1
|
Trandafir CM, Closca RM, Poenaru M, Sarau OS, Sarau CA, Rakitovan M, Baderca F, Sima LV. Morphological and Immunohistochemical Aspects with Prognostic Implications and Therapeutic Targets of Primary Sinonasal Mucosal Melanoma: A Retrospective Study. Cancers (Basel) 2024; 16:2863. [PMID: 39199634 PMCID: PMC11352549 DOI: 10.3390/cancers16162863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 09/01/2024] Open
Abstract
Sinonasal mucosal melanoma originates from melanocytes and it is a rare malignancy in the sinonasal tract. It is an aggressive melanocytic neoplasm with a very poor prognosis. The symptoms are nonspecific and the diagnosis is delayed, usually until the advanced stages of the disease. The current study performs a correlation between the histopathological aspects of sinonasal mucosal melanoma and different types of immune cells present in the microenvironment, with prognostic and therapeutic implications. The endpoint is to quantify the cellular immune microenvironment and correlate it with patient survival. This study presents nine cases of primary sinonasal mucosal melanomas diagnosed at the Emergency City Hospital Timisoara, Romania during a period of 15 years. The histopathological examination was performed in the Department of Pathology of the same hospital, using morphological hematoxylin-eosin staining. Additional immunohistochemical reactions were performed to confirm the diagnosis and evaluate the components of the tumor immune microenvironment. This study identifies eosinophils, macrophages, natural killer cells and plasma cells as favorable prognostic factors. Therefore, a CD8:CD4 ratio of more than 3 is correlated with a good response to PD-1 inhibitor therapy.
Collapse
Affiliation(s)
- Cornelia Marina Trandafir
- ENT Department, University of Medicine and Pharmacy “Victor Babes”, 300041 Timisoara, Romania; (C.M.T.); (M.P.)
| | - Raluca Maria Closca
- Department of Pathology, Emergency City Hospital, 300254 Timisoara, Romania;
- Department of Microscopic Morphology, University of Medicine and Pharmacy “Victor Babes”, 300041 Timisoara, Romania;
| | - Marioara Poenaru
- ENT Department, University of Medicine and Pharmacy “Victor Babes”, 300041 Timisoara, Romania; (C.M.T.); (M.P.)
- ENT Department, Emergency City Hospital, 300254 Timisoara, Romania
| | - Oana Silvana Sarau
- Hematology Department of the Municipal Emergency Clinical Hospital, 300254 Timisoara, Romania;
- Faculty of Medicine, University of Medicine and Pharmacy “Victor Babes”, 300041 Timisoara, Romania;
| | - Cristian Andrei Sarau
- Faculty of Medicine, University of Medicine and Pharmacy “Victor Babes”, 300041 Timisoara, Romania;
- Internal Medicine Department of the Municipal Emergency Clinical Hospital, 300254 Timisoara, Romania
| | - Marina Rakitovan
- Department of Microscopic Morphology, University of Medicine and Pharmacy “Victor Babes”, 300041 Timisoara, Romania;
- Oro-Maxillo-Facial Surgery Clinic of the Emergency City Hospital, 300062 Timisoara, Romania
| | - Flavia Baderca
- Department of Pathology, Emergency City Hospital, 300254 Timisoara, Romania;
- Department of Microscopic Morphology, University of Medicine and Pharmacy “Victor Babes”, 300041 Timisoara, Romania;
| | - Laurentiu Vasile Sima
- Department of Surgery, University of Medicine and Pharmacy “Victor Babes”, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania;
- Department of Surgery, Emergency City Hospital, Gheorghe Dima Square No 5, 300254 Timisoara, Romania
| |
Collapse
|
2
|
Zemek RM, Anagnostou V, Pires da Silva I, Long GV, Lesterhuis WJ. Exploiting temporal aspects of cancer immunotherapy. Nat Rev Cancer 2024; 24:480-497. [PMID: 38886574 DOI: 10.1038/s41568-024-00699-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/25/2024] [Indexed: 06/20/2024]
Abstract
Many mechanisms underlying an effective immunotherapy-induced antitumour response are transient and critically time dependent. This is equally true for several immunological events in the tumour microenvironment induced by other cancer treatments. Immune checkpoint therapy (ICT) has proven to be very effective in the treatment of some cancers, but unfortunately, with many cancer types, most patients do not experience a benefit. To improve outcomes, a multitude of clinical trials are testing combinations of ICT with various other treatment modalities. Ideally, those combination treatments should take time-dependent immunological events into account. Recent studies have started to map the dynamic cellular and molecular changes that occur during treatment with ICT, in the tumour and systemically. Here, we overlay the dynamic ICT response with the therapeutic response following surgery, radiotherapy, chemotherapy and targeted therapies. We propose that by combining treatments in a time-conscious manner, we may optimally exploit the interactions between the individual therapies.
Collapse
Affiliation(s)
- Rachael M Zemek
- Telethon Kids Institute, University of Western Australia, Perth, Western Australia, Australia
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Valsamo Anagnostou
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Inês Pires da Silva
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine & Health, The University of Sydney, Sydney, New South Wales, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Crown Princess Mary Cancer Centre Westmead, Blacktown Hospital, Sydney, New South Wales, Australia
| | - Georgina V Long
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine & Health, The University of Sydney, Sydney, New South Wales, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Royal North Shore and Mater Hospitals, Sydney, New South Wales, Australia
| | - Willem Joost Lesterhuis
- Telethon Kids Institute, University of Western Australia, Perth, Western Australia, Australia.
| |
Collapse
|
3
|
Hermans L, O’Sullivan TE. No time to die: Epigenetic regulation of natural killer cell survival. Immunol Rev 2024; 323:61-79. [PMID: 38426615 PMCID: PMC11102341 DOI: 10.1111/imr.13314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
NK cells are short-lived innate lymphocytes that can mediate antigen-independent responses to infection and cancer. However, studies from the past two decades have shown that NK cells can acquire transcriptional and epigenetic modifications during inflammation that result in increased survival and lifespan. These findings blur the lines between the innate and adaptive arms of the immune system, and suggest that the homeostatic mechanisms that govern the persistence of innate immune cells are malleable. Indeed, recent studies have shown that NK cells undergo continuous and strictly regulated adaptations controlling their survival during development, tissue residency, and following inflammation. In this review, we summarize our current understanding of the critical factors regulating NK cell survival throughout their lifespan, with a specific emphasis on the epigenetic modifications that regulate the survival of NK cells in various contexts. A precise understanding of the molecular mechanisms that govern NK cell survival will be important to enhance therapies for cancer and infectious diseases.
Collapse
Affiliation(s)
- Leen Hermans
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095
| | - Timothy E. O’Sullivan
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
4
|
Lu Q, Kou D, Lou S, Ashrafizadeh M, Aref AR, Canadas I, Tian Y, Niu X, Wang Y, Torabian P, Wang L, Sethi G, Tergaonkar V, Tay F, Yuan Z, Han P. Nanoparticles in tumor microenvironment remodeling and cancer immunotherapy. J Hematol Oncol 2024; 17:16. [PMID: 38566199 PMCID: PMC10986145 DOI: 10.1186/s13045-024-01535-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 03/15/2024] [Indexed: 04/04/2024] Open
Abstract
Cancer immunotherapy and vaccine development have significantly improved the fight against cancers. Despite these advancements, challenges remain, particularly in the clinical delivery of immunomodulatory compounds. The tumor microenvironment (TME), comprising macrophages, fibroblasts, and immune cells, plays a crucial role in immune response modulation. Nanoparticles, engineered to reshape the TME, have shown promising results in enhancing immunotherapy by facilitating targeted delivery and immune modulation. These nanoparticles can suppress fibroblast activation, promote M1 macrophage polarization, aid dendritic cell maturation, and encourage T cell infiltration. Biomimetic nanoparticles further enhance immunotherapy by increasing the internalization of immunomodulatory agents in immune cells such as dendritic cells. Moreover, exosomes, whether naturally secreted by cells in the body or bioengineered, have been explored to regulate the TME and immune-related cells to affect cancer immunotherapy. Stimuli-responsive nanocarriers, activated by pH, redox, and light conditions, exhibit the potential to accelerate immunotherapy. The co-application of nanoparticles with immune checkpoint inhibitors is an emerging strategy to boost anti-tumor immunity. With their ability to induce long-term immunity, nanoarchitectures are promising structures in vaccine development. This review underscores the critical role of nanoparticles in overcoming current challenges and driving the advancement of cancer immunotherapy and TME modification.
Collapse
Affiliation(s)
- Qiang Lu
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, 569 Xinsi Road, Xi'an, 710038, China
| | - Dongquan Kou
- Department of Rehabilitation Medicine, Chongqing Public Health Medical Center, Chongqing, China
| | - Shenghan Lou
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Milad Ashrafizadeh
- Department of General Surgery, Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, 518055, Guangdong, China
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, 250000, Shandong, China
| | - Amir Reza Aref
- Xsphera Biosciences, Translational Medicine Group, 6 Tide Street, Boston, MA, 02210, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Israel Canadas
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Yu Tian
- School of Public Health, Benedictine University, Lisle, USA
| | - Xiaojia Niu
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H3Z6, Canada
| | - Yuzhuo Wang
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H3Z6, Canada
| | - Pedram Torabian
- Cumming School of Medicine, Arnie Charbonneau Cancer Research Institute, University of Calgary, Calgary, AB, T2N 4Z6, Canada
- Department of Medical Sciences, University of Calgary, Calgary, AB, T2N 4Z6, Canada
| | - Lingzhi Wang
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore, 117600, Singapore
| | - Gautam Sethi
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore.
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore, 117600, Singapore.
| | - Vinay Tergaonkar
- Laboratory of NF-κB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, 138673, Singapore, Republic of Singapore
| | - Franklin Tay
- The Graduate School, Augusta University, 30912, Augusta, GA, USA
| | - Zhennan Yuan
- Department of Oncology Surgery, Harbin Medical University Cancer Hospital, Harbin, China.
| | - Peng Han
- Department of Oncology Surgery, Harbin Medical University Cancer Hospital, Harbin, China.
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin, China.
| |
Collapse
|
5
|
Fiuza-Luces C, Valenzuela PL, Gálvez BG, Ramírez M, López-Soto A, Simpson RJ, Lucia A. The effect of physical exercise on anticancer immunity. Nat Rev Immunol 2024; 24:282-293. [PMID: 37794239 DOI: 10.1038/s41577-023-00943-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2023] [Indexed: 10/06/2023]
Abstract
Regular physical activity is associated with lower cancer incidence and mortality, as well as with a lower rate of tumour recurrence. The epidemiological evidence is supported by preclinical studies in animal models showing that regular exercise delays the progression of cancer, including highly aggressive malignancies. Although the mechanisms underlying the antitumorigenic effects of exercise remain to be defined, an improvement in cancer immunosurveillance is likely important, with different immune cell subtypes stimulated by exercise to infiltrate tumours. There is also evidence that immune cells from blood collected after an exercise bout could be used as adoptive cell therapy for cancer. In this Perspective, we address the importance of muscular activity for maintaining a healthy immune system and discuss the effects of a single bout of exercise (that is, 'acute' exercise) and those of 'regular' exercise (that is, repeated bouts) on anticancer immunity, including tumour infiltrates. We also address the postulated mechanisms and the clinical implications of this emerging area of research.
Collapse
Affiliation(s)
- Carmen Fiuza-Luces
- Physical Activity and Health Research Group ('PaHerg'), Research Institute of the Hospital 12 de Octubre ('imas12'), Madrid, Spain.
| | - Pedro L Valenzuela
- Physical Activity and Health Research Group ('PaHerg'), Research Institute of the Hospital 12 de Octubre ('imas12'), Madrid, Spain
- Systems Biology Department, Universidad de Alcalá, Alcalá de Henares, Spain
| | - Beatriz G Gálvez
- Physical Activity and Health Research Group ('PaHerg'), Research Institute of the Hospital 12 de Octubre ('imas12'), Madrid, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Universidad Complutense de Madrid, Madrid, Spain
| | - Manuel Ramírez
- Oncohematology Unit, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
- Biomedical Research Foundation, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
- La Princesa Institute of Heah, Madrid, Spain
| | - Alejandro López-Soto
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Oviedo, Oviedo, Spain.
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Asturias, Spain.
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Asturias, Spain.
| | - Richard J Simpson
- School of Nutritional Sciences and Wellness, The University of Arizona, Tucson, AZ, USA
- Department of Paediatrics, The University of Arizona, Tucson, AZ, USA
- Department of Immunobiology, The University of Arizona, Tucson, AZ, USA
| | - Alejandro Lucia
- CIBER of Frailty and Healthy Aging (CIBERFES), Madrid, Spain.
- Faculty of Sport Sciences, Universidad Europea, Madrid, Spain.
| |
Collapse
|
6
|
Reggiani F, Talarico G, Gobbi G, Sauta E, Torricelli F, Manicardi V, Zanetti E, Orecchioni S, Falvo P, Piana S, Lococo F, Paci M, Bertolini F, Ciarrocchi A, Sancisi V. BET inhibitors drive Natural Killer activation in non-small cell lung cancer via BRD4 and SMAD3. Nat Commun 2024; 15:2567. [PMID: 38519469 PMCID: PMC10960013 DOI: 10.1038/s41467-024-46778-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 03/11/2024] [Indexed: 03/25/2024] Open
Abstract
Non-small-cell lung carcinoma (NSCLC) is the most common lung cancer and one of the pioneer tumors in which immunotherapy has radically changed patients' outcomes. However, several issues are emerging and their implementation is required to optimize immunotherapy-based protocols. In this work, we investigate the ability of the Bromodomain and Extra-Terminal protein inhibitors (BETi) to stimulate a proficient anti-tumor immune response toward NSCLC. By using in vitro, ex-vivo, and in vivo models, we demonstrate that these epigenetic drugs specifically enhance Natural Killer (NK) cell cytotoxicity. BETi down-regulate a large set of NK inhibitory receptors, including several immune checkpoints (ICs), that are direct targets of the transcriptional cooperation between the BET protein BRD4 and the transcription factor SMAD3. Overall, BETi orchestrate an epigenetic reprogramming that leads to increased recognition of tumor cells and the killing ability of NK cells. Our results unveil the opportunity to exploit and repurpose these drugs in combination with immunotherapy.
Collapse
Affiliation(s)
- Francesca Reggiani
- Translational Research Laboratory, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy.
| | - Giovanna Talarico
- Laboratory of Hematology-Oncology, European Institute of Oncology IRCCS, Milan, Italy
- Onco-Tech Lab, European Institute of Oncology IRCCS and Politecnico di Milano, Milan, Italy
| | - Giulia Gobbi
- Translational Research Laboratory, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Elisabetta Sauta
- Translational Research Laboratory, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
- Humanitas Clinical and Research Center, IRCCS, Rozzano, Milan, Italy
| | - Federica Torricelli
- Translational Research Laboratory, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Veronica Manicardi
- Translational Research Laboratory, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Modena, Italy
| | - Eleonora Zanetti
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
- Biobank, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Stefania Orecchioni
- Laboratory of Hematology-Oncology, European Institute of Oncology IRCCS, Milan, Italy
- Onco-Tech Lab, European Institute of Oncology IRCCS and Politecnico di Milano, Milan, Italy
| | - Paolo Falvo
- Laboratory of Hematology-Oncology, European Institute of Oncology IRCCS, Milan, Italy
- Onco-Tech Lab, European Institute of Oncology IRCCS and Politecnico di Milano, Milan, Italy
| | - Simonetta Piana
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
- Biobank, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Filippo Lococo
- Università Cattolica del Sacro Cuore, Rome, Italy
- Department of General Thoracic Surgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Massimiliano Paci
- Thoracic Surgery Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Francesco Bertolini
- Laboratory of Hematology-Oncology, European Institute of Oncology IRCCS, Milan, Italy
- Onco-Tech Lab, European Institute of Oncology IRCCS and Politecnico di Milano, Milan, Italy
| | - Alessia Ciarrocchi
- Translational Research Laboratory, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Valentina Sancisi
- Translational Research Laboratory, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy.
| |
Collapse
|
7
|
Li T, Niu M, Zhang W, Qin S, Zhou J, Yi M. CAR-NK cells for cancer immunotherapy: recent advances and future directions. Front Immunol 2024; 15:1361194. [PMID: 38404574 PMCID: PMC10884099 DOI: 10.3389/fimmu.2024.1361194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 01/29/2024] [Indexed: 02/27/2024] Open
Abstract
Natural Killer (NK) cells, intrinsic to the innate immune system, are pivotal in combating cancer due to their independent cytotoxic capabilities in antitumor immune response. Unlike predominant treatments that target T cell immunity, the limited success of T cell immunotherapy emphasizes the urgency for innovative approaches, with a spotlight on harnessing the potential of NK cells. Despite tumors adapting mechanisms to evade NK cell-induced cytotoxicity, there is optimism surrounding Chimeric Antigen Receptor (CAR) NK cells. This comprehensive review delves into the foundational features and recent breakthroughs in comprehending the dynamics of NK cells within the tumor microenvironment. It critically evaluates the potential applications and challenges associated with emerging CAR-NK cell therapeutic strategies, positioning them as promising tools in the evolving landscape of precision medicine. As research progresses, the unique attributes of CAR-NK cells offer a new avenue for therapeutic interventions, paving the way for a more effective and precise approach to cancer treatment.
Collapse
Affiliation(s)
- Tianye Li
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| | - Mengke Niu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weijiang Zhang
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| | - Shuang Qin
- Department of Radiation Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianwei Zhou
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| | - Ming Yi
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
8
|
Liu Q, Zhang C, Chen X, Han Z. Modern cancer therapy: cryoablation meets immune checkpoint blockade. Front Oncol 2024; 14:1323070. [PMID: 38384806 PMCID: PMC10881233 DOI: 10.3389/fonc.2024.1323070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/16/2024] [Indexed: 02/23/2024] Open
Abstract
Cryoablation, as a minimally invasive technology for the treatment of tumors, destroys target tumors with lethal low temperatures. It simultaneously releases a large number of tumor-specific antigens, pro-inflammatory cytokines, and nucleoproteins, known as "danger signals", activating the body's innate and adaptive immune responses. However, tumor cells can promote the inactivation of immune effector cells by reprogramming immune checkpoints, leading to the insufficiency of these antigens to induce an immune response capable of eradicating the tumor. Immune checkpoint blockers rejuvenate exhausted T cells by blocking immune checkpoints that induce programmed death of T cells, and are therefore considered a promising therapeutic strategy to enhance the immune effects of cryoablation. In this review, we provide a detailed explanation of the immunological mechanisms of cryoablation and articulate the theoretical basis and research progress of the treatment of cancer with cryoablation combined with immune checkpoint blockers. Preliminary data indicates that this combined treatment strategy exhibits good synergy and has been proven to be safe and effective.
Collapse
Affiliation(s)
- Qi Liu
- Department of Pulmonary and Critical Care Medicine, The Sixth Medical Center of Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- Navy Clinical College, the Fifth School of Clinical Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Chunyang Zhang
- Department of Pulmonary and Critical Care Medicine, The Sixth Medical Center of Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- College of Pulmonary and Critical Care Medicine, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Xuxin Chen
- Department of Pulmonary and Critical Care Medicine, The Sixth Medical Center of Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- College of Pulmonary and Critical Care Medicine, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Zhihai Han
- Department of Pulmonary and Critical Care Medicine, The Sixth Medical Center of Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- Navy Clinical College, the Fifth School of Clinical Medicine, Anhui Medical University, Hefei, Anhui, China
- College of Pulmonary and Critical Care Medicine, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
| |
Collapse
|
9
|
Cen X, Li M, Yao A, Zheng Y, Lai W. Immune infiltration and clinical significance analyses of the cancer-associated fibroblast-related signature in skin cutaneous melanoma. J Gene Med 2024; 26:e3614. [PMID: 37847069 DOI: 10.1002/jgm.3614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/14/2023] [Accepted: 09/26/2023] [Indexed: 10/18/2023] Open
Abstract
BACKGROUND Skin cutaneous melanoma (SKCM) is one of the most aggressive cancers with high mortality rates. Cancer-associated fibroblasts (CAFs) play essential roles in tumor growth, metastasis and the establishment of a pro-tumor microenvironment. This study aimed to establish a CAF-related signature for providing a new perspective for indicating prognosis and guiding therapeutic regimens of SKCM patients. METHODS In this study, the CAF-related genes were screened out based on melanoma-associated fibroblast markers identified from single-cell transcriptome analysis in the Gene Expression Omnibus (GEO) database and a CAF-related module identified from weighted gene co-expression analysis using The Cancer Genome Atlas (TCGA) dataset. We extracted these gene expression data of SKCM samples from TCGA and constructed a prognostic CAF-related signature. The prediction abilities of the signature for survival prognosis, tumor immune landscape and responses to chemo-/immunotherapies were evaluated in the TCGA-SKCM cohort. RESULTS We suggested that CAFs were significantly involved in the clinical outcomes of SKCM. A 10-gene CAF-related model was constructed, and the high-CAF risk group exhibited immunosuppressive features and worse prognosis. Patients with high CAF score were more likely to not respond to immune checkpoint inhibitors but were more sensitive to some chemotherapeutic agents, suggesting a potential approach of chemotherapy/anti-CAF combination treatment to improve the SKCM patient response rate of current immunotherapies. CONCLUSIONS The CAF-related risk score could serve as a robust prognostic indicator and personal assessment of this score could uncover the degree of immunosuppression and provide treatment strategies to improve outcomes in clinical decision-making in SKCM patients.
Collapse
Affiliation(s)
- Xintao Cen
- Department of Dermatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Mengna Li
- Department of Dermatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Amin Yao
- Department of Dermatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yue Zheng
- Department of Dermatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wei Lai
- Department of Dermatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
10
|
Weiner L, Fitzgerald A, Maynard R, Marcisak E, Nasir A, Glasgow E, Jablonski S, Van Der Veken P, Pearson G, Eisman S, Mace E, Fertig E. Fibroblast activation protein regulates natural killer cell migration, extravasation and tumor infiltration. RESEARCH SQUARE 2023:rs.3.rs-3706465. [PMID: 38196606 PMCID: PMC10775390 DOI: 10.21203/rs.3.rs-3706465/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Natural killer (NK) cells play a critical role in physiologic and pathologic conditions such as pregnancy, infection, autoimmune disease and cancer. In cancer, numerous strategies have been designed to exploit the cytolytic properties of NK cells, with variable success. A major hurdle to NK-cell focused therapies is NK cell recruitment and infiltration into tumors. While the chemotaxis pathways regulating NK recruitment to different tissues are well delineated, the mechanisms human NK cells employ to physically migrate are ill-defined. We show for the first time that human NK cells express fibroblast activation protein (FAP), a cell surface protease previously thought to be primarily expressed by activated fibroblasts. FAP degrades the extracellular matrix to facilitate cell migration and tissue remodeling. We used novel in vivo zebrafish and in vitro 3D culture models to demonstrate that FAP knock out and pharmacologic inhibition restrict NK cell migration, extravasation, and invasion through tissue matrix. Notably, forced overexpression of FAP promotes NK cell invasion through matrix in both transwell and tumor spheroid assays, ultimately increasing tumor cell lysis. Additionally, FAP overexpression enhances NK cells invasion into a human tumor in immunodeficient mice. These findings demonstrate the necessity of FAP in NK cell migration and present a new approach to modulate NK cell trafficking and enhance cell-based therapy in solid tumors.
Collapse
Affiliation(s)
| | - Allison Fitzgerald
- Lombardi Comprehensive Cancer Center, Georgetown University Medial Center, Washington
| | | | - Emily Marcisak
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine
| | | | | | | | | | | | | | - Emily Mace
- Columbia University Irving Medical Center
| | - Elana Fertig
- Johns Hopkins Convergence Institute, Johns Hopkins Bloomberg Kimmel Institute for Immunotherapy, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Department of Biomedical Engineeri
| |
Collapse
|
11
|
Hasan MF, Campbell AR, Croom-Perez TJ, Oyer JL, Dieffenthaller TA, Robles-Carrillo LD, Cash CA, Eloriaga JE, Kumar S, Andersen BW, Naeimi Kararoudi M, Tullius BP, Lee DA, Copik AJ. Knockout of the inhibitory receptor TIGIT enhances the antitumor response of ex vivo expanded NK cells and prevents fratricide with therapeutic Fc-active TIGIT antibodies. J Immunother Cancer 2023; 11:e007502. [PMID: 38081778 PMCID: PMC10729131 DOI: 10.1136/jitc-2023-007502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Inhibitory receptor T-cell Immunoreceptor with Ig and ITIM domains (TIGIT) expressed by Natural Killer (NK) and T cells regulates cancer immunity and has been touted as the next frontier in the development of cancer immunotherapeutics. Although early results of anti-TIGIT and its combinations with antiprogrammed death-ligand 1 were highly exciting, results from an interim analysis of phase III trials are disappointing. With mixed results, there is a need to understand the effects of therapeutic anti-TIGIT on the TIGIT+ immune cells to support its clinical use. Most of the TIGIT antibodies in development have an Fc-active domain, which binds to Fc receptors on effector cells. In mouse models, Fc-active anti-TIGIT induced superior immunity, while Fc receptor engagement was required for its efficacy. NK-cell depletion compromised the antitumor immunity of anti-TIGIT indicating the essential role of NK cells in the efficacy of anti-TIGIT. Since NK cells express TIGIT and Fc-receptor CD16, Fc-active anti-TIGIT may deplete NK cells via fratricide, which has not been studied. METHODS CRISPR-Cas9-based TIGIT knockout (KO) was performed in expanded NK cells. Phenotypic and transcriptomic properties of TIGIT KO and wild-type (WT) NK cells were compared with flow cytometry, CyTOF, and RNA sequencing. The effect of TIGIT KO on NK-cell cytotoxicity was determined by calcein-AM release and live cell imaging-based cytotoxicity assays. The metabolic properties of TIGIT KO and WT NK cells were compared with a Seahorse analyzer. The effect of the Fc-component of anti-TIGIT on NK-cell fratricide was determined by co-culturing WT and TIGIT KO NK cells with Fc-active and Fc-inactive anti-TIGIT. RESULTS TIGIT KO increased the cytotoxicity of NK cells against multiple cancer cell lines including spheroids. TIGIT KO NK cells upregulated mTOR complex 1 (mTORC1) signaling and had better metabolic fitness with an increased basal glycolytic rate when co-cultured with cancer cells compared with WT NK cells. Importantly, TIGIT KO prevented NK-cell fratricide when combined with Fc-active anti-TIGIT. CONCLUSIONS TIGIT KO in ex vivo expanded NK cells increased their cytotoxicity and metabolic fitness and prevented NK-cell fratricide when combined with Fc-active anti-TIGIT antibodies. These fratricide-resistant TIGIT KO NK cells have therapeutic potential alone or in combination with Fc-active anti-TIGIT antibodies to enhance their efficacy.
Collapse
Affiliation(s)
- Md Faqrul Hasan
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida, USA
| | - Amanda R Campbell
- Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Tayler J Croom-Perez
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida, USA
| | - Jeremiah L Oyer
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida, USA
| | | | - Liza D Robles-Carrillo
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida, USA
| | - Catherine A Cash
- Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Jonathan E Eloriaga
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida, USA
| | - Sanjana Kumar
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida, USA
| | - Brendan W Andersen
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida, USA
| | - Meisam Naeimi Kararoudi
- Center for Childhood Cancer, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA
- Department of Pediatrics, School of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Brian P Tullius
- Pediatric Cellular Therapies, AdventHealth for Children, Orlando, Florida, USA
| | - Dean A Lee
- Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Alicja J Copik
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida, USA
| |
Collapse
|
12
|
Rahimi A, Malakoutikhah Z, Rahimmanesh I, Ferns GA, Nedaeinia R, Ishaghi SMM, Dana N, Haghjooy Javanmard S. The nexus of natural killer cells and melanoma tumor microenvironment: crosstalk, chemotherapeutic potential, and innovative NK cell-based therapeutic strategies. Cancer Cell Int 2023; 23:312. [PMID: 38057843 DOI: 10.1186/s12935-023-03134-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 11/09/2023] [Indexed: 12/08/2023] Open
Abstract
The metastasis of melanoma cells to regional lymph nodes and distant sites is an important contributor to cancer-related morbidity and mortality among patients with melanoma. This intricate process entails dynamic interactions involving tumor cells, cellular constituents, and non-cellular elements within the microenvironment. Moreover, both microenvironmental and systemic factors regulate the metastatic progression. Central to immunosurveillance for tumor cells are natural killer (NK) cells, prominent effectors of the innate immune system with potent antitumor and antimetastatic capabilities. Recognizing their pivotal role, contemporary immunotherapeutic strategies are actively integrating NK cells to combat metastatic tumors. Thus, a meticulous exploration of the interplay between metastatic melanoma and NK cells along the metastatic cascade is important. Given the critical involvement of NK cells within the melanoma tumor microenvironment, this comprehensive review illuminates the intricate relationship between components of the melanoma tumor microenvironment and NK cells, delineating their multifaceted roles. By shedding light on these critical aspects, this review advocates for a deeper understanding of NK cell dynamics within the melanoma context, driving forward transformative strategies to combat this cancer.
Collapse
Affiliation(s)
- Azadeh Rahimi
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Malakoutikhah
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ilnaz Rahimmanesh
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Gordon A Ferns
- Division of Medical Education, Brighton and Sussex Medical School, Falmer, Brighton, Sussex, BN1 9PH, UK
| | - Reza Nedaeinia
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Nasim Dana
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Shaghayegh Haghjooy Javanmard
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
13
|
Tan SX, Chong S, Rowe C, Claeson M, Dight J, Zhou C, Rodero MP, Malt M, Smithers BM, Green AC, Khosrotehrani K. pSTAT5 is associated with improved survival in patients with thick or ulcerated primary cutaneous melanoma. Melanoma Res 2023; 33:506-513. [PMID: 37890182 DOI: 10.1097/cmr.0000000000000915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
Identifying prognostic biomarkers to predict clinical outcomes in stage I and II cutaneous melanomas could guide the clinical application of adjuvant and neoadjuvant therapies. We aimed to investigate the prognostic value of phosphorylated signal transducer and activator of transcription 5 (pSTAT5) as a biomarker in early-stage melanoma. This study evaluated all initially staged Ib and II melanoma patients undergoing sentinel node biopsy at a tertiary centre in Brisbane, Australia between 1994 and 2007, with survival data collected from the Queensland Cancer Registry. Primary melanoma tissue from 189 patients was analysed for pSTAT5 level through immunohistochemistry. Cox regression modelling, with adjustment for sex, age, ulceration, anatomical location, and Breslow depth, was applied to determine the association between pSTAT5 detection and melanoma-specific survival. Median duration of follow-up was 7.4 years. High pSTAT5 detection was associated with ulceration and increased tumour thickness. However, multivariate analysis indicated that high pSTAT5 detection was associated with improved melanoma-specific survival (hazard ratio: 0.15, 95% confidence interval: 0.03-0.67) as compared to low pSTAT5 detection. This association persisted when pSTAT5 detection was limited to immune infiltrate or the vasculature, as well as when sentinel node positivity was accounted for. In this cohort, staining for high-pSTAT5 tumours identified a subset of melanoma patients with increased survival outcomes as compared to low-pSTAT5 tumours, despite the former having higher-risk clinicopathological characteristics at diagnosis. pSTAT5 is likely an indicator of local immune activation, and its detection could represent a useful tool to stratify the risk of melanoma progression.
Collapse
Affiliation(s)
- Samuel X Tan
- Frazer Institute, University of Queensland, Brisbane, Australia
| | - Sharene Chong
- Frazer Institute, University of Queensland, Brisbane, Australia
| | - Casey Rowe
- Frazer Institute, University of Queensland, Brisbane, Australia
| | - Magdalena Claeson
- Department of Dermatology and Venereology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Population Health, QIMR Berghofer Medical Research Institute
| | - James Dight
- Frazer Institute, University of Queensland, Brisbane, Australia
| | - Chenhao Zhou
- Frazer Institute, University of Queensland, Brisbane, Australia
| | | | - Maryrose Malt
- Department of Population Health, QIMR Berghofer Medical Research Institute
| | - B Mark Smithers
- Queensland Melanoma Project, University of Queensland, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Adele C Green
- Department of Population Health, QIMR Berghofer Medical Research Institute
- Cancer Research UK Manchester Institute and University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Kiarash Khosrotehrani
- Frazer Institute, University of Queensland, Brisbane, Australia
- Department of Dermatology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| |
Collapse
|
14
|
Yi M, Li T, Niu M, Mei Q, Zhao B, Chu Q, Dai Z, Wu K. Exploiting innate immunity for cancer immunotherapy. Mol Cancer 2023; 22:187. [PMID: 38008741 PMCID: PMC10680233 DOI: 10.1186/s12943-023-01885-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/23/2023] [Indexed: 11/28/2023] Open
Abstract
Immunotherapies have revolutionized the treatment paradigms of various types of cancers. However, most of these immunomodulatory strategies focus on harnessing adaptive immunity, mainly by inhibiting immunosuppressive signaling with immune checkpoint blockade, or enhancing immunostimulatory signaling with bispecific T cell engager and chimeric antigen receptor (CAR)-T cell. Although these agents have already achieved great success, only a tiny percentage of patients could benefit from immunotherapies. Actually, immunotherapy efficacy is determined by multiple components in the tumor microenvironment beyond adaptive immunity. Cells from the innate arm of the immune system, such as macrophages, dendritic cells, myeloid-derived suppressor cells, neutrophils, natural killer cells, and unconventional T cells, also participate in cancer immune evasion and surveillance. Considering that the innate arm is the cornerstone of the antitumor immune response, utilizing innate immunity provides potential therapeutic options for cancer control. Up to now, strategies exploiting innate immunity, such as agonists of stimulator of interferon genes, CAR-macrophage or -natural killer cell therapies, metabolic regulators, and novel immune checkpoint blockade, have exhibited potent antitumor activities in preclinical and clinical studies. Here, we summarize the latest insights into the potential roles of innate cells in antitumor immunity and discuss the advances in innate arm-targeted therapeutic strategies.
Collapse
Affiliation(s)
- Ming Yi
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, People's Republic of China
- Department of Breast Surgery, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310000, People's Republic of China
| | - Tianye Li
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310000, People's Republic of China
| | - Mengke Niu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
| | - Qi Mei
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, People's Republic of China
| | - Bin Zhao
- Department of Breast Surgery, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310000, People's Republic of China
| | - Qian Chu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China.
| | - Zhijun Dai
- Department of Breast Surgery, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310000, People's Republic of China.
| | - Kongming Wu
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, People's Republic of China.
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
15
|
Rouvinov K, Mazor G, Kozlener E, Meirovitz A, Shrem NS, Abu Saleh O, Shalata S, Yakobson A, Shalata W. Cemiplimab as First Line Therapy in Advanced Penile Squamous Cell Carcinoma: A Real-World Experience. J Pers Med 2023; 13:1623. [PMID: 38003938 PMCID: PMC10672594 DOI: 10.3390/jpm13111623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/12/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
In the treatment of cancer, immune checkpoint inhibitors (ICIs) have demonstrated significantly greater effectiveness compared to conventional cytotoxic or platinum-based chemotherapies. To assess the efficacy of ICI's in penile squamous cell carcinoma (pSCC) we performed a retrospective observational study. We reviewed electronic medical records of patients with penile squamous cell carcinoma (SCC), diagnosed between January 2020 and February 2023. Nine patients were screened, of whom three were ineligible for chemotherapy and received immunotherapy, cemiplimab, in a first-line setting. Each of the three immunotherapy-treated patients achieved almost a complete response (CR) after only a few cycles of therapy. The first patient had cerebral arteritis during treatment and received a high-dose steroid treatment with resolution of the symptoms of arteritis. After tapering down the steroids dose, the patient continued cemiplimab without further toxicity. The other two patients did not have any toxic side effects of the treatment. To the best of our knowledge, this is the first real world report of near CR with cemiplimab as a first-line treatment in penile SCC.
Collapse
Affiliation(s)
- Keren Rouvinov
- The Legacy Heritage Center & Dr. Larry Norton Institute, Soroka Medical Center and Ben Gurion University, Beer Sheva 84105, Israel
| | - Gal Mazor
- Medical School for International Health, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Ella Kozlener
- Department of Oncology, Bnei Zion Medical Center, Haifa 31048, Israel
| | - Amichay Meirovitz
- The Legacy Heritage Center & Dr. Larry Norton Institute, Soroka Medical Center and Ben Gurion University, Beer Sheva 84105, Israel
| | - Noa Shani Shrem
- The Legacy Heritage Center & Dr. Larry Norton Institute, Soroka Medical Center and Ben Gurion University, Beer Sheva 84105, Israel
| | - Omar Abu Saleh
- Department of Dermatology and Venereology, Emek Medical Centre, Afula 18341, Israel
| | - Sondos Shalata
- Nutrition Unit, Galilee Medical Center, Nahariya 22000, Israel
| | - Alexander Yakobson
- The Legacy Heritage Center & Dr. Larry Norton Institute, Soroka Medical Center and Ben Gurion University, Beer Sheva 84105, Israel
| | - Walid Shalata
- The Legacy Heritage Center & Dr. Larry Norton Institute, Soroka Medical Center and Ben Gurion University, Beer Sheva 84105, Israel
| |
Collapse
|
16
|
Adegoke NA, Gide TN, Mao Y, Quek C, Patrick E, Carlino MS, Lo SN, Menzies AM, Pires da Silva I, Vergara IA, Long G, Scolyer RA, Wilmott JS. Classification of the tumor immune microenvironment and associations with outcomes in patients with metastatic melanoma treated with immunotherapies. J Immunother Cancer 2023; 11:e007144. [PMID: 37865395 PMCID: PMC10603328 DOI: 10.1136/jitc-2023-007144] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2023] [Indexed: 10/23/2023] Open
Abstract
BACKGROUND Tumor microenvironment (TME) characteristics are potential biomarkers of response to immune checkpoint inhibitors in metastatic melanoma. This study developed a method to perform unsupervised classification of TME of metastatic melanoma. METHODS We used multiplex immunohistochemical and quantitative pathology-derived assessment of immune cell compositions of intratumoral and peritumoral regions of metastatic melanoma baseline biopsies to classify TME in relation to response to anti-programmed cell death protein 1 (PD-1) monotherapy or in combination with anti-cytotoxic T-cell lymphocyte-4 (ipilimumab (IPI)+PD-1). RESULTS Spatial profiling of CD8+T cells, macrophages, and melanoma cells, as well as phenotypic PD-1 receptor ligand (PD-L1) and CD16 proportions, were used to identify and classify patients into one of three mutually exclusive TME classes: immune-scarce, immune-intermediate, and immune-rich tumors. Patients with immune-rich tumors were characterized by a lower proportion of melanoma cells and higher proportions of immune cells, including higher PD-L1 expression. These patients had higher response rates and longer progression-free survival (PFS) than those with immune-intermediate and immune-scarce tumors. At a median follow-up of 18 months (95% CI: 6.7 to 49 months), the 1-year PFS was 76% (95% CI: 64% to 90%) for patients with an immune-rich tumor, 56% (95% CI: 44% to 72%) for those with an immune-intermediate tumor, and 33% (95% CI: 23% to 47%) for patients with an immune-scarce tumor. A higher response rate was observed in patients with an immune-scarce or immune-intermediate tumor when treated with IPI+PD-1 compared with those treated with PD-1 alone. CONCLUSIONS Our study provides an automatic TME classification method that may predict the clinical efficacy of immunotherapy for patients with metastatic melanoma.
Collapse
Affiliation(s)
- Nurudeen A Adegoke
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Tuba N Gide
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Yizhe Mao
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Camelia Quek
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Ellis Patrick
- Centre for Cancer Research, Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- School of Mathematics and Statistics, The University of Sydney, Sydney, New South Wales, Australia
| | - Matteo S Carlino
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia
- Westmead and Blacktown Hospitals, Sydney, New South Wales, Australia
| | - Serigne N Lo
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Alexander Maxwell Menzies
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia
- Royal North Shore and Mater Hospitals, Sydney, New South Wales, Australia
| | - Ines Pires da Silva
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia
- Westmead and Blacktown Hospitals, Sydney, New South Wales, Australia
| | - Ismael A Vergara
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Georgina Long
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia
- Royal North Shore and Mater Hospitals, Sydney, New South Wales, Australia
| | - Richard A Scolyer
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia
- Department of Tissue Oncology and Diagnostic Pathology, Royal Prince Alfred Hospital and NSW Health Pathology, Sydney, New South Wales, Australia
| | - James S Wilmott
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
17
|
Yakobson A, Abu Jama A, Abu Saleh O, Michlin R, Shalata W. PD-1 Inhibitors in Elderly and Immunocompromised Patients with Advanced or Metastatic Cutaneous Squamous Cell Carcinoma. Cancers (Basel) 2023; 15:4041. [PMID: 37627069 PMCID: PMC10452426 DOI: 10.3390/cancers15164041] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/05/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Cutaneous squamous cell carcinoma (cSCC) of the skin is the second most common form of skin cancer, with aging and prolonged exposure to ultraviolet rays being the main causes of the disease. Cemiplimab and pembrolizumab recently gained regulatory approval for the treatment of locally advanced and metastatic cSCC-conditions that are not treatable by surgical resection and/or radiotherapy. Although the results from the clinical trials have been promising, these studies have not included immunosuppressed, elderly patients. In this study, we included all immunocompromised and immunocompetent patients over the age of 75 years diagnosed with locally advanced or metastatic cSCC and treated with cemiplimab or pembrolizumab. The median duration of follow-up from cSCC diagnosis was 35.6 months, 82.9% of patients were male, and the median age was 83 years old. The median progression-free survival was 8.94 months. The incidence of treatment-related adverse events was 85.6%, the majority of which were grades 1 or 2. The disease control rate was 91.4%, the complete response rate was 17.1%, the partial response rate was 51.4%, the stable disease rate was 23%, and the progressive disease rate was 8.7%. Based on this study, cemiplimab and pembrolizumab for the treatment of locally advanced or metastatic cSCC in elderly, immunocompromised patients are efficacious, with acceptable safety profiles.
Collapse
Affiliation(s)
- Alexander Yakobson
- The Legacy Heritage Cancer Center & Dr. Larry Norton Institute, Soroka Medical Center, Ben Gurion University, Beer Sheva 84105, Israel (R.M.)
| | - Ashraf Abu Jama
- The Legacy Heritage Cancer Center & Dr. Larry Norton Institute, Soroka Medical Center, Ben Gurion University, Beer Sheva 84105, Israel (R.M.)
| | - Omar Abu Saleh
- Dermatology and Venereology, The Emek Medical Centre, Afula 18341, Israel
| | - Regina Michlin
- The Legacy Heritage Cancer Center & Dr. Larry Norton Institute, Soroka Medical Center, Ben Gurion University, Beer Sheva 84105, Israel (R.M.)
| | - Walid Shalata
- The Legacy Heritage Cancer Center & Dr. Larry Norton Institute, Soroka Medical Center, Ben Gurion University, Beer Sheva 84105, Israel (R.M.)
| |
Collapse
|
18
|
Seo H, Verma A, Kinzel M, Huang Q, Mahoney DJ, Jacquelot N. Targeting Potential of Innate Lymphoid Cells in Melanoma and Other Cancers. Pharmaceutics 2023; 15:2001. [PMID: 37514187 PMCID: PMC10384206 DOI: 10.3390/pharmaceutics15072001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Reinvigorating the killing function of tumor-infiltrating immune cells through the targeting of regulatory molecules expressed on lymphocytes has markedly improved the prognosis of cancer patients, particularly in melanoma. While initially thought to solely strengthen adaptive T lymphocyte anti-tumor activity, recent investigations suggest that other immune cell subsets, particularly tissue-resident innate lymphoid cells (ILCs), may benefit from immunotherapy treatment. Here, we describe the recent findings showing immune checkpoint expression on tissue-resident and tumor-infiltrating ILCs and how their effector function is modulated by checkpoint blockade-based therapies in cancer. We discuss the therapeutic potential of ILCs beyond the classical PD-1 and CTLA-4 regulatory molecules, exploring other possibilities to manipulate ILC effector function to further impede tumor growth and quench disease progression.
Collapse
Affiliation(s)
- Hobin Seo
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Arnie Charbonneau Cancer Research Institute, Calgary, AB T2N 4N1, Canada
| | - Amisha Verma
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Megan Kinzel
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Arnie Charbonneau Cancer Research Institute, Calgary, AB T2N 4N1, Canada
| | - Qiutong Huang
- The University of Queensland Frazer Institute, University of Queensland, Woolloongabba, QLD 4102, Australia
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Douglas J Mahoney
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Arnie Charbonneau Cancer Research Institute, Calgary, AB T2N 4N1, Canada
| | - Nicolas Jacquelot
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Arnie Charbonneau Cancer Research Institute, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
19
|
Liu K, Sadeghipour N, Hoover AR, Valero TI, Furrer C, Adams J, Naqash AR, Zhao M, Papin JF, Chen WR. Single-cell transcriptomics reveals that tumor-infiltrating natural killer cells are activated by localized ablative immunotherapy and share anti-tumor signatures induced by immune checkpoint inhibitors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.02.539163. [PMID: 37205468 PMCID: PMC10187236 DOI: 10.1101/2023.05.02.539163] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Rationale Natural killer (NK) cells provide protective anti-cancer immunity. However, the cancer therapy induced activation gene signatures and pathways in NK cells remain unclear. Methods We applied a novel localized ablative immunotherapy (LAIT) by synergizing photothermal therapy (PTT) with intra-tumor delivering of the immunostimulant N-dihydrogalactochitosan (GC), to treat breast cancer using a mammary tumor virus-polyoma middle tumor-antigen (MMTV-PyMT) mouse model. We performed single-cell RNA sequencing (scRNAseq) analysis to unveil the cellular heterogeneity and compare the transcriptional alterations induced by PTT, GC, and LAIT in NK cells within the tumor microenvironment (TME). Results ScRNAseq showed that NK subtypes, including cycling, activated, interferon-stimulated, and cytotoxic NK cells. Trajectory analysis revealed a route toward activation and cytotoxicity following pseudotime progression. Both GC and LAIT elevated gene expression associated with NK cell activation, cytolytic effectors, activating receptors, IFN pathway components, and cytokines/chemokines in NK subtypes. Single-cell transcriptomics analysis using immune checkpoint inhibitor (ICI)-treated animal and human samples revealed that ICI-induced NK activation and cytotoxicity across several cancer types. Furthermore, ICI-induced NK gene signatures were also induced by LAIT treatment. We also discovered that several types of cancer patients had significantly longer overall survival when they had higher expression of genes in NK cells that were also specifically upregulated by LAIT. Conclusion Our findings show for the first time that LAIT activates cytotoxicity in NK cells and the upregulated genes positively correlate with beneficial clinical outcomes for cancer patients. More importantly, our results further establish the correlation between the effects of LAIT and ICI on NK cells, hence expanding our understanding of mechanism of LAIT in remodeling TME and shedding light on the potentials of NK cell activation and anti-tumor cytotoxic functions in clinical applications.
Collapse
|
20
|
Guo C, Tang Y, Li Q, Yang Z, Guo Y, Chen C, Zhang Y. Deciphering the immune heterogeneity dominated by natural killer cells with prognostic and therapeutic implications in hepatocellular carcinoma. Comput Biol Med 2023; 158:106872. [PMID: 37030269 DOI: 10.1016/j.compbiomed.2023.106872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/15/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023]
Abstract
Belonging to type 1 innate lymphoid cells (ILC1), natural killer (NK) cells play an important role not only in fighting microbial infections but also in anti-tumor response. Hepatocellular carcinoma (HCC) represents an inflammation-related malignancy and NK cells are enriched in the liver, making them an essential component of the HCC immune microenvironment. In this study, we performed single-cell RNA-sequencing (scRNA-seq) analysis to identify the NK cell marker genes (NKGs) and uncovered 80 prognosis-related ones by the TCGA-LIHC dataset. Based on prognostic NKGs, HCC patients were categorized into two subtypes with distinct clinical outcomes. Subsequently, we conducted LASSO-COX and stepwise regression analysis on prognostic NKGs to establish a five-gene (UBB, CIRBP, GZMH, NUDC, and NCL) prognostic signature-NKscore. Different mutation statuses of the two risk groups stratified by NKscore were comprehensively characterized. Besides, the established NKscore-integrated nomogram presented enhanced predictive performance. Single sample gene set enrichment analysis (ssGSEA) analysis was used to uncover the landscape of the tumor immune microenvironment (TIME) and the high-NKscore risk group was characterized with an immune-exhausted phenotype while the low-NKscore risk group held relatively strong anti-cancer immunity. T cell receptor (TCR) repertoire, tumor inflammation signature (TIS), and Immunophenoscore (IPS) analyses revealed differences in immunotherapy sensitivity between the two NKscore risk groups. Taken together, we developed a novel NK cell-related signature to predict the prognosis and immunotherapy efficacy for HCC patients.
Collapse
Affiliation(s)
- Chengbin Guo
- Faculty of Medicine, Macau University of Science and Technology, Tapai, Macau, 999078, China
| | - Yuqin Tang
- Clinical Bioinformatics Experimental Center, Henan Provincial People's Hospital, Zhengzhou University, 450003, Zhengzhou, China
| | - Qizhuo Li
- School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Zhao Yang
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuqi Guo
- Clinical Bioinformatics Experimental Center, Henan Provincial People's Hospital, Zhengzhou University, 450003, Zhengzhou, China.
| | - Chuanliang Chen
- Clinical Bioinformatics Experimental Center, Henan Provincial People's Hospital, Zhengzhou University, 450003, Zhengzhou, China.
| | - Yongqiang Zhang
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China; Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China.
| |
Collapse
|
21
|
Yao M, Liang S, Cheng B. Role of exosomes in hepatocellular carcinoma and the regulation of traditional Chinese medicine. Front Pharmacol 2023; 14:1110922. [PMID: 36733504 PMCID: PMC9886889 DOI: 10.3389/fphar.2023.1110922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/03/2023] [Indexed: 01/18/2023] Open
Abstract
Hepatocellular carcinoma (HCC) usually occurs on the basis of chronic liver inflammatory diseases and cirrhosis. The liver microenvironment plays a vital role in the tumor initiation and progression. Exosomes, which are nanometer-sized membrane vesicles are secreted by a number of cell types. Exosomes carry multiple proteins, DNAs and various forms of RNA, and are mediators of cell-cell communication and regulate the tumor microenvironment. In the recent decade, many studies have demonstrated that exosomes are involved in the communication between HCC cells and the stromal cells, including endothelial cells, macrophages, hepatic stellate cells and the immune cells, and serve as a regulator in the tumor proliferation and metastasis, immune evasion and immunotherapy. In addition, exosomes can also be used for the diagnosis and treatment HCC. They can potentially serve as specific biomarkers for early diagnosis and drug delivery vehicles of HCC. Chinese herbal medicine, which is widely used in the prevention and treatment of HCC in China, may regulate the release of exosomes and exosomes-mediated intercellular communication. In this review, we summarized the latest progresses on the role of the exosomes in the initiation, progression and treatment of HCC and the potential value of Traditional Chinese medicine in exosomes-mediated biological behaviors of HCC.
Collapse
Affiliation(s)
- Man Yao
- Oncology Department of Traditional Chinese Medicine, Changhai Hospital, Naval Medical University (The Second Military Medical University), Shanghai, China
| | - Shufang Liang
- Oncology Department of Traditional Chinese Medicine, Changhai Hospital, Naval Medical University (The Second Military Medical University), Shanghai, China
| | - Binbin Cheng
- Oncology Department of Traditional Chinese Medicine, Changhai Hospital, Naval Medical University (The Second Military Medical University), Shanghai, China,Faculty of Traditional Chinese Medicine, Naval Medical University (The Second Military Medical University), Shanghai, China,*Correspondence: Binbin Cheng,
| |
Collapse
|
22
|
Sarsembayeva A, Kienzl M, Gruden E, Ristic D, Maitz K, Valadez-Cosmes P, Santiso A, Hasenoehrl C, Brcic L, Lindenmann J, Kargl J, Schicho R. Cannabinoid receptor 2 plays a pro-tumorigenic role in non-small cell lung cancer by limiting anti-tumor activity of CD8 + T and NK cells. Front Immunol 2023; 13:997115. [PMID: 36700219 PMCID: PMC9868666 DOI: 10.3389/fimmu.2022.997115] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 12/07/2022] [Indexed: 01/11/2023] Open
Abstract
Cannabinoid (CB) receptors (CB1 and CB2) are expressed on cancer cells and their expression influences carcinogenesis in various tumor entities. Cells of the tumor microenvironment (TME) also express CB receptors, however, their role in tumor development is still unclear. We, therefore, investigated the role of TME-derived CB1 and CB2 receptors in a model of non-small cell lung cancer (NSCLC). Leukocytes in the TME of mouse and human NSCLC express CB receptors, with CB2 showing higher expression than CB1. In the tumor model, using CB1- (CB1 -/-) and CB2-knockout (CB2 -/-) mice, only deficiency of CB2, but not of CB1, resulted in reduction of tumor burden vs. wild type (WT) littermates. This was accompanied by increased accumulation and tumoricidal activity of CD8+ T and natural killer cells, as well as increased expression of programmed death-1 (PD-1) and its ligand on lymphoid and myeloid cells, respectively. CB2 -/- mice responded significantly better to anti-PD-1 therapy than WT mice. The treatment further increased infiltration of cytotoxic lymphocytes into the TME of CB2 -/- mice. Our findings demonstrate that TME-derived CB2 dictates the immune cell recruitment into tumors and the responsiveness to anti-PD-1 therapy in a model of NSCLC. CB2 could serve as an adjuvant target for immunotherapy.
Collapse
Affiliation(s)
- Arailym Sarsembayeva
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Melanie Kienzl
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Eva Gruden
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Dusica Ristic
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Kathrin Maitz
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Paulina Valadez-Cosmes
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Ana Santiso
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Carina Hasenoehrl
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Luka Brcic
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Jörg Lindenmann
- Division of Thoracic and Hyperbaric Surgery, Department of Surgery, Medical University of Graz, Graz, Austria
| | - Julia Kargl
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Rudolf Schicho
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria,BioTechMed, Graz, Austria,*Correspondence: Rudolf Schicho,
| |
Collapse
|
23
|
Whalen KA, Rakhra K, Mehta NK, Steinle A, Michaelson JS, Baeuerle PA. Engaging natural killer cells for cancer therapy via NKG2D, CD16A and other receptors. MAbs 2023; 15:2208697. [PMID: 37165468 PMCID: PMC10173799 DOI: 10.1080/19420862.2023.2208697] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/26/2023] [Indexed: 05/12/2023] Open
Abstract
The field of immuno-oncology has revolutionized cancer patient care and improved survival and quality of life for patients. Much of the focus in the field has been on exploiting the power of the adaptive immune response through therapeutic targeting of T cells. While these approaches have markedly advanced the field, some challenges remain, and the clinical benefit of T cell therapies does not extend to all patients or tumor indications. Alternative strategies, such as engaging the innate immune system, have become an intense area of focus in the field. In particular, the engagement of natural killer (NK) cells as potent effectors of the innate immune response has emerged as a promising modality in immunotherapy. Here, we review therapeutic approaches for selective engagement of NK cells for cancer therapy, with a particular focus on targeting the key activating receptors NK Group 2D (NKG2D) and cluster of differentiation 16A (CD16A).
Collapse
Affiliation(s)
- Kerry A. Whalen
- Preclinical and Early Development, Cullinan Oncology, Inc, Cambridge, MA, USA
| | - Kavya Rakhra
- Preclinical and Early Development, Cullinan Oncology, Inc, Cambridge, MA, USA
| | - Naveen K. Mehta
- Preclinical and Early Development, Cullinan Oncology, Inc, Cambridge, MA, USA
| | - Alexander Steinle
- Institute for Molecular Medicine, Goethe-University Frankfurt, Frankfurt am Main, Germany
- Preclinical and Early Development, Frankfurt Cancer Institute, Frankfurt am Main, Germany
| | | | - Patrick A. Baeuerle
- Preclinical and Early Development, Cullinan Oncology, Inc, Cambridge, MA, USA
- Institute for Immunology, Ludwig Maximilians University, Munich, Germany
| |
Collapse
|
24
|
Secchiari F, Nuñez SY, Sierra JM, Ziblat A, Regge MV, Raffo Iraolagoitia XL, Rovegno A, Ameri C, Secin FP, Richards N, Ríos Pita H, Vitagliano G, Rico L, Mieggi M, Frascheri F, Bonanno N, Blas L, Trotta A, Friedrich AD, Fuertes MB, Domaica CI, Zwirner NW. The MICA-NKG2D axis in clear cell renal cell carcinoma bolsters MICA as target in immuno-oncology. Oncoimmunology 2022; 11:2104991. [PMID: 35936986 PMCID: PMC9354769 DOI: 10.1080/2162402x.2022.2104991] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
NKG2D is a major natural killer (NK) cell-activating receptor that recognizes eight ligands (NKG2DLs), including MICA, and whose engagement triggers NK cell effector functions. As NKG2DLs are upregulated on tumor cells but tumors can subvert the NKG2D-NKG2DL axis, NKG2DLs constitute attractive targets for antibody (Ab)-based immuno-oncology therapies. However, such approaches require a deep characterization of NKG2DLs and NKG2D cell surface expression on primary tumor and immune cells. Here, using a bioinformatic analysis, we observed that MICA is overexpressed in renal cell carcinoma (RCC), and we also detected an association between the NKG2D-MICA axis and a diminished overall survival of RCC patients. Also, by flow cytometry (FC), we observed that MICA was the only NKG2DL over-expressed on clear cell renal cell carcinoma (ccRCC) tumor cells, including cancer stem cells (CSC) that also coexpressed NKG2D. Moreover, tumor-infiltrating leukocytes (TIL), but not peripheral blood lymphoid cells (PBL) from ccRCC patients, over-expressed MICA, ULBP3 and ULBP4. In addition, NKG2D was downregulated on peripheral blood NK cells (PBNK) from ccRCC patients but upregulated on tumor-infiltrating NK cells (TINK). These TINK exhibited impaired degranulation that negatively correlated with NKG2D expression, diminished IFN-γ production, upregulation of TIM-3, and an impaired glucose intake upon stimulation with cytokines, indicating that they are dysfunctional, display features of exhaustion and an altered metabolic fitness. We conclude that ccRCC patients exhibit a distorted MICA-NKG2D axis, and MICA emerges as the forefront NKG2DL for the development of targeted therapies in ccRCC.
Collapse
Affiliation(s)
- Florencia Secchiari
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Argentina
| | - Sol Yanel Nuñez
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Argentina
| | - Jessica Mariel Sierra
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Argentina
| | - Andrea Ziblat
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Argentina
| | - María Victoria Regge
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Argentina
| | - Ximena Lucía Raffo Iraolagoitia
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Argentina
| | - Agustín Rovegno
- Servicio de Urología, Centro de Educación Médica e Investigaciones Clínicas “Norberto Quirno” (CEMIC)
| | - Carlos Ameri
- Servicio de Urología, Hospital Alemán, Buenos Aires, Argentina
| | - Fernando Pablo Secin
- Servicio de Urología, Centro de Educación Médica e Investigaciones Clínicas “Norberto Quirno” (CEMIC)
| | - Nicolás Richards
- Servicio de Urología, Centro de Educación Médica e Investigaciones Clínicas “Norberto Quirno” (CEMIC)
| | | | | | - Luis Rico
- Servicio de Urología, Hospital Alemán, Buenos Aires, Argentina
| | - Mauro Mieggi
- Servicio de Urología, Hospital Alemán, Buenos Aires, Argentina
| | | | - Nicolás Bonanno
- Servicio de Urología, Hospital Alemán, Buenos Aires, Argentina
| | - Leandro Blas
- Servicio de Urología, Hospital Alemán, Buenos Aires, Argentina
| | - Aldana Trotta
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Argentina
| | - Adrián David Friedrich
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Argentina
| | - Mercedes Beatriz Fuertes
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Argentina
| | - Carolina Inés Domaica
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Argentina
| | - Norberto Walter Zwirner
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Argentina
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Universidad de Buenos Aires, Argentina
| |
Collapse
|
25
|
Deng X, Terunuma H. Harnessing NK Cells to Control Metastasis. Vaccines (Basel) 2022; 10:vaccines10122018. [PMID: 36560427 PMCID: PMC9781233 DOI: 10.3390/vaccines10122018] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
In recent years, tumor immunotherapy has produced remarkable results in tumor treatment. Nevertheless, its effects are severely limited in patients with low or absent pre-existing T cell immunity. Accordingly, metastasis remains the major cause of tumor-associated death. On the other hand, natural killer (NK) cells have the unique ability to recognize and rapidly act against tumor cells and surveil tumor cell dissemination. The role of NK cells in metastasis prevention is undisputable as an increase in the number of these cells mostly leads to a favorable prognosis. Hence, it is reasonable to consider that successful metastasis involves evasion of NK-cell-mediated immunosurveillance. Therefore, harnessing NK cells to control metastasis is promising. Circulating tumor cells (CTCs) are the seeds for distant metastasis, and the number of CTCs detected in the blood of patients with tumor is associated with a worse prognosis, whereas NK cells can eliminate highly motile CTCs especially in the blood. Here, we review the role of NK cells during metastasis, particularly the specific interactions of NK cells with CTCs, which may provide essential clues on how to harness the power of NK cells against tumor metastasis. As a result, a new way to prevent or treat metastatic tumor may be developed.
Collapse
Affiliation(s)
- Xuewen Deng
- Biotherapy Institute of Japan Inc., 2-4-8 Edagawa, Koto-ku, Tokyo 135-0051, Japan
- Correspondence: ; Tel.: +81-3-5632-6080; Fax: +81-3-5632-6083
| | - Hiroshi Terunuma
- Biotherapy Institute of Japan Inc., 2-4-8 Edagawa, Koto-ku, Tokyo 135-0051, Japan
- N2 Clinic Yotsuya, 5F 2-6 Samon-cho, Shinjuku-ku, Tokyo 160-0017, Japan
| |
Collapse
|
26
|
Chen X, Jiang L, Liu X. Natural killer cells: the next wave in cancer immunotherapy. Front Immunol 2022; 13:954804. [PMID: 35967421 PMCID: PMC9364606 DOI: 10.3389/fimmu.2022.954804] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/30/2022] [Indexed: 12/05/2022] Open
Abstract
Immunotherapies focusing on rejuvenating T cell activities, like PD-1/PD-L1 and CTLA-4 blockade, have unprecedentedly revolutionized the landscape of cancer treatment. Yet a previously underexplored component of the immune system - natural killer (NK) cell, is coming to the forefront of immunotherapeutic attempts. In this review, we discuss the contributions of NK cells in the success of current immunotherapies, provide an overview of the current preclinical and clinical strategies at harnessing NK cells for cancer treatment, and highlight that NK cell-mediated therapies emerge as a major target in the next wave of cancer immunotherapy.
Collapse
Affiliation(s)
- Xin Chen
- Department of Biology, BeiGene (Beijing) Co., Ltd., Beijing, China
| | | | | |
Collapse
|
27
|
Ran GH, Lin YQ, Tian L, Zhang T, Yan DM, Yu JH, Deng YC. Natural killer cell homing and trafficking in tissues and tumors: from biology to application. Signal Transduct Target Ther 2022; 7:205. [PMID: 35768424 PMCID: PMC9243142 DOI: 10.1038/s41392-022-01058-z] [Citation(s) in RCA: 97] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/24/2022] [Accepted: 06/14/2022] [Indexed: 02/06/2023] Open
Abstract
Natural killer (NK) cells, a subgroup of innate lymphoid cells, act as the first line of defense against cancer. Although some evidence shows that NK cells can develop in secondary lymphoid tissues, NK cells develop mainly in the bone marrow (BM) and egress into the blood circulation when they mature. They then migrate to and settle down in peripheral tissues, though some special subsets home back into the BM or secondary lymphoid organs. Owing to its success in allogeneic adoptive transfer for cancer treatment and its "off-the-shelf" potential, NK cell-based immunotherapy is attracting increasing attention in the treatment of various cancers. However, insufficient infiltration of adoptively transferred NK cells limits clinical utility, especially for solid tumors. Expansion of NK cells or engineered chimeric antigen receptor (CAR) NK cells ex vivo prior to adoptive transfer by using various cytokines alters the profiles of chemokine receptors, which affects the infiltration of transferred NK cells into tumor tissue. Several factors control NK cell trafficking and homing, including cell-intrinsic factors (e.g., transcriptional factors), cell-extrinsic factors (e.g., integrins, selectins, chemokines and their corresponding receptors, signals induced by cytokines, sphingosine-1-phosphate (S1P), etc.), and the cellular microenvironment. Here, we summarize the profiles and mechanisms of NK cell homing and trafficking at steady state and during tumor development, aiming to improve NK cell-based cancer immunotherapy.
Collapse
Affiliation(s)
- Guang He Ran
- Department of Immunology, School of Basic Medical, Jiamusi University, 154007, Jiamusi, China
- Institute of Materia Medica, College of Pharmacy, Army Medical University, 400038, Chongqing, China
| | - Yu Qing Lin
- Department of Immunology, School of Basic Medical, Jiamusi University, 154007, Jiamusi, China
- Institute of Materia Medica, College of Pharmacy, Army Medical University, 400038, Chongqing, China
| | - Lei Tian
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, 91010, USA
| | - Tao Zhang
- Department of Immunology, School of Basic Medical, Jiamusi University, 154007, Jiamusi, China.
| | - Dong Mei Yan
- Department of Immunology, School of Basic Medical, Jiamusi University, 154007, Jiamusi, China.
| | - Jian Hua Yu
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, 91010, USA.
| | - You Cai Deng
- Institute of Materia Medica, College of Pharmacy, Army Medical University, 400038, Chongqing, China.
- Department of Clinical Hematology, College of Pharmacy, Army Medical University, 400038, Chongqing, China.
| |
Collapse
|
28
|
Rossi F, Fredericks N, Snowden A, Allegrezza MJ, Moreno-Nieves UY. Next Generation Natural Killer Cells for Cancer Immunotherapy. Front Immunol 2022; 13:886429. [PMID: 35720306 PMCID: PMC9202478 DOI: 10.3389/fimmu.2022.886429] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/25/2022] [Indexed: 12/15/2022] Open
Abstract
In recent years, immunotherapy for cancer has become mainstream with several products now authorized for therapeutic use in the clinic and are becoming the standard of care for some malignancies. Chimeric antigen receptor (CAR)-T cell therapies have demonstrated substantial efficacy for the treatment of hematological malignancies; however, they are complex and currently expensive to manufacture, and they can generate life-threatening adverse events such as cytokine release syndrome (CRS). The limitations of current CAR-T cells therapies have spurred an interest in alternative immunotherapy approaches with safer risk profiles and with less restrictive manufacturing constraints. Natural killer (NK) cells are a population of immune effector cells with potent anti-viral and anti-tumor activity; they have the capacity to swiftly recognize and kill cancer cells without the need of prior stimulation. Although NK cells are naturally equipped with cytotoxic potential, a growing body of evidence shows the added benefit of engineering them to better target tumor cells, persist longer in the host, and be fitter to resist the hostile tumor microenvironment (TME). NK-cell-based immunotherapies allow for the development of allogeneic off-the-shelf products, which have the potential to be less expensive and readily available for patients in need. In this review, we will focus on the advances in the development of engineering of NK cells for cancer immunotherapy. We will discuss the sourcing of NK cells, the technologies available to engineer NK cells, current clinical trials utilizing engineered NK cells, advances on the engineering of receptors adapted for NK cells, and stealth approaches to avoid recipient immune responses. We will conclude with comments regarding the next generation of NK cell products, i.e., armored NK cells with enhanced functionality, fitness, tumor-infiltration potential, and with the ability to overcome tumor heterogeneity and immune evasion.
Collapse
Affiliation(s)
- Fiorella Rossi
- Janssen Research and Development, LLC, Pharmaceutical Companies of Johnson & Johnson, Spring House, PA, United States
| | - Nathaniel Fredericks
- Janssen Research and Development, LLC, Pharmaceutical Companies of Johnson & Johnson, Spring House, PA, United States
| | - Andrew Snowden
- Janssen Research and Development, LLC, Pharmaceutical Companies of Johnson & Johnson, Spring House, PA, United States
| | - Michael J Allegrezza
- Janssen Research and Development, LLC, Pharmaceutical Companies of Johnson & Johnson, Spring House, PA, United States
| | - Uriel Y Moreno-Nieves
- Janssen Research and Development, LLC, Pharmaceutical Companies of Johnson & Johnson, Spring House, PA, United States
| |
Collapse
|
29
|
Ramírez-Labrada A, Pesini C, Santiago L, Hidalgo S, Calvo-Pérez A, Oñate C, Andrés-Tovar A, Garzón-Tituaña M, Uranga-Murillo I, Arias MA, Galvez EM, Pardo J. All About (NK Cell-Mediated) Death in Two Acts and an Unexpected Encore: Initiation, Execution and Activation of Adaptive Immunity. Front Immunol 2022; 13:896228. [PMID: 35651603 PMCID: PMC9149431 DOI: 10.3389/fimmu.2022.896228] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/20/2022] [Indexed: 12/12/2022] Open
Abstract
NK cells are key mediators of immune cell-mediated cytotoxicity toward infected and transformed cells, being one of the main executors of cell death in the immune system. NK cells recognize target cells through an array of inhibitory and activating receptors for endogenous or exogenous pathogen-derived ligands, which together with adhesion molecules form a structure known as immunological synapse that regulates NK cell effector functions. The main and best characterized mechanisms involved in NK cell-mediated cytotoxicity are the granule exocytosis pathway (perforin/granzymes) and the expression of death ligands. These pathways are recognized as activators of different cell death programmes on the target cells leading to their destruction. However, most studies analyzing these pathways have used pure recombinant or native proteins instead of intact NK cells and, thus, extrapolation of the results to NK cell-mediated cell death might be difficult. Specially, since the activation of granule exocytosis and/or death ligands during NK cell-mediated elimination of target cells might be influenced by the stimulus received from target cells and other microenvironment components, which might affect the cell death pathways activated on target cells. Here we will review and discuss the available experimental evidence on how NK cells kill target cells, with a special focus on the different cell death modalities that have been found to be activated during NK cell-mediated cytotoxicity; including apoptosis and more inflammatory pathways like necroptosis and pyroptosis. In light of this new evidence, we will develop the new concept of cell death induced by NK cells as a new regulatory mechanism linking innate immune response with the activation of tumour adaptive T cell responses, which might be the initiating stimulus that trigger the cancer-immunity cycle. The use of the different cell death pathways and the modulation of the tumour cell molecular machinery regulating them might affect not only tumour cell elimination by NK cells but, in addition, the generation of T cell responses against the tumour that would contribute to efficient tumour elimination and generate cancer immune memory preventing potential recurrences.
Collapse
Affiliation(s)
- Ariel Ramírez-Labrada
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Unidad de Nanotoxicología e Inmunotoxicología (UNATI), Centro de Investigación Biomédica de Aragón (CIBA), Aragón Health Research Institute (IIS Aragón), Zaragoza, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Zaragoza, Spain
| | - Cecilia Pesini
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Zaragoza, Spain
| | - Llipsy Santiago
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Instituto de Carboquimica (ICB), CSIC, Zaragoza, Spain
| | - Sandra Hidalgo
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Zaragoza, Spain
| | - Adanays Calvo-Pérez
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Zaragoza, Spain
| | - Carmen Oñate
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Zaragoza, Spain
| | - Alejandro Andrés-Tovar
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
| | - Marcela Garzón-Tituaña
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Zaragoza, Spain
| | - Iratxe Uranga-Murillo
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Zaragoza, Spain
| | - Maykel A Arias
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Zaragoza, Spain
| | - Eva M Galvez
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Zaragoza, Spain.,Instituto de Carboquimica (ICB), CSIC, Zaragoza, Spain
| | - Julián Pardo
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Zaragoza, Spain.,Department of Microbiology, Preventive Medicine and Public Health, Fundación Agencia Aragonesa para la Investigación y el Desarrollo ARAID Foundation, University of Zaragoza, Zaragoza, Spain
| |
Collapse
|
30
|
Li J, Smalley I, Chen Z, Wu JY, Phadke MS, Teer JK, Nguyen T, Karreth FA, Koomen JM, Sarnaik AA, Zager JS, Khushalani NI, Tarhini AA, Sondak VK, Rodriguez PC, Messina JL, Chen YA, Smalley KSM. Single-cell Characterization of the Cellular Landscape of Acral Melanoma Identifies Novel Targets for Immunotherapy. Clin Cancer Res 2022; 28:2131-2146. [PMID: 35247927 PMCID: PMC9106889 DOI: 10.1158/1078-0432.ccr-21-3145] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/10/2021] [Accepted: 03/01/2022] [Indexed: 12/21/2022]
Abstract
PURPOSE Acral melanoma is a rare subtype of melanoma that arises on the non-hair-bearing skin of the palms, soles, and nail beds. In this study, we used single-cell RNA sequencing (scRNA-seq) to map the transcriptional landscape of acral melanoma and identify novel immunotherapeutic targets. EXPERIMENTAL DESIGN We performed scRNA-seq on nine clinical specimens (five primary, four metastases) of acral melanoma. Detailed cell type curation was performed, the immune landscapes were mapped, and key results were validated by analysis of The Cancer Genome Atlas (TCGA) and single-cell datasets. Cell-cell interactions were inferred and compared with those in nonacral cutaneous melanoma. RESULTS Multiple phenotypic subsets of T cells, natural killer (NK) cells, B cells, macrophages, and dendritic cells with varying levels of activation/exhaustion were identified. A comparison between primary and metastatic acral melanoma identified gene signatures associated with changes in immune responses and metabolism. Acral melanoma was characterized by a lower overall immune infiltrate, fewer effector CD8 T cells and NK cells, and a near-complete absence of γδ T cells compared with nonacral cutaneous melanomas. Immune cells associated with acral melanoma exhibited expression of multiple checkpoints including PD-1, LAG-3, CTLA-4, V-domain immunoglobin suppressor of T cell activation (VISTA), TIGIT, and the Adenosine A2A receptor (ADORA2). VISTA was expressed in 58.3% of myeloid cells and TIGIT was expressed in 22.3% of T/NK cells. CONCLUSIONS Acral melanoma has a suppressed immune environment compared with that of cutaneous melanoma from nonacral skin. Expression of multiple, therapeutically tractable immune checkpoints were observed, offering new options for clinical translation.
Collapse
Affiliation(s)
- Jiannong Li
- The Department of Biostatistics and Bioinformatics, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - Inna Smalley
- The Department of Tumor Biology, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - Zhihua Chen
- The Department of Biostatistics and Bioinformatics, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - Jheng-Yu Wu
- The Department of Tumor Biology, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - Manali S. Phadke
- The Department of Tumor Biology, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - Jamie K. Teer
- The Department of Biostatistics and Bioinformatics, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - Thanh Nguyen
- The Department of Biostatistics and Bioinformatics, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - Florian A. Karreth
- The Department of Molecular Oncology, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - John M. Koomen
- The Department of Molecular Oncology, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - Amod A. Sarnaik
- The Department of Cutaneous Oncology, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - Jonathan S. Zager
- The Department of Cutaneous Oncology, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - Nikhil I. Khushalani
- The Department of Cutaneous Oncology, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - Ahmad A. Tarhini
- The Department of Cutaneous Oncology, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - Vernon K. Sondak
- The Department of Cutaneous Oncology, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - Paulo C. Rodriguez
- The Department of Immunology, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - Jane L. Messina
- The Department of Immunology, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - Y. Ann Chen
- The Department of Biostatistics and Bioinformatics, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - Keiran S. M. Smalley
- The Department of Tumor Biology, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
- The Department of Cutaneous Oncology, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| |
Collapse
|
31
|
Ladányi A, Hegyi B, Balatoni T, Liszkay G, Rohregger R, Waldnig C, Dudás J, Ferrone S. HLA Class I Downregulation in Progressing Metastases of Melanoma Patients Treated With Ipilimumab. Pathol Oncol Res 2022; 28:1610297. [PMID: 35531074 PMCID: PMC9073691 DOI: 10.3389/pore.2022.1610297] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/30/2022] [Indexed: 12/23/2022]
Abstract
Characterization of the molecular mechanisms underlying antitumor immune responses and immune escape mechanisms has resulted in the development of more effective immunotherapeutic strategies, including immune checkpoint inhibitor (ICI) therapy. ICIs can induce durable responses in patients with advanced cancer in a wide range of cancer types, however, the majority of the patients fail to respond to this therapy or develop resistance in the course of the treatment. Information about the molecular mechanisms underlying primary and acquired resistance is limited. Although HLA class I molecules are crucial in the recognition of tumor antigens by cytotoxic T lymphocytes, only a few studies have investigated the role of their expression level on malignant cells in ICI resistance. To address this topic, utilizing immunohistochemical staining with monoclonal antibodies (mAbs) we analyzed HLA class I expression level in pre-treatment and post-treatment tumor samples from melanoma patients treated with ipilimumab. Twenty-nine metastases removed from six patients were available for the study, including 18 pre-treatment and 11 post-treatment lesions. Compared to metastases excised before ipilimumab therapy, post-treatment lesions displayed a significantly lower HLA class I expression level on melanoma cells; HLA class I downregulation was most marked in progressing metastases from nonresponding patients. We also evaluated the level of infiltration by CD8+ T cells and NK cells but did not find consistent changes between pre- and post-treatment samples. Our results indicate the potential role of HLA class I downregulation as a mechanism of ICI resistance.
Collapse
Affiliation(s)
- Andrea Ladányi
- Department of Surgical and Molecular Pathology, National Institute of Oncology, Budapest, Hungary
| | - Barbara Hegyi
- Department of Thoracic and Abdominal Tumors and Clinical Pharmacology, National Institute of Oncology, Budapest, Hungary.,Doctoral School of Pathological Sciences, Semmelweis University, Budapest, Hungary
| | - Tímea Balatoni
- Department of Oncodermatology, National Institute of Oncology, Budapest, Hungary
| | - Gabriella Liszkay
- Department of Oncodermatology, National Institute of Oncology, Budapest, Hungary
| | - Raphael Rohregger
- Department of Otorhinolaryngology and Head and Neck Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Christoph Waldnig
- Department of Otorhinolaryngology and Head and Neck Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - József Dudás
- Department of Otorhinolaryngology and Head and Neck Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Soldano Ferrone
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
32
|
Carroll HK, Duffy AG, O'Farrelly C. Liver Immunology, Immunotherapy, and Liver Cancers: Time for a Rethink? Semin Liver Dis 2022; 42:212-224. [PMID: 35263795 DOI: 10.1055/s-0042-1744143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The complex immune system of the liver has a major role in tumor surveillance, but also partly explains why current immune therapies are poorly effective against liver cancers. Known primarily for its tolerogenic capacity, the hepatic immune repertoire also comprises diverse populations of armored immune cells with tumor surveillant roles. In healthy people, these work together to successfully identify malignant cells and prevent their proliferation, thus halting tumor formation. When frontline hepatic immune surveillance systems fail, compromised hepatic immunity, driven by obesity, infection, or other pathological factors, allows primary or secondary liver cancers to develop. Tumor growth promotes the normal tolerogenic immunological milieu of the liver, perhaps explaining why current immunotherapies fail to work. This review explores the complex local liver immune system with the hope of identifying potential therapeutic targets needed to best overcome immunological barriers in the liver to create an environment no longer hostile to immunotherapy for the treatment of liver cancer.
Collapse
Affiliation(s)
- Hailey K Carroll
- Department of Medical Oncology, The Mater Hospital, Dublin, Ireland
| | - Austin G Duffy
- Department of Medical Oncology, The Mater Hospital, Dublin, Ireland
| | - Cliona O'Farrelly
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland.,School of Medicine, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland
| |
Collapse
|
33
|
Comprehensive Analysis of RAPGEF2 for Predicting Prognosis and Immunotherapy Response in Patients with Hepatocellular Carcinoma. JOURNAL OF ONCOLOGY 2022; 2022:6560154. [PMID: 35518785 PMCID: PMC9064514 DOI: 10.1155/2022/6560154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 03/30/2022] [Indexed: 11/17/2022]
Abstract
Background Hepatocellular carcinoma (HCC) is the sixth most common tumor worldwide. Additionally, deletion of RAPGEF2 plays a critical role in CNV and related to tumor immune microenvironment, whereas the prognostic potential of RAPGEF2 in HCC patient needs to be explored. Methods We looked for prognostic potential genes in HCC using a variety of R programs. Then, using the LASSO Cox regression, we thoroughly evaluated and integrated the RAPGEF2-related genes from TCGA database. Meanwhile, utilizing TCGA and ICGA databases, the link between RAPGEF2 and immunotherapy response in HCC was studied. In vivo, the effect of RAPGEF2 on tumor development and the capacity of natural killer (NK) cells to recruit were confirmed. To ascertain the connection between RAPGEF2-related genes and the prognosis of HCC, a prognostic model was created and validated. Result We demonstrated RAPGEF2 has a differential expression, and patients with deletion of RAPGEF2 gene get shorter survival in HCC. Additionally, the tissues without RAPGEF2 have a weaker ability to recruit the NK cells and response to immunotherapy. After that, we scoured the database for eight RAPGEF2-related genes linked with a better prognosis in HCC patients. Additionally, silencing RAPGEF2 accelerated tumor development in the HCC mouse model and decreased CD56+ NK cell recruitment in HCC tissues. TCGA database was used to classify patients into low- and high-risk categories based on the expression of related genes. Patients in the low-risk group had a significantly greater overall survival than those in the high-risk group (P < 0.001). Meanwhile, the low-risk group demonstrated connections with the NK cell and immunotherapy response. Finally, the prognostic nomogram showed a high sensitivity and specificity for predicting the survival of HCC patients at 1, 2, and 3 years. Conclusion The prognostic model based on RAPGEF2 and RAPGEF2-related genes showed an excellent predictive performance in terms of prognosis and immunotherapy response in HCC, therefore establishing a unique prognostic model for clinical assessment of HCC patients.
Collapse
|
34
|
Valenzuela PL, Saco-Ledo G, Santos-Lozano A, Morales JS, Castillo-García A, Simpson RJ, Lucia A, Fiuza-Luces C. Exercise Training and Natural Killer Cells in Cancer Survivors: Current Evidence and Research Gaps Based on a Systematic Review and Meta-analysis. SPORTS MEDICINE - OPEN 2022; 8:36. [PMID: 35244811 PMCID: PMC8897541 DOI: 10.1186/s40798-022-00419-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 02/13/2022] [Indexed: 12/25/2022]
Abstract
Background Exercise training can positively impact the immune system and particularly natural killer (NK) cells, at least in healthy people. This effect would be of relevance in the context of cancer given the prominent role of these cells in antitumor immunity. In this systematic review and meta-analysis, we aimed to summarize current evidence on the effects of exercise training on the levels and function of NK cells in cancer survivors (i.e., from the time of diagnosis until the end of life). Methods Relevant articles were searched in PubMed, Scopus, Web of Science and Cochrane Central Register of Controlled Trials (until January 11, 2022). Randomized controlled trials (RCT) of exercise training (i.e., non-acute) interventions vs usual care conducted in cancer survivors and assessing NK number and/or cytotoxic activity (NKCA) before and upon completion of the intervention were included. Methodological quality of the studies was assessed with the PEDro scale, and results were meta-analyzed using a random effects (Dersimoian and Laird) model. Results Thirteen RCT including 459 participants (mean age ranging 11–63 years) met the inclusion criteria. Methodological quality of the studies was overall fair (median PEDro score = 5 out of 10). There was heterogeneity across studies regarding cancer types (breast cancer, non-small cell lung cancer and other solid tumors), treatment (e.g., receiving vs having received chemotherapy), exercise modes (aerobic or resistance exercise, Tai Chi, Yoga) and duration (2–24 weeks). No consistent effects were observed for NK number in blood (mean difference [MD]: 1.47, 95% confidence interval [CI] − 0.35 to 3.29, p = 0.113) or NKCA as assessed in vitro (MD: − 0.02, 95%CI − 0.17 to 0.14, p = 0.834). However, mixed results existed across studies, and some could not be meta-analyzed due to lack of information or methodological heterogeneity. Conclusions Current evidence does not support a significant effect of exercise training intervention on NK cells in blood or on their ‘static response’ (as assessed in vitro) in cancer survivors. Several methodological issues and research gaps are highlighted in this review, which should be considered in future studies to draw definite conclusions on this topic. Supplementary Information The online version contains supplementary material available at 10.1186/s40798-022-00419-w.
Collapse
Affiliation(s)
- Pedro L Valenzuela
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain.,Physical Activity and Health Research Group (PaHerg), Instituto de Investigación Sanitaria Hospital, '12 de Octubre' ('imas12'), Centro de Actividades Ambulatorias (CAA), 7ª Planta, Bloque D, Av. de Córdoba s/n, 28041, Madrid, Spain
| | - Gonzalo Saco-Ledo
- Physical Activity and Health Research Group (PaHerg), Instituto de Investigación Sanitaria Hospital, '12 de Octubre' ('imas12'), Centro de Actividades Ambulatorias (CAA), 7ª Planta, Bloque D, Av. de Córdoba s/n, 28041, Madrid, Spain
| | - Alejandro Santos-Lozano
- Physical Activity and Health Research Group (PaHerg), Instituto de Investigación Sanitaria Hospital, '12 de Octubre' ('imas12'), Centro de Actividades Ambulatorias (CAA), 7ª Planta, Bloque D, Av. de Córdoba s/n, 28041, Madrid, Spain.,I+HeALTH, Department of Health Sciences, European University Miguel de Cervantes, Valladolid, Spain
| | - Javier S Morales
- MOVE-IT Research Group, Department of Physical Education, Faculty of Education Sciences, University of Cadiz, Cadiz, Spain
| | | | - Richard J Simpson
- School of Nutritional Sciences and Wellness, The University of Arizona, Tucson, AZ, USA.,Department of Pediatrics, The University of Arizona, Tucson, AZ, USA.,Department of Immunobiology, The University of Arizona, Tucson, AZ, USA
| | - Alejandro Lucia
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain.,Physical Activity and Health Research Group (PaHerg), Instituto de Investigación Sanitaria Hospital, '12 de Octubre' ('imas12'), Centro de Actividades Ambulatorias (CAA), 7ª Planta, Bloque D, Av. de Córdoba s/n, 28041, Madrid, Spain
| | - Carmen Fiuza-Luces
- Physical Activity and Health Research Group (PaHerg), Instituto de Investigación Sanitaria Hospital, '12 de Octubre' ('imas12'), Centro de Actividades Ambulatorias (CAA), 7ª Planta, Bloque D, Av. de Córdoba s/n, 28041, Madrid, Spain.
| |
Collapse
|
35
|
Oliviero B, Varchetta S, Mele D, Pessino G, Maiello R, Falleni M, Tosi D, Donadon M, Soldani C, Franceschini B, Torzilli G, Piccolo G, Barabino M, Opocher E, Maestri M, Bernuzzi S, Wucherpfennig KW, Mondelli MU, Mantovani S. MICA/B-targeted antibody promotes NK cell-driven tumor immunity in patients with intrahepatic cholangiocarcinoma. Oncoimmunology 2022; 11:2035919. [PMID: 35223192 PMCID: PMC8865231 DOI: 10.1080/2162402x.2022.2035919] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The major histocompatibility complex-class I chain related proteins A and B (MICA/B) is upregulated because of cellular stress and MICA/B shedding by cancer cells causes escape from NKG2D recognition favoring the emergence of cancers. Cholangiocarcinoma (CCA) is a relatively rare, though increasingly prevalent, primary liver cancer characterized by a late clinical presentation and a dismal prognosis. We explored the NKG2D-MICA/B axis in NK cells from 41 patients with intrahepatic cholangiocarcinoma (iCCA). The MICA/B-specific 7C6 mAb was used for ex vivo antibody-dependent cytotoxicity (ADCC) experiments using circulating, non tumor liver- and tumor-infiltrating NK cells against the HuCCT-1 cell line and patient-derived primary iCCA cells as targets. MICA/B were more expressed in iCCA than in non-tumoral tissue, MICA transcription being higher in moderately-differentiated compared with poorly-differentiated cancer. Serum MICA was elevated in iCCA patients in line with higher expression of ADAM10 and ADAM17 that are responsible for proteolytic release of MICA/B from tumor. Addition of 7C6 significantly boosted peripheral, liver- and tumor-infiltrating-NK cell degranulation and IFNγ production toward MICA/B-expressing established cell lines and autologous iCCA patient target cells. Our data show that anti-MICA/B drives NK cell anti-tumor activity, and provide preclinical evidence in support of 7C6 as a potential immunotherapeutic tool for iCCA.
Collapse
Affiliation(s)
- Barbara Oliviero
- Division of Clinical Immunology - Infectious Diseases, Department of Medicine, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Stefania Varchetta
- Division of Clinical Immunology - Infectious Diseases, Department of Medicine, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Dalila Mele
- Division of Clinical Immunology - Infectious Diseases, Department of Medicine, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Greta Pessino
- Division of Clinical Immunology - Infectious Diseases, Department of Medicine, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Roberta Maiello
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Monica Falleni
- Department of Pathology, Department of Health Sciences, ASST Santi Paolo e Carlo, State University of Milan, Milan, Italy
| | - Delfina Tosi
- Department of Pathology, Department of Health Sciences, ASST Santi Paolo e Carlo, State University of Milan, Milan, Italy
| | - Matteo Donadon
- Department of Hepatobiliary and General Surgery, Humanitas Clinical and Research Center, Humanitas University, Rozzano, Italy
| | - Cristiana Soldani
- Department of Hepatobiliary and General Surgery, Humanitas Clinical and Research Center, Humanitas University, Rozzano, Italy
| | - Barbara Franceschini
- Department of Hepatobiliary and General Surgery, Humanitas Clinical and Research Center, Humanitas University, Rozzano, Italy
| | - Guido Torzilli
- Department of Hepatobiliary and General Surgery, Humanitas Clinical and Research Center, Humanitas University, Rozzano, Italy
| | - Gaetano Piccolo
- Division of Gastrointestinal Surgery, ASST Santi Paolo e Carlo, and State University of Milan, Milan, Italy
| | - Matteo Barabino
- Division of Gastrointestinal Surgery, ASST Santi Paolo e Carlo, and State University of Milan, Milan, Italy
| | - Enrico Opocher
- Division of Gastrointestinal Surgery, ASST Santi Paolo e Carlo, and State University of Milan, Milan, Italy
| | - Marcello Maestri
- Division of General Surgery 1, Department of Surgery, Fondazione Irccs Policlinico San Matteo, Pavia, Italy
| | - Stefano Bernuzzi
- Immunohematology and Transfusion Service, Department of Diagnostic Medicine, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Kai W. Wucherpfennig
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Mario U. Mondelli
- Division of Clinical Immunology - Infectious Diseases, Department of Medicine, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy,Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy,CONTACT Mario U. Mondelli UOC Immunologia Clinica – Malattie Infettive, Fondazione IRCCS Policlinico San Matteo, Viale Golgi 19, Pavia27100, Italy
| | - Stefania Mantovani
- Division of Clinical Immunology - Infectious Diseases, Department of Medicine, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| |
Collapse
|
36
|
Li JH, O’Sullivan TE. Back to the Future: Spatiotemporal Determinants of NK Cell Antitumor Function. Front Immunol 2022; 12:816658. [PMID: 35082797 PMCID: PMC8785903 DOI: 10.3389/fimmu.2021.816658] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/16/2021] [Indexed: 12/12/2022] Open
Abstract
NK cells play a crucial role in host protection during tumorigenesis. Throughout tumor development, however, NK cells become progressively dysfunctional through a combination of dynamic tissue-specific and systemic factors. While a number of immunosuppressive mechanisms present within the tumor microenvironment have been characterized, few studies have contextualized the spatiotemporal dynamics of these mechanisms during disease progression and across anatomical sites. Understanding how NK cell immunosuppression evolves in these contexts will be necessary to optimize NK cell therapy for solid and metastatic cancers. Here, we outline the spatiotemporal determinants of antitumor NK cell regulation, including heterogeneous tumor architecture, temporal disease states, diverse cellular communities, as well as the complex changes in NK cell states produced by the sum of these higher-order elements. Understanding of the signals encountered by NK cells across time and space may reveal new therapeutic targets to harness the full potential of NK cell therapy for cancer.
Collapse
Affiliation(s)
- Joey H. Li
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at the University of California, Los Angeles (UCLA), Los Angeles, CA, United States
- Medical Scientist Training Program, David Geffen School of Medicine at the University of California, Los Angeles (UCLA), Los Angeles, CA, United States
| | - Timothy E. O’Sullivan
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at the University of California, Los Angeles (UCLA), Los Angeles, CA, United States
| |
Collapse
|
37
|
Ahluwalia P, Ahluwalia M, Mondal AK, Sahajpal NS, Kota V, Rojiani MV, Kolhe R. Natural Killer Cells and Dendritic Cells: Expanding Clinical Relevance in the Non-Small Cell Lung Cancer (NSCLC) Tumor Microenvironment. Cancers (Basel) 2021; 13:cancers13164037. [PMID: 34439191 PMCID: PMC8394984 DOI: 10.3390/cancers13164037] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 12/25/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is a major subtype of lung cancer that accounts for almost 85% of lung cancer cases worldwide. Although recent advances in chemotherapy, radiotherapy, and immunotherapy have helped in the clinical management of these patients, the survival rate in advanced stages remains dismal. Furthermore, there is a critical lack of accurate prognostic and stratification markers for emerging immunotherapies. To harness immune response modalities for therapeutic benefits, a detailed understanding of the immune cells in the complex tumor microenvironment (TME) is required. Among the diverse immune cells, natural killer (NK cells) and dendritic cells (DCs) have generated tremendous interest in the scientific community. NK cells play a critical role in tumor immunosurveillance by directly killing malignant cells. DCs link innate and adaptive immune systems by cross-presenting the antigens to T cells. The presence of an immunosuppressive milieu in tumors can lead to inactivation and poor functioning of NK cells and DCs, which results in an adverse outcome for many cancer patients, including those with NSCLC. Recently, clinical intervention using modified NK cells and DCs have shown encouraging response in advanced NSCLC patients. Herein, we will discuss prognostic and predictive aspects of NK cells and DC cells with an emphasis on NSCLC. Additionally, the discussion will extend to potential strategies that seek to enhance the anti-tumor functionality of NK cells and DCs.
Collapse
Affiliation(s)
- Pankaj Ahluwalia
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (P.A.); (A.K.M.); (N.S.S.)
| | - Meenakshi Ahluwalia
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
| | - Ashis K. Mondal
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (P.A.); (A.K.M.); (N.S.S.)
| | - Nikhil S. Sahajpal
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (P.A.); (A.K.M.); (N.S.S.)
| | - Vamsi Kota
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
| | - Mumtaz V. Rojiani
- Department of Pharmacology, Penn State University College of Medicine, Hershey, PA 17033, USA;
| | - Ravindra Kolhe
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (P.A.); (A.K.M.); (N.S.S.)
- Correspondence: ; Tel.: +1-706-721-2771; Fax: +1-706-434-6053
| |
Collapse
|
38
|
Fuertes MB, Domaica CI, Zwirner NW. Leveraging NKG2D Ligands in Immuno-Oncology. Front Immunol 2021; 12:713158. [PMID: 34394116 PMCID: PMC8358801 DOI: 10.3389/fimmu.2021.713158] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/02/2021] [Indexed: 12/14/2022] Open
Abstract
Immune checkpoint inhibitors (ICI) revolutionized the field of immuno-oncology and opened new avenues towards the development of novel assets to achieve durable immune control of cancer. Yet, the presence of tumor immune evasion mechanisms represents a challenge for the development of efficient treatment options. Therefore, combination therapies are taking the center of the stage in immuno-oncology. Such combination therapies should boost anti-tumor immune responses and/or target tumor immune escape mechanisms, especially those created by major players in the tumor microenvironment (TME) such as tumor-associated macrophages (TAM). Natural killer (NK) cells were recently positioned at the forefront of many immunotherapy strategies, and several new approaches are being designed to fully exploit NK cell antitumor potential. One of the most relevant NK cell-activating receptors is NKG2D, a receptor that recognizes 8 different NKG2D ligands (NKG2DL), including MICA and MICB. MICA and MICB are poorly expressed on normal cells but become upregulated on the surface of damaged, transformed or infected cells as a result of post-transcriptional or post-translational mechanisms and intracellular pathways. Their engagement of NKG2D triggers NK cell effector functions. Also, MICA/B are polymorphic and such polymorphism affects functional responses through regulation of their cell-surface expression, intracellular trafficking, shedding of soluble immunosuppressive isoforms, or the affinity of NKG2D interaction. Although immunotherapeutic approaches that target the NKG2D-NKG2DL axis are under investigation, several tumor immune escape mechanisms account for reduced cell surface expression of NKG2DL and contribute to tumor immune escape. Also, NKG2DL polymorphism determines functional NKG2D-dependent responses, thus representing an additional challenge for leveraging NKG2DL in immuno-oncology. In this review, we discuss strategies to boost MICA/B expression and/or inhibit their shedding and propose that combination strategies that target MICA/B with antibodies and strategies aimed at promoting their upregulation on tumor cells or at reprograming TAM into pro-inflammatory macrophages and remodeling of the TME, emerge as frontrunners in immuno-oncology because they may unleash the antitumor effector functions of NK cells and cytotoxic CD8 T cells (CTL). Pursuing several of these pipelines might lead to innovative modalities of immunotherapy for the treatment of a wide range of cancer patients.
Collapse
Affiliation(s)
- Mercedes Beatriz Fuertes
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Carolina Inés Domaica
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Norberto Walter Zwirner
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina.,Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
39
|
Wright Q, Gonzalez Cruz JL, Wells JW, Leggatt GR. PD-1 and beyond to Activate T Cells in Cutaneous Squamous Cell Cancers: The Case for 4-1BB and VISTA Antibodies in Combination Therapy. Cancers (Basel) 2021; 13:3310. [PMID: 34282763 PMCID: PMC8269268 DOI: 10.3390/cancers13133310] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/24/2021] [Accepted: 06/27/2021] [Indexed: 01/02/2023] Open
Abstract
Non-melanoma skin cancers (NMSC) have a higher incidence than all other cancers combined with cutaneous squamous cell carcinoma (cSCC), capable of metastasis, representing approximately 20% of NMSCs. Given the accessibility of the skin, surgery is frequently employed to treat localized disease, although certain localities, the delineation of clear margins, frequency and recurrence of tumors can make these cancers inoperable in a subset of patients. Other treatment modalities, including cryotherapy, are commonly used for individual lesions, with varying success. Immunotherapy, particularly with checkpoint antibodies, is increasingly a promising therapeutic approach in many cancers, offering the potential advantage of immune memory for protection against lesion recurrence. This review addresses a role for PD-1, 4-1BB and VISTA checkpoint antibodies as monotherapies, or in combination as a therapeutic treatment for both early and late-stage cSCC.
Collapse
Affiliation(s)
| | | | | | - Graham R. Leggatt
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia; (Q.W.); (J.L.G.C.); (J.W.W.)
| |
Collapse
|
40
|
Shklovskaya E, Rizos H. MHC Class I Deficiency in Solid Tumors and Therapeutic Strategies to Overcome It. Int J Mol Sci 2021; 22:ijms22136741. [PMID: 34201655 PMCID: PMC8268865 DOI: 10.3390/ijms22136741] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 12/21/2022] Open
Abstract
It is now well accepted that the immune system can control cancer growth. However, tumors escape immune-mediated control through multiple mechanisms and the downregulation or loss of major histocompatibility class (MHC)-I molecules is a common immune escape mechanism in many cancers. MHC-I molecules present antigenic peptides to cytotoxic T cells, and MHC-I loss can render tumor cells invisible to the immune system. In this review, we examine the dysregulation of MHC-I expression in cancer, explore the nature of MHC-I-bound antigenic peptides recognized by immune cells, and discuss therapeutic strategies that can be used to overcome MHC-I deficiency in solid tumors, with a focus on the role of natural killer (NK) cells and CD4 T cells.
Collapse
|
41
|
Saputro RD, Rinonce HT, Iramawasita Y, Ridho MR, Pudjohartono MF, Anwar SL, Setiaji K, Aryandono T. Potential prognostic value of PD-L1 and NKG2A expression in Indonesian patients with skin nodular melanoma. BMC Res Notes 2021; 14:206. [PMID: 34049578 PMCID: PMC8161664 DOI: 10.1186/s13104-021-05623-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 05/19/2021] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE Biomarker mRNA levels have been suggested to be predictors of patient survival and therapy response in melanoma cases. This study aimed to investigate the correlations between the mRNA expression levels of PD-L1 and NKG2A in melanoma tissue with clinicopathologic characteristics and survival in Indonesian primary nodular melanoma patients. RESULTS Thirty-one tissue samples were obtained; two were excluded from survival analysis due to Breslow depth of less than 4 mm. The median survival of upregulated and normoregulated PD-L1-patients were 15.800 ± 2.345 and 28.945 ± 4.126 months, respectively. However, this difference was not significant statistically (p = 0.086). Upregulated and normoregulated NKG2A patients differed very little in median survival time (25.943 ± 7.415 vs 26.470 ± 3.854 months; p = 0.981). Expression of PD-L1 and NKG2A were strongly correlated (rs: 0.787, p < 0.001). No clinicopathologic associations with PD-L1 and NKG2A mRNA levels were observed. These results suggest that PD-L1 may have potential as a prognostic factor. Although an unlikely prognostic factor, NKG2A may become an adjunct target for therapy. The strong correlation between PD-L1 and NKG2A suggests that anti-PD-1 and anti-NKG2A agents could be effective in patients with PD-L1 upregulation. The mRNA levels of these two genes may help direct choice of immunotherapy and predict patient outcomes.
Collapse
Affiliation(s)
- Ridwan Dwi Saputro
- Department of Surgery, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada/Dr. Sardjito Hospital , Sleman, Yogyakarta, Indonesia
| | - Hanggoro Tri Rinonce
- Department of Anatomical Pathology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada/Dr. Sardjito Hospital , Sleman , Yogyakarta, Indonesia.
| | - Yayuk Iramawasita
- Department of Anatomical Pathology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada/Dr. Sardjito Hospital , Sleman , Yogyakarta, Indonesia
| | - Muhammad Rasyid Ridho
- Department of Anatomical Pathology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada/Dr. Sardjito Hospital , Sleman , Yogyakarta, Indonesia
| | - Maria Fransiska Pudjohartono
- Department of Anatomical Pathology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada/Dr. Sardjito Hospital , Sleman , Yogyakarta, Indonesia
| | - Sumadi Lukman Anwar
- Department of Surgery, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada/Dr. Sardjito Hospital , Sleman, Yogyakarta, Indonesia
| | - Kunto Setiaji
- Department of Surgery, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada/Dr. Sardjito Hospital , Sleman, Yogyakarta, Indonesia
| | - Teguh Aryandono
- Department of Surgery, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada/Dr. Sardjito Hospital , Sleman, Yogyakarta, Indonesia
| |
Collapse
|
42
|
Shaver KA, Croom-Perez TJ, Copik AJ. Natural Killer Cells: The Linchpin for Successful Cancer Immunotherapy. Front Immunol 2021; 12:679117. [PMID: 33995422 PMCID: PMC8115550 DOI: 10.3389/fimmu.2021.679117] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 04/09/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer immunotherapy is a highly successful and rapidly evolving treatment modality that works by augmenting the body’s own immune system. While various immune stimulation strategies such as PD-1/PD-L1 or CTLA-4 checkpoint blockade result in robust responses, even in patients with advanced cancers, the overall response rate is low. While immune checkpoint inhibitors are known to enhance cytotoxic T cells’ antitumor response, current evidence suggests that immune responses independent of cytotoxic T cells, such as Natural Killer (NK) cells, play crucial role in the efficacy of immunotherapeutic interventions. NK cells hold a distinct role in potentiating the innate immune response and activating the adaptive immune system. This review highlights the importance of the early actions of the NK cell response and the pivotal role NK cells hold in priming the immune system and setting the stage for successful response to cancer immunotherapy. Yet, in many patients the NK cell compartment is compromised thus lowering the chances of successful outcomes of many immunotherapies. An overview of mechanisms that can drive NK cell dysfunction and hinder immunotherapy success is provided. Rather than relying on the likely dysfunctional endogenous NK cells to work with immunotherapies, adoptive allogeneic NK cell therapies provide a viable solution to increase response to immunotherapies. This review highlights the advances made in development of NK cell therapeutics for clinical application with evidence supporting their combinatorial application with other immune-oncology approaches to improve outcomes of immunotherapies.
Collapse
Affiliation(s)
- Kari A Shaver
- College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Tayler J Croom-Perez
- Burnett School of Biomedical Science, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Alicja J Copik
- Burnett School of Biomedical Science, College of Medicine, University of Central Florida, Orlando, FL, United States
| |
Collapse
|
43
|
Lee H, Da Silva IP, Palendira U, Scolyer RA, Long GV, Wilmott JS. Targeting NK Cells to Enhance Melanoma Response to Immunotherapies. Cancers (Basel) 2021; 13:cancers13061363. [PMID: 33802954 PMCID: PMC8002669 DOI: 10.3390/cancers13061363] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 12/23/2022] Open
Abstract
Natural killer (NK) cells are a key component of an innate immune system. They are important not only in initiating, but also in augmenting adaptive immune responses. NK cell activation is mediated by a carefully orchestrated balance between the signals from inhibitory and activating NK cell receptors. NK cells are potent producers of proinflammatory cytokines and are also able to elicit strong antitumor responses through secretion of perforin and granzyme B. Tumors can develop many mechanisms to evade NK cell antitumor responses, such as upregulating ligands for inhibitory receptors, secreting anti-inflammatory cytokines and recruiting immunosuppressive cells. Enhancing NK cell responses will likely augment the effectiveness of immunotherapies, and strategies to accomplish this are currently being evaluated in clinical trials. A comprehensive understanding of NK cell biology will likely provide additional opportunities to further leverage the antitumor effects of NK cells. In this review, we therefore sought to highlight NK cell biology, tumor evasion of NK cells and clinical trials that target NK cells.
Collapse
Affiliation(s)
- Hansol Lee
- Melanoma Institute Australia, The University of Sydney, Sydney 2006, Australia; (H.L.); (I.P.D.S.); (U.P.); (R.A.S.); (J.S.W.)
- Faculty of Medicine and Health Sciences, The University of Sydney, Sydney 2006, Australia
| | - Inês Pires Da Silva
- Melanoma Institute Australia, The University of Sydney, Sydney 2006, Australia; (H.L.); (I.P.D.S.); (U.P.); (R.A.S.); (J.S.W.)
| | - Umaimainthan Palendira
- Melanoma Institute Australia, The University of Sydney, Sydney 2006, Australia; (H.L.); (I.P.D.S.); (U.P.); (R.A.S.); (J.S.W.)
- Department of Infectious Diseases and Immunology, The Charles Perkins Centre, School of Medical Sciences, The University of Sydney, Sydney 2006, Australia
| | - Richard A. Scolyer
- Melanoma Institute Australia, The University of Sydney, Sydney 2006, Australia; (H.L.); (I.P.D.S.); (U.P.); (R.A.S.); (J.S.W.)
- Faculty of Medicine and Health Sciences, The University of Sydney, Sydney 2006, Australia
- Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and NSW Health Pathology, Sydney 2006, Australia
| | - Georgina V. Long
- Melanoma Institute Australia, The University of Sydney, Sydney 2006, Australia; (H.L.); (I.P.D.S.); (U.P.); (R.A.S.); (J.S.W.)
- Department of Medical Oncology, Royal North Shore Hospital and Mater Hospital, Sydney 2065, Australia
- Sydney Medical School, The University of Sydney, Sydney 2006, Australia
- Correspondence: ; Tel.: +61-2-9911-7336
| | - James S. Wilmott
- Melanoma Institute Australia, The University of Sydney, Sydney 2006, Australia; (H.L.); (I.P.D.S.); (U.P.); (R.A.S.); (J.S.W.)
- Faculty of Medicine and Health Sciences, The University of Sydney, Sydney 2006, Australia
| |
Collapse
|
44
|
Chen Z, Yang Y, Neo SY, Shi H, Chen Y, Wagner AK, Larsson K, Tong L, Jakobsson PJ, Alici E, Wu J, Cao Y, Wang K, Liu LL, Mao Y, Sarhan D, Lundqvist A. Phosphodiesterase 4A confers resistance to PGE2-mediated suppression in CD25 + /CD54 + NK cells. EMBO Rep 2021; 22:e51329. [PMID: 33480074 PMCID: PMC7926252 DOI: 10.15252/embr.202051329] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 12/14/2020] [Accepted: 12/21/2020] [Indexed: 12/22/2022] Open
Abstract
Inadequate persistence of tumor‐infiltrating natural killer (NK) cells is associated with poor prognosis in cancer patients. The solid tumor microenvironment is characterized by the presence of immunosuppressive factors, including prostaglandin E2 (PGE2), that limit NK cell persistence. Here, we investigate if the modulation of the cytokine environment in lung cancer with IL‐2 or IL‐15 renders NK cells resistant to suppression by PGE2. Analyzing Cancer Genome Atlas (TCGA) data, we found that high NK cell gene signatures correlate with significantly improved overall survival in patients with high levels of the prostaglandin E synthase (PTGES). In vitro, IL‐15, in contrast to IL‐2, enriches for CD25+/CD54+ NK cells with superior mTOR activity and increased expression of the cAMP hydrolyzing enzyme phosphodiesterase 4A (PDE4A). Consequently, this distinct population of NK cells maintains their function in the presence of PGE2 and shows an increased ability to infiltrate lung adenocarcinoma tumors in vitro and in vivo. Thus, strategies to enrich CD25+/CD54+ NK cells for adoptive cell therapy should be considered.
Collapse
Affiliation(s)
- Ziqing Chen
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Ying Yang
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.,Department of Respiratory Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China.,School of Medicine, Zhejiang University, Hangzhou, China
| | - Shi Y Neo
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Hao Shi
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Yi Chen
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Arnika K Wagner
- Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Karin Larsson
- Rheumatology Unit, Department of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Le Tong
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Per-Johan Jakobsson
- Rheumatology Unit, Department of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Evren Alici
- Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Jing Wu
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Yihai Cao
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Kai Wang
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Lisa L Liu
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Yumeng Mao
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Dhifaf Sarhan
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Andreas Lundqvist
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
45
|
Apraiz A, Benedicto A, Marquez J, Agüera-Lorente A, Asumendi A, Olaso E, Arteta B. Innate Lymphoid Cells in the Malignant Melanoma Microenvironment. Cancers (Basel) 2020; 12:cancers12113177. [PMID: 33138017 PMCID: PMC7692065 DOI: 10.3390/cancers12113177] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/22/2020] [Accepted: 10/26/2020] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Innate lymphoid cells (ILCs) are the innate counterparts of adaptive immune cells. Emerging data indicate that they are also key players in the progression of multiple tumors. In this review we briefly describe ILCs’ functions in the skin, lungs and liver. Next, we analyze the role of ILCs in primary cutaneous melanoma and in its most frequent and deadly metastases, those in liver and lung. We focus on their dual anti– and pro-tumoral functions, depending on the cross-interactions among them and with the surrounding stromal cells that form the tumor microenvironment (TME) in each organ. Next, we detail the role of extracellular vesicles secreted to the TME by ILCs and melanoma on both cell populations. We conclude that the identification of markers and tools to allow the modulation of individual ILC subsets, in addition to the development of standardized protocols, is essential for addressing the therapeutic modulation of ILCs. Abstract The role of innate lymphoid cells (ILCs) in cancer progression has been uncovered in recent years. ILCs are classified as Type 1, Type 2, and Type 3 ILCs, which are characterized by the transcription factors necessary for their development and the cytokines and chemokines they produce. ILCs are a highly heterogeneous cell population, showing both anti– and protumoral properties and capable of adapting their phenotypes and functions depending on the signals they receive from their surrounding environment. ILCs are considered the innate counterparts of the adaptive immune cells during physiological and pathological processes, including cancer, and as such, ILC subsets reflect different types of T cells. In cancer, each ILC subset plays a crucial role, not only in innate immunity but also as regulators of the tumor microenvironment. ILCs’ interplay with other immune and stromal cells in the metastatic microenvironment further dictates and influences this dichotomy, further strengthening the seed-and-soil theory and supporting the formation of more suitable and organ-specific metastatic environments. Here, we review the present knowledge on the different ILC subsets, focusing on their interplay with components of the tumor environment during the development of primary melanoma as well as on metastatic progression to organs, such as the liver or lung.
Collapse
|
46
|
Attrill GH, Ferguson PM, Palendira U, Long GV, Wilmott JS, Scolyer RA. The tumour immune landscape and its implications in cutaneous melanoma. Pigment Cell Melanoma Res 2020; 34:529-549. [PMID: 32939993 DOI: 10.1111/pcmr.12926] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 08/01/2020] [Accepted: 08/23/2020] [Indexed: 12/21/2022]
Abstract
The field of tumour immunology has rapidly advanced in the last decade, leading to the advent of effective immunotherapies for patients with advanced cancers. This highlights the critical role of the immune system in determining tumour development and outcome. The tumour immune microenvironment (TIME) is highly heterogeneous, and the interactions between tumours and the immune system are vastly complex. Studying immune cell function in the TIME will provide an improved understanding of the mechanisms underpinning these interactions. This review examines the role of immune cell populations in the TIME based on their phenotype, function and localisation, as well as contextualising their position in the dynamic relationship between tumours and the immune system. We discuss the function of immune cell populations, examine their impact on patient outcome and highlight gaps in current understanding of their roles in the TIME, both in cancers in general and specifically in melanoma. Studying the TIME by evaluating both pro-tumour and anti-tumour effects may elucidate the conditions which lead to tumour growth and metastasis or immune-mediated tumour regression. Moreover, an in-depth understanding of these conditions could contribute to improved prognostication, more effective use of current immunotherapies and guide the development of novel treatment strategies and therapies.
Collapse
Affiliation(s)
- Grace H Attrill
- Melanoma Institute Australia, The University of Sydney, Sydney, Australia.,Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Peter M Ferguson
- Melanoma Institute Australia, The University of Sydney, Sydney, Australia.,Sydney Medical School, The University of Sydney, Sydney, Australia.,Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and New South Wales Health Pathology, Sydney, Australia
| | - Umaimainthan Palendira
- Melanoma Institute Australia, The University of Sydney, Sydney, Australia.,Discipline of Infectious Diseases and Immunology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Georgina V Long
- Melanoma Institute Australia, The University of Sydney, Sydney, Australia.,Sydney Medical School, The University of Sydney, Sydney, Australia.,Mater and North Shore Hospitals, Sydney, Australia
| | - James S Wilmott
- Melanoma Institute Australia, The University of Sydney, Sydney, Australia.,Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Richard A Scolyer
- Melanoma Institute Australia, The University of Sydney, Sydney, Australia.,Sydney Medical School, The University of Sydney, Sydney, Australia.,Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and New South Wales Health Pathology, Sydney, Australia
| |
Collapse
|
47
|
Russick J, Torset C, Hemery E, Cremer I. NK cells in the tumor microenvironment: Prognostic and theranostic impact. Recent advances and trends. Semin Immunol 2020; 48:101407. [PMID: 32900565 DOI: 10.1016/j.smim.2020.101407] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/02/2020] [Accepted: 08/12/2020] [Indexed: 12/13/2022]
Abstract
NK cells orchestrate the tumor destruction and control metastasis in a coordinated way with other immune cells of the tumor microenvironment. However, NK cell infiltration in the tumor microenvironment is limited, and tumor cells have developed numerous mechanisms to escape NK cell attack. As a result, NK cells that have been able to infiltrate the tumors are exhausted, and metabolically and functionally impaired. Depending this impairment the prognostic and theranostic values of NK cells differ depending on the studies, the type of cancer, the stage of tumor and the nature of the tumor microenvironment. Extensive studies have been done to investigate different strategies to improve the NK cell function, and nowadays, a battery of therapeutic tools are being tested, with promising results.
Collapse
Affiliation(s)
- Jules Russick
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Team Inflammation, Complement and Cancer, F-75006, Paris, France
| | - Carine Torset
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Team Inflammation, Complement and Cancer, F-75006, Paris, France
| | - Edouard Hemery
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Team Inflammation, Complement and Cancer, F-75006, Paris, France
| | - Isabelle Cremer
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Team Inflammation, Complement and Cancer, F-75006, Paris, France.
| |
Collapse
|
48
|
Shen L, Qi H, Chen S, Cao F, Xie L, Wu Y, Ma W, Song Z, Yuan H, Zhang T, Li D, Wen X, Chen Q, Li W, Zhang X, Fan W. Cryoablation combined with transarterial infusion of pembrolizumab (CATAP) for liver metastases of melanoma: an ambispective, proof-of-concept cohort study. Cancer Immunol Immunother 2020; 69:1713-1724. [PMID: 32333081 PMCID: PMC7413875 DOI: 10.1007/s00262-020-02566-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 04/02/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND The presence of liver metastasis correlates with poor therapeutic response of PD-1 blockade therapy in melanoma. A novel treatment protocol by combining cryoablation with transarterial infusion of pembrolizumab (CATAP) was proposed, and its feasibility and safety was assessed among this group of patients. METHODS This registered ambispective cohort study enrolled fifteen melanoma patients with multiple hepatic metastases who received planned two-stage CATAP therapy: in the combined stage, subtotal cryoablation on day 1, in which one to two intrahepatic lesions were ablated completely with other lesions left untreated, sequentially combined transarterial infusion of pembrolizumab on day 3, every three weeks, for at least one cycle; in the infusion stage, arterial infusion of pembrolizumab was recommended at three-week interval until disease progression. The primary endpoint was objective response rate by RECIST (version 1.1); secondary end points included progression-free survival (PFS) and safety; exploratory endpoints were changes of cytokines and immune cell compositions in peripheral blood samples. RESULTS Of the 15 patients enrolled, no grade 3-4 adverse events or major complications were observed. One patient (6.7%) achieved complete response, and 3 (20.0%) achieved partial response. The overall response rates of CATAP for the entire cohort and patients with cutaneous melanoma were 26.7% (95% confidence interval (CI) 4.3-49.0%) and 33.3% (95% CI 2.5-64.1%), respectively. Clinical response was observed in a proportion of patients (2/6; 33.3%) who failed first-line intravenous pembrolizumab treatment. The median overall PFS time and hepatic PFS time were 4.0 (95% CI 2.5-5.5) and 5.73 (95% CI 1.1-10.4) months, respectively. A significant increase in CD3-CD16 + CD56 + cells (natural killer cells; P = 0.0124) and a marginally significant decrease in CD4 + CD25 + cells (regulatory T cells; P = 0.0546) were observed three weeks after the first cycle of treatment in the combined stage. CONCLUSIONS The CATAP therapy demonstrated positive clinical activity and a favorable safety profile for melanoma patients with liver metastasis.
Collapse
Affiliation(s)
- Lujun Shen
- Department of Minimally Invasive Interventional Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, 510060 People’s Republic of China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University, Guangzhou, 510060 People’s Republic of China
| | - Han Qi
- Department of Minimally Invasive Interventional Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, 510060 People’s Republic of China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University, Guangzhou, 510060 People’s Republic of China
| | - Shuanggang Chen
- Department of Minimally Invasive Interventional Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, 510060 People’s Republic of China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University, Guangzhou, 510060 People’s Republic of China
| | - Fei Cao
- Department of Minimally Invasive Interventional Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, 510060 People’s Republic of China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University, Guangzhou, 510060 People’s Republic of China
| | - Lin Xie
- Department of Minimally Invasive Interventional Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, 510060 People’s Republic of China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University, Guangzhou, 510060 People’s Republic of China
| | - Ying Wu
- Department of Minimally Invasive Interventional Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, 510060 People’s Republic of China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University, Guangzhou, 510060 People’s Republic of China
| | - Weimei Ma
- Department of Minimally Invasive Interventional Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, 510060 People’s Republic of China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University, Guangzhou, 510060 People’s Republic of China
| | - Ze Song
- Department of Medical Imaging, Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107 People’s Republic of China
| | - Hui Yuan
- Department of Minimally Invasive Interventional Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, 510060 People’s Republic of China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University, Guangzhou, 510060 People’s Republic of China
| | - Tao Zhang
- Intelligence Technology Co. Ltd, Guangzhou, 510060 People’s Republic of China
| | - Dandan Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University, Guangzhou, 510060 People’s Republic of China
- Department of Biological Therapy Center, Sun Yat-Sen University Cancer Center, Guangzhou, 510060 People’s Republic of China
| | - Xizhi Wen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University, Guangzhou, 510060 People’s Republic of China
- Department of Biological Therapy Center, Sun Yat-Sen University Cancer Center, Guangzhou, 510060 People’s Republic of China
| | - Qifeng Chen
- Department of Minimally Invasive Interventional Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, 510060 People’s Republic of China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University, Guangzhou, 510060 People’s Republic of China
| | - Wang Li
- Department of Minimally Invasive Interventional Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, 510060 People’s Republic of China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University, Guangzhou, 510060 People’s Republic of China
| | - Xiaoshi Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University, Guangzhou, 510060 People’s Republic of China
- Department of Biological Therapy Center, Sun Yat-Sen University Cancer Center, Guangzhou, 510060 People’s Republic of China
| | - Weijun Fan
- Department of Minimally Invasive Interventional Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, 510060 People’s Republic of China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University, Guangzhou, 510060 People’s Republic of China
| |
Collapse
|
49
|
Abstract
Immunotherapy with checkpoint blockade induces rapid and durable immune control of cancer in some patients and has driven a monumental shift in cancer treatment. Neoantigen-specific CD8+ T cells are at the forefront of current immunotherapy strategies, and the majority of drug discovery and clinical trials revolve around further harnessing these immune effectors. Yet the immune system contains a diverse range of antitumour effector cells, and these must function in a coordinated and synergistic manner to overcome the immune-evasion mechanisms used by tumours and achieve complete control with tumour eradication. A key antitumour effector is the natural killer (NK) cells, cytotoxic innate lymphocytes present at high frequency in the circulatory system and identified by their exquisite ability to spontaneously detect and lyse transformed or stressed cells. Emerging data show a role for intratumoural NK cells in driving immunotherapy response and, accordingly, there have been renewed efforts to further elucidate and target the pathways controlling NK cell antitumour function. In this Review, we discuss recent clinical evidence that NK cells are a key immune constituent in the protective antitumour immune response and highlight the major stages of the cancer-NK cell immunity cycle. We also perform a new analysis of publicly available transcriptomic data to provide an overview of the prognostic value of NK cell gene expression in 25 tumour types. Furthermore, we discuss how the role of NK cells evolves with tumour progression, presenting new opportunities to target NK cell function to enhance cancer immunotherapy response rates across a more diverse range of cancers.
Collapse
Affiliation(s)
- Nicholas D Huntington
- Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia.
- oNKo-Innate Pty Ltd, Moonee Ponds, Victoria, Australia.
| | - Joseph Cursons
- Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia.
- oNKo-Innate Pty Ltd, Moonee Ponds, Victoria, Australia.
| | - Jai Rautela
- Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
- oNKo-Innate Pty Ltd, Moonee Ponds, Victoria, Australia
| |
Collapse
|
50
|
Zhang PF, Gao C, Huang XY, Lu JC, Guo XJ, Shi GM, Cai JB, Ke AW. Cancer cell-derived exosomal circUHRF1 induces natural killer cell exhaustion and may cause resistance to anti-PD1 therapy in hepatocellular carcinoma. Mol Cancer 2020; 19:110. [PMID: 32593303 PMCID: PMC7320583 DOI: 10.1186/s12943-020-01222-5] [Citation(s) in RCA: 331] [Impact Index Per Article: 82.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 05/28/2020] [Indexed: 02/07/2023] Open
Abstract
Objective Natural killer (NK) cells play a critical role in the innate antitumor immune response. Recently, NK cell dysfunction has been verified in various malignant tumors, including hepatocellular carcinoma (HCC). However, the molecular biological mechanisms of NK cell dysfunction in human HCC are still obscure. Methods The expression of circular ubiquitin-like with PHD and ring finger domain 1 RNA (circUHRF1) in HCC tissues, exosomes, and cell lines was detected by qRT-PCR. Exosomes were isolated from the culture medium of HCC cells and plasma of HCC patients using an ultracentrifugation method and the ExoQuick Exosome Precipitation Solution kit and then characterized by transmission electronic microscopy, NanoSight and western blotting. The role of circUHRF1 in NK cell dysfunction was assessed by ELISA. In vivo circRNA precipitation, RNA immunoprecipitation, and luciferase reporter assays were performed to explore the molecular mechanisms of circUHRF1 in NK cells. In a retrospective study, the clinical characteristics and prognostic significance of circUHRF1 were determined in HCC tissues. Results Here, we report that the expression of circUHRF1 is higher in human HCC tissues than in matched adjacent nontumor tissues. Increased levels of circUHRF1 indicate poor clinical prognosis and NK cell dysfunction in patients with HCC. In HCC patient plasma, circUHRF1 is predominantly secreted by HCC cells in an exosomal manner, and circUHRF1 inhibits NK cell-derived IFN-γ and TNF-α secretion. A high level of plasma exosomal circUHRF1 is associated with a decreased NK cell proportion and decreased NK cell tumor infiltration. Moreover, circUHRF1 inhibits NK cell function by upregulating the expression of TIM-3 via degradation of miR-449c-5p. Finally, we show that circUHRF1 may drive resistance to anti-PD1 immunotherapy in HCC patients. Conclusions Exosomal circUHRF1 is predominantly secreted by HCC cells and contributes to immunosuppression by inducing NK cell dysfunction in HCC. CircUHRF1 may drive resistance to anti-PD1 immunotherapy, providing a potential therapeutic strategy for patients with HCC.
Collapse
Affiliation(s)
- Peng-Fei Zhang
- Liver Cancer Institute, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai, People's Republic of China, 200032.,Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, People's Republic of China.,Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, P.R. China
| | - Chao Gao
- Liver Cancer Institute, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai, People's Republic of China, 200032.,Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, People's Republic of China
| | - Xiao-Yong Huang
- Liver Cancer Institute, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai, People's Republic of China, 200032.,Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, People's Republic of China
| | - Jia-Cheng Lu
- Liver Cancer Institute, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai, People's Republic of China, 200032.,Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, People's Republic of China
| | - Xiao-Jun Guo
- Liver Cancer Institute, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai, People's Republic of China, 200032.,Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, People's Republic of China
| | - Guo-Ming Shi
- Liver Cancer Institute, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai, People's Republic of China, 200032. .,Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, People's Republic of China.
| | - Jia-Bin Cai
- Liver Cancer Institute, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai, People's Republic of China, 200032. .,Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, People's Republic of China.
| | - Ai-Wu Ke
- Liver Cancer Institute, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai, People's Republic of China, 200032. .,Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, People's Republic of China.
| |
Collapse
|