1
|
Kim B, Weibel M, McDaniel J. Loneliness Gets Under the Skin: A Scoping Review Exploring the Link Between Loneliness and Biological Measures of Inflammation. West J Nurs Res 2024:1939459241292037. [PMID: 39451131 DOI: 10.1177/01939459241292037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
BACKGROUND Research suggests that systemic inflammation may link loneliness to adverse health outcomes, yet there is a gap in comprehensively reviewing recent evidence on the relationship between loneliness and biological measures of inflammation in adults. This scoping review synthesizes current research to address the question: Is there a definitive link between loneliness and biological markers of inflammation in adults? METHODS Following the methods outlined by Arksey and O'Malley, we developed a protocol, defined our research question, and systematically searched PubMed, CINAHL, Embase, and Scopus for English-language studies conducted from 2018 to 2023 exploring the relationship between loneliness and biomarkers of inflammation in adults. RESULTS Twelve studies meeting the inclusion criteria displayed heterogeneity in terms of sample characteristics, loneliness scales, and inflammatory biomarkers. The UCLA Loneliness Scale, in various forms, emerged as the predominant tool for measuring loneliness, while C-reactive protein and interleukin-6 were the most frequently evaluated inflammatory biomarkers. Notably, all 12 studies reported an association between loneliness and at least 1 biological marker of inflammation. CONCLUSION Research consistently associates loneliness with poor health outcomes in aging adults, but the underlying mechanisms remain unclear. This scoping review suggests that inflammation may serve as a pathway linking loneliness to adverse health outcomes. However, the variability across studies highlights the need for standardized measurement methods and a consideration of both the duration and extent of loneliness. Enhancing our understanding of how loneliness affects systemic inflammation may help clarify why loneliness is associated with negative health outcomes.
Collapse
Affiliation(s)
- Bohyun Kim
- College of Nursing, The Ohio State University, Columbus, OH, USA
| | - Maria Weibel
- College of Nursing, The Ohio State University, Columbus, OH, USA
| | - Jodi McDaniel
- College of Nursing, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
2
|
Liu M, Zhu B, Li QJ. IL-1 signaling in aging and cancer: An inflammaging feedback loop unveiled. Cancer Cell 2024:S1535-6108(24)00363-5. [PMID: 39423815 DOI: 10.1016/j.ccell.2024.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 09/23/2024] [Accepted: 09/23/2024] [Indexed: 10/21/2024]
Abstract
In a Science paper, Park et al. identified interleukin (IL)-1α as a key driver of positive feedback in inflammaging, linking aging-associated downregulation of DNMT3A to increased IL-1α production in lung myeloid cells. This triggers emergency myelopoiesis in the bone marrow, amplifying myeloid-mediated intratumoral immunosuppression for tumor progression in aged mice.
Collapse
Affiliation(s)
- Mingyong Liu
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A(∗)STAR), Singapore 138673, Singapore
| | - Bo Zhu
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Qi-Jing Li
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A(∗)STAR), Singapore 138673, Singapore; Singapore Immunology Network, Agency for Science, Technology and Research (A(∗)STAR), Singapore 138648, Singapore.
| |
Collapse
|
3
|
Huang J, Kuang W, Zhou Z. IL-1 signaling pathway, an important target for inflammation surrounding in myocardial infarction. Inflammopharmacology 2024; 32:2235-2252. [PMID: 38676853 DOI: 10.1007/s10787-024-01481-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/15/2024] [Indexed: 04/29/2024]
Abstract
Acute myocardial infarction is an important cardiovascular disease worldwide. Although the mortality rate of myocardial infarction (MI) has improved dramatically in recent years due to timely treatment, adverse remodeling of the left ventricle continues to affect cardiac function. Various immune cells are involved in this process to induce inflammation and amplification. The infiltration of inflammatory cells in the infarcted myocardium is induced by various cytokines and chemokines, and the recruitment of leukocytes further amplifies the inflammatory response. As an increasing number of clinical anti-inflammatory therapies have achieved significant success in recent years, treating myocardial infarction by targeting inflammation may become a novel therapeutic option. In particular, successful clinical trials of canakinumab have demonstrated the important role of the inflammatory factor interleukin-1 (IL-1) in atherosclerosis. Targeted IL-1 therapy may decrease inflammation levels and improve cardiac function in patients after myocardial infarction. This article reviews the complex series of responses after myocardial infarction, including the involvement of inflammatory cells and the role of cytokines and chemokines, focusing on the progression of the IL-1 family in myocardial infarction as well as the performance of current targeted therapy drugs in experiments.
Collapse
Affiliation(s)
- Jianwu Huang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Engineering Research Center of Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wenlong Kuang
- Department of Cardiology, Traditional Chinese and Western Medicine Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Cardiology, Wuhan No.1 Hospital, Wuhan, Hubei, China
| | - Zihua Zhou
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Engineering Research Center of Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
4
|
Heath EI, Thakur A, Chen W, Hwang C, Paller CJ, Cackowski FC, Boerner JL, Heilbrun L, Smith MP, Schalk DL, Schienschang A, Whitaker SA, Polend A, Smith D, Vaishampayan UN, Dickow B, Lum LG. Race-Related Differences in Sipuleucel-T Response among Men with Metastatic Castrate-Resistant Prostate Cancer. CANCER RESEARCH COMMUNICATIONS 2024; 4:1715-1725. [PMID: 38856749 PMCID: PMC11240276 DOI: 10.1158/2767-9764.crc-24-0112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/30/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
Sipuleucel-T is an autologous cellular immunotherapy that targets prostatic acid phosphatase (PAP) and is available for treatment of men with asymptomatic or minimally symptomatic metastatic castration-resistant prostate cancer (mCRPC). In this single-arm, two-cohort, multicenter clinical study, potential racial differences in immune responses to sipuleucel-T in men with mCRPC were explored. Patients' blood samples were obtained to assess serum cytokines, humoral responses, and cellular immunity markers before and after treatment. Baseline cumulative product parameters (total nucleated and CD54+ cell counts and CD54 upregulation) were evaluated. IgM titers against the immunogen PA2024, the target antigen PAP, prostate-specific membrane antigen (PSMA) and prostate-specific antigen (PSA) were quantified by ELISA. Cytotoxic T-lymphocyte activity was determined by ELISpots, and cytokine and chemokine concentrations were determined by Luminex.Twenty-nine African American (AA) men and 28 non-African American (non-AA) men with mCRPC received sipuleucel-T. Baseline total nucleated cell count, CD54+ cell count, CD54 expression, and cumulative product parameters were higher in non-AA men. Although PSA baseline levels were higher in AA men, there were no racial differences in IgM antibody and IFNγ ELISpots responses against PA2024, PAP, PSA, and PSMA before and after treatment. Expression of co-stimulatory receptor ICOS on CD4+ and CD8+ T cells, and the levels of Th1 cytokine granulocyte-macrophage colony-stimulating factor and chemokines CCL4 and CCL5, were significantly higher in AA men before and/or after treatment. Despite no difference in the overall survival, PSA changes from baseline were significantly different between the two races. The data suggest that immune correlates in blood differ in AA and non-AA men with mCRPC pre- and post-sipuleucel-T. SIGNIFICANCE Our novel findings of higher expression of co-stimulatory receptor ICOS on CD4+ and CD8+ T cells in African American patients with metastatic castrate-resistant prostate cancer (mCRPC) prior and post-sipuleucel-T suggest activation of CD4+ and CD8+ T cells. The data indicate that racial differences observed in these and other immune correlates before and after sipuleucel-T warrant additional investigation to further our understanding of the immune system in African American men and other men with mCRPC.
Collapse
Affiliation(s)
- Elisabeth I Heath
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan
| | - Archana Thakur
- Department of Medicine, University of Virginia Cancer Center, Charlottesville, Virginia
| | - Wei Chen
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan
| | | | - Channing J Paller
- Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
| | - Frank C Cackowski
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan
| | - Julie L Boerner
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan
| | - Lance Heilbrun
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan
| | - Melanie P Smith
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan
| | - Dana L Schalk
- Department of Medicine, University of Virginia Cancer Center, Charlottesville, Virginia
| | - Amy Schienschang
- Department of Medicine, University of Virginia Cancer Center, Charlottesville, Virginia
| | - Sarah A Whitaker
- Department of Medicine, University of Virginia Cancer Center, Charlottesville, Virginia
| | - Amanda Polend
- Department of Medicine, University of Virginia Cancer Center, Charlottesville, Virginia
| | - Daryn Smith
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan
| | - Ulka N Vaishampayan
- Department of Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan
| | - Brenda Dickow
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan
| | - Lawrence G Lum
- Department of Medicine, University of Virginia Cancer Center, Charlottesville, Virginia
| |
Collapse
|
5
|
Tjader NP, Toland AE. Immunotherapy for colorectal cancer: insight from inherited genetics. Trends Cancer 2024; 10:444-456. [PMID: 38360438 PMCID: PMC11096082 DOI: 10.1016/j.trecan.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/08/2024] [Accepted: 01/18/2024] [Indexed: 02/17/2024]
Abstract
Immunotherapy shows efficacy for multiple cancer types and potential for expanded use. However, current immune checkpoint inhibitors (ICIs) are ineffective against microsatellite-stable colorectal cancer (CRC), which is more commonly diagnosed. Immunotherapy strategies for non-responsive CRC, including new targets and new combination therapies, are being tested to address this need. Importantly, a subset of inherited germline genetic variants associated with CRC risk are predicted to regulate genes with immune functions, including genes related to existing ICIs, as well as new potential targets in the major histocompatibility complex (MHC) region and immunoregulatory cytokines. We review discoveries in the inherited genetics of CRC related to the immune system and draw connections with ongoing developments and emerging immunotherapy targets.
Collapse
Affiliation(s)
- Nijole Pollock Tjader
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Amanda Ewart Toland
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA; Department of Internal Medicine, Division of Human Genetics, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
6
|
Krishnamohan M, Kaplanov I, Maudi-Boker S, Yousef M, Machluf-Katz N, Cohen I, Elkabets M, Titus J, Bersudsky M, Apte RN, Voronov E, Braiman A. Tumor Cell-Associated IL-1α Affects Breast Cancer Progression and Metastasis in Mice through Manipulation of the Tumor Immune Microenvironment. Int J Mol Sci 2024; 25:3950. [PMID: 38612760 PMCID: PMC11011794 DOI: 10.3390/ijms25073950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/25/2024] [Accepted: 03/30/2024] [Indexed: 04/14/2024] Open
Abstract
IL-1α is a dual function cytokine that affects inflammatory and immune responses and plays a pivotal role in cancer. The effects of intracellular IL-1α on the development of triple negative breast cancer (TNBC) in mice were assessed using the CRISPR/Cas9 system to suppress IL-1α expression in 4T1 breast cancer cells. Knockout of IL-1α in 4T1 cells modified expression of multiple genes, including downregulation of cytokines and chemokines involved in the recruitment of tumor-associated pro-inflammatory cells. Orthotopical injection of IL-1α knockout (KO) 4T1 cells into BALB/c mice led to a significant decrease in local tumor growth and lung metastases, compared to injection of wild-type 4T1 (4T1/WT) cells. Neutrophils and myeloid-derived suppressor cells were abundant in tumors developing after injection of 4T1/WT cells, whereas more antigen-presenting cells were observed in the tumor microenvironment after injection of IL-1α KO 4T1 cells. This switch correlated with increased infiltration of CD3+CD8+ and NKp46+cells. Engraftment of IL-1α knockout 4T1 cells into immunodeficient NOD.SCID mice resulted in more rapid tumor growth, with increased lung metastasis in comparison to engraftment of 4T1/WT cells. Our results suggest that tumor-associated IL-1α is involved in TNBC progression in mice by modulating the interplay between immunosuppressive pro-inflammatory cells vs. antigen-presenting and cytotoxic cells.
Collapse
Affiliation(s)
- Mathumathi Krishnamohan
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; (M.K.); (M.E.); (J.T.); (M.B.)
| | - Irena Kaplanov
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; (M.K.); (M.E.); (J.T.); (M.B.)
| | - Sapir Maudi-Boker
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; (M.K.); (M.E.); (J.T.); (M.B.)
| | - Muhammad Yousef
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; (M.K.); (M.E.); (J.T.); (M.B.)
| | - Noy Machluf-Katz
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; (M.K.); (M.E.); (J.T.); (M.B.)
| | - Idan Cohen
- Cancer Center, Emek Medical Center, Afula 18101, Israel;
| | - Moshe Elkabets
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; (M.K.); (M.E.); (J.T.); (M.B.)
| | - Jaison Titus
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; (M.K.); (M.E.); (J.T.); (M.B.)
| | - Marina Bersudsky
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; (M.K.); (M.E.); (J.T.); (M.B.)
| | - Ron N. Apte
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; (M.K.); (M.E.); (J.T.); (M.B.)
| | - Elena Voronov
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; (M.K.); (M.E.); (J.T.); (M.B.)
| | - Alex Braiman
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; (M.K.); (M.E.); (J.T.); (M.B.)
| |
Collapse
|
7
|
Fang Z, Jiang J, Zheng X. Interleukin-1 receptor antagonist: An alternative therapy for cancer treatment. Life Sci 2023; 335:122276. [PMID: 37977354 DOI: 10.1016/j.lfs.2023.122276] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/03/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023]
Abstract
The interleukin-1 receptor antagonist (IL-1Ra) is an anti-inflammatory cytokine and a naturally occurring antagonist of the IL-1 receptor. It effectively counteracts the IL-1 signaling pathway mediated by IL-1α/β. Over the past few decades, accumulating evidence has suggested that IL-1 signaling plays an essential role in tumor formation, growth, and metastasis. Significantly, anakinra, the first United States Food and Drug Administration (FDA)-approved IL-1Ra drug, has demonstrated promising antitumor effects in animal studies. Numerous clinical trials have subsequently incorporated anakinra into their cancer treatment protocols. In this review, we comprehensively discuss the research progress on the role of IL-1 in tumors and summarize the significant contribution of IL-1Ra (anakinra) to tumor immunity. Additionally, we analyze the potential value of IL-1Ra as a biomarker from a clinical perspective. This review is aimed to highlight the important link between inflammation and cancer and provide potential drug targets for future cancer therapy.
Collapse
Affiliation(s)
- Zhang Fang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, Jiangsu, China; Institute for Cell Therapy of Soochow University, Changzhou, Jiangsu, China
| | - Jingting Jiang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, Jiangsu, China; Institute for Cell Therapy of Soochow University, Changzhou, Jiangsu, China.
| | - Xiao Zheng
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, Jiangsu, China; Institute for Cell Therapy of Soochow University, Changzhou, Jiangsu, China.
| |
Collapse
|
8
|
Molinelli E, Gioacchini H, Sapigni C, Diotallevi F, Brisigotti V, Rizzetto G, Offidani A, Simonetti O. New Insight into the Molecular Pathomechanism and Immunomodulatory Treatments of Hidradenitis Suppurativa. Int J Mol Sci 2023; 24:ijms24098428. [PMID: 37176138 PMCID: PMC10179439 DOI: 10.3390/ijms24098428] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/19/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
Hidradenitis suppurativa (HS) is an immune-mediated inflammatory disorder characterized by deep-seated nodules, abscesses, sinus tracts and scars localized in the intertriginous areas. It is accompanied by pain, malodourous secretion and a dramatically decreased quality of life. Although the pathogenesis has not been entirely elucidated, the primary event is follicular hyperkeratosis of the pilosebaceous apocrine unit. Since the registration of the tumor necrosis factor-alpha inhibitor Adalimumab in 2015, several cytokines have been implicated in the pathomechanism of HS and the research of novel therapeutic targets has been intensified. We provide an update on the inflammatory cytokines with a central role in HS pathogenesis and the most promising target molecules of future HS management.
Collapse
Affiliation(s)
- Elisa Molinelli
- Dermatological Unit, Department of Clinical and Molecular Sciences, Polytechnic Marche University, 60126 Ancona, Italy
| | - Helena Gioacchini
- Dermatological Unit, Department of Clinical and Molecular Sciences, Polytechnic Marche University, 60126 Ancona, Italy
| | - Claudia Sapigni
- Dermatological Unit, Department of Clinical and Molecular Sciences, Polytechnic Marche University, 60126 Ancona, Italy
| | - Federico Diotallevi
- Dermatological Unit, Department of Clinical and Molecular Sciences, Polytechnic Marche University, 60126 Ancona, Italy
| | - Valerio Brisigotti
- Dermatological Unit, Department of Clinical and Molecular Sciences, Polytechnic Marche University, 60126 Ancona, Italy
| | - Giulio Rizzetto
- Dermatological Unit, Department of Clinical and Molecular Sciences, Polytechnic Marche University, 60126 Ancona, Italy
| | - Annamaria Offidani
- Dermatological Unit, Department of Clinical and Molecular Sciences, Polytechnic Marche University, 60126 Ancona, Italy
| | - Oriana Simonetti
- Dermatological Unit, Department of Clinical and Molecular Sciences, Polytechnic Marche University, 60126 Ancona, Italy
| |
Collapse
|
9
|
Virgilio T, Bordini J, Cascione L, Sartori G, Latino I, Molina Romero D, Leoni C, Akhmedov M, Rinaldi A, Arribas AJ, Morone D, Seyed Jafari SM, Bersudsky M, Ottolenghi A, Kwee I, Chiaravalli AM, Sessa F, Hunger RE, Bruno A, Mortara L, Voronov E, Monticelli S, Apte RN, Bertoni F, Gonzalez SF. Subcapsular Sinus Macrophages Promote Melanoma Metastasis to the Sentinel Lymph Nodes via an IL1α-STAT3 Axis. Cancer Immunol Res 2022; 10:1525-1541. [PMID: 36206577 PMCID: PMC9716256 DOI: 10.1158/2326-6066.cir-22-0225] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/18/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022]
Abstract
During melanoma metastasis, tumor cells originating in the skin migrate via lymphatic vessels to the sentinel lymph node (sLN). This process facilitates tumor cell spread across the body. Here, we characterized the innate inflammatory response to melanoma in the metastatic microenvironment of the sLN. We found that macrophages located in the subcapsular sinus (SS) produced protumoral IL1α after recognition of tumoral antigens. Moreover, we confirmed that the elimination of LN macrophages or the administration of an IL1α-specific blocking antibody reduced metastatic spread. To understand the mechanism of action of IL1α in the context of the sLN microenvironment, we applied single-cell RNA sequencing to microdissected metastases obtained from animals treated with the IL1α-specific blocking antibody. Among the different pathways affected, we identified STAT3 as one of the main targets of IL1α signaling in metastatic tumor cells. Moreover, we found that the antitumoral effect of the anti-IL1α was not mediated by lymphocytes because Il1r1 knockout mice did not show significant differences in metastasis growth. Finally, we found a synergistic antimetastatic effect of the combination of IL1α blockade and STAT3 inhibition with stattic, highlighting a new immunotherapy approach to preventing melanoma metastasis.
Collapse
Affiliation(s)
- Tommaso Virgilio
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Joy Bordini
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland.,GenomSys SA, Lugano, Switzerland
| | - Luciano Cascione
- Institute of Oncology Research, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Giulio Sartori
- Institute of Oncology Research, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Irene Latino
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Daniel Molina Romero
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland.,Graduate School Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Cristina Leoni
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Murodzhon Akhmedov
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland.,BigOmics Analytics, Lugano, Switzerland
| | - Andrea Rinaldi
- Institute of Oncology Research, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Alberto J. Arribas
- Institute of Oncology Research, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Diego Morone
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - S. Morteza Seyed Jafari
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Marina Bersudsky
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Aner Ottolenghi
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Ivo Kwee
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland.,BigOmics Analytics, Lugano, Switzerland
| | - Anna Maria Chiaravalli
- Unit of Pathology, ASST dei Sette Laghi, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Fausto Sessa
- Unit of Pathology, ASST dei Sette Laghi, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Robert E. Hunger
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Antonino Bruno
- Laboratory of Innate Immunity, Unit of Molecular Pathology, Biochemistry, and Immunology, IRCCS MultiMedica, Milan, Italy.,Laboratory of Immunology and General Pathology, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Lorenzo Mortara
- Laboratory of Immunology and General Pathology, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Elena Voronov
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Silvia Monticelli
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Ron N. Apte
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Francesco Bertoni
- Institute of Oncology Research, Università della Svizzera Italiana, Bellinzona, Switzerland.,Oncology Institute of Southern Switzerland (IOSI), Bellinzona, Switzerland
| | - Santiago F. Gonzalez
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland.,Corresponding Author: Santiago F. Gonzalez, Institute for Research in Biomedicine, via Francesco Chiesa 5. CH-6500 Bellinzona. Switzerland. Phone: +41 58 666 7226; E-mail:
| |
Collapse
|
10
|
Di Filippo M, Hennig P, Karakaya T, Slaufova M, Beer HD. NLRP1 in Cutaneous SCCs: An Example of the Complex Roles of Inflammasomes in Cancer Development. Int J Mol Sci 2022; 23:12308. [PMID: 36293159 PMCID: PMC9603439 DOI: 10.3390/ijms232012308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/28/2022] [Accepted: 10/12/2022] [Indexed: 11/05/2022] Open
Abstract
Protein complexes termed inflammasomes ensure tissue protection from pathogenic and sterile stressors by induction of inflammation. This is mediated by different caspase-1-induced downstream pathways, including activation of the pro-inflammatory cytokines proIL-1β and -18, induction of a lytic type of cell death, and regulation of the release of other pro-inflammatory molecules. Aberrant inflammasome activation underlies the pathology of numerous (auto)inflammatory diseases. Furthermore, inflammasomes support or suppress tumor development in a complex cell-type- and stage-dependent manner. In human keratinocytes and skin, NLRP1 is the central inflammasome sensor activated by cellular perturbation induced, for example, by UVB radiation. UVB represents the main inducer of skin cancer, which is the most common type of malignancy in humans. Recent evidence demonstrates that activation of NLRP1 in human skin supports the development of cutaneous squamous cell carcinomas (cSCCs) by inducing skin inflammation. In contrast, the NLRP1 inflammasome pathway is restrained in established cSCCs, suggesting that, at this stage, the protein complex has a tumor suppressor role. A better understanding of the complex functions of NLRP1 in the development of cSCCs and in general of inflammasomes in cancer might pave the way for novel strategies for cancer prevention and therapy. These strategies might include stage-specific modulation of inflammasome activation or its downstream pathways by mono- or combination therapy.
Collapse
Affiliation(s)
- Michela Di Filippo
- Department of Dermatology, University Hospital of Zurich, 8091 Zurich, Switzerland
| | - Paulina Hennig
- Department of Dermatology, University Hospital of Zurich, 8091 Zurich, Switzerland
| | - Tugay Karakaya
- Department of Dermatology, University Hospital of Zurich, 8091 Zurich, Switzerland
| | - Marta Slaufova
- Department of Dermatology, University Hospital of Zurich, 8091 Zurich, Switzerland
| | - Hans-Dietmar Beer
- Department of Dermatology, University Hospital of Zurich, 8091 Zurich, Switzerland
- Faculty of Medicine, University of Zurich, 8032 Zurich, Switzerland
| |
Collapse
|
11
|
Das P, Mounika P, Yellurkar ML, Prasanna VS, Sarkar S, Velayutham R, Arumugam S. Keratinocytes: An Enigmatic Factor in Atopic Dermatitis. Cells 2022; 11:cells11101683. [PMID: 35626720 PMCID: PMC9139464 DOI: 10.3390/cells11101683] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/04/2022] [Accepted: 05/09/2022] [Indexed: 12/12/2022] Open
Abstract
Atopic dermatitis (AD), characterized by rashes, itching, and pruritus, is a chronic inflammatory condition of the skin with a marked infiltration of inflammatory cells into the lesion. It usually commences in early childhood and coexists with other atopic diseases such as allergic rhinitis, bronchial asthma, allergic conjunctivitis, etc. With a prevalence rate of 1–20% in adults and children worldwide, AD is gradually becoming a major health concern. Immunological aspects have been frequently focused on in the pathogenesis of AD, including the role of the epidermal barrier and the consequent abnormal cytokine expressions. Disrupted epidermal barriers, as well as allergic triggers (food allergy), contact allergens, irritants, microbes, aggravating factors, and ultraviolet light directly initiate the inflammatory response by inducing epidermal keratinocytes, resulting in the abnormal release of various pro-inflammatory mediators, inflammatory cytokines, and chemokines from keratinocytes. In addition, abnormal proteinases, gene mutations, or single nucleotide polymorphisms (SNP) affecting the function of the epidermal barrier can also contribute towards disease pathophysiology. Apart from this, imbalances in cholinergic or adrenergic responses in the epidermis or the role played by immune cells in the epidermis such as Langerhans cells or antigen-presenting cells can also aggravate pathophysiology. The dearth of specific biomarkers for proper diagnosis and the lack of a permanent cure for AD necessitate investigation in this area. In this context, the widespread role played by keratinocytes in the pathogenesis of AD will be reviewed in this article to facilitate the opening up of new avenues of treatment for AD.
Collapse
|
12
|
Pretre V, Papadopoulos D, Regard J, Pelletier M, Woo J. Interleukin-1 (IL-1) and the inflammasome in cancer. Cytokine 2022; 153:155850. [PMID: 35279620 DOI: 10.1016/j.cyto.2022.155850] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/13/2022] [Accepted: 03/03/2022] [Indexed: 12/14/2022]
Abstract
Numerous preclinical and clinical studies have demonstrated the significant contribution of inflammation to the development and progression of various types of cancer. Inflammation in the tumor microenvironment mediates complex interactions between innate immunity, adaptive immunity, microbiomes and stroma, and ultimately alters the overall fitness of tumor cells at multiple stages of carcinogenesis. Malignancies are known to arise in areas of chronic inflammation and inflammation in the tumor microenvironment (often called tumor-promoting inflammation) is believed to allow cancer cells to evade immunosurveillance while promoting genetic instability, survival and progression. Among the strongest data suggesting a causal role for inflammation in cancer come from the recent CANTOS trial which demonstrated that interleukin-1β (IL-1β) inhibition with canakinumab leads to a significant, dose-dependent decrease in incident lung cancer. This observation has launched a series of additional clinical studies to understand the role of IL-1β and the inflammasome in cancer, and the clinical utility of IL-1β inhibition in different stages of lung cancer. In this article we will review recent data implicating IL-1β signaling and its upstream regulator NLRP3 in both solid tumor and hematologic malignancies. We will discuss the key preclinical observations and the current clinical landscape, and describe the pharmacologic tools which will be used to evaluate the effects of blocking tumor-promoting inflammation clinically.
Collapse
|
13
|
Frisch SM. Interleukin-1α: Novel functions in cell senescence and antiviral response. Cytokine 2022; 154:155875. [PMID: 35447531 DOI: 10.1016/j.cyto.2022.155875] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/14/2022] [Accepted: 04/01/2022] [Indexed: 12/21/2022]
Abstract
The interleukin-1 proteins are a hub of innate inflammatory signaling that activates diverse aspects of adaptive immunity. Until recently, the IL-1α isoform was relatively incompletely understood compared with IL-1β. This review briefly summarizes novel and surprising aspects of IL-1α biology. IL-1α localizes to the nucleus, cytoplasm, mitochondria, cell membrane or extracellular space in various contexts, with corresponding distinct functions. In particular, we focus on multiple pathways by which IL-1α promotes the senescent cell phenotype, unexpectedly involving signaling molecules including mTOR, GATA4, mitochondrial cardiolipin and caspases-4/5. Finally, I review a novel pathway by which IL-1α promotes antiviral immunity.
Collapse
Affiliation(s)
- Steven M Frisch
- Department of Biochemistry and WVU Cancer Institute, West Virginia University, Morgantown, WV 26506, United States.
| |
Collapse
|
14
|
Markota Čagalj A, Marinović B, Bukvić Mokos Z. New and Emerging Targeted Therapies for Hidradenitis Suppurativa. Int J Mol Sci 2022; 23:3753. [PMID: 35409118 PMCID: PMC8998913 DOI: 10.3390/ijms23073753] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/20/2022] [Accepted: 03/25/2022] [Indexed: 12/24/2022] Open
Abstract
Hidradenitis suppurativa (HS) is a chronic, recurrent, inflammatory skin disease deriving from the hair follicles. The formation of inflammatory nodules, abscesses, fistulas, and sinus tracts is characterized by a large inflow of key pro-inflammatory mediators, such as IFN-γ, TNF-α, IL-1, IL-17, and IL-12/23. Adalimumab is currently the only Food and Drug Administration (FDA)- and European Medicines Agency (EMA)-approved biologic therapy for moderate to severe HS in adults and adolescents. However, the long-term effectiveness of this TNF-α inhibitor in HS patients has shown to be highly variable. This review aims to review the evidence for emerging therapies that target the main pro-inflammatory cytokines in HS pathogenesis. A review of the literature was conducted, using the PubMed and Google Scholar repositories, as well as Clinicaltrials.gov. Presently, the most promising biologics in phase III trials are anti-IL-17 antibodies, secukinumab, and bimekizumab. Furthermore, an anti-IL-1 biologic, bermekimab, is currently in phase II trials, and shows encouraging results. Overall, the clinical efficacies of all new targeted therapies published up to this point are limited. More studies need to be performed to clarify the precise molecular pathology, and assess the efficacy of biological therapies for HS.
Collapse
Affiliation(s)
- Adela Markota Čagalj
- Department of Dermatology and Venereology, University Hospital Centre Split, Spinčićeva 1, 21000 Split, Croatia;
- School of Medicine, University of Split, Šoltanska 2, 21000 Split, Croatia
| | - Branka Marinović
- School of Medicine, University of Zagreb, Šalata 3, 10000 Zagreb, Croatia;
- Department of Dermatology and Venereology, European Reference Network (ERN), Skin Reference Centre, University Hospital Centre Zagreb, Kišpatićeva 12, 10000 Zagreb, Croatia
| | - Zrinka Bukvić Mokos
- School of Medicine, University of Zagreb, Šalata 3, 10000 Zagreb, Croatia;
- Department of Dermatology and Venereology, European Reference Network (ERN), Skin Reference Centre, University Hospital Centre Zagreb, Kišpatićeva 12, 10000 Zagreb, Croatia
| |
Collapse
|
15
|
Kou F, Cheng Y, Shi L, Liu J, Liu Y, Shi R, Peng G, Li J. LCN2 as a Potential Diagnostic Biomarker for Ulcerative Colitis-Associated Carcinogenesis Related to Disease Duration. Front Oncol 2022; 11:793760. [PMID: 35111677 PMCID: PMC8801604 DOI: 10.3389/fonc.2021.793760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/20/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Patients with long-duration ulcerative colitis (UC) had a higher risk of developing ulcerative colitis-associated carcinogenesis (UCAC) when compared to those with short-duration UC. This study aimed to discover the biomarker for cancer surveillance related to disease duration. METHODS The microarrays were divided into short-duration (<10 years) UC, long-duration (≥10 years) UC, UCAC, and normal groups in the Gene Expression Omnibus (GEO) datasets. Differentially expressed genes (DEGs) of GEO and the hub genes of the selected weighted gene co-expression network analysis (WGCNA) were intersected to obtain the overlapping genes. Among these genes, the key gene was identified by using the protein-protein interaction (PPI) network, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, the cytoHubba of Cytoscape, and the expression levels. Also, immunofluorescence of human colonic mucosa and animal experiment were used to validate the expression trend of the key gene in the progress of UC developing into UCAC. RESULTS Lipocalin-2 (LCN2) was more relevant with disease duration of UC and significantly negatively correlated with the risk of UCAC. The expression level of LCN2 in short-duration UC was higher than that of long-duration UC (P < 0.01), long-duration UC was higher than that of UCAC (P = 0.001), and UC and UCAC were all higher than that of the normal (P < 0.001). We then discovered that the expression trend of LCN2 in blood and stool samples was consistent with that in colorectal mucosa. CONCLUSION The research indicates that LCN2 could be a novel biomarker to evaluate cancer surveillance related to disease duration of developing UC into UCAC. Compared with that of blood samples, stool detection of LCN2 may have more advantages for diagnosis value of early stage of UCAC as a complement to colonoscopy surveillance.
Collapse
Affiliation(s)
- Fushun Kou
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Gastroenterology Department, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yuan Cheng
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Gastroenterology Department, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Lei Shi
- Gastroenterology Department, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jiajing Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yuyue Liu
- Gastroenterology Department, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Rui Shi
- Gastroenterology Department, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Guiying Peng
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Junxiang Li
- Gastroenterology Department, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
16
|
Key Factor Regulating Inflammatory Microenvironment, Metastasis, and Resistance in Breast Cancer: Interleukin-1 Signaling. Mediators Inflamm 2021; 2021:7785890. [PMID: 34602858 PMCID: PMC8486558 DOI: 10.1155/2021/7785890] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/20/2021] [Indexed: 02/06/2023] Open
Abstract
Breast cancer is one of the top-ranked cancers for incidence and mortality worldwide. The biggest challenges in breast cancer treatment are metastasis and drug resistance, for which work on molecular evaluation, mechanism studies, and screening of therapeutic targets is ongoing. Factors that lead to inflammatory infiltration and immune system suppression in the tumor microenvironment are potential therapeutic targets. Interleukin-1 is known as a proinflammatory and immunostimulatory cytokine, which plays important roles in inflammatory diseases. Recent studies have shown that interleukin-1 cytokines drive the formation and maintenance of an inflammatory/immunosuppressive microenvironment through complex intercellular signal crosstalk and tight intracellular signal transduction, which were found to be potentially involved in the mechanism of metastasis and drug resistance of breast cancer. Some preclinical and clinical treatments or interventions to block the interleukin-1/interleukin-1 receptor system and its up- and downstream signaling cascades have also been proven effective. This study provides an overview of IL-1-mediated signal communication in breast cancer and discusses the potential of IL-1 as a therapeutic target especially for metastatic breast cancer and combination therapy and current problems, aiming at enlightening new ideas in the study of inflammatory cytokines and immune networks in the tumor microenvironment.
Collapse
|
17
|
Yang Z, Schooling CM, Kwok MK. Mendelian randomization study of interleukin (IL)-1 family and lung cancer. Sci Rep 2021; 11:17606. [PMID: 34475499 PMCID: PMC8413403 DOI: 10.1038/s41598-021-97099-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/18/2021] [Indexed: 12/24/2022] Open
Abstract
The role of interleukin (IL)-1 family members/receptors in lung cancer remains uncertain due to the susceptibility of observed associations to confounding. We appraised the association of IL-1 family members/receptors with lung cancer and its subtypes [lung adenocarcinoma (LUAD) and squamous cell lung cancer (LUSC)] using two-sample Mendelian randomization. This study found that no IL-1 family members/receptors were significantly associated with lung cancer and its subtypes risk after correction for multiple testing. However, suggestive total effects of increased risk were noted for genetically predicted IL-1Racp with lung cancer (P = 0.006), IL-1α with LUAD (P = 0.027), and IL-1Racp with LUSC (P = 0.008). Suggestive direct effects were also noted for IL-1β, IL-1Ra, IL-36γ with lung cancer, IL-1α/β, IL-1Ra with LUAD, and IL-1β, IL-18BP with LUSC, after adjusting for genetically predicted effects of other IL-1 family members/receptors. Taken together, our findings suggest that interventions decreasing IL-1Racp might protect against lung cancer, perhaps via IL-1α/β or IL-1Ra.
Collapse
Affiliation(s)
- Zhao Yang
- School of Public Health, Li Ka Shing, Faculty of Medicine, The University of Hong Kong, 7 Sassoon Road, Pokfulam, Hong Kong Special Administrative Region, China
| | - C Mary Schooling
- School of Public Health, Li Ka Shing, Faculty of Medicine, The University of Hong Kong, 7 Sassoon Road, Pokfulam, Hong Kong Special Administrative Region, China
- Graduate School of Public Health and Health Policy, City University of New York, New York, USA
| | - Man Ki Kwok
- School of Public Health, Li Ka Shing, Faculty of Medicine, The University of Hong Kong, 7 Sassoon Road, Pokfulam, Hong Kong Special Administrative Region, China.
| |
Collapse
|
18
|
Niklander SE, Murdoch C, Hunter KD. IL-1/IL-1R Signaling in Head and Neck Cancer. FRONTIERS IN ORAL HEALTH 2021; 2:722676. [PMID: 35048046 PMCID: PMC8757896 DOI: 10.3389/froh.2021.722676] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/04/2021] [Indexed: 01/22/2023] Open
Abstract
Decades ago, the study of cancer biology was mainly focused on the tumor itself, paying little attention to the tumor microenvironment (TME). Currently, it is well recognized that the TME plays a vital role in cancer development and progression, with emerging treatment strategies focusing on different components of the TME, including tumoral cells, blood vessels, fibroblasts, senescent cells, inflammatory cells, inflammatory factors, among others. There is a well-accepted relationship between chronic inflammation and cancer development. Interleukin-1 (IL-1), a potent pro-inflammatory cytokine commonly found at tumor sites, is considered one of the most important inflammatory factors in cancer, and has been related with carcinogenesis, tumor growth and metastasis. Increasing evidence has linked development of head and neck squamous cell carcinoma (HNSCC) with chronic inflammation, and particularly, with IL-1 signaling. This review focuses on the most important members of the IL-1 family, with emphasis on how their aberrant expression can promote HNSCC development and metastasis, highlighting possible clinical applications.
Collapse
Affiliation(s)
- Sven E. Niklander
- Unidad de Patología y Medicina Oral, Facultad de Odontologia, Universidad Andres Bello, Viña del Mar, Chile
| | - Craig Murdoch
- Unit of Oral and Maxillofacial Medicine, Pathology and Surgery, School of Clinical Dentistry, University of Sheffield, Sheffield, United Kingdom
| | - Keith D. Hunter
- Unit of Oral and Maxillofacial Medicine, Pathology and Surgery, School of Clinical Dentistry, University of Sheffield, Sheffield, United Kingdom
- Oral Biology and Pathology, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
19
|
Bieber T. Atopic dermatitis: an expanding therapeutic pipeline for a complex disease. Nat Rev Drug Discov 2021; 21:21-40. [PMID: 34417579 PMCID: PMC8377708 DOI: 10.1038/s41573-021-00266-6] [Citation(s) in RCA: 276] [Impact Index Per Article: 92.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2021] [Indexed: 02/07/2023]
Abstract
Atopic dermatitis (AD) is a common chronic inflammatory skin disease with a complex pathophysiology that underlies a wide spectrum of clinical phenotypes. AD remains challenging to treat owing to the limited response to available therapies. However, recent advances in understanding of disease mechanisms have led to the discovery of novel potential therapeutic targets and drug candidates. In addition to regulatory approval for the IL-4Ra inhibitor dupilumab, the anti-IL-13 inhibitor tralokinumab and the JAK1/2 inhibitor baricitinib in Europe, there are now more than 70 new compounds in development. This Review assesses the various strategies and novel agents currently being investigated for AD and highlights the potential for a precision medicine approach to enable prevention and more effective long-term control of this complex disease. Recent advances in understanding of the complex phenotype and mechanisms underlying atopic dermatitis (AD) have revealed multiple new potential targets for pharmacological intervention. Here, Bieber reviews therapeutic strategies and assesses the expanding pipeline for the therapy of AD, highlighting the potential for a precision medicine approach to the management of this complex disorder.
Collapse
Affiliation(s)
- Thomas Bieber
- Department of Dermatology and Allergy, University Hospital, Bonn, Germany. .,Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland. .,Davos Biosciences, Davos, Switzerland.
| |
Collapse
|
20
|
Cheng KJ, Mejia Mohammed EH, Khong TL, Mohd Zain S, Thavagnanam S, Ibrahim ZA. IL-1α and colorectal cancer pathogenesis: Enthralling candidate for anti-cancer therapy. Crit Rev Oncol Hematol 2021; 163:103398. [PMID: 34147647 DOI: 10.1016/j.critrevonc.2021.103398] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 01/04/2023] Open
Abstract
Inflammation has been well-established as a hallmark of colorectal cancer (CRC). Interleukin-1 alpha (IL-1α) is one of the primary inflammatory mediators driving the pathogenesis of inflammation-associated CRC. This systematic review presents the roles of IL-1α in the pathogenesis of the disease. Bibliographic databases PubMed, Science Direct, Scopus and Web of Science were systematically searched for articles that addresses the relationship between IL-1α and colorectal cancer. We highlighted various mechanisms by which IL-1α promotes the pathogenesis of CRC including enhancement of angiogenesis, metastasis, resistance to therapy, and inhibition of tumour suppressive genes. We also discussed the potential mechanisms by which IL-1α expression is induced or secreted in various studies. Beyond these, the systematic review also highlights several potential therapeutic strategies which should be further explored in the future; to target IL-1α and/or its associated pathways; paving our way in finding effective treatments for CRC patients.
Collapse
Affiliation(s)
- Kim Jun Cheng
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | | | - Tak Loon Khong
- Department of Surgery, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Shamsul Mohd Zain
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Surendran Thavagnanam
- Department of Paediatrics, Royal London Hospital, Whitechapel Rd, Whitechapel, E1 1FR London, United Kingdom
| | - Zaridatul Aini Ibrahim
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
21
|
Gupta AK, Shear NH, Piguet V, Bamimore MA. Efficacy of non-surgical monotherapies for hidradenitis suppurativa: a systematic review and network meta-analyses of randomized trials. J DERMATOL TREAT 2021; 33:2149-2160. [PMID: 33961535 DOI: 10.1080/09546634.2021.1927949] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE We determined the relative efficacy of non-surgical monotherapies for hidradenitis suppurativa (HS). METHODS Network meta-analyses were conducted to determine treatments' surface under the cumulative ranking curve (SUCRA) value (i.e., an estimate that ranks efficacy); pairwise comparisons were conducted. RESULTS AND CONCLUSIONS Ten trials were eligible for quantitative analyses; however, all did not have a common endpoint. Outcomes corresponded to pain severity, clinical response, quality of life and abscess count. For pain reduction, infliximab was ranked most efficacious (SUCRA =94%) compared to bermekimab, anakinra and placebo; infliximab reduced pain more significantly (p < 0.05) than anakinra and than placebo. For occurrence of clinical response, bimekizumab had the highest SUCRA (67%) relative to adalimumab, anakinra and placebo; bimekizumab was more efficacious than placebo (p < 0.05). For quality of life in mild HS, Botox had the highest SUCRA (94%) compared to adalimumab and placebo; Botox was more efficacious than placebo (p < 0.05). For reduction in abscess count, oral tetracycline had the highest SUCRA (48%) compared to topical clindamycin and vehicle. Our work-being the first NMA study on non-surgical HS monotherapies-contributes to the comparative effectiveness literature for this condition.
Collapse
Affiliation(s)
- Aditya K Gupta
- Mediprobe Research Inc., London, Ontario, Canada.,Division of Dermatology, Department of Medicine, University of Toronto School of Medicine, Toronto, Ontario, Canada
| | - Neil H Shear
- Division of Dermatology, Department of Medicine, University of Toronto School of Medicine, Toronto, Ontario, Canada.,Division of Dermatology, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Vincent Piguet
- Division of Dermatology, Department of Medicine, University of Toronto School of Medicine, Toronto, Ontario, Canada.,Division of Dermatology, Women's College Hospital, Toronto, Canada.,Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | | |
Collapse
|
22
|
Niklander SE, Crane HL, Darda L, Lambert DW, Hunter KD. The role of icIL-1RA in keratinocyte senescence and development of the senescence-associated secretory phenotype. J Cell Sci 2021; 134:jcs.252080. [PMID: 33526711 DOI: 10.1242/jcs.252080] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 01/13/2021] [Indexed: 12/27/2022] Open
Abstract
There is compelling evidence that senescent cells, through the senescence-associated secretory phenotype (SASP), can promote malignant transformation and invasion. Interleukin-1 (IL-1) is a key mediator of this cytokine network, but the control of its activity in the senescence programme has not been elucidated. IL-1 signalling is regulated by IL-1RA, which has four variants. Here, we show that expression of intracellular IL-1RA type 1 (icIL-1RA1), which competitively inhibits binding of IL-1 to its receptor, is progressively lost during oral carcinogenesis ex vivo and that the pattern of expression is associated with keratinocyte replicative fate in vitro We demonstrate that icIL-1RA1 is an important regulator of the SASP in mortal cells, as CRISPR/Cas9-mediated icIL-1RA1 knockdown in normal and mortal dysplastic oral keratinocytes is followed by increased IL-6 and IL-8 secretion, and rapid senescence following release from RhoA-activated kinase inhibition. Thus, we suggest that downregulation of icIL-1RA1 in early stages of the carcinogenesis process can enable the development of a premature and deregulated SASP, creating a pro-inflammatory state in which cancer is more likely to arise.
Collapse
Affiliation(s)
- Sven E Niklander
- Unit of Oral and Maxillofacial Medicine, Pathology and Surgery, University of Sheffield, Sheffield S10 2TA, UK.,Departamento de Cirugia y Patologia Oral, Facultad de Odontologia, Universidad Andres Bello, 2520000 Viña del Mar, Chile
| | - Hannah L Crane
- Unit of Oral and Maxillofacial Medicine, Pathology and Surgery, University of Sheffield, Sheffield S10 2TA, UK
| | - Lav Darda
- Unit of Oral and Maxillofacial Medicine, Pathology and Surgery, University of Sheffield, Sheffield S10 2TA, UK
| | - Daniel W Lambert
- Unit of Oral and Maxillofacial Medicine, Pathology and Surgery, University of Sheffield, Sheffield S10 2TA, UK
| | - Keith D Hunter
- Unit of Oral and Maxillofacial Medicine, Pathology and Surgery, University of Sheffield, Sheffield S10 2TA, UK .,Oral Biology and Pathology, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
23
|
Muthusami S, Ramachandran I, Krishnamoorthy S, Sambandam Y, Ramalingam S, Queimado L, Chaudhuri G, Ramachandran IK. Regulation of MicroRNAs in Inflammation-Associated Colorectal Cancer: A Mechanistic Approach. Endocr Metab Immune Disord Drug Targets 2021; 21:67-76. [DOI: 10.2174/1871530320666200917112802] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 04/29/2020] [Accepted: 04/29/2020] [Indexed: 11/22/2022]
Abstract
The development of colorectal cancer (CRC) is a multistage process. The inflammation of
the colon as in inflammatory bowel disease (IBD) such as ulcerative colitis (UC) or Crohn’s disease
(CD) is often regarded as the initial trigger for the development of inflammation-associated CRC.
Many cytokines such as tumor necrosis factor alpha (TNF-α) and interleukins (ILs) are known to exert
proinflammatory actions, and inflammation initiates or promotes tumorigenesis of various cancers,
including CRC, through differential regulation of microRNAs (miRNAs/miRs). miRNAs can be
oncogenic miRNAs (oncomiRs) or anti-oncomiRs/tumor suppressor miRNAs, and they play key roles
during colorectal carcinogenesis. However, the functions and molecular mechanisms of regulation of
miRNAs involved in inflammation-associated CRC are still anecdotal and largely unknown.
Consolidating the published results and offering perspective solutions to circumvent CRC, the current
review is focused on the role of miRNAs and their regulation in the development of CRC. We have
also discussed the model systems adapted by researchers to delineate the role of miRNAs in
inflammation-associated CRC.
Collapse
Affiliation(s)
- Sridhar Muthusami
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore 641 021, Tamil Nadu, India
| | - Ilangovan Ramachandran
- Department of Endocrinology, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai 600 113, Tamil Nadu, India
| | - Sneha Krishnamoorthy
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore 641 021, Tamil Nadu, India
| | - Yuvaraj Sambandam
- Department of Surgery, Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Satish Ramalingam
- Department of Genetic Engineering, School of Bio-Engineering, SRM Institute of Science and Technology, Kattankulathur, Kanchipuram 603 203, Tamil Nadu, India
| | - Lurdes Queimado
- Departments of Otorhinolaryngology - Head and Neck Surgery, Cell Biology, Pediatrics, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, United States
| | - Gautam Chaudhuri
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, United States
| | | |
Collapse
|
24
|
Liu L, Zhai Z, Wang D, Ding Y, Chen X, Wang Q, Shu Z, Wu M, Chen L, He X, Fan D, Pan F, Xing M. The association between IL-1 family gene polymorphisms and colorectal cancer: A meta-analysis. Gene 2020; 769:145187. [PMID: 32998046 DOI: 10.1016/j.gene.2020.145187] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 07/26/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Colorectal cancer (CRC) is a major public health problem given its high incidence and mortality. This study focuses on examining the associations between IL-1α, IL-1β, and IL-1RN polymorphisms and colorectal cancer susceptibility. METHODS A systematic literature search of PubMed, Embase, Web of Science, CNKI (China National Knowledge Infrastructure) and Wan Fang databases was conducted to identify relevant studies. Relevant data were extracted from the original included studies. The correlation was demonstrated based on the odds ratio (OR) and corresponding 95% confidence intervals (95% CIs). Publication bias was investigated by Egger's line regression test and Begg's funnel plot. RESULTS Eighteen independent studies involving 6218 cases and 10160 controls were eligible for this pooled analysis. Overall, the result revealed that the IL-1α rs3783553 polymorphism was significantly associated with an increased risk of CRC (G vs. C, OR = 1.02, 95% CI = 0.90-1.15, I2 = 51%, P = 0.78; GG vs. CC, OR = 1.97, 95% CI = 1.04-3.74, I2 = 70%, P = 0.04; GC vs. CC, OR = 1.75, 95% CI = 1.12-2.75, I2 = 42%, P = 0.01; GG + GC vs. CC, OR = 1.85, 95% CI = 1.08-3.18, I2 = 63%, P = 0.03; and GG vs. GC + CC, OR = 1.28, 95% CI = 1.04-1.58, I2 = 39%, P = 0.02), and significance was also noted for IL-1RN VNTR under the dominant model (22 + 2L vs. LL, OR = 1.49, 95% CI = 1.01-2.19, I2 = 77%, P = 0.045) and allelic contrast model (2 vs. L, OR = 1.28, 95% CI = 1.00-1.64, I2 = 58.6%, P = 0.047). For IL-1β + 31C/T, significance was observed in the dominant model (CC + CT vs. TT, OR = 0.83, 95% CI = 0.69-0.99, I2 = 52%, P = 0.034) and the heterozygous model (CT vs. TT, OR = 0.80, 95% CI = 0.65-0.98, I2 = 60%, P = 0.04). For IL-1β + 511 C/T, a significant association was noted in four gene models (CT vs. TT, OR = 0.72, 95% CI = 0.63-0.83, I2 = 0%, P < 0.001; CC + CT vs. TT, OR = 0.74, 95% CI = 0.65-0.84, I2 = 0%, P < 0.001; CC vs. TT, OR = 0.77, 95% CI = 0.65-0.91, I2 = 30.9%, P = 0.003; C vs. T, OR = 0.87, 95% CI = 0.80-0.95, I2 = 38%, P = 0.001), but a significant relationship was not found in the recessive model (CC vs. CT + TT, OR = 1.09, 95% CI = 0.86-1.38, I2 = 57.1%, P = 0.25). In addition, borderline statistical significance was noted between IL-1β + 3954 Ins/Del and CRC in the homozygous model, but no significance was identified for IL-1β + 3737 G/A, Il-1β + 1464 G/C, and IL-1RN + 2018 T/C under all five genetic models. In the subgroup analysis of ethnic groups, significant associations with CRC were found for IL-1β + 31 (CC vs. TT: OR = 0.82, 95% CI = 0.67-0.99, I2 = 20.2%, P = 0.04; CT vs. TT: OR = 0.62, 95% CI = 0.47-0.82, I2 = 0%, P < 0.001; CC + CT vs. TT: OR = 0.69, 95% CI = 0.55-0.87, I2 = 29.7%, P = 0.001), IL-1β + 511 (CT vs. TT, OR = 0.65, 95% CI = 0.55-0.77, I2 = 0%, P < 0.001; CC + CT vs. TT, OR = 0.67, 95% CI = 0.58-0.78, I2 = 0%, P < 0.001; C vs. T, OR = 0.83, 95% CI = 0.75-0.92, I2 = 49.6%, P < 0.001) and IL-1RN + 2018 T/C in the allelic contrast model (T vs. C, OR = 0.66, 95% CI = 0.44-0.98, I2 = 0%, P = 0.04) among Asians but not in Caucasians. A significant association between IL-1β + 1464 G/C polymorphisms in Caucasians was observed under the recessive model (OR = 0.87, 95% CI = 0.77-0.98, I2 = 45%, P = 0.03). CONCLUSION The current meta-analysis demonstrated that IL-1α rs3783553, IL-1β + 31C/T, IL-1β + 511C/T, and IL-1RN VNTR are critical genes for CRC susceptibility.
Collapse
Affiliation(s)
- Li Liu
- Library, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Department of Epidemiology and Statistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Zhenglong Zhai
- Department of Hepatobiliary & Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Danyang Wang
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Yun Ding
- Library, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Xiaoqing Chen
- Library, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Qiqi Wang
- Department of Cardiology and Atrial Fibrillation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Zheyue Shu
- Department of Hepatobiliary & Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Minglan Wu
- Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, Research Center for Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Lei Chen
- Information Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Xuelin He
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Dazhi Fan
- Foshan Institute of Fetal Medicine, Southern Medical University Affiliated Maternal & Child Health Hospital of Foshan, 11 Renminxi Road, Foshan 528000, Guangdong, China; Department of Epidemiology and Statistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Faming Pan
- Department of Epidemiology and Statistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Meiyuan Xing
- Library, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| |
Collapse
|
25
|
McSorley ST, Lau HYN, McIntosh D, Forshaw MJ, McMillan DC, Crumley AB. Staging the Tumor and Staging the Host: Pretreatment Combined Neutrophil Lymphocyte Ratio and Modified Glasgow Prognostic Score Is Associated with Overall Survival in Patients with Esophagogastric Cancers Undergoing Treatment with Curative Intent. Ann Surg Oncol 2020; 28:722-731. [PMID: 32892266 PMCID: PMC7801291 DOI: 10.1245/s10434-020-09074-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 07/14/2020] [Indexed: 12/13/2022]
Abstract
Background This study examined whether an innate systemic inflammatory response (SIR) measured by combination neutrophil to lymphocyte ratio (NLR) and modified Glasgow Prognostic Score (mGPS) was associated with overall survival (OS) in patients with esophagogastric cancer (EC) undergoing neoadjuvant chemotherapy (NAC) followed by surgery. Methods Patients diagnosed with EC, managed with NAC prior to surgery at a regional referral center, between January 2010 and December 2015, were included. The mGPS and NLR were calculated within 12 weeks before NAC. Patients were grouped by combined NLR/mGPS score into three groups of increasing SIR: NLR ≤ 3 (n = 152), NLR > 3 + mGPS = 0 (n = 55), and NLR > 3 + mGPS > 0 (n = 32). Univariable and multivariable Cox regression was used to analyse OS. Results Overall, 337 NAC patients were included, with 301 (89%) proceeding to surgery and 215 (64%) having R0 resection. There were 203 deaths, with a median follow-up of those alive at censor of 69 months (range 44–114). Higher combined NLR/mGPS score (n = 239) was associated with poorer OS independent of clinical stage and performance status (hazard ratio 1.28, 95% confidence interval 1.02–1.61; p = 0.032), higher rate of progression on NAC (7% vs. 7% vs. 19%; p = 0.003), and lower proportion of eventual resection (80% vs. 84% vs. 53%; p = 0.003). Conclusions The combined NLR/mGPS score was associated with OS and initial treatment outcomes in patients undergoing NAC prior to surgery for EC, stratifying survival in addition to clinical staging and performance status. The host SIR may be a useful adjunct to multidisciplinary decision making. Electronic supplementary material The online version of this article (10.1245/s10434-020-09074-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Stephen T McSorley
- Academic Unit of Surgery, New Lister Building, Glasgow Royal Infirmary, University of Glasgow, Glasgow, UK.
| | - Hiu Y N Lau
- Academic Unit of Surgery, New Lister Building, Glasgow Royal Infirmary, University of Glasgow, Glasgow, UK
| | | | - Matthew J Forshaw
- Department of Upper GI Surgery, Queen Elizabeth Building, Glasgow Royal Infirmary, Glasgow, UK
| | - Donald C McMillan
- Academic Unit of Surgery, New Lister Building, Glasgow Royal Infirmary, University of Glasgow, Glasgow, UK
| | | |
Collapse
|
26
|
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease that is characterized by complex pathophysiology involving both skin barrier dysfunction and aberrant type 2 inflammation/immune responses. AD can be a debilitating condition that drastically impairs quality of life, especially in patients with moderate-to-severe disease. Currently, topical therapies such as corticosteroids and non-steroidal immunomodulatory therapy provide limited efficacy for patients with moderate-to-severe AD; limitations include inadequate response, cutaneous toxicity from overuse, and poor tolerance due to stinging and burning. Historically, the development of targeted therapies has been challenging due to the complex and multifaceted etiology of AD. Recent progress in understanding the immunopathology of AD reinforces the development of newly targeted therapeutics. The successful launch of dupilumab, a monoclonal antibody targeting the interleukin (IL)-4α receptor subunit, for AD in 2017 spurred the development of a number of biologics targeting novel cytokine and receptor targets that are now in phase II and III of development. This review aims to explore the rationale behind these novel biological therapies and to summarize current clinical studies of these agents.
Collapse
|
27
|
Cool CD, Kuebler WM, Bogaard HJ, Spiekerkoetter E, Nicolls MR, Voelkel NF. The hallmarks of severe pulmonary arterial hypertension: the cancer hypothesis-ten years later. Am J Physiol Lung Cell Mol Physiol 2020; 318:L1115-L1130. [PMID: 32023082 PMCID: PMC9847334 DOI: 10.1152/ajplung.00476.2019] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/31/2020] [Accepted: 01/31/2020] [Indexed: 01/25/2023] Open
Abstract
Severe forms of pulmonary arterial hypertension (PAH) are most frequently the consequence of a lumen-obliterating angiopathy. One pathobiological model is that the initial pulmonary vascular endothelial cell injury and apoptosis is followed by the evolution of phenotypically altered, apoptosis-resistant, proliferating cells and an inflammatory vascular immune response. Although there may be a vasoconstrictive disease component, the increased pulmonary vascular shear stress in established PAH is caused largely by the vascular wall pathology. In this review, we revisit the "quasi-malignancy concept" of severe PAH and examine to what extent the hallmarks of PAH can be compared with the hallmarks of cancer. The cancer model of severe PAH, based on the growth of abnormal vascular and bone marrow-derived cells, may enable the emergence of novel cell-based PAH treatment strategies.
Collapse
Affiliation(s)
- Carlyne D Cool
- Department of Pathology, University of Colorado, Anschuetz Campus, Aurora, Colorado
| | - Wolfgang M Kuebler
- Institute of Physiology, Charité - Universitaetsmedizin, Berlin, Germany
| | - Harm Jan Bogaard
- Amsterdam University Medical Centers, Department of Pulmonary Medicine, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Edda Spiekerkoetter
- Division of Pulmonary and Critical Care Medicine, Stanford University, Palo Alto, California
| | - Mark R Nicolls
- Division of Pulmonary and Critical Care Medicine, Stanford University, Palo Alto, California
| | - Norbert F Voelkel
- Amsterdam University Medical Centers, Department of Pulmonary Medicine, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| |
Collapse
|
28
|
The Role of Interleukin 1β in the Pathogenesis of Lung Cancer. JTO Clin Res Rep 2020; 1:100001. [PMID: 34589908 PMCID: PMC8474414 DOI: 10.1016/j.jtocrr.2020.100001] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 01/15/2020] [Indexed: 12/20/2022] Open
Abstract
Introduction Chronic inflammation is associated with an increased risk of several diseases, including cancer. A complex tumor microenvironment created and maintained by a range of cell types promotes tumor growth, angiogenesis, and metastasis. Inflammasomes, multicomplex cytosolic proteins, generate much of this inflammation, including the activation of the cytokine interleukin (IL)-1β. Inflammation generated by IL-1β is present in several disease states, including atherosclerosis, diabetes, and arthritis. IL-1β is activated when a specific inflammasome, nucleotide-binding domain–like receptor protein 3, induces cleavage of pro–IL-1β into its active form. Nucleotide-binding domain–like receptor protein 3 is up-regulated in lung cancer; IL-1β binds to its receptor and activates signaling pathways, including the MAPK, cyclooxygenase, and nuclear factor–κB pathways, leading to macrophage activation, intratumoral accumulation of immunosuppressive myeloid cells, and tumor growth, invasiveness, metastasis, and angiogenesis. Evidence suggests a role for IL-1β and some of its downstream effectors (e.g., IL-6, IL-8, C-reactive protein, cyclooxygenase-2) as prognostic markers in many malignancies, including lung cancer. Methods A phase III cardiovascular study of canakinumab, a human immunoglobulin Gk monoclonal antibody with high affinity and specificity for IL-1β, was conducted in patients who had a myocardial infarction. Results A subanalysis of this study found that treatment with canakinumab substantially reduced incident lung cancer and lung cancer mortality in a dose-dependent manner. Conclusions A phase III trial is currently recruiting participants to evaluate canakinumab as adjuvant treatment versus placebo in patients with lung cancer. Other studies are investigating combinations of established antineoplastic agents and canakinumab in both early- and advanced-stage NSCLC.
Collapse
|
29
|
Gottlieb A, Natsis NE, Kerdel F, Forman S, Gonzalez E, Jimenez G, Hernandez L, Kaffenberger J, Guido G, Lucas K, Montes D, Gold M, Babcock C, Simard J. A Phase II Open-Label Study of Bermekimab in Patients with Hidradenitis Suppurativa Shows Resolution of Inflammatory Lesions and Pain. J Invest Dermatol 2020; 140:1538-1545.e2. [PMID: 32004568 DOI: 10.1016/j.jid.2019.10.024] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 10/24/2019] [Accepted: 10/31/2019] [Indexed: 01/15/2023]
Abstract
The objective of this study was to evaluate the safety and efficacy of bermekimab, an IL-1α inhibitor, in the treatment of hidradenitis suppurativa (HS). This study was a phase II, multicenter, open-label study of two dose cohorts of bermekimab in patients with moderate-to-severe HS who are naïve to or have failed prior anti-TNF therapy. Patients with HS (n = 42) were divided into groups A and B based on whether or not they had previously failed an anti-TNF therapy. In group A (n = 24), bermekimab was administered subcutaneously at a dose of 400 mg weekly (13 doses) in patients who had previously failed anti-TNF therapy; in group B (n = 18), bermekimab was administered subcutaneously at a dose of 400 mg weekly (13 doses) in patients who were anti-TNF naïve. Bermekimab, previously found to be effective in treating HS, was evaluated using a subcutaneous formulation in patients with HS naïve to or having failed anti-TNF therapy. There were no bermekimab-related adverse events with the exception of injection site reactions. Bermekimab was effective despite treatment history, with 61% and 63% of patients naïve to and having failed anti-TNF therapy, respectively, achieving HS clinical response after 12 weeks of treatment. A significant reduction in abscesses and inflammatory nodules of 60% (P < 0.004) and 46% (P < 0.001) was seen in anti-TNF naïve and anti-TNF failure groups, respectively. Clinically and statistically significant reduction was seen in patients experiencing pain, with the Visual Analogue Scale pain score reducing by 64% (P < 0.001) and 54% (P < 0.001) in the anti-TNF naïve and anti-TNF failure groups, respectively. IL-1α is emerging as an important clinical target for skin disease, and bermekimab may represent a new therapeutic option for treating moderate-to-severe HS.
Collapse
Affiliation(s)
- Alice Gottlieb
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
| | - Nicola E Natsis
- University of California San Diego School of Medicine, San Diego, California, USA; Rady Children's Hospital, San Diego, California, USA
| | - Francisco Kerdel
- Florida Academic Centers Research and Education, Coral Gables, Florida, USA
| | - Seth Forman
- Forward Clinical Trials Inc., Tampa, Florida, USA
| | - Edgar Gonzalez
- Oceane7 Medical & Research Center, Inc., Miami, Florida, USA
| | | | | | - Jessica Kaffenberger
- Wexner Medical Center Clinical Trials Management Organization, The Ohio State University, Columbus, Ohio, USA
| | | | - Kathryn Lucas
- Diabetes & Endocrinology Consultants, PC, Morehead City, North Carolina, USA
| | - Diego Montes
- Intervent Clinical Research Center, Pembroke Pines, Florida, USA
| | - Michael Gold
- Tennessee Clinical Research Center, Nashville, Tennessee, USA
| | | | | |
Collapse
|
30
|
Kahlenberg JM, Kang I. Advances in Disease Mechanisms and Translational Technologies: Clinicopathologic Significance of Inflammasome Activation in Autoimmune Diseases. Arthritis Rheumatol 2020; 72:386-395. [PMID: 31562704 DOI: 10.1002/art.41127] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 09/24/2019] [Indexed: 12/14/2022]
Abstract
Autoimmune diseases are characterized by dysregulated immune tolerance to self and inflammatory damage to tissues and organs. The development of inflammation involves multiple innate and adaptive immune pathways. Inflammasomes are multimeric cytosolic protein complexes that form to mediate host immune responses upon recognizing pathogen- or damage-associated molecular patterns via pattern-recognition receptors (PRRs). The accelerating pace of inflammasome research has demonstrated important roles for inflammasome activation in many pathologic conditions, including infectious, metabolic, autoinflammatory, and autoimmune diseases. The inflammasome generally comprises a PRR, procaspase 1, and an adaptor molecule connecting the PRR and procaspase 1. Upon inflammasome activation, procaspase 1 becomes active caspase 1 that converts pro-interleukin-1β (proIL-1β) and proIL-18 into mature and active IL-1β and IL-18, respectively. The cytokines IL-1β and IL-18 have multipotent effects on immune and nonimmune cells and induce and promote systemic and local inflammatory responses. Human studies have shown increased levels of these cytokines, altered activation of inflammasome-related molecules, and/or the presence of inflammasome activators in rheumatic diseases, including systemic lupus erythematosus, rheumatoid arthritis, crystal-induced arthropathies, and Sjögren's syndrome. Such changes are found in the primary target organs, such as the kidneys, joints, and salivary glands, as well as in the cardiovascular system. In animal models of rheumatic diseases, inflammation and tissue damage improve upon genetic or pharmacologic targeting of the inflammasome, supporting its pathogenic role. Herein, we review the clinicopathologic significance and therapeutic targeting of inflammasome activation in rheumatic diseases and related conditions based on recent findings.
Collapse
|
31
|
Zhang W, Borcherding N, Kolb R. IL-1 Signaling in Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1240:1-23. [PMID: 32060884 DOI: 10.1007/978-3-030-38315-2_1] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Interleukin 1 (IL-1) has long been known for its pleiotropic effects on inflammation that plays a complex, and sometimes contrasting, role in different stages of cancer development. As a major proinflammatory cytokine, IL-1β is mainly expressed by innate immune cells. IL-1α, however, is expressed by various cell types under physiological and pathological conditions. IL-1R1 is the main receptor for both ligands and is expressed by various cell types, including innate and adaptive immune cell types, epithelial cells, endothelial cells, adipocytes, chondrocytes, fibroblasts, etc. IL-1 and IL-1R1 receptor interaction leads to a set of common signaling pathways, mainly the NF-kB and MAP kinase pathways, as a result of complex positive and negative regulations. The variety of cell types with IL-1R1 expression dictates the role of IL-1 signaling at different stages of cancer, which under certain circumstances leads to contrasting roles in tumor development. Recent availability of IL-1R1 conditional knockout mouse model has made it possible to dissect the role of IL-1/IL-1R1 signaling transduction in different cell types within the tumor microenvironment. This chapter will focus on the role of IL-1/IL-1R1 in different cell types within the tumor microenvironment and discuss the potential of targeting this pathway in cancer therapy.
Collapse
Affiliation(s)
- Weizhou Zhang
- Department of Pathology, Immunology and Laboratory Medicine, UF Health Cancer Center, University of Florida, Gainesville, FL, USA.
| | | | - Ryan Kolb
- Department of Pathology, Immunology and Laboratory Medicine, UF Health Cancer Center, University of Florida, Gainesville, FL, USA
| |
Collapse
|
32
|
Balázs A, Mall MA. Mucus obstruction and inflammation in early cystic fibrosis lung disease: Emerging role of the IL-1 signaling pathway. Pediatr Pulmonol 2019; 54 Suppl 3:S5-S12. [PMID: 31715090 DOI: 10.1002/ppul.24462] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/11/2019] [Indexed: 12/18/2022]
Abstract
Mucus plugging constitutes a nutrient-rich nidus for a bacterial infection that has long been recognized as a potent stimulus for neutrophilic airway inflammation driving progressive lung damage in people with cystic fibrosis (CF). However, mucus plugging and neutrophilic inflammation are already present in many infants and young children with CF even in the absence of detectable bacterial infection. A series of observational studies in young children with CF, as well as investigations in animal models with CF-like lung disease support the concept that mucus plugging per se can trigger inflammation before the onset of airways infection. Here we review emerging evidence suggesting that activation of the interleukin-1 (IL-1) signaling pathway by hypoxic epithelial cell necrosis, leading to the release of IL-1α in mucus-obstructed airways, may be an important mechanistic link between mucus plugging and sterile airway inflammation in early CF lung disease. Furthermore, we discuss recent data from preclinical studies demonstrating that treatment with the IL-1 receptor (IL-1R) antagonist anakinra has anti-inflammatory as well as mucus modulating effects in mice with CF-like lung disease and primary cultures of human CF airway epithelia. Collectively, these studies support an important role of the IL-1 signaling pathway in sterile neutrophilic inflammation and mucus hypersecretion and suggest inhibition of this pathway as a promising anti-inflammatory strategy in patients with CF and potentially other muco-obstructive lung diseases.
Collapse
Affiliation(s)
- Anita Balázs
- Department of Pediatric Pulmonology, Immunology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany.,German Center for Lung Research (DZL), Berlin, Germany
| | - Marcus A Mall
- Department of Pediatric Pulmonology, Immunology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany.,German Center for Lung Research (DZL), Berlin, Germany
| |
Collapse
|
33
|
The Multifaceted Roles of Pyroptotic Cell Death Pathways in Cancer. Cancers (Basel) 2019; 11:cancers11091313. [PMID: 31492049 PMCID: PMC6770479 DOI: 10.3390/cancers11091313] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 08/26/2019] [Accepted: 08/26/2019] [Indexed: 12/19/2022] Open
Abstract
Cancer is a category of diseases involving abnormal cell growth with the potential to invade other parts of the body. Chemotherapy is the most widely used first-line treatment for multiple forms of cancer. Chemotherapeutic agents act via targeting the cellular apoptotic pathway. However, cancer cells usually acquire chemoresistance, leading to poor outcomes in cancer patients. For that reason, it is imperative to discover other cell death pathways for improved cancer intervention. Pyroptosis is a new form of programmed cell death that commonly occurs upon pathogen invasion. Pyroptosis is marked by cell swelling and plasma membrane rupture, which results in the release of cytosolic contents into the extracellular space. Currently, pyroptosis is proposed to be an alternative mode of cell death in cancer treatment. Accumulating evidence shows that the key components of pyroptotic cell death pathways, including inflammasomes, gasdermins and pro-inflammatory cytokines, are involved in the initiation and progression of cancer. Interfering with pyroptotic cell death pathways may represent a promising therapeutic option for cancer management. In this review, we describe the current knowledge regarding the biological significance of pyroptotic cell death pathways in cancer pathogenesis and also discuss their potential therapeutic utility.
Collapse
|
34
|
Baker KJ, Houston A, Brint E. IL-1 Family Members in Cancer; Two Sides to Every Story. Front Immunol 2019; 10:1197. [PMID: 31231372 PMCID: PMC6567883 DOI: 10.3389/fimmu.2019.01197] [Citation(s) in RCA: 159] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 05/13/2019] [Indexed: 12/22/2022] Open
Abstract
The IL-1 family of cytokines currently comprises of seven ligands with pro-inflammatory activity (IL-1α and IL-1β, IL-18, IL-33, IL-36α, IL-36β, IL-36γ) as well as two ligands with anti-inflammatory activity (IL-37, IL-38). These cytokines are known to play a key role in modulating both the innate and adaptive immunes response, with dysregulation linked to a variety of autoimmune and inflammatory diseases. Given the increasing appreciation of the link between inflammation and cancer, the role of several members of this family in the pathogenesis of cancer has been extensively investigated. In this review, we highlight both the pro- and anti-tumorigenic effects identified for almost all members of this family, and explore potential underlying mechanisms accounting for these divergent effects. Such dual functions need to be carefully assessed when developing therapeutic intervention strategies targeting these cytokines in cancer.
Collapse
Affiliation(s)
- Kevin J Baker
- Department of Pathology, University College Cork, Cork, Ireland.,Department of Medicine, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Aileen Houston
- Department of Medicine, University College Cork, Cork, Ireland.,CancerResearch@UCC, University College Cork, Cork, Ireland
| | - Elizabeth Brint
- Department of Pathology, University College Cork, Cork, Ireland.,CancerResearch@UCC, University College Cork, Cork, Ireland
| |
Collapse
|
35
|
Mantovani A, Dinarello CA, Molgora M, Garlanda C. Interleukin-1 and Related Cytokines in the Regulation of Inflammation and Immunity. Immunity 2019; 50:778-795. [PMID: 30995499 PMCID: PMC7174020 DOI: 10.1016/j.immuni.2019.03.012] [Citation(s) in RCA: 624] [Impact Index Per Article: 124.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 03/08/2019] [Accepted: 03/14/2019] [Indexed: 02/06/2023]
Abstract
Forty years after its naming, interleukin-1 (IL-1) is experiencing a renaissance brought on by the growing understanding of its context-dependent roles and advances in the clinic. Recent studies have identified important roles for members of the IL-1 family-IL-18, IL-33, IL-36, IL-37, and IL-38-in inflammation and immunity. Here, we review the complex functions of IL-1 family members in the orchestration of innate and adaptive immune responses and their diversity and plasticity. We discuss the varied roles of IL-1 family members in immune homeostasis and their contribution to pathologies, including autoimmunity and auto-inflammation, dysmetabolism, cardiovascular disorders, and cancer. The trans-disease therapeutic activity of anti-IL-1 strategies argues for immunity and inflammation as a metanarrative of modern medicine.
Collapse
Affiliation(s)
- Alberto Mantovani
- IRCCS Humanitas Clinical and Research Center, via Manzoni 56, 20089 Rozzano Milan, Italy; Humanitas University, via Rita Levi Montalcini, 20090 Pieve Emanuele Milan, Italy; William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.
| | - Charles A Dinarello
- Department of Medicine, University of Colorado Denver, Aurora, CO 80045, USA; Department of Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Martina Molgora
- IRCCS Humanitas Clinical and Research Center, via Manzoni 56, 20089 Rozzano Milan, Italy
| | - Cecilia Garlanda
- IRCCS Humanitas Clinical and Research Center, via Manzoni 56, 20089 Rozzano Milan, Italy; Humanitas University, via Rita Levi Montalcini, 20090 Pieve Emanuele Milan, Italy.
| |
Collapse
|