1
|
Zhang Z, Wang J, Li H, Niu Q, Tao Y, Zhao X, Zeng Z, Dong H. The role of the interleukin family in liver fibrosis. Front Immunol 2025; 16:1497095. [PMID: 39995661 PMCID: PMC11847652 DOI: 10.3389/fimmu.2025.1497095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 01/22/2025] [Indexed: 02/26/2025] Open
Abstract
Liver fibrosis represents a wound-healing response to chronic liver injury caused by viral infections, alcohol, and chemicals agents. It is a critical step in the progression from chronic liver disease to cirrhosis and hepatocellular carcinoma. No chemical or biological drugs have been approved for the treatment of liver fibrosis. Relevant studies have demonstrated that effective inhibition of hepatitis B virus (HBV) replication by nucleoside (acid) analogs or polyethylene glycol alpha-interferon can lead to recovery in some patients with hepatitis B liver fibrosis, However, some patients with liver fibrosis do not show improvement, even after achieving a complete serologic and virologic response. A similar situation occurs in patients with hepatitis C-related liver fibrosis. The liver, with its unique anatomical and immunological structure, is the largest immune organ and produces a large number of cytokines in response to external stimuli, which are crucial for the progression of liver fibrosis. cytokines can act either by directly affecting hepatic stellate cells (HSCs) or by indirectly regulating immune target cells. Among these, the interleukin family activates a complex cascade of responses, including cytokines, chemokines, adhesion molecules, and lipid mediators, playing a key role in the initiation and regulation of inflammation, as well as innate and adaptive immunity. In this paper, we systematically summarize recent literature to elucidate the pathogenesis of interleukin-mediated liver fibrosis and explore potential therapeutic targets for liver fibrosis treatment.
Collapse
Affiliation(s)
- Zixin Zhang
- Central Laboratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiahui Wang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hui Li
- Central Laboratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qun Niu
- Central Laboratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yujing Tao
- Central Laboratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xin Zhao
- Central Laboratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zijian Zeng
- Central Laboratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Haijian Dong
- Central Laboratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
2
|
Skinner KA, Fisher TD, Lee A, Su T, Forte E, Sanchez A, Caldwell MA, Kelleher NL. Next-Generation Protein Sequencing and individual ion mass spectrometry enable complementary analysis of interleukin-6. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.07.637157. [PMID: 39975277 PMCID: PMC11839055 DOI: 10.1101/2025.02.07.637157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The vast complexity of the proteome currently overwhelms any single analytical technology in capturing the full spectrum of proteoform diversity. In this study, we evaluated the complementarity of two cutting-edge proteomic technologies-single-molecule protein sequencing and individual ion mass spectrometry-for analyzing recombinant human IL-6 (rhIL-6) at the amino acid, peptide, and intact proteoform levels. For single-molecule protein sequencing, we employ the recently released Platinum® instrument. Next-Generation Protein Sequencing™ (NGPS™) on Platinum utilizes cycles of N-terminal amino acid recognizer binding and aminopeptidase cleavage to enable parallelized sequencing of single peptide molecules. We found that NGPS produces single amino acid coverage of multiple key regions of IL-6, including two peptides within helices A and C which harbor residues that reportedly impact IL-6 function. For top-down proteoform evaluation, we use individual ion mass spectrometry (I2MS), a highly parallelized orbitrap-based charge detection MS platform. Single ion detection of gas-phase fragmentation products (I2MS2) gives significant sequence coverage in key regions in IL-6, including two regions within helices B and D that are involved in IL-6 signaling. Together, these complementary technologies deliver a combined 52% sequence coverage, offering a more complete view of IL-6 structural and functional diversity than either technology alone. This study highlights the synergy of complementary protein detection methods to more comprehensively cover protein segments relevant to biological interactions.
Collapse
Affiliation(s)
| | - Troy D. Fisher
- Proteomics Center of Excellence, Northwestern University, Evanston, Illinois, United States
| | - Andrew Lee
- Departments of Molecular Biosciences, Chemistry and Chemical and Biological Engineering, Northwestern University, Evanston, IL, United States
| | - Taojunfeng Su
- Departments of Molecular Biosciences, Chemistry and Chemical and Biological Engineering, Northwestern University, Evanston, IL, United States
| | - Eleonora Forte
- Proteomics Center of Excellence, Northwestern University, Evanston, Illinois, United States
- Department of Surgery, Feinberg School of Medicine, Comprehensive Transplant Center, Northwestern University, Chicago, Illinois, United States
| | - Aniel Sanchez
- Proteomics Center of Excellence, Northwestern University, Evanston, Illinois, United States
| | - Michael A. Caldwell
- Proteomics Center of Excellence, Northwestern University, Evanston, Illinois, United States
- Department of Medicine, Division of Hematology Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Neil L. Kelleher
- Proteomics Center of Excellence, Northwestern University, Evanston, Illinois, United States
- Departments of Molecular Biosciences, Chemistry and Chemical and Biological Engineering, Northwestern University, Evanston, IL, United States
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
3
|
Su X, Zhong H, Zeng Y, Zhang Y, Zhang B, Guo W, Huang Q, Ye Y. Dual-ligand-functionalized nanostructured lipid carriers as a novel dehydrocavidine delivery system for liver fibrosis therapy. Colloids Surf B Biointerfaces 2025; 246:114376. [PMID: 39551037 DOI: 10.1016/j.colsurfb.2024.114376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/12/2024] [Accepted: 11/10/2024] [Indexed: 11/19/2024]
Abstract
BACKGROUND Liver fibrosis is a common stage of various chronic liver diseases, often developing into liver cirrhosis, and even liver cancer. Activated hepatic stellate cells (aHSCs) have been shown to promote the development of liver fibrosis. Therefore, dual-targeted combination therapy for liver may be an effective strategy for the treatment of liver fibrosis. PURPOSE In this study, the novel nanostructured lipid carriers (GA&GalNH2-DC-NLCs) were prepared for Dehydrocavidine (DC), glycyrrhetinic acid (GA) and galactose-PEG2000-NH2 (GalNH2) were selected as targeted ligand-modified nanostructured lipid carriers (NLCs), which enables dual-targeting to the liver for the treatment of liver fibrosis. STUDY DESIGN To study the targeting effect of GA&GalNH2-DC-NLCs on liver and its therapeutic effect on liver fibrosis, we established aHSC-T6 cell model and rat model of liver fibrosis for study. RESULTS GA&GalNH2-DC-NLCs promoted drug liver targeting efficiency and apoptosis rate by upregulating the expression of Bax. It showed that compared with no and/or GA-modified NLCs and GalNH2-modified NLCs, GA&GalNH2-DC-NLCs exhibited less extracellular matrix (ECM) deposition, induced apoptosis of aHSCs, and stronger anti-fibrosis effects in vivo. This may be due the fact that GA or GalNH2-modifified NLCs simultaneously block HSCs activation and inhibit the IL-6/STAT3 pathway. CONCLUSION GA&GalNH2-DC-NLCs is thus a potential strategy for liver fibrosis treatment.
Collapse
Affiliation(s)
- Xiaodan Su
- Department of Pharmacy, Guangxi Medical University, Nanning 530021, China.
| | - Huashuai Zhong
- Department of Pharmacy, Guangxi Medical University, Nanning 530021, China.
| | - Yongzhu Zeng
- Department of Pharmacy, Guangxi Medical University, Nanning 530021, China
| | - Yuyan Zhang
- Department of Pharmacy, Guangxi Medical University, Nanning 530021, China
| | - Bo Zhang
- Scientific Research Center, Guilin Medical University, Guilin 541199, China
| | - Wei Guo
- Department of Pharmacy, Guangxi Medical University, Nanning 530021, China
| | - Qiujie Huang
- Department of Pharmacy, Guangxi University of Traditional Chinese Medicine, Nanning 530001, China.
| | - Yong Ye
- Department of Pharmacy, Guangxi Medical University, Nanning 530021, China; Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Nanning 530021, China; Guangxi Key Laboratory of Pharmaceutical Precision Detection and Screening, Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Nanning 530021, China.
| |
Collapse
|
4
|
Sung EA, Dozmorov MG, Song S, Aung T, Park MH, Sime PJ, Chae WJ. Ablation of LRP6 in alpha-smooth muscle actin-expressing cells abrogates lung inflammation and fibrosis upon bleomycin-induced lung injury. FEBS Lett 2025. [PMID: 39873304 DOI: 10.1002/1873-3468.15106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/20/2024] [Accepted: 01/05/2025] [Indexed: 01/30/2025]
Abstract
Tissue fibrosis is a progressive pathological process with excessive deposition of extracellular matrix proteins (ECM). Myofibroblasts, identified by alpha-smooth muscle actin (αSMA) expression, play an important role in tissue fibrosis by producing ECM. Here, we found that the Wnt antagonist Dickkopf1 (DKK1) induced gene expressions associated with inflammation and fibrosis in lung fibroblasts. We demonstrated that genetic deletion of LRP6, a receptor for Wnt ligands and DKK1, in αSMA-expressing cells using Acta2-cre Lrp6fl/fl (Lrp6AKO) mice abrogated the bleomycin (BLM)-induced lung inflammation and fibrosis phenotype, suggesting an important role for LRP6 in modulating inflammation and fibrotic processes in the lung. Our results highlight the crucial role of LRP6 in fibroblasts in regulating inflammation and fibrosis upon BLM-induced lung injury.
Collapse
Affiliation(s)
- Eun-Ah Sung
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
- Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Mikhail G Dozmorov
- Department of Biostatistics, Department of Pathology, Virginia Commonwealth University, Richmond, VA, USA
| | - SuJeong Song
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
- Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Theingi Aung
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
- Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Min Hee Park
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
- Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Patricia J Sime
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Wook-Jin Chae
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
- Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
- Phillips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University School of Dentistry, Richmond, VA, USA
| |
Collapse
|
5
|
Sung EA, Dozmorov MG, Song S, Aung T, Park MH, Sime PJ, Chae WJ. Ablation of LRP6 in alpha-smooth muscle actin-expressing cells abrogates lung inflammation and fibrosis upon bleomycin-induced lung injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.05.611327. [PMID: 39314349 PMCID: PMC11418957 DOI: 10.1101/2024.09.05.611327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Low-density lipoprotein receptor-related protein 6 (LRP6) is a receptor for Wnt ligands. Tissue fibrosis is a progressive pathological process with excessive extracellular matrix proteins (ECM) deposition. Myofibroblasts, identified by alpha-smooth muscle actin (αSMA) expression, play an important role in tissue fibrosis by producing ECM production. Here we found that Wnt antagonist Dickkopf1 (DKK1) induced gene expressions associated with inflammation and fibrosis in lung fibroblasts. We demonstrated that genetic deletion of LRP6 in αSMA-expressing cells using Acta2 -cre Lrp6 fl/fl ( Lrp6 AKO ) mice abrogated bleomycin (BLM)-induced lung inflammation and fibrosis phenotype, suggesting an important role of LRP6 in modulating inflammation and fibrotic processes in the lung. Our results highlight the crucial role of LRP6 in fibroblasts in regulating inflammation and fibrosis upon BLM-induced lung injury.
Collapse
|
6
|
Malik MNH, Abid I, Ismail S, Anjum I, Qadir H, Maqbool T, Najam K, Ibenmoussa S, Bourhia M, Salamatullah AM, Wondmie GF. Exploring the hepatoprotective properties of citronellol: In vitro and in silico studies on ethanol-induced damage in HepG2 cells. Open Life Sci 2024; 19:20220950. [PMID: 39290493 PMCID: PMC11406226 DOI: 10.1515/biol-2022-0950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/20/2024] [Accepted: 08/07/2024] [Indexed: 09/19/2024] Open
Abstract
Citronellol (CT) is a monoterpene alcohol present in the essential oil of plants of the genus Cymbopogon and exhibits diverse pharmacological activities. The aim of the current study was to investigate the hepatoprotective potential of CT against ethanol-induced toxicity in HepG2 cell lines. Silymarin (SIL) was used as a standard drug. MTT, crystal violet assay, DAPI, and PI staining were carried out to assess the effect of ethanol and CT on cell viability. RT-PCR determined the molecular mechanisms of hepatoprotective action of CT. CT ameliorated cell viability and restricted ethanol-induced cell death. DAPI and PI staining showed distinct differences in cell number and morphology. Less cell viability was observed in the diseased group obviously from strong PI staining when compared to the CT- and SIL-treated group. Moreover, CT showed downregulation of interleukin (IL-6), transforming growth factor-beta 1 (TGF-β1), collagen type 1 A 1 (COL1A1), matrix metalloproteinase-1 (MMP-1), tissue inhibitor of metalloproteinase-1 (TIMP-1) and glutathione peroxidase-7 (GPX-7) levels. Molecular docking studies supported the biochemical findings. It is concluded that the cytoprotective activity of CT against ethanol-induced toxicity might be explained by its anti-inflammatory, immunomodulatory, and collagen-regulating effects.
Collapse
Affiliation(s)
| | - Iqra Abid
- Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Sana Ismail
- Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Irfan Anjum
- Department of Basic Medical Sciences, Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Halima Qadir
- Department of Basic Medical Sciences, Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Tahir Maqbool
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Komal Najam
- Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Samir Ibenmoussa
- Laboratory of Therapeutic and Organic Chemistry, Faculty of Pharmacy, University of Montpellier, Montpellier, 34000, France
| | - Mohammed Bourhia
- Laboratory of Biotechnology and Natural Resources Valorization, Faculty of Sciences, Ibn Zohr University, 80060, Agadir, Morocco
| | - Ahmad Mohammad Salamatullah
- Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University, 11 P.O. Box 2460, Riyadh, 11451, Saudi Arabia
| | | |
Collapse
|
7
|
Dąbrowska A, Wilczyński B, Mastalerz J, Kucharczyk J, Kulbacka J, Szewczyk A, Rembiałkowska N. The Impact of Liver Failure on the Immune System. Int J Mol Sci 2024; 25:9522. [PMID: 39273468 PMCID: PMC11395474 DOI: 10.3390/ijms25179522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Liver failure profoundly affects the immune system, leading to dysregulation of innate and adaptive immune response. This review explores the intricate relationship between liver function and immune homeostasis. The role of the liver as a central hub in immune response initiation is elucidated, emphasizing its involvement in hepatic inflammation induction and subsequent systemic inflammation. Cytokines, chemokines, growth factors, and lipid mediators orchestrate these immune processes, serving as both prognostic biomarkers and potential therapeutic targets in liver failure-associated immune dysregulation, which might result from acute-on-chronic liver failure (ACLF) and cirrhosis. Furthermore, the review delves into the mechanisms underlying immunosuppression in liver failure, encompassing alterations in innate immune cell functions such as neutrophils, macrophages, and natural killer cells (NK cells), as well as perturbations in adaptive immune responses mediated by B and T cells. Conclusion: Understanding the immunological consequences of liver failure is crucial for developing targeted therapeutic interventions and improving patient outcomes in liver disease management.
Collapse
Affiliation(s)
- Alicja Dąbrowska
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland
| | - Bartosz Wilczyński
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland
| | - Jakub Mastalerz
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland
| | - Julia Kucharczyk
- Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Anna Szewczyk
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Nina Rembiałkowska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| |
Collapse
|
8
|
Jabeen K, Khlaid M, Mansoor S, Zalan A, Ejaz M, Mansoor A, Javed A. Host immune players and their response to Hepatitis C therapies. PLOS GLOBAL PUBLIC HEALTH 2024; 4:e0003110. [PMID: 38865413 PMCID: PMC11168669 DOI: 10.1371/journal.pgph.0003110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 03/22/2024] [Indexed: 06/14/2024]
Abstract
This study aimed to investigate alterations in the expression of four key cytokines (IL-7, IL-11, IL-15, and IL-27) and assess differential FAM26F expression in response to Hepatitis C virus (HCV) infection. Additionally, it sought to analyze changes in these cytokines after treatment in 244 chronic HCV patients and 28 controls undergoing various treatments, including standard interferon, pegylated interferon, and Direct Acting Antivirals (DAAs). The objective was to compare immune system regulation between treatment groups. The expression levels of FAM26F and the cytokines (IL-7, IL-11, IL-15, and IL-27) were evaluated using Real-time qPCR in PBMCs of treatment groups. Results revealed significant downregulation of IL-7 and IL-27 in infected individuals compared to healthy controls, persisting even after treatment. This suggests the crucial roles of these immune modulators in facilitating the necessary T-cell response for viral clearance. IL-11 expression also remained suppressed post-treatment, supporting viral clearance by restoring the Th1 response. The decrease in IL-11 levels during treatment indicates the restoration of the Th1 response, vital for viral clearance. IL-15, the key cytokine regulating cytotoxic cells (NKT and NK cells), displayed consistent expression across all sample groups, indicating maintained IL-15-induced cytotoxicity in both control and infected individuals. Additionally, FAM26F expression was reduced in the HCV-infected group compared to controls, but higher in HCV-recovered cases, potentially due to reduced infection and enhanced immunity. In conclusion, this research unveils the relationship between FAM26F and HCV infection, highlighting the virus's tendency to suppress cytokine and FAM26F expression. An effective treatment strategy for establishing an ideal host immune response may involve restoring FAM26F and cytokine expression to their normal levels.
Collapse
Affiliation(s)
- Kehkshan Jabeen
- Genomics Research Lab, Department of Biological Sciences, International Islamic University Islamabad, Islamabad, Pakistan
- Rawalpindi Medical University, Rawalpindi, Pakistan
| | - Madiha Khlaid
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Sajid Mansoor
- University of Central Punjab (UCP), Lahore, Punjab, Pakistan
| | - Ali Zalan
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Momina Ejaz
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Atika Mansoor
- Institute of Biomedical Genetic Engineering (IBGE), Islamabad, Pakistan
| | - Aneela Javed
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| |
Collapse
|
9
|
Han Y, Gao H, Gan X, Liu J, Bao C, He C. Roles of IL-11 in the regulation of bone metabolism. Front Endocrinol (Lausanne) 2024; 14:1290130. [PMID: 38352248 PMCID: PMC10862480 DOI: 10.3389/fendo.2023.1290130] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 12/29/2023] [Indexed: 02/16/2024] Open
Abstract
Bone metabolism is the basis for maintaining the normal physiological state of bone, and imbalance of bone metabolism can lead to a series of metabolic bone diseases. As a member of the IL-6 family, IL-11 acts primarily through the classical signaling pathway IL-11/Receptors, IL-11 (IL-11R)/Glycoprotein 130 (gp130). The regulatory role of IL-11 in bone metabolism has been found earlier, but mainly focuses on the effects on osteogenesis and osteoclasis. In recent years, more studies have focused on IL-11's roles and related mechanisms in different bone metabolism activities. IL-11 regulates osteoblasts, osteoclasts, BM stromal cells, adipose tissue-derived mesenchymal stem cells, and chondrocytes. It's involved in bone homeostasis, including osteogenesis, osteolysis, bone marrow (BM) hematopoiesis, BM adipogenesis, and bone metastasis. This review exams IL-11's role in pathology and bone tissue, the cytokines and pathways that regulate IL-11 expression, and the feedback regulations of these pathways.
Collapse
Affiliation(s)
| | | | - Xinling Gan
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | | | | | - Chengqi He
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
10
|
Cook SA. Understanding interleukin 11 as a disease gene and therapeutic target. Biochem J 2023; 480:1987-2008. [PMID: 38054591 PMCID: PMC10754292 DOI: 10.1042/bcj20220160] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/13/2023] [Accepted: 11/27/2023] [Indexed: 12/07/2023]
Abstract
Interleukin 11 (IL11) is an elusive member of the IL6 family of cytokines. While initially thought to be a haematopoietic and cytoprotective factor, more recent data show instead that IL11 is redundant for haematopoiesis and toxic. In this review, the reasons that led to the original misunderstandings of IL11 biology, which are now understandable, are explained with particular attention on the use of recombinant human IL11 in mice and humans. Following tissue injury, as part of an evolutionary ancient homeostatic response, IL11 is secreted from damaged mammalian cells to signal via JAK/STAT3, ERK/P90RSK, LKB1/mTOR and GSK3β/SNAI1 in autocrine and paracrine. This activates a program of mesenchymal transition of epithelial, stromal, and endothelial cells to cause inflammation, fibrosis, and stalled endogenous tissue repair, leading to organ failure. The role of IL11 signalling in cell- and organ-specific pathobiology is described, the large unknowns about IL11 biology are discussed and the promise of targeting IL11 signalling as a therapeutic approach is reviewed.
Collapse
Affiliation(s)
- Stuart A. Cook
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
| |
Collapse
|
11
|
Widjaja AA, Cook SA. The Pathobiology of IL-11 in Kidney Disease: From Epithelial Cell to Fibroblast and Back Again. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1910-1913. [PMID: 37816442 DOI: 10.1016/j.ajpath.2023.09.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 10/12/2023]
Affiliation(s)
- Anissa A Widjaja
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore.
| | - Stuart A Cook
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore; National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore; MRC-London Institute of Medical Sciences, Hammersmith Hospital Campus, London, United Kingdom.
| |
Collapse
|
12
|
López-Ayllón BD, de Lucas-Rius A, Mendoza-García L, García-García T, Fernández-Rodríguez R, Suárez-Cárdenas JM, Santos FM, Corrales F, Redondo N, Pedrucci F, Zaldívar-López S, Jiménez-Marín Á, Garrido JJ, Montoya M. SARS-CoV-2 accessory proteins involvement in inflammatory and profibrotic processes through IL11 signaling. Front Immunol 2023; 14:1220306. [PMID: 37545510 PMCID: PMC10399023 DOI: 10.3389/fimmu.2023.1220306] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 06/23/2023] [Indexed: 08/08/2023] Open
Abstract
SARS-CoV-2, the cause of the COVID-19 pandemic, possesses eleven accessory proteins encoded in its genome. Their roles during infection are still not completely understood. In this study, transcriptomics analysis revealed that both WNT5A and IL11 were significantly up-regulated in A549 cells expressing individual accessory proteins ORF6, ORF8, ORF9b or ORF9c from SARS-CoV-2 (Wuhan-Hu-1 isolate). IL11 is a member of the IL6 family of cytokines. IL11 signaling-related genes were also differentially expressed. Bioinformatics analysis disclosed that both WNT5A and IL11 were involved in pulmonary fibrosis idiopathic disease and functional assays confirmed their association with profibrotic cell responses. Subsequently, data comparison with lung cell lines infected with SARS-CoV-2 or lung biopsies from patients with COVID-19, evidenced altered profibrotic gene expression that matched those obtained in this study. Our results show ORF6, ORF8, ORF9b and ORF9c involvement in inflammatory and profibrotic responses. Thus, these accessory proteins could be targeted by new therapies against COVID-19 disease.
Collapse
Affiliation(s)
- Blanca D. López-Ayllón
- Molecular Biomedicine Department, Margarita Salas Center for Biological Research (CIB-CSIC), Madrid, Spain
| | - Ana de Lucas-Rius
- Molecular Biomedicine Department, Margarita Salas Center for Biological Research (CIB-CSIC), Madrid, Spain
| | - Laura Mendoza-García
- Molecular Biomedicine Department, Margarita Salas Center for Biological Research (CIB-CSIC), Madrid, Spain
| | - Tránsito García-García
- Department of Genetics, Immunogenomics and Molecular Pathogenesis Group, UIC Zoonoses and Emergent Diseases ENZOEM, University of Córdoba, Córdoba, Spain
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), GA-14 Research Group, Córdoba, Spain
| | - Raúl Fernández-Rodríguez
- Department of Genetics, Immunogenomics and Molecular Pathogenesis Group, UIC Zoonoses and Emergent Diseases ENZOEM, University of Córdoba, Córdoba, Spain
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), GA-14 Research Group, Córdoba, Spain
| | - José M. Suárez-Cárdenas
- Department of Genetics, Immunogenomics and Molecular Pathogenesis Group, UIC Zoonoses and Emergent Diseases ENZOEM, University of Córdoba, Córdoba, Spain
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), GA-14 Research Group, Córdoba, Spain
| | - Fátima Milhano Santos
- Functional Proteomics Laboratory, National Centre for Biotechnology (CNB-CSIC), Madrid, Spain
| | - Fernando Corrales
- Functional Proteomics Laboratory, National Centre for Biotechnology (CNB-CSIC), Madrid, Spain
| | - Natalia Redondo
- Molecular Biomedicine Department, Margarita Salas Center for Biological Research (CIB-CSIC), Madrid, Spain
- Unit of Infectious Diseases, University Hospital ‘12 de Octubre’, Institute for Health Research Hospital ‘12 de Octubre’ (imas12), Madrid, Spain
- Centre for Biomedical Research Network on Infectious Diseases (CIBERINFEC), Institute of Health Carlos III (ISCIII), Madrid, Spain
| | - Federica Pedrucci
- Molecular Biomedicine Department, Margarita Salas Center for Biological Research (CIB-CSIC), Madrid, Spain
| | - Sara Zaldívar-López
- Department of Genetics, Immunogenomics and Molecular Pathogenesis Group, UIC Zoonoses and Emergent Diseases ENZOEM, University of Córdoba, Córdoba, Spain
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), GA-14 Research Group, Córdoba, Spain
| | - Ángeles Jiménez-Marín
- Department of Genetics, Immunogenomics and Molecular Pathogenesis Group, UIC Zoonoses and Emergent Diseases ENZOEM, University of Córdoba, Córdoba, Spain
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), GA-14 Research Group, Córdoba, Spain
| | - Juan J. Garrido
- Department of Genetics, Immunogenomics and Molecular Pathogenesis Group, UIC Zoonoses and Emergent Diseases ENZOEM, University of Córdoba, Córdoba, Spain
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), GA-14 Research Group, Córdoba, Spain
| | - María Montoya
- Molecular Biomedicine Department, Margarita Salas Center for Biological Research (CIB-CSIC), Madrid, Spain
| |
Collapse
|
13
|
Li X, Wang J, Li Y, He W, Cheng QJ, Liu X, Xu DL, Jiang ZG, Xiao X, He YH. The gp130/STAT3-endoplasmic reticulum stress axis regulates hepatocyte necroptosis in acute liver injury. Croat Med J 2023; 64:149-163. [PMID: 37391912 PMCID: PMC10332293 DOI: 10.3325/cmj.2023.64.149] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 05/25/2023] [Indexed: 08/30/2023] Open
Abstract
AIM To investigate the effect of the gp130/STAT3-endoplasmic reticulum (ER) stress axis on hepatocyte necroptosis during acute liver injury. METHODS ER stress and liver injury in LO2 cells were induced with thapsigargin, and in BALB/c mice with tunicamycin and carbon tetrachloride (CCl4). Glycoprotein 130 (gp130) expression, the degrees of ER stress, and hepatocyte necroptosis were assessed. RESULTS ER stress significantly upregulated gp130 expression in LO2 cells and mouse livers. The silencing of activating transcription factor 6 (ATF6), but not of ATF4, increased hepatocyte necroptosis and mitigated gp130 expression in LO2 cells and mice. Gp130 silencing reduced the phosphorylation of CCl4-induced signal transducer and activator of transcription 3 (STAT3), and aggravated ER stress, necroptosis, and liver injury in mice. CONCLUSION ATF6/gp130/STAT3 signaling attenuates necroptosis in hepatocytes through the negative regulation of ER stress during liver injury. Hepatocyte ATF6/gp130/STAT3 signaling may be used as a therapeutic target in acute liver injury.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Yi-Huai He
- Yi-Huai He, Department of Infectious Diseases, Affiliated Hospital of Zunyi Medical University, No. 201 Dalian Street, Zunyi, 563000, Guizhou, China,
| |
Collapse
|
14
|
Rafii P, Seibel C, Weitz HT, Ettich J, Minafra AR, Petzsch P, Lang A, Floss DM, Behnke K, Köhrer K, Moll JM, Scheller J. Cytokimera GIL-11 rescued IL-6R deficient mice from partial hepatectomy-induced death by signaling via non-natural gp130:LIFR:IL-11R complexes. Commun Biol 2023; 6:418. [PMID: 37061565 PMCID: PMC10105715 DOI: 10.1038/s42003-023-04768-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 03/27/2023] [Indexed: 04/17/2023] Open
Abstract
All except one cytokine of the Interleukin (IL-)6 family share glycoprotein (gp) 130 as the common β receptor chain. Whereas Interleukin (IL-)11 signal via the non-signaling IL-11 receptor (IL-11R) and gp130 homodimers, leukemia inhibitory factor (LIF) recruits gp130:LIF receptor (LIFR) heterodimers. Using IL-11 as a framework, we exchange the gp130-binding site III of IL-11 with the LIFR binding site III of LIF. The resulting synthetic cytokimera GIL-11 efficiently recruits the non-natural receptor signaling complex consisting of gp130, IL-11R and LIFR resulting in signal transduction and proliferation of factor-depending Ba/F3 cells. Besides LIF and IL-11, GIL-11 does not activate receptor complexes consisting of gp130:LIFR or gp130:IL-11R, respectively. Human GIL-11 shows cross-reactivity to mouse and rescued IL-6R-/- mice following partial hepatectomy, demonstrating gp130:IL-11R:LIFR signaling efficiently induced liver regeneration. With the development of the cytokimera GIL-11, we devise the functional assembly of the non-natural cytokine receptor complex of gp130:IL-11R:LIFR.
Collapse
Affiliation(s)
- Puyan Rafii
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, 40225, Düsseldorf, Germany
| | - Christiane Seibel
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, 40225, Düsseldorf, Germany
| | - Hendrik T Weitz
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, 40225, Düsseldorf, Germany
| | - Julia Ettich
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, 40225, Düsseldorf, Germany
| | - Anna Rita Minafra
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, 40225, Düsseldorf, Germany
| | - Patrick Petzsch
- Biological and Medical Research Center (BMFZ), Medical Faculty, Heinrich-Heine-University, Universitätsstraße 1, 40225, Duesseldorf, Germany
| | - Alexander Lang
- Cardiovascular Research Laboratory, Medical Faculty, University Hospital Düsseldorf, 40225, Düsseldorf, Germany
| | - Doreen M Floss
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, 40225, Düsseldorf, Germany
| | - Kristina Behnke
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, 40225, Düsseldorf, Germany
| | - Karl Köhrer
- Cardiovascular Research Laboratory, Medical Faculty, University Hospital Düsseldorf, 40225, Düsseldorf, Germany
| | - Jens M Moll
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, 40225, Düsseldorf, Germany
| | - Jürgen Scheller
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, 40225, Düsseldorf, Germany.
| |
Collapse
|
15
|
Sasaki K, Komamura S, Matsuda K. Extracellular stimulation of lung fibroblasts with arachidonic acid increases interleukin 11 expression through p38 and ERK signaling. Biol Chem 2023; 404:59-69. [PMID: 36268909 DOI: 10.1515/hsz-2022-0218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 10/10/2022] [Indexed: 11/15/2022]
Abstract
Interleukin-11 (IL-11) is a pleiotropic cytokine that regulates proliferation and motility of cancer cells. Fibroblasts reside in the cancer microenvironment and are the primary source of IL-11. Activated fibroblasts, including cancer-associated fibroblasts that produce IL-11, contribute to the development and progression of cancer, and induce fibrosis associated with cancer. Changes in fatty acid composition or its metabolites, and an increase in free fatty acids have been observed in cancer. The effect of deregulated fatty acids on the development and progression of cancer is not fully understood yet. In the present study, we investigated the effects of fatty acids on mRNA expression and secretion of IL-11 in lung fibroblasts. Among the eight fatty acids added exogenously, arachidonic acid (AA) increased mRNA expression and secretion of IL-11 in lung fibroblasts in a dose-dependent manner. AA-induced upregulation of IL-11 was dependent on the activation of the p38 or ERK MAPK signaling pathways. Furthermore, prostaglandin E2, associated with elevated cyclooxygenase-2 expression, participated in the upregulation of IL-11 via its specific receptor in an autocrine/paracrine manner. These results suggest that AA may mediate IL-11 upregulation in lung fibroblasts in the cancer microenvironment, accompanied by unbalanced fatty acid composition.
Collapse
Affiliation(s)
- Kanako Sasaki
- Department of Health and Medical Sciences, Graduate School of Medicine, Shinshu University, 3-1-1 Asahi, Matsumoto 390-8621, Nagano, Japan
| | - Shotaro Komamura
- Department of Health and Medical Sciences, Graduate School of Medicine, Shinshu University, 3-1-1 Asahi, Matsumoto 390-8621, Nagano, Japan
| | - Kazuyuki Matsuda
- Department of Health and Medical Sciences, Graduate School of Medicine, Shinshu University, 3-1-1 Asahi, Matsumoto 390-8621, Nagano, Japan
| |
Collapse
|
16
|
Alavifard H, Mazhari S, Meyfour A, Tokhanbigli S, Ghavami S, Zali MR, Aghdaei HA, Hatami B, Baghaei K. Imatinib suppresses activation of hepatic stellate cells by targeting STAT3/IL-6 pathway through miR-124. Cell Biol Int 2023; 47:969-980. [PMID: 36655489 DOI: 10.1002/cbin.11992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 01/04/2023] [Accepted: 01/08/2023] [Indexed: 01/20/2023]
Abstract
The activation of hepatic stellate cells is the primary function of facilitating liver fibrosis. Interfering with the coordinators of different signaling pathways in activated hepatic stellate cells (aHSCs) could be a potential approach in ameliorating liver fibrosis. Regarding the illustrated anti-fibrotic effect of imatinib in liver fibrosis, we investigated the imatinib's potential role in inhibiting HSC activation through miR-124 and its interference with the STAT3/hepatic leukemia factor (HLF)/IL-6 circuit. The anti-fibrotic effect of imatinib was investigated in the LX-2 cell line and carbon tetrachloride (CCl4 )-induced Sprague-Dawley rat. The expression of IL-6, STAT3, HLF, miR-124, and α-smooth muscle actin (α-SMA) were quantified by quantitative real-time PCR (qRT-PCR) and the protein level of α-SMA and STAT3 was measured by western blot analysis both in vitro and in vivo. The LX-2 cells were subjected to immunocytochemistry (ICC) for α-SMA expression. After administering imatinib in the liver fibrosis model, histopathological examinations were done, and hepatic function serum markers were checked. Imatinib administration alleviated mentioned liver fibrosis markers. The expression of miR-124 was downregulated, while IL-6/HLF/STAT3 circuit agents were upregulated in vitro and in vivo. Notably, imatinib intervention decreased the expression of IL-6, STAT3, and HLF. Elevated expression of miR-124 suppressed the expression of STAT3 and further inhibited HSCs activation. Our results demonstrated that imatinib not only ameliorated hepatic fibrosis through tyrosine kinase inhibitor (TKI) activity but also interfered with the miR-124 and STAT3/HLF/IL-6 pathway. Considering the important role of miR-124 in regulating liver fibrosis and HSCs activation, imatinib may exert its anti-fibrotic activity through miR-124.
Collapse
Affiliation(s)
- Helia Alavifard
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Research Center for Liver Disease, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Sogol Mazhari
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Anna Meyfour
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samaneh Tokhanbigli
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeid Ghavami
- Research Institute in Oncology and Hematology, Cancer Care Manitoba, University of Manitoba, Winnipeg, Manitoba, Canada.,Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Faculty of Medicine, Katowice School of Technology, Katowice, Poland
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Behzad Hatami
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kaveh Baghaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Trampuž SR, van Riet S, Nordling Å, Ingelman-Sundberg M. The Role of CTGF in Liver Fibrosis Induced in 3D Human Liver Spheroids. Cells 2023; 12:cells12020302. [PMID: 36672237 PMCID: PMC9857203 DOI: 10.3390/cells12020302] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
Connective tissue growth factor (CTGF) is involved in the regulation of extracellular matrix (ECM) production. Elevated levels of CTGF can be found in plasma from patients with liver fibrosis and in experimental animal models of liver fibrosis, but the exact role of CTGF in, e.g., diet-induced human liver fibrosis is not entirely known. To address this question, we utilized a 3D human liver co-culture spheroid model composed of hepatocytes and non-parenchymal cells, in which fibrosis is induced by TGF-β1, CTGF or free fatty acids (FFA). Treatment of the spheroids with TGF-β1 or FFA increased COL1A1 deposition as well as the expression of TGF-β1 and CTGF. Recombinant CTGF, as well as angiotensin II, caused increased expression and/or production of CTGF, TGF-β1, COL1A1, LOX, and IL-6. In addition, silencing of CTGF reduced both TGF-β1- and FFA-induced COL1A1 deposition. Furthermore, we found that IL-6 induced CTGF, COL1A1 and TGF-β1 production, suggesting that IL-6 is a mediator in the pathway of CTGF-induced fibrosis. Taken together, our data indicate a specific role for CTGF and CTGF downstream signaling pathways for the development of liver inflammation and fibrosis in the human 3D liver spheroid model.
Collapse
Affiliation(s)
- Sara Redenšek Trampuž
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Sander van Riet
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Åsa Nordling
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Magnus Ingelman-Sundberg
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
- Correspondence:
| |
Collapse
|
18
|
Cong X, Tian B, Zhu X, Zhang X, Gu W, Zhao H, Hao S, Ning Z. Interleukin-11 Is Elevated in Patients with Atrial Fibrillation, Correlates with Serum Fibrosis Markers, and Represents a Therapeutic Target for Atrial Fibrosis. Cerebrovasc Dis 2023; 52:575-586. [PMID: 36599329 DOI: 10.1159/000527740] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/11/2022] [Indexed: 01/06/2023] Open
Abstract
INTRODUCTION Inflammatory cytokines are closely associated with developing cardiac fibrosis. This research aimed to explore the significant role of IL-11 in atrial fibrosis progression and potential therapeutic targets. METHODS 207 AF patients and 160 healthy subjects were included in the case-control study. Blood samples were analyzed for the level of IL-11 by enzyme-linked immunosorbent assay (ELISA). Angiotensin II (Ang II)-treated fibrosis mouse models were generated, and expression of IL-11 mRNA and protein was detected by RT-qPCR and Western blot. IL-11 antagonist was used to evaluating atrial fibrosis-related markers. RESULTS The persistent atrial fibrillation patients (n = 76) had significantly larger left atrial size, higher serum levels of hypertrophic protein BNP, proinflammatory cytokine high-sensitivity C-reactive protein (hs-CRP), and interleukin-6 (IL-6) compared to paroxysmal atrial fibrillation patients (n = 131), and healthy subjects (all p < 0.05). Pearson correlation analysis revealed significant positive correlation between serum IL-11 and cardiac fibrosis markers BNP (r = 0.394, p < 0.001), CTX-I (r = 0.418, p < 0.001), PICP (r = 0.306, p < 0.001), PIIINP (r = 0.335, p < 0.001), and TGF-β1 (r = 0.273, p < 0.001). In the fibrosis mouse model, Ang II infusion significantly upregulated IL-11 mRNA and protein expression in the left atrium of mice (p < 0.05), as well as staining intensity of Masson trichrome, the intensity of α-SMA, and it increased mRNA expression of collagen I and III in atrial tissue. IL-11 antagonist treatment significantly attenuated Masson trichrome, number of α-SMA-positive myofibroblasts in atrial tissue. Also, it significantly reduced the p-ERK1/2 in atrial tissue of mice infused with Ang II (p < 0.05). CONCLUSIONS IL-11 is upregulated in the serum of AF patients, and IL-11 inhibitor significantly inhibited Ang II-induced atrial fibrosis, a key pathological feature of AF. Therefore, IL-11 could be a potential therapeutic target for AF.
Collapse
Affiliation(s)
- Xinpeng Cong
- Department of Cardiology, Zhoupu Hospital Affiliated to Shanghai Health Medical College, Shanghai, China
| | - Bei Tian
- Department of Cardiology, Zhoupu Hospital Affiliated to Shanghai Health Medical College, Shanghai, China
| | - Xi Zhu
- Department of Cardiology, Zhoupu Hospital Affiliated to Shanghai Health Medical College, Shanghai, China
| | - Xiaogang Zhang
- Department of Cardiology, Zhoupu Hospital Affiliated to Shanghai Health Medical College, Shanghai, China
| | - Wei Gu
- Department of Cardiology, Zhoupu Hospital Affiliated to Shanghai Health Medical College, Shanghai, China
| | - Hanjun Zhao
- Department of Cardiology, Zhoupu Hospital Affiliated to Shanghai Health Medical College, Shanghai, China
| | - Shuwen Hao
- Department of Cardiology, Zhoupu Hospital Affiliated to Shanghai Health Medical College, Shanghai, China
| | - Zhongping Ning
- Department of Cardiology, Zhoupu Hospital Affiliated to Shanghai Health Medical College, Shanghai, China
| |
Collapse
|
19
|
Effenberger M, Widjaja AA, Grabherr F, Schaefer B, Grander C, Mayr L, Schwaerzler J, Enrich B, Moser P, Fink J, Pedrini A, Jaschke N, Kirchmair A, Pfister A, Hausmann B, Bale R, Putzer D, Zoller H, Schafer S, Pjevac P, Trajanoski Z, Oberhuber G, Adolph T, Cook S, Tilg H. Interleukin-11 drives human and mouse alcohol-related liver disease. Gut 2023; 72:168-179. [PMID: 35365572 DOI: 10.1136/gutjnl-2021-326076] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 03/18/2022] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Alcoholic hepatitis (AH) reflects acute exacerbation of alcoholic liver disease (ALD) and is a growing healthcare burden worldwide. Interleukin-11 (IL-11) is a profibrotic, proinflammatory cytokine with increasingly recognised toxicities in parenchymal and epithelial cells. We explored IL-11 serum levels and their prognostic value in patients suffering from AH and cirrhosis of various aetiology and experimental ALD. DESIGN IL-11 serum concentration and tissue expression was determined in a cohort comprising 50 patients with AH, 110 patients with cirrhosis and 19 healthy volunteers. Findings were replicated in an independent patient cohort (n=186). Primary human hepatocytes exposed to ethanol were studied in vitro. Ethanol-fed wildtype mice were treated with a neutralising murine IL-11 receptor-antibody (anti-IL11RA) and examined for severity signs and markers of ALD. RESULTS IL-11 serum concentration and hepatic expression increased with severity of liver disease, mostly pronounced in AH. In a multivariate Cox-regression, a serum level above 6.4 pg/mL was a model of end-stage liver disease independent risk factor for transplant-free survival in patients with compensated and decompensated cirrhosis. In mice, severity of alcohol-induced liver inflammation correlated with enhanced hepatic IL-11 and IL11RA expression. In vitro and in vivo, anti-IL11RA reduced pathogenic signalling pathways (extracellular signal-regulated kinases, c-Jun N-terminal kinase, NADPH oxidase 4) and protected hepatocytes and murine livers from ethanol-induced inflammation and injury. CONCLUSION Pathogenic IL-11 signalling in hepatocytes plays a crucial role in the pathogenesis of ALD and could serve as an independent prognostic factor for transplant-free survival. Blocking IL-11 signalling might be a therapeutic option in human ALD, particularly AH.
Collapse
Affiliation(s)
- Maria Effenberger
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Anissa A Widjaja
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore
| | - Felix Grabherr
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Benedikt Schaefer
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Christoph Grander
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Lisa Mayr
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Julian Schwaerzler
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Barbara Enrich
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Patrizia Moser
- INNPATH, Innsbruck Medical University Hospital, Innsbruck, Austria
| | - Julia Fink
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Alisa Pedrini
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Nikolai Jaschke
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Alexander Kirchmair
- Biocenter, Institute of Bioinformatics, Medical University of Innsbruck, Innsbruck, Austria
| | - Alexandra Pfister
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Bela Hausmann
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Medical University of Vienna, University of Vienna, Vienna, Austria
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Reto Bale
- Department of Radiology, Section of Interventional Oncology-Microinvasive Therapy (SIP), Medical University of Innsbruck, Innsbruck, Austria
| | - Daniel Putzer
- Department of Radiology, Section of Interventional Oncology-Microinvasive Therapy (SIP), Medical University of Innsbruck, Innsbruck, Austria
| | - Heinz Zoller
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Sebastian Schafer
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore
| | - Petra Pjevac
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Medical University of Vienna, University of Vienna, Vienna, Austria
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Zlatko Trajanoski
- Biocenter, Institute of Bioinformatics, Medical University of Innsbruck, Innsbruck, Austria
| | - Georg Oberhuber
- INNPATH, Innsbruck Medical University Hospital, Innsbruck, Austria
| | - Timon Adolph
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Stuart Cook
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore
- MRC-London Institute of Medical Sciences, Hammersmith Hospital Campus, London, UK
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
20
|
Widjaja AA, Chothani S, Viswanathan S, Goh JWT, Lim WW, Cook SA. IL11 Stimulates IL33 Expression and Proinflammatory Fibroblast Activation across Tissues. Int J Mol Sci 2022; 23:8900. [PMID: 36012165 PMCID: PMC9408968 DOI: 10.3390/ijms23168900] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/02/2022] [Accepted: 08/08/2022] [Indexed: 01/16/2023] Open
Abstract
Interleukin 11 (IL11) is upregulated in inflammatory conditions, where it is mostly believed to have anti-inflammatory activity. However, recent studies suggest instead that IL11 promotes inflammation by activating fibroblasts. Here, we assessed whether IL11 is pro- or anti-inflammatory in fibroblasts. Primary cultures of human kidney, lung or skin fibroblasts were stimulated with IL11 that resulted in the transient phosphorylation of signal transducer and activator of transcription 3 (STAT3) and the sustained activation of extracellular signal-regulated protein kinases (ERK). RNA sequencing over a time course of IL11 stimulation revealed a robust but short-lived transcriptional response that was enriched for gene set hallmarks of inflammation and characterized by the upregulation of SERPINB2, TNFRSF18, Interleukin 33 (IL33), CCL20, IL1RL1, CXCL3/5/8, ICAM1 and IL11 itself. IL33 was the most upregulated signaling factor (38-fold, p = 9.8 × 10-5), and IL1RL1, its cognate receptor, was similarly increased (18-fold, p = 1.1 × 10-34). In proteomic studies, IL11 triggered a proinflammatory secretome with the notable upregulation of IL8, IL6, MCP1, CCL20 and CXCL1/5/6, which are important chemotaxins for neutrophils, monocytes, and lymphocytes. IL11 induced IL33 expression across fibroblast types, and the inhibition of STAT3 but not of MEK/ERK prevented this. These data establish IL11 as pro-inflammatory with specific importance for priming the IL33 alarmin response in inflammatory fibroblasts across tissues.
Collapse
Affiliation(s)
- Anissa A. Widjaja
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
| | - Sonia Chothani
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
| | - Sivakumar Viswanathan
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
| | - Joyce Wei Ting Goh
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
| | - Wei-Wen Lim
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore 169609, Singapore
| | - Stuart A. Cook
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore 169609, Singapore
- MRC-London Institute of Medical Sciences, Hammersmith Hospital Campus, London SW7 2AZ, UK
| |
Collapse
|
21
|
Dong J, Lim WW, Shekeran SG, Tan J, Lim SY, Goh JWT, George BL, Schafer S, Cook SA, Widjaja AA. Hepatocyte Specific gp130 Signalling Underlies APAP Induced Liver Injury. Int J Mol Sci 2022; 23:ijms23137089. [PMID: 35806094 PMCID: PMC9266364 DOI: 10.3390/ijms23137089] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/23/2022] [Accepted: 06/23/2022] [Indexed: 12/04/2022] Open
Abstract
N-acetyl-p-aminophenol (APAP)-induced liver damage is associated with upregulation of Interleukin-11 (IL11), which is thought to stimulate IL6ST (gp130)-mediated STAT3 activity in hepatocytes, as a compensatory response. However, recent studies have found IL11/IL11RA/gp130 signaling to be hepatotoxic. To investigate further the role of IL11 and gp130 in APAP liver injury, we generated two new mouse strains with conditional knockout (CKO) of either Il11 (CKOIl11) or gp130 (CKOgp130) in adult hepatocytes. Following APAP, as compared to controls, CKOgp130 mice had lesser liver damage with lower serum Alanine Transaminase (ALT) and Aspartate Aminotransferase (AST), greatly reduced serum IL11 levels (90% lower), and lesser centrilobular necrosis. Livers from APAP-injured CKOgp130 mice had lesser ERK, JNK, NOX4 activation and increased markers of regeneration (PCNA, Cyclin D1, Ki67). Experiments were repeated in CKOIl11 mice that, as compared to wild-type mice, had lower APAP-induced ALT/AST, reduced centrilobular necrosis and undetectable IL11 in serum. As seen with CKOgp130 mice, APAP-treated CKOIl11 mice had lesser ERK/JNK/NOX4 activation and greater features of regeneration. Both CKOgp130 and CKOIl11 mice had normal APAP metabolism. After APAP, CKOgp130 and CKOIl11 mice had reduced Il6, Ccl2, Ccl5, Il1β, and Tnfα expression. These studies exclude IL11 upregulation as compensatory and establish autocrine, self-amplifying, gp130-dependent IL11 secretion from damaged hepatocytes as toxic and anti-regenerative.
Collapse
Affiliation(s)
- Jinrui Dong
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore 169857, Singapore; (J.D.); (W.-W.L.); (S.G.S.); (S.Y.L.); (J.W.T.G.); (B.L.G.); (S.S.)
| | - Wei-Wen Lim
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore 169857, Singapore; (J.D.); (W.-W.L.); (S.G.S.); (S.Y.L.); (J.W.T.G.); (B.L.G.); (S.S.)
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore 169857, Singapore;
| | - Shamini G. Shekeran
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore 169857, Singapore; (J.D.); (W.-W.L.); (S.G.S.); (S.Y.L.); (J.W.T.G.); (B.L.G.); (S.S.)
| | - Jessie Tan
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore 169857, Singapore;
| | - Sze Yun Lim
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore 169857, Singapore; (J.D.); (W.-W.L.); (S.G.S.); (S.Y.L.); (J.W.T.G.); (B.L.G.); (S.S.)
| | - Joyce Wei Ting Goh
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore 169857, Singapore; (J.D.); (W.-W.L.); (S.G.S.); (S.Y.L.); (J.W.T.G.); (B.L.G.); (S.S.)
| | - Benjamin L. George
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore 169857, Singapore; (J.D.); (W.-W.L.); (S.G.S.); (S.Y.L.); (J.W.T.G.); (B.L.G.); (S.S.)
| | - Sebastian Schafer
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore 169857, Singapore; (J.D.); (W.-W.L.); (S.G.S.); (S.Y.L.); (J.W.T.G.); (B.L.G.); (S.S.)
| | - Stuart A. Cook
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore 169857, Singapore; (J.D.); (W.-W.L.); (S.G.S.); (S.Y.L.); (J.W.T.G.); (B.L.G.); (S.S.)
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore 169857, Singapore;
- MRC-London Institute of Medical Sciences, Hammersmith Hospital Campus, London W12 0NN, UK
- Correspondence: (S.A.C.); (A.A.W.)
| | - Anissa A. Widjaja
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore 169857, Singapore; (J.D.); (W.-W.L.); (S.G.S.); (S.Y.L.); (J.W.T.G.); (B.L.G.); (S.S.)
- Correspondence: (S.A.C.); (A.A.W.)
| |
Collapse
|
22
|
Raftar SKA, Ashrafian F, Abdollahiyan S, Yadegar A, Moradi HR, Masoumi M, Vaziri F, Moshiri A, Siadat SD, Zali MR. The anti-inflammatory effects of Akkermansia muciniphila and its derivates in HFD/CCL4-induced murine model of liver injury. Sci Rep 2022; 12:2453. [PMID: 35165344 PMCID: PMC8844054 DOI: 10.1038/s41598-022-06414-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 01/24/2022] [Indexed: 12/14/2022] Open
Abstract
Inflammation plays a critical role in the promotion of hepatocyte damage and liver fibrosis. In recent years the protective role of Akkermansia muciniphila, a next-generation beneficial microbe, has been suggested for metabolic and inflammatory disorders. In this study, we aimed to evaluate the effects of live and pasteurized A. muciniphila and its extra cellular vesicles (EVs) on inflammatory markers involved in liver fibrosis in a mouse model of a high-fat diet (HFD)/carbon tetrachloride (CCl4)-induced liver injury. Firstly, the responses of hepatic stellate cells (HSCs) to live and pasteurized A. muciniphila and its EVs were examined in the quiescent and LPS-activated LX-2 cells. Next, the anti-inflammatory effects of different forms of A. muciniphila were examined in the mouse model of HFD/CCl4-induced liver injury. The gene expression of various inflammatory markers was evaluated in liver, colon, and white adipose tissues. The cytokine secretion in the liver and white adipose tissues was also measured by ELISA. The results showed that administration of live and pasteurized A. muciniphila and its EVs leads to amelioration in HSCs activation. Based on data obtained from the histopathological analysis, an improvement in gut health was observed through enhancing the epithelium and mucosal layer thickness and strengthening the intestinal integrity in all treatments. Moreover, live A. muciniphila and its EVs had inhibitory effects on liver inflammation and hepatocytes damage. In addition, the tissue cytokine production and inflammatory gene expression levels revealed that live A. muciniphila and its EVs had more pronounced anti-inflammatory effects on liver and adipose tissues. Furthermore, EVs had better effects on the modulation of gene expression related to TLRs, PPARs, and immune response in the liver. In conclusion, the present results showed that oral administration of A. muciniphila and its derivatives for four weeks could enhance the intestinal integrity and anti-inflammatory responses of the colon, adipose, and liver tissues and subsequently prevent liver injury in HFD/CCL4 mice.
Collapse
|
23
|
Lim WW, Dong J, Ng B, Widjaja AA, Xie C, Su L, Kwek XY, Tee NGZ, Jian Pua C, Schafer S, Viswanathan S, Cook SA. Inhibition of IL11 Signaling Reduces Aortic Pathology in Murine Marfan Syndrome. Circ Res 2022; 130:728-740. [PMID: 35135328 DOI: 10.1161/circresaha.121.320381] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Marfan syndrome (MFS) is associated with TGF (transforming growth factor) β-stimulated ERK (extracellular signal-regulated kinase) activity in vascular smooth muscle cells (VSMCs), which adopt a mixed synthetic/contractile phenotype. In VSMCs, TGFβ induces IL (interleukin) 11) that stimulates ERK-dependent secretion of collagens and MMPs (matrix metalloproteinases). Here, we examined the role of IL11 in the MFS aorta. METHODS We used echocardiography, histology, immunostaining, and biochemical methods to study aortic anatomy, physiology, and molecular endophenotypes in Fbn1C1041G/+ mice, an established murine model of MFS (mMFS). mMFS mice were crossed to an IL11-tagged EGFP (enhanced green fluorescent protein; Il11EGFP/+) reporter strain or to a strain deleted for the IL11 receptor (Il11ra1-/-). In therapeutic studies, mMFS were administered an X209 (neutralizing antibody against IL11RA [IL11 receptor subunit alpha]) or IgG for 20 weeks and imaged longitudinally. RESULTS IL11 mRNA and protein were elevated in the aortas of mMFS mice, as compared to controls. mMFS mice crossed to Il11EGFP/+ mice had increased IL11 expression in VSMCs, notably in the aortic root and ascending aorta. As compared to the mMFS parental strain, double mutant mMFS:Il11ra1-/- mice had reduced aortic dilatation and exhibited lesser fibrosis, inflammation, elastin breaks, and VSMC loss, which was associated with reduced aortic COL1A1 (collagen type I alpha 1 chain), IL11, MMP2/9, and phospho-ERK expression. To explore therapeutic targeting of IL11 signaling in MFS, we administered either a neutralizing antibody against IL11RA (X209) or an IgG control. After 20 weeks of antibody administration, as compared to IgG, mMFS mice receiving X209 had reduced thoracic and abdominal aortic dilation as well as lesser fibrosis, inflammation, elastin breaks, and VSMC loss. By immunoblotting, X209 was shown to reduce aortic COL1A1, IL11, MMP2/9, and phospho-ERK expression. CONCLUSIONS In MFS, IL11 is upregulated in aortic VSMCs to cause ERK-related thoracic aortic dilatation, inflammation, and fibrosis. Therapeutic inhibition of IL11, imminent in clinical trials, might be considered as a new approach in MFS.
Collapse
Affiliation(s)
- Wei-Wen Lim
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore (W.-W.L., B.N., C.X., L.S., X.-Y.K., N.G.Z.T., C.J.P., S.S., S.A.C.).,Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School (W.-W.L., J.D., B.N., A.A.W., S.S., S.V., S.A.C.)
| | - Jinrui Dong
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School (W.-W.L., J.D., B.N., A.A.W., S.S., S.V., S.A.C.)
| | - Benjamin Ng
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore (W.-W.L., B.N., C.X., L.S., X.-Y.K., N.G.Z.T., C.J.P., S.S., S.A.C.).,Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School (W.-W.L., J.D., B.N., A.A.W., S.S., S.V., S.A.C.)
| | - Anissa A Widjaja
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School (W.-W.L., J.D., B.N., A.A.W., S.S., S.V., S.A.C.)
| | - Chen Xie
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore (W.-W.L., B.N., C.X., L.S., X.-Y.K., N.G.Z.T., C.J.P., S.S., S.A.C.)
| | - Liping Su
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore (W.-W.L., B.N., C.X., L.S., X.-Y.K., N.G.Z.T., C.J.P., S.S., S.A.C.)
| | - Xiu-Yi Kwek
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore (W.-W.L., B.N., C.X., L.S., X.-Y.K., N.G.Z.T., C.J.P., S.S., S.A.C.)
| | - Nicole G Z Tee
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore (W.-W.L., B.N., C.X., L.S., X.-Y.K., N.G.Z.T., C.J.P., S.S., S.A.C.)
| | - Chee Jian Pua
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore (W.-W.L., B.N., C.X., L.S., X.-Y.K., N.G.Z.T., C.J.P., S.S., S.A.C.)
| | - Sebastian Schafer
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore (W.-W.L., B.N., C.X., L.S., X.-Y.K., N.G.Z.T., C.J.P., S.S., S.A.C.).,Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School (W.-W.L., J.D., B.N., A.A.W., S.S., S.V., S.A.C.)
| | - Sivakumar Viswanathan
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School (W.-W.L., J.D., B.N., A.A.W., S.S., S.V., S.A.C.)
| | - Stuart A Cook
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore (W.-W.L., B.N., C.X., L.S., X.-Y.K., N.G.Z.T., C.J.P., S.S., S.A.C.).,Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School (W.-W.L., J.D., B.N., A.A.W., S.S., S.V., S.A.C.).,MRC-London Institute of Medical Sciences, Hammersmith Hospital Campus, United Kingdom (S.A.C.)
| |
Collapse
|
24
|
Widjaja A, Shekeran S, Adami E, Goh J, Tan J, Viswanathan S, Lim SY, Tan PH, Hubner N, Coffman T, Cook S. A Neutralizing IL-11 Antibody Improves Renal Function and Increases Lifespan in a Mouse Model of Alport Syndrome. J Am Soc Nephrol 2022; 33:718-730. [PMID: 35140116 PMCID: PMC8970448 DOI: 10.1681/asn.2021040577] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 01/07/2022] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Alport syndrome is a genetic disorder characterized by a defective glomerular basement membrane, tubulointerstitial fibrosis, inflammation, and progressive renal failure. IL-11 was recently implicated in fibrotic kidney disease but its role in Alport syndrome is unknown Methods: We determined IL-11 expression by molecular analyses and in an Alport syndrome mouse model. We assessed the effects of a neutralizing IL-11 antibody (X203) versus an IgG control in Col4a3-/- mice (lacking the gene encoding a type IV collagen component) on renal tubule damage, function, fibrosis, and inflammation. Effects on lifespan of X203, the IgG control, an angiotensin-converting enzyme inhibitor (ramipril), or ramipril+X203 were also studied. RESULTS In Col4a3 mice, as kidney failure advanced, renal IL-11 levels increased and IL-11 expression localized to tubular epithelial cells. The IL-11 receptor IL11RA is expressed in tubular epithelial cells and podocytes and is upregulated in tubular epithelial cells of Col4a3 mice. Administration of X203 reduced albuminuria, improved renal function, and preserved podocyte numbers and levels of key podocyte proteins that are reduced in Col4a3 mice; these effects were accompanied by reduced fibrosis and inflammation, attenuation of epithelial-tomesenchymal transition, and increased expression of regenerative markers. X203 attenuated pathogenic ERK and STAT3 pathways, which were activated in Col4a3 mice. Median lifespan of Col4a3 mice was prolonged 22% by ramapril, 44% with X203, and 99% with amipril+X203. CONCLUSIONS In an Alport syndrome mouse model, renal IL-11 is upregulated, and neutralization of IL-11 reduces epithelial-to-mesenchymal transition, fibrosis, and inflammation, while improving renal function. Anti-IL-11 combined with ACE inhibition synergistically extends lifespan. This suggests that a therapeutic approach targeting IL-11 holds promise for progressive kidney disease in Alport syndrome.
Collapse
Affiliation(s)
- Anissa Widjaja
- A Widjaja, Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore, Singapore
| | - Shamini Shekeran
- S Shekeran, Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore, Singapore
| | - Eleonora Adami
- E Adami, Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore, Singapore
| | - Joyce Goh
- J Goh, Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore, Singapore
| | - Jessie Tan
- J Tan, National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
| | - Sivakumar Viswanathan
- S Viswanathan, Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore, Singapore
| | - Sze Yun Lim
- S Lim, Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore, Singapore
| | - Puay Hoon Tan
- P Tan, Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore, Singapore
| | - Norbert Hubner
- N Hubner, Cardiovascular and Metabolic Sciences, Max Delbruck Centre for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Thomas Coffman
- T Coffman, Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore, Singapore
| | - Stuart Cook
- S Cook, Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|
25
|
Baghaei K, Mazhari S, Tokhanbigli S, Parsamanesh G, Alavifard H, Schaafsma D, Ghavami S. Therapeutic potential of targeting regulatory mechanisms of hepatic stellate cell activation in liver fibrosis. Drug Discov Today 2021; 27:1044-1061. [PMID: 34952225 DOI: 10.1016/j.drudis.2021.12.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/11/2021] [Accepted: 12/17/2021] [Indexed: 11/03/2022]
Abstract
Hepatic fibrosis is a manifestation of different etiologies of liver disease with the involvement of multiple mediators in complex network interactions. Activated hepatic stellate cells (aHSCs) are the central driver of hepatic fibrosis, given their potential to induce connective tissue formation and extracellular matrix (ECM) protein accumulation. Therefore, identifying the cellular and molecular pathways involved in the activation of HSCs is crucial in gaining mechanistic and therapeutic perspectives to more effectively target the disease. In addition to a comprehensive summary of our current understanding of the role of HSCs in liver fibrosis, we also discuss here the proposed therapeutic strategies based on targeting HSCs.
Collapse
Affiliation(s)
- Kaveh Baghaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 1985717413, Iran; Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 1985717413, Iran
| | - Sogol Mazhari
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 1985717413, Iran
| | - Samaneh Tokhanbigli
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 1985717413, Iran
| | - Gilda Parsamanesh
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 1985717413, Iran
| | - Helia Alavifard
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 1985717413, Iran
| | | | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
26
|
New insights into IL-6 family cytokines in metabolism, hepatology and gastroenterology. Nat Rev Gastroenterol Hepatol 2021; 18:787-803. [PMID: 34211157 DOI: 10.1038/s41575-021-00473-x] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/20/2021] [Indexed: 02/06/2023]
Abstract
IL-6 family cytokines are defined by the common use of the signal-transducing receptor chain glycoprotein 130 (gp130). Increasing evidence indicates that these cytokines are essential in the regulation of metabolic homeostasis as well as in the pathophysiology of multiple gastrointestinal and liver disorders, thus making them attractive therapeutic targets. Over the past few years, therapies modulating gp130 signalling have grown exponentially in several clinical settings including obesity, cancer and inflammatory bowel disease. A newly engineered gp130 cytokine, IC7Fc, has shown promising preclinical results for the treatment of type 2 diabetes, obesity and liver steatosis. Moreover, drugs that modulate gp130 signalling have shown promise in refractory inflammatory bowel disease in clinical trials. A deeper understanding of the main roles of the IL-6 family of cytokines during homeostatic and pathological conditions, their signalling pathways, sources of production and target cells will be crucial to the development of improved treatments. Here, we review the current state of the role of these cytokines in hepatology and gastroenterology and discuss the progress achieved in translating therapeutics targeting gp130 signalling into clinical practice.
Collapse
|
27
|
Loosen SH, Roderburg C, Demir M, Qvartskhava N, Keitel V, Kostev K, Luedde T. Non-alcoholic fatty liver disease (NAFLD) is associated with an increased incidence of osteoporosis and bone fractures. ZEITSCHRIFT FUR GASTROENTEROLOGIE 2021; 60:1221-1227. [PMID: 34710938 DOI: 10.1055/a-1482-9236] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) and osteoporosis are common diseases with a rising incidence worldwide. Both diseases occur in similar patient populations, however, data on their mutual influence are conflicting. Here, we aimed to evaluate the impact of NAFLD on the incidence of osteoporosis and fractures by using the Disease Analyzer database featuring data on diagnoses, prescriptions, and demographic aspects of 7.49 million cases followed in general practices in Germany. METHODS A total of 50,689 patients with NAFLD diagnosed between 2000 and 2015 were matched by age, sex, index year, and 3 comorbidities (obesity, diabetes mellitus, and vitamin D/calcium deficiency) to a cohort of equal size without NAFLD. Incidence of osteoporosis and bone fractures were compared between both groups within 10 years from the index date. RESULTS Within the observation period, the incidence of osteoporosis was significantly higher in the NAFLD group (6.4%) compared to patients without NAFLD (5.1%; log-rank, p < 0.001). Similar results were observed for bone fractures (12.6 vs. 10.3 %; log-rank p < 0.001). The difference was more pronounced in women compared to men and observed in all age groups >50 years of age. CONCLUSION Our data show that NAFLD is significantly associated with osteoporosis as well as bone fractures in a large cohort of patients followed in German general practices. This finding suggests that NAFLD patients might benefit from improved monitoring for the occurrence of bone demineralization and osteoporosis, which in turn could trigger preventive therapeutic measures.
Collapse
Affiliation(s)
- Sven H Loosen
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty of Heinrich Heine University Düsseldorf, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Christoph Roderburg
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty of Heinrich Heine University Düsseldorf, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Münevver Demir
- Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, Berlin, Germany
| | - Natalia Qvartskhava
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty of Heinrich Heine University Düsseldorf, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Verena Keitel
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty of Heinrich Heine University Düsseldorf, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Karel Kostev
- Epidemiologie, IQVIA Germany, Frankfurt, Germany
| | - Tom Luedde
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty of Heinrich Heine University Düsseldorf, University Hospital Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
28
|
Widjaja AA, Viswanathan S, Jinrui D, Singh BK, Tan J, Wei Ting JG, Lamb D, Shekeran SG, George BL, Schafer S, Carling D, Adami E, Cook SA. Molecular Dissection of Pro-Fibrotic IL11 Signaling in Cardiac and Pulmonary Fibroblasts. Front Mol Biosci 2021; 8:740650. [PMID: 34651016 PMCID: PMC8505966 DOI: 10.3389/fmolb.2021.740650] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/13/2021] [Indexed: 11/16/2022] Open
Abstract
In fibroblasts, TGFβ1 stimulates IL11 upregulation that leads to an autocrine loop of IL11-dependent pro-fibrotic protein translation. The signaling pathways downstream of IL11, which acts via IL6ST, are contentious with both STAT3 and ERK implicated. Here we dissect IL11 signaling in fibroblasts and study IL11-dependent protein synthesis pathways in the context of approved anti-fibrotic drug mechanisms of action. We show that IL11-induced ERK activation drives fibrogenesis and while STAT3 phosphorylation (pSTAT3) is also seen, this appears unrelated to fibroblast activation. Ironically, recombinant human IL11, which has been used extensively in mouse experiments to infer STAT3 activity downstream of IL11, increases pSTAT3 in Il11ra1 null mouse fibroblasts. Unexpectedly, inhibition of STAT3 was found to induce severe proteotoxic ER stress, generalized fibroblast dysfunction and cell death. In contrast, inhibition of ERK prevented fibroblast activation in the absence of ER stress. IL11 stimulated an axis of ERK/mTOR/P70RSK protein translation and its selectivity for Collagen 1 synthesis was ascribed to an EPRS-regulated, ribosome stalling mechanism. Surprisingly, the anti-fibrotic drug nintedanib caused dose-dependent ER stress and lesser pSTAT3 expression. Pirfenidone had no effect on ER stress whereas anti-IL11 specifically inhibited the ERK/mTOR axis while reducing ER stress. These studies define the translation-specific signaling pathways downstream of IL11, intersect immune and metabolic signaling and reveal unappreciated effects of nintedanib.
Collapse
Affiliation(s)
- Anissa A Widjaja
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Sivakumar Viswanathan
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Dong Jinrui
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Brijesh K Singh
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Jessie Tan
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
| | - Joyce Goh Wei Ting
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - David Lamb
- Boehringer Ingelheim, Immunology and Respiratory, Ingelheim am Rhein, Germany
| | - Shamini G Shekeran
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Benjamin L George
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Sebastian Schafer
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - David Carling
- MRC-London Institute of Medical Sciences, London, United Kingdom
| | - Eleonora Adami
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Stuart A Cook
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore.,National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore.,MRC-London Institute of Medical Sciences, London, United Kingdom
| |
Collapse
|
29
|
Assadiasl S, Mooney N, Nicknam MH. Cytokines in Liver Transplantation. Cytokine 2021; 148:155705. [PMID: 34564024 DOI: 10.1016/j.cyto.2021.155705] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 08/17/2021] [Accepted: 09/10/2021] [Indexed: 02/08/2023]
Abstract
Cytokines, soluble mediators of the immune system, play a critical role in the pathogenesis of autoimmune, allergic and infectious diseases. They are also implicated in the initiation and development of allograft rejection. During recent years, there have been considerable advances in generating novel anti-cytokine agents with promoted efficacy and safety, which could be administrated for managing dysregulated cytokine secretion; besides, gene therapy for overexpression of immunomodulatory cytokines has shown substantial improvements. Liver transplantation has been established as a life-saving treatment for end-stage hepatic diseases but the growing number of recipients urge for improved post-transplant care including tolerance induction, infection control and resolving immunosuppressant drugs adverse effects. Cytokines with a wide range of proinflammatory and regulatory properties might be considered as potential therapeutic targets for selective suppression or enhancement of the immune responses in recipients. In the present review, we aimed to summarize the positive and negative effects of cytokines on liver allograft in addition to their prognostic and therapeutic values.
Collapse
Affiliation(s)
- Sara Assadiasl
- Molecular Immunology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nuala Mooney
- Human Immunology and Immunopathology, Inserm UMR 976, Paris, France; Université de Paris, Paris, France
| | - Mohammad Hossein Nicknam
- Molecular Immunology Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, Medical School, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
30
|
Dong J, Viswanathan S, Adami E, Schafer S, Kuthubudeen FF, Widjaja AA, Cook SA. The pro-regenerative effects of hyperIL6 in drug-induced liver injury are unexpectedly due to competitive inhibition of IL11 signaling. eLife 2021; 10:68843. [PMID: 34435951 PMCID: PMC8445623 DOI: 10.7554/elife.68843] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 08/24/2021] [Indexed: 01/20/2023] Open
Abstract
It is generally accepted that IL6-mediated STAT3 signaling in hepatocytes, mediated via glycoprotein 130 (gp130; IL6ST), is beneficial and that the synthetic IL6:IL6ST fusion protein (HyperIL6) promotes liver regeneration. Recently, autocrine IL11 activity that also acts via IL6ST but uses ERK rather than STAT3 to signal, was found to be hepatotoxic. Here we examined whether the beneficial effects of HyperIL6 could reflect unappreciated competitive inhibition of IL11-dependent IL6ST signaling. In human and mouse hepatocytes, HyperIL6 reduced N-acetyl-p-aminophenol (APAP)-induced cell death independent of STAT3 activation and instead, dose-dependently, inhibited IL11-related signaling and toxicities. In mice, expression of HyperIl6 reduced ERK activation and promoted STAT3-independent hepatic regeneration (PCNA, Cyclin D1, Ki67) following administration of either IL11 or APAP. Inhibition of putative intrinsic IL6 trans-signaling had no effect on liver regeneration in mice. Following APAP, mice deleted for Il11 exhibited spontaneous liver repair but HyperIl6, despite robustly activating STAT3, had no effect on liver regeneration in this strain. These data show that synthetic IL6ST binding proteins such as HyperIL6 can have unexpected, on-target effects and suggest IL11, not IL6, as important for liver regeneration.
Collapse
Affiliation(s)
- Jinrui Dong
- Cardiovascular and Metabolic Disorders Program, Duke-National University ofSingapore Medical School, Singapore, Singapore
| | - Sivakumar Viswanathan
- Cardiovascular and Metabolic Disorders Program, Duke-National University ofSingapore Medical School, Singapore, Singapore
| | - Eleonora Adami
- Cardiovascular and Metabolic Disorders Program, Duke-National University ofSingapore Medical School, Singapore, Singapore
| | - Sebastian Schafer
- Cardiovascular and Metabolic Disorders Program, Duke-National University ofSingapore Medical School, Singapore, Singapore
| | - Fathima F Kuthubudeen
- Cardiovascular and Metabolic Disorders Program, Duke-National University ofSingapore Medical School, Singapore, Singapore
| | - Anissa A Widjaja
- Cardiovascular and Metabolic Disorders Program, Duke-National University ofSingapore Medical School, Singapore, Singapore
| | - Stuart A Cook
- Cardiovascular and Metabolic Disorders Program, Duke-National University ofSingapore Medical School, Singapore, Singapore.,National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore.,MRC-London Institute of Medical Sciences, Hammersmith Hospital Campus, London, United Kingdom
| |
Collapse
|
31
|
Widjaja AA, Dong J, Adami E, Viswanathan S, Ng B, Pakkiri LS, Chothani SP, Singh BK, Lim WW, Zhou J, Shekeran SG, Tan J, Lim SY, Goh J, Wang M, Holgate R, Hearn A, Felkin LE, Yen PM, Dear JW, Drum CL, Schafer S, Cook SA. Redefining IL11 as a regeneration-limiting hepatotoxin and therapeutic target in acetaminophen-induced liver injury. Sci Transl Med 2021; 13:13/597/eaba8146. [PMID: 34108253 DOI: 10.1126/scitranslmed.aba8146] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 12/18/2020] [Accepted: 04/02/2021] [Indexed: 12/29/2022]
Abstract
Acetaminophen (N-acetyl-p-aminophenol; APAP) toxicity is a common cause of liver damage. In the mouse model of APAP-induced liver injury (AILI), interleukin 11 (IL11) is highly up-regulated and administration of recombinant human IL11 (rhIL11) has been shown to be protective. Here, we demonstrate that the beneficial effect of rhIL11 in the mouse model of AILI is due to its inhibition of endogenous mouse IL11 activity. Our results show that species-matched IL11 behaves like a hepatotoxin. IL11 secreted from APAP-damaged human and mouse hepatocytes triggered an autocrine loop of NADPH oxidase 4 (NOX4)-dependent cell death, which occurred downstream of APAP-initiated mitochondrial dysfunction. Hepatocyte-specific deletion of Il11 receptor subunit alpha chain 1 (Il11ra1) in adult mice protected against AILI despite normal APAP metabolism and glutathione (GSH) depletion. Mice with germline deletion of Il11 were also protected from AILI, and deletion of Il1ra1 or Il11 was associated with reduced c-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK) activation and quickly restored GSH concentrations. Administration of a neutralizing IL11RA antibody reduced AILI in mice across genetic backgrounds and promoted survival when administered up to 10 hours after APAP. Inhibition of IL11 signaling was associated with the up-regulation of markers of liver regenerations: cyclins and proliferating cell nuclear antigen (PCNA) as well as with phosphorylation of retinoblastoma protein (RB) 24 hours after AILI. Our data suggest that species-matched IL11 is a hepatotoxin and that IL11 signaling might be an effective therapeutic target for APAP-induced liver damage.
Collapse
Affiliation(s)
- Anissa A Widjaja
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore 169857, Singapore.
| | - Jinrui Dong
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
| | - Eleonora Adami
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
| | - Sivakumar Viswanathan
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
| | - Benjamin Ng
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore 169857, Singapore.,National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore 169609, Singapore
| | - Leroy S Pakkiri
- Cardiac Department, National University Hospital, Singapore 119074, Singapore
| | - Sonia P Chothani
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
| | - Brijesh K Singh
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
| | - Wei Wen Lim
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore 169609, Singapore
| | - Jin Zhou
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
| | - Shamini G Shekeran
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
| | - Jessie Tan
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore 169857, Singapore.,National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore 169609, Singapore
| | - Sze Yun Lim
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore 169609, Singapore
| | - Joyce Goh
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
| | - Mao Wang
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
| | - Robert Holgate
- Abzena, Babraham Research Campus, Babraham, Cambridge CB22 3AT, UK
| | - Arron Hearn
- Abzena, Babraham Research Campus, Babraham, Cambridge CB22 3AT, UK
| | - Leanne E Felkin
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
| | - Paul M Yen
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
| | - James W Dear
- Pharmacology, Toxicology and Therapeutics, Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Chester L Drum
- Cardiovascular Research Institute, National University Health System, Singapore 119228, Singapore.,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.,Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Sebastian Schafer
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore 169857, Singapore.,National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore 169609, Singapore
| | - Stuart A Cook
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore 169857, Singapore. .,National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore 169609, Singapore.,MRC-London Institute of Medical Sciences, Hammersmith Hospital Campus, London W12 0NN, UK
| |
Collapse
|
32
|
Ng B, Widjaja AA, Viswanathan S, Dong J, Chothani SP, Lim S, Shekeran SG, Tan J, McGregor NE, Walker EC, Sims NA, Schafer S, Cook SA. Similarities and differences between IL11 and IL11RA1 knockout mice for lung fibro-inflammation, fertility and craniosynostosis. Sci Rep 2021; 11:14088. [PMID: 34239012 PMCID: PMC8266813 DOI: 10.1038/s41598-021-93623-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 06/21/2021] [Indexed: 02/07/2023] Open
Abstract
Loss of function (LOF) in IL11RA infers IL11 signaling as important for fertility, fibrosis, inflammation and incompletely penetrant craniosynostosis. The impact of LOF in IL11 has not been characterized. We generated IL11 knockout (Il11-/-) mice that are born in expected ratios and have normal hematological profiles. Lung fibroblasts from Il11-/- mice are resistant to pro-fibrotic stimulation with TGFβ1. Following bleomycin-induced lung injury, Il11-/- mice are protected from pulmonary fibrosis and exhibit lesser ERK, STAT3 and NF-kB activation, reduced Il1b, Timp1, Ccl2 and diminished IL6 expression, both at baseline and after injury: placing Il11 activity upstream of IL6 in this model. Il11-/- female mice are infertile. Unlike Il11ra1-/- mice, Il11-/- mice do not have craniosynostosis, have normal long bone mass and reduced body weights. These data further establish the role of IL11 signaling in lung fibrosis while suggesting that bone development abnormalities can be associated with mutation of IL11RA but not IL11, which may have implications for therapeutic targeting of IL11 signaling.
Collapse
Affiliation(s)
- Benjamin Ng
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
| | - Anissa A Widjaja
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Sivakumar Viswanathan
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Jinrui Dong
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Sonia P Chothani
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Stella Lim
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Shamini G Shekeran
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Jessie Tan
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
| | - Narelle E McGregor
- Bone Biology and Disease Unit, St. Vincent's Institute of Medical Research, Melbourne, Australia
| | - Emma C Walker
- Bone Biology and Disease Unit, St. Vincent's Institute of Medical Research, Melbourne, Australia
| | - Natalie A Sims
- Bone Biology and Disease Unit, St. Vincent's Institute of Medical Research, Melbourne, Australia
- Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Melbourne, Australia
| | - Sebastian Schafer
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
| | - Stuart A Cook
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore.
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore.
- MRC-London Institute of Medical Sciences, Hammersmith Hospital Campus, London, UK.
| |
Collapse
|
33
|
IL-6 Reduces Mitochondrial Replication, and IL-6 Receptors Reduce Chronic Inflammation in NAFLD and Type 2 Diabetes. Int J Mol Sci 2021; 22:ijms22041774. [PMID: 33579000 PMCID: PMC7916777 DOI: 10.3390/ijms22041774] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 12/15/2022] Open
Abstract
Interleukin (IL)-6 family cytokines act through a receptor complex with gp130 subunits. IL-6 is a pleiotropic cytokine that regulates inflammation and liver regeneration. Mitochondria are the first to respond to stress and adapt their dynamics in conditions of damage. In this regard, the study aimed to investigate the role of the IL-6 cytokine family (sIL-6Ra, gp130/sIL-6Rb, and IL-11) in the regulation of mitochondrial dynamics in the liver in obese patients and to assess the contribution of these cytokines to the pathogenesis of type 2 diabetes mellitus (T2DM). We studied 134 obese patients with and without T2DM and 41 healthy donors. We found that increasing the concentration of sIL-6Ra and gp130/sIL-6Rb protected against carbohydrate disorders in obese patients and prevented non-alcoholic fatty liver disease (NAFLD) progression in obese patients. An increase in plasma IL-6 levels is associated with decreased, mitochondrial transcription factor A (TFAM) protein production in liver biopsies in obese patients with and without T2DM. Replication, transcription, and division processes in liver biopsy were reduced in patients with T2DM. Inflammatory processes stimulate liver cell apoptosis in obese patients with T2DM. The increase in IL-11 levels is associated with decreased pro-apoptotic Bcl-2-associated X protein (BAX) protein production in obese patients with and without T2DM.
Collapse
|
34
|
Dong J, Viswanathan S, Adami E, Singh BK, Chothani SP, Ng B, Lim WW, Zhou J, Tripathi M, Ko NSJ, Shekeran SG, Tan J, Lim SY, Wang M, Lio PM, Yen PM, Schafer S, Cook SA, Widjaja AA. Hepatocyte-specific IL11 cis-signaling drives lipotoxicity and underlies the transition from NAFLD to NASH. Nat Commun 2021; 12:66. [PMID: 33397952 PMCID: PMC7782504 DOI: 10.1038/s41467-020-20303-z] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 11/24/2020] [Indexed: 12/29/2022] Open
Abstract
IL11 is important for fibrosis in non-alcoholic steatohepatitis (NASH) but its role beyond the stroma in liver disease is unclear. Here, we investigate the role of IL11 in hepatocyte lipotoxicity. Hepatocytes highly express IL11RA and secrete IL11 in response to lipid loading. Autocrine IL11 activity causes hepatocyte death through NOX4-derived ROS, activation of ERK, JNK and caspase-3, impaired mitochondrial function and reduced fatty acid oxidation. Paracrine IL11 activity stimulates hepatic stellate cells and causes fibrosis. In mouse models of NASH, hepatocyte-specific deletion of Il11ra1 protects against liver steatosis, fibrosis and inflammation while reducing serum glucose, cholesterol and triglyceride levels and limiting obesity. In mice deleted for Il11ra1, restoration of IL11 cis-signaling in hepatocytes reconstitutes steatosis and inflammation but not fibrosis. We found no evidence for the existence of IL6 or IL11 trans-signaling in hepatocytes or NASH. These data show that IL11 modulates hepatocyte metabolism and suggests a mechanism for NAFLD to NASH transition.
Collapse
Affiliation(s)
- Jinrui Dong
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Sivakumar Viswanathan
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Eleonora Adami
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Brijesh K Singh
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Sonia P Chothani
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Benjamin Ng
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
| | - Wei Wen Lim
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
| | - Jin Zhou
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Madhulika Tripathi
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Nicole S J Ko
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Shamini G Shekeran
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Jessie Tan
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
| | - Sze Yun Lim
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
| | - Mao Wang
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Pei Min Lio
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
| | - Paul M Yen
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Sebastian Schafer
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
| | - Stuart A Cook
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore.
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore.
- National Heart and Lung Institute, Imperial College London, London, UK.
- MRC-London Institute of Medical Sciences, Hammersmith Hospital Campus, London, UK.
| | - Anissa A Widjaja
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore.
| |
Collapse
|