK cell stimulator. Intravenously injected αNKG2A-N215 predominantly induced expansion of tumor-infiltrated CD8+ T and NK cells while showing little stimulation of Tregs. Compared with the separate combination using αNKG2A and N215, αNKG2A-N215 exerted a greater antitumor effect in mice bearing MC38 or B16/F1 tumors. 50% of mice bearing MC38 tumors were cured by αNKG2A-N215, and long-term immunological memory against the tumor was induced in these mice. These results indicate that NKG2A is another ideal target for delivery of an IL-2Rβγ agonist, and αNKG2A-N215, with specificities for both NKG2A and IL-2Rβγ, might be developed as a novel agent for immunotherapy.
Collapse
Affiliation(s)
- Jie Chen
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center; NHC Key Lab of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Enhui Ren
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center; NHC Key Lab of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ze Tao
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center; NHC Key Lab of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
- Sichuan Provincial Engineering Laboratory of Pathology in Clinical Application, West China Hospital, Sichuan University, Chengdu, China
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Hongyu Lu
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center; NHC Key Lab of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yunchuan Huang
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center; NHC Key Lab of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jing Li
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center; NHC Key Lab of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yuzhe Chen
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center; NHC Key Lab of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Zhuo Chen
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center; NHC Key Lab of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Tianshan She
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center; NHC Key Lab of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Hao Yang
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center; NHC Key Lab of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
- Sichuan Provincial Engineering Laboratory of Pathology in Clinical Application, West China Hospital, Sichuan University, Chengdu, China
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Hong Zhu
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaofeng Lu
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center; NHC Key Lab of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
- Sichuan Provincial Engineering Laboratory of Pathology in Clinical Application, West China Hospital, Sichuan University, Chengdu, China
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Abulizi A, Tuergan T, Shalayiadang P, Zhang C, Zhang R, Jiang T, Guo Q, Wang H, Li L, Lin R, Shao Y, Aji T. Hepatic alveolar echinococcosis infection induces a decrease in NK cell function through high expression of NKG2A in patients. Front Immunol 2025; 16:1563248. [PMID: 40421027 PMCID: PMC12104054 DOI: 10.3389/fimmu.2025.1563248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Accepted: 04/21/2025] [Indexed: 05/28/2025] Open
Abstract
Echinococcus multilocularis larval tapeworm infection in humans is considered a serious public health issue. The immune interaction between parasites and their hosts is extremely important. NK cells are known innate immune cells that play important roles during infection and tumour progression. However, the possible role of NK cells in hepatic alveolar echinococcosis is not completely clear. In this study, we investigated the functional decrease in NK cells in hepatic alveolar echinococcosis (AE) patients. Methods Using human liver tissue samples from 10 patients with hepatic AE, flow cytometry was used to detect the expression of NKG2A molecules on the surface of NK cells, and the correlations between NKG2A+ expression and lesion size, alkaline phosphatase (ALP) levels in close lesion tissues (CLTs) and distal lesion tissues (DLTs) in the liver, and the secretion of functional molecules by NKG2A+ NK cells were analysed. Results The expression of NKG2A on CD56dim and CD56bright NK cells in DLTs and CLTs revealed that the percentage of NKG2A+CD56dim NK cells in CLTs was significantly greater than that in DLTs. There was a negative correlation between the expression of NKG2A on NK cells in the CLT and alkaline phosphatase. Additionally, we analysed IFN-γ, TNF-α, granzyme B, and perforin production in NK cells. There was a significant reduction in IFN-γ production in CLTs compared with DLTs. There is a negative correlation between IFN-γ production levels and NKG2A expression in NK cells from the CLT. The capacity of NKG2A+ NK cells from CLT regions to produce IFN-γ and granzyme B was also significantly decreased. In contrast, the perforin level produced by NKG2A+ NK cells was much greater than that produced by NKG2A- NK cells. We also analysed the correlation between the ratio of the NKG2A expression area in CLT and DLT tissues and the PET-CT value and found a positive correlation between NKG2A expression and the PET-CT value. Conclusion The increased expression of NKG2A in NK cells induced a reduction in IFN-γ production, and the increased expression of NKG2A may improve lesion activity and fibrosis, which may be helpful for treating hepatic alveolar echinococcosis via immunity.
Collapse
Affiliation(s)
- Abuduaini Abulizi
- Hepatobiliary & Hydatid Disease Department, Digestive & Vascular Surgery Center, First Affiliated Hospital of Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi, China
- World Health Organization (WHO) Collaborating Center on Prevention and Management of Echinococcosis, Clinical Medicine Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Talaiti Tuergan
- Hepatobiliary & Hydatid Disease Department, Digestive & Vascular Surgery Center, First Affiliated Hospital of Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi, China
- World Health Organization (WHO) Collaborating Center on Prevention and Management of Echinococcosis, Clinical Medicine Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Paizula Shalayiadang
- Hepatobiliary & Hydatid Disease Department, Digestive & Vascular Surgery Center, First Affiliated Hospital of Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi, China
- World Health Organization (WHO) Collaborating Center on Prevention and Management of Echinococcosis, Clinical Medicine Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Chuanshan Zhang
- World Health Organization (WHO) Collaborating Center on Prevention and Management of Echinococcosis, Clinical Medicine Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- State Key Laboratory on Pathogenesis Prevention & Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, China
| | - Ruiqing Zhang
- Hepatobiliary & Hydatid Disease Department, Digestive & Vascular Surgery Center, First Affiliated Hospital of Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi, China
- World Health Organization (WHO) Collaborating Center on Prevention and Management of Echinococcosis, Clinical Medicine Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Tiemin Jiang
- Hepatobiliary & Hydatid Disease Department, Digestive & Vascular Surgery Center, First Affiliated Hospital of Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi, China
- World Health Organization (WHO) Collaborating Center on Prevention and Management of Echinococcosis, Clinical Medicine Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Qiang Guo
- Hepatobiliary & Hydatid Disease Department, Digestive & Vascular Surgery Center, First Affiliated Hospital of Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi, China
- World Health Organization (WHO) Collaborating Center on Prevention and Management of Echinococcosis, Clinical Medicine Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Hui Wang
- World Health Organization (WHO) Collaborating Center on Prevention and Management of Echinococcosis, Clinical Medicine Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- State Key Laboratory on Pathogenesis Prevention & Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, China
| | - Liang Li
- World Health Organization (WHO) Collaborating Center on Prevention and Management of Echinococcosis, Clinical Medicine Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- State Key Laboratory on Pathogenesis Prevention & Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, China
| | - Renyong Lin
- World Health Organization (WHO) Collaborating Center on Prevention and Management of Echinococcosis, Clinical Medicine Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- State Key Laboratory on Pathogenesis Prevention & Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, China
| | - Yingmei Shao
- Hepatobiliary & Hydatid Disease Department, Digestive & Vascular Surgery Center, First Affiliated Hospital of Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi, China
- World Health Organization (WHO) Collaborating Center on Prevention and Management of Echinococcosis, Clinical Medicine Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Tuerganaili Aji
- Hepatobiliary & Hydatid Disease Department, Digestive & Vascular Surgery Center, First Affiliated Hospital of Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi, China
- World Health Organization (WHO) Collaborating Center on Prevention and Management of Echinococcosis, Clinical Medicine Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
3
|
Tong J, Tan Y, Ouyang W, Chang H. Targeting immune checkpoints in hepatocellular carcinoma therapy: toward combination strategies with curative potential. Exp Hematol Oncol 2025; 14:65. [PMID: 40317077 PMCID: PMC12046748 DOI: 10.1186/s40164-025-00636-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 03/07/2025] [Indexed: 05/04/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is a primary liver cancer characterized by poor immune cell infiltration and a strongly immunosuppressive microenvironment. Traditional treatments have often yielded unsatisfactory outcomes due to the insidious onset of the disease. Encouragingly, the introduction of immune checkpoint inhibitors (ICIs) has significantly transformed the approach to HCC treatment. Moreover, combining ICIs with other therapies or novel materials is considered the most promising opportunity in HCC, with some of these combinations already being evaluated in large-scale clinical trials. Unfortunately, most clinical trials fail to meet their endpoints, and the few successful ones also face challenges. This indicates that the potential of ICIs in HCC treatment remains underutilized, prompting a reevaluation of this promising therapy. Therefore, this article provides a review of the role of immune checkpoints in cancer treatment, the research progress of ICIs and their combination application in the treatment of HCC, aiming to open up avenues for the development of safer and more efficient immune checkpoint-related strategies for HCC treatment.
Collapse
Affiliation(s)
- Jing Tong
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510631, China
| | - Yongci Tan
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510631, China
| | - Wenwen Ouyang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510631, China
| | - Haocai Chang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510631, China.
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
4
|
Fisher JG, Bartlett LG, Kashyap T, Walker CJ, Khakoo SI, Blunt MD. Modulation of anti-tumour immunity by XPO1 inhibitors. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2025; 6:1002310. [PMID: 40291981 PMCID: PMC12022495 DOI: 10.37349/etat.2025.1002310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 03/24/2025] [Indexed: 04/30/2025] Open
Abstract
Exportin-1 (XPO1) is a nuclear export protein that, when overexpressed, can facilitate cancer cell proliferation and survival and is frequently overexpressed or mutated in cancer patients. As such, selective inhibitors of XPO1 (XPO1i) function have been developed to inhibit cancer cell proliferation and induce apoptosis. This review outlines the evidence for the immunomodulatory properties of XPO1 inhibition and discusses the potential for combining and sequencing XPO1i with immunotherapy to improve the treatment of patients with cancer. Selinexor is a first-in-class XPO1i that is FDA-approved for the treatment of patients with relapsed and refractory (RR) multiple myeloma and RR diffuse large B cell lymphoma. In addition to the cancer cell intrinsic pro-apoptotic activity, increasing evidence suggests that XPO1 inhibition has immunomodulatory properties. In this review, we describe how XPO1i can lead to a skewing of macrophage polarisation, inhibition of neutrophil extracellular traps, modulation of immune checkpoint expression, blockade of myeloid-derived suppressor cells (MDSCs) and sensitisation of cancer cells to T cell and NK (natural killer) cell immunosurveillance. As such, there is an opportunity for selinexor to enhance immunotherapy efficacy and thus a need for clinical trials assessing selinexor in combination with immunotherapies such as immune checkpoint inhibitors, direct targeting monoclonal antibodies, chimeric antigen receptor (CAR)-T cells and cereblon E3 ligase modulators (CELMoDs).
Collapse
Affiliation(s)
- Jack G. Fisher
- Clinical and Experimental Sciences, University of Southampton, SO16 7YD Southampton, UK
| | - Laura G. Bartlett
- Clinical and Experimental Sciences, University of Southampton, SO16 7YD Southampton, UK
| | | | | | - Salim I. Khakoo
- Clinical and Experimental Sciences, University of Southampton, SO16 7YD Southampton, UK
| | - Matthew D. Blunt
- Clinical and Experimental Sciences, University of Southampton, SO16 7YD Southampton, UK
| |
Collapse
|
5
|
Masmoudi D, Villalba M, Alix-Panabières C. Natural killer cells: the immune frontline against circulating tumor cells. J Exp Clin Cancer Res 2025; 44:118. [PMID: 40211394 PMCID: PMC11983744 DOI: 10.1186/s13046-025-03375-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 03/25/2025] [Indexed: 04/14/2025] Open
Abstract
Natural killer (NK) play a key role in controlling tumor dissemination by mediating cytotoxicity towards cancer cells without the need of education. These cells are pivotal in eliminating circulating tumor cells (CTCs) from the bloodstream, thus limiting cancer spread and metastasis. However, aggressive CTCs can evade NK cell surveillance, facilitating tumor growth at distant sites. In this review, we first discuss the biology of NK cells, focusing on their functions within the tumor microenvironment (TME), the lymphatic system, and circulation. We then examine the immune evasion mechanisms employed by cancer cells to inhibit NK cell activity, including the upregulation of inhibitory receptors. Finally, we explore the clinical implications of monitoring circulating biomarkers, such as NK cells and CTCs, for therapeutic decision-making and emphasize the need to enhance NK cell-based therapies by overcoming immune escape mechanisms.
Collapse
Affiliation(s)
- Doryan Masmoudi
- Laboratory of Rare Circulating Human Cells, University Medical Center of Montpellier, Montpellier, France
| | - Martin Villalba
- IRMB, Univ Montpellier, INSERM, CHU Montpellier, CNRS, Montpellier, France
| | - Catherine Alix-Panabières
- Laboratory of Rare Circulating Human Cells, University Medical Center of Montpellier, Montpellier, France.
- CREEC/CANECEV, MIVEGEC (CREES), University of Montpellier, CNRS, Montpellier, IRD, France.
- European Liquid Biopsy Society (ELBS), Hamburg, Germany.
- LCCRH, Site Unique de Biologie (SUB), 641, Avenue du Doyen Gaston Giraud, Montpellier, 34093, France.
| |
Collapse
|
6
|
Xie D, Liu Y, Xu F, Dang Z, Li M, Zhang Q, Dang Z. Immune microenvironment and immunotherapy in hepatocellular carcinoma: mechanisms and advances. Front Immunol 2025; 16:1581098. [PMID: 40242773 PMCID: PMC12000014 DOI: 10.3389/fimmu.2025.1581098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Accepted: 03/17/2025] [Indexed: 04/18/2025] Open
Abstract
Hepatocellular carcinoma (HCC) remains a leading cause of cancer-related mortality globally. The tumor microenvironment (TME) plays a pivotal role in HCC progression, characterized by dynamic interactions between stromal components, immune cells, and tumor cells. Key immune players, including tumor-associated macrophages (TAMs), tumor-infiltrating lymphocytes (TILs), cytotoxic T lymphocytes (CTLs), regulatory T cells (Tregs), MDSCs, dendritic cells (DCs), and natural killer (NK) cells, contribute to immune evasion and tumor progression. Recent advances in immunotherapy, such as immune checkpoint inhibitors (ICIs), cancer vaccines, adoptive cell therapy (ACT), and combination therapies, have shown promise in enhancing anti-tumor responses. Dual ICI combinations, ICIs with molecular targeted drugs, and integration with local treatments or radiotherapy have demonstrated improved outcomes in HCC patients. This review highlights the evolving understanding of the immune microenvironment and the therapeutic potential of immunotherapeutic strategies in HCC management.
Collapse
Affiliation(s)
- Dong Xie
- Diagnosis and Treatment Center for Digestive Diseases of Henan Province Hospital of Traditional Chinese Medicine, Zhengzhou, China
| | - Yang Liu
- College of Traditional Chinese Medicine, Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Fangbiao Xu
- Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhibo Dang
- Diagnosis and Treatment Center for Digestive Diseases of Henan Province Hospital of Traditional Chinese Medicine, Zhengzhou, China
| | - Mengge Li
- Diagnosis and Treatment Center for Digestive Diseases of Henan Province Hospital of Traditional Chinese Medicine, Zhengzhou, China
| | - Qinsheng Zhang
- Diagnosis and Treatment Center for Digestive Diseases of Henan Province Hospital of Traditional Chinese Medicine, Zhengzhou, China
| | - Zhongqin Dang
- Diagnosis and Treatment Center for Digestive Diseases of Henan Province Hospital of Traditional Chinese Medicine, Zhengzhou, China
| |
Collapse
|
7
|
Wang LR, Zhang CX, Tian LB, Huang J, Jia LJ, Tao H, Yu NW, Li BH. Identification and validation of mitochondrial endoplasmic reticulum membrane-related genes in atherosclerosis. Mamm Genome 2025:10.1007/s00335-025-10124-0. [PMID: 40148657 DOI: 10.1007/s00335-025-10124-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 03/16/2025] [Indexed: 03/29/2025]
Abstract
The mitochondria-associated endoplasmic reticulum membrane is implicated in atherosclerosis (AS). However, its precise molecular mechanisms remain undefined. This study identified KLRC1 and SOCS2 as key protective genes against AS through transcriptomic analysis integrated with Mendelian randomization. Both genes exhibited significantly reduced expression in the AS group. Immune infiltration analysis revealed a strong positive correlation between activated CD8+ T cells and these genes, while eosinophils displayed the most pronounced negative correlation with KLRC1, and regulatory T cells exhibited the strongest negative association with SOCS2. Notably, SOCS2 emerged as a pivotal protective factor, offering novel insights into AS pathogenesis and providing a robust theoretical foundation for early diagnosis and potential therapeutic strategies.
Collapse
Affiliation(s)
- Li-Rong Wang
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
- University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Chun-Xi Zhang
- Port Epidemic Disease Monitor Key Laboratory of Sichuan Province, Sichuan International Travel Health Care Center, Chengdu, 610041, Sichuan, China
| | - Lv-Bo Tian
- Port Epidemic Disease Monitor Key Laboratory of Sichuan Province, Sichuan International Travel Health Care Center, Chengdu, 610041, Sichuan, China
| | - Jie Huang
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
- University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Li-Jun Jia
- University of Electronic Science and Technology of China, Chengdu, 610054, China
- School of Clinical Medicine, Southwest Medical University, Luzhou, 646000, China
| | - Hao Tao
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
- University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Neng-Wei Yu
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| | - Bing-Hu Li
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China.
- University of Electronic Science and Technology of China, Chengdu, 610054, China.
| |
Collapse
|
8
|
Turlej E, Domaradzka A, Radzka J, Drulis-Fajdasz D, Kulbacka J, Gizak A. Cross-Talk Between Cancer and Its Cellular Environment-A Role in Cancer Progression. Cells 2025; 14:403. [PMID: 40136652 PMCID: PMC11940884 DOI: 10.3390/cells14060403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/27/2025] [Accepted: 03/06/2025] [Indexed: 03/27/2025] Open
Abstract
The tumor microenvironment is a dynamic and complex three-dimensional network comprising the extracellular matrix and diverse non-cancerous cells, including fibroblasts, adipocytes, endothelial cells and various immune cells (lymphocytes T and B, NK cells, dendritic cells, monocytes/macrophages, myeloid-derived suppressor cells, and innate lymphoid cells). A constantly and rapidly growing number of studies highlight the critical role of these cells in shaping cancer survival, metastatic potential and therapy resistance. This review provides a synthesis of current knowledge on the modulating role of the cellular microenvironment in cancer progression and response to treatment.
Collapse
Affiliation(s)
- Eliza Turlej
- Departament of Molecular Physiology and Neurobiology, University of Wrocław, ul. Sienkiewicza 21, 50-335 Wrocław, Poland; (E.T.); (A.D.); (J.R.)
| | - Aleksandra Domaradzka
- Departament of Molecular Physiology and Neurobiology, University of Wrocław, ul. Sienkiewicza 21, 50-335 Wrocław, Poland; (E.T.); (A.D.); (J.R.)
| | - Justyna Radzka
- Departament of Molecular Physiology and Neurobiology, University of Wrocław, ul. Sienkiewicza 21, 50-335 Wrocław, Poland; (E.T.); (A.D.); (J.R.)
| | - Dominika Drulis-Fajdasz
- Departament of Molecular Physiology and Neurobiology, University of Wrocław, ul. Sienkiewicza 21, 50-335 Wrocław, Poland; (E.T.); (A.D.); (J.R.)
| | - Julita Kulbacka
- Departament of Molecular and Cellular Biology, Faculty of Pharmacy, Wrocław Medical University, Borowska 211A, 50-556 Wrocław, Poland;
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania
| | - Agnieszka Gizak
- Departament of Molecular Physiology and Neurobiology, University of Wrocław, ul. Sienkiewicza 21, 50-335 Wrocław, Poland; (E.T.); (A.D.); (J.R.)
| |
Collapse
|
9
|
Guo P, Zhong L, Wang T, Luo W, Zhou A, Cao D. NK cell-based immunotherapy for hepatocellular carcinoma: Challenges and opportunities. Scand J Immunol 2025; 101:e13433. [PMID: 39934640 DOI: 10.1111/sji.13433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 12/22/2024] [Accepted: 01/01/2025] [Indexed: 02/13/2025]
Abstract
Hepatocellular carcinoma (HCC) remains one of the most challenging malignancies globally, characterized by significant heterogeneity, late-stage diagnosis, and resistance to treatment. In recent years, the advent of immune-checkpoint blockades (ICBs) and targeted immune cell therapies has marked a substantial advancement in HCC treatment. However, the clinical efficacy of these existing therapies is still limited, highlighting the urgent need for new breakthroughs. Natural killer (NK) cells, a subset of the innate lymphoid cell family, have shown unique advantages in the anti-tumour response. With increasing evidence suggesting the crucial role of dysfunctional NK cells in the pathogenesis and progression of HCC, considerable efforts have been directed toward exploring NK cells as a potential therapeutic target for HCC. In this review, we will provide an overview of the role of NK cells in normal liver immunity and in HCC, followed by a detailed discussion of various NK cell-based immunotherapies and their potential applications in HCC treatment.
Collapse
Affiliation(s)
- Pei Guo
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Liyuan Zhong
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Tao Wang
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Weijia Luo
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Aiqiang Zhou
- Guangzhou Hospital of Integrated Chinese and Western Medicine, Guangzhou, Guangdong, P.R China
| | - Deliang Cao
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
10
|
Rishabh K, Matosevic S. The diversity of natural killer cell functional and phenotypic states in cancer. Cancer Metastasis Rev 2025; 44:26. [PMID: 39853430 DOI: 10.1007/s10555-025-10242-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 01/08/2025] [Indexed: 01/26/2025]
Abstract
The role of natural killer (NK) cells as immune effectors is well established, as is their utility as immunotherapeutic agents against various cancers. However, NK cells' anti-cancer roles are suppressed in cancer patients by various immunomodulatory mechanisms which alter these cells' identity, function, and potential for immunosurveillance. This manifests in abnormal NK cell responses accompanied by changes in phenotypic or genotypic identity, giving rise to specific NK cell subsets that are either hypofunctional or, more broadly, defective in their responses. Anergy, senescence, and exhaustion are some of the terms that have been used to define and characterize these NK cell functional states. These responses vary not only with cancer type but also NK cell location within tissues. Collectively, these phenomena suggest a highly plastic nature of NK cell biology in tumors. In this review, we present and discuss a summary of these functionally distinct states and provide an overview of how NK cells behave at different locations within the context of cancer.
Collapse
Affiliation(s)
- Kumar Rishabh
- Department of Industrial and Molecular Pharmaceutics, Purdue University, West Lafayette, IN, USA
| | - Sandro Matosevic
- Department of Industrial and Molecular Pharmaceutics, Purdue University, West Lafayette, IN, USA.
- Institute for Cancer Research, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
11
|
Zhang M, Huang K, Yin Q, Wu X, Zhu M, Li M. Spatial heterogeneity of the hepatocellular carcinoma microenvironment determines the efficacy of immunotherapy. Discov Oncol 2025; 16:15. [PMID: 39775241 PMCID: PMC11706828 DOI: 10.1007/s12672-025-01747-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 01/02/2025] [Indexed: 01/11/2025] Open
Abstract
Hepatocellular carcinoma (HCC) remains a global health challenge owing to its widespread incidence and high mortality. HCC has a specific immune tolerance function because of its unique physiological structure, which limits the efficacy of chemotherapy, radiotherapy, and molecular targeting. In recent years, new immune approaches, including adoptive cell therapy, tumor vaccines, and oncolytic virus therapy, have shown great potential. As the efficacy of immunotherapy mainly depends on the spatial heterogeneity of the tumor immune microenvironment, it is necessary to elucidate the crosstalk between the composition of the liver cancer immune environment, from which potential therapeutic targets can be selected to provide more appropriate individualized treatment programs. The role of spatial heterogeneity of immune cells in the microenvironment of HCC in the progression and influence of immunotherapy on improving the treatment and prognosis of HCC were comprehensively analyzed, providing new inspiration for the subsequent clinical treatment of liver cancer.
Collapse
Affiliation(s)
- Minni Zhang
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Haikou, 571199, Hainan, People's Republic of China
- The First Affiliated Hospital, Key Laboratory of Emergency and Trauma of Ministry of Education, Engineering Research Center for Hainan Biological Sample Resources of Major Diseases, The Hainan Branch of National Clinical Research Center for Cancer, Hainan Medical University, Haikou, 570102, Hainan, People's Republic of China
| | - Kailin Huang
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Haikou, 571199, Hainan, People's Republic of China
| | - Qiushi Yin
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Haikou, 571199, Hainan, People's Republic of China
| | - Xueqin Wu
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Haikou, 571199, Hainan, People's Republic of China
| | - Mingyue Zhu
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Haikou, 571199, Hainan, People's Republic of China.
| | - Mengsen Li
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Haikou, 571199, Hainan, People's Republic of China.
- Department of Medical Oncology, Second Affiliated Hospital, Hainan Medical University, Haikou, 570023, Hainan, People's Republic of China.
- Key Laboratory of Tropical Translational Medicine, Ministry of Education, Hainan Medical University, Haikou, 571199, Hainan, People's Republic of China.
| |
Collapse
|
12
|
Tavakoli S, Samareh-Salavati M, Abdolahi S, Verdi J, Seyhoun I, Vousooghi N, Vaezi M, Ghaderi A, Ghavamzadeh A, Barkhordar M, Ahmadvand M. Cell Therapy Using Anti-NKG2A Pretreated Natural Killer Cells in Patients with Hepatocellular Carcinoma. Adv Pharm Bull 2024; 14:918-926. [PMID: 40190667 PMCID: PMC11970500 DOI: 10.34172/apb.43869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/18/2024] [Accepted: 12/03/2024] [Indexed: 04/09/2025] Open
Abstract
Purpose The activities and functions of natural killer (NK) cells are regulated by a limited repertoire of activating and inhibitory receptors. Thus, we provided a study of inhibition of the NKG2A using monoclonal antibodies (mAbs), and as a primary endpoint, we evaluated whether it can be translated to enhance adoptive NK cell immunotherapy, as the secondary endpoint, we investigated safety and feasibility. Methods In this study, we investigated the safety of anti-NKG2A-pretreated NK cells in improving ADCC function to manage hepatocellular carcinoma (HCC). After a conditioning regimen, we initiated a pilot study of expanded donor haploidentical NK cell infusion. Patients received a fludarabine/cyclophosphamide conditioning followed by adoptive immunotherapy with IL2-activated haploidentical NK cells. Anti-NKG2A pretreated NK cells were infused on days 0,+5, and+10 post-conditioning regimens at a dose of 7×108 cells (n=3). The median follow-up was 4 months for all patients. Results Although all patients were alive at the last follow-up, two of them showed progressive disease and an increase in tumor size. In addition, all patients showed a relative decrease in alpha-fetoprotein (AFP) expression levels after one month. Conclusion This study demonstrated the safety and feasibility of infusing high doses of ex vivo expanded NK cells after conditioning with transient side effects.
Collapse
Affiliation(s)
- Shirin Tavakoli
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Samareh-Salavati
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahrokh Abdolahi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Javad Verdi
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Iman Seyhoun
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasim Vousooghi
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Vaezi
- Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
| | - Afshin Ghaderi
- Department of Internal Medicine, Hematology and Medical Oncology Ward, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Ardeshir Ghavamzadeh
- Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Barkhordar
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ahmadvand
- Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Jin Y, Xing J, Dai C, Jin L, Zhang W, Tao Q, Hou M, Li Z, Yang W, Feng Q, Wang H, Yu Q. NK cell exhaustion in Wilson's disease revealed by single-cell RNA sequencing predicts the prognosis of cholecystitis. eLife 2024; 13:RP98867. [PMID: 39854622 PMCID: PMC11684787 DOI: 10.7554/elife.98867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2025] Open
Abstract
Metabolic abnormalities associated with liver disease have a significant impact on the risk and prognosis of cholecystitis. However, the underlying mechanism remains to be elucidated. Here, we investigated this issue using Wilson's disease (WD) as a model, which is a genetic disorder characterized by impaired mitochondrial function and copper metabolism. Our retrospective clinical study found that WD patients have a significantly higher incidence of cholecystitis and a poorer prognosis. The hepatic immune cell landscape using single-cell RNA sequencing showed that the tissue immune microenvironment is altered in WD, mainly a major change in the constitution and function of the innate immune system. Exhaustion of natural killer (NK) cells is the fundamental factor, supported by the upregulated expression of inhibitory receptors and the downregulated expression of cytotoxic molecules, which was verified in clinical samples. Further bioinformatic analysis confirmed a positive correlation between NK cell exhaustion and poor prognosis in cholecystitis and other inflammatory diseases. The study demonstrated dysfunction of liver immune cells triggered by specific metabolic abnormalities in WD, with a focus on the correlation between NK cell exhaustion and poor healing of cholecystitis, providing new insights into the improvement of inflammatory diseases by assessing immune cell function.
Collapse
Affiliation(s)
- Yong Jin
- Cancer Research Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of ChinaHefeiChina
| | - Jiayu Xing
- Cancer Research Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of ChinaHefeiChina
| | - Chenyu Dai
- Department of Cadre Cardiology, The First Affiliated Hospital of Anhui University of Chinese MedicineHefeiChina
| | - Lei Jin
- Department of General Surgery, The First Affiliated Hospital of Anhui University of Chinese MedicineHefeiChina
- Institute of Chinese Medicine Surgery, Anhui Academy of Chinese MedicineHefeiChina
| | - Wanying Zhang
- Cancer Research Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of ChinaHefeiChina
| | - Qianqian Tao
- Department of General Surgery, The First Affiliated Hospital of Anhui University of Chinese MedicineHefeiChina
- Institute of Chinese Medicine Surgery, Anhui Academy of Chinese MedicineHefeiChina
| | - Mei Hou
- Cancer Research Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of ChinaHefeiChina
| | - Ziyi Li
- Department of General Surgery, The First Affiliated Hospital of Anhui University of Chinese MedicineHefeiChina
- Institute of Chinese Medicine Surgery, Anhui Academy of Chinese MedicineHefeiChina
| | - Wen Yang
- Cancer Research Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of ChinaHefeiChina
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical UniversityShanghaiChina
- National Center for Liver Cancer, Second Military Medical UniversityShanghaiChina
| | - Qiyu Feng
- Cancer Research Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of ChinaHefeiChina
| | - Hongyang Wang
- Cancer Research Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of ChinaHefeiChina
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical UniversityShanghaiChina
- National Center for Liver Cancer, Second Military Medical UniversityShanghaiChina
| | - Qingsheng Yu
- Department of Cadre Cardiology, The First Affiliated Hospital of Anhui University of Chinese MedicineHefeiChina
- Department of General Surgery, The First Affiliated Hospital of Anhui University of Chinese MedicineHefeiChina
| |
Collapse
|
14
|
Bukhari I, Li M, Li G, Xu J, Zheng P, Chu X. Pinpointing the integration of artificial intelligence in liver cancer immune microenvironment. Front Immunol 2024; 15:1520398. [PMID: 39759506 PMCID: PMC11695355 DOI: 10.3389/fimmu.2024.1520398] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 12/02/2024] [Indexed: 01/07/2025] Open
Abstract
Liver cancer remains one of the most formidable challenges in modern medicine, characterized by its high incidence and mortality rate. Emerging evidence underscores the critical roles of the immune microenvironment in tumor initiation, development, prognosis, and therapeutic responsiveness. However, the composition of the immune microenvironment of liver cancer (LC-IME) and its association with clinicopathological significance remain unelucidated. In this review, we present the recent developments related to the use of artificial intelligence (AI) for studying the immune microenvironment of liver cancer, focusing on the deciphering of complex high-throughput data. Additionally, we discussed the current challenges of data harmonization and algorithm interpretability for studying LC-IME.
Collapse
Affiliation(s)
- Ihtisham Bukhari
- Department of Oncology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Marshall B. J. Medical Research Center, Zhengzhou University, Zhengzhou, Henan, China
| | - Mengxue Li
- Marshall B. J. Medical Research Center, Zhengzhou University, Zhengzhou, Henan, China
| | - Guangyuan Li
- Department of Oncology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jixuan Xu
- Department of Gastrointestinal & Thyroid Surgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Pengyuan Zheng
- Marshall B. J. Medical Research Center, Zhengzhou University, Zhengzhou, Henan, China
| | - Xiufeng Chu
- Department of Oncology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Marshall B. J. Medical Research Center, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
15
|
Claus M, Freitag M, Ewald M, Rodon L, Deicher F, Watzl C, Kolb P, Lorenz HM, Schmitt M, Merkt W. Immunological effects of CD19.CAR-T cell therapy in systemic sclerosis: an extended case study. Arthritis Res Ther 2024; 26:211. [PMID: 39673062 PMCID: PMC11639114 DOI: 10.1186/s13075-024-03451-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 12/03/2024] [Indexed: 12/15/2024] Open
Abstract
OBJECTIVE The high potential of CD19.CAR-T cells to treat autoimmune diseases such as Systemic Sclerosis (SSc) supposedly relies on the disappearance of autoantibodies. Here we investigated effects of CAR-T cells on the innate immune system which is an important contributor to pathology in SSc. METHODS Longitudinal analysis of peripheral blood mononuclear cells from an Scl70 + SSc patient treated with CAR-T cells sampled over 18 months by 29-color spectral flow cytometry, in vitro experiments using sera from patient cohorts. RESULTS In the patient treated with CAR-T cells, the substantial clinical improvement was paralleled by dynamic changes in innate lymphoid cells, namely Fcγ-receptor IIIA-expressing natural killer (NK) cells. NK cells adopted a more juvenile, less activated, and less differentiated phenotype. In parallel, the potency of serum to form Scl70-containing immune complexes that activate Fcγ-receptor IIIA decreased over time. These observations suggested a mechanistic link between reversal of adaptive autoimmunity and recovering Fcγ-receptor IIIA-expressing innate immune cells after CAR-T cell therapy via regressing immune complex activity. Experiments with sera from the non-CAR-T-treated SSc cohort confirmed that Scl70-containing immune complexes activate Fcγ-receptor IIIA-expressing NK cells in a dose-dependent manner, substantiating the relevance of this link between adaptive and innate immunity in SSc. CONCLUSION This report describes for the first time the phenotypic recovery of innate Fcγ-receptor-expressing cells in an SSc patient treated with CAR-T cells. Decreasing autoantibody levels associated with a reduced ability to form functional immune complexes, the latter appearing to contribute to pathology in SSc via activation of Fcγ receptor IIIA + cells such as NK cells.
Collapse
Affiliation(s)
- Maren Claus
- Leibniz Research Center for Working Environment and Human Factors at TU Dortmund (IfADo), Ardeystrasse 67, 44139, Dortmund, Germany
| | - Merle Freitag
- Department of Hematology, Oncology and Rheumatology, Internal Medicine V, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Meike Ewald
- Department of Hematology, Oncology and Rheumatology, Internal Medicine V, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Lea Rodon
- Department of Hematology, Oncology and Rheumatology, Internal Medicine V, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Franca Deicher
- Department of Hematology, Oncology and Rheumatology, Internal Medicine V, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- Hiller Research Center, University Hospital Düsseldorf, Medical Faculty of Heinrich-Heine University, Moorenstrasse 5, 40225, Düsseldorf, Germany
- Department of Rheumatology, University Hospital Düsseldorf, Medical Faculty of Heinrich-Heine University, Düsseldorf, Germany
| | - Carsten Watzl
- Leibniz Research Center for Working Environment and Human Factors at TU Dortmund (IfADo), Ardeystrasse 67, 44139, Dortmund, Germany
| | - Philipp Kolb
- Institute of Virology, University Medical Center, Hermann-Herder-Str. 11, 79104, Freiburg, Germany
- Faculty of Medicine, Albert-Ludwigs-University, Breisacher Strasse 153, 79110, Freiburg, Germany
| | - Hanns-Martin Lorenz
- Department of Hematology, Oncology and Rheumatology, Internal Medicine V, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Michael Schmitt
- Department of Hematology, Oncology and Rheumatology, Internal Medicine V, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Wolfgang Merkt
- Department of Hematology, Oncology and Rheumatology, Internal Medicine V, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany.
- Hiller Research Center, University Hospital Düsseldorf, Medical Faculty of Heinrich-Heine University, Moorenstrasse 5, 40225, Düsseldorf, Germany.
- Department of Rheumatology, University Hospital Düsseldorf, Medical Faculty of Heinrich-Heine University, Düsseldorf, Germany.
| |
Collapse
|
16
|
Murugesan G, Paterson RL, Kulkarni R, Ilkow V, Suckling RJ, Connolly MM, Karuppiah V, Pengelly R, Jadhav A, Donoso J, Heunis T, Bunjobpol W, Philips G, Ololade K, Kay D, Sarkar A, Barber C, Raj R, Perot C, Grant T, Treveil A, Walker A, Dembek M, Gibbs-Howe D, Hock M, Carreira RJ, Atkin KE, Dorrell L, Knox A, Leonard S, Salio M, Godinho LF. Viral sequence determines HLA-E-restricted T cell recognition of hepatitis B surface antigen. Nat Commun 2024; 15:10126. [PMID: 39578466 PMCID: PMC11584656 DOI: 10.1038/s41467-024-54378-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 11/08/2024] [Indexed: 11/24/2024] Open
Abstract
The non-polymorphic HLA-E molecule offers opportunities for new universal immunotherapeutic approaches to chronic infectious diseases. Chronic Hepatitis B virus (HBV) infection is driven in part by T cell dysfunction due to elevated levels of the HBV envelope (Env) protein hepatitis B surface antigen (HBsAg). Here we report the characterization of three genotypic variants of an HLA-E-binding HBsAg peptide, Env371-379, identified through bioinformatic predictions and verified by biochemical and cellular assays. Using a soluble affinity-enhanced T cell receptor (TCR) (a09b08)-anti-CD3 bispecific molecule to probe HLA-E presentation of the Env371-379 peptides, we demonstrate that only the most stable Env371-379 variant, L6I, elicits functional responses to a09b08-anti-CD3-redirected polyclonal T cells co-cultured with targets expressing endogenous HBsAg. Furthermore, HLA-E-Env371-379 L6I-specific CD8+ T cells are detectable in HBV-naïve donors and people with chronic HBV after in vitro priming. In conclusion, we provide evidence for HLA-E-mediated HBV Env peptide presentation, and highlight the effect of viral mutations on the stability and targetability of pHLA-E molecules.
Collapse
Affiliation(s)
| | | | - Rakesh Kulkarni
- Immunocore Ltd, 92 Park Drive, Abingdon, Oxfordshire, OX14 4RY, UK
| | - Veronica Ilkow
- Immunocore Ltd, 92 Park Drive, Abingdon, Oxfordshire, OX14 4RY, UK
| | | | - Mary M Connolly
- Immunocore Ltd, 92 Park Drive, Abingdon, Oxfordshire, OX14 4RY, UK
| | | | - Robert Pengelly
- Immunocore Ltd, 92 Park Drive, Abingdon, Oxfordshire, OX14 4RY, UK
| | - Archana Jadhav
- Immunocore Ltd, 92 Park Drive, Abingdon, Oxfordshire, OX14 4RY, UK
| | - Jose Donoso
- Immunocore Ltd, 92 Park Drive, Abingdon, Oxfordshire, OX14 4RY, UK
| | - Tiaan Heunis
- Immunocore Ltd, 92 Park Drive, Abingdon, Oxfordshire, OX14 4RY, UK
| | | | - Gwilym Philips
- Immunocore Ltd, 92 Park Drive, Abingdon, Oxfordshire, OX14 4RY, UK
| | - Kafayat Ololade
- Immunocore Ltd, 92 Park Drive, Abingdon, Oxfordshire, OX14 4RY, UK
| | - Daniel Kay
- Immunocore Ltd, 92 Park Drive, Abingdon, Oxfordshire, OX14 4RY, UK
| | - Anshuk Sarkar
- Immunocore Ltd, 92 Park Drive, Abingdon, Oxfordshire, OX14 4RY, UK
| | - Claire Barber
- Immunocore Ltd, 92 Park Drive, Abingdon, Oxfordshire, OX14 4RY, UK
| | - Ritu Raj
- Immunocore Ltd, 92 Park Drive, Abingdon, Oxfordshire, OX14 4RY, UK
| | - Carole Perot
- Immunocore Ltd, 92 Park Drive, Abingdon, Oxfordshire, OX14 4RY, UK
| | - Tressan Grant
- Immunocore Ltd, 92 Park Drive, Abingdon, Oxfordshire, OX14 4RY, UK
| | - Agatha Treveil
- Immunocore Ltd, 92 Park Drive, Abingdon, Oxfordshire, OX14 4RY, UK
| | - Andrew Walker
- Immunocore Ltd, 92 Park Drive, Abingdon, Oxfordshire, OX14 4RY, UK
| | - Marcin Dembek
- Immunocore Ltd, 92 Park Drive, Abingdon, Oxfordshire, OX14 4RY, UK
| | - Dawn Gibbs-Howe
- Immunocore Ltd, 92 Park Drive, Abingdon, Oxfordshire, OX14 4RY, UK
| | - Miriam Hock
- Immunocore Ltd, 92 Park Drive, Abingdon, Oxfordshire, OX14 4RY, UK
| | | | - Kate E Atkin
- Immunocore Ltd, 92 Park Drive, Abingdon, Oxfordshire, OX14 4RY, UK
| | - Lucy Dorrell
- Immunocore Ltd, 92 Park Drive, Abingdon, Oxfordshire, OX14 4RY, UK
| | - Andrew Knox
- Immunocore Ltd, 92 Park Drive, Abingdon, Oxfordshire, OX14 4RY, UK
| | - Sarah Leonard
- Immunocore Ltd, 92 Park Drive, Abingdon, Oxfordshire, OX14 4RY, UK
| | - Mariolina Salio
- Immunocore Ltd, 92 Park Drive, Abingdon, Oxfordshire, OX14 4RY, UK
| | - Luis F Godinho
- Immunocore Ltd, 92 Park Drive, Abingdon, Oxfordshire, OX14 4RY, UK.
| |
Collapse
|
17
|
Zhou Y, Wang Y, Liang J, Qian J, Wu Z, Gao Z, Qi J, Zhu S, Li N, Chen Y, Chen G, Nie L, Guo T, Wang H. Generation, Characterization, and Preclinical Studies of a Novel NKG2A-Targeted Antibody BRY805 for Cancer Immunotherapy. Antibodies (Basel) 2024; 13:93. [PMID: 39584993 PMCID: PMC11587108 DOI: 10.3390/antib13040093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/18/2024] [Accepted: 11/06/2024] [Indexed: 11/26/2024] Open
Abstract
Immuno-oncology has revolutionized cancer treatment, with NKG2A emerging as a novel target for immunotherapy. The blockade of NKG2A using the immune checkpoint inhibitor (ICI) monalizumab has been shown to enhance the responses of both NK cells and CD8+ T cells. However, monalizumab has demonstrated limited efficacy in in vitro cytotoxic assays and clinical trials. In our study, we discovered and characterized a novel anti-NKG2A antibody, BRY805, which exhibits high specificity for the human CD94/NKG2A heterodimer complex and does not bind to the activating NKG2C receptor. In vitro cytotoxicity assays demonstrated that BRY805 effectively activated NK92 cells and primary NK cells, thereby enhancing the cytotoxic activity of effector cells against cancer cells overexpressing HLA-E, with significantly greater efficacy compared to monalizumab. Furthermore, BRY805 exhibited synergistic antitumor activity when combined with PD-L1 monoclonal antibodies. In a mouse xenograft model, BRY805 showed superior tumor control relative to monalizumab and demonstrated a favorable safety profile in non-human primate studies.
Collapse
Affiliation(s)
- Yaqiong Zhou
- BioRay Pharmaceutical Co., Ltd., Taizhou 318000, China
- BioRay Pharmaceutical (Hangzhou) Co., Ltd., Hangzhou 311404, China
| | - Yiru Wang
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Jinfeng Liang
- Zhejiang Center for Drug and Cosmetic Evaluation, Zhejiang Medical Products Administration, Hangzhou 310012, China
| | - Jing Qian
- Zhejiang Center for Drug and Cosmetic Evaluation, Zhejiang Medical Products Administration, Hangzhou 310012, China
| | - Zhenhua Wu
- BioRay Pharmaceutical Co., Ltd., Taizhou 318000, China
- BioRay Pharmaceutical (Hangzhou) Co., Ltd., Hangzhou 311404, China
| | - Zhangzhao Gao
- BioRay Pharmaceutical Co., Ltd., Taizhou 318000, China
- BioRay Pharmaceutical (Hangzhou) Co., Ltd., Hangzhou 311404, China
| | - Jian Qi
- BioRay Pharmaceutical Co., Ltd., Taizhou 318000, China
- BioRay Pharmaceutical (Hangzhou) Co., Ltd., Hangzhou 311404, China
| | - Shanshan Zhu
- BioRay Pharmaceutical Co., Ltd., Taizhou 318000, China
- BioRay Pharmaceutical (Hangzhou) Co., Ltd., Hangzhou 311404, China
| | - Na Li
- BioRay Pharmaceutical Co., Ltd., Taizhou 318000, China
- BioRay Pharmaceutical (Hangzhou) Co., Ltd., Hangzhou 311404, China
| | - Yao Chen
- BioRay Pharmaceutical Co., Ltd., Taizhou 318000, China
- BioRay Pharmaceutical (Hangzhou) Co., Ltd., Hangzhou 311404, China
| | - Gang Chen
- BioRay Pharmaceutical Corp., San Diego, CA 92121, USA
| | - Lei Nie
- BioRay Pharmaceutical Co., Ltd., Taizhou 318000, China
- BioRay Pharmaceutical (Hangzhou) Co., Ltd., Hangzhou 311404, China
| | - Tingting Guo
- BioRay Pharmaceutical Co., Ltd., Taizhou 318000, China
- BioRay Pharmaceutical (Hangzhou) Co., Ltd., Hangzhou 311404, China
| | - Haibin Wang
- BioRay Pharmaceutical Co., Ltd., Taizhou 318000, China
- BioRay Pharmaceutical (Hangzhou) Co., Ltd., Hangzhou 311404, China
| |
Collapse
|
18
|
Chen S, Zhu H, Jounaidi Y. Comprehensive snapshots of natural killer cells functions, signaling, molecular mechanisms and clinical utilization. Signal Transduct Target Ther 2024; 9:302. [PMID: 39511139 PMCID: PMC11544004 DOI: 10.1038/s41392-024-02005-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/25/2024] [Accepted: 09/17/2024] [Indexed: 11/15/2024] Open
Abstract
Natural killer (NK) cells, initially identified for their rapid virus-infected and leukemia cell killing and tumor destruction, are pivotal in immunity. They exhibit multifaceted roles in cancer, viral infections, autoimmunity, pregnancy, wound healing, and more. Derived from a common lymphoid progenitor, they lack CD3, B-cell, or T-cell receptors but wield high cytotoxicity via perforin and granzymes. NK cells orchestrate immune responses, secreting inflammatory IFNγ or immunosuppressive TGFβ and IL-10. CD56dim and CD56bright NK cells execute cytotoxicity, while CD56bright cells also regulate immunity. However, beyond the CD56 dichotomy, detailed phenotypic diversity reveals many functional subsets that may not be optimal for cancer immunotherapy. In this review, we provide comprehensive and detailed snapshots of NK cells' functions and states of activation and inhibitions in cancer, autoimmunity, angiogenesis, wound healing, pregnancy and fertility, aging, and senescence mediated by complex signaling and ligand-receptor interactions, including the impact of the environment. As the use of engineered NK cells for cancer immunotherapy accelerates, often in the footsteps of T-cell-derived engineering, we examine the interactions of NK cells with other immune effectors and relevant signaling and the limitations in the tumor microenvironment, intending to understand how to enhance their cytolytic activities specifically for cancer immunotherapy.
Collapse
Affiliation(s)
- Sumei Chen
- Department of Radiation Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang, China.
| | - Haitao Zhu
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Youssef Jounaidi
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
19
|
Wang J, Cao Y, Tian Y, Dai C, Jin T, Xu F. A Novel Prognostic Nomogram Based on TIGIT and NKG2A Can Predict Relapse-Free Survival of Hepatocellular Carcinoma After Hepatectomy. Cancer Med 2024; 13:e70419. [PMID: 39540362 PMCID: PMC11561519 DOI: 10.1002/cam4.70419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 06/19/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Hepatocellular carcinoma (HCC) is a major global health concern, and emerging evidence suggests that TIGIT and NKG2A are potential immune checkpoints with implications for HCC progression. This study aimed to evaluate the prognostic significance of TIGIT and NKG2A expression in HCC patients who underwent radical liver resection. METHODS We conducted a retrospective analysis of 144 HCC patients who underwent radical liver resection. TIGIT and NKG2A expression levels were assessed using the immunoreactive score. Cox proportional hazards models were utilized to analyze the association between TIGIT/NKG2A expression and clinical characteristics, relapse-free survival (RFS), and overall survival (OS). Prognostic models for OS and RFS was developed and validated using concordance index and calibration curves. Additionally, the random forest algorithm was employed to identify independent risk factors for OS and RFS and their correlation with predicted survival. RESULTS TIGIT and NKG2A expression were identified as independent risk factors for RFS, while TIGIT expression alone significantly impacted OS. The prognostic models showed good discriminative ability, with concordance indices exceeding 0.7 for predicting 1-, 3-, and 5-year OS or RFS. Calibration curves confirmed the reliability of the nomograms for OS and RFS prediction. The areas under the ROC curve consistently exceeded 0.7 for predicting OS and RFS. Elevated levels of TIGIT and NKG2A expression were associated with diminished RFS, highlighting their importance as prognostic factors. CONCLUSIONS Our study establishes the prognostic significance of TIGIT and NKG2A expression in predicting OS and RFS following radical liver resection for HCC patients. The developed prognostic models incorporating TIGIT and NKG2A expression hold promise for improving risk stratification and clinical management of HCC patients.
Collapse
Affiliation(s)
- Junqi Wang
- Department of General SurgeryShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Yuqing Cao
- Department of General SurgeryShengjing Hospital of China Medical UniversityShenyangLiaoningChina
- Department of Critical Care MedicineThe Fifth People's Hospital of Zhangjiagang CitySuzhouJiangsuChina
| | - Yu Tian
- Department of General SurgeryShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Chaoliu Dai
- Department of General SurgeryShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Tianqiang Jin
- Department of General SurgeryShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Feng Xu
- Department of General SurgeryShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| |
Collapse
|
20
|
Li Y, Li Z, Tang Y, Zhuang X, Feng W, Boor PPC, Buschow S, Sprengers D, Zhou G. Unlocking the therapeutic potential of the NKG2A-HLA-E immune checkpoint pathway in T cells and NK cells for cancer immunotherapy. J Immunother Cancer 2024; 12:e009934. [PMID: 39486805 PMCID: PMC11529472 DOI: 10.1136/jitc-2024-009934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/29/2024] [Indexed: 11/04/2024] Open
Abstract
Immune checkpoint blockade, which enhances the reactivity of T cells to eliminate cancer cells, has emerged as a potent strategy in cancer therapy. Besides T cells, natural killer (NK) cells also play an indispensable role in tumor surveillance and destruction. NK Group 2 family of receptor A (NKG2A), an emerging co-inhibitory immune checkpoint expressed on both NK cells and T cells, mediates inhibitory signal via interaction with its ligand human leukocyte antigen-E (HLA-E), thereby attenuating the effector and cytotoxic functions of NK cells and T cells. Developing antibodies to block NKG2A, holds promise in restoring the antitumor cytotoxicity of NK cells and T cells. In this review, we delve into the expression and functional significance of NKG2A and HLA-E, elucidating how the NKG2A-HLA-E axis contributes to tumor immune escape via signal transduction mechanisms. Furthermore, we provide an overview of clinical trials investigating NKG2A blockade, either as monotherapy or in combination with other therapeutic antibodies, highlighting the responses of the immune system and the clinical benefits for patients. We pay special attention to additional immune co-signaling molecules that serve as potential targets on both NK cells and T cells, aiming to evoke more robust immune responses against cancer. This review offers an in-depth exploration of the NKG2A-HLA-E pathway as a pivotal checkpoint in the anti-tumor responses, paving the way for new immunotherapeutic strategies to improve cancer patient outcomes.
Collapse
Affiliation(s)
- Yan Li
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Zhu Li
- Department of Dermatology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yisen Tang
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Xiaomei Zhuang
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Wanhua Feng
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Patrick P C Boor
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Sonja Buschow
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Dave Sprengers
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Guoying Zhou
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| |
Collapse
|
21
|
Liu YT, Wu HL, Su YD, Wang Y, Li Y. Development in the Study of Natural Killer Cells for Malignant Peritoneal Mesothelioma Treatment. Cancer Biother Radiopharm 2024; 39:551-561. [PMID: 39093850 DOI: 10.1089/cbr.2024.0078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024] Open
Abstract
Malignant peritoneal mesothelioma (MPeM) is a rare primary malignant tumor originating from peritoneal mesothelial cells. Insufficient specificity of the symptoms and their frequent reappearance following surgery make it challenging to diagnose, creating a need for more efficient treatment options. Natural killer cells (NK cells) are part of the innate immune system and are classified as lymphoid cells. Under the regulation of activating and inhibiting receptors, NK cells secrete various cytokines to exert cytotoxic effects and participate in antiforeign body, antiviral, and antitumor activities. This review provides a comprehensive summary of the specific alterations observed in NK cells following MPeM treatment, including changes in cell number, subpopulation distribution, active receptors, and cytotoxicity. In addition, we summarize the impact of various therapeutic interventions, such as chemotherapy, immunotherapy, and targeted therapy, on NK cell function post-MPeM treatment.
Collapse
Affiliation(s)
- Yi-Tong Liu
- Department of Peritoneal Cancer Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - He-Liang Wu
- Department of Peritoneal Cancer Surgery, Beijing Shijitan Hospital, Peking University Ninth School of Clinical Medicine, Beijing, China
| | - Yan-Dong Su
- Department of Peritoneal Cancer Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Yi Wang
- Department of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yan Li
- Department of Peritoneal Cancer Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of Surgical Oncology, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| |
Collapse
|
22
|
Yuan Q, Wang S, Zhu H, Yang Y, Zhang J, Li Q, Huyan T, Zhang W. Effect of preoperative natural killer cell on postoperative pulmonary complications in patients of lung cancer - A single-center retrospective cohort study. Int Immunopharmacol 2024; 138:112564. [PMID: 38943978 DOI: 10.1016/j.intimp.2024.112564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/21/2024] [Accepted: 06/23/2024] [Indexed: 07/01/2024]
Abstract
BACKGROUND The effect of preoperative natural killer (NK) cell abnormalities on postoperative pulmonary complications (PPCs) after thoracoscopic radical resection of lung cancer is still unclear. The main purpose of this study was to investigate the relationship between the preoperative NK cell ratio and PPCs. METHODS The patients who underwent thoracoscopic radical resection for lung cancer were divided into a normal group and an abnormal group according to whether the proportion of preoperative NK cells was within the reference range. The main outcome was the incidence of PPCs during postoperative hospitalization. The demographic and perioperative data were collected. Propensity score matching was used to exclude systematic bias. Univariate logistic regression was used to test the relationship between the preoperative NK cell ratio and the incidence of PPCs. The restrictive cubic spline curve was used to analyze the dose-effect relationship between the preoperative NK cell ratio and the incidence of PPCs. RESULTS A total of 4161 patients were included. After establishing a matching cohort, 910 patients were included in the statistical analysis. The incidence of PPCs in the abnormal group was greater than that in the normal group (55.2% vs. 31.6%). The incidence of PPCs first decreased and then increased with increasing NK cell ratio. The proportion of patients with Grade 3 or higher PPCs in the normal group was lower than that in the abnormal group [108 (23.7%) vs. 223 (49%)]. The indwelling time of the thoracic drainage tube in the abnormal group was longer than that in the normal group [3 (3, 4) vs. 3 (3, 5)]. A preoperative abnormal NK cell ratio constituted a risk factor for PPCs in each subgroup. CONCLUSION Lung cancer patients with an abnormal proportion of peripheral blood NK cells before surgery were more likely to develop PPCs, their disease degree was more severe, and they had a prolonged duration of chest tube indwelling. Compared with those with abnormally high NK cell ratios, those with abnormally low NK cell ratios had more pronounced PPCs.
Collapse
Affiliation(s)
- Qinyue Yuan
- Department of Anesthesiology and Perioperative Medicine, Henan University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, 450003, China
| | - Shichao Wang
- Department of Anesthesiology and Perioperative Medicine, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, 450003, China
| | - Haipeng Zhu
- Department of Anesthesiology and Perioperative Medicine, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, 450003, China
| | - Yulong Yang
- Department of Anesthesiology and Perioperative Medicine, Henan University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, 450003, China
| | - Jiaqiang Zhang
- Department of Anesthesiology and Perioperative Medicine, Henan University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, 450003, China
| | - Qi Li
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.
| | - Ting Huyan
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.
| | - Wei Zhang
- Department of Anesthesiology and Perioperative Medicine, Henan University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, 450003, China.
| |
Collapse
|
23
|
Shen G, Wang Q, Li Z, Xie J, Han X, Wei Z, Zhang P, Zhao S, Wang X, Huang X, Xu M. Bridging Chronic Inflammation and Digestive Cancer: The Critical Role of Innate Lymphoid Cells in Tumor Microenvironments. Int J Biol Sci 2024; 20:4799-4818. [PMID: 39309440 PMCID: PMC11414386 DOI: 10.7150/ijbs.96338] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 08/09/2024] [Indexed: 09/25/2024] Open
Abstract
The incidence and mortality of digestive system-related cancers have always been high and attributed to the heterogeneity and complexity of the immune microenvironment of the digestive system. Furthermore, several studies have shown that chronic inflammation in the digestive system is responsible for cancer incidence; therefore, controlling inflammation is a potential strategy to stop the development of cancer. Innate Lymphoid Cells (ILC) represent a heterogeneous group of lymphocytes that exist in contrast to T cells. They function by interacting with cytokines and immune cells in an antigen-independent manner. In the digestive system cancer, from the inflammatory phase to the development, migration, and metastasis of tumors, ILC have been found to interact with the immune microenvironment and either control or promote these processes. The conventional treatments for digestive tumors have limited efficacy, therefore, ILC-associated immunotherapies are promising strategies. This study reviews the characterization of different ILC subpopulations, how they interact with and influence the immune microenvironment as well as chronic inflammation, and their promotional or inhibitory role in four common digestive system tumors, including pancreatic, colorectal, gastric, and hepatocellular cancers. In particular, the review emphasizes the role of ILC in associating chronic inflammation with cancer and the potential for enhanced immunotherapy with cytokine therapy and adoptive immune cell therapy.
Collapse
Affiliation(s)
- Guanliang Shen
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, 212001, China
- Digestive Disease Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Qi Wang
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, 212001, China
- Digestive Disease Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Zhengrui Li
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Jiaheng Xie
- Department of Plastic Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Xinda Han
- Xinglin College, Nantong University, Nantong, Jiangsu, China
| | - Zehao Wei
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, 212001, China
- Digestive Disease Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Pengpeng Zhang
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Songyun Zhao
- Department of Neurosurgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Xiumei Wang
- Affiliated Cancer Hospital of Inner Mongolia Medical University, 010020, Inner Mongolia, China
| | | | - Min Xu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, 212001, China
- Digestive Disease Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| |
Collapse
|
24
|
Ye Z, Li W, Ouyang H, Ruan Z, Liu X, Lin X, Chen X. Natural killer (NK) cells-related gene signature reveals the immune environment heterogeneity in hepatocellular carcinoma based on single cell analysis. Discov Oncol 2024; 15:406. [PMID: 39231877 PMCID: PMC11374944 DOI: 10.1007/s12672-024-01287-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/28/2024] [Indexed: 09/06/2024] Open
Abstract
The early diagnosis of liver cancer is crucial for the treatment and depends on the coordinated use of several test procedures. Early diagnosis is crucial for precision therapy in the treatment of the hepatocellular carcinoma (HCC). Therefore, in this study, the NK cell-related gene prediction model was used to provide the basis for precision therapy at the gene level and a novel basis for the treatment of patients with liver cancer. Natural killer (NK) cells have innate abilities to recognize and destroy tumor cells and thus play a crucial function as the "innate counterpart" of cytotoxic T cells. The natural killer (NK) cells is well recognized as a prospective approach for tumor immunotherapy in treating patients with HCC. In this research, we used publicly available databases to collect bioinformatics data of scRNA-seq and RNA-seq from HCC patients. To determine the NK cell-related genes (NKRGs)-based risk profile for HCC, we isolated T and natural killer (NK) cells and subjected them to analysis. Uniform Manifold Approximation and Projection plots were created to show the degree of expression of each marker gene and the distribution of distinct clusters. The connection between the immunotherapy response and the NKRGs-based signature was further analyzed, and the NKRGs-based signature was established. Eventually, a nomogram was developed using the model and clinical features to precisely predict the likelihood of survival. The prognosis of HCC can be accurately predicted using the NKRGs-based prognostic signature, and thorough characterization of the NKRGs signature of HCC may help to interpret the response of HCC to immunotherapy and propose a novel tumor treatment perspective.
Collapse
Affiliation(s)
- Zhirong Ye
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Guangdong Medical University, No. 12, Minyou Road, Xiashan District, Zhanjiang, 524000, Guangdong, China
| | - Wenjun Li
- Department of Anesthesia, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan, 528400, China
| | - Hao Ouyang
- Department of Clinical Laboratory, Dongguan Binhaiwan Central Hospital, Dongguan, 523903, Guangdong, China
| | - Zikang Ruan
- Department of Hepatobiliary Surgery, The People's Hospital of Gaozhou, No. 89, Xiguan Road, Gaozhou, Maoming, 525200, Guangdong, China
| | - Xun Liu
- Department of Clinical Laboratory, The People's Hospital of Xingning, Meizhou, 514500, Guangdong, China
| | - Xiaoxia Lin
- Department of Hepatobiliary Surgery, The People's Hospital of Gaozhou, No. 89, Xiguan Road, Gaozhou, Maoming, 525200, Guangdong, China.
| | - Xuanting Chen
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Guangdong Medical University, No. 12, Minyou Road, Xiashan District, Zhanjiang, 524000, Guangdong, China.
| |
Collapse
|
25
|
Graham LV, Fisher JG, Doyle ADP, Sale B, Del Rio L, French AJE, Mayor NP, Turner TR, Marsh SGE, Cragg MS, Forconi F, Khakoo SI, Blunt MD. KIR2DS2+ NK cells in cancer patients demonstrate high activation in response to tumour-targeting antibodies. Front Oncol 2024; 14:1404051. [PMID: 39286025 PMCID: PMC11402612 DOI: 10.3389/fonc.2024.1404051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 08/13/2024] [Indexed: 09/19/2024] Open
Abstract
Strategies to mobilise natural killer (NK) cells against cancer include tumour-targeting antibodies, NK cell engagers (NKCEs) and the adoptive transfer of ex vivo expanded healthy donor-derived NK cells. Genetic and functional studies have revealed that expression of the activating killer immunoglobulin-like receptor KIR2DS2 is associated with enhanced function in NK cells from healthy donors and improved outcome in several different malignancies. The optimal strategy to leverage KIR2DS2+ NK cells therapeutically is however currently unclear. In this study, we therefore evaluated the response of KIR2DS2-expressing NK cells to activation against cancer with clinically relevant tumour-targeting antibodies and following ex vivo expansion. We identified that KIR2DS2high NK cells from patients with chronic lymphocytic leukaemia and hepatocellular carcinoma had enhanced activation in response to tumour-targeting antibodies compared to KIR2DS2- NK cells. However, the superior function of healthy donor derived KIR2DS2high NK cells was lost following ex vivo expansion which is required for adoptive transfer-based therapeutic strategies. These data provide evidence that targeting KIR2DS2 directly in cancer patients may allow for the utilisation of their enhanced effector function, however such activity may be lost following their ex vivo expansion.
Collapse
Affiliation(s)
- Lara V Graham
- School of Clinical and Experimental Sciences, University of Southampton, Southampton, United Kingdom
| | - Jack G Fisher
- School of Clinical and Experimental Sciences, University of Southampton, Southampton, United Kingdom
| | - Amber D P Doyle
- School of Clinical and Experimental Sciences, University of Southampton, Southampton, United Kingdom
| | - Ben Sale
- School of Cancer Sciences, University of Southampton, Southampton, United Kingdom
| | - Luis Del Rio
- School of Cancer Sciences, University of Southampton, Southampton, United Kingdom
| | - Albert J E French
- Anthony Nolan Research Institute, Royal Free Hospital, London, United Kingdom
| | - Neema P Mayor
- Anthony Nolan Research Institute, Royal Free Hospital, London, United Kingdom
- Department of Academic Haematology, University College London (UCL) Cancer Institute, London, United Kingdom
| | - Thomas R Turner
- Anthony Nolan Research Institute, Royal Free Hospital, London, United Kingdom
- Department of Academic Haematology, University College London (UCL) Cancer Institute, London, United Kingdom
| | - Steven G E Marsh
- Anthony Nolan Research Institute, Royal Free Hospital, London, United Kingdom
- Department of Academic Haematology, University College London (UCL) Cancer Institute, London, United Kingdom
| | - Mark S Cragg
- School of Cancer Sciences, University of Southampton, Southampton, United Kingdom
- Antibody and Vaccine Group, Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Francesco Forconi
- School of Cancer Sciences, University of Southampton, Southampton, United Kingdom
- Haematology Department, Cancer Care Directorate, University Hospital Southampton National Health Service (NHS) Trust, Southampton, United Kingdom
| | - Salim I Khakoo
- School of Clinical and Experimental Sciences, University of Southampton, Southampton, United Kingdom
| | - Matthew D Blunt
- School of Clinical and Experimental Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
26
|
Jiang P, Jing S, Sheng G, Jia F. The basic biology of NK cells and its application in tumor immunotherapy. Front Immunol 2024; 15:1420205. [PMID: 39221244 PMCID: PMC11361984 DOI: 10.3389/fimmu.2024.1420205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Natural Killer (NK) cells play a crucial role as effector cells within the tumor immune microenvironment, capable of identifying and eliminating tumor cells through the expression of diverse activating and inhibitory receptors that recognize tumor-related ligands. Therefore, harnessing NK cells for therapeutic purposes represents a significant adjunct to T cell-based tumor immunotherapy strategies. Presently, NK cell-based tumor immunotherapy strategies encompass various approaches, including adoptive NK cell therapy, cytokine therapy, antibody-based NK cell therapy (enhancing ADCC mediated by NK cells, NK cell engagers, immune checkpoint blockade therapy) and the utilization of nanoparticles and small molecules to modulate NK cell anti-tumor functionality. This article presents a comprehensive overview of the latest advances in NK cell-based anti-tumor immunotherapy, with the aim of offering insights and methodologies for the clinical treatment of cancer patients.
Collapse
Affiliation(s)
- Pan Jiang
- Department of General Medicine, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- Department of Infectious Diseases, Jingzhou First People’s Hospital, Jingzhou, China
| | - Shaoze Jing
- Department of Orthopedics, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Gaohong Sheng
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fajing Jia
- Department of General Medicine, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| |
Collapse
|
27
|
Covre LP, Fantecelle CH, Queiroz AM, Fardin JM, Miranda PH, Henson S, da Fonseca-Martins AM, de Matos Guedes HL, Mosser D, Falqueto A, Akbar A, Gomes DCO. NKG2C+CD57+ natural killer cells with senescent features are induced during cutaneous leishmaniasis and accumulate in patients with lesional healing impairment. Clin Exp Immunol 2024; 217:279-290. [PMID: 38700066 PMCID: PMC11310703 DOI: 10.1093/cei/uxae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/30/2024] [Accepted: 05/02/2024] [Indexed: 05/05/2024] Open
Abstract
Natural killer (NK) cells include different subsets with diverse effector capacities that are poorly understood in the context of parasitic diseases. Here, we investigated inhibitory and activating receptor expression on NK cells in patients with cutaneous leishmaniasis (CL) and explored their phenotypic and functional heterogeneity based on CD57 and NKG2C expression. The expression of CD57 identified NK cells that accumulated in CL patients and exhibited features of senescence. The CD57+ cells exhibited heightened levels of the activating receptor NKG2C and diminished expression of the inhibitory receptor NKG2A. RNA sequencing analyses based on NKG2C transcriptome have revealed two distinct profiles among CL patients associated with cytotoxic and functional genes. The CD57+NKG2C+ subset accumulated in the blood of patients and presented conspicuous features of senescence, including the expression of markers such as p16, yH2ax, and p38, as well as reduced proliferative capacity. In addition, they positively correlated with the number of days until lesion resolution. This study provides a broad understanding of the NK cell biology during Leishmania infection and reinforces the role of senescent cells in the adverse clinical outcomes of CL.
Collapse
Affiliation(s)
- Luciana Polaco Covre
- Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo, Vitória, Brazil
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Division of Medicine, University College London, London, UK
| | | | | | - Julia Miranda Fardin
- Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo, Vitória, Brazil
| | | | - Sian Henson
- Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | | | - Herbert Leonel de Matos Guedes
- Instituto de Microbiologia Professor Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - David Mosser
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Aloisio Falqueto
- Departamento de Medicina Social, Universidade Federal do Espírito Santo, Vitória, Brazil
| | - Arne Akbar
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Daniel Claudio Oliveira Gomes
- Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo, Vitória, Brazil
- Division of Medicine, University College London, London, UK
- Núcleo de Biotecnologia, Universidade Federal do Espírito Santo, Vitória, Brazil
| |
Collapse
|
28
|
Wen M, He L, Guo C, Zhao D, Hou Y, Yang X, Meng H. Expression and clinical significance of NKG2A and HLA-E in advanced laryngeal carcinoma. Pathol Res Pract 2024; 260:155383. [PMID: 38924853 DOI: 10.1016/j.prp.2024.155383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 05/23/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024]
Abstract
OBJECTIVES The purpose was to detected features of the expression levels of NKG2A and its ligand HLA-E, a new member of the immune checkpoints, in advanced laryngeal carcinoma and their clinicopathologic significance. MATERIAL AND METHODS We analyzed the expression levels of HLA-E and NKG2A in multiple types of tumors utilizing the Tumor Immune Estimation Resource (TIMER) database and immunohistochemistry and qRT-PCR analysis of paraffin embedded tissue samples to reveal the correlations of the clinicopathological factors with the expression of these two proteins in advanced laryngeal carcinoma as well as their prognostic significance. RESULTS KLRC1 (the coding gene of NKG2A) and HLA-E are substantially overexpressed in various human cancers than normal tissues. HNSCC is also included. KLRC1 is differentially expressed in different HPV subgroups of patients, with higher expression in the HPV-positive group. Consistent with this, immunohistochemical results also revealed the high expression of these two proteins in tumor tissue. In addition, immunohistochemical staining also displayed a preference for the distribution of NKG2A-positive cells in tumor tissue. Clinicopathological analyses also displayed that the density of NKG2A-positive cells of the HPV-positive group infiltrating laryngeal carcinoma tissue was larger than that in the HPV-negative group. Prognostic analyses indicated that the expression of this immune checkpoint does not affect the overall survival length of patients, but the highly expressed HLA-E is significantly correlated with local recurrence in the patients. CONCLUSIONS The findings suggest that the expression levels of HLA-E and NKG2A is upregulated in advanced laryngeal carcinoma. The NKG2A-positive cells infiltrating the tumor are mainly distributed in the cancer nest, while infiltrating cell number may be regulated by HPV. The highly expressed HLA-E may promote local recurrence in patients with advanced laryngeal carcinoma.
Collapse
Affiliation(s)
- Meina Wen
- Department of Pathology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Lin He
- Department of Stomatology, Nangang Hospital, Heilongjiang Province Hospital, China
| | - Chenxu Guo
- Department of Pathology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Di Zhao
- Department of Pathology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yunjing Hou
- Department of Pathology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xinxin Yang
- Precision Medicine Center, Harbin Medical University Cancer Hospital, Harbin, China.
| | - Hongxue Meng
- Department of Pathology, Harbin Medical University Cancer Hospital, Harbin, China; Precision Medicine Center, Harbin Medical University Cancer Hospital, Harbin, China.
| |
Collapse
|
29
|
Yin Y, Feng W, Chen J, Chen X, Wang G, Wang S, Xu X, Nie Y, Fan D, Wu K, Xia L. Immunosuppressive tumor microenvironment in the progression, metastasis, and therapy of hepatocellular carcinoma: from bench to bedside. Exp Hematol Oncol 2024; 13:72. [PMID: 39085965 PMCID: PMC11292955 DOI: 10.1186/s40164-024-00539-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/10/2024] [Indexed: 08/02/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly heterogeneous malignancy with high incidence, recurrence, and metastasis rates. The emergence of immunotherapy has improved the treatment of advanced HCC, but problems such as drug resistance and immune-related adverse events still exist in clinical practice. The immunosuppressive tumor microenvironment (TME) of HCC restricts the efficacy of immunotherapy and is essential for HCC progression and metastasis. Therefore, it is necessary to elucidate the mechanisms behind immunosuppressive TME to develop and apply immunotherapy. This review systematically summarizes the pathogenesis of HCC, the formation of the highly heterogeneous TME, and the mechanisms by which the immunosuppressive TME accelerates HCC progression and metastasis. We also review the status of HCC immunotherapy and further discuss the existing challenges and potential therapeutic strategies targeting immunosuppressive TME. We hope to inspire optimizing and innovating immunotherapeutic strategies by comprehensively understanding the structure and function of immunosuppressive TME in HCC.
Collapse
Affiliation(s)
- Yue Yin
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Weibo Feng
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Jie Chen
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Xilang Chen
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Guodong Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Shuai Wang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Xiao Xu
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Yongzhan Nie
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China.
| | - Daiming Fan
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China.
| | - Kaichun Wu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China.
| | - Limin Xia
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China.
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China.
| |
Collapse
|
30
|
Hwang JK, Marston DJ, Wrapp D, Li D, Tuyishime M, Brackenridge S, Rhodes B, Quastel M, Kapingidza AB, Gater J, Harner A, Wang Y, Rountree W, Ferrari G, Borrow P, McMichael AJ, Gillespie GM, Haynes BF, Azoitei ML. A high affinity monoclonal antibody against HLA-E-VL9 enhances natural killer cell anti-tumor killing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.08.602401. [PMID: 39026709 PMCID: PMC11257447 DOI: 10.1101/2024.07.08.602401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Natural killer (NK) cells kill target cells following triggering via germline-encoded receptors interacting with target cell-expressed ligands (direct killing), or via antibody-dependent cellular cytotoxicity (ADCC) mediated by FcγRIIIa. NK cytotoxicity is modulated by signaling through activating or inhibitory receptors. A major checkpoint is mediated by the NK inhibitory receptor NKG2A/CD94 and its target cell ligand, HLA-E, which is complexed with HLA signal sequence-derived peptides termed VL9 (HLA-E-VL9). We have previously reported the isolation of a murine HLA-E-VL9-specific IgM antibody 3H4 and the generation of a higher affinity IgG version (3H4v3). Here we have used phage display library selection to generate a high affinity version of 3H4v3, called 3H4v31, with an ∼700 fold increase in binding affinity. We show using an HLA-E-VL9+ K562 tumor model that, in vitro, the addition of 3H4v31 to target cells increased direct killing of targets by CD16-negative NK cell line NK-92 and also mediated ADCC by NK-92 cells transfected with CD16. Moreover, ADCC by primary NK cells was also enhanced in vitro by 3H4v31. 3H4v31 was also able to bind and enhance target cell lysis of endogenously expressed HLA-E-VL9 on human cervical cancer and human pancreatic cancer cell lines. In vivo, 3H4v31 slowed the growth rate of HLA-E-VL9+ K562 tumors implanted into NOD/SCID/IL2rγ null mice compared to isotype control when injected with NK-92 cells intratumorally. Together, these data demonstrate that mAb 3H4v31 can enhance NK cell killing of HLA-E-VL9-expressing tumor cells in vitro by both direct killing activity and by ADCC. Moreover, mAb 3H4v31 can enhance NK cell control of tumor growth in vivo. We thus identify HLA-E-VL9 monoclonal antibodies as a promising novel anti-tumor immunotherapy. One Sentence Summary A high affinity monoclonal antibody against HLA-E-VL9 enhances natural killer cell anti-tumor killing by checkpoint inhibition and antibody dependent cellular cytotoxicity.
Collapse
|
31
|
Pourbagheri-Sigaroodi A, Momeny M, Rezaei N, Fallah F, Bashash D. Immune landscape of hepatocellular carcinoma: From dysregulation of the immune responses to the potential immunotherapies. Cell Biochem Funct 2024; 42:e4098. [PMID: 39034646 DOI: 10.1002/cbf.4098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/03/2024] [Accepted: 07/10/2024] [Indexed: 07/23/2024]
Abstract
Hepatocellular carcinoma (HCC) presents a considerable global health burden due to its late diagnosis and high morbidity. The liver's specific anatomical and physiological features expose it to various antigens, requiring precise immune regulation. To the best of our knowledge, this is the first time that a comprehensive overview of the interactions between the immune system and gut microbiota in the development of HCC, as well as the relevant therapeutic approaches are discussed. Dysregulation of immune compartments within the liver microenvironment drives HCC pathogenesis, characterized by elevated regulatory cells such as regulatory T cells (Tregs), myeloid-derived suppressor cells, and M2 macrophages as well as suppressive molecules, alongside reduced number of effector cells like T cells, natural killer cells, and M1 macrophages. Dysbiosis of gut microbiota also contributes to HCC by disrupting intestinal barrier integrity and triggering overactivated immune responses. Immunotherapy approaches, particularly immune checkpoint inhibitors, have exhibited promise in HCC management, yet adoptive cell therapy and cancer vaccination research are in the early steps with relatively less favorable outcomes. Further understanding of immune dysregulation, gut microbiota involvement, and therapeutic combination strategies are essential for advancing precision immunotherapy in HCC.
Collapse
Affiliation(s)
- Atieh Pourbagheri-Sigaroodi
- Pediatric Infections Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Momeny
- Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Fallah
- Pediatric Infections Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
32
|
Wang D, Dou L, Sui L, Xue Y, Xu S. Natural killer cells in cancer immunotherapy. MedComm (Beijing) 2024; 5:e626. [PMID: 38882209 PMCID: PMC11179524 DOI: 10.1002/mco2.626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 06/18/2024] Open
Abstract
Natural killer (NK) cells, as innate lymphocytes, possess cytotoxic capabilities and engage target cells through a repertoire of activating and inhibitory receptors. Particularly, natural killer group 2, member D (NKG2D) receptor on NK cells recognizes stress-induced ligands-the MHC class I chain-related molecules A and B (MICA/B) presented on tumor cells and is key to trigger the cytolytic response of NK cells. However, tumors have developed sophisticated strategies to evade NK cell surveillance, which lead to failure of tumor immunotherapy. In this paper, we summarized these immune escaping strategies, including the downregulation of ligands for activating receptors, upregulation of ligands for inhibitory receptors, secretion of immunosuppressive compounds, and the development of apoptosis resistance. Then, we focus on recent advancements in NK cell immune therapies, which include engaging activating NK cell receptors, upregulating NKG2D ligand MICA/B expression, blocking inhibitory NK cell receptors, adoptive NK cell therapy, chimeric antigen receptor (CAR)-engineered NK cells (CAR-NK), and NKG2D CAR-T cells, especially several vaccines targeting MICA/B. This review will inspire the research in NK cell biology in tumor and provide significant hope for improving cancer treatment outcomes by harnessing the potent cytotoxic activity of NK cells.
Collapse
Affiliation(s)
- DanRu Wang
- National Key Lab of Immunity and Inflammation and Institute of Immunology Naval Medical University Shanghai China
| | - LingYun Dou
- National Key Lab of Immunity and Inflammation and Institute of Immunology Naval Medical University Shanghai China
| | - LiHao Sui
- National Key Lab of Immunity and Inflammation and Institute of Immunology Naval Medical University Shanghai China
| | - Yiquan Xue
- National Key Lab of Immunity and Inflammation and Institute of Immunology Naval Medical University Shanghai China
| | - Sheng Xu
- National Key Lab of Immunity and Inflammation and Institute of Immunology Naval Medical University Shanghai China
- Shanghai Institute of Stem Cell Research and Clinical Translation Dongfang Hospital Shanghai China
| |
Collapse
|
33
|
Hofman T, Ng SW, Garcés-Lázaro I, Heigwer F, Boutros M, Cerwenka A. IFNγ mediates the resistance of tumor cells to distinct NK cell subsets. J Immunother Cancer 2024; 12:e009410. [PMID: 38955423 PMCID: PMC11218003 DOI: 10.1136/jitc-2024-009410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND Immune checkpoint blockade targeting the adaptive immune system has revolutionized the treatment of cancer. Despite impressive clinical benefits observed, patient subgroups remain non-responsive underscoring the necessity for combinational therapies harnessing additional immune cells. Natural killer (NK) cells are emerging tools for cancer therapy. However, only subpopulations of NK cells that are differentially controlled by inhibitory receptors exert reactivity against particular cancer types. How to leverage the complete anti-tumor potential of all NK cell subsets without favoring the emergence of NK cell-resistant tumor cells remains unresolved. METHODS We performed a genome-wide CRISPR/Cas9 knockout resistance screen in melanoma cells in co-cultures with human primary NK cells. We comprehensively evaluated factors regulating tumor resistance and susceptibility by focusing on NK cell subsets in an allogenic setting. Moreover, we tested therapeutic blocking antibodies currently used in clinical trials. RESULTS Melanoma cells deficient in antigen-presenting or the IFNγ-signaling pathways were depleted in remaining NK cell-co-cultured melanoma cells and displayed enhanced sensitivity to NK cells. Treatment with IFNγ induced potent resistance of melanoma cells to resting, IL-2-cultured and ADCC-activated NK cells that depended on B2M required for the expression of both classical and non-classical MHC-I. IFNγ-induced expression of HLA-E mediated the resistance of melanoma cells to the NKG2A+ KIR- and partially to the NKG2A+ KIR+ NK cell subset. The expression of classical MHC-I by itself was sufficient for the inhibition of the NKG2A- KIR+, but not the NKG2A+ KIR+ NK cell subset. Treatment of NK cells with monalizumab, an NKG2A blocking mAb, enhanced the reactivity of a corresponding subset of NK cells. The combination of monalizumab with lirilumab, blocking KIR2 receptors, together with DX9, blocking KIR3DL1, was required to restore cytotoxicity of all NK cell subsets against IFNγ-induced resistant tumor cells in melanoma and tumors of different origins. CONCLUSION Our data reveal that in the context of NK cells, IFNγ induces the resistance of tumor cells by the upregulation of classical and non-classical MHC-I. Moreover, we reveal insights into NK cell subset reactivity and propose a therapeutic strategy involving combinational monalizumab/lirilumab/DX9 treatment to fully restore the antitumor response across NK cell subsets.
Collapse
Affiliation(s)
- Tomáš Hofman
- Department of Immunobiochemistry, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Siu Wang Ng
- Signalling and Functional Genomics, German Cancer Research Centre, Heidelberg, Germany
| | - Irene Garcés-Lázaro
- Department of Immunobiochemistry, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Florian Heigwer
- Signalling and Functional Genomics, German Cancer Research Centre, Heidelberg, Germany
- Department of Life Sciences and Engineering, University of Applied Sciences Bingen, Bingen am Rhein, Germany
| | - Michael Boutros
- Signalling and Functional Genomics, German Cancer Research Centre, Heidelberg, Germany
| | - Adelheid Cerwenka
- Department of Immunobiochemistry, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
34
|
Pan Y, Cheng J, Zhu Y, Zhang J, Fan W, Chen X. Immunological nanomaterials to combat cancer metastasis. Chem Soc Rev 2024; 53:6399-6444. [PMID: 38745455 DOI: 10.1039/d2cs00968d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Metastasis causes greater than 90% of cancer-associated deaths, presenting huge challenges for detection and efficient treatment of cancer due to its high heterogeneity and widespread dissemination to various organs. Therefore, it is imperative to combat cancer metastasis, which is the key to achieving complete cancer eradication. Immunotherapy as a systemic approach has shown promising potential to combat metastasis. However, current clinical immunotherapies are not effective for all patients or all types of cancer metastases owing to insufficient immune responses. In recent years, immunological nanomaterials with intrinsic immunogenicity or immunomodulatory agents with efficient loading have been shown to enhance immune responses to eliminate metastasis. In this review, we would like to summarize various types of immunological nanomaterials against metastasis. Moreover, this review will summarize a series of immunological nanomaterial-mediated immunotherapy strategies to combat metastasis, including immunogenic cell death, regulation of chemokines and cytokines, improving the immunosuppressive tumour microenvironment, activation of the STING pathway, enhancing cytotoxic natural killer cell activity, enhancing antigen presentation of dendritic cells, and enhancing chimeric antigen receptor T cell therapy. Furthermore, the synergistic anti-metastasis strategies based on the combinational use of immunotherapy and other therapeutic modalities will also be introduced. In addition, the nanomaterial-mediated imaging techniques (e.g., optical imaging, magnetic resonance imaging, computed tomography, photoacoustic imaging, surface-enhanced Raman scattering, radionuclide imaging, etc.) for detecting metastasis and monitoring anti-metastasis efficacy are also summarized. Finally, the current challenges and future prospects of immunological nanomaterial-based anti-metastasis are also elucidated with the intention to accelerate its clinical translation.
Collapse
Affiliation(s)
- Yuanbo Pan
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310009, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, 310009, China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore.
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Junjie Cheng
- Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore.
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Yang Zhu
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, Fujian, China.
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore.
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Jianmin Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310009, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, 310009, China
| | - Wenpei Fan
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing, 211198, China.
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore.
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
- Theranostics Center of Excellence (TCE), Yong Loo Lin School of Medicine, National University of Singapore, 11 Biopolis Way, Helios, Singapore 138667, Singapore
| |
Collapse
|
35
|
Zhao C, Zhang L, Zheng Z, Li Y, Xiong H, Zhu Y, Wang Q, Zhao M, Li J. Case report: sudden death following the administration of CAR-NK cells for lung cancer immunotherapy. Forensic Sci Med Pathol 2024; 20:690-695. [PMID: 37542619 DOI: 10.1007/s12024-023-00693-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2023] [Indexed: 08/07/2023]
Abstract
Lung cancer is a high degree of malignancy. Although surgery, radiotherapy, and chemotherapy have made significant progress and become general methods of clinical treatment, the overall survival rate is still low. In recent years, targeted therapy and immunotherapy have a rapid development in the clinical treatment of tumors. Among them, natural killer (NK) cells have the advantages of rapid killing of diseased cells and low risk of graft-versus-host reaction. It is considered a great vector for chimeric antigen receptors (CARs), making them have good application prospects in tumor immunotherapy. However, its clinical application in lung cancer needs further research. Herein, we reported a case of a lung cancer patient undergoing CAR-NK cell immunotherapy after resection, which caused a cytokine storm and sudden death after the fourth treatment. This case report provides a reference for the forensic examination of cadavers that died after immunotherapy and challenges the clinical application of cell immunotherapy.
Collapse
Affiliation(s)
- Congcong Zhao
- Department of Forensic Medicine, Chongqing Medical University, Chongqing, 400010, China
- Chongqing Engineering Research Center for Criminal Investigation Technology, Chongqing, 400010, China
- Chongqing Key Laboratory of Forensic Medicine, Chongqing, 400010, China
| | - Li Zhang
- Department of Forensic Medicine, Chongqing Medical University, Chongqing, 400010, China
- Chongqing College of Traditional Chinese Medicine, Chongqing, 400010, China
| | - Zhe Zheng
- Department of Forensic Medicine, Chongqing Medical University, Chongqing, 400010, China
- Department of Forensic Medicine, Henan University of Science and Technology, Luoyang, 471023, Henan, China
| | - Yongguo Li
- Department of Forensic Medicine, Chongqing Medical University, Chongqing, 400010, China
- Chongqing Engineering Research Center for Criminal Investigation Technology, Chongqing, 400010, China
- Chongqing Key Laboratory of Forensic Medicine, Chongqing, 400010, China
| | - Hongli Xiong
- Department of Forensic Medicine, Chongqing Medical University, Chongqing, 400010, China
- Chongqing Engineering Research Center for Criminal Investigation Technology, Chongqing, 400010, China
- Chongqing Key Laboratory of Forensic Medicine, Chongqing, 400010, China
| | - Ying Zhu
- Department of Forensic Medicine, Chongqing Medical University, Chongqing, 400010, China
- Chongqing Engineering Research Center for Criminal Investigation Technology, Chongqing, 400010, China
- Chongqing Key Laboratory of Forensic Medicine, Chongqing, 400010, China
| | - Qi Wang
- Department of Forensic Medicine, Chongqing Medical University, Chongqing, 400010, China
- Chongqing Engineering Research Center for Criminal Investigation Technology, Chongqing, 400010, China
- Chongqing Key Laboratory of Forensic Medicine, Chongqing, 400010, China
| | - Minzhu Zhao
- Department of Forensic Medicine, Chongqing Medical University, Chongqing, 400010, China.
- Chongqing Engineering Research Center for Criminal Investigation Technology, Chongqing, 400010, China.
- Chongqing Key Laboratory of Forensic Medicine, Chongqing, 400010, China.
| | - Jianbo Li
- Department of Forensic Medicine, Chongqing Medical University, Chongqing, 400010, China.
- Chongqing Engineering Research Center for Criminal Investigation Technology, Chongqing, 400010, China.
- Chongqing Key Laboratory of Forensic Medicine, Chongqing, 400010, China.
| |
Collapse
|
36
|
Huang M, Liu Y, Yan Q, Peng M, Ge J, Mo Y, Wang Y, Wang F, Zeng Z, Li Y, Fan C, Xiong W. NK cells as powerful therapeutic tool in cancer immunotherapy. Cell Oncol (Dordr) 2024; 47:733-757. [PMID: 38170381 DOI: 10.1007/s13402-023-00909-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Natural killer (NK) cells have gained considerable attention and hold great potential for their application in tumor immunotherapy. This is mainly due to their MHC-unrestricted and pan-specific recognition capabilities, as well as their ability to rapidly respond to and eliminate target cells. To artificially generate therapeutic NK cells, various materials can be utilized, such as peripheral blood mononuclear cells (PBMCs), umbilical cord blood (UCB), induced pluripotent stem cells (iPSCs), and NK cell lines. Exploiting the therapeutic potential of NK cells to treat tumors through in vivo and in vitro therapeutic modalities has yielded positive therapeutic results. CONCLUSION This review provides a comprehensive description of NK cell therapeutic approaches for tumors and discusses the current problems associated with these therapeutic approaches and the prospects of NK cell therapy for tumors.
Collapse
Affiliation(s)
- Mao Huang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yixuan Liu
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Qijia Yan
- Department of Pathology, Xiangya Hospital, Central South University, 410078, Changsha, Hunan, China
| | - Miao Peng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Junshang Ge
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yongzhen Mo
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yumin Wang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 410078, Changsha, Hunan, China
| | - Fuyan Wang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yong Li
- Department of Medicine, Comprehensive Cancer Center, Baylor College of Medicine, Alkek Building, RM N720, Houston, TX, USA
| | - Chunmei Fan
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, China.
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, 410013, Changsha, Hunan Province, China.
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, China.
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.
| |
Collapse
|
37
|
Xi F, Sun H, Peng H, Lian Z, Wei H, Tian Z, Sun R, Chen Y. Hepatocyte-derived FGL1 accelerates liver metastasis and tumor growth by inhibiting CD8+ T and NK cells. JCI Insight 2024; 9:e173215. [PMID: 38973608 PMCID: PMC11383586 DOI: 10.1172/jci.insight.173215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 05/17/2024] [Indexed: 07/09/2024] Open
Abstract
Fibrinogen-like protein 1 (FGL1) contributes to the proliferation and metabolism of hepatocytes; however, as a major ligand of the immune checkpoint, its role in the liver regional immune microenvironment is poorly understood. Hepatocytes specifically and highly expressed FGL1 under normal physiological conditions. Increases in hepatic CD8+ T and NK cell numbers and functions were found in Fgl1-deficient (Fgl1-/-) mice, but not in the spleen or lymph node, similar to findings in anti-FGL1 mAb-treated wild-type mice. Furthermore, Fgl1 deficiency or anti-FGL1 mAb blockade restrained liver metastasis and slowed the growth of orthotopic tumors, with significantly prolonged survival of tumor-bearing mice. Tumor-infiltrating hepatic CD8+ T and NK cells upregulated the expression of lymphocyte activation gene-3 (LAG-3) and exhibited stronger antitumor activities after anti-FGL1 treatment. The antitumor efficacy of FGL1 blockade depended on cytotoxic T lymphocytes and NK cells, demonstrated by using a cell-deficient mouse model and cell transfer in vivo. In vitro, FGL1 directly inhibited hepatic T and NK cells related to the receptor LAG-3. In conclusion, hepatocyte-derived FGL1 played critical immunoregulatory roles in the liver and contributed to liver metastasis and tumor growth by inhibiting CD8+ T and NK cell functions via the receptor LAG-3, providing a new strategy for liver cancer immunotherapy.
Collapse
Affiliation(s)
- Fengjia Xi
- Key Laboratory of Immune Response and Immunotherapy, the Institute of Immunology, Biomedical Sciences and Health Laboratory of Anhui Province, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Research Unit of NK Cell Study, Chinese Academy of Medical Sciences, Hefei, China
| | - Haoyu Sun
- Key Laboratory of Immune Response and Immunotherapy, the Institute of Immunology, Biomedical Sciences and Health Laboratory of Anhui Province, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Research Unit of NK Cell Study, Chinese Academy of Medical Sciences, Hefei, China
| | - Hui Peng
- Key Laboratory of Immune Response and Immunotherapy, the Institute of Immunology, Biomedical Sciences and Health Laboratory of Anhui Province, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Research Unit of NK Cell Study, Chinese Academy of Medical Sciences, Hefei, China
| | - Zhexiong Lian
- Key Laboratory of Immune Response and Immunotherapy, the Institute of Immunology, Biomedical Sciences and Health Laboratory of Anhui Province, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Research Unit of NK Cell Study, Chinese Academy of Medical Sciences, Hefei, China
| | - Haiming Wei
- Key Laboratory of Immune Response and Immunotherapy, the Institute of Immunology, Biomedical Sciences and Health Laboratory of Anhui Province, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Research Unit of NK Cell Study, Chinese Academy of Medical Sciences, Hefei, China
| | - Zhigang Tian
- Key Laboratory of Immune Response and Immunotherapy, the Institute of Immunology, Biomedical Sciences and Health Laboratory of Anhui Province, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Research Unit of NK Cell Study, Chinese Academy of Medical Sciences, Hefei, China
| | - Rui Sun
- Key Laboratory of Immune Response and Immunotherapy, the Institute of Immunology, Biomedical Sciences and Health Laboratory of Anhui Province, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Research Unit of NK Cell Study, Chinese Academy of Medical Sciences, Hefei, China
| | - Yongyan Chen
- Key Laboratory of Immune Response and Immunotherapy, the Institute of Immunology, Biomedical Sciences and Health Laboratory of Anhui Province, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Research Unit of NK Cell Study, Chinese Academy of Medical Sciences, Hefei, China
| |
Collapse
|
38
|
Matveyenka M, Zhaliazka K, Kurouski D. Macrophages and Natural Killers Degrade α-Synuclein Aggregates. Mol Pharm 2024; 21:2565-2576. [PMID: 38635186 PMCID: PMC11080468 DOI: 10.1021/acs.molpharmaceut.4c00160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024]
Abstract
Amyloid oligomers and fibrils are protein aggregates that exert a high cell toxicity. Efficient degradation of these protein aggregates can minimize the spread and progression of neurodegeneration. In this study, we investigate the properties of natural killer (NK) cells and macrophages in the degradation of α-synuclein (α-Syn) aggregates grown in a lipid-free environment and in the presence of phosphatidylserine and cholesterol (PS/Cho), which are lipids that are directly associated with the onset and progression of Parkinson's disease. We found that both types of α-Syn aggregates were endocytosed by neurons, which caused strong damage to cell endosomes. Our results also indicated that PS/Cho vesicles drastically increased the toxicity of α-Syn fibrils formed in their presence compared to the toxicity of α-Syn aggregates grown in a lipid-free environment. Both NK cells and macrophages were able to degrade α-Syn and α-Syn/Cho monomers, oligomers, and fibrils. Quantitative analysis of protein degradation showed that macrophages demonstrated substantially more efficient internalization and degradation of amyloid aggregates in comparison to NK cells. We also found that amyloid aggregates induced the proliferation of macrophages and NK cells and significantly changed the expression of their cytokines and chemokines.
Collapse
Affiliation(s)
- Mikhail Matveyenka
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
| | - Kiryl Zhaliazka
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
| | - Dmitry Kurouski
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
- Department
of Biomedical Engineering, Texas A&M
University, College Station, Texas 77843, United States
| |
Collapse
|
39
|
Shen KY, Zhu Y, Xie SZ, Qin LX. Immunosuppressive tumor microenvironment and immunotherapy of hepatocellular carcinoma: current status and prospectives. J Hematol Oncol 2024; 17:25. [PMID: 38679698 PMCID: PMC11057182 DOI: 10.1186/s13045-024-01549-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a major health concern worldwide, with limited therapeutic options and poor prognosis. In recent years, immunotherapies such as immune checkpoint inhibitors (ICIs) have made great progress in the systemic treatment of HCC. The combination treatments based on ICIs have been the major trend in this area. Recently, dual immune checkpoint blockade with durvalumab plus tremelimumab has also emerged as an effective treatment for advanced HCC. However, the majority of HCC patients obtain limited benefits. Understanding the immunological rationale and exploring novel ways to improve the efficacy of immunotherapy has drawn much attention. In this review, we summarize the latest progress in this area, the ongoing clinical trials of immune-based combination therapies, as well as novel immunotherapy strategies such as chimeric antigen receptor T cells, personalized neoantigen vaccines, oncolytic viruses, and bispecific antibodies.
Collapse
Affiliation(s)
- Ke-Yu Shen
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Ying Zhu
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Sun-Zhe Xie
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Lun-Xiu Qin
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China.
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
40
|
Sommer C, Cohen JN, Dehmel S, Neuhaus V, Schaudien D, Braun A, Sewald K, Rosenblum MD. Interleukin-2-induced skin inflammation. Eur J Immunol 2024; 54:e2350580. [PMID: 38430129 PMCID: PMC11015984 DOI: 10.1002/eji.202350580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 01/09/2024] [Accepted: 01/15/2024] [Indexed: 03/03/2024]
Abstract
Recombinant human IL-2 has been used to treat inflammatory diseases and cancer; however, side effects like skin rashes limit the use of this therapeutic. To identify key molecules and cells inducing this side effect, we characterized IL-2-induced cutaneous immune reactions and investigated the relevance of CD25 (IL-2 receptor α) in the process. We injected IL-2 intradermally into WT mice and observed increases in immune cell subsets in the skin with preferential increases in frequencies of IL-4- and IL-13-producing group 2 innate lymphoid cells and IL-17-producing dermal γδ T cells. This overall led to a shift toward type 2/type 17 immune responses. In addition, using a novel topical genetic deletion approach, we reduced CD25 on skin, specifically on all cutaneous cells, and found that IL-2-dependent effects were reduced, hinting that CD25 - at least partly - induces this skin inflammation. Reduction of CD25 specifically on skin Tregs further augmented IL-2-induced immune cell infiltration, hinting that CD25 on skin Tregs is crucial to restrain IL-2-induced inflammation. Overall, our data support that innate lymphoid immune cells are key cells inducing side effects during IL-2 therapy and underline the significance of CD25 in this process.
Collapse
Affiliation(s)
- Charline Sommer
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Member of the Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Hannover, Germany
| | - Jarish N Cohen
- Department of Dermatology, University of California, San Francisco, California, USA
- Department of Pathology, University of California, San Francisco, California, USA
| | - Susann Dehmel
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Member of the Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Hannover, Germany
| | - Vanessa Neuhaus
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Member of the Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Hannover, Germany
| | - Dirk Schaudien
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Member of the Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Hannover, Germany
| | - Armin Braun
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Member of the Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Hannover, Germany
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Katherina Sewald
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Member of the Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Hannover, Germany
| | - Michael D Rosenblum
- Department of Dermatology, University of California, San Francisco, California, USA
| |
Collapse
|
41
|
Liu Z, Wang H, Liu H, Ding K, Shen H, Zhao X, Fu R. Targeting NKG2D/NKG2DL axis in multiple myeloma therapy. Cytokine Growth Factor Rev 2024; 76:1-11. [PMID: 38378397 DOI: 10.1016/j.cytogfr.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 02/22/2024]
Abstract
Immune effector cells in patients with multiple myeloma (MM) are at the forefront of many immunotherapy treatments, and several methods have been developed to fully utilise the antitumour potential of immune cells. T and NK cell-derived immune lymphocytes both expressed activating NK receptor group 2 member D(NKG2D). This receptor can identify eight distinct NKG2D ligands (NKG2DL), including major histocompatibility complex class I (MHC) chain-related protein A and B (MICA and MICB). Their binding to NKG2D triggers effector roles in T and NK cells. NKG2DL is polymorphic in MM cells. The decreased expression of NKG2DL on the cell surface is explained by multiple mechanisms of tumour immune escape. In this review, we discuss the mechanisms by which the NKG2D/NKG2DL axis regulates immune effector cells and strategies for promoting NKG2DL expression and inhibiting its release in multiple myeloma and propose therapeutic strategies that increase the expression of NKG2DL in MM cells while enhancing the activation and killing function of NK cells.
Collapse
Affiliation(s)
- Zhaoyun Liu
- Department of Hematology, Tianjin Medical University General Hospital, 154 Anshan Street, Heping District, Tianjin 300052, PR China; Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone Control, 154 Anshan Street, Heping District, Tianjin 300052, PR China.
| | - Hao Wang
- Department of Hematology, Tianjin Medical University General Hospital, 154 Anshan Street, Heping District, Tianjin 300052, PR China; Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone Control, 154 Anshan Street, Heping District, Tianjin 300052, PR China
| | - Hui Liu
- Department of Hematology, Tianjin Medical University General Hospital, 154 Anshan Street, Heping District, Tianjin 300052, PR China; Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone Control, 154 Anshan Street, Heping District, Tianjin 300052, PR China
| | - Kai Ding
- Department of Hematology, Tianjin Medical University General Hospital, 154 Anshan Street, Heping District, Tianjin 300052, PR China; Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone Control, 154 Anshan Street, Heping District, Tianjin 300052, PR China
| | - Hongli Shen
- Department of Hematology, Tianjin Medical University General Hospital, 154 Anshan Street, Heping District, Tianjin 300052, PR China; Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone Control, 154 Anshan Street, Heping District, Tianjin 300052, PR China
| | - Xianghong Zhao
- Department of Hematology, Tianjin Medical University General Hospital, 154 Anshan Street, Heping District, Tianjin 300052, PR China; Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone Control, 154 Anshan Street, Heping District, Tianjin 300052, PR China
| | - Rong Fu
- Department of Hematology, Tianjin Medical University General Hospital, 154 Anshan Street, Heping District, Tianjin 300052, PR China; Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone Control, 154 Anshan Street, Heping District, Tianjin 300052, PR China.
| |
Collapse
|
42
|
He J, Miao R, Chen Y, Wang H, Liu M. The dual role of regulatory T cells in hepatitis B virus infection and related hepatocellular carcinoma. Immunology 2024; 171:445-463. [PMID: 38093705 DOI: 10.1111/imm.13738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/27/2023] [Indexed: 03/09/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a major contributor to cancer-related deaths worldwide. Hepatitis B virus (HBV) infection is a major etiologic factor leading to HCC. While there have been significant advancements in controlling HBV replication, achieving a complete cure for HBV-related HCC (HBV-HCC) remains an intricate challenge. HBV persistence is attributed to a myriad of mechanisms, encompassing both innate and adaptive immune responses. Regulatory T cells (Tregs) are pivotal in upholding immune tolerance and modulating excessive immune activation. During HBV infection, Tregs mediate specific T cell suppression, thereby contributing to both persistent infection and the mitigation of liver inflammatory responses. Studies have demonstrated an augmented expression of circulating and intrahepatic Tregs in HBV-HCC, which correlates with impaired CD8+ T cell function. Consequently, Tregs play a dual role in the context of HBV infection and the progression of HBV-HCC. In this comprehensive review, we discuss pertinent studies concerning Tregs in HBV infection, HBV-related cirrhosis and HCC. Furthermore, we summarize Treg responses to antiviral therapy and provide Treg-targeted therapies specific to HBV and HCC.
Collapse
Affiliation(s)
- Jinan He
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Rui Miao
- Guangzhou Women and Children Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yao Chen
- Department of Internal Medicine, Northeast Yunnan Regional Central Hospital, Zhaotong, Yunan, China
| | - Han Wang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Biliary-Pancreatic Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Mei Liu
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
43
|
Feng Y, Zhang H, Shao J, Du C, Zhou X, Guo X, Wang Y. Research Progress of Nanomaterials Acting on NK Cells in Tumor Immunotherapy and Imaging. BIOLOGY 2024; 13:153. [PMID: 38534423 DOI: 10.3390/biology13030153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 03/28/2024]
Abstract
The prognosis for cancer patients has declined dramatically in recent years due to the challenges in treating malignant tumors. Tumor immunotherapy, which includes immune target inhibition and chimeric antigen receptor cell treatment, is currently evolving quickly. Among them, natural killer (NK) cells are gradually becoming another preferred cell immunotherapy after T cell immunotherapy due to their unique killing effects in innate and adaptive immunity. NK cell therapy has shown encouraging outcomes in clinical studies; however, there are still some problems, including limited efficacy in solid tumors, inadequate NK cell penetration, and expensive treatment expenses. Noteworthy benefits of nanomaterials include their chemical specificity, biocompatibility, and ease of manufacturing; these make them promising instruments for enhancing NK cell anti-tumor immune responses. Nanomaterials can promote NK cell homing and infiltration, participate in NK cell modification and non-invasive cell tracking and imaging modes, and greatly increase the effectiveness of NK cell immunotherapy. The introduction of NK cell-based immunotherapy research and a more detailed discussion of nanomaterial research in NK cell-based immunotherapy and molecular imaging will be the main topics of this review.
Collapse
Affiliation(s)
- Yachan Feng
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Haojie Zhang
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Jiangtao Shao
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Chao Du
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Xiaolei Zhou
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Xueling Guo
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Yingze Wang
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang 050018, China
| |
Collapse
|
44
|
Barshidi A, Ardeshiri K, Ebrahimi F, Alian F, Shekarchi AA, Hojjat-Farsangi M, Jadidi-Niaragh F. The role of exhausted natural killer cells in the immunopathogenesis and treatment of leukemia. Cell Commun Signal 2024; 22:59. [PMID: 38254135 PMCID: PMC10802000 DOI: 10.1186/s12964-023-01428-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/08/2023] [Indexed: 01/24/2024] Open
Abstract
The immune responses to cancer cells involve both innate and acquired immune cells. In the meantime, the most attention has been drawn to the adaptive immune cells, especially T cells, while, it is now well known that the innate immune cells, especially natural killer (NK) cells, play a vital role in defending against malignancies. While the immune cells are trying to eliminate malignant cells, cancer cells try to prevent the function of these cells and suppress immune responses. The suppression of NK cells in various cancers can lead to the induction of an exhausted phenotype in NK cells, which will impair their function. Recent studies have shown that the occurrence of this phenotype in various types of leukemic malignancies can affect the prognosis of the disease, and targeting these cells may be considered a new immunotherapy method in the treatment of leukemia. Therefore, a detailed study of exhausted NK cells in leukemic diseases can help both to understand the mechanisms of leukemia progression and to design new treatment methods by creating a deeper understanding of these cells. Here, we will comprehensively review the immunobiology of exhausted NK cells and their role in various leukemic malignancies. Video Abstract.
Collapse
Affiliation(s)
- Asal Barshidi
- Department of Biological Sciences, Faculty of Sciences, University of Kurdistan, Sanandaj, Iran
| | - Keivan Ardeshiri
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Farbod Ebrahimi
- Nanoparticle Process Technology, Faculty of Engineering, University of Duisburg-Essen, Duisburg, Germany
| | - Fatemeh Alian
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Ali Akbar Shekarchi
- Department of Pathology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
45
|
Huang R, Ding J, Xie WF. Liver cancer. SINUSOIDAL CELLS IN LIVER DISEASES 2024:349-366. [DOI: 10.1016/b978-0-323-95262-0.00017-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
46
|
Zhang H, Yang L, Wang T, Li Z. NK cell-based tumor immunotherapy. Bioact Mater 2024; 31:63-86. [PMID: 37601277 PMCID: PMC10432724 DOI: 10.1016/j.bioactmat.2023.08.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/16/2023] [Accepted: 08/01/2023] [Indexed: 08/22/2023] Open
Abstract
Natural killer (NK) cells display a unique inherent ability to identify and eliminate virus-infected cells and tumor cells. They are particularly powerful for elimination of hematological cancers, and have attracted considerable interests for therapy of solid tumors. However, the treatment of solid tumors with NK cells are less effective, which can be attributed to the very complicated immunosuppressive microenvironment that may lead to the inactivation, insufficient expansion, short life, and the poor tumor infiltration of NK cells. Fortunately, the development of advanced nanotechnology has provided potential solutions to these issues, and could improve the immunotherapy efficacy of NK cells. In this review, we summarize the activation and inhibition mechanisms of NK cells in solid tumors, and the recent advances in NK cell-based tumor immunotherapy boosted by diverse nanomaterials. We also propose the challenges and opportunities for the clinical application of NK cell-based tumor immunotherapy.
Collapse
Affiliation(s)
- Hao Zhang
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Suzhou Medical College of Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China
| | - Li Yang
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Suzhou Medical College of Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China
| | - Tingting Wang
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Suzhou Medical College of Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China
| | - Zhen Li
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Suzhou Medical College of Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China
| |
Collapse
|
47
|
Wang X, Huang L, Wen X, Li D, Yang G, Zheng J. Altered NCR3 Splice Variants May Result in Deficient NK Cell Function in Renal Cell Carcinoma Patients. In Vivo 2024; 38:174-183. [PMID: 38148073 PMCID: PMC10756430 DOI: 10.21873/invivo.13423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/18/2023] [Accepted: 10/25/2023] [Indexed: 12/28/2023]
Abstract
BACKGROUND/AIM The natural killer (NK) cell function of patients with malignant tumours may be suppressed by deficiency, and the poor prognosis of renal cell carcinoma (RCC) patients may be due to escape from NK cell cytotoxicity, especially with respect to natural cytotoxicity receptors (NCRs) on the NK cell surface. However, the specific mechanism remains unclear. Therefore, in this study, we sought to explore the role of NCR, especially NCR3 splice variants, in the process of NK cell deficiency in RCC patients. MATERIALS AND METHODS We used flow cytometry to analyse the phenotype of NK cells from the peripheral blood and kidney tumour tissue of RCC patients. The NKp30-mediated NK cell killing function was measured by antibody-dependent cell-mediated cytotoxicity (ADCC) in NK and RCC cell coincubation. We extracted RNA from the peripheral blood mononuclear cells (PBMCs) of RCC patients and renal carcinoma tissue and carried out real-time quantitative PCR to detect the mRNA levels of NKp30a, NKp30b and NKp30c. mRNA expression levels of cytokines (IL-6, IL-8, IL-10, IL-18 and TGF-β) based on RNA extracted from renal carcinoma tissue and adjacent normal kidney tissues were also measured by real-time quantitative PCR. RESULTS Regarding the phenotype of NK cells in RCC patients, the proportion of NK cells in tumour tissue was significantly reduced, with changes in the NK cell proportion being most obvious in NKp30+ NK cells. Furthermore, the results of the ADCC function assay showed limited NKp30+ NK cell-mediated cytotoxicity in RCC patients. Through real-time quantitative PCR, we found lower expression of NKp30a and NKp30b, the immunostimulatory splice variants of NCR3 encoding NKp30, in RCC patients. Moreover, expression of activating cytokines (IL-6 and IL-8) in renal cancer tissue was decreased, though inhibitory cytokine (TGF-β) expression remained unchanged, which may result in an immunosuppressive cytokine microenvironment. CONCLUSION Decreased expression of immunostimulatory NCR3 splice variants and the inhibitory cytokine microenvironment in RCC patients may contribute to deficient NK cell cytotoxicity and renal carcinoma cell immune escape from NK cell killing, which may provide a theoretical basis for finding new immunotherapeutic targets for RCC.
Collapse
Affiliation(s)
- Xuelei Wang
- Department of Urology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, P.R. China
| | - Liqun Huang
- Department of Urology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, P.R. China
| | - Xiaofei Wen
- Department of Urology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, P.R. China
| | - Dongyang Li
- Department of Urology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, P.R. China
| | - Guosheng Yang
- Department of Urology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, P.R. China
| | - Junhua Zheng
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| |
Collapse
|
48
|
Cikman DI, Esen F, Engin A, Turna A, Agkoc M, Yilmaz A, Saglam OF, Deniz G, Aktas EC. Mediastinal lymph node removal modulates natural killer cell exhaustion in patients with non-small cell lung cancer. Immunol Res 2023; 71:959-971. [PMID: 37583002 DOI: 10.1007/s12026-023-09410-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/28/2023] [Indexed: 08/17/2023]
Abstract
Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related death globally. In this study, the effect of complete removal of mediastinal lymph nodes by video-assisted mediastinoscopic lymphadenectomy (VAMLA) on natural killer (NK) cell phenotype and functions in patients with NSCLC was evaluated. The study included 21 NSCLC patients (cIA-IVA) undergoing VAMLA staging and 33 healthy controls. Mononuclear cells were isolated from peripheral blood of all participants and mediastinal lymph nodes of the patients. NK cells were analyzed by flow cytometry to define NK subsets, expressions of PD-1, CTLA-4, activating/inhibitory receptors, granzyme A, and CD107a. The plasma levels of soluble PD-1, PDL-1, and CTLA-4 were measured by ELISA. Mediastinal lymph nodes of NSCLC patients had increased ratios of exhausted NK cells, increased expression of PD-1 and IL-10, and impaired cytotoxicity. Mediastinal lymph nodes removal increased CD56dimCD16bright cytotoxic effector phenotype and reduced exhausted NK cells. PD-1+ NK cells were significantly more abundant in patients' blood, and VAMLA significantly reduced their ratio as well. The ratio of IL-10 secreting regulatory NK cells was also reduced after VAMLA. Blood NK cells had increased cytotoxic functions and spontaneous IFN-γ secretion, and these NK cell functions were also recovered by VAMLA. Mediastinal lymph node removal reversed NK cell exhaustion, reduced regulatory NK cells, and improved antitumoral functions of NK cells. Tumor-draining lymph nodes may contribute to tumor evasion from antitumoral immune responses. The role of their removal needs to be further studied both to better understand this mechanism and as a potential immunotherapeutic approach.
Collapse
Affiliation(s)
- Duygu Ilke Cikman
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
- Institute of Graduate Studies in Health Sciences, Istanbul University, Istanbul, Turkey
| | - Fehim Esen
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
- Institute of Graduate Studies in Health Sciences, Istanbul University, Istanbul, Turkey
- Department of Ophthalmology, Faculty of Medicine, Istanbul Medeniyet University, Istanbul, Turkey
| | - Ayse Engin
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Akif Turna
- Department of Thoracic Surgery, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Melek Agkoc
- Department of Thoracic Surgery, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Abdullah Yilmaz
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Omer Faruk Saglam
- Department of Thoracic Surgery, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Gunnur Deniz
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Esin Cetin Aktas
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey.
| |
Collapse
|
49
|
Nersesian S, Carter EB, Lee SN, Westhaver LP, Boudreau JE. Killer instincts: natural killer cells as multifactorial cancer immunotherapy. Front Immunol 2023; 14:1269614. [PMID: 38090565 PMCID: PMC10715270 DOI: 10.3389/fimmu.2023.1269614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/30/2023] [Indexed: 12/18/2023] Open
Abstract
Natural killer (NK) cells integrate heterogeneous signals for activation and inhibition using germline-encoded receptors. These receptors are stochastically co-expressed, and their concurrent engagement and signaling can adjust the sensitivity of individual cells to putative targets. Against cancers, which mutate and evolve under therapeutic and immunologic pressure, the diversity for recognition provided by NK cells may be key to comprehensive cancer control. NK cells are already being trialled as adoptive cell therapy and targets for immunotherapeutic agents. However, strategies to leverage their naturally occurring diversity and agility have not yet been developed. In this review, we discuss the receptors and signaling pathways through which signals for activation or inhibition are generated in NK cells, focusing on their roles in cancer and potential as targets for immunotherapies. Finally, we consider the impacts of receptor co-expression and the potential to engage multiple pathways of NK cell reactivity to maximize the scope and strength of antitumor activities.
Collapse
Affiliation(s)
- Sarah Nersesian
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| | - Emily B. Carter
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| | - Stacey N. Lee
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| | | | - Jeanette E. Boudreau
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
50
|
Borgeaud M, Sandoval J, Obeid M, Banna G, Michielin O, Addeo A, Friedlaender A. Novel targets for immune-checkpoint inhibition in cancer. Cancer Treat Rev 2023; 120:102614. [PMID: 37603905 DOI: 10.1016/j.ctrv.2023.102614] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/06/2023] [Accepted: 08/09/2023] [Indexed: 08/23/2023]
Abstract
Immune-checkpoint inhibitors have revolutionized cancer therapy, yet many patients either do not derive any benefit from treatment or develop a resistance to checkpoint inhibitors. Intrinsic resistance can result from neoantigen depletion, defective antigen presentation, PD-L1 downregulation, immune-checkpoint ligand upregulation, immunosuppression, and tumor cell phenotypic changes. On the other hand, extrinsic resistance involves acquired upregulation of inhibitory immune-checkpoints, leading to T-cell exhaustion. Current data suggest that PD-1, CTLA-4, and LAG-3 upregulation limits the efficacy of single-agent immune-checkpoint inhibitors. Ongoing clinical trials are investigating novel immune-checkpoint targets to avoid or overcome resistance. This review provides an in-depth analysis of the evolving landscape of potentially targetable immune-checkpoints in cancer. We highlight their biology, emphasizing the current understanding of resistance mechanisms and focusing on promising strategies that are under investigation. We also summarize current results and ongoing clinical trials in this crucial field that could once again revolutionize outcomes for cancer patients.
Collapse
Affiliation(s)
| | | | - Michel Obeid
- Centre Hospitalier Universitaire Vaudois, Switzerland
| | - Giuseppe Banna
- Portsmouth Hospitals University NHS Trust, Portsmouth, UK
| | | | | | - Alex Friedlaender
- Geneva University Hospitals, Switzerland; Clinique Générale Beaulieu, Geneva, Switzerland.
| |
Collapse
|