1
|
Barbosa AN, Chebabo A, Starling C, Pérez C, Cunha CA, de Luna D, Nunes EP, Zambrano G, Ferreira JC, Croda J, Falavigna M, Gomes-da-Silva MM, Thormann M, Cimerman S, Parahiba SM, Tanni S, Bernardo WM, Rodriguez-Morales AJ. Pan-American Guidelines for the treatment of SARS-CoV-2/COVID-19: a joint evidence-based guideline of the Brazilian Society of Infectious Diseases (SBI) and the Pan-American Association of Infectious Diseases (API). Ann Clin Microbiol Antimicrob 2023; 22:67. [PMID: 37550690 PMCID: PMC10408214 DOI: 10.1186/s12941-023-00623-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 07/28/2023] [Indexed: 08/09/2023] Open
Abstract
BACKGROUND Since the beginning of the COVID-19 pandemic, therapeutic options for treating COVID-19 have been investigated at different stages of clinical manifestations. Considering the particular impact of COVID-19 in the Americas, this document aims to present recommendations for the pharmacological treatment of COVID-19 specific to this population. METHODS Fifteen experts, members of the Brazilian Society of Infectious Diseases (SBI) and the Pan-American Association of Infectious Diseases (API) make up the panel responsible for developing this guideline. Questions were formulated regarding prophylaxis and treatment of COVID-19 in outpatient and inpatient settings. The outcomes considered in decision-making were mortality, hospitalisation, need for mechanical ventilation, symptomatic COVID-19 episodes, and adverse events. In addition, a systematic review of randomised controlled trials was conducted. The quality of evidence assessment and guideline development process followed the GRADE system. RESULTS Nine technologies were evaluated, and ten recommendations were made, including the use of tixagevimab + cilgavimab in the prophylaxis of COVID-19, tixagevimab + cilgavimab, molnupiravir, nirmatrelvir + ritonavir, and remdesivir in the treatment of outpatients, and remdesivir, baricitinib, and tocilizumab in the treatment of hospitalised patients with severe COVID-19. The use of hydroxychloroquine or chloroquine and ivermectin was discouraged. CONCLUSION This guideline provides recommendations for treating patients in the Americas following the principles of evidence-based medicine. The recommendations present a set of drugs that have proven effective in the prophylaxis and treatment of COVID-19, emphasising the strong recommendation for the use of nirmatrelvir/ritonavir in outpatients as the lack of benefit from the use of hydroxychloroquine and ivermectin.
Collapse
Affiliation(s)
- Alexandre Naime Barbosa
- Infectious Diseases Department - Botucatu School of Medicine - UNESP, Av. Prof. Mário R. G. Montenegro, s/n, Botucatu, SP, CEP 18.618-687, Brazil.
- Universidade Estadual Paulista, Julio de Mesquita Filho, Distrito de Rubiao Jr, s/n, Botucatu, SP, CEP 18618-970, Brazil.
| | - Alberto Chebabo
- Universidade Federal do Rio de Janeiro, Avenida Professor Rodolpho Paulo Rocco, 255, 50. Andar, Rio de Janeiro, RJ, CEP 21941-913, Brazil
- Brazilian Society for Infectious Diseases, Rua Teixeira da Silva, 660, São Paulo, SP, CEP 04002-033, Brazil
| | - Carlos Starling
- Sociedade Mineira de Infectologia - SMI, Avenida João Pinheiro, 161, Belo Horizonte, MG, CEP 30130-180, Brazil
| | - Clevy Pérez
- Universidad Autónoma de Santo Domingo (UASD), Avenida Simón Bolívar, 902, Santo Domingo, 10108, República Dominicana
| | - Clóvis Arns Cunha
- Brazilian Society for Infectious Diseases, Rua Teixeira da Silva, 660, São Paulo, SP, CEP 04002-033, Brazil
- Universidade Federal do Paraná, Rua XV de Novembro, 1299, Curitiba, PR, CEP 80060-000, Brazil
| | - David de Luna
- Comisión Nacional de Arbitraje Médico, C Mitla, 250, Ciudad de México, 03020, México
| | - Estevão Portela Nunes
- Instituto Nacional de Infectologia (INI), Fiocruz, Avenida Brasil, 4365, Rio de Janeiro, RJ, CEP 21040-360, Brazil
| | - Gabriela Zambrano
- Faculty of Medicine, Department of Infectious Diseases, Universidad Central del Ecuador, Quito, Ecuador
- Pontificia Universidad Católica del Ecuador, Facultad de Medicina, Posgrado de Medicina Interna, Quito, Ecuador
| | - Juliana Carvalho Ferreira
- Divisão de Pneumologia, Instituto do Coração, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Universidade de São Paulo, Avenida Dr. Enéas Carvalho de Aguiar, 44, São Paulo, SP, CEP 05403-900, Brazil
- Intensive Care Unit, AC Camargo Cancer Center, Rua Prof. Antônio Prudente, 211, São Paulo, SP, CEP 01509-001, Brazil
| | - Julio Croda
- Oswaldo Cruz Foundation, Avenida Costa e Silva, s/n, Cidade Universitária, Campo Grande, MS, CEP 79070-900, Brazil
| | - Maicon Falavigna
- HTAnalyze Consulting and Training, Rua João Abbott, 109, Porto Alegre, RS, CEP 90460-150, Brazil
| | - Monica Maria Gomes-da-Silva
- Infectious Disease Control Service, Clinical Hospital, Universidade Federal Do Paraná, Rua General Carneiro, 181, Curitiba, PR, CEP 80060-900, Brazil
| | - Monica Thormann
- Hospital Salvador Bienvenido Gautier, Calle Alexander Fleming, 177, Santo Domingo, 10514, Dominican Republic
| | - Sergio Cimerman
- Brazilian Society for Infectious Diseases, Rua Teixeira da Silva, 660, São Paulo, SP, CEP 04002-033, Brazil
- Institute of Infectious Diseases Emilio Ribas, Avenida Dr. Arnaldo, 165, São Paulo, SP, CEP 05402-000, Brazil
| | - Suena Medeiros Parahiba
- HTAnalyze Consulting and Training, Rua João Abbott, 109, Porto Alegre, RS, CEP 90460-150, Brazil
| | - Suzana Tanni
- Universidade Estadual Paulista, Julio de Mesquita Filho, Distrito de Rubiao Jr, s/n, Botucatu, SP, CEP 18618-970, Brazil
| | - Wanderley Marques Bernardo
- Medical Education Development Center (CEDEM) of Medical Faculty of São Paulo University (FMUSP), São Paulo, SP, Brazil
| | - Alfonso J Rodriguez-Morales
- Grupo de Investigación Biomedicina, Faculty of Medicine, Fundación Universitaria Autónoma de Las Américas-Institución Universitaria Visión de Las Américas, 660003, Pereira, Risaralda, Colombia.
- Clinical Epidemiology and Biostatistics, Faculty of Health Sciences, Universidad Científica del Sur, Lima, 4861, Peru.
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, P.O. Box 36, Beirut, Lebanon.
- Latin American Network of Coronavirus Disease 2019 - COVID-19 Research (LANCOVID-19), Pereira, Risaralda, Colombia.
| |
Collapse
|
2
|
Safarnezhad Tameshkel F, Abedin Dargoush S, Amirkalali B, Javadi S, Ghiaseddin A, Alimohamadi Y, Basi A, Jamshidi Makiani M, Zamani F, Karbalaie Niya MH. SARS-CoV-2 antibody response after BBIBP-CorV (Sinopharm) vaccination in cancer patients: A case-control study. Front Med (Lausanne) 2023; 9:1095194. [PMID: 36743671 PMCID: PMC9893850 DOI: 10.3389/fmed.2022.1095194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/15/2022] [Indexed: 01/11/2023] Open
Abstract
Background Long-term safety and efficacy of BBIBP-CorV vaccine especially in individuals with chronic diseases, like cancer, is under investigation. In the present prospective study, we aimed to evaluate severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) antibody response with BBIBP-CorV vaccine in Iranian cancer patients. Methods All the patients registered to receive BBIBP-CorV (Sinopharm) vaccine were divided into two groups of with (cases = 107) and without (controls = 45) history of cancer. Serum levels of SARS-CoV anti-spike recombinant receptor binding domain (anti-sRBD) and anti-nucleocapsid (anti-N) IgG serum levels were measured on days 0 (phase 0), 28-32 (phase I), and 56-64 (phase II) of vaccination. The data were analyzed using SPSS, version 22. Results Totally, 152 individuals (67.1% females) with the mean age of 46.71 ± 15.36 years were included. Solid cancers included 87.8% of the cancer cases (46.7% gynecological and 31.8% gastrointestinal cancer). At Phases I and II, positive anti-sRBD IgG and anti-N IgG were significantly lower among the cases in total analysis. Side effects were not significantly different between the cases and controls. The lowest positive anti-sRBD IgG test was observed among the cancer patients who were simultaneously receiving chemotherapy (35.3%). Anti-sRBD IgG and anti-N IgG serum levels significantly increased at phases I and II in total analysis and in each group. In addition, serum anti-sRBD IgG increased during the three phases and it was significantly higher in the control group. Conclusion Full vaccination of COVID-19 by BBIBP-CorV in immunocompromised patients such as cancer patients is safe and effective and could induce antibody response but in lower levels compared to healthy people. Probable causes to have minor antibody response found in males, older ages, individuals with BMI ≥ 25, those without past history of COVID-19 and with hematologic cancers. No significant side effects after vaccination were seen.
Collapse
Affiliation(s)
| | - Shabnam Abedin Dargoush
- Stem Cell and Regenerative Medicine Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahareh Amirkalali
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Saeedeh Javadi
- Department of Internal Medicine, School of Medicine, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Ghiaseddin
- Department of Chemistry, Michigan State University, East Lansing, MI, United States
| | - Yousef Alimohamadi
- Health Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Basi
- Department of Hematology and Oncology, School of Medicine, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Mahin Jamshidi Makiani
- Antimicrobial Resistant Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Infectious Disease, School of Medicine, Firoozgar General Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Farhad Zamani
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hadi Karbalaie Niya
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Dhama K, Nainu F, Frediansyah A, Yatoo MI, Mohapatra RK, Chakraborty S, Zhou H, Islam MR, Mamada SS, Kusuma HI, Rabaan AA, Alhumaid S, Mutair AA, Iqhrammullah M, Al-Tawfiq JA, Mohaini MA, Alsalman AJ, Tuli HS, Chakraborty C, Harapan H. Global emerging Omicron variant of SARS-CoV-2: Impacts, challenges and strategies. J Infect Public Health 2023; 16:4-14. [PMID: 36446204 PMCID: PMC9675435 DOI: 10.1016/j.jiph.2022.11.024] [Citation(s) in RCA: 109] [Impact Index Per Article: 109.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/06/2022] [Accepted: 11/16/2022] [Indexed: 11/21/2022] Open
Abstract
Newly emerging variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are continuously posing high global public health concerns and panic resulting in waves of coronavirus disease 2019 (COVID-19) pandemic. Depending on the extent of genomic variations, mutations and adaptation, few of the variants gain the ability to spread quickly across many countries, acquire higher virulency and ability to cause severe disease, morbidity and mortality. These variants have been implicated in lessening the efficacy of the current COVID-19 vaccines and immunotherapies resulting in break-through viral infections in vaccinated individuals and recovered patients. Altogether, these could hinder the protective herd immunity to be achieved through the ongoing progressive COVID-19 vaccination. Currently, the only variant of interest of SARS-CoV-2 is Omicron that was first identified in South Africa. In this review, we present the overview on the emerging SARS-CoV-2 variants with a special focus on the Omicron variant, its lineages and hybrid variants. We discuss the hypotheses of the origin, genetic change and underlying molecular mechanism behind higher transmissibility and immune escape of Omicron variant. Major concerns related to Omicron including the efficacy of the current available immunotherapeutics and vaccines, transmissibility, disease severity, and mortality are discussed. In the last part, challenges and strategies to counter Omicron variant, its lineages and hybrid variants amid the ongoing COVID-19 pandemic are presented.
Collapse
Affiliation(s)
- Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, Uttar Pradesh, India.
| | - Firzan Nainu
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | - Andri Frediansyah
- Research Division for Natural Product Technology (BPTBA), National Research and Innovation Agency (BRIN), Gunungkidul, Yogyakarta 55861, Indonesia
| | - Mohd Iqbal Yatoo
- Division of Veterinary Clinical Complex, Faculty of Veterinary Sciences and Animal Husbandry Shuhama, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Srinagar, Jammu and Kashmir 190006, India
| | - Ranjan K Mohapatra
- Department of Chemistry, Government College of Engineering, Keonjhar 758002, Odisha, India
| | - Sandip Chakraborty
- Department of Veterinary Microbiology, College of Veterinary Sciences and Animal Husbandry, R.K. Nagar, West Tripura, Tripura, India
| | - Hao Zhou
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Microbiology, NYU Grossman School of Medicine, New York 10016, USA
| | - Md Rabiul Islam
- Department of Pharmacy, University of Asia Pacific, 74/A Green Road, Farmgate, Dhaka 1205, Bangladesh
| | - Sukamto S Mamada
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | - Hendrix Indra Kusuma
- Medical Research Unit, School of Medicine, Universitas Syiah Kuala, Banda Aceh, Aceh 23111, Indonesia; Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia; Biology Education Department, Faculty of Tarbiyah and Teacher Training, Universitas Islam Negeri Ar-Raniry, Jl. Syeikh Abdur Rauf, Kopelma Darussalaml, Banda Aceh 23111, Indonesia
| | - Ali A Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
| | - Saad Alhumaid
- Administration of Pharmaceutical Care, Al-Ahsa Health Cluster, Ministry of Health, Al-Ahsa 31982, Saudi Arabia
| | - Abbas Al Mutair
- Research Center, Almoosa Specialist Hospital, Al-Ahsa 36342, Saudi Arabia; College of Nursing, Prince Nora University, Riyadh 11564, Saudi Arabia; School of Nursing, Wollongong University, Wollongong, NSW 2522, Australia; Nursing Department, Prince Sultan Military College of Health Sciences, Dhahran 33048, Saudi Arabia
| | - Muhammad Iqhrammullah
- Graduate School of Mathematics and Applied Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
| | - Jaffar A Al-Tawfiq
- Specialty Internal Medicine and Quality Department, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia; Infectious Disease Division, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA; Infectious Disease Division, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mohammed Al Mohaini
- Basic Sciences Department, College of Applied Medical Sciences, King Saud bin Abdulaziz University for Health Sciences, Al-Ahsa 31982, Saudi Arabia; King Abdullah International Medical Research Center, Al-Ahsa 31982, Saudi Arabia
| | - Abdulkhaliq J Alsalman
- Department of Clinical Pharmacy, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar University, Mullana, Ambala 133207, Haryana, India
| | - Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Barasat-Barrackpore Road, Kolkata, West Bengal 700126, India
| | - Harapan Harapan
- Medical Research Unit, School of Medicine, Universitas Syiah Kuala, Banda Aceh, Aceh 23111, Indonesia; Tropical Diseases Centre, School of Medicine, Universitas Syiah Kuala, Banda Aceh, Aceh 23111, Indonesia; Department of Microbiology, School of Medicine, Universitas Syiah Kuala, Banda Aceh, Aceh 23111, Indonesia.
| |
Collapse
|
4
|
Sharun K, Tiwari R, Yatoo MI, Natesan S, Megawati D, Singh KP, Michalak I, Dhama K. A comprehensive review on pharmacologic agents, immunotherapies and supportive therapeutics for COVID-19. NARRA J 2022; 2:e92. [PMID: 38449903 PMCID: PMC10914132 DOI: 10.52225/narra.v2i3.92] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/06/2022] [Indexed: 03/08/2024]
Abstract
The emergence of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has affected many countries throughout the world. As urgency is a necessity, most efforts have focused on identifying small molecule drugs that can be repurposed for use as anti-SARS-CoV-2 agents. Although several drug candidates have been identified using in silico method and in vitro studies, most of these drugs require the support of in vivo data before they can be considered for clinical trials. Several drugs are considered promising therapeutic agents for COVID-19. In addition to the direct-acting antiviral drugs, supportive therapies including traditional Chinese medicine, immunotherapies, immunomodulators, and nutritional therapy could contribute a major role in treating COVID-19 patients. Some of these drugs have already been included in the treatment guidelines, recommendations, and standard operating procedures. In this article, we comprehensively review the approved and potential therapeutic drugs, immune cells-based therapies, immunomodulatory agents/drugs, herbs and plant metabolites, nutritional and dietary for COVID-19.
Collapse
Affiliation(s)
- Khan Sharun
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, UP Pandit Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan (DUVASU), Mathura, India
| | - Mohd I. Yatoo
- Division of Veterinary Clinical Complex, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, Alusteng Srinagar, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Jammu and Kashmir, India
| | - Senthilkumar Natesan
- Department of Infectious Diseases, Indian Institute of Public Health Gandhinagar, Opp to Airforce station HQ, Gandhinagar, India
| | - Dewi Megawati
- Department of Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Warmadewa University, Denpasar, Indonesia
- Department of Medical Microbiology and Immunology, University of California, Davis, California, USA
| | - Karam P. Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Izabela Michalak
- Faculty of Chemistry, Department of Advanced Material Technologies, Wrocław University of Science and Technology, Wrocław, Poland
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| |
Collapse
|
5
|
Dhama K, Dhawan M, Tiwari R, Emran TB, Mitra S, Rabaan AA, Alhumaid S, Alawi ZA, Al Mutair A. COVID-19 intranasal vaccines: current progress, advantages, prospects, and challenges. Hum Vaccin Immunother 2022; 18:2045853. [PMID: 35258416 PMCID: PMC8935456 DOI: 10.1080/21645515.2022.2045853] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 02/21/2022] [Indexed: 02/07/2023] Open
Abstract
Multiple vaccines have recently been developed, and almost all the countries are presently vaccinating their population to tackle the COVID-19 pandemic. Most of the COVID-19 vaccines in use are administered via intramuscular (IM) injection, eliciting protective humor and cellular immunity. COVID-19 intranasal (IN) vaccines are also being developed that have shown promising ability to induce a significant amount of antibody-mediated immune response and a robust cell-mediated immunity as well as hold the added ability to stimulate protective mucosal immunity along with the additional advantage of the ease of administration as compared to IM injected vaccines. By inducing secretory IgA antibody responses specifically in the nasal compartment, the intranasal SARS-CoV-2 vaccine can prevent virus infection, replication, shedding, and disease development, as well as possibly limits virus transmission. This article highlights the current progress, advantages, prospects, and challenges in developing intranasal COVID-19 vaccines for countering the ongoing pandemic.
Collapse
Affiliation(s)
- Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Manish Dhawan
- Department of Microbiology, Punjab Agricultural University, Ludhiana, India
- The Trafford Group of Colleges, Manchester, UK
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, Uttar Pradesh Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan (DUVASU), Mathura, India
| | - Talha Bin Emran
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| | - Ali A. Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur, Pakistan
| | - Saad Alhumaid
- Administration of Pharmaceutical Care, Al-Ahsa Health Cluster, Ministry of Health, Al-Ahsa, Saudi Arabia
| | - Zainab Al Alawi
- Division of Allergy and Immunology, College of Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Abbas Al Mutair
- Research Center, Almoosa Specialist Hospital, Al-Ahsa, Saudi Arabia
- College of Nursing, Princess Norah Bint Abdulrahman University, Riyadh, Saudi Arabia
- School of Nursing, Wollongong University, Wollongong, Australia
| |
Collapse
|
6
|
Anwar MM, Sah R, Shrestha S, Ozaki A, Roy N, Fathah Z, Rodriguez-Morales AJ. Disengaging the COVID-19 Clutch as a Discerning Eye Over the Inflammatory Circuit During SARS-CoV-2 Infection. Inflammation 2022; 45:1875-1894. [PMID: 35639261 PMCID: PMC9153229 DOI: 10.1007/s10753-022-01674-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/29/2022] [Accepted: 04/18/2022] [Indexed: 01/08/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes the cytokine release syndrome (CRS) and leads to multiorgan dysfunction. Mitochondrial dynamics are fundamental to protect against environmental insults, but they are highly susceptible to viral infections. Defective mitochondria are potential sources of reactive oxygen species (ROS). Infection with SARS-CoV-2 damages mitochondria, alters autophagy, reduces nitric oxide (NO), and increases both nicotinamide adenine dinucleotide phosphate oxidases (NOX) and ROS. Patients with coronavirus disease 2019 (COVID-19) exhibited activated toll-like receptors (TLRs) and the Nucleotide-binding and oligomerization domain (NOD-), leucine-rich repeat (LRR-), pyrin domain-containing protein 3 (NLRP3) inflammasome. The activation of TLRs and NLRP3 by SARS-CoV-2 induces interleukin 6 (IL-6), IL-1β, IL-18, and lactate dehydrogenase (LDH). Herein, we outline the inflammatory circuit of COVID-19 and what occurs behind the scene, the interplay of NOX/ROS and their role in hypoxia and thrombosis, and the important role of ROS scavengers to reduce COVID-19-related inflammation.
Collapse
Affiliation(s)
- Mohammed Moustapha Anwar
- Department of Biotechnology, Institute of Graduate Studies and Research (IGSR), Alexandria University, Alexandria, Egypt.
| | - Ranjit Sah
- Tribhuvan University Institute of Medicine, Kathmandu, Nepal
| | - Sunil Shrestha
- Department of Pharmaceutical and Health Service Research, Nepal Health Research and Innovation Foundation, Lalitpur, Nepal
| | - Akihiko Ozaki
- Department of Breast Surgery, Jyoban Hospital of Tokiwa Foundation, Iwaki, Japan
- Medical Governance Research Institute, Tokyo, Japan
| | - Namrata Roy
- SRM University, SRM Nagar, Kattankulathur, Chengalpattu, Tamil Nadu, 603203, India
| | - Zareena Fathah
- Kings College London, London, UK
- College of Medicine and Health Sciences, United Arab University, Abu Dhabi, United Arab Emirates
| | - Alfonso J Rodriguez-Morales
- Grupo de Investigación Biomedicina, Faculty of Medicine, Fundacion Universitaria Autonoma de Las Americas, Pereira, Risaralda, Colombia.
- Institución Universitaria Visión de Las Americas, Pereira, Risaralda, Colombia.
- Faculty of Health Sciences, Universidad Cientifica del Sur, Lima, Peru.
- School of Medicine, Universidad Privada Franz Tamayo (UNIFRANZ), Cochabamba, Bolivia.
| |
Collapse
|
7
|
Hibino M, Uryu K, Takeda T, Kunimatsu Y, Shiotsu S, Uchino J, Hirai S, Yamada T, Okada A, Hasegawa Y, Hiranuma O, Chihara Y, Kamada R, Tobe S, Maeda K, Horiuchi S, Kondo T, Takayama K. Safety and Immunogenicity of mRNA Vaccines Against Severe Acute Respiratory Syndrome Coronavirus 2 in Patients With Lung Cancer Receiving Immune Checkpoint Inhibitors: A Multicenter Observational Study in Japan. J Thorac Oncol 2022; 17:1002-1013. [PMID: 35752437 PMCID: PMC9220466 DOI: 10.1016/j.jtho.2022.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/20/2022] [Accepted: 05/26/2022] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Patients with cancer have been prioritized for vaccination against severe acute respiratory syndrome coronavirus 2. Nevertheless, there are limited data regarding the safety, efficacy, and risk of developing immune-related adverse events (irAEs) associated with mRNA vaccines in patients with lung cancer, especially those being actively treated with immune checkpoint inhibitors. METHODS This multicenter observational study was conducted at nine hospitals in Japan. Patients with lung cancer (≥20 y) actively treated with immune checkpoint inhibitors between 4 weeks prefirst vaccination and 4 weeks postsecond vaccination were enrolled. The primary end point was the incidence of irAEs of any grade on the basis of an assumed incidence without vaccination rate of 35%. Immunogenicity was assessed by measuring anti-spike (S)-IgG antibody levels against severe acute respiratory syndrome coronavirus 2. RESULTS A total of 126 patients with lung cancer (median age, 71 y; interquartile range, 65-74) were enrolled from May to November 2021 and followed up until December 2021. There were 26 patients (20.6%, 95% confidence interval: 13.9%-28.8%) and seven patients (5.6%, 95% confidence interval: 2.3%-11.1%) who developed irAEs of any grade pre- and postvaccination, respectively, which was lower than the predicted incidence without vaccination. None of the patients experienced exacerbation of preexisting irAE postvaccination. S-IgG antibodies were seroconverted in 96.7% and 100% of the patients with lung cancer and controls, respectively, but antibody levels were significantly lower in patients with lung cancer (p < 0.001). CONCLUSIONS Patients with lung cancer who were actively treated with ICIs were safely vaccinated without an increased incidence of irAEs; however, their vaccine immunogenicity was lower. This requires further evaluation.
Collapse
Affiliation(s)
- Makoto Hibino
- Department of Respiratory Medicine, Shonan Fujisawa Tokushukai Hospital, Kanagawa, Japan.
| | - Kiyoaki Uryu
- Department of Respiratory Medicine, Yao Tokushukai General Hospital, Osaka, Japan
| | - Takayuki Takeda
- Department of Respiratory Medicine, Japanese Red Cross Kyoto Daini Hospital, Kyoto, Japan
| | - Yusuke Kunimatsu
- Department of Respiratory Medicine, Japanese Red Cross Kyoto Daini Hospital, Kyoto, Japan
| | - Shinsuke Shiotsu
- Department of Respiratory Medicine, Japanese Red Cross Kyoto Daiichi Hospital, Kyoto, Japan
| | - Junji Uchino
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Soichi Hirai
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tadaaki Yamada
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Asuka Okada
- Department of Respiratory Medicine, Saiseikai Suita Hospital, Osaka, Japan
| | - Yoshikazu Hasegawa
- Department of Medical Oncology, Izumi City General Hospital, Osaka, Japan
| | - Osamu Hiranuma
- Department of Pulmonary Medicine, Otsu City Hospital, Shiga, Japan
| | - Yusuke Chihara
- Department of Respiratory Medicine, Uji Tokushukai Medical Center, Kyoto, Japan
| | - Riko Kamada
- Department of Respiratory Medicine, Shonan Fujisawa Tokushukai Hospital, Kanagawa, Japan
| | - Shunichi Tobe
- Department of Respiratory Medicine, Shonan Fujisawa Tokushukai Hospital, Kanagawa, Japan
| | - Kazunari Maeda
- Department of Respiratory Medicine, Shonan Fujisawa Tokushukai Hospital, Kanagawa, Japan
| | - Shigeto Horiuchi
- Department of Respiratory Medicine, Shonan Fujisawa Tokushukai Hospital, Kanagawa, Japan
| | - Tetsuri Kondo
- Department of Respiratory Medicine, Shonan Fujisawa Tokushukai Hospital, Kanagawa, Japan
| | - Koichi Takayama
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
8
|
Edgar M, Selvaraj SA, Lee KE, Caraballo-Arias Y, Harrell M, Rodriguez-Morales AJ. Healthcare workers, epidemic biological risks - recommendations based on the experience with COVID-19 and Ebolavirus. LE INFEZIONI IN MEDICINA 2022; 30:168-179. [PMID: 35693057 PMCID: PMC9177174 DOI: 10.53854/liim-3002-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
Infectious disease outbreaks frequently cause illness and death among Healthcare Workers (HCWs). We compare strategies from recent, past and ongoing outbreak measures used to protect HCWs, including those facing additional challenges such as racial disparities, violence and stigmatization. Outbreaks and pandemics superimposed on countries with preexisting crises have also affected emergency response to these viral outbreaks. Strategies to protect HCWs include adherence to recommended infection prevention and control measures; new technology such as rapid point-of-care tests and remote monitoring; adopting national public health preparedness plans to ensure the supply and allocation of PPE, staff, and testing supplies; occupational health and mental health support services. Lessons learned from recent pandemics should be used by Infection Prevention and Control and Occupational Health staff to refine preparedness plans to protect HCWs better.
Collapse
Affiliation(s)
- Mia Edgar
- Independent Researcher, Honolulu, HI 96795, USA
| | | | - Karen E. Lee
- The Open University, Walton Hall, Kents Hill, Milton Keynes MK7 6AA, United Kingdom
| | | | - Mason Harrell
- School of Public Health, Harvard University, Boston, MA 02138, USA
| | - Alfonso J. Rodriguez-Morales
- Grupo de Investigacion Biomedicina, Faculty of Medicine, Fundacion Universitaria Autónoma de las Americas, Pereira, Risaralda, Colombia
- Universidad Cientifica del Sur, Lima, Peru
| |
Collapse
|
9
|
Haghighi M, Khorasani A, Karimi P, Mahdavi M. Improvement of the inactivated SARS-CoV-2 vaccine potency through formulation in alum/naloxone adjuvant; Robust T cell and anti-RBD IgG responses. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2022; 25:554-561. [PMID: 35911642 PMCID: PMC9282741 DOI: 10.22038/ijbms.2022.63527.14015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/27/2022] [Indexed: 11/30/2022]
Abstract
OBJECTIVES SARS-CoV-2, emerging as a major threat to public health, has to be controlled through vaccination. Naloxone (NLX), an opioid receptor antagonist, demonstrated its adjuvant activity for microbial vaccines. In this study, inactivated SARS-CoV-2 was developed in the Alum/NLX adjuvant to increase the potency of the inactivated SARS-CoV-2 vaccine. MATERIALS AND METHODS BALB/c mice were immunized on days 0 and 14 with inactivated SARS-CoV-2-Alum, -Alum + NLX 3 mg/kg, -Alum + NLX 10 mg/kg, and -Freund adjuvant, as well as PBS. IFN-γ and IL-4 cytokines and Granzyme-B release were assessed with ELISA. In addition, specific total IgG, IgG1/IgG2a isotypes, and ratio as well as anti-RBD IgG responses were assessed with an optimized ELISA. RESULTS SARS-CoV-2-Alum-NLX10 group showed a significant increase in the IFN-γ cytokine response versus SARS-CoV-2-Alum, SARS-CoV-2-Alum-NLX3, and PBS groups. The SARS-CoV-2-Alum-NLX3 group exhibited a significant decrease in IL-4 cytokine versus SARS-CoV-2-Alum. The mice immunized with SARS-CoV-2-Alum-NLX10 showed a significant increase in CTL activity versus SARS-CoV-2-Alum and PBS. In addition, mice immunized with SARS-CoV-2-Alum-NLX3, SARS-CoV-2-Alum-NLX10 and SARS-CoV-2-Freund demonstrated an increase in IgG response, as compared with SARS-CoV-2-Alum and PBS group. Furthermore, all formulations of SARS-CoV-2 vaccines could induce both IgG1 and IgG2a isotypes. But, the IgG2a/IgG1 ratio in SARS-CoV-2-Freund and SARS-CoV-2-Alum-NLX10 revealed an increase as compared with that of the SARS-CoV-2-Alum group. Anti-RBD IgG response in the SARS-CoV-2-Alum-NLX10 group showed a significant increase as compared with the Alum-based vaccine. CONCLUSION Formulation of inactivated SARS-CoV-2 virus in NLX/alum adjuvant improved the potency of humoral and, especially, cellular responses.
Collapse
Affiliation(s)
- Melika Haghighi
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Motamed Cancer Institute, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran,Recombinant Vaccine Research Center, Tehran University of Medical Sciences, Tehran, Iran,These authors contributed eqully to this work
| | - Akbar Khorasani
- Department of FMD Vaccine Production, Razi Vaccine & Serum Research Institute, Agricultural Research, Education & Extension Organization (AREEO), Karaj, Iran ,These authors contributed eqully to this work
| | - Pegah Karimi
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Motamed Cancer Institute, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran,Recombinant Vaccine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Mahdavi
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Motamed Cancer Institute, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran,Recombinant Vaccine Research Center, Tehran University of Medical Sciences, Tehran, Iran,Immunotherapy Group, The Institute of Pharmaceutical Science (TIPS), Tehran University of Medical Science, Tehran, Iran,Corresponding author: Mehdi Mahdavi. ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, Tehran, Iran. NO.146, South Gandi Ave, Vanak Sq. Tehran, Iran; Recombinant Vaccine Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Immunotherapy Group, The Institute of Pharmaceutical Science (TIPS), Tehran University of Medical Science, Tehran, Iran. Tel/Fax: +98-21-88203915;
| |
Collapse
|
10
|
Dhawan M, Emran TB, Priyanaka, Choudhary OP. Immunomodulatory effects of zinc and its impact on COVID-19 severity. Ann Med Surg (Lond) 2022; 77:103638. [PMID: 35464610 PMCID: PMC9012669 DOI: 10.1016/j.amsu.2022.103638] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 04/13/2022] [Accepted: 04/13/2022] [Indexed: 12/19/2022] Open
Abstract
The COVID-19 pandemic has led to severe financial, clinical, and societal repercussions and imposed more pressure on the healthcare system of many nations. COVID-19 impacts the immune system by causing a systemic inflammatory reaction, often known as cytokine release syndrome (CRS). COVID-19 patients had elevated levels of pro-inflammatory cytokines and chemokines. In this context, many dietary interventions have been utilized to mitigate the adverse effects of COVID-19 by regulating the excessive secretion of cytokines and chemokines. Zinc, an anti-inflammatory and antioxidant mineral in food with a well-established role in immunity, is now being employed in several clinical studies against COVID-19. Zn deficiency has been correlated with the increased production of pro-inflammatory cytokines. As a result, we will summarise zinc's immunomodulatory effects in this article. We will investigate how zinc deficiency might contribute to a poor prognosis of COVID-19 disease by altering the release of particular cytokines.
Collapse
Affiliation(s)
- Manish Dhawan
- Department of Microbiology, Punjab Agricultural University, Ludhiana-141004, India.,Trafford College, Altrincham, Manchester, WA14 5PQ, UK
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, 4381, Bangladesh
| | - Priyanaka
- Independent Researcher, 07, Type Iv Quarter, College of Veterinary Sciences and Animal Husbandry, Central Agricultural University (I), Selesih, Aizawl, India
| | - Om Prakash Choudhary
- Department of Veterinary Anatomy and Histology, College of Veterinary Sciences and Animal Husbandry, Central Agricultural University (I), Selesih, Aizawl, India
| |
Collapse
|
11
|
El Khatabi K, Aanouz I, Alaqarbeh M, Ajana MA, Lakhlifi T, Bouachrine M. Molecular docking, molecular dynamics simulation, and ADMET analysis of levamisole derivatives against the SARS-CoV-2 main protease (M Pro). BIOIMPACTS : BI 2022; 12:107-113. [PMID: 35411302 PMCID: PMC8905587 DOI: 10.34172/bi.2021.22143] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/13/2020] [Accepted: 08/16/2020] [Indexed: 01/08/2023]
Abstract
![]()
Introduction: The new species of coronaviruses (CoVs), SARS-CoV-2, was reported as responsible for an outbreak of respiratory disease. Scientists and researchers are endeavoring to develop new approaches for the effective treatment against of the COVID-19 disease. There are no finally targeted antiviral agents able to inhibit the SARS-CoV-2 at present. Therefore, it is of interest to investigate the potential uses of levamisole derivatives, which are reported to be antiviral agents targeting the influenza virus.
Methods: In the present study, 12 selected levamisole derivatives containing imidazo[2,1-b]thiazole were subjected to molecular docking in order to explore the binding mechanisms between these derivatives and the SARS-CoV-2 Mpro (PDB: 7BQY). The levamisole derivatives were evaluated for in silico ADMET properties for wet-lab applicability. Further, the stability of the best-docked complex was checked using molecular dynamics (MD) simulation at 20 ns.
Results: Levamisole derivatives and especially molecule N°6 showed more promising docking results, presenting favorable binding interactions as well as better docking energy compared to chloroquine and mefloquine. The results of ADMET prediction and MD simulation support the potential of the molecule N°6 to be further developed as a novel inhibitor able to stop the newly emerged SARS-CoV-2.
Conclusion: This research provided an effective first line in the rapid discovery of drug leads against the novel CoV (SARS-CoV-2).
Collapse
Affiliation(s)
- Khalil El Khatabi
- Molecular Chemistry and Natural Substances Laboratory, Faculty of Science, Moulay Ismail University of Meknes, Morocco
| | - Ilham Aanouz
- Molecular Chemistry and Natural Substances Laboratory, Faculty of Science, Moulay Ismail University of Meknes, Morocco
| | - Marwa Alaqarbeh
- National Agricultural Research Center, Al‑Baqa 19381, Jordan
| | - Mohammed Aziz Ajana
- Molecular Chemistry and Natural Substances Laboratory, Faculty of Science, Moulay Ismail University of Meknes, Morocco
| | - Tahar Lakhlifi
- Molecular Chemistry and Natural Substances Laboratory, Faculty of Science, Moulay Ismail University of Meknes, Morocco
| | - Mohammed Bouachrine
- Molecular Chemistry and Natural Substances Laboratory, Faculty of Science, Moulay Ismail University of Meknes, Morocco.,EST Khenifra, Sultan MoulaySliman University, Benimellal, Morocco
| |
Collapse
|
12
|
Hibino M, Watanabe S, Kamada R, Tobe S, Maeda K, Horiuchi S, Kondo T. Antibody Responses to the BNT162b2 mRNA Vaccine in Healthcare Workers in a General Hospital in Japan: A Comparison of Two Assays for Anti-spike Protein Immunoglobulin G. Intern Med 2022; 61:811-819. [PMID: 34980798 PMCID: PMC8987260 DOI: 10.2169/internalmedicine.8704-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/11/2021] [Indexed: 11/06/2022] Open
Abstract
Objective This study assessed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibody responses to the BNT162b2 mRNA vaccine in Japanese healthcare workers. Methods In this prospective cohort study, participants received two doses of the BNT162b2 mRNA vaccine on days 0 and 21 and provided blood for anti-SARS-CoV-2 antibody testing before the first vaccine and on days 21 and 35 after vaccination. Anti-spike protein immunoglobulin G (S-IgG) was measured using Abbott and Fujirebio chemiluminescent immunoassays. Patients One hundred healthcare workers (median age: 39 years old, interquartile range: 30-48 years old), including 6 who had been previously infected with SARS-CoV-2 and 3 individuals taking immunosuppressive drugs, participated in the study. Results The S-IgG antibody titers (AU/mL) measured using both the Abbott and Fujirebio assays increased significantly (p<0.001) over time, both with a prevalence of 100% at 35 days after the first vaccination. The multivariate log-normal linear regression analysis indicated the effect of immunosuppressant medication using both the Abbott (p=0.013) and Fujirebio (p=0.039) assays on S-IgG levels after complete vaccination. Pearson's correlation coefficient between the Abbott and Fujirebio S-IgG results in all 300 samples collected before and after vaccination and 50 positive controls from patients with coronavirus disease 2019 were 0.963 [95% confidence interval (CI): 0.954-0.970, p<0.001] and 0.909 (95% CI: 0.845-0.948, p<0.001), respectively. Conclusion The BNT162b2 mRNA vaccine was effective at increasing S-IgG levels in Japanese immunocompetent healthcare workers. The Fujirebio S-IgG assay showed high diagnostic accuracy, using the Abbott S-IgG assay as the reference test.
Collapse
Affiliation(s)
- Makoto Hibino
- Department of Respiratory Medicine, Shonan Fujisawa Tokushukai Hospital, Japan
| | - Shigehiro Watanabe
- Department of Respiratory Medicine, Shonan Fujisawa Tokushukai Hospital, Japan
| | - Riko Kamada
- Department of Respiratory Medicine, Shonan Fujisawa Tokushukai Hospital, Japan
| | - Shunichi Tobe
- Department of Respiratory Medicine, Shonan Fujisawa Tokushukai Hospital, Japan
| | - Kazunari Maeda
- Department of Respiratory Medicine, Shonan Fujisawa Tokushukai Hospital, Japan
| | - Shigeto Horiuchi
- Department of Respiratory Medicine, Shonan Fujisawa Tokushukai Hospital, Japan
| | - Tetsuri Kondo
- Department of Respiratory Medicine, Shonan Fujisawa Tokushukai Hospital, Japan
| |
Collapse
|
13
|
Novel Strategies of Immunization against COVID-19. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.1.37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
COVID-19 manifested itself as a global pandemic in 2019 but even in 2021, it is still not successfully contained. This virus has claimed millions of lives worldwide and rendered many more jobless. Apart from causing mild to severe pneumonia, the virus has also caused a loss of livelihood for thousands globally, along with widespread trauma and depression. Since the transmission rate of the virus is so high, temporary prophylaxis relied on sanitization, wearing masks and physical distancing. However, a long-term solution for stopping viral spread is vaccination. Apart from being the fastest way to induce immunity against the virus, vaccination is also the cheapest and most practical way. However, a vaccine can only be commercially available after it has passed through various clinical trial phases. So far, more than two hundred potential vaccine candidates underwent different phases of the clinical trial, and some of the front-runners have shown more than 90% efficacy. This review has compiled all such vaccine candidates, their types, their modes of action, and the associated pros and cons. The current advances in clinical trials of vaccines have also been discussed, such as plant-based and cocktail vaccines that have recently emerged. Nowadays, novel strains like Delta plus are also emerging and posing a threat. Thus, it is mandatory to get vaccinated and choose a vaccine that provides long-term protection against multiple strains.
Collapse
|
14
|
Saied AA, Metwally AA, Alobo M, Shah J, Sharun K, Dhama K. Bovine-derived antibodies and camelid-derived nanobodies as biotherapeutic weapons against SARS-CoV-2 and its variants: A review article. Int J Surg 2022; 98:106233. [PMID: 35065260 PMCID: PMC8768012 DOI: 10.1016/j.ijsu.2022.106233] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 02/08/2023]
Abstract
The Coronavirus Disease 2019 (COVID-19) pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has infected 305 million individuals worldwide and killed about 5.5 million people as of January 10, 2022. SARS-CoV-2 is the third major outbreak caused by a new coronavirus in the previous two decades, following SARS-CoV and MERS-CoV. Even though vaccination against SARS-CoV-2 is considered a critical strategy for preventing virus spread in the population and limiting COVID-19 clinical manifestations, new therapeutic drugs, and management strategies are urgently needed, particularly in light of the growing number of SARS-CoV-2 variants (such as Delta and Omicron variants). However, the use of conventional antibodies has faced many challenges, such as viral escape mutants, increased instability, weak binding, large sizes, the need for large amounts of plasma, and high-cost manufacturing. Furthermore, the emergence of new SARS-CoV-2 variants in the human population and recurrent coronavirus spillovers highlight the need for broadly neutralizing antibodies that are not affected by an antigenic drift that could limit future zoonotic infection. Bovine-derived antibodies and camelid-derived nanobodies are more potent and protective than conventional human antibodies, thanks to their inbuilt characteristics, and can be produced in large quantities. In addition, it was reported that these biotherapeutics are effective against a broad spectrum of epitopes, reducing the opportunity of viral pathogens to develop mutational escape. In this review, we focus on the potential benefits behind our rationale for using bovine-derived antibodies and camelid-derived nanobodies in countering SARS-CoV-2 and its emerging variants and mutants.
Collapse
Affiliation(s)
- AbdulRahman A. Saied
- Department of Food Establishments Licensing (Aswan Branch), National Food Safety Authority (NFSA), Aswan, 81511, Egypt,Touristic Activities and Interior Offices Sector (Aswan Office), Ministry of Tourism and Antiquities, Aswan, 81511, Egypt,Corresponding author. Department of Food Establishments Licensing (Aswan Branch), National Food Safety Authority (NFSA), Aswan, 81511, Egypt
| | - Asmaa A. Metwally
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Aswan University, Aswan, 81511, Egypt,Corresponding author. Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Aswan University, Aswan, Egypt
| | - Moses Alobo
- Grand Challenges Africa, Science for Africa Foundation, Nairobi, Kenya
| | - Jaffer Shah
- Medical Research Center, Kateb University, Kabul, Afghanistan
| | - Khan Sharun
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| |
Collapse
|
15
|
Shi Q, Wu M, Chen P, Wei B, Tan H, Huang P, Chang S. Criminal of Adverse Pregnant Outcomes: A Perspective From Thyroid Hormone Disturbance Caused by SARS-CoV-2. Front Cell Infect Microbiol 2022; 11:791654. [PMID: 35047419 PMCID: PMC8761741 DOI: 10.3389/fcimb.2021.791654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/06/2021] [Indexed: 01/11/2023] Open
Abstract
Nowadays, emerging evidence has shown adverse pregnancy outcomes, including preterm birth, preeclampsia, cesarean, and perinatal death, occurring in pregnant women after getting infected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), but the underlying mechanisms remain elusive. Thyroid hormone disturbance has been unveiled consistently in various studies. As commonly known, thyroid hormone is vital for promoting pregnancy and optimal fetal growth and development. Even mild thyroid dysfunction can cause adverse pregnancy outcomes. We explored and summarized possible mechanisms of thyroid hormone abnormality in pregnant women after coronavirus disease 2019 (COVID-19) infection and made a scientific thypothesis that adverse pregnancy outcomes can be the result of thyroid hormone disorder during COVID-19. In which case, we accentuate the importance of thyroid hormone surveillance for COVID-19-infected pregnant women.
Collapse
Affiliation(s)
- Qiman Shi
- Department of General Surgery, Xiangya Hospital Central South University, Changsha, China
| | - Min Wu
- Department of General Surgery, Xiangya Hospital Central South University, Changsha, China
| | - Pei Chen
- Department of General Surgery, Xiangya Hospital Central South University, Changsha, China
| | - Bo Wei
- Department of General Surgery, Xiangya Hospital Central South University, Changsha, China
| | - Hailong Tan
- Department of General Surgery, Xiangya Hospital Central South University, Changsha, China
| | - Peng Huang
- Department of General Surgery, Xiangya Hospital Central South University, Changsha, China
| | - Shi Chang
- Department of General Surgery, Xiangya Hospital Central South University, Changsha, China.,Clinical Research Center for Thyroid Disease in Hunan Province, Changsha, China.,Hunan Provincial Engineering Research Center for Thyroid and Related Diseases Treatment Technology, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| |
Collapse
|
16
|
Hossain MJ, Rahman SMA, Emran TB, Mitra S, Islam MR, Dhama K. Recommendation and Roadmap of Mass Vaccination against Coronavirus Disease 2019 Pandemic in Bangladesh as a Lower-Middle-Income Country. ARCHIVES OF RAZI INSTITUTE 2021; 76:1815-1822. [PMID: 35546989 DOI: 10.22092/ari.2021.356357.1824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 11/10/2021] [Indexed: 10/15/2022]
Abstract
Low-income countries (LICs) and lower-middle-income countries (LMICs) are still deprived of the optimum doses of coronavirus disease 2019 (COVID-19) vaccines for their population, equal access and distribution, as well as mass immunization roadmaps to be implemented for achieving herd immunity and protection from the ongoing pandemic. In this short report, we are interacting with the world public health experts, as well as national and global leaders for warranting the mass vaccination drive to be more progressive against COVID-19 with equitable access of vaccines to LICs or LMICs to save the lives of the poorest country people and refugees. From several scientific databases, such as Google Scholar, PubMed, as well as national and international news websites, the data were collected data by utilizing appropriate keywords regarding the topic. Bangladesh might be exemplified in this brief communication as the representative of LMIC. As of October 14, 2021, 48% of the world's people have received at least one dose of the COVID-19 vaccine. In contrast, only 2.5% of people from LICs have come in under COVID-19 vaccination for at least a single shot. Both LICs and LMICs need far more vision and ambition, including political, administrative, and diplomatic progress along with enhancing the vaccination drive for their population to be immunized through simultaneous mass vaccination progress of other countries with implementing public health safety measures against the COVID-19 pandemic.
Collapse
Affiliation(s)
- M J Hossain
- Department of Pharmacy, State University of Bangladesh, 77 Satmasjid Road Dhanmondi, Dhaka-1205, Bangladesh
| | - S M A Rahman
- Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka, Dhaka-1000, Bangladesh
| | - T B Emran
- Department of Pharmacy, BGC Trust University, Chittagong-4381, Bangladesh
| | - S Mitra
- Department Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka-1000, Bangladesh
| | - M R Islam
- Department of Pharmacy, University of Asia Pacific, 74/A, Green Road, Farmgate, Dhaka 1205, Bangladesh
| | - K Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly-243122, Uttar Pradesh, India
| |
Collapse
|
17
|
Ma Y, Li Z, Gou J, Ding L, Yang D, Feng G. Adoption of improved neural network blade pattern recognition in prevention and control of corona virus disease-19 pandemic. Pattern Recognit Lett 2021; 151:275-280. [PMID: 34538992 PMCID: PMC8442304 DOI: 10.1016/j.patrec.2021.08.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/02/2021] [Accepted: 08/29/2021] [Indexed: 11/05/2022]
Abstract
To explore the adoption effect of improved neural network blade pattern in corona virus disease (COVID)-19, comparative analysis is implemented. First, the following hypotheses are proposed. I: in addition to the confirmed cases and deaths, people suspected of being infected are also involved in the spread of the epidemic. II: patients who have been cured may also develop secondary infections, so it is considered that there is still a link between cured cases and the spread of the epidemic. III: only the relevant data of the previous day is used to predict the epidemic prevention and control of the next day. Then, the epidemic data from February 1st to February 15th in X province were selected as the control. The combined neural network model is used for prevention and control prediction, and the prediction results of the traditional neural network model are compared. The results show that the predictions of the daily new cases by the five neural network models have little difference with the actual value, and the trend is basically consistent. However, there are still differences in some time nodes. The errors of neural network 1 on the 6th and network 3 on the 13th are large. The accuracy of the combined neural network prediction model is high, and there is little difference between the result and the actual value at each time node. The prediction of the cumulative number of diagnoses per day of the five neural network models is also analyzed, and the results are relatively ideal. In addition, the accuracy of the combined neural network prediction model is high, and the difference between the result and the actual value at each time node is relatively small. It is found that the standard deviations of neural networks 2 and 3 are relatively high through the comparison of the deviations. The deviation means of the five models were all relatively low, and the mean deviation and standard deviation of the combined neural network model are the lowest. It is found that the accuracy of prediction on the epidemic spread in this province is good by comparing the performance of each neural network model. Regarding various indicators, the prediction accuracy of the combined neural network model is higher than that of the other four models, and its performance is also the best. Finally, the MSE of the improved neural network model is lower compared with the traditional neural network model. Moreover, with the change of learning times, the change trend of MSE is constant (P < 0.05 for all). In short, the improved neural network blade model has better performance compared with that of the traditional neural network blade model. The prediction results of the epidemic situation are accurate, and the application effect is remarkable, so the proposed model is worthy of further promotion and application in the medical field.
Collapse
Affiliation(s)
- Yanli Ma
- School of Information Science and Engineering, Hebei North University, Zhangjiakou 075000, China
| | - Zhonghua Li
- School of Information Science and Engineering, Hebei North University, Zhangjiakou 075000, China
| | | | - Lihua Ding
- School of Information Science and Engineering, Hebei North University, Zhangjiakou 075000, China
| | - Dong Yang
- School of Information Science and Engineering, Hebei North University, Zhangjiakou 075000, China
| | - Guiliang Feng
- School of Information Science and Engineering, Hebei North University, Zhangjiakou 075000, China
| |
Collapse
|
18
|
Saied AA, Metwally AA, Madkhali NAB, Haque S, Dhama K. Egypt's COVID-19 Recent Happenings and Perspectives: A Mini-Review. Front Public Health 2021; 9:696082. [PMID: 34485226 PMCID: PMC8415352 DOI: 10.3389/fpubh.2021.696082] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/12/2021] [Indexed: 01/08/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has affected countries across the world. While the zoonotic aspects of SARS-CoV-2 are still under investigation, bats and pangolins are currently cited as the animal origin of the virus. Several types of vaccines against COVID-19 have been developed and are being used in vaccination drives across the world. A number of countries are experiencing second and third waves of the pandemic, which have claimed nearly four million lives out of the 180 million people infected globally as of June 2021. The emerging SARS-CoV-2 variants and mutants are posing high public health concerns owing to their rapid transmissibility, higher severity, and in some cases, ability to infect vaccinated people (vaccine breakthrough). Here in this mini-review, we specifically looked at the efforts and actions of the Egyptian government to slow down and control the spread of COVID-19. We also review the COVID-19 statistics in Egypt and the possible reasons behind the low prevalence and high case fatality rate (CFR%), comparing Egypt COVID-19 statistics with China (the epicenter of COVID-19 pandemic) and the USA, Brazil, India, Italy, and France (the first countries in which the numbers of patients infected with COVID-19). Additionally, we have summarized the SARS-CoV-2 variants, vaccines used in Egypt, and the use of medicinal plants as preventive and curative options.
Collapse
Affiliation(s)
- AbdulRahman A Saied
- Department of Food Establishments Licensing (Aswan Branch), National Food Safety Authority (NFSA), Aswan, Egypt.,Touristic Activities and Interior Offices Sector (Aswan Office), Ministry of Tourism and Antiquities, Aswan, Egypt
| | - Asmaa A Metwally
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Aswan University, Aswan, Egypt
| | | | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia.,Bursa Uludağ University, Faculty of Medicine, Bursa, Turkey
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| |
Collapse
|
19
|
Oberer L, Carral AD, Fyta M. Simple Classification of RNA Sequences of Respiratory-Related Coronaviruses. ACS OMEGA 2021; 6:20158-20165. [PMID: 34395967 PMCID: PMC8353891 DOI: 10.1021/acsomega.1c01625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
A very simple, fast, and efficient approach to analyze and identify respiratory-related virus sequences based on machine learning is proposed. Such schemes are very important in identifying viruses, especially in view of spreading pandemics. The method is based on genetic code rules and the open reading frame (ORF). Data from the respiratory-related coronaviruses are collected and features are extracted based on reoccurring nucleobase 3-tuples in the RNA. Our methodology is simply based on counting nucleobase triplets, normalizing the count to the length of the sequence, and applying principal component analysis (PCA) techniques. The triplet counting can be further used for classification purposes. DNA sequences from the herpes virus family can be considered as the first step towards a complete and accurate classification including more complex factors, such as mutations. The proposed classification scheme is simply based on "counting" biological information. It can serve as the first fast detection method, widely accessible and portable to a variety of distinct architectures for fast and on-the-fly detection. We provide an approach that can be further optimized and combined with supervised techniques to allow for more accurate detection and read out of the exact virus type or sequence. We discuss the relevance of this scheme in identifying differences in similar viruses and their impact on biochemical analysis.
Collapse
|
20
|
Li XH, Chen L, Pan QN, Liu J, Zhang X, Yi JJ, Chen CM, Luo QH, Tao PY, Pan X, Lu SY, Liu LZ, Huang HQ. Vaccination status, acceptance, and knowledge toward a COVID-19 vaccine among healthcare workers: a cross-sectional survey in China. Hum Vaccin Immunother 2021; 17:4065-4073. [PMID: 34344260 DOI: 10.1080/21645515.2021.1957415] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Healthcare workers (HCWs) are considered both a high-risk population regarding infections and effective vaccine recommenders whose willingness to be vaccinated is the key to herd immunity. However, the vaccination status, acceptance, and knowledge of the 2019 coronavirus disease (COVID-19) vaccine among HCWs remain unknown. Therefore, we conducted an online survey regarding the above among HCWs in China after the vaccine was made available. Questionnaires returned by 1,779 HCWs were analyzed. Among these participants, 34.9% were vaccinated, 93.9% expressed their willingness to receive the COVID-19 vaccine, and vaccine knowledge level was high (89.2%). A bivariate analysis found that participants with a college degree, low level of knowledge, non-exposure to COVID-19 status, and those who are females or nurses have a lower vaccination rate, while participants who are married, with a monthly income of more than 5,000 yuan, and low knowledge levels are less willing to be vaccinated. A multivariate analysis found that participants with a high (OR = 7.042, 95% CI = 4.0918-12.120) or medium (OR = 3.709, 95% CI = 2.072-6.640) knowledge level about COVID-19 vaccines were more willing to be vaccinated. Participants were less likely to accept a COVID-19 vaccine if they were married (OR = 0.503, 95% CI = 0.310-0.815). In summary, Chinese HCWs have a strong willingness to be vaccinated and a high level of knowledge. Measures, such as targeted education for HCWs with low willingness and low level of knowledge, open vaccine review procedures, increased government trust, reduced vaccine costs, and provide vaccination guarantee policies, may improve the vaccination coverage of the at-risk group.
Collapse
Affiliation(s)
- Xiao-Hong Li
- Department of Nursing, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.,Department of Oncology, Chongqing University Three Gorges Hospital, Wanzhou, Chongqing, China
| | - Lin Chen
- Department of Nursing, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Qi-Ni Pan
- Department of Nursing, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Juan Liu
- Department of Oncology, Chongqing University Three Gorges Hospital, Wanzhou, Chongqing, China
| | - Xu Zhang
- Operating room of the Suizhou Central Hospital, Suizhou, Hubei, China
| | - Jing-Jing Yi
- Department of Gynecology, People's Hospital of Deyang City, Sichuan, China
| | - Chun-Mei Chen
- Department of Orthodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Qiu-Hu Luo
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Pin-Yue Tao
- Department of Anesthesiology, The second affiliated hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xiao Pan
- Emergency Department of the second affiliated hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Su-Yu Lu
- Department of Nursing, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Liang-Zhong Liu
- Department of Oncology, Chongqing University Three Gorges Hospital, Wanzhou, Chongqing, China
| | - Hui-Qiao Huang
- Department of Nursing, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
21
|
Malik YS, Kumar P, Ansari MI, Hemida MG, El Zowalaty ME, Abdel-Moneim AS, Ganesh B, Salajegheh S, Natesan S, Sircar S, Safdar M, Vinodhkumar OR, Duarte PM, Patel SK, Klein J, Rahimi P, Dhama K. SARS-CoV-2 Spike Protein Extrapolation for COVID Diagnosis and Vaccine Development. Front Mol Biosci 2021; 8:607886. [PMID: 34395515 PMCID: PMC8355592 DOI: 10.3389/fmolb.2021.607886] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 04/09/2021] [Indexed: 01/08/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) led to coronavirus disease 2019 (COVID-19) pandemic affecting nearly 71.2 million humans in more than 191 countries, with more than 1.6 million mortalities as of 12 December, 2020. The spike glycoprotein (S-protein), anchored onto the virus envelope, is the trimer of S-protein comprised of S1 and S2 domains which interacts with host cell receptors and facilitates virus-cell membrane fusion. The S1 domain comprises of a receptor binding domain (RBD) possessing an N-terminal domain and two subdomains (SD1 and SD2). Certain regions of S-protein of SARS-CoV-2 such as S2 domain and fragment of the RBD remain conserved despite the high selection pressure. These conserved regions of the S-protein are extrapolated as the potential target for developing molecular diagnostic techniques. Further, the S-protein acts as an antigenic target for different serological assay platforms for the diagnosis of COVID-19. Virus-specific IgM and IgG antibodies can be used to detect viral proteins in ELISA and lateral flow immunoassays. The S-protein of SARS-CoV-2 has very high sequence similarity to SARS-CoV-1, and the monoclonal antibodies (mAbs) against SARS-CoV-1 cross-react with S-protein of SARS-CoV-2 and neutralize its activity. Furthermore, in vitro studies have demonstrated that polyclonal antibodies targeted against the RBD of S-protein of SARS-CoV-1 can neutralize SARS-CoV-2 thus inhibiting its infectivity in permissive cell lines. Research on coronaviral S-proteins paves the way for the development of vaccines that may prevent SARS-CoV-2 infection and alleviate the current global coronavirus pandemic. However, specific neutralizing mAbs against SARS-CoV-2 are in clinical development. Therefore, neutralizing antibodies targeting SARS-CoV-2 S-protein are promising specific antiviral therapeutics for pre-and post-exposure prophylaxis and treatment of SARS-CoV-2 infection. We hereby review the approaches taken by researchers across the world to use spike gene and S-glycoprotein for the development of effective diagnostics, vaccines and therapeutics against SARA-CoV-2 infection the COVID-19 pandemic.
Collapse
Affiliation(s)
- Yashpal S. Malik
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Bareilly, India
- College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Science University, Ludhiana, India
| | - Prashant Kumar
- Amity Institute of Virology and Immunology, Amity University, Noida, India
| | - Mohd Ikram Ansari
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Bareilly, India
- Department of Biosciences, Integral University, Lucknow, India
| | - Maged G. Hemida
- Department of Microbiology, College of Veterinary Medicine, King Faisal University, Hofuf, Saudi Arabia
- Department of Virology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Shaikh, Egypt
| | - Mohamed E. El Zowalaty
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Ahmed S. Abdel-Moneim
- Microbiology Department, College of Medicine, Taif University, Al-Taif, Saudi Arabia
- Virology Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Balasubramanian Ganesh
- Laboratory Division, Indian Council of Medical Research - National Institute of Epidemiology, Ministry of Health & Family Welfare, Chennai, India
| | - Sina Salajegheh
- Young Researchers and Elites Club, Science and Research Branch, Islamic Azad University, Tehran, Iran
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Shubhankar Sircar
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Muhammad Safdar
- Department of Breeding and Genetics, Cholistan University of Veterinary & Animal Sciences, Bahawalpur, Pakistan
| | - O. R. Vinodhkumar
- Division of Epidemiology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Phelipe M. Duarte
- Veterinarian, Professor at the Faculty of Biological and Health Sciences, Universidade de Cuiabá, Primavera do Leste, Brazil
| | - Shailesh K. Patel
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Jörn Klein
- Faculty of Health and Social Sciences, University of South-Eastern Norway, Kongsberg, Norway
| | - Parastoo Rahimi
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| |
Collapse
|
22
|
Iqbal Yatoo M, Hamid Z, Rather I, Nazir QUA, Bhat RA, Ul Haq A, Magray SN, Haq Z, Sah R, Tiwari R, Natesan S, Bilal M, Harapan H, Dhama K. Immunotherapies and immunomodulatory approaches in clinical trials - a mini review. Hum Vaccin Immunother 2021; 17:1897-1909. [PMID: 33577374 PMCID: PMC7885722 DOI: 10.1080/21645515.2020.1871295] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 12/28/2020] [Indexed: 12/13/2022] Open
Abstract
The coronavirus disease (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has created havoc worldwide. Due to the non-availability of any vaccine or drugs against COVID-19, immunotherapies involving convalescent plasma, immunoglobulins, antibodies (monoclonal or polyclonal), and the use of immunomodulatory agents to enhance immunity are valuable alternative options. Cell-based therapies including natural killer cells, T cells, stem cells along with cytokines and toll-like receptors (TLRs) based therapies are also being exploited potentially against COVID-19. Future research need to strengthen the field of developing effective immunotherapeutics and immunomodulators with a thrust of providing appropriate, affordable, convenient, and cost-effective prophylactic and treatment regimens to combat global COVID-19 crisis that has led to a state of medical emergency enforcing entire countries of the world to devote their research infrastructure and manpower in tackling this pandemic.
Collapse
Affiliation(s)
- Mohd. Iqbal Yatoo
- Division of Veterinary Clinical Complex, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, Alusteng Srinagar, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Jammu and Kashmir, India
| | - Zeenat Hamid
- Department of Biotechnology, University of Kashmir, Jammu and Kashmir, India
| | - Izhar Rather
- Division of Veterinary Clinical Complex, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, Alusteng Srinagar, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Jammu and Kashmir, India
| | - Qurat Ul Ain Nazir
- Division of Veterinary Clinical Complex, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, Alusteng Srinagar, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Jammu and Kashmir, India
| | - Riyaz Ahmed Bhat
- Division of Veterinary Clinical Complex, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, Alusteng Srinagar, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Jammu and Kashmir, India
| | - Abrar Ul Haq
- Division of Veterinary Clinical Complex, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, Alusteng Srinagar, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Jammu and Kashmir, India
| | - Suhail Nabi Magray
- Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, Alusteng Srinagar, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Jammu and Kashmir, India
| | - Zulfqar Haq
- ICAR-Centre for Research on Poultry, Division of Livestock Production and Management, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, Alusteng Srinagar, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Jammu and Kashmir, India
| | - Ranjit Sah
- Tribhuvan University Teaching Hospital, Institute of Medicine, Kathmandu, Nepal
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, UP Pandit Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan (DUVASU), Mathura, Uttar Pradesh, India
| | - SenthilKumar Natesan
- Department of Infectious Diseases, Indian Institute of Public Health Gandhinagar, Gandhinagar, Gujarat, India
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Harapan Harapan
- Medical Research Unit, School of Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia
- Tropical Disease Centre, School of Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia
- Department of Microbiology, School of Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| |
Collapse
|
23
|
Kumar R, Yeni CM, Utami NA, Masand R, Asrani RK, Patel SK, Kumar A, Yatoo MI, Tiwari R, Natesan S, Vora KS, Nainu F, Bilal M, Dhawan M, Emran TB, Ahmad T, Harapan H, Dhama K. SARS-CoV-2 infection during pregnancy and pregnancy-related conditions: Concerns, challenges, management and mitigation strategies-a narrative review. J Infect Public Health 2021; 14:863-875. [PMID: 34118736 PMCID: PMC8062420 DOI: 10.1016/j.jiph.2021.04.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/10/2021] [Accepted: 04/19/2021] [Indexed: 02/06/2023] Open
Abstract
The ongoing coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a global public health problem. The SARS-CoV-2 triggers hyper-activation of inflammatory and immune responses resulting in cytokine storm and increased inflammatory responses on several organs like lungs, kidneys, intestine, and placenta. Although SARS-CoV-2 affects individuals of all age groups and physiological statuses, immune-compromised individuals such as pregnant women are considered as a highly vulnerable group. This review aims to raise the concerns of high risk of infection, morbidity and mortality of COVID-19 in pregnant women and provides critical reviews of pathophysiology and pathobiology of how SARS-CoV-2 infection potentially increases the severity and fatality during pregnancy. This article also provides a discussion of current evidence on vertical transmission of SARS-CoV-2 during pregnancy and breastfeeding. Lastly, guidelines on management, treatment, preventive, and mitigation strategies of SARS-CoV-2 infection during pregnancy and pregnancy-related conditions such as delivery and breastfeeding are discussed.
Collapse
Affiliation(s)
- Rakesh Kumar
- Department of Veterinary Pathology, Dr. G.C Negi College of Veterinary and Animal Sciences, CSK Himachal Pradesh Agricultural University, Palampur, 176062, Himachal Pradesh, India.
| | - Cut Meurah Yeni
- Department of Obstetrics and Gynecology, School of Medicine, Universitas Syiah Kuala, 23111, Banda Aceh, Indonesia; Department of Obstetrics and Gynecology, Dr. Zainoel Abidin Hospital, Banda Aceh, 24415, Indonesia.
| | - Niken Asri Utami
- Department of Obstetrics and Gynecology, School of Medicine, Universitas Syiah Kuala, 23111, Banda Aceh, Indonesia; Department of Obstetrics and Gynecology, Dr. Zainoel Abidin Hospital, Banda Aceh, 24415, Indonesia.
| | - Rupali Masand
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, Uttar Pradesh, India.
| | - Rajesh Kumar Asrani
- Department of Veterinary Pathology, Dr. G.C Negi College of Veterinary and Animal Sciences, CSK Himachal Pradesh Agricultural University, Palampur, 176062, Himachal Pradesh, India.
| | - Shailesh Kumar Patel
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, Uttar Pradesh, India.
| | - Akshay Kumar
- Department of Cardiothoracic Surgery, Medanta Hospital, Gurgaon, 122001, India.
| | - Mohd Iqbal Yatoo
- Division of Veterinary Clinical Complex, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, Alusteng Srinagar, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Srinagar, 190006, Jammu and Kashmir, India.
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, Uttar Pradesh Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan (DUVASU), Mathura, 281001, India.
| | - Senthilkumar Natesan
- Indian Institute of Public Health Gandhinagar, Lekawada, Gandhinagar, Gujarat, 382042, India.
| | - Kranti Suresh Vora
- Indian Institute of Public Health Gandhinagar, Lekawada, Gandhinagar, Gujarat, 382042, India; Institute of Health Research, University of Canberra, ACT 2617, Australia.
| | - Firzan Nainu
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia.
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Manish Dhawan
- Department of Microbiology, Punjab Agricultural University, Ludhiana, 141004, India; The Trafford Group of Colleges, Manchester, WA14 5PQ, United Kingdom.
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, 4381, Bangladesh.
| | - Tauseef Ahmad
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, 210009, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China.
| | - Harapan Harapan
- Medical Research Unit, School of Medicine, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia; Tropical Disease Centre, School of Medicine, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia; Department of Microbiology, School of Medicine, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia.
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, Uttar Pradesh, India.
| |
Collapse
|
24
|
Patel SP, Patel GS, Suthar JV. Inside the story about the research and development of COVID-19 vaccines. Clin Exp Vaccine Res 2021; 10:154-170. [PMID: 34222129 PMCID: PMC8217575 DOI: 10.7774/cevr.2021.10.2.154] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/03/2021] [Indexed: 12/29/2022] Open
Abstract
The ongoing coronavirus threat from China has spread rapidly to other nations and has been declared a global health emergency by the World Health Organization (WHO). The pandemic has resulted in over half of the world's population living under conditions of lockdown. Several academic institutions and pharmaceutical companies that are in different stages of development have plunged into the vaccine development race against coronavirus disease 2019 (COVID-19). The demand for immediate therapy and potential prevention of COVID-19 is growing with the increase in the number of individuals affected due to the seriousness of the disease, global dissemination, lack of prophylactics, and therapeutics. The challenging part is a need for vigorous testing for immunogenicity, safety, efficacy, and level of protection conferred in the hosts for the vaccines. As the world responds to the COVID-19 pandemic, we face the challenge of an overabundance of information related to the virus. Inaccurate information and myths spread widely and at speed, making it more difficult for the public to identify verified facts and advice from trusted sources, such as their local health authority or WHO. This review focuses on types of vaccine candidates against COVID-19 in clinical as well as in the preclinical development platform.
Collapse
Affiliation(s)
- Shrina P Patel
- Ramanbhai Patel College of Pharmacy, Charusat University, Anand, India
| | - Gayatri S Patel
- Ramanbhai Patel College of Pharmacy, Charusat University, Anand, India
| | - Jalpa V Suthar
- Ramanbhai Patel College of Pharmacy, Charusat University, Anand, India
| |
Collapse
|
25
|
Li H, Guo L, Zheng H, Li J, Zhao X, Li J, Liang Y, Yang F, Zhao Y, Yang J, Xue M, Zuo Y, Zhou J, Chen Y, Yang Z, Li Y, Jin W, Shi H, He Z, Li Q, Liu L. Self-Assembling Nanoparticle Vaccines Displaying the Receptor Binding Domain of SARS-CoV-2 Elicit Robust Protective Immune Responses in Rhesus Monkeys. Bioconjug Chem 2021; 32:1034-1046. [PMID: 33951913 PMCID: PMC8117400 DOI: 10.1021/acs.bioconjchem.1c00208] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 04/29/2021] [Indexed: 01/12/2023]
Abstract
SARS-CoV-2 caused the COVID-19 pandemic that lasted for more than a year. Globally, there is an urgent need to use safe and effective vaccines for immunization to achieve comprehensive protection against SARS-CoV-2 infection. Focusing on developing a rapid vaccine platform with significant immunogenicity as well as broad and high protection efficiency, we designed a SARS-CoV-2 spike protein receptor-binding domain (RBD) displayed on self-assembled ferritin nanoparticles. In a 293i cells eukaryotic expression system, this candidate vaccine was prepared and purified. After rhesus monkeys are immunized with 20 μg of RBD-ferritin nanoparticles three times, the vaccine can elicit specific humoral immunity and T cell immune response, and the neutralizing antibodies can cross-neutralize four SARS-CoV-2 strains from different sources. In the challenge protection test, after nasal infection with 2 × 105 CCID50 SARS-CoV-2 virus, compared with unimmunized control animals, virus replication in the vaccine-immunized rhesus monkeys was significantly inhibited, and respiratory pathology observations also showed only slight pathological damage. These analyses will benefit the immunization program of the RBD-ferritin nanoparticle vaccine in the clinical trial design and the platform construction to present a specific antigen domain in the self-assembling nanoparticle in a short time to harvest stable, safe, and effective vaccine candidates for new SARS-CoV-2 isolates.
Collapse
Affiliation(s)
- Heng Li
- Institute
of Medical Biology, Chinese Academy of Medical
Sciences & Peking Union Medical College, Kunming 650118, China
- Key
Laboratory of Systemic Innovative Research on Virus Vaccine, Chinese Academy of Medical Sciences, Kunming 650118, China
| | - Lei Guo
- Institute
of Medical Biology, Chinese Academy of Medical
Sciences & Peking Union Medical College, Kunming 650118, China
- Key
Laboratory of Systemic Innovative Research on Virus Vaccine, Chinese Academy of Medical Sciences, Kunming 650118, China
| | - Huiwen Zheng
- Institute
of Medical Biology, Chinese Academy of Medical
Sciences & Peking Union Medical College, Kunming 650118, China
- Key
Laboratory of Systemic Innovative Research on Virus Vaccine, Chinese Academy of Medical Sciences, Kunming 650118, China
| | - Jing Li
- Institute
of Medical Biology, Chinese Academy of Medical
Sciences & Peking Union Medical College, Kunming 650118, China
| | - Xin Zhao
- Institute
of Medical Biology, Chinese Academy of Medical
Sciences & Peking Union Medical College, Kunming 650118, China
- Key
Laboratory of Systemic Innovative Research on Virus Vaccine, Chinese Academy of Medical Sciences, Kunming 650118, China
| | - Jiaqi Li
- Trinomab
Biotech Co., Ltd., Zhuhai 519090, China
| | - Yan Liang
- Institute
of Medical Biology, Chinese Academy of Medical
Sciences & Peking Union Medical College, Kunming 650118, China
| | - Fengmei Yang
- Institute
of Medical Biology, Chinese Academy of Medical
Sciences & Peking Union Medical College, Kunming 650118, China
| | - Yurong Zhao
- Institute
of Medical Biology, Chinese Academy of Medical
Sciences & Peking Union Medical College, Kunming 650118, China
| | - Jinling Yang
- Institute
of Medical Biology, Chinese Academy of Medical
Sciences & Peking Union Medical College, Kunming 650118, China
| | - Mengyi Xue
- Institute
of Medical Biology, Chinese Academy of Medical
Sciences & Peking Union Medical College, Kunming 650118, China
| | - Yuanyuan Zuo
- Institute
of Medical Biology, Chinese Academy of Medical
Sciences & Peking Union Medical College, Kunming 650118, China
| | - Jian Zhou
- Institute
of Medical Biology, Chinese Academy of Medical
Sciences & Peking Union Medical College, Kunming 650118, China
| | - Yanli Chen
- Institute
of Medical Biology, Chinese Academy of Medical
Sciences & Peking Union Medical College, Kunming 650118, China
| | - Zening Yang
- Institute
of Medical Biology, Chinese Academy of Medical
Sciences & Peking Union Medical College, Kunming 650118, China
| | - Yanyan Li
- Institute
of Medical Biology, Chinese Academy of Medical
Sciences & Peking Union Medical College, Kunming 650118, China
| | - Weihua Jin
- Institute
of Medical Biology, Chinese Academy of Medical
Sciences & Peking Union Medical College, Kunming 650118, China
| | - Haijing Shi
- Institute
of Medical Biology, Chinese Academy of Medical
Sciences & Peking Union Medical College, Kunming 650118, China
- Key
Laboratory of Systemic Innovative Research on Virus Vaccine, Chinese Academy of Medical Sciences, Kunming 650118, China
| | - Zhanlong He
- Institute
of Medical Biology, Chinese Academy of Medical
Sciences & Peking Union Medical College, Kunming 650118, China
| | - Qihan Li
- Institute
of Medical Biology, Chinese Academy of Medical
Sciences & Peking Union Medical College, Kunming 650118, China
| | - Longding Liu
- Institute
of Medical Biology, Chinese Academy of Medical
Sciences & Peking Union Medical College, Kunming 650118, China
- Key
Laboratory of Systemic Innovative Research on Virus Vaccine, Chinese Academy of Medical Sciences, Kunming 650118, China
| |
Collapse
|
26
|
Singh B, Mal G, Verma V, Tiwari R, Khan MI, Mohapatra RK, Mitra S, Alyami SA, Emran TB, Dhama K, Moni MA. Stem cell therapies and benefaction of somatic cell nuclear transfer cloning in COVID-19 era. Stem Cell Res Ther 2021; 12:283. [PMID: 33980321 PMCID: PMC8114669 DOI: 10.1186/s13287-021-02334-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/12/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The global health emergency of COVID-19 has necessitated the development of multiple therapeutic modalities including vaccinations, antivirals, anti-inflammatory, and cytoimmunotherapies, etc. COVID-19 patients suffer from damage to various organs and vascular structures, so they present multiple health crises. Mesenchymal stem cells (MSCs) are of interest to treat acute respiratory distress syndrome (ARDS) caused by SARS-CoV-2 infection. MAIN BODY Stem cell-based therapies have been verified for prospective benefits in copious preclinical and clinical studies. MSCs confer potential benefits to develop various cell types and organoids for studying virus-human interaction, drug testing, regenerative medicine, and immunomodulatory effects in COVID-19 patients. Apart from paving the ways to augment stem cell research and therapies, somatic cell nuclear transfer (SCNT) holds unique ability for a wide range of health applications such as patient-specific or isogenic cells for regenerative medicine and breeding transgenic animals for biomedical applications. Being a potent cell genome-reprogramming tool, the SCNT has increased prominence of recombinant therapeutics and cellular medicine in the current era of COVID-19. As SCNT is used to generate patient-specific stem cells, it avoids dependence on embryos to obtain stem cells. CONCLUSIONS The nuclear transfer cloning, being an ideal tool to generate cloned embryos, and the embryonic stem cells will boost drug testing and cellular medicine in COVID-19.
Collapse
Affiliation(s)
- Birbal Singh
- ICAR-Indian Veterinary Research Institute Regional Station, Palampur, Himachal Pradesh, India
| | - Gorakh Mal
- ICAR-Indian Veterinary Research Institute Regional Station, Palampur, Himachal Pradesh, India
| | - Vinod Verma
- Stem Cell Research Centre, Department of Hematology, Sanjay Gandhi Post-Graduate Institute of Medical Sciences, Lucknow, India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, Uttar Pradesh Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan (DUVASU), Mathura, 281001, India
| | - Muhammad Imran Khan
- Hefei National Lab for Physical Sciences at the Microscale and the Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, China
| | - Ranjan K Mohapatra
- Department of Chemistry, Government College of Engineering, Keonjhar, Odisha, India
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Salem A Alyami
- Department of Mathematics and Statistics, Imam Mohammad Ibn Saud Islamic University, Riyadh, 11432, Saudi Arabia
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, 4381, Bangladesh.
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243 122, India.
| | - Mohammad Ali Moni
- WHO Collaborating Centre on eHealth, UNSW Digital Health, Faculty of Medicine, School of Public Health and Community Medicine, UNSW Sydney, Sydney, NSW, 2052, Australia.
| |
Collapse
|
27
|
Rabaan AA, Al-Ahmed SH, Garout MA, Al-Qaaneh AM, Sule AA, Tirupathi R, Mutair AA, Alhumaid S, Hasan A, Dhawan M, Tiwari R, Sharun K, Mohapatra RK, Mitra S, Emran TB, Bilal M, Singh R, Alyami SA, Moni MA, Dhama K. Diverse Immunological Factors Influencing Pathogenesis in Patients with COVID-19: A Review on Viral Dissemination, Immunotherapeutic Options to Counter Cytokine Storm and Inflammatory Responses. Pathogens 2021; 10:565. [PMID: 34066983 PMCID: PMC8150955 DOI: 10.3390/pathogens10050565] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/02/2021] [Accepted: 05/05/2021] [Indexed: 02/06/2023] Open
Abstract
The pathogenesis of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is still not fully unraveled. Though preventive vaccines and treatment methods are out on the market, a specific cure for the disease has not been discovered. Recent investigations and research studies primarily focus on the immunopathology of the disease. A healthy immune system responds immediately after viral entry, causing immediate viral annihilation and recovery. However, an impaired immune system causes extensive systemic damage due to an unregulated immune response characterized by the hypersecretion of chemokines and cytokines. The elevated levels of cytokine or hypercytokinemia leads to acute respiratory distress syndrome (ARDS) along with multiple organ damage. Moreover, the immune response against SARS-CoV-2 has been linked with race, gender, and age; hence, this viral infection's outcome differs among the patients. Many therapeutic strategies focusing on immunomodulation have been tested out to assuage the cytokine storm in patients with severe COVID-19. A thorough understanding of the diverse signaling pathways triggered by the SARS-CoV-2 virus is essential before contemplating relief measures. This present review explains the interrelationships of hyperinflammatory response or cytokine storm with organ damage and the disease severity. Furthermore, we have thrown light on the diverse mechanisms and risk factors that influence pathogenesis and the molecular pathways that lead to severe SARS-CoV-2 infection and multiple organ damage. Recognition of altered pathways of a dysregulated immune system can be a loophole to identify potential target markers. Identifying biomarkers in the dysregulated pathway can aid in better clinical management for patients with severe COVID-19 disease. A special focus has also been given to potent inhibitors of proinflammatory cytokines, immunomodulatory and immunotherapeutic options to ameliorate cytokine storm and inflammatory responses in patients affected with COVID-19.
Collapse
Affiliation(s)
- Ali A. Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia;
| | - Shamsah H. Al-Ahmed
- Specialty Paediatric Medicine, Qatif Central Hospital, Qatif 32654, Saudi Arabia;
| | - Mohammed A. Garout
- Department of Community Medicine and Health Care for Pilgrims, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| | - Ayman M. Al-Qaaneh
- Department of Genetic Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
- Clinical Pharmacy Services Division, Pharmacy Services Department, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
| | - Anupam A Sule
- Department of Informatics and Outcomes, St Joseph Mercy Oakland, Pontiac, MI 48341, USA;
| | - Raghavendra Tirupathi
- Department of Medicine Keystone Health, Penn State University School of Medicine, Hershey, PA 16801, USA;
- Department of Medicine, Wellspan Chambersburg and Waynesboro (Pa.) Hospitals, Chambersburg, PA 16801, USA
| | - Abbas Al Mutair
- Research Center, Almoosa Specialist Hospital, Alahsa 36342, Saudi Arabia;
- College of Nursing, Prince Nora University, Riyadh 11564, Saudi Arabia
- School of Nursing, Wollongong University, Wollongong, NSW 2522, Australia
| | - Saad Alhumaid
- Administration of Pharmaceutical Care, Al-Ahsa Health Cluster, Ministry of Health, Alahsa 31982, Saudi Arabia;
| | - Abdulkarim Hasan
- Department of Pathology, Faculty of Medicine, Al-Azhar University, Cairo 11884, Egypt;
- Prince Mishari Bin Saud Hospital in Baljurashi, Ministry of Health, Baljurash 22888, Saudi Arabia
| | - Manish Dhawan
- Department of Microbiology, Punjab Agricultural University, Ludhiana 141004, India;
- The Trafford Group of Colleges, Manchester WA14 5PQ, UK
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, Uttar Pradesh Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandha Sansthan (DUVASU), Mathura 281001, India;
| | - Khan Sharun
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, India;
| | - Ranjan K. Mohapatra
- Department of Chemistry, Government College of Engineering, Keonjhar 758002, India;
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh;
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China;
| | - Rajendra Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, India;
| | - Salem A. Alyami
- Department of Mathematics and Statistics, Imam Mohammad Ibn Saud Islamic University, Riyadh 11432, Saudi Arabia;
| | - Mohammad Ali Moni
- WHO Collaborating Centre on eHealth, UNSW Digital Health, School of Public Health and Community Medicine, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, India;
| |
Collapse
|
28
|
Gashaw T, Hagos B, Sisay M. Expected Impacts of COVID-19: Considering Resource-Limited Countries and Vulnerable Population. Front Public Health 2021; 9:614789. [PMID: 34026704 PMCID: PMC8131657 DOI: 10.3389/fpubh.2021.614789] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 04/06/2021] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease in 2019 emerged in Wuhan, Hubei Province, China, in December 2019. After a month, it was declared a global threat to public health. The effects of the pandemic could be socio-economic, undermining the health system and risking livelihoods. Vulnerability to this infection has been associated with underlying comorbidities such as hypertension, diabetes, coronary heart disease, chronic respiratory diseases, cancer, and compromised immune systems. Co-morbidity has been common to the elderly, the disabled, and the homeless. In addition, more severe coronavirus disease outcomes have been reported in older males than females. Nonetheless, multiple variables are related to the concept of cultural gender that should be taken into account as women in more affected sectors are economically disadvantageous and over-represented. Similarly, although children are not the face of this pandemic, calamity has a profound effect on their welfare, especially for those living in poor and inconvenient situations. Moreover, the economic influence could be profound and universal when viewed through a migration lens as it is exacerbating xenophobic and discriminatory treatment. Protection measures to mitigate the outbreak of a pandemic, such as social distancing, may reduce social support for certain categories relied on for their day-to-day activities. The mental health of people would definitely be affected by the additional psychosocial burden of the pandemic, particularly in vulnerable groups. Integrated approaches are therefore mandatory to assist these groups and contain the pandemic.
Collapse
Affiliation(s)
- Tigist Gashaw
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health and Medical Sciences, Haramaya University, Harar, Ethiopia
| | - Bisrat Hagos
- Department of Social Pharmacy, School of Pharmacy, College of Health and Medical Sciences, Haramaya University, Harar, Ethiopia
| | - Mekonnen Sisay
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health and Medical Sciences, Haramaya University, Harar, Ethiopia
| |
Collapse
|
29
|
Attia YA, El-Saadony MT, Swelum AA, Qattan SYA, Al-Qurashi AD, Asiry KA, Shafi ME, Elbestawy AR, Gado AR, Khafaga AF, Hussein EOS, Ba-Awadh H, Tiwari R, Dhama K, Alhussaini B, Alyileili SR, El-Tarabily KA, Abd El-Hack ME. COVID-19: pathogenesis, advances in treatment and vaccine development and environmental impact-an updated review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:22241-22264. [PMID: 33733422 PMCID: PMC7969349 DOI: 10.1007/s11356-021-13018-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 02/15/2021] [Indexed: 05/08/2023]
Abstract
Diseases negatively impact the environment, causing many health risks and the spread of pollution and hazards. A novel coronavirus, severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) has led to a recent respiratory syndrome epidemic in humans. In December 2019, the sudden emergence of this new coronavirus and the subsequent severe disease it causes created a serious global health threat and hazards. This is in contrast to the two aforementioned coronaviruses, SARS-CoV-2 (in 2002) and middle east respiratory syndrome coronavirus MERS-CoV (in 2012), which were much more easily contained. The World Health Organization (WHO) dubbed this contagious respiratory disease an "epidemic outbreak" in March 2020. More than 80 companies and research institutions worldwide are working together, in cooperation with many governmental agencies, to develop an effective vaccine. To date, six authorized vaccines have been registered. Up till now, no approved drugs and drug scientists are racing from development to clinical trials to find new drugs for COVID-19. Wild animals, such as snakes, bats, and pangolins are the main sources of coronaviruses, as determined by the sequence homology between MERS-CoV and viruses in these animals. Human infection is caused by inhalation of respiratory droplets. To date, the only available treatment protocol for COVID-19 is based on the prevalent clinical signs. This review aims to summarize the current information regarding the origin, evolution, genomic organization, epidemiology, and molecular and cellular characteristics of SARS-CoV-2 as well as the diagnostic and treatment approaches for COVID-19 and its impact on global health, environment, and economy.
Collapse
Affiliation(s)
- Youssef A Attia
- Agriculture Department, Faculty of Environmental Sciences, King Abdulaziz University, P.O. Box 80208, Jeddah, 21589, Saudi Arabia.
- The Strategic Center to Kingdom Vision Realization, King Abdulaziz University, Jeddah, Saudi Arabia.
- Animal and Poultry Production Department, Faculty of Agriculture, Damanhour University, Damanhour, Egypt.
| | - Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Ayman A Swelum
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, 11451, Saudi Arabia.
- Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Sharkia, Zagazig, 44519, Egypt.
| | - Shaza Y A Qattan
- Department of Biological Sciences, Microbiology, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Adel D Al-Qurashi
- Agriculture Department, Faculty of Environmental Sciences, King Abdulaziz University, P.O. Box 80208, Jeddah, 21589, Saudi Arabia
| | - Khalid A Asiry
- Agriculture Department, Faculty of Environmental Sciences, King Abdulaziz University, P.O. Box 80208, Jeddah, 21589, Saudi Arabia
| | - Manal E Shafi
- Department of Biological Sciences, Zoology, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Ahmed R Elbestawy
- Poultry and Fish Diseases Department, Faculty of Veterinary Medicine, Damanhour University, Damanhur, 22511, Egypt
| | - Ahmed R Gado
- Poultry and Fish Diseases Department, Faculty of Veterinary Medicine, Damanhour University, Damanhur, 22511, Egypt
| | - Asmaa F Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina, Alexandria, 22758, Egypt
| | - Elsayed O S Hussein
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Hani Ba-Awadh
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, Uttar Pradesh Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan (DUVASU), Mathura, 281001, India
| | - Kuldeep Dhama
- Division of Pathology, Indian Veterinary Research Institute (IVRI), Izatnagar-243, Bareilly, Uttar Pradesh, 122, India
| | - Bakr Alhussaini
- Department of Pediatric, Faculty of Medicine, King Abdualziz University, Jeddah, Saudi Arabia
| | - Salem R Alyileili
- Department of Integrative Agriculture, College of Food and Agriculture, United Arab Emirates University, 15551, Al-Ain, United Arab Emirates
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, 15551, Al-Ain, United Arab Emirates.
- Harry Butler Institute, Murdoch University, Murdoch, Western Australia, 6150, Australia.
| | - Mohamed E Abd El-Hack
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| |
Collapse
|
30
|
Anand AV, Balamuralikrishnan B, Kaviya M, Bharathi K, Parithathvi A, Arun M, Senthilkumar N, Velayuthaprabhu S, Saradhadevi M, Al-Dhabi NA, Arasu MV, Yatoo MI, Tiwari R, Dhama K. Medicinal Plants, Phytochemicals, and Herbs to Combat Viral Pathogens Including SARS-CoV-2. Molecules 2021; 26:1775. [PMID: 33809963 PMCID: PMC8004635 DOI: 10.3390/molecules26061775] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 02/07/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome corona virus-2 (SARS-CoV-2), is the most important health issue, internationally. With no specific and effective antiviral therapy for COVID-19, new or repurposed antiviral are urgently needed. Phytochemicals pose a ray of hope for human health during this pandemic, and a great deal of research is concentrated on it. Phytochemicals have been used as antiviral agents against several viruses since they could inhibit several viruses via different mechanisms of direct inhibition either at the viral entry point or the replication stages and via immunomodulation potentials. Recent evidence also suggests that some plants and its components have shown promising antiviral properties against SARS-CoV-2. This review summarizes certain phytochemical agents along with their mode of actions and potential antiviral activities against important viral pathogens. A special focus has been given on medicinal plants and their extracts as well as herbs which have shown promising results to combat SARS-CoV-2 infection and can be useful in treating patients with COVID-19 as alternatives for treatment under phytotherapy approaches during this devastating pandemic situation.
Collapse
Affiliation(s)
- Arumugam Vijaya Anand
- Medical Genetics and Epigenetics Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641046, India; (M.K.); (K.B.); (A.P.)
| | | | - Mohandass Kaviya
- Medical Genetics and Epigenetics Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641046, India; (M.K.); (K.B.); (A.P.)
| | - Kathirvel Bharathi
- Medical Genetics and Epigenetics Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641046, India; (M.K.); (K.B.); (A.P.)
| | - Aluru Parithathvi
- Medical Genetics and Epigenetics Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641046, India; (M.K.); (K.B.); (A.P.)
| | - Meyyazhagan Arun
- Department of Life Sciences, CHRIST (Deemed to be University), Bengaluru 560029, India;
| | - Nachiappan Senthilkumar
- Institute of Forest Genetics and Tree Breeding (IFGTB), Forest Campus, Cowley Brown Road, RS Puram, Coimbatore 641002, India;
| | | | | | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (N.A.A.-D.); (M.V.A.)
| | - Mariadhas Valan Arasu
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (N.A.A.-D.); (M.V.A.)
- Xavier Research Foundation, St. Xavier’s College, Palayamkottai, Thirunelveli 627002, India
| | - Mohammad Iqbal Yatoo
- Faculty of Veterinary Sciences and Animal Husbandry, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Srinagar 190006, India;
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, UP Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan (DUVASU), Mathura 281001, India;
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, India
| |
Collapse
|
31
|
Dash P, Mohapatra S, Ghosh S, Nayak B. A Scoping Insight on Potential Prophylactics, Vaccines and Therapeutic Weaponry for the Ongoing Novel Coronavirus (COVID-19) Pandemic- A Comprehensive Review. Front Pharmacol 2021; 11:590154. [PMID: 33815095 PMCID: PMC8015872 DOI: 10.3389/fphar.2020.590154] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/29/2020] [Indexed: 12/18/2022] Open
Abstract
The emergence of highly virulent CoVs (SARS-CoV-2), the etiologic agent of novel ongoing "COVID-19" pandemics has been marked as an alarming case of pneumonia posing a large global healthcare crisis of unprecedented magnitude. Currently, the COVID-19 outbreak has fueled an international demand in the biomedical field for the mitigation of the fast-spreading illness, all through the urgent deployment of safe, effective, and rational therapeutic strategies along with epidemiological control. Confronted with such contagious respiratory distress, the global population has taken significant steps towards a more robust strategy of containment and quarantine to halt the total number of positive cases but such a strategy can only delay the spread. A substantial number of potential vaccine candidates are undergoing multiple clinical trials to combat COVID-19 disease, includes live-attenuated, inactivated, viral-vectored based, sub-unit vaccines, DNA, mRNA, peptide, adjuvant, plant, and nanoparticle-based vaccines. However, there are no licensed anti-COVID-19 drugs/therapies or vaccines that have proven to work as more effective therapeutic candidates in open-label clinical trial studies. To counteract the infection (SARS-CoV-2), many people are under prolonged treatment of many chemical drugs that inhibit the PLpro activity (Ribavirin), viral proteases (Lopinavir/Ritonavir), RdRp activity (Favipiravir, Remdesivir), viral membrane fusion (Umifenovir, Chloroquine phosphate (CQ), Hydroxychloroquine phosphate (HCQ), IL-6 overexpression (Tocilizumab, Siltuximab, Sarilumab). Mesenchymal Stem Cell therapy and Convalescent Plasma Therapy have emerged as a promising therapeutic strategy against SARS-CoV-2 virion. On the other hand, repurposing previously designed antiviral agents with tolerable safety profile and efficacy could be the only promising approach and fast response to the novel virion. In addition, research institutions and corporations have commenced the redesign of the available therapeutic strategy to manage the global crisis. Herein, we present succinct information on selected anti-COVID-19 therapeutic medications repurposed to combat SARS-CoV-2 infection. Finally, this review will provide exhaustive detail on recent prophylactic strategies and ongoing clinical trials to curb this deadly pandemic, outlining the major therapeutic areas for researchers to step in.
Collapse
Affiliation(s)
| | | | | | - Bismita Nayak
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology Rourkela, Odisha, India
| |
Collapse
|
32
|
Siddique F, Abbas RZ, Mansoor MK, Alghamdi ES, Saeed M, Ayaz MM, Rahman M, Mahmood MS, Iqbal A, Manzoor M, Abbas A, Javaid A, Hussain I. An Insight Into COVID-19: A 21st Century Disaster and Its Relation to Immunocompetence and Food Antioxidants. Front Vet Sci 2021; 7:586637. [PMID: 33521076 PMCID: PMC7838355 DOI: 10.3389/fvets.2020.586637] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022] Open
Abstract
Coronavirus Disease 2019 (COVID-19) ranks third in terms of fatal coronavirus diseases threatening public health, coming after SARS-CoV (severe acute respiratory syndrome coronavirus), and MERS-CoV (Middle East respiratory syndrome coronavirus). SARS-CoV-2 (severe acute respiratory syndrome coronavirus type 2) causes COVID-19. On January 30, 2020, the World Health Organization (WHO) announced that the current outbreak of COVID-19 is the sixth global health emergency. As of December 3, 2020, 64 million people worldwide have been affected by this malaise, and the global economy has experienced a loss of more than $1 trillion. SARS-CoV-2 is a positive-sense single-stranded RNA virus belonging to the Betacoronavirus genus. The high nucleotide sequence identity of SARS-CoV-2 with the BatCoV RaTG13 genome has indicated that bats could be the possible host of SARS-CoV-2. SARS-CoV-2 penetrates the host cell via binding its spike protein to the angiotensin-converting enzyme 2 (ACE2) receptor, which is similar to the mechanisms of SARS-CoV and MERS-CoV. COVID-19 can spread from person to person via respiratory droplets and airborne and contaminated fomites. Moreover, it poses a significant risk to smokers, the elderly, immunocompromised people, and those with preexisting comorbidities. Two main approaches are used to control viral infections, namely, vaccination, and biosecurity. Studies to analyze the antigenicity and immunogenicity of SARS-CoV-2 vaccine candidates are underway, and few vaccines may be available in the near future. In the current situation, the Human Biosecurity Emergency (HBE) may be the only way to cope effectively with the novel SARS-CoV-2 strain. Here, we summarize current knowledge on the origin of COVID-19 as well as its epidemiological relationship with humans and animals, genomic resemblance, immunopathogenesis, clinical-laboratory signs, diagnosis, control and prevention, and treatment. Moreover, we discuss the interventional effects of various nutrients on COVID-19 in detail. However, multiple possibilities are explored to fight COVID-19, and the greatest efforts targeted toward finding an effective vaccine in the near future. Furthermore, antioxidants, polyphenols, and flavonoids, both synthetic and natural, could play a crucial role in the fight against COVID-19.
Collapse
Affiliation(s)
- Faisal Siddique
- Department of Microbiology, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Rao Zahid Abbas
- Department of Parasitology, University of Agriculture, Faisalabad, Pakistan
| | | | - Etab Saleh Alghamdi
- Department of Food and Nutrition, Faculty of Human Sciences and Design, King Abdul-Aziz University, Jeddah, Saudi Arabia
| | - Muhammad Saeed
- Department of Poultry Sciences, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Muhammad Mazhar Ayaz
- Department of Parasitology, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Moazur Rahman
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | | | - Asif Iqbal
- Department of Parasitology, Riphah International University, Lahore, Pakistan
| | - Maida Manzoor
- Institute of Microbiology, University of Agriculture, Faisalabad, Pakistan
| | - Asghar Abbas
- Department of Veterinary and Animal Sciences, Muhammad Nawaz Shareef University of Agriculture, Multan, Pakistan
| | - Asif Javaid
- Department of Animal Nutrition, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Irshad Hussain
- Department of Microbiology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| |
Collapse
|
33
|
Yu S, Yu M. Severe Acute Respiratory Syndrome Coronavirus 2-Induced Neurological Complications. Front Cell Dev Biol 2020; 8:605972. [PMID: 33363165 PMCID: PMC7758195 DOI: 10.3389/fcell.2020.605972] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/11/2020] [Indexed: 01/08/2023] Open
Abstract
Our review aims to highlight the neurological complications of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and the available treatments according to the existing literature, discussing the underlying mechanisms. Since the end of 2019, SARS-CoV-2 has induced a worldwide pandemic that has threatened numerous lives. Fever, dry cough, and respiratory symptoms are typical manifestations of COVID-19. Recently, several neurological complications of the central and peripheral nervous systems following SARS-CoV-2 infection have gained clinicians' attention. Encephalopathy, stroke, encephalitis/meningitis, Guillain-Barré syndrome, and multiple sclerosis are considered probable neurological signs of COVID-19. The virus may invade the nervous system directly or induce a massive immune inflammatory response via a "cytokine storm." Specific antiviral drugs are still under study. To date, immunomodulatory therapies and supportive treatment are the predominant strategies. In order to improve the management of COVID-19 patients, it is crucial to monitor the onset of new neurological complications and to explore drugs/vaccines targeted against SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Shijia Yu
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Mingjun Yu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
34
|
Sharma R, Palanisamy A, Dhama K, Mal G, Singh B, Singh KP. Exploring the possible use of saponin adjuvants in COVID-19 vaccine. Hum Vaccin Immunother 2020; 16:2944-2953. [PMID: 33295829 PMCID: PMC7738204 DOI: 10.1080/21645515.2020.1833579] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/22/2020] [Accepted: 10/02/2020] [Indexed: 12/30/2022] Open
Abstract
There is an urgent need for a safe, efficacious, and cost-effective vaccine for the coronavirus disease 2019 (COVID-19) pandemic caused by novel coronavirus strain, severe acute respiratory syndrome-2 (SARS-CoV-2). The protective immunity of certain types of vaccines can be enhanced by the addition of adjuvants. Many diverse classes of compounds have been identified as adjuvants, including mineral salts, microbial products, emulsions, saponins, cytokines, polymers, microparticles, and liposomes. Several saponins have been shown to stimulate both the Th1-type immune response and the production of cytotoxic T lymphocytes against endogenous antigens, making them very useful for subunit vaccines, especially those for intracellular pathogens. In this review, we discuss the structural characteristics, mechanisms of action, structure-activity relationship of saponins, biological activities, and use of saponins in various viral vaccines and their applicability to a SARS-CoV-2 vaccine.
Collapse
Affiliation(s)
- Rinku Sharma
- Disease Investigation Laboratory, ICAR-Indian Veterinary Research Institute, Regional Station, Palampur, India
| | - Arivukarasu Palanisamy
- Disease Investigation Laboratory, ICAR-Indian Veterinary Research Institute, Regional Station, Palampur, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Gorakh Mal
- Disease Investigation Laboratory, ICAR-Indian Veterinary Research Institute, Regional Station, Palampur, India
| | - Birbal Singh
- Disease Investigation Laboratory, ICAR-Indian Veterinary Research Institute, Regional Station, Palampur, India
| | - Karam Pal Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| |
Collapse
|
35
|
Dhama K, Patel SK, Natesan S, Vora KS, Iqbal Yatoo M, Tiwari R, Saxena SK, Singh KP, Singh R, Malik YS. COVID-19 in the elderly people and advances in vaccination approaches. Hum Vaccin Immunother 2020; 16:2938-2943. [PMID: 33270497 PMCID: PMC8641606 DOI: 10.1080/21645515.2020.1842683] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 02/06/2023] Open
Abstract
The rapid worldwide spread of the COVID-19 pandemic, caused by the newly emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has resulted in tens of millions of infections and over one million deaths. SARS-CoV-2 infection affects all age groups; however, those over 60 years old are affected more severely. Moreover, pre-existing co-morbidities result in higher COVID-19-associated mortality in the geriatric population. This article highlights the associated risk factors of SARS-CoV-2 infection in older people and progress in developing COVID-19 vaccines, especially for efficient vaccination of the older population. There is also a summary of immunomodulatory and immunotherapeutic approaches to ameliorate the outcome of COVID-19 in older individuals.
Collapse
Affiliation(s)
- Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Shailesh Kumar Patel
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Senthilkumar Natesan
- Department of Infectious Diseases, Indian Institute of Public Health Gandhinagar, Ganghinagar, Gujarat, India
| | - Kranti Suresh Vora
- Department of Infectious Diseases, Indian Institute of Public Health Gandhinagar, Ganghinagar, Gujarat, India
- Health Research Institut, University of Canberra, ACT, Australia
| | - Mohd Iqbal Yatoo
- Division of Veterinary Clinical Complex, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, Alusteng Srinagar, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, Uttar Pradesh Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan (DUVASU), Mathura, India
| | - Shailendra K Saxena
- Centre for Advanced Research (CFAR), Faculty of Medicine, King George’s Medical University (KGMU), Lucknow, India
| | - Karam Pal Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Rajendra Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Yashpal Singh Malik
- Division of Biological Standardization, ICAR–Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| |
Collapse
|
36
|
Dhama K, Natesan S, Iqbal Yatoo M, Patel SK, Tiwari R, Saxena SK, Harapan H. Plant-based vaccines and antibodies to combat COVID-19: current status and prospects. Hum Vaccin Immunother 2020; 16:2913-2920. [PMID: 33270484 PMCID: PMC7754927 DOI: 10.1080/21645515.2020.1842034] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 12/19/2022] Open
Abstract
Globally, researchers are undertaking significant efforts to design and develop effective vaccines, therapeutics, and antiviral drugs to curb the spread of coronavirus disease 2019 (COVID-19). Plants have been used for the production of vaccines, monoclonal antibodies, immunomodulatory proteins, drugs, and pharmaceuticals via molecular farming/transient expression system and are considered as bioreactors or factories for their bulk production. These biological products are stable, safe, effective, easily available, and affordable. Plant molecular farming could facilitate rapid production of biologics on an industrial scale, and has the potential to fulfill emergency demands, such as in the present situation of the COVID-19 pandemic. This article aims to describe the methodology and basics of plant biopharming, in addition to its prospective applications for developing effective vaccines and antibodies to counter COVID-19.
Collapse
Affiliation(s)
- Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Senthilkumar Natesan
- Division of Biological & Life Sciences, Indian Institute of Public Health Gandhinagar, Ganghinagar, India
| | - Mohd. Iqbal Yatoo
- Division of Veterinary Clinical Complex, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, Alusteng Srinagar, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Shailesh Kumar Patel
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, Uttar Pradesh Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan (DUVASU), Mathura, India
| | - Shailendra K Saxena
- Centre for Advanced Research (CFAR), Faculty of Medicine, King George’s Medical University (KGMU), Lucknow, India
| | - Harapan Harapan
- Medical Research Unit, School of Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia
- Tropical Disease Centre, School of Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia
- Department of Microbiology, School of Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia
| |
Collapse
|
37
|
SARS-CoV-2 / COVID-19: Salient Facts and Strategies to Combat Ongoing Pandemic. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2020. [DOI: 10.22207/jpam.14.3.04] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus – 2 (SARS-CoV-2), an emerging novel coronavirus causing coronavirus disease 2019 (COVID-19) pandemic, has now rapidly spread to more than 215 countries and has killed nearly 0.75 million people out of more than 20 million confirmed cases as of 10th August, 2020. Apart from affecting respiratory system, the virus has shown multiple manifestations with neurological affections and damaging kidneys. SARS-CoV-2 transmission mainly occurs through close contact of COVID-19 affected person, however air-borne route is also now considered as dominant route of virus spread. The virus has been implicated to have originated from animals. Apart from bats, pangolins and others being investigates to play role in transmitting SARS-CoV-2 as intermediate hosts, the recent reports of this virus infection in other animals (cats, dogs, tigers, lions, mink) suggest one health approach implementation along with adopting appropriate mitigation strategies. Researchers are pacing to develop effective vaccines and drugs, few reached to clinical trials also, however these may take time to reach the mass population, and so till then adopting appropriate prevention and control is the best option to avoid SARS-CoV-2 infection. This article presents an overview on this pandemic virus and the disease it causes, with few recent concepts and advances.
Collapse
|
38
|
Treatment of Multi-Drug Resistant Gram-Negative Bacterial Pathogenic Infections. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2020. [DOI: 10.22207/jpam.14.3.02] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The multidrug-resistant Gram-negative bacteria (MDR-GNB) infections in severely infected patients present numerous difficulties in terms of treatment failure where antibiotics cannot arrest such drug resistant bacteria. Based on the patient’s medical history and updated microbiological epidemiology data, an effective empirical treatment remains critical for optimal results to safeguard human health. The aim of this manuscript is to review management of MDR-Gram negative pathogenic bacterial infections. Quick diagnosis and narrow antimicrobial spectrum require rapid and timely diagnosis and effective laboratories in accordance with antimicrobial stewardship (AS) principles. Worldwide, there is an increased emergence of Carbapenem-resistant Enterobacteriaceae (CRE), Pseudomonas aeruginosa, and Acinetobacter baumannii. Recently, novel therapeutic options, such as meropenem/vaborbactam, ceftazidime/avibactam, ceftolozane/tazobactam, eravacycline and plazomicin became accessible to effectively counteract severe infections. Optimally using these delays the emergence of resistance to novel therapeutic agents. Further study is required, however, due to uncertainties in pharmacokinetic/pharmacodynamics optimization of dosages and therapeutic duration in severely ill patients. The novel agents should be verified for (i) action on carbapenem resistant Acinetobacter baumannii; (ii) action on CRE of β-lactam/β-lactamase inhibitors dependence on type of carbapenemase; (iii) emergence of resistance to novel antibacterials and dismiss selective pressure promoting development of resistance. Alternative treatments should be approached alike phage therapy or antibacterial peptides. The choice of empirical therapy is complicated by antibiotic resistance and can be combated by accurate antibiotic and their combinations usage, which is critical to patient survival. Noteworthy are local epidemiology, effective teamwork and antibiotic stewardship to guarantee that medications are utilized properly to counter the resistance.
Collapse
|
39
|
COVID-19 and the World with Co-Morbidities of Heart Disease, Hypertension and Diabetes. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2020. [DOI: 10.22207/jpam.14.3.01] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Newly emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causing coronavirus disease 2019 (COVID-19) pandemic has now spread across the globe in past few months while affecting 26 million people and leading to more than 0.85 million deaths as on 2nd September, 2020. Severity of SARS-CoV-2 infection increases in COVID-19 patients due to pre-existing health co-morbidities. This mini-review has focused on the three significant co-morbidities viz., heart disease, hypertension, and diabetes, which are posing high health concerns and increased mortality during this ongoing pandemic. The observed co-morbidities have been found to be associated with the increasing risk factors for SARS-CoV-2 infection and COVID-19 critical illness as well as to be associated positively with the worsening of the health condition of COVID-19 suffering individuals resulting in the high risk for mortality. SARS-CoV-2 enters host cell via angiotensin-converting enzyme 2 receptors. Regulation of crucial cardiovascular functions and metabolisms like blood pressure and sugar levels are being carried out by ACE2. This might be one of the reasons that contribute to the higher mortality in COVID-19 patients having co-morbidities. Clinical investigations have identified higher levels of creatinine, cardiac troponin I, alanine aminotransferase, NT-proBNP, creatine kinase, D-dimer, aspartate aminotransferase and lactate dehydrogenase in patients who have succumbed to death from COVID-19 as compared to recovered individuals. More investigations are required to identify the modes behind increased mortality in COVID-19 patients having co-morbidities of heart disease, hypertension, and diabetes. This will enable us to design and develop suitable therapeutic strategies for reducing the mortality. More attention and critical care need to be paid to such high risk patients suffering from co-morbidities during COVID-19 pandemic.
Collapse
|
40
|
Rabaan AA, Al-Ahmed SH, Sah R, Tiwari R, Yatoo MI, Patel SK, Pathak M, Malik YS, Dhama K, Singh KP, Bonilla-Aldana DK, Haque S, Martinez-Pulgarin DF, Rodriguez-Morales AJ, Leblebicioglu H. SARS-CoV-2/COVID-19 and advances in developing potential therapeutics and vaccines to counter this emerging pandemic. Ann Clin Microbiol Antimicrob 2020; 19:40. [PMID: 32878641 PMCID: PMC7464065 DOI: 10.1186/s12941-020-00384-w] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/27/2020] [Indexed: 12/15/2022] Open
Abstract
A novel coronavirus (SARS-CoV-2), causing an emerging coronavirus disease (COVID-19), first detected in Wuhan City, Hubei Province, China, which has taken a catastrophic turn with high toll rates in China and subsequently spreading across the globe. The rapid spread of this virus to more than 210 countries while affecting more than 25 million people and causing more than 843,000 human deaths, it has resulted in a pandemic situation in the world. The SARS-CoV-2 virus belongs to the genus Betacoronavirus, like MERS-CoV and SARS-CoV, all of which originated in bats. It is highly contagious, causing symptoms like fever, dyspnea, asthenia and pneumonia, thrombocytopenia, and the severely infected patients succumb to the disease. Coronaviruses (CoVs) among all known RNA viruses have the largest genomes ranging from 26 to 32 kb in length. Extensive research has been conducted to understand the molecular basis of the SARS-CoV-2 infection and evolution, develop effective therapeutics, antiviral drugs, and vaccines, and to design rapid and confirmatory viral diagnostics as well as adopt appropriate prevention and control strategies. To date, August 30, 2020, no effective, proven therapeutic antibodies or specific drugs, and vaccines have turned up. In this review article, we describe the underlying molecular organization and phylogenetic analysis of the coronaviruses, including the SARS-CoV-2, and recent advances in diagnosis and vaccine development in brief and focusing mainly on developing potential therapeutic options that can be explored to manage this pandemic virus infection, which would help in valid countering of COVID-19.
Collapse
Affiliation(s)
- Ali A Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia
| | - Shamsah H Al-Ahmed
- Specialty Paediatric Medicine, Qatif Central Hospital, Qatif, Saudi Arabia
| | - Ranjit Sah
- Department of Microbiology, Tribhuvan University Teaching Hospital, Institute of Medicine, Kathmandu, Nepal
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, UP Pandit Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan (DUVASU), Mathura, 281001, India
| | - Mohd Iqbal Yatoo
- Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Srinagar, Jammu and Kashmir, 190025, India
| | - Shailesh Kumar Patel
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243 122, India
| | - Mamta Pathak
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243 122, India
| | - Yashpal Singh Malik
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243 122, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243 122, India.
| | - Karam Pal Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243 122, India
| | - D Katterine Bonilla-Aldana
- Semillero de Investigación en Zoonosis (SIZOO), Grupo de Investigación BIOECOS, Fundación Universitaria Autónoma de las Américas, Sede Pereira, Pereira, Risaralda, Colombia
- Public Health and Infection Research Group, Faculty of Health Sciences, Universidad Tecnologica de Pereira, Pereira, Colombia
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing & Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Dayron F Martinez-Pulgarin
- Public Health and Infection Research Group, Faculty of Health Sciences, Universidad Tecnologica de Pereira, Pereira, Colombia
| | - Alfonso J Rodriguez-Morales
- Public Health and Infection Research Group, Faculty of Health Sciences, Universidad Tecnologica de Pereira, Pereira, Colombia.
- Grupo de Investigación Biomedicina, Faculty of Medicine, Fundación Universitaria Autónoma de las Americas, Pereira, Risaralda, Colombia.
- School of Medicine, Universidad Privada Franz Tamayo (UNIFRANZ), Cochabamba, Bolivia.
| | - Hakan Leblebicioglu
- Department of Infectious Diseases, Samsun VM Medicalpark Hospital, Samsun, Turkey
| |
Collapse
|