1
|
Zimna M, Krol E. Leishmania tarentolae as a platform for the production of vaccines against viral pathogens. NPJ Vaccines 2024; 9:212. [PMID: 39505865 DOI: 10.1038/s41541-024-01005-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 10/23/2024] [Indexed: 11/08/2024] Open
Abstract
Infectious diseases remain a persistent public health problem and a leading cause of morbidity and mortality in both humans and animals. The most effective method of combating viral infections is the widespread use of prophylactic vaccinations, which are administered to both people at risk of disease and animals that may serve as significant sources of infection. Therefore, it is crucial to develop technologies for the production of vaccines that are highly effective, easy to transport and store, and cost-effective. The protein expression system based on the protozoan Leishmania tarentolae offers several advantages, validated by numerous studies, making it a good platform for producing vaccine antigens. This review provides a comprehensive overview into the potential applications of L. tarentolae for the safe production of effective viral antigens.
Collapse
Affiliation(s)
- Marta Zimna
- Department of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307, Gdansk, Poland
| | - Ewelina Krol
- Department of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307, Gdansk, Poland.
| |
Collapse
|
2
|
An J, Shang N, Liu W, Niu Y, Liang Q, Jiang J, Zheng Y. A yeast surface display platform for screening of non-enzymatic protein secretion in Kluyveromyces lactis. Appl Microbiol Biotechnol 2024; 108:503. [PMID: 39500795 PMCID: PMC11538148 DOI: 10.1007/s00253-024-13342-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 09/23/2024] [Accepted: 10/22/2024] [Indexed: 11/08/2024]
Abstract
Enhancing the secretion of recombinant proteins, particularly non-enzymatic proteins that predominate in food and pharmaceutic protein products, remains a significant challenge due to limitations in high-throughput screening methods. This study addresses this bottleneck by establishing a yeast surface display system in the food-grade microorganism Kluyveromyces lactis, enabling efficient display of model target proteins on the yeast cell surface. To assess its potential as a universal high-throughput screening tool for enhanced non-enzymatic protein secretion, we evaluated the consistency between protein display levels and secretion efficiency under the influence of various genetic factors. Our results revealed a strong correlation between these two properties. Furthermore, screening in a random mutagenesis library successfully identified a mutant with improved secretion. These findings demonstrate the potential of the K. lactis surface display system as a powerful and universal tool for high-throughput screening of strains with superior non-enzymatic protein secretion capacity. We believe this study could pave the way for efficient large-scale production of heterologous food and therapeutic proteins in industries. KEY POINTS: • A YSD (yeast surface display) system was established in Kluyveromyces lactis • This system enables high-throughput screening of non-enzymatic protein secretion • This technology assists industrial production of food and therapeutic proteins.
Collapse
Affiliation(s)
- Jiyi An
- Department of Microbiology and Biotechnology, College of Life Sciences, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin, 150030, China
- Department of Strategic and Integrative Research, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Na Shang
- Department of Strategic and Integrative Research, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Wenting Liu
- Department of Strategic and Integrative Research, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Yuanyuan Niu
- Department of Strategic and Integrative Research, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Qingling Liang
- Department of Strategic and Integrative Research, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Juquan Jiang
- Department of Microbiology and Biotechnology, College of Life Sciences, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin, 150030, China.
| | - Yingying Zheng
- Department of Strategic and Integrative Research, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China.
| |
Collapse
|
3
|
Sołowińska K, Holec-Gąsior L. Single Cell Expression Systems for the Production of Recombinant Proteins for Immunodiagnosis and Immunoprophylaxis of Toxoplasmosis. Microorganisms 2024; 12:1731. [PMID: 39203573 PMCID: PMC11357668 DOI: 10.3390/microorganisms12081731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/31/2024] [Accepted: 08/21/2024] [Indexed: 09/03/2024] Open
Abstract
Toxoplasmosis represents a significant public health and veterinary concern due to its widespread distribution, zoonotic transmission, and potential for severe health impacts in susceptible individuals and animal populations. The ability to design and produce recombinant proteins with precise antigenic properties is fundamental, as they serve as tools for accurate disease detection and effective immunization strategies, contributing to improved healthcare outcomes and disease control. Most commonly, a prokaryotic expression system is employed for the production of both single antigens and multi-epitope chimeric proteins; however, the cloning strategies, bacterial strain, vector, and expression conditions vary. Moreover, literature reports show the use of alternative microbial systems such as yeast or Leishmania tarentolae. This review provides an overview of the methods and strategies employed for the production of recombinant Toxoplasma gondii antigenic proteins for the serological detection of T. gondii infection and vaccine development.
Collapse
Affiliation(s)
| | - Lucyna Holec-Gąsior
- Department of Biotechnology and Microbiology, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Str., 80-233 Gdańsk, Poland;
| |
Collapse
|
4
|
İncir İ, Kaplan Ö. Escherichia coli as a versatile cell factory: Advances and challenges in recombinant protein production. Protein Expr Purif 2024; 219:106463. [PMID: 38479588 DOI: 10.1016/j.pep.2024.106463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/25/2024] [Accepted: 03/11/2024] [Indexed: 05/08/2024]
Abstract
E. coli plays a substantial role in recombinant protein production. Its importance increased with the discovery of recombinant DNA technology and the subsequent production of the first recombinant insulin in E. coli. E. coli is a widely used and cost-effective host to produce recombinant proteins. It is also noteworthy that a significant portion of the approved therapeutic proteins have been produced in this organism. Despite these advantages, it has some disadvantages, such as toxicity and lack of eukaryotic post-translational modifications that can lead to the production of misfolded, insoluble, or dysfunctional proteins. This study focused on the challenges and engineering approaches for improved expression and solubility in recombinant protein production in E. coli. In this context, solution strategies such as strain and vector selection, codon usage, mRNA stability, expression conditions, translocation to the periplasmic region and addition of fusion tags in E. coli were discussed.
Collapse
Affiliation(s)
- İbrahim İncir
- Karamanoğlu Mehmetbey University, Kazım Karabekir Vocational School, Department of Medical Services and Techniques, Environmental Health Program Karaman, Turkey.
| | - Özlem Kaplan
- Alanya Alaaddin Keykubat University, Rafet Kayış Faculty of Engineering, Department of Genetics and Bioengineering, Antalya, Turkey.
| |
Collapse
|
5
|
Kamboj A, Dumka S, Saxena MK, Singh Y, Kaur BP, da Silva SJR, Kumar S. A Comprehensive Review of Our Understanding and Challenges of Viral Vaccines against Swine Pathogens. Viruses 2024; 16:833. [PMID: 38932126 PMCID: PMC11209531 DOI: 10.3390/v16060833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/18/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
Pig farming has become a strategically significant and economically important industry across the globe. It is also a potentially vulnerable sector due to challenges posed by transboundary diseases in which viral infections are at the forefront. Among the porcine viral diseases, African swine fever, classical swine fever, foot and mouth disease, porcine reproductive and respiratory syndrome, pseudorabies, swine influenza, and transmissible gastroenteritis are some of the diseases that cause substantial economic losses in the pig industry. It is a well-established fact that vaccination is undoubtedly the most effective strategy to control viral infections in animals. From the period of Jenner and Pasteur to the recent new-generation technology era, the development of vaccines has contributed significantly to reducing the burden of viral infections on animals and humans. Inactivated and modified live viral vaccines provide partial protection against key pathogens. However, there is a need to improve these vaccines to address emerging infections more comprehensively and ensure their safety. The recent reports on new-generation vaccines against swine viruses like DNA, viral-vector-based replicon, chimeric, peptide, plant-made, virus-like particle, and nanoparticle-based vaccines are very encouraging. The current review gathers comprehensive information on the available vaccines and the future perspectives on porcine viral vaccines.
Collapse
Affiliation(s)
- Aman Kamboj
- College of Veterinary and Animal Sciences, G. B. Pant University of Agriculture and Technology, Pantnagar 263145, Uttarakhand, India; (A.K.); (M.K.S.); (Y.S.)
| | - Shaurya Dumka
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati 781039, Assam, India; (S.D.); (B.P.K.)
| | - Mumtesh Kumar Saxena
- College of Veterinary and Animal Sciences, G. B. Pant University of Agriculture and Technology, Pantnagar 263145, Uttarakhand, India; (A.K.); (M.K.S.); (Y.S.)
| | - Yashpal Singh
- College of Veterinary and Animal Sciences, G. B. Pant University of Agriculture and Technology, Pantnagar 263145, Uttarakhand, India; (A.K.); (M.K.S.); (Y.S.)
| | - Bani Preet Kaur
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati 781039, Assam, India; (S.D.); (B.P.K.)
| | | | - Sachin Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati 781039, Assam, India; (S.D.); (B.P.K.)
| |
Collapse
|
6
|
Sanchez-Martinez ZV, Alpuche-Lazcano SP, Stuible M, Durocher Y. CHO cells for virus-like particle and subunit vaccine manufacturing. Vaccine 2024; 42:2530-2542. [PMID: 38503664 DOI: 10.1016/j.vaccine.2024.03.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/27/2024] [Accepted: 03/13/2024] [Indexed: 03/21/2024]
Abstract
Chinese Hamster Ovary (CHO) cells, employed primarily for manufacturing monoclonal antibodies and other recombinant protein (r-protein) therapeutics, are emerging as a promising host for vaccine antigen production. This is exemplified by the recently approved CHO cell-derived subunit vaccines (SUV) against respiratory syncytial virus (RSV) and varicella-zoster virus (VZV), as well as the enveloped virus-like particle (eVLP) vaccine against hepatitis B virus (HBV). Here, we summarize the design, production, and immunogenicity features of these vaccine and review the most recent progress of other CHO-derived vaccines in pre-clinical and clinical development. We also discuss the challenges associated with vaccine production in CHO cells, with a focus on ensuring viral clearance for eVLP products.
Collapse
Affiliation(s)
- Zalma V Sanchez-Martinez
- Human Health Therapeutics Research Centre, National Research Council of Canada, Montreal, QC H4P 2R2, Canada; Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Sergio P Alpuche-Lazcano
- Human Health Therapeutics Research Centre, National Research Council of Canada, Montreal, QC H4P 2R2, Canada
| | - Matthew Stuible
- Human Health Therapeutics Research Centre, National Research Council of Canada, Montreal, QC H4P 2R2, Canada
| | - Yves Durocher
- Human Health Therapeutics Research Centre, National Research Council of Canada, Montreal, QC H4P 2R2, Canada; Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada; PROTEO: The Quebec Network for Research on Protein Function, Structure, and Engineering, Université du Québec à Montréal, 201 Avenue du Président Kennedy, Montréal, QC H2X 3Y7, Canada.
| |
Collapse
|
7
|
Kumar V, Barwal A, Sharma N, Mir DS, Kumar P, Kumar V. Therapeutic proteins: developments, progress, challenges, and future perspectives. 3 Biotech 2024; 14:112. [PMID: 38510462 PMCID: PMC10948735 DOI: 10.1007/s13205-024-03958-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 02/13/2024] [Indexed: 03/22/2024] Open
Abstract
Proteins are considered magic molecules due to their enormous applications in the health sector. Over the past few decades, therapeutic proteins have emerged as a promising treatment option for various diseases, particularly cancer, cardiovascular disease, diabetes, and others. The formulation of protein-based therapies is a major area of research, however, a few factors still hinder the large-scale production of these therapeutic products, such as stability, heterogenicity, immunogenicity, high cost of production, etc. This review provides comprehensive information on various sources and production of therapeutic proteins. The review also summarizes the challenges currently faced by scientists while developing protein-based therapeutics, along with possible solutions. It can be concluded that these proteins can be used in combination with small molecular drugs to give synergistic benefits in the future.
Collapse
Affiliation(s)
- Vimal Kumar
- University Institute of Biotechnology, Chandigarh University, Gharuan, Mohali, Punjab 140413 India
| | - Arti Barwal
- Department of Microbial Biotechnology, Panjab University, South Campus, Sector-25, Chandigarh, 160014 India
| | - Nitin Sharma
- Department of Biotechnology, Chandigarh Group of Colleges, Mohali, Punjab 140307 India
| | - Danish Shafi Mir
- University Institute of Biotechnology, Chandigarh University, Gharuan, Mohali, Punjab 140413 India
| | - Pradeep Kumar
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, 173229 India
| | - Vikas Kumar
- University Institute of Biotechnology, Chandigarh University, Gharuan, Mohali, Punjab 140413 India
| |
Collapse
|
8
|
Tofan VC, Ermeneanu AL, Caraș I, Lenghel A, Ionescu IE, Țucureanu C, Gal C, Stăvaru CG, Onu A. Generation of a DSF-Guided Refolded Bacterially Expressed Hemagglutinin Ectodomain of Influenza Virus A/Puerto Rico/8/1934 H1N1 as a Model for Influenza Vaccine Antigens. Vaccines (Basel) 2023; 11:1520. [PMID: 37896924 PMCID: PMC10610769 DOI: 10.3390/vaccines11101520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/15/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
Influenza virus infections represent an ongoing public health threat as well as an economic burden. Although seasonal influenza vaccines have been available for some decades, efforts are being made to generate new efficient, flexible, and cost-effective technologies to be transferred into production. Our work describes the development of a model influenza hemagglutinin antigen that is capable of inducing protection against viral challenge in mice. High amounts of the H1 hemagglutinin ectodomain, HA18-528, were expressed in a bacterial system as insoluble inclusion bodies. Solubilization was followed by a thorough differential scanning fluorimetry (DSF)-guided optimization of refolding, which allows for fast and reliable screening of several refolding conditions, yielding tens of milligrams/L of folded protein. Structural and functional analysis revealed native-like folding as well as the presence of a mix of monomers and oligomers in solution. Mice immunized with HA18-528 were protected when exposed to influenza A virus as opposed to mice that received full-length denatured protein. Sera of mice immunized with HA18-528 showed both high titers of antigen-specific IgG1 and IgG2a isotypes as well as viral neutralization activity. These results prove the feasibility of the recombinant bacterial expression system coupled with DSF-guided refolding in providing influenza hemagglutinin for vaccine development.
Collapse
Affiliation(s)
- Vlad-Constantin Tofan
- “Cantacuzino” Institute, 050096 Bucharest, Romania (I.C.); (I.-E.I.); (C.Ț.); (C.-G.S.); (A.O.)
| | - Andreea-Laura Ermeneanu
- “Cantacuzino” Institute, 050096 Bucharest, Romania (I.C.); (I.-E.I.); (C.Ț.); (C.-G.S.); (A.O.)
| | - Iuliana Caraș
- “Cantacuzino” Institute, 050096 Bucharest, Romania (I.C.); (I.-E.I.); (C.Ț.); (C.-G.S.); (A.O.)
| | - Alina Lenghel
- “Cantacuzino” Institute, 050096 Bucharest, Romania (I.C.); (I.-E.I.); (C.Ț.); (C.-G.S.); (A.O.)
| | - Irina-Elena Ionescu
- “Cantacuzino” Institute, 050096 Bucharest, Romania (I.C.); (I.-E.I.); (C.Ț.); (C.-G.S.); (A.O.)
| | - Cătălin Țucureanu
- “Cantacuzino” Institute, 050096 Bucharest, Romania (I.C.); (I.-E.I.); (C.Ț.); (C.-G.S.); (A.O.)
| | - Claudiu Gal
- “Cantacuzino” Institute, 050096 Bucharest, Romania (I.C.); (I.-E.I.); (C.Ț.); (C.-G.S.); (A.O.)
| | - Crina-Georgeta Stăvaru
- “Cantacuzino” Institute, 050096 Bucharest, Romania (I.C.); (I.-E.I.); (C.Ț.); (C.-G.S.); (A.O.)
| | - Adrian Onu
- “Cantacuzino” Institute, 050096 Bucharest, Romania (I.C.); (I.-E.I.); (C.Ț.); (C.-G.S.); (A.O.)
- Faculty of Pharmacy, Titu Maiorescu University, 040317 Bucharest, Romania
| |
Collapse
|
9
|
de Oliveira NR, Santos FDS, Dos Santos VAC, Maia MAC, Oliveira TL, Dellagostin OA. Challenges and Strategies for Developing Recombinant Vaccines against Leptospirosis: Role of Expression Platforms and Adjuvants in Achieving Protective Efficacy. Pathogens 2023; 12:787. [PMID: 37375478 DOI: 10.3390/pathogens12060787] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/29/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
The first leptospiral recombinant vaccine was developed in the late 1990s. Since then, progress in the fields of reverse vaccinology (RV) and structural vaccinology (SV) has significantly improved the identification of novel surface-exposed and conserved vaccine targets. However, developing recombinant vaccines for leptospirosis faces various challenges, including selecting the ideal expression platform or delivery system, assessing immunogenicity, selecting adjuvants, establishing vaccine formulation, demonstrating protective efficacy against lethal disease in homologous challenge, achieving full renal clearance using experimental models, and reproducibility of protective efficacy against heterologous challenge. In this review, we highlight the role of the expression/delivery system employed in studies based on the well-known LipL32 and leptospiral immunoglobulin-like (Lig) proteins, as well as the choice of adjuvants, as key factors to achieving the best vaccine performance in terms of protective efficacy against lethal infection and induction of sterile immunity.
Collapse
Affiliation(s)
- Natasha Rodrigues de Oliveira
- Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas 96010-610, RS, Brazil
| | - Francisco Denis Souza Santos
- Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas 96010-610, RS, Brazil
| | | | - Mara Andrade Colares Maia
- Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas 96010-610, RS, Brazil
| | - Thaís Larré Oliveira
- Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas 96010-610, RS, Brazil
| | - Odir Antônio Dellagostin
- Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas 96010-610, RS, Brazil
| |
Collapse
|
10
|
Topuz Ata D, Hussain M, Jones M, Best J, Wiese M, Carter KC. Immunisation with Transgenic L. tarentolae Expressing Gamma Glutamyl Cysteine Synthetase from Pathogenic Leishmania Species Protected against L. major and L. donovani Infection in a Murine Model. Microorganisms 2023; 11:1322. [PMID: 37317296 PMCID: PMC10223578 DOI: 10.3390/microorganisms11051322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/09/2023] [Accepted: 05/15/2023] [Indexed: 06/16/2023] Open
Abstract
Leishmaniasis is a protozoan disease responsible for significant morbidity and mortality. There is no recommended vaccine to protect against infection. In this study, transgenic Leishmania tarentolae expressing gamma glutamyl cysteine synthetase (γGCS) from three pathogenic species were produced and their ability to protect against infection determined using models of cutaneous and visceral leishmaniasis. The ability of IL-2-producing PODS® to act as an adjuvant was also determined in L. donovani studies. Two doses of the live vaccine caused a significant reduction in L. major (p < 0.001) and L. donovani (p < 0.05) parasite burdens compared to their respective controls. In contrast, immunisation with wild type L. tarentolae, using the same immunisation protocol, had no effect on parasite burdens compared to infection controls. Joint treatment with IL-2-producing PODS® enhanced the protective effect of the live vaccine in L. donovani studies. Protection was associated with a Th1 response in L. major and a mixed Th1/Th2 response in L. donovani, based on specific IgG1 and IgG2a antibody and cytokine production from in vitro proliferation assays using antigen-stimulated splenocytes. The results of this study provide further proof that γGCS should be considered a candidate vaccine for leishmaniasis.
Collapse
Affiliation(s)
- Derya Topuz Ata
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK
| | - Muattaz Hussain
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK
| | - Michael Jones
- Cell Guidance Systems, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Jonathan Best
- Cell Guidance Systems, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Martin Wiese
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK
| | - Katharine Christine Carter
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK
| |
Collapse
|
11
|
Meade E, Rowan N, Garvey M. Bioprocessing and the Production of Antiviral Biologics in the Prevention and Treatment of Viral Infectious Disease. Vaccines (Basel) 2023; 11:992. [PMID: 37243096 PMCID: PMC10223144 DOI: 10.3390/vaccines11050992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/09/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Emerging, re-emerging and zoonotic viral pathogens represent a serious threat to human health, resulting in morbidity, mortality and potentially economic instability at a global scale. Certainly, the recent emergence of the novel SARS-CoV-2 virus (and its variants) highlighted the impact of such pathogens, with the pandemic creating unprecedented and continued demands for the accelerated production of antiviral therapeutics. With limited effective small molecule therapies available for metaphylaxis, vaccination programs have been the mainstay against virulent viral species. Traditional vaccines remain highly effective at providing high antibody titres, but are, however, slow to manufacture in times of emergency. The limitations of traditional vaccine modalities may be overcome by novel strategies, as outlined herein. To prevent future disease outbreaks, paradigm shift changes in manufacturing and distribution are necessary to advance the production of vaccines, monoclonal antibodies, cytokines and other antiviral therapies. Accelerated paths for antivirals have been made possible due to advances in bioprocessing, leading to the production of novel antiviral agents. This review outlines the role of bioprocessing in the production of biologics and advances in mitigating viral infectious disease. In an era of emerging viral diseases and the proliferation of antimicrobial resistance, this review provides insight into a significant method of antiviral agent production which is key to protecting public health.
Collapse
Affiliation(s)
- Elaine Meade
- Department of Life Science, Atlantic Technological University, F91 YW50 Sligo, Ireland
- Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Atlantic Technological University, F91 YW50 Sligo, Ireland
| | - Neil Rowan
- Bioscience Research Institute, Technical University Shannon Midlands Midwest, N37 HD68 Athlone, Ireland
| | - Mary Garvey
- Department of Life Science, Atlantic Technological University, F91 YW50 Sligo, Ireland
- Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Atlantic Technological University, F91 YW50 Sligo, Ireland
| |
Collapse
|
12
|
Gupta SK, Wilson T, Maclean PH, Rehm BHA, Heiser A, Buddle BM, Wedlock DN. Mycobacterium avium subsp. paratuberculosis antigens induce cellular immune responses in cattle without causing reactivity to tuberculin in the tuberculosis skin test. Front Immunol 2023; 13:1087015. [PMID: 36741398 PMCID: PMC9889921 DOI: 10.3389/fimmu.2022.1087015] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/27/2022] [Indexed: 01/19/2023] Open
Abstract
Mycobacterium avium subspecies paratuberculosis (MAP) causes chronic progressive granulomatous enteritis leading to diarrhea, weight-loss, and eventual death in ruminants. Commercially available vaccine provides only partial protection against MAP infection and can interfere with the use of current diagnostic tests for bovine tuberculosis in cattle. Here, we characterized immune responses in calves to vaccines containing four truncated MAP antigens as a fusion (Ag85A202-347-SOD1-72-Ag85B173-330-74F1-148+669-786), either displayed on protein particles, or expressed as a soluble recombinant MAP (rMAP) fusion protein as well as to commercially available Silirum® vaccine. The rMAP fusion protein elicited the strongest antigen-specific antibody responses to both PPDA and recombinant antigen and strong and long-lasting T-cell immune responses to these antigens, as indicated by increased production of IFN-γ and IL-17A in antigen-stimulated whole blood cultures. The MAP fusion protein particle vaccine induced minimal antibody responses and weak IFN-γ responses but stimulated IL-17A responses to recombinant antigen. The immune response profile of Silirum® vaccine was characterized by weak antibodies and strong IFN-γ and IL-17A responses to PPDA. Transcription analysis on antigen-stimulated leukocytes from cattle vaccinated with rMAP fusion protein showed differential expression of several immune response genes and genes involved in costimulatory signaling, TLR4, TLR2, PTX3, PTGS2, PD-L1, IL1B, IL2, IL6, IL12B, IL17A, IL22, IFNG, CD40, and CD86. Moreover, the expression of several genes of immune pathways correlated with cellular immune responses in the rMAP fusion protein vaccinated group. These genes have key roles in pathways of mycobacterial immunity, including autophagy, manipulation of macrophage-mediated killing, Th17- and regulatory T cells- (Treg) mediated responses. Calves vaccinated with either the rMAP fusion protein or MAP fusion protein particle vaccine did not induce reactivity to PPDA and PPDB in a comparative cervical skin test, whereas Silirum® induced reactivity to these tuberculins in most of the vaccinated animals. Overall, our results suggest that a combination of recombinant MAP antigens in the form of a soluble fusion protein vaccine are capable of inducing strong antigen-specific humoral and a balanced Th1/Th17-cell immune response. These findings, together with the absence of reactivity to tuberculin, suggest this subunit vaccine could provide protective immunity against intracellular MAP infection in cattle without compromising the use of current bovine tuberculosis surveillance test.
Collapse
Affiliation(s)
- Sandeep K. Gupta
- AgResearch, Hopkirk Research Institute, Palmerston North, New Zealand,*Correspondence: Sandeep K. Gupta,
| | - Tania Wilson
- AgResearch, Hopkirk Research Institute, Palmerston North, New Zealand
| | | | - Bernd H. A. Rehm
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD, Australia,Menzies Health Institute Queensland (MHIQ), Griffith University, Gold Coast, QLD, Australia
| | - Axel Heiser
- AgResearch, Hopkirk Research Institute, Palmerston North, New Zealand
| | - Bryce M. Buddle
- AgResearch, Hopkirk Research Institute, Palmerston North, New Zealand
| | - D. Neil Wedlock
- AgResearch, Hopkirk Research Institute, Palmerston North, New Zealand
| |
Collapse
|
13
|
Hossaini Alhashemi S, Ahmadi F, Dehshahri A. Lessons learned from COVID-19 pandemic: Vaccine platform is a key player. Process Biochem 2023; 124:269-279. [PMID: 36514356 PMCID: PMC9731819 DOI: 10.1016/j.procbio.2022.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/15/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022]
Abstract
The SARS-CoV-2 outbreak and emergence of COVID-19 resulted in the development of different vaccines based on various platforms to combat the disease. While the conventional platforms of inactivated/live attenuated, subunit proteins and virus-like particles (VLPs) have provided efficient and safe vaccines, novel platforms of viral vector- and nucleic acid-based vaccines opened up new horizons for vaccine development. The emergence of COVID-19 pandemic showed that the availability of platforms with high possibility of quick translation from bench to bedside is a prerequisite step in vaccine development in pandemics. Moreover, parallel development of different platforms as well as considering the shipping, storage condition, distribution infrastructure and route of administration are key players for successful and robust response. This review highlights the lessons learned from the current COVID-19 pandemic in terms of vaccine development to provide quick response to future outbreaks of infectious diseases and the importance of vaccine platform in its storage condition and shipping. Finally, the potential application of current COVID-19 vaccine platforms in the treatment of non-infectious diseases has been discussed.
Collapse
Affiliation(s)
| | - Fatemeh Ahmadi
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran,Correspondence to: School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Dehshahri
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran,Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran,Correspondence to: School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
14
|
Coates RJ, Young MT, Scofield S. Optimising expression and extraction of recombinant proteins in plants. FRONTIERS IN PLANT SCIENCE 2022; 13:1074531. [PMID: 36570881 PMCID: PMC9773421 DOI: 10.3389/fpls.2022.1074531] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Recombinant proteins are of paramount importance for research, industrial and medical use. Numerous expression chassis are available for recombinant protein production, and while bacterial and mammalian cell cultures are the most widely used, recent developments have positioned transgenic plant chassis as viable and often preferential options. Plant chassis are easily maintained at low cost, are hugely scalable, and capable of producing large quantities of protein bearing complex post-translational modification. Several protein targets, including antibodies and vaccines against human disease, have been successfully produced in plants, highlighting the significant potential of plant chassis. The aim of this review is to act as a guide to producing recombinant protein in plants, discussing recent progress in the field and summarising the factors that must be considered when utilising plants as recombinant protein expression systems, with a focus on optimising recombinant protein expression at the genetic level, and the subsequent extraction and purification of target proteins, which can lead to substantial improvements in protein stability, yield and purity.
Collapse
Affiliation(s)
| | | | - Simon Scofield
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
15
|
Abdi Ghavidel A, Aghamiri S, Jajarmi V, Bandehpour M, Kazemi B. The Influence of Different Culture Media on the Growth and Recombinant Protein Production of Iranian Lizard Leishmania Promastigote. IRANIAN JOURNAL OF PARASITOLOGY 2022; 17:543-553. [PMID: 36660414 PMCID: PMC9825703 DOI: 10.18502/ijpa.v17i4.11282] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/19/2022] [Indexed: 12/14/2022]
Abstract
Background Leishmania is a eukaryotic protozoan parasite belonging to the Trypanosomatidae family. The Iranian Lizard Leishmania (I.L.L.), which is nonpathogenic to mammals, shows great promise to be used as an expression system for recombinant protein production. Unlike other Leishmania strains, the ideal culture medium for I.L.L. has not been established, although it is commonly cultured in the RPMI1640 medium. Methods We investigated the growth rate of the wild and recombinant I.L.L. in BHI, RPMI1640, LB, and M199 media with and without FBS, hemin, or lyophilized rabbit serum. Subsequently, the expression rate of the recombinant protein in these media was compared. Results The growth rate of I.L.L. in RPMI1640 medium and LB broth was similar and supplementation with 10% FBS did not affect the growth rate. The amount of protein expression in the LB medium was higher than in the other three media. Conclusion The LB broth is an appropriate medium for I.L.L. culture and recombinant protein production.
Collapse
Affiliation(s)
- Afshin Abdi Ghavidel
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahin Aghamiri
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahid Jajarmi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mojgan Bandehpour
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahram Kazemi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Can Virus-like Particles Be Used as Synergistic Agent in Pest Management? Viruses 2022; 14:v14050943. [PMID: 35632685 PMCID: PMC9144638 DOI: 10.3390/v14050943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/14/2022] [Accepted: 04/19/2022] [Indexed: 02/05/2023] Open
Abstract
Among novel strategies proposed in pest management, synergistic agents are used to improve insecticide efficacy through an elevation of intracellular calcium concentration that activates the calcium-dependent intracellular pathway. This leads to a changed target site conformation and to increased sensitivity to insecticides while reducing their concentrations. Because virus-like particles (VLPs) increase the intracellular calcium concentration, they can be used as a synergistic agent to synergize the effect of insecticides. VLPs are self-assembled viral protein complexes, and by contrast to entomopathogen viruses, they are devoid of genetic material, which makes them non-infectious and safer than viruses. Although VLPs are well-known to be used in human health, we propose in this study the development of a promising strategy based on the use of VLPs as synergistic agents in pest management. This will lead to increased insecticides efficacy while reducing their concentrations.
Collapse
|
17
|
Kumraj G, Pathak S, Shah S, Majumder P, Jain J, Bhati D, Hanif S, Mukherjee S, Ahmed S. Capacity Building for Vaccine Manufacturing Across Developing Countries: The Way Forward. Hum Vaccin Immunother 2022; 18:2020529. [PMID: 35086416 PMCID: PMC8986212 DOI: 10.1080/21645515.2021.2020529] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Approved vaccines prevent 2 to 3 million deaths per year. There is a lack of equitable access to vaccines in the low- and middle-income developing nations. Challenges in the life cycle of vaccine production include process development, lead time, intellectual property, and local vaccine production. A robust and stable manufacturing process and constant raw material supplies over decades is critical. In a continuously evolving vaccine landscape, the need of the hour for developing nations is to manufacture their own vaccines besides having supply security, control over production scheduling and sustainability, control of costs, socio-economic development, and rapid response to local epidemics. There is a need for capacity building of workforce development, technology transfer, and financial support. Technology transfer has improved vaccine access and reduced prices of vaccines. Capacity building for the manufacturing of vaccines in developing countries has always been an area of paramount importance and more so in a pandemic situation.
Collapse
Affiliation(s)
- Ganesh Kumraj
- Techinvention Lifecare Private Limited, Mumbai, India
| | - Sarang Pathak
- Techinvention Lifecare Private Limited, Mumbai, India
| | - Sanket Shah
- Techinvention Lifecare Private Limited, Mumbai, India
| | | | | | | | - Sarmad Hanif
- Techinvention Lifecare Private Limited, Mumbai, India
| | | | - Syed Ahmed
- Techinvention Lifecare Private Limited, Mumbai, India
| |
Collapse
|
18
|
Varotto-Boccazzi I, Manenti A, Dapporto F, Gourlay LJ, Bisaglia B, Gabrieli P, Forneris F, Faravelli S, Bollati V, Rubolini D, Zuccotti G, Montomoli E, Epis S, Bandi C. Epidemic Preparedness- Leishmania tarentolae as an Easy-to-Handle Tool to Produce Antigens for Viral Diagnosis: Application to COVID-19. Front Microbiol 2021; 12:736530. [PMID: 34966362 PMCID: PMC8710741 DOI: 10.3389/fmicb.2021.736530] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 11/04/2021] [Indexed: 12/20/2022] Open
Abstract
To detect and prevent emerging epidemics, discovery platforms are urgently needed, for the rapid development of diagnostic assays. Molecular diagnostic tests for COVID-19 were developed shortly after the isolation of SARS-CoV-2. However, serological tests based on antiviral antibody detection, revealing previous exposure to the virus, required longer testing phases, due to the need to obtain correctly folded and glycosylated antigens. The delay between the identification of a new virus and the development of reliable serodiagnostic tools limits our readiness to tackle future epidemics. We suggest that the protozoan Leishmania tarentolae can be used as an easy-to-handle microfactory for the rapid production of viral antigens to face emerging epidemics. We engineered L. tarentolae to express the SARS-CoV-2 receptor-binding domain (RBD) and we recorded the ability of the purified RBD antigen to detect SARS-CoV-2 infection in human sera, with a sensitivity and reproducibility comparable to that of a reference antigen produced in human cells. This is the first application of an antigen produced in L. tarentolae for the serodiagnosis of a Coronaviridae infection. On the basis of our results, we propose L. tarentolae as an effective system for viral antigen production, even in countries that lack high-technology cell factories.
Collapse
Affiliation(s)
- Ilaria Varotto-Boccazzi
- Department of Biosciences, University of Milan, Milan, Italy
- Department of Biomedical and Clinical Science “L. Sacco”, University of Milan, Milan, Italy
| | | | | | | | | | - Paolo Gabrieli
- Department of Biosciences, University of Milan, Milan, Italy
| | - Federico Forneris
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia, Italy
| | - Silvia Faravelli
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia, Italy
| | - Valentina Bollati
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Diego Rubolini
- Department of Environmental Science and Policy, University of Milan, Milan, Italy
- Water Research Institute—National Research Council of Italy, IRSA−CNR, Brugherio, Italy
| | - Gianvincenzo Zuccotti
- Department of Biomedical and Clinical Science “L. Sacco”, University of Milan, Milan, Italy
- Pediatric CRC “Romeo ed Enrica Invernizzi”, University of Milan, Milan, Italy
| | - Emanuele Montomoli
- VisMederi Research, Siena, Italy
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Sara Epis
- Department of Biosciences, University of Milan, Milan, Italy
- Pediatric CRC “Romeo ed Enrica Invernizzi”, University of Milan, Milan, Italy
| | - Claudio Bandi
- Department of Biosciences, University of Milan, Milan, Italy
- Pediatric CRC “Romeo ed Enrica Invernizzi”, University of Milan, Milan, Italy
| |
Collapse
|
19
|
Zhang Y, Liu F, Zhao Y, Yang F, Bai J, Jia X, Roobsoong W, Sattabongkot J, Cui L, Cao Y, Luo E, Wang M. Evaluation of two Plasmodium vivax sexual stage antigens as transmission-blocking vaccine candidates. Parasit Vectors 2021; 14:407. [PMID: 34399829 PMCID: PMC8366161 DOI: 10.1186/s13071-021-04909-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 07/30/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Plasmodium vivax transmission-blocking vaccines (TBVs) are receiving increasing attention. Based on excellent transmission-blocking activities of the PbPH (PBANKA_0417200) and PbSOP26 (PBANKA_1457700) antigens in Plasmodium berghei, their orthologs in P. vivax, PVX_098655 (PvPH) and PVX_101120 (PvSOP26), were selected for the evaluation of their potential as TBVs. METHODS Fragments of PvPH (amino acids 22-304) and PvSOP26 (amino acids 30-272) were expressed in the yeast expression system. The recombinant proteins were used to immunize mice to obtain antisera. The transmission-reducing activities of these antisera were evaluated using the direct membrane feeding assay (DMFA) using Anopheles dirus mosquitoes and P. vivax clinical isolates. RESULTS The recombinant proteins PvPH and PvSOP26 induced robust antibody responses in mice. The DMFA showed that the anti-PvSOP26 sera significantly reduced oocyst densities by 92.0 and 84.1% in two parasite isolates, respectively, whereas the anti-PvPH sera did not show evident transmission-reducing activity. The variation in the DMFA results was unlikely due to the genetic polymorphisms of the two genes since their respective sequences were identical in the clinical P. vivax isolates. CONCLUSION PvSOP26 could be a promising TBV candidate for P. vivax, which warrants further evaluation.
Collapse
Affiliation(s)
- Yongzhe Zhang
- Department of Pathogen Biology, College of Basic Medical Sciences, China Medical University, Shenyang, 110122, Liaoning, China
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China
| | - Fei Liu
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, 110122, Liaoning, China
| | - Yan Zhao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, 110122, Liaoning, China
| | - Fan Yang
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, 110122, Liaoning, China
| | - Jie Bai
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, 110122, Liaoning, China
| | - Xitong Jia
- Department of Pathogen Biology, College of Basic Medical Sciences, China Medical University, Shenyang, 110122, Liaoning, China
| | - Wanlapa Roobsoong
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Liwang Cui
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, 3720 Spectrum Boulevard, Suite 304, Tampa, FL, 33612-9415, USA
| | - Yaming Cao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, 110122, Liaoning, China
| | - Enjie Luo
- Department of Pathogen Biology, College of Basic Medical Sciences, China Medical University, Shenyang, 110122, Liaoning, China.
| | - Meilian Wang
- Department of Pathogen Biology, College of Basic Medical Sciences, China Medical University, Shenyang, 110122, Liaoning, China.
| |
Collapse
|
20
|
Cid R, Bolívar J. Platforms for Production of Protein-Based Vaccines: From Classical to Next-Generation Strategies. Biomolecules 2021; 11:1072. [PMID: 34439738 PMCID: PMC8394948 DOI: 10.3390/biom11081072] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/16/2021] [Accepted: 07/17/2021] [Indexed: 12/12/2022] Open
Abstract
To date, vaccination has become one of the most effective strategies to control and reduce infectious diseases, preventing millions of deaths worldwide. The earliest vaccines were developed as live-attenuated or inactivated pathogens, and, although they still represent the most extended human vaccine types, they also face some issues, such as the potential to revert to a pathogenic form of live-attenuated formulations or the weaker immune response associated with inactivated vaccines. Advances in genetic engineering have enabled improvements in vaccine design and strategies, such as recombinant subunit vaccines, have emerged, expanding the number of diseases that can be prevented. Moreover, antigen display systems such as VLPs or those designed by nanotechnology have improved the efficacy of subunit vaccines. Platforms for the production of recombinant vaccines have also evolved from the first hosts, Escherichia coli and Saccharomyces cerevisiae, to insect or mammalian cells. Traditional bacterial and yeast systems have been improved by engineering and new systems based on plants or insect larvae have emerged as alternative, low-cost platforms. Vaccine development is still time-consuming and costly, and alternative systems that can offer cost-effective and faster processes are demanding to address infectious diseases that still do not have a treatment and to face possible future pandemics.
Collapse
Affiliation(s)
- Raquel Cid
- ADL Bionatur Solutions S.A., Av. del Desarrollo Tecnológico 11, 11591 Jerez de la Frontera, Spain
| | - Jorge Bolívar
- Department of Biomedicine, Biotechnology and Public Health-Biochemistry and Molecular Biology, Campus Universitario de Puerto Real, University of Cadiz, 11510 Puerto Real, Spain
| |
Collapse
|
21
|
Shrivastava T, Singh B, Rizvi ZA, Verma R, Goswami S, Vishwakarma P, Jakhar K, Sonar S, Mani S, Bhattacharyya S, Awasthi A, Surjit M. Comparative Immunomodulatory Evaluation of the Receptor Binding Domain of the SARS-CoV-2 Spike Protein; a Potential Vaccine Candidate Which Imparts Potent Humoral and Th1 Type Immune Response in a Mouse Model. Front Immunol 2021; 12:641447. [PMID: 34108961 PMCID: PMC8182375 DOI: 10.3389/fimmu.2021.641447] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/12/2021] [Indexed: 12/18/2022] Open
Abstract
The newly emerged novel coronavirus, SARS-CoV-2, the causative agent of COVID-19 has proven to be a threat to the human race globally, thus, vaccine development against SARS-CoV-2 is an unmet need driving mass vaccination efforts. The receptor binding domain of the spike protein of this coronavirus has multiple neutralizing epitopes and is associated with viral entry. Here we have designed and characterized the SARS-CoV-2 spike protein fragment 330-526 as receptor binding domain 330-526 (RBD330-526) with two native glycosylation sites (N331 and N343); as a potential subunit vaccine candidate. We initially characterized RBD330-526 biochemically and investigated its thermal stability, humoral and T cell immune response of various RBD protein formulations (with or without adjuvant) to evaluate the inherent immunogenicity and immunomodulatory effect. Our result showed that the purified RBD immunogen is stable up to 72 h, without any apparent loss in affinity or specificity of interaction with the ACE2 receptor. Upon immunization in mice, RBD generates a high titer humoral response, elevated IFN-γ producing CD4+ cells, cytotoxic T cells, and robust neutralizing antibodies against live SARS-CoV-2 virus. Our results collectively support the potential of RBD330-526 as a promising vaccine candidate against SARS-CoV-2.
Collapse
Affiliation(s)
- Tripti Shrivastava
- Infection and Immunology, Translational Health Science & Technology Institute, National Capital Region (NCR) Biotech Science Cluster, Faridabad, India
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Identification of juvenile hormone-induced posttranslational modifications of methoprene tolerant and Krüppel homolog 1 in the yellow fever mosquito, Aedes aegypti. J Proteomics 2021; 242:104257. [PMID: 33957312 DOI: 10.1016/j.jprot.2021.104257] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/29/2021] [Accepted: 04/28/2021] [Indexed: 11/23/2022]
Abstract
Recent studies reported that JH-regulated phosphorylation status of the JH-receptor complex contributes to its transcription activity in Aedes aegypti. However, phosphorylation sites of these proteins have not yet been identified. In this study, we found that the fusion of an EGFP tag to Ae. aegypti Kr-h1 (AaKr-h1) and Met (AaMet) improved their stability in mosquito Aag-2 cells, which allowed their purification. The liquid chromatography and tandem mass spectrometry analysis of the purified AaKr-h1 showed that the phosphoserine residue at position 694, located in the evolutionarily conserved SVIQ motif, is dephosphorylated when the cells are exposed to JH. The AaKr-h1 dephosphorylation mutant (S694V) showed significantly higher activity in inducing the luciferase gene regulated by JH response elements. The phosphorylation profile of Met also changed after exposing Aag-2 cells to JH III. The Ser-77 and Ser-710 residues of Met were phosphorylated after JH III treatment. In contrast, the two phosphoserine residues at positions 73 and 747 were dephosphorylated after JH III treatment. JH exposure also induced transient and reversible phosphorylation of Thr-664 and Ser-723 residues. Overall, these data show that JH induces changes in post-translational modifications of AaMet and AaKr-h1. SIGNIFICANCE: Female Aedes aegypti mosquitoes are known to vector many disease agents, including Zika virus, dengue virus chikungunya virus, and Mayaro and yellow fever virus. In the present study, we developed an efficient method to prepare Ae. aegypti Met and Kr-h1, which are typically difficult to produce and purify, using a mosquito cell line expression system. A liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based approaches were utilized to map the phosphorylation profiles of the isolated proteins. We then monitored the changes induced by JH activation in the phosphorylation profiles to check if the JH modulates post-translation modification of its key transcription factors. We found that the JH induced alterations in the phosphorylation profiles of the multiple residues of AaMet. In contrast, activation of the JH signaling pathway was accompanied by dephosphorylation of AaKr-h1 at phosphoserine-694, increasing its transcriptional activity. In addition, S694 of AaKr-h1 was located in the RMSSVIQYA motif highly conserved in orthologous proteins from other insect species. These results can help us further understand how JH modulates its key transcription factors and provide a basis for the development of novel insect control strategies.
Collapse
|
23
|
Chakraborty S, Mallajosyula V, Tato CM, Tan GS, Wang TT. SARS-CoV-2 vaccines in advanced clinical trials: Where do we stand? Adv Drug Deliv Rev 2021; 172:314-338. [PMID: 33482248 PMCID: PMC7816567 DOI: 10.1016/j.addr.2021.01.014] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/11/2021] [Accepted: 01/14/2021] [Indexed: 02/07/2023]
Abstract
The ongoing SARS-CoV-2 pandemic has led to the focused application of resources and scientific expertise toward the goal of developing investigational vaccines to prevent COVID-19. The highly collaborative global efforts by private industry, governments and non-governmental organizations have resulted in a number of SARS-CoV-2 vaccine candidates moving to Phase III trials in a period of only months since the start of the pandemic. In this review, we provide an overview of the preclinical and clinical data on SARS-CoV-2 vaccines that are currently in Phase III clinical trials and in few cases authorized for emergency use. We further discuss relevant vaccine platforms and provide a discussion of SARS-CoV-2 antigens that may be targeted to increase the breadth and durability of vaccine responses.
Collapse
Affiliation(s)
- Saborni Chakraborty
- Department of Medicine, Division of Infectious Diseases, Stanford University, Stanford, CA, USA
| | - Vamsee Mallajosyula
- Institute for Immunity, Transplantation, and Infection, Stanford University, Stanford, CA, USA
| | - Cristina M Tato
- Infectious Disease Initiative, Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Gene S Tan
- J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA 92037, USA; Department of Infectious Diseases, University of California San Diego, La Jolla, CA 92037, USA
| | - Taia T Wang
- Department of Medicine, Division of Infectious Diseases, Stanford University, Stanford, CA, USA; Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
24
|
Development of a novel heterologous gene expression system using earthworms. Sci Rep 2021; 11:8190. [PMID: 33854163 PMCID: PMC8046771 DOI: 10.1038/s41598-021-87641-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 03/31/2021] [Indexed: 11/08/2022] Open
Abstract
In recent years, animals and plants have received increasing attention as potential next-generation protein production systems, especially for biopharmaceuticals and animal proteins. The aim of the present study was to develop the earthworms Eisenia fetida Waki and Eisenia andrei Sagami as next-generation animal protein production hosts. These earthworms have been approved as model animals for acute toxicity tests by the Organization for Economic Co-operation and Development, and they have post-translational modification systems. However, so far, none of the studies have used earthworm transfection techniques. Thus, we developed a transfection method for E. fetida and E. andrei using microinjection and electroporation systems. The maximum survival rates and transfection efficiencies were 79.2% and 29.2% for E. fetida, and 95.8% and 50.0% for E. andrei, respectively. Furthermore, human erythropoietin was detected in the transformed earthworm tail fragments using an enzyme-linked immunosorbent assay. These results contribute to the development of a potential earthworm-based novel animal protein production system.
Collapse
|
25
|
Çalıseki M, Üstüntanır Dede AF, Arslanyolu M. Characterization and use of Tetrahymena thermophila artificial chromosome 2 (TtAC2) constructed by biomimetic of macronuclear rDNA minichromosome. Microbiol Res 2021; 248:126764. [PMID: 33887535 DOI: 10.1016/j.micres.2021.126764] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/25/2021] [Accepted: 03/31/2021] [Indexed: 11/26/2022]
Abstract
Efficient expression vectors for unicellular ciliate eukaryotic Tetrahymena thermophila are still needed in recombinant biology and biotechnology applications. Previously, the construction of the T. thermophila Macronuclear Artificial Chromosome 1 (TtAC1) vector revealed additional needs for structural improvements such as better in vivo stability and maintenance as a recombinant protein expression platform. In this study, we designed an efficiently maintained artificial chromosome by biomimetic of the native macronuclear rDNA minichromosome. TtAC2 was constructed by sequential cloning of subtelomeric 3'NTS region (1.8 kb), an antibiotic resistance gene cassette (2 kb neo4), a gene expression cassette (2 kb TtsfGFP), rDNA coding regions plus a dominant C3 origin sequence (10.3 kb), and telomeres (2.4 kb) in a pUC19 backbone plasmid (2.6 kb). The 21 kb TtAC2 was characterized using fluorescence microscopy, qPCR, western blot and Southern blot after its transformation to vegetative T. thermophila CU428.2 strain, which has a recessive B origin allele. All experimental data show that circular or linear forms of novel TtAC2 were maintained as free replicons in T. thermophila macronucleus with or without antibiotic treatment. Notably, TtAC2 carrying strains expressed a TtsfGFP marker protein, demonstrating the efficacy and functionality of the protein expression platform. We show that TtAC2 is functionally maintained for more than two months, and can be efficiently used in recombinant DNA, and protein production applications.
Collapse
Affiliation(s)
- Mehmet Çalıseki
- Department of Advanced Technologies, Graduate School of Sciences, Eskisehir Technical University, Yunusemre Campus, Eskisehir, 26470, Turkey.
| | - Ayça Fulya Üstüntanır Dede
- Department of Biology, Institute of Graduate Programs, Eskisehir Technical University, Yunusemre Campus, Eskisehir, 26470, Turkey.
| | - Muhittin Arslanyolu
- Department of Biology, Faculty of Sciences, Eskisehir Technical University, Yunusemre Campus, Eskisehir, 26470, Turkey.
| |
Collapse
|
26
|
Twair A, Kassem I, Murad H, Abbady AQ. Secretion of Recombinant Human Annexin V in Fusion with the Super Folder GFP for Labelling Phosphatidylserine-Exposing Membranes. J Membr Biol 2021; 254:175-187. [PMID: 33604692 DOI: 10.1007/s00232-021-00169-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 01/05/2021] [Indexed: 11/26/2022]
Abstract
Annexin V (ANXV), mostly characterized by its ability to interact with biological membranes in a calcium-dependent manner. ANXV interacts mainly with phosphatidylserine (PS), for that fluorescent ANXV widely produced and used as a sensitive and specific probe to mark apoptotic cells or any PS-containing bilayers membranes. Many reports described the prokaryotic expression of recombinant human ANXV. To overcome some of E. coli expression limitations, we aimed in this work to investigate unconventional alternative expression system in mammalian cells for producing secreted human ANXV in fusion with the super folder green fluorescent protein (sfGFP). HEK239T cells were transfected using polyethylenimine (PEI) and pcDNA-sfGFP-ANXV plasmid. Forty-eight hours post transfection, direct fluorescence measurement, immunoblotting and ELISA confirmed the presence of secreted sfGFP-ANXV in cells supernatant. The yield of secreted 6 × His-tagged sfGFP-ANXV after affinity purification was estimated to be around 2 µg per 1 ml of cells supernatant. The secretion system was proper to produce a fully functional sfGFP-ANXV fusion protein in quantities enough to recognize and bind PS-containing surfaces or liposomes. Besides, biological assays such as flow cytometry and fluorescent microscopy confirmed the capacity of the secreted sfGFP-ANXV to detect PS exposure on apoptotic cells. Taken together, we present mammalian expression as a quick, affordable and endotoxin-free system to produce sfGFP-ANXV fusion protein. The secreted sfGFP-ANXV in eukaryotic system is a promising biotechnological tool, it opens up new horizons for additional applications in the detection of PS bearing surfaces and apoptosis in vitro and in vivo assays.
Collapse
Affiliation(s)
- Aya Twair
- Division of Molecular Biomedicine, Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria (AECS), P. O. Box 6091, Damascus, Syria
- Department of Animal Biology, Faculty of Sciences, Damascus University, Damascus, Syria
| | - Issam Kassem
- Department of Animal Biology, Faculty of Sciences, Damascus University, Damascus, Syria
- National Commission for Biotechnology (NCBT), Damascus, Syria
| | - Hossam Murad
- Division of Human Genetics, Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria (AECS), P. O. Box 6091, Damascus, Syria
| | - Abdul Qader Abbady
- Division of Molecular Biomedicine, Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria (AECS), P. O. Box 6091, Damascus, Syria.
| |
Collapse
|
27
|
Doritchamou JYA, Suurbaar J, Tuikue Ndam N. Progress and new horizons toward a VAR2CSA-based placental malaria vaccine. Expert Rev Vaccines 2021; 20:215-226. [PMID: 33472449 DOI: 10.1080/14760584.2021.1878029] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Introduction: Several malaria vaccines are under various phases of development with some promising results. In placental malaria (PM) a deliberately anti-disease approach is considered as many studies have underlined the key role of VAR2CSA protein, which therefore represents the leading vaccine candidate. However, evidence indicates that VAR2CSA antigenic polymorphism remains an obstacle to overcome.Areas covered: This review analyzes the progress made thus far in developing a VAR2CSA-based vaccine, and addresses the current issues and challenges that must be overcome to develop an effective PM vaccine.Expert opinion: Phase I trials of PAMVAC and PRIMVAC VAR2CSA vaccines have shown more or less satisfactory results with regards to safety and immunogenicity. The second generation of VAR2CSA-based vaccines could benefit from optimization approaches to broaden the activity spectrum against various placenta-binding isolates through continued advances in the structural understanding of the interaction with CSA.
Collapse
Affiliation(s)
- Justin Yai Alamou Doritchamou
- Laboratory of Malaria Immunology & Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jennifer Suurbaar
- Université de Paris, MERIT, IRD, F-75006 Paris, France.,Noguchi Memorial Institute for Medical Research, Department of Immunology, University of Ghana, Accra, Ghana
| | - Nicaise Tuikue Ndam
- Université de Paris, MERIT, IRD, F-75006 Paris, France.,Noguchi Memorial Institute for Medical Research, Department of Immunology, University of Ghana, Accra, Ghana
| |
Collapse
|
28
|
Future perspectives on swine viral vaccines: where are we headed? Porcine Health Manag 2021; 7:1. [PMID: 33397477 PMCID: PMC7780603 DOI: 10.1186/s40813-020-00179-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 11/27/2020] [Indexed: 12/18/2022] Open
Abstract
Deliberate infection of humans with smallpox, also known as variolation, was a common practice in Asia and dates back to the fifteenth century. The world's first human vaccination was administered in 1796 by Edward Jenner, a British physician. One of the first pig vaccines, which targeted the bacterium Erysipelothrix rhusiopathiae, was introduced in 1883 in France by Louis Pasteur. Since then vaccination has become an essential part of pig production, and viral vaccines in particular are essential tools for pig producers and veterinarians to manage pig herd health. Traditionally, viral vaccines for pigs are either based on attenuated-live virus strains or inactivated viral antigens. With the advent of genomic sequencing and molecular engineering, novel vaccine strategies and tools, including subunit and nucleic acid vaccines, became available and are being increasingly used in pigs. This review aims to summarize recent trends and technologies available for the production and use of vaccines targeting pig viruses.
Collapse
|
29
|
LeBlanc Z, Waterhouse P, Bally J. Plant-Based Vaccines: The Way Ahead? Viruses 2020; 13:E5. [PMID: 33375155 PMCID: PMC7822169 DOI: 10.3390/v13010005] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/16/2020] [Accepted: 12/19/2020] [Indexed: 12/20/2022] Open
Abstract
Severe virus outbreaks are occurring more often and spreading faster and further than ever. Preparedness plans based on lessons learned from past epidemics can guide behavioral and pharmacological interventions to contain and treat emergent diseases. Although conventional biologics production systems can meet the pharmaceutical needs of a community at homeostasis, the COVID-19 pandemic has created an abrupt rise in demand for vaccines and therapeutics that highlight the gaps in this supply chain's ability to quickly develop and produce biologics in emergency situations given a short lead time. Considering the projected requirements for COVID-19 vaccines and the necessity for expedited large scale manufacture the capabilities of current biologics production systems should be surveyed to determine their applicability to pandemic preparedness. Plant-based biologics production systems have progressed to a state of commercial viability in the past 30 years with the capacity for production of complex, glycosylated, "mammalian compatible" molecules in a system with comparatively low production costs, high scalability, and production flexibility. Continued research drives the expansion of plant virus-based tools for harnessing the full production capacity from the plant biomass in transient systems. Here, we present an overview of vaccine production systems with a focus on plant-based production systems and their potential role as "first responders" in emergency pandemic situations.
Collapse
Affiliation(s)
- Zacharie LeBlanc
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia;
| | - Peter Waterhouse
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia;
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
| | - Julia Bally
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia;
| |
Collapse
|
30
|
Evolution of Pichia pastoris as a model organism for vaccines production in healthcare industry. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
31
|
Basak S, Chu KB, Kang HJ, Kim MJ, Lee SH, Yoon KW, Jin H, Suh JW, Moon EK, Quan FS. Orally administered recombinant baculovirus vaccine elicits partial protection against avian influenza virus infection in mice. Microb Pathog 2020; 149:104495. [PMID: 32910984 DOI: 10.1016/j.micpath.2020.104495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/20/2020] [Accepted: 08/31/2020] [Indexed: 12/23/2022]
Abstract
Avian influenza outbreaks have placed a tremendous economic burden on the poultry industry, necessitating the need for an effective vaccine. Although multiple vaccine candidates are available, its development is hindered by several drawbacks associated with the vaccine platforms and as such, more improvements to the vaccines are needed. Therefore, in this study, the vaccine efficacy in the murine models was assessed prior to evaluation in chickens. An oral recombinant baculovirus (rBV) vaccine expressing influenza hemagglutinin (HA) (A/H5N1) was generated and its efficacy was investigated against homologous avian influenza infection in mice. Our results confirmed that oral administration of rBVs enhanced the level of virus-specific antibodies in the sera following boost immunization. Upon challenge infection with a lethal dose of highly pathogenic avian influenza virus (HPAI, H5N1) virus, a marked increase in mucosal IgG and IgA were observed. Drastically increased antibody secretory cell responses from the bone marrow cells and splenocytes of vaccinated mice were observed, in addition to the strongly elicited germinal center responses in the lungs and the spleens. Vaccinated mice showed significantly reduced lung pro-inflammatory cytokine responses, lung viral loads, body weight loss, and mortality. Though mice were only partially protected upon challenge infection, these results highlight the potential of orally administered rBVs expressing the HA as a vaccine candidate for controlling avian influenza outbreaks.
Collapse
Affiliation(s)
- Swarnendu Basak
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Ki-Back Chu
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Hae-Ji Kang
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Min-Ju Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Su-Hwa Lee
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Keon-Woong Yoon
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Hui Jin
- Center for Nutraceutical and Pharmaceutical Materials, Myongji University, Gyeonggi-do, Republic of Korea
| | - Joo Won Suh
- Center for Nutraceutical and Pharmaceutical Materials, Myongji University, Gyeonggi-do, Republic of Korea
| | - Eun-Kyung Moon
- Department of Medical Zoology, Kyung Hee University School of Medicine, Seoul, Republic of Korea
| | - Fu-Shi Quan
- Department of Medical Zoology, Kyung Hee University School of Medicine, Seoul, Republic of Korea; Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea.
| |
Collapse
|
32
|
Ecker JW, Kirchenbaum GA, Pierce SR, Skarlupka AL, Abreu RB, Cooper RE, Taylor-Mulneix D, Ross TM, Sautto GA. High-Yield Expression and Purification of Recombinant Influenza Virus Proteins from Stably-Transfected Mammalian Cell Lines. Vaccines (Basel) 2020; 8:vaccines8030462. [PMID: 32825605 PMCID: PMC7565037 DOI: 10.3390/vaccines8030462] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/15/2020] [Accepted: 08/17/2020] [Indexed: 12/21/2022] Open
Abstract
Influenza viruses infect millions of people each year, resulting in significant morbidity and mortality in the human population. Therefore, generation of a universal influenza virus vaccine is an urgent need and would greatly benefit public health. Recombinant protein technology is an established vaccine platform and has resulted in several commercially available vaccines. Herein, we describe the approach for developing stable transfected human cell lines for the expression of recombinant influenza virus hemagglutinin (HA) and recombinant influenza virus neuraminidase (NA) proteins for the purpose of in vitro and in vivo vaccine development. HA and NA are the main surface glycoproteins on influenza virions and the major antibody targets. The benefits for using recombinant proteins for in vitro and in vivo assays include the ease of use, high level of purity and the ability to scale-up production. This work provides guidelines on how to produce and purify recombinant proteins produced in mammalian cell lines through either transient transfection or generation of stable cell lines from plasmid creation through the isolation step via Immobilized Metal Affinity Chromatography (IMAC). Collectively, the establishment of this pipeline has facilitated large-scale production of recombinant HA and NA proteins to high purity and with consistent yields, including glycosylation patterns that are very similar to proteins produced in a human host.
Collapse
Affiliation(s)
- Jeffrey W. Ecker
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA; (J.W.E.); (G.A.K.); (S.R.P.); (A.L.S.); (R.B.A.); (R.E.C.); (D.T.-M.); (T.M.R.)
| | - Greg A. Kirchenbaum
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA; (J.W.E.); (G.A.K.); (S.R.P.); (A.L.S.); (R.B.A.); (R.E.C.); (D.T.-M.); (T.M.R.)
| | - Spencer R. Pierce
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA; (J.W.E.); (G.A.K.); (S.R.P.); (A.L.S.); (R.B.A.); (R.E.C.); (D.T.-M.); (T.M.R.)
| | - Amanda L. Skarlupka
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA; (J.W.E.); (G.A.K.); (S.R.P.); (A.L.S.); (R.B.A.); (R.E.C.); (D.T.-M.); (T.M.R.)
| | - Rodrigo B. Abreu
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA; (J.W.E.); (G.A.K.); (S.R.P.); (A.L.S.); (R.B.A.); (R.E.C.); (D.T.-M.); (T.M.R.)
| | - R. Ethan Cooper
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA; (J.W.E.); (G.A.K.); (S.R.P.); (A.L.S.); (R.B.A.); (R.E.C.); (D.T.-M.); (T.M.R.)
| | - Dawn Taylor-Mulneix
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA; (J.W.E.); (G.A.K.); (S.R.P.); (A.L.S.); (R.B.A.); (R.E.C.); (D.T.-M.); (T.M.R.)
| | - Ted M. Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA; (J.W.E.); (G.A.K.); (S.R.P.); (A.L.S.); (R.B.A.); (R.E.C.); (D.T.-M.); (T.M.R.)
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
| | - Giuseppe A. Sautto
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA; (J.W.E.); (G.A.K.); (S.R.P.); (A.L.S.); (R.B.A.); (R.E.C.); (D.T.-M.); (T.M.R.)
- Correspondence: ; Tel.: +1-706-542-6711
| |
Collapse
|
33
|
Utomo DIS, Pambudi S, Sjatha F, Kato T, Park EY. Production of dengue virus-like particles serotype-3 in silkworm larvae and their ability to elicit a humoral immune response in mice. AMB Express 2020; 10:147. [PMID: 32804287 PMCID: PMC7431508 DOI: 10.1186/s13568-020-01087-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/11/2020] [Indexed: 02/08/2023] Open
Abstract
To develop monovalent dengue virus-like particle for serotype 3 (DENV-LP/3), we prepared and expressed two structural polyprotein constructs using silkworm and Bm5 cells: DENV-3 Capsid-premembrane-envelope (DENV-3CprME) and premembrane-envelope (DENV-3prME). The expressed PA-tagged 3CprME and 3prME polypeptides were partially purified by PA-tag affinity chromatography and had molecular weights of 85 and 75 kDa, respectively. Expressed proteins were separately verified using the following primary antibodies: the anti-PA tag antibody, DENV premembrane polyclonal antibody, and DENV envelope polyclonal antibody. Transmission electron microscopy revealed that these DENV-3CprME and 3prME formed rough, spherical DENV-LPs (DENV-LP/3CprME and DENV-LP/3prME), respectively, with a diameter of 30–55 nm. The heparin-binding assay demonstrated that these DENV-LPs contained the envelope protein domain III on their surfaces. Both DENV-LPs showed an affinity to sera from human dengue patients and immunized mice. Immunization of mice with DENV-LP/3prME significantly induced the level of antibodies compared with DENV-LP/3CprME. These results indicate that DENV-LP/3prME is suitable as a vaccine candidate compared with DENV-LP/3CprME.
Collapse
|
34
|
Sampaio de Oliveira KB, Leite ML, Rodrigues GR, Duque HM, da Costa RA, Cunha VA, de Loiola Costa LS, da Cunha NB, Franco OL, Dias SC. Strategies for recombinant production of antimicrobial peptides with pharmacological potential. Expert Rev Clin Pharmacol 2020; 13:367-390. [PMID: 32357080 DOI: 10.1080/17512433.2020.1764347] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION The need to develop new drugs for the control of pathogenic microorganisms has redoubled efforts to prospect for antimicrobial peptides (AMPs) from natural sources and to characterize its structure and function. These molecules present a broad spectrum of action against different microorganisms and frequently present promiscuous action, with anticancer and immunomodulatory activities. Furthermore, AMPs can be used as biopharmaceuticals in the treatment of hospital-acquired infections and other serious diseases with relevant social and economic impacts.Areas covered: The low yield and the therefore difficult extraction and purification process in AMPs are problems that limit their industrial application and scientific research. Thus, optimized heterologous expression systems were developed to significantly boost AMP yields, allow high efficiency in purification and structural optimization for the increase of therapeutic activity.Expert opinion: This review provides an update on recent developments in the recombinant production of ribosomal and non-ribosomal synthesis of AMPs and on strategies to increase the expression of genes encoding AMPs at the transcriptional and translational levels and regulation of the post-translational modifications. Moreover, there are detailed reports of AMPs that have already reached marketable status or are in the pipeline under advanced stages of preclinical testing.
Collapse
Affiliation(s)
- Kamila Botelho Sampaio de Oliveira
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília , Brasília, Brazil
| | - Michel Lopes Leite
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília , Brasília, Brazil
| | - Gisele Regina Rodrigues
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília , Brasília, Brazil
| | - Harry Morales Duque
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília , Brasília, Brazil
| | - Rosiane Andrade da Costa
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília , Brasília, Brazil
| | - Victor Albuquerque Cunha
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília , Brasília, Brazil
| | - Lorena Sousa de Loiola Costa
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília , Brasília, Brazil
| | - Nicolau Brito da Cunha
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília , Brasília, Brazil
| | - Octavio Luiz Franco
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília , Brasília, Brazil.,Universidade de Brasília, Pós-graduação em Patologia Molecular, Campus Darcy Ribeiro , Brasília, Brazil.,S-Inova Biotech, Pós-graduação em Biotecnologia, Universidade Católica Dom Bosco , Campo Grande, Mato Grosso do Sul, Brazil
| | - Simoni Campos Dias
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília , Brasília, Brazil.,Universidade de Brasília, Pós-graduação em Biologia Animal, Campus Darcy Ribeiro , Brasília, Brazil
| |
Collapse
|
35
|
Abstract
Vaccines are biological preparations that improve immunity to particular diseases and form an important innovation of 19th century research. It contains a protein that resembles a disease-causing microorganism and is often made from weak or killed forms of the microbe. Vaccines are agents that stimulate the body’s immune system to recognize the antigen. Now, a new form of vaccine was introduced which will have the power to mask the risk side of conventional vaccines. This type of vaccine was produced from plants which are genetically modified. In the production of edible vaccines, the gene-encoding bacterial or viral disease-causing agent can be incorporated in plants without losing its immunogenic property. The main mechanism of action of edible vaccines is to activate the systemic and mucosal immunity responses against a foreign disease-causing organism. Edible vaccines can be produced by incorporating transgene in to the selected plant cell. At present edible vaccine are developed for veterinary and human use. But the main challenge faced by edible vaccine is its acceptance by the population so that it is necessary to make aware the society about its use and benefits. When compared to other traditional vaccines, edible vaccines are cost effective, efficient and safe. It promises a better prevention option from diseases.
Collapse
Affiliation(s)
- Vrinda M Kurup
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Amrita Institute of Medical Sciences Healthcare, Education & Research, Kochi, Kerala, 682041, India
| | - Jaya Thomas
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Amrita Institute of Medical Sciences Healthcare, Education & Research, Kochi, Kerala, 682041, India.
| |
Collapse
|
36
|
Brady JR, Whittaker CA, Tan MC, Kristensen DL, Ma D, Dalvie NC, Love KR, Love JC. Comparative genome-scale analysis of Pichia pastoris variants informs selection of an optimal base strain. Biotechnol Bioeng 2020; 117:543-555. [PMID: 31654411 PMCID: PMC7003935 DOI: 10.1002/bit.27209] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/04/2019] [Accepted: 10/22/2019] [Indexed: 01/08/2023]
Abstract
Komagataella phaffii, also known as Pichia pastoris, is a common host for the production of biologics and enzymes, due to fast growth, high productivity, and advancements in host engineering. Several K. phaffii variants are commonly used as interchangeable base strains, which confounds efforts to improve this host. In this study, genomic and transcriptomic analyses of Y-11430 (CBS7435), GS115, X-33, and eight other variants enabled a comparative assessment of the relative fitness of these hosts for recombinant protein expression. Cell wall integrity explained the majority of the variation among strains, impacting transformation efficiency, growth, methanol metabolism, and secretion of heterologous proteins. Y-11430 exhibited the highest activity of genes involved in methanol utilization, up to two-fold higher transcription of heterologous genes, and robust growth. With a more permeable cell wall, X-33 displayed a six-fold higher transformation efficiency and up to 1.2-fold higher titers than Y-11430. X-33 also shared nearly all mutations, and a defective variant of HIS4, with GS115, precluding robust growth. Transferring two beneficial mutations identified in X-33 into Y-11430 resulted in an optimized base strain that provided up to four-fold higher transformation efficiency and three-fold higher protein titers, while retaining robust growth. The approach employed here to assess unique banked variants in a species and then transfer key beneficial variants into a base strain should also facilitate rational assessment of a broad set of other recombinant hosts.
Collapse
Affiliation(s)
- Joseph R. Brady
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMassachusetts
- Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeMassachusetts
| | - Charles A. Whittaker
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMassachusetts
| | - Melody C. Tan
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMassachusetts
| | - D. Lee Kristensen
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMassachusetts
| | - Duanduan Ma
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMassachusetts
| | - Neil C. Dalvie
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMassachusetts
- Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeMassachusetts
| | - Kerry Routenberg Love
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMassachusetts
| | - J. Christopher Love
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMassachusetts
- Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeMassachusetts
| |
Collapse
|
37
|
de Oliveira TA, Silva WD, da Rocha Torres N, Badaró de Moraes JV, Senra RL, de Oliveira Mendes TA, Júnior AS, Bressan GC, Fietto JLR. Application of the LEXSY Leishmania tarentolae system as a recombinant protein expression platform: A review. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.08.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
38
|
Chua SCJH, Tan HQ, Engelberg D, Lim LHK. Alternative Experimental Models for Studying Influenza Proteins, Host-Virus Interactions and Anti-Influenza Drugs. Pharmaceuticals (Basel) 2019; 12:E147. [PMID: 31575020 PMCID: PMC6958409 DOI: 10.3390/ph12040147] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/11/2019] [Accepted: 09/12/2019] [Indexed: 12/14/2022] Open
Abstract
Ninety years after the discovery of the virus causing the influenza disease, this malady remains one of the biggest public health threats to mankind. Currently available drugs and vaccines only partially reduce deaths and hospitalizations. Some of the reasons for this disturbing situation stem from the sophistication of the viral machinery, but another reason is the lack of a complete understanding of the molecular and physiological basis of viral infections and host-pathogen interactions. Even the functions of the influenza proteins, their mechanisms of action and interaction with host proteins have not been fully revealed. These questions have traditionally been studied in mammalian animal models, mainly ferrets and mice (as well as pigs and non-human primates) and in cell lines. Although obviously relevant as models to humans, these experimental systems are very complex and are not conveniently accessible to various genetic, molecular and biochemical approaches. The fact that influenza remains an unsolved problem, in combination with the limitations of the conventional experimental models, motivated increasing attempts to use the power of other models, such as low eukaryotes, including invertebrate, and primary cell cultures. In this review, we summarized the efforts to study influenza in yeast, Drosophila, zebrafish and primary human tissue cultures and the major contributions these studies have made toward a better understanding of the disease. We feel that these models are still under-utilized and we highlight the unique potential each model has for better comprehending virus-host interactions and viral protein function.
Collapse
Affiliation(s)
- Sonja C J H Chua
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore.
- NUS Immunology Program, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore.
- CREATE-NUS-HUJ Molecular Mechanisms of Inflammatory Diseases Programme, National University of Singapore, Singapore 138602, Singapore.
| | - Hui Qing Tan
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore.
- NUS Immunology Program, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore.
| | - David Engelberg
- CREATE-NUS-HUJ Molecular Mechanisms of Inflammatory Diseases Programme, National University of Singapore, Singapore 138602, Singapore.
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore.
- Department of Biological Chemistry, The Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
| | - Lina H K Lim
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore.
- NUS Immunology Program, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore.
| |
Collapse
|
39
|
Criscuolo E, Caputo V, Diotti RA, Sautto GA, Kirchenbaum GA, Clementi N. Alternative Methods of Vaccine Delivery: An Overview of Edible and Intradermal Vaccines. J Immunol Res 2019; 2019:8303648. [PMID: 30949518 PMCID: PMC6425294 DOI: 10.1155/2019/8303648] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/08/2019] [Accepted: 02/14/2019] [Indexed: 01/26/2023] Open
Abstract
Vaccines are recognized worldwide as one of the most important tools for combating infectious diseases. Despite the tremendous value conferred by currently available vaccines toward public health, the implementation of additional vaccine platforms is also of key importance. In fact, currently available vaccines possess shortcomings, such as inefficient triggering of a cell-mediated immune response and the lack of protective mucosal immunity. In this regard, recent work has been focused on vaccine delivery systems, as an alternative to injectable vaccines, to increase antigen stability and improve overall immunogenicity. In particular, novel strategies based on edible or intradermal vaccine formulations have been demonstrated to trigger both a systemic and mucosal immune response. These novel vaccination delivery systems offer several advantages over the injectable preparations including self-administration, reduced cost, stability, and elimination of a cold chain. In this review, the latest findings and accomplishments regarding edible and intradermal vaccines are described in the context of the system used for immunogen expression, their molecular features and capacity to induce a protective systemic and mucosal response.
Collapse
Affiliation(s)
- E. Criscuolo
- Microbiology and Virology Unit, “Vita-Salute San Raffaele” University, Milan, Italy
| | - V. Caputo
- Microbiology and Virology Unit, “Vita-Salute San Raffaele” University, Milan, Italy
- Pomona Ricerca S.r.l., Turin, Italy
| | - R. A. Diotti
- Microbiology and Virology Unit, “Vita-Salute San Raffaele” University, Milan, Italy
- Pomona Ricerca S.r.l., Turin, Italy
| | - G. A. Sautto
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
| | | | - N. Clementi
- Microbiology and Virology Unit, “Vita-Salute San Raffaele” University, Milan, Italy
| |
Collapse
|
40
|
Nolan MB, Schulman ML, Botha AE, Human AM, Roth R, Crampton MC, Bertschinger HJ. Serum antibody immunoreactivity and safety of native porcine and recombinant zona pellucida vaccines formulated with a non-Freund’s adjuvant in horses. Vaccine 2019; 37:1299-1306. [DOI: 10.1016/j.vaccine.2019.01.053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 01/16/2019] [Accepted: 01/18/2019] [Indexed: 01/01/2023]
|
41
|
Huang N, Shimomura E, Yin G, Tran C, Sato A, Steiner A, Heibeck T, Tam M, Fairman J, Gibson FC. Immunization with cell-free-generated vaccine protects from Porphyromonas gingivalis-induced alveolar bone loss. J Clin Periodontol 2019; 46:197-205. [PMID: 30578564 PMCID: PMC7891626 DOI: 10.1111/jcpe.13047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 12/11/2018] [Accepted: 12/15/2018] [Indexed: 12/19/2022]
Abstract
Introduction Periodontal diseases (PD) are complex oral inflammatory diseases initiated by keystone bacteria such as Porphyromonas gingivalis. A vaccine for PD is desirable as clinical treatment involves protracted maintenance strategies aimed to retain dentition. Although prior immunization approaches targeting P. gingivalis have reported variable success in limiting facets of disease such as oral bone loss, it remains that a vaccine for this disease may be attainable. Aim To investigate cell‐free protein synthesis (CFPS) as a platform to produce vaccinable targets suitable for efficacy testing in a P. gingivalis‐induced murine oral bone loss model. Materials and Methods Recombinantly generated P. gingivalis minor fimbriae protein (Mfa1), RgpA gingipain hemagglutinin domain 1 (HA1), and RgpA gingipain hemagglutinin domain 2 (HA2) were combined in equivalent doses in adjuvants and injected intramuscularly to immunize mice. Serum levels of protein‐specific antibody were measured by ELISA, and oral bone levels were defined by morphometrics. Results Recombinantly generated P. gingivalis proteins possessed high fidelity to predicted size and elicited protein‐specific IgG following immunization. Importantly, immunization with the vaccine cocktail protected from P. gingivalis elicited oral bone loss. Conclusion These data verify the utility of the CFPS technology to synthesize proteins that have the capacity to serve as novel vaccines.
Collapse
Affiliation(s)
- Nasi Huang
- Department of Medicine, Section of Infectious Diseases, School of Medicine, Boston University, Boston, Massachusetts
| | | | - Gang Yin
- Sutro BioPharma, South San Francisco, California
| | - Cuong Tran
- Sutro BioPharma, South San Francisco, California
| | - Aaron Sato
- Sutro BioPharma, South San Francisco, California
| | - Alex Steiner
- Sutro BioPharma, South San Francisco, California
| | | | - Michelle Tam
- Sutro BioPharma, South San Francisco, California
| | | | - Frank C Gibson
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida
| |
Collapse
|
42
|
Karch CP, Matyas GR, Burkhard P, Beck Z. Glycosylation of the HIV-1 Env V1V2 loop to form a native-like structure may not be essential with a nanoparticle vaccine. Future Virol 2019; 14:51-54. [PMID: 30815025 PMCID: PMC6378949 DOI: 10.2217/fvl-2018-0174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 12/20/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Christopher P Karch
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Ave, Silver Spring, MD 20910, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, Maryland 20817, USA.,U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Ave, Silver Spring, MD 20910, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, Maryland 20817, USA
| | - Gary R Matyas
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Ave, Silver Spring, MD 20910, USA.,U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Ave, Silver Spring, MD 20910, USA
| | - Peter Burkhard
- Alpha-O Peptides, Lörracherstrasse 50, 4125 Riehen, Switzerland.,Alpha-O Peptides, Lörracherstrasse 50, 4125 Riehen, Switzerland
| | - Zoltan Beck
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Ave, Silver Spring, MD 20910, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, Maryland 20817, USA.,U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Ave, Silver Spring, MD 20910, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, Maryland 20817, USA
| |
Collapse
|
43
|
Kis Z, Shattock R, Shah N, Kontoravdi C. Emerging Technologies for Low-Cost, Rapid Vaccine Manufacture. Biotechnol J 2018; 14:e1800376. [PMID: 30537361 DOI: 10.1002/biot.201800376] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 10/29/2018] [Indexed: 12/26/2022]
Abstract
To stop the spread of future epidemics and meet infant vaccination demands in low- and middle-income countries, flexible, rapid and low-cost vaccine development and manufacturing technologies are required. Vaccine development platform technologies that can produce a wide range of vaccines are emerging, including: a) humanized, high-yield yeast recombinant protein vaccines; b) insect cell-baculovirus ADDomer vaccines; c) Generalized Modules for Membrane Antigens (GMMA) vaccines; d) RNA vaccines. Herein, existing and future platforms are assessed in terms of addressing challenges of scale, cost, and responsiveness. To assess the risk and feasibility of the four emerging platforms, the following six metrics are applied: 1) technology readiness; 2) technological complexity; 3) ease of scale-up; 4) flexibility for the manufacturing of a wide range of vaccines; 5) thermostability of the vaccine product at tropical ambient temperatures; and 6) speed of response from threat identification to vaccine deployment. The assessment indicated that technologies in the order of increasing feasibility and decreasing risk are the yeast platform, ADDomer platform, followed by RNA and GMMA platforms. The comparative strengths and weaknesses of each technology are discussed in detail, illustrating the associated development and manufacturing needs and priorities.
Collapse
Affiliation(s)
- Zoltán Kis
- Department of Chemical Engineering, Faculty of Engineering, Imperial College London, London, UK
| | - Robin Shattock
- Department of Medicine, Faculty of Medicine, Imperial College London, London, UK
| | - Nilay Shah
- Department of Chemical Engineering, Faculty of Engineering, Imperial College London, London, UK
| | - Cleo Kontoravdi
- Department of Chemical Engineering, Faculty of Engineering, Imperial College London, London, UK
| |
Collapse
|
44
|
The yeast stands alone: the future of protein biologic production. Curr Opin Biotechnol 2018; 53:50-58. [DOI: 10.1016/j.copbio.2017.12.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 12/07/2017] [Accepted: 12/08/2017] [Indexed: 12/13/2022]
|
45
|
Saxena A, Byram PK, Singh SK, Chakraborty J, Murhammer D, Giri L. A structured review of baculovirus infection process: integration of mathematical models and biomolecular information on cell–virus interaction. J Gen Virol 2018; 99:1151-1171. [DOI: 10.1099/jgv.0.001108] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Abha Saxena
- 1Indian Institute of Technology Hyderabad, Chemical Engineering, Village Kandi, Sangareddy, Hyderabad, Telangana 502205, India
| | - Prasanna Kumar Byram
- 1Indian Institute of Technology Hyderabad, Chemical Engineering, Village Kandi, Sangareddy, Hyderabad, Telangana 502205, India
| | - Suraj Kumar Singh
- 1Indian Institute of Technology Hyderabad, Chemical Engineering, Village Kandi, Sangareddy, Hyderabad, Telangana 502205, India
| | - Jayanta Chakraborty
- 2Indian Institute of Technology Kharagpur, Chemical Engineering, Kharagpur, West Bengal 721302, India
| | - David Murhammer
- 3The University of Iowa, Department of Chemical and Biochemical Engineering, Iowa City, IA 52242-1527, USA
| | - Lopamudra Giri
- 1Indian Institute of Technology Hyderabad, Chemical Engineering, Village Kandi, Sangareddy, Hyderabad, Telangana 502205, India
| |
Collapse
|
46
|
Not All Antigens Are Created Equally: Progress, Challenges, and Lessons Associated with Developing a Vaccine for Leishmaniasis. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2017; 24:CVI.00108-17. [PMID: 28515135 DOI: 10.1128/cvi.00108-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
From experimental models and the analyses of patients, it is well documented that antigen-specific T cells are critical for protection against Leishmania infection. Effective vaccines require both targeting to the pathogen and an immune stimulant to induce maturation of appropriate immune responses. While a great number of antigens have been examined as vaccine candidates against various Leishmania species, few have advanced to human or canine clinical trials. With emphasis on antigen expression, in this minireview we discuss some of the vaccine platforms that are currently being explored for the development of Leishmania vaccines. It is clear that the vaccine platform of choice can have a significant impact upon the level of protection induced by particular antigens, and we provide and highlight some examples for which the vaccine system used has impacted the protective efficacy imparted.
Collapse
|