1
|
Eisen A, Vucic S, Kiernan MC. Amyotrophic lateral sclerosis represents corticomotoneuronal system failure. Muscle Nerve 2025; 71:499-511. [PMID: 39511939 PMCID: PMC11887532 DOI: 10.1002/mus.28290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/18/2024] [Accepted: 10/23/2024] [Indexed: 11/15/2024]
Abstract
Several decades have passed since the anterograde corticomotoneuronal hypothesis for amyotrophic lateral sclerosis (ALS) was proposed. The intervening years have witnessed its emergent support based on anatomical, pathological, physiological, neuroimaging, and molecular biological studies. The evolution of an extensive corticomotoneuronal system appears restricted to the human species, with ALS representing a uniquely human disease. While some, very select non-human primates have limited corticomotoneuronal projections, these tend to be absent in all other animals. From a general perspective, the early clinical features of ALS may be considered to reflect failure of the corticomotoneuronal system. The characteristic loss of skilled motor dexterity involving the limbs, and speech impairment through progressive bulbar dysfunction specifically involve those motor units having the strongest corticomotoneuronal projections. A similar explanation likely underlies the unique "split phenotypes" that have now been well characterized in ALS. Large Betz cells and other pyramidal corticomotoneuronal projecting neurons, with their extensive dendritic arborization, are particularly vulnerable to the elements of the ALS exposome such as aging, environmental stress and lifestyle changes. Progressive failure of the proteosome impairs nucleocytoplasmic shuffling and induces toxic but soluble TDP-43 to aggregate in corticomotoneurons. Betz cell failure is further accentuated through dysfunction of its profuse dendritic arborizations. Clarification of system specific genomes and neural networks will likely promote the initiation of precision medicine approaches directed to support the key structure that underlies the neurological manifestations of ALS, the corticomotoneuronal system.
Collapse
Affiliation(s)
- Andrew Eisen
- Division of Neurology, Department of MedicineUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Steve Vucic
- Brain and Nerve Research CenterConcord Clinical School, University of SydneySydneyNew South WalesAustralia
| | - Matthew C. Kiernan
- Neuroscience Research AustraliaSydneyNew South WalesAustralia
- NeuroscienceUniversity of New South WalesSydneyNew South WalesAustralia
| |
Collapse
|
2
|
García-Casanova PH, Vázquez-Costa JF. Advances in the early diagnosis of amyotrophic lateral sclerosis. Expert Rev Neurother 2025:1-11. [PMID: 39998997 DOI: 10.1080/14737175.2025.2471556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 02/06/2025] [Accepted: 02/20/2025] [Indexed: 02/27/2025]
Abstract
INTRODUCTION Amyotrophic lateral sclerosis (ALS) is a rapidly progressing neurodegenerative disease. Despite rapid disease progression, diagnostic delay of 10-16 months persists, influenced by disease-specific factors and healthcare systems. Reducing it is crucial for early intervention, multidisciplinary care planning, and patient participation in clinical trials. AREAS COVERED The authors review relevant studies identified through PubMed from 1990 to 2024. The article explores factors contributing to diagnostic delay, the importance of early diagnosis, and strategies for improvement, including the role of diagnostic criteria and biomarkers. EXPERT OPINION Diagnosis of ALS remains clinical, with clinical expertise as the main modifiable factor in the diagnostic delay. Some biomarkers may be useful to speed up diagnosis at an earlier stage of the disease and in patients with atypical presentations or co-morbidities. However, the use of biomarkers for ALS diagnosis in clinical practice is far from being established and poses considerable challenges, including the lack of disease-specific biomarkers and the potential for delayed results. Until disease-specific biomarkers become available, early referral to ALS specialists, together with physician education programs, will remain the main tools to reduce diagnostic delay in the next years.
Collapse
Affiliation(s)
- Pilar H García-Casanova
- ALS Unit, Department of Neurology, Hospital Universitario y Politécnico La Fe, Valencia, Spain
- Neuromuscular Research Unit, Instituto de Investigación Sanitaria la Fe (IIS La Fe), Valencia, Spain
| | - Juan F Vázquez-Costa
- ALS Unit, Department of Neurology, Hospital Universitario y Politécnico La Fe, Valencia, Spain
- Neuromuscular Research Unit, Instituto de Investigación Sanitaria la Fe (IIS La Fe), Valencia, Spain
- Department of Medicine, University of Valencia, Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Valencia, Spain
| |
Collapse
|
3
|
Benatar M, Heiman-Patterson TD, Cooper-Knock J, Brickman D, Casaletto KB, Goutman SA, Vinceti M, Dratch L, Arias JJ, Swidler J, Turner MR, Shefner J, Westeneng HJ, van den Berg LH, Al-Chalabi A. Guidance for clinical management of pathogenic variant carriers at elevated genetic risk for ALS/FTD. J Neurol Neurosurg Psychiatry 2025:jnnp-2024-334339. [PMID: 39572211 DOI: 10.1136/jnnp-2024-334339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/19/2024] [Indexed: 02/02/2025]
Abstract
There is a growing understanding of the presymptomatic stages of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) and nascent efforts aiming to prevent these devastating neurodegenerative diseases have emerged. This progress is attributable, in no small part, to the altruism of people living with pathogenic variants at elevated genetic risk for ALS/FTD via their willingness to participate in natural history studies and disease prevention trials. Increasingly, this community has also highlighted the urgent need to develop paradigms for providing appropriate clinical care for those at elevated risk for ALS and FTD. This manuscript summarises recommendations emanating from a multi-stakeholder Workshop (Malvern, Pennsylvania, 2023) that aimed to develop guidance for at-risk carriers and their treating physicians. Clinical care recommendations span genetic testing (including counselling and sociolegal implications); monitoring for the emergence of early motor, cognitive and behavioural signs of disease; and the use of Food and Drug Administration-approved small molecule drugs and gene-targeting therapies. Lifestyle recommendations focus on exercise, smoking, statin use, supplement use, caffeine intake and head trauma, as well as occupational and environmental exposures. While the evidence base to inform clinical and lifestyle recommendations is limited, this guidance document aims to appraise carriers and clinicians of the issues and best available evidence, and also to define the research agenda that could yield more evidence-informed guidelines.
Collapse
Affiliation(s)
- Michael Benatar
- Neurology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Terry D Heiman-Patterson
- Department of Neurology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | | | - Daniel Brickman
- Genetic ALS & FTD: End the Legacy, Philadelphia, Pennsylvania, USA
| | - Kaitlin B Casaletto
- Department of Neurology, UCSF Memory and Aging Center, San Francisco, California, USA
| | - Stephen A Goutman
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | - Marco Vinceti
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Department of Epidemiology, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Laynie Dratch
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Jalayne J Arias
- Department of Health Policy & Behavioral Sciences, Georgia State University School of Public Health, Atlanta, Georgia, USA
| | - Jean Swidler
- Genetic ALS & FTD: End the Legacy, Philadelphia, Pennsylvania, USA
| | - Martin R Turner
- Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, UK
| | - Jeremy Shefner
- Department of Neurology, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Henk-Jan Westeneng
- Department of Neurology, UMC Utrecht Brain Center Rudolf Magnus, Utrecht, The Netherlands
| | - Leonard H van den Berg
- Department of Neurology, University Medical Centre Utrecht Brain Centre, Utrecht, The Netherlands
| | - Ammar Al-Chalabi
- Department of Basic and Clinical Neuroscience, King's College London, London, UK
| |
Collapse
|
4
|
McKenna MC, Kleinerova J, Power A, Garcia-Gallardo A, Tan EL, Bede P. Quantitative and Computational Spinal Imaging in Neurodegenerative Conditions and Acquired Spinal Disorders: Academic Advances and Clinical Prospects. BIOLOGY 2024; 13:909. [PMID: 39596864 PMCID: PMC11592215 DOI: 10.3390/biology13110909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/24/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024]
Abstract
Introduction: Quantitative spinal cord imaging has facilitated the objective appraisal of spinal cord pathology in a range of neurological conditions both in the academic and clinical setting. Diverse methodological approaches have been implemented, encompassing a range of morphometric, diffusivity, susceptibility, magnetization transfer, and spectroscopy techniques. Advances have been fueled both by new MRI platforms and acquisition protocols as well as novel analysis pipelines. The quantitative evaluation of specific spinal tracts and grey matter indices has the potential to be used in diagnostic and monitoring applications. The comprehensive characterization of spinal disease burden in pre-symptomatic cohorts, in carriers of specific genetic mutations, and in conditions primarily associated with cerebral disease, has contributed important academic insights. Methods: A narrative review was conducted to examine the clinical and academic role of quantitative spinal cord imaging in a range of neurodegenerative and acquired spinal cord disorders, including hereditary spastic paraparesis, hereditary ataxias, motor neuron diseases, Huntington's disease, and post-infectious or vascular disorders. Results: The clinical utility of specific methods, sample size considerations, academic role of spinal imaging, key radiological findings, and relevant clinical correlates are presented in each disease group. Conclusions: Quantitative spinal cord imaging studies have demonstrated the feasibility to reliably appraise structural, microstructural, diffusivity, and metabolic spinal cord alterations. Despite the notable academic advances, novel acquisition protocols and analysis pipelines are yet to be implemented in the clinical setting.
Collapse
Affiliation(s)
- Mary Clare McKenna
- Computational Neuroimaging Group, Trinity College Dublin, 152-160 Pearse St, 2 D02 R590 Dublin, Ireland
- Department of Neurology, St James’s Hospital, James St, 8 D08 NHY1 Dublin, Ireland
| | - Jana Kleinerova
- Computational Neuroimaging Group, Trinity College Dublin, 152-160 Pearse St, 2 D02 R590 Dublin, Ireland
| | - Alan Power
- Computational Neuroimaging Group, Trinity College Dublin, 152-160 Pearse St, 2 D02 R590 Dublin, Ireland
- Department of Neurology, St James’s Hospital, James St, 8 D08 NHY1 Dublin, Ireland
| | - Angela Garcia-Gallardo
- Computational Neuroimaging Group, Trinity College Dublin, 152-160 Pearse St, 2 D02 R590 Dublin, Ireland
- Department of Neurology, St James’s Hospital, James St, 8 D08 NHY1 Dublin, Ireland
| | - Ee Ling Tan
- Computational Neuroimaging Group, Trinity College Dublin, 152-160 Pearse St, 2 D02 R590 Dublin, Ireland
| | - Peter Bede
- Computational Neuroimaging Group, Trinity College Dublin, 152-160 Pearse St, 2 D02 R590 Dublin, Ireland
- Department of Neurology, St James’s Hospital, James St, 8 D08 NHY1 Dublin, Ireland
| |
Collapse
|
5
|
Christidi F, Kleinerova J, Tan EL, Delaney S, Tacheva A, Hengeveld JC, Doherty MA, McLaughlin RL, Hardiman O, Siah WF, Chang KM, Lope J, Bede P. Limbic Network and Papez Circuit Involvement in ALS: Imaging and Clinical Profiles in GGGGCC Hexanucleotide Carriers in C9orf72 and C9orf72-Negative Patients. BIOLOGY 2024; 13:504. [PMID: 39056697 PMCID: PMC11273537 DOI: 10.3390/biology13070504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/26/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024]
Abstract
Background: While frontotemporal involvement is increasingly recognized in Amyotrophic lateral sclerosis (ALS), the degeneration of limbic networks remains poorly characterized, despite growing evidence of amnestic deficits, impaired emotional processing and deficits in social cognition. Methods: A prospective neuroimaging study was conducted with 204 individuals with ALS and 111 healthy controls. Patients were stratified for hexanucleotide expansion status in C9orf72. A deep-learning-based segmentation approach was implemented to segment the nucleus accumbens, hypothalamus, fornix, mammillary body, basal forebrain and septal nuclei. The cortical, subcortical and white matter components of the Papez circuit were also systematically evaluated. Results: Hexanucleotide repeat expansion carriers exhibited bilateral amygdala, hypothalamus and nucleus accumbens atrophy, and C9orf72 negative patients showed bilateral basal forebrain volume reductions compared to controls. Both patient groups showed left rostral anterior cingulate atrophy, left entorhinal cortex thinning and cingulum and fornix alterations, irrespective of the genotype. Fornix, cingulum, posterior cingulate, nucleus accumbens, amygdala and hypothalamus degeneration was more marked in C9orf72-positive ALS patients. Conclusions: Our results highlighted that mesial temporal and parasagittal subcortical degeneration is not unique to C9orf72 carriers. Our radiological findings were consistent with neuropsychological observations and highlighted the importance of comprehensive neuropsychological testing in ALS, irrespective of the underlying genotype.
Collapse
Affiliation(s)
- Foteini Christidi
- Computational Neuroimaging Group (CNG), School of Medicine, Trinity College Dublin, D08 W9RT Dublin, Ireland
| | - Jana Kleinerova
- Computational Neuroimaging Group (CNG), School of Medicine, Trinity College Dublin, D08 W9RT Dublin, Ireland
| | - Ee Ling Tan
- Computational Neuroimaging Group (CNG), School of Medicine, Trinity College Dublin, D08 W9RT Dublin, Ireland
| | - Siobhan Delaney
- Computational Neuroimaging Group (CNG), School of Medicine, Trinity College Dublin, D08 W9RT Dublin, Ireland
- Department of Neurology, St James’s Hospital, D08 KC95 Dublin, Ireland
| | - Asya Tacheva
- Computational Neuroimaging Group (CNG), School of Medicine, Trinity College Dublin, D08 W9RT Dublin, Ireland
- Department of Neurology, St James’s Hospital, D08 KC95 Dublin, Ireland
| | | | - Mark A. Doherty
- Smurfit Institute of Genetics, Trinity College Dublin, D08 W9RT Dublin, Ireland
| | | | - Orla Hardiman
- Computational Neuroimaging Group (CNG), School of Medicine, Trinity College Dublin, D08 W9RT Dublin, Ireland
| | - We Fong Siah
- Computational Neuroimaging Group (CNG), School of Medicine, Trinity College Dublin, D08 W9RT Dublin, Ireland
| | - Kai Ming Chang
- Computational Neuroimaging Group (CNG), School of Medicine, Trinity College Dublin, D08 W9RT Dublin, Ireland
| | - Jasmin Lope
- Computational Neuroimaging Group (CNG), School of Medicine, Trinity College Dublin, D08 W9RT Dublin, Ireland
| | - Peter Bede
- Computational Neuroimaging Group (CNG), School of Medicine, Trinity College Dublin, D08 W9RT Dublin, Ireland
- Department of Neurology, St James’s Hospital, D08 KC95 Dublin, Ireland
| |
Collapse
|
6
|
Benatar M, Wuu J, Huey ED, McMillan CT, Petersen RC, Postuma R, McHutchison C, Dratch L, Arias JJ, Crawley A, Houlden H, McDermott MP, Cai X, Thakur N, Boxer A, Rosen H, Boeve BF, Dacks P, Cosentino S, Abrahams S, Shneider N, Lingor P, Shefner J, Andersen PM, Al-Chalabi A, Turner MR. The Miami Framework for ALS and related neurodegenerative disorders: an integrated view of phenotype and biology. Nat Rev Neurol 2024; 20:364-376. [PMID: 38769202 PMCID: PMC11216694 DOI: 10.1038/s41582-024-00961-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2024] [Indexed: 05/22/2024]
Abstract
Increasing appreciation of the phenotypic and biological overlap between amyotrophic lateral sclerosis (ALS) and frontotemporal dementia, alongside evolving biomarker evidence for a pre-symptomatic stage of disease and observations that this stage of disease might not always be clinically silent, is challenging traditional views of these disorders. These advances have highlighted the need to adapt ingrained notions of these clinical syndromes to include both the full phenotypic continuum - from clinically silent, to prodromal, to clinically manifest - and the expanded phenotypic spectrum that includes ALS, frontotemporal dementia and some movement disorders. The updated clinical paradigms should also align with our understanding of the biology of these disorders, reflected in measurable biomarkers. The Miami Framework, emerging from discussions at the Second International Pre-Symptomatic ALS Workshop in Miami (February 2023; a full list of attendees and their affiliations appears in the Supplementary Information) proposes a classification system built on: first, three parallel phenotypic axes - motor neuron, frontotemporal and extrapyramidal - rather than the unitary approach of combining all phenotypic elements into a single clinical entity; and second, biomarkers that reflect different aspects of the underlying pathology and biology of neurodegeneration. This framework decouples clinical syndromes from biomarker evidence of disease and builds on experiences from other neurodegenerative diseases to offer a unified approach to specifying the pleiotropic clinical manifestations of disease and describing the trajectory of emergent biomarkers.
Collapse
Affiliation(s)
- Michael Benatar
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL, USA.
| | - Joanne Wuu
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Edward D Huey
- Department of Psychiatry and Human Behaviour, Alpert Medical School of Brown University, Providence, RI, USA
| | - Corey T McMillan
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | - Ronald Postuma
- Department of Neurology, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Caroline McHutchison
- Human Cognitive Neuroscience, Department of Psychology, University of Edinburgh, Edinburgh, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, UK
| | - Laynie Dratch
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Jalayne J Arias
- Department of Health Policy & Behavioral Sciences, School of Public Health, Georgia State University, Atlanta, GA, USA
| | | | - Henry Houlden
- UCL Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK
| | - Michael P McDermott
- Department of Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
- Department of Neurology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Xueya Cai
- Department of Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | | | - Adam Boxer
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Howard Rosen
- Department of Neurology, University of California, San Francisco, CA, USA
| | | | - Penny Dacks
- Association for Frontotemporal Degeneration, King of Prussia, PA, USA
| | | | - Sharon Abrahams
- Human Cognitive Neuroscience, Department of Psychology, University of Edinburgh, Edinburgh, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, UK
| | - Neil Shneider
- Department of Neurology, Columbia University, New York, NY, USA
| | - Paul Lingor
- Department of Neurology, Klinikum rechts der Isar der Technischen Universität München, Munich, Germany
| | - Jeremy Shefner
- Department of Neurology, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Peter M Andersen
- Department of Clinical Science, Neurosciences, Umeå University, Umeå, Sweden
| | - Ammar Al-Chalabi
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK
- Department of Neurology, King's College Hospital, London, UK
| | - Martin R Turner
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
7
|
King PH. Skeletal muscle as a molecular and cellular biomarker of disease progression in amyotrophic lateral sclerosis: a narrative review. Neural Regen Res 2024; 19:747-753. [PMID: 37843208 PMCID: PMC10664124 DOI: 10.4103/1673-5374.382226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/27/2023] [Accepted: 07/19/2023] [Indexed: 10/17/2023] Open
Abstract
Amyotrophic lateral sclerosis is a fatal multisystemic neurodegenerative disease with motor neurons being a primary target. Although progressive weakness is a hallmark feature of amyotrophic lateral sclerosis, there is considerable heterogeneity, including clinical presentation, progression, and the underlying triggers for disease initiation. Based on longitudinal studies with families harboring amyotrophic lateral sclerosis-associated gene mutations, it has become apparent that overt disease is preceded by a prodromal phase, possibly in years, where compensatory mechanisms delay symptom onset. Since 85-90% of amyotrophic lateral sclerosis is sporadic, there is a strong need for identifying biomarkers that can detect this prodromal phase as motor neurons have limited capacity for regeneration. Current Food and Drug Administration-approved therapies work by slowing the degenerative process and are most effective early in the disease. Skeletal muscle, including the neuromuscular junction, manifests abnormalities at the earliest stages of the disease, before motor neuron loss, making it a promising source for identifying biomarkers of the prodromal phase. The accessibility of muscle through biopsy provides a lens into the distal motor system at earlier stages and in real time. The advent of "omics" technology has led to the identification of numerous dysregulated molecules in amyotrophic lateral sclerosis muscle, ranging from coding and non-coding RNAs to proteins and metabolites. This technology has opened the door for identifying biomarkers of disease activity and providing insight into disease mechanisms. A major challenge is correlating the myriad of dysregulated molecules with clinical or histological progression and understanding their relevance to presymptomatic phases of disease. There are two major goals of this review. The first is to summarize some of the biomarkers identified in human amyotrophic lateral sclerosis muscle that have a clinicopathological correlation with disease activity, evidence of a similar dysregulation in the SOD1G93A mouse during presymptomatic stages, and evidence of progressive change during disease progression. The second goal is to review the molecular pathways these biomarkers reflect and their potential role in mitigating or promoting disease progression, and as such, their potential as therapeutic targets in amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Peter H. King
- Department of Neurology and Center for Neurodegeneration and Experimental Therapeutics, The University of Alabama at Birmingham, Birmingham, AL, USA; Birmingham Veterans Affairs Medical Center, Birmingham, AL, USA
| |
Collapse
|
8
|
Marrie RA, Maxwell CJ, Rotstein DL, Tsai CC, Tremlett H. Prodromes in demyelinating disorders, amyotrophic lateral sclerosis, Parkinson disease, and Alzheimer's dementia. Rev Neurol (Paris) 2024; 180:125-140. [PMID: 37567819 DOI: 10.1016/j.neurol.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/24/2023] [Accepted: 07/03/2023] [Indexed: 08/13/2023]
Abstract
A prodrome is an early set of symptoms, which indicates the onset of a disease; these symptoms are often non-specific. Prodromal phases are now recognized in multiple central nervous system diseases. The depth of understanding of the prodromal phase varies across diseases, being more nascent for multiple sclerosis for example, than for Parkinson disease or Alzheimer's disease. Key challenges when identifying the prodromal phase of a disease include the lack of specificity of prodromal symptoms, and consequent need for accessible and informative biomarkers. Further, heterogeneity of the prodromal phase may be influenced by age, sex, genetics and other poorly understood factors. Nonetheless, recognition that an individual is in the prodromal phase of disease offers the opportunity for earlier diagnosis and with it the opportunity for earlier intervention.
Collapse
Affiliation(s)
- R A Marrie
- Departments of Internal Medicine and Community Health Sciences, Rady Faculty of Health Sciences, Max-Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada.
| | - C J Maxwell
- Schools of Pharmacy and Public Health Sciences, University of Waterloo, Waterloo, Ontario, Canada; ICES, Toronto, Ontario, Canada
| | - D L Rotstein
- Department of Medicine, University of Toronto, 6, Queen's Park Crescent West, 3rd floor, M5S 3H2 Toronto, Ontario, Canada; Saint-Michael's Hospital, 30, Bond Street, M5B 1W8 Toronto, Ontario, Canada
| | - C-C Tsai
- Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - H Tremlett
- Faculty of Medicine (Neurology), University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
9
|
Mészáros L, Guizzaro L. Developing medicines for the pre-symptomatic stage of degenerative neurological conditions: Challenges and opportunities. Rev Neurol (Paris) 2024; 180:141-146. [PMID: 37558575 DOI: 10.1016/j.neurol.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 06/19/2023] [Indexed: 08/11/2023]
Abstract
Neurodegenerative disorders have a devastating disease course and an increasing prevalence due to prolonged life expectancy. In the last decades, it has become increasingly clear that these diseases often start much earlier, before the onset of symptoms, creating a potential window for pre-symptomatic treatment, a strategy that is desirable from both the biologic and the ethical point of view. However, studying treatments for a pre-symptomatic population presents objective difficulties. This article intends to give a perspective about opportunities and challenges of pre-symptomatic prevention of neurodegenerative diseases. Besides the requirement for biomarkers that would facilitate both the selection of study population and demonstrating a treatment effect, further considerations about balancing benefits, risks and uncertainties pertaining a pre-symptomatic population will be examined.
Collapse
Affiliation(s)
- L Mészáros
- Human Medicines, European Medicines Agency, Domenico Scarlattilaan 6, 1083 HS Amsterdam, Netherlands
| | - L Guizzaro
- Human Medicines, European Medicines Agency, Domenico Scarlattilaan 6, 1083 HS Amsterdam, Netherlands.
| |
Collapse
|
10
|
San Gil R, Pascovici D, Venturato J, Brown-Wright H, Mehta P, Madrid San Martin L, Wu J, Luan W, Chui YK, Bademosi AT, Swaminathan S, Naidoo S, Berning BA, Wright AL, Keating SS, Curtis MA, Faull RLM, Lee JD, Ngo ST, Lee A, Morsch M, Chung RS, Scotter E, Lisowski L, Mirzaei M, Walker AK. A transient protein folding response targets aggregation in the early phase of TDP-43-mediated neurodegeneration. Nat Commun 2024; 15:1508. [PMID: 38374041 PMCID: PMC10876645 DOI: 10.1038/s41467-024-45646-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/31/2024] [Indexed: 02/21/2024] Open
Abstract
Understanding the mechanisms that drive TDP-43 pathology is integral to combating amyotrophic lateral sclerosis (ALS), frontotemporal lobar degeneration (FTLD) and other neurodegenerative diseases. Here we generated a longitudinal quantitative proteomic map of the cortex from the cytoplasmic TDP-43 rNLS8 mouse model of ALS and FTLD, and developed a complementary open-access webtool, TDP-map ( https://shiny.rcc.uq.edu.au/TDP-map/ ). We identified distinct protein subsets enriched for diverse biological pathways with temporal alterations in protein abundance, including increases in protein folding factors prior to disease onset. This included increased levels of DnaJ homolog subfamily B member 5, DNAJB5, which also co-localized with TDP-43 pathology in diseased human motor cortex. DNAJB5 over-expression decreased TDP-43 aggregation in cell and cortical neuron cultures, and knockout of Dnajb5 exacerbated motor impairments caused by AAV-mediated cytoplasmic TDP-43 expression in mice. Together, these findings reveal molecular mechanisms at distinct stages of ALS and FTLD progression and suggest that protein folding factors could be protective in neurodegenerative diseases.
Collapse
Affiliation(s)
- Rebecca San Gil
- Neurodegeneration Pathobiology Laboratory, Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Dana Pascovici
- Insight Stats, Croydon Park, NSW, Australia
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde Sydney, NSW, Australia
| | - Juliana Venturato
- Neurodegeneration Pathobiology Laboratory, Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Heledd Brown-Wright
- Neurodegeneration Pathobiology Laboratory, Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Prachi Mehta
- Neurodegeneration Pathobiology Laboratory, Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
- Motor Neuron Disease Research Centre, Macquarie Medical School, Macquarie University, Sydney, NSW, Australia
| | - Lidia Madrid San Martin
- Neurodegeneration Pathobiology Laboratory, Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Jemma Wu
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde Sydney, NSW, Australia
| | - Wei Luan
- Neurodegeneration Pathobiology Laboratory, Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Yi Kit Chui
- Neurodegeneration Pathobiology Laboratory, Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Adekunle T Bademosi
- Neurodegeneration Pathobiology Laboratory, Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Shilpa Swaminathan
- Neurodegeneration Pathobiology Laboratory, Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Serey Naidoo
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Britt A Berning
- Neurodegeneration Pathobiology Laboratory, Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Amanda L Wright
- Neurodegeneration Pathobiology Laboratory, Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Sean S Keating
- Neurodegeneration Pathobiology Laboratory, Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Maurice A Curtis
- Centre for Brain Research, University of Auckland, Auckland, New Zealand
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
| | - Richard L M Faull
- Centre for Brain Research, University of Auckland, Auckland, New Zealand
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
| | - John D Lee
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, Brisbane, QLD, Australia
| | - Shyuan T Ngo
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Albert Lee
- Motor Neuron Disease Research Centre, Macquarie Medical School, Macquarie University, Sydney, NSW, Australia
| | - Marco Morsch
- Motor Neuron Disease Research Centre, Macquarie Medical School, Macquarie University, Sydney, NSW, Australia
| | - Roger S Chung
- Motor Neuron Disease Research Centre, Macquarie Medical School, Macquarie University, Sydney, NSW, Australia
| | - Emma Scotter
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Leszek Lisowski
- Vector and Genome Engineering Facility, Children's Medical Research Institute, Westmead, NSW, Australia
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine - National Research Institute, Warsaw, Poland
- Translational Vectorology Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Mehdi Mirzaei
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde Sydney, NSW, Australia
| | - Adam K Walker
- Neurodegeneration Pathobiology Laboratory, Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
11
|
Abrahams S. Neuropsychological impairment in amyotrophic lateral sclerosis-frontotemporal spectrum disorder. Nat Rev Neurol 2023; 19:655-667. [PMID: 37828358 DOI: 10.1038/s41582-023-00878-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2023] [Indexed: 10/14/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease with a rapid course, characterized by motor neuron dysfunction, leading to progressive disability and death. This Review, which is aimed at neurologists, psychologists and other health professionals who follow evidence-based practice relating to ALS and frontotemporal dementia (FTD), examines the neuropsychological evidence that has driven the reconceptualization of ALS as a spectrum disorder ranging from a pure motor phenotype to ALS-FTD. It focuses on changes in cognition and behaviour, which vary in severity across the spectrum: around 50% individuals with ALS are within the normal range, 15% meet the criteria for ALS-FTD, and the remaining 35% are in the mid-spectrum range with milder and more focal impairments. The cognitive impairments include deficits in verbal fluency, executive functions, social cognition and language, and apathy is the most prevalent behavioural change. The pattern and severity of cognitive and behavioural change predicts underlying regional cerebral dysfunction from brain imaging and post-mortem pathology. Our increased recognition of cognition and behaviour as part of the ALS phenotype has led to the development and standardization of assessment tools, which have been incorporated into research and clinical care. Measuring change over the course of the disease is vital for clinical trials, and neuropsychology is proving to be a biomarker for the earliest preclinical changes.
Collapse
Affiliation(s)
- Sharon Abrahams
- Human Cognitive Neuroscience, Department of Psychology, School of Philosophy, Psychology and Language Sciences, University of Edinburgh, Edinburgh, UK.
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
12
|
Stikvoort García DJL, Sleutjes BTHM, van Schelven LJ, Goedee HS, van den Berg LH. Diagnostic accuracy of nerve excitability and compound muscle action potential scan derived biomarkers in amyotrophic lateral sclerosis. Eur J Neurol 2023; 30:3068-3078. [PMID: 37354059 DOI: 10.1111/ene.15954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 06/26/2023]
Abstract
BACKGROUND AND PURPOSE The lack of reliable early biomarkers still causes substantial diagnostic delays in amyotrophic lateral sclerosis (ALS). The aim was to assess the diagnostic accuracy of a novel electrophysiological protocol in patients with suspected motor neuron disease (MND). METHODS Consecutive patients with suspected MND were prospectively recruited at our tertiary referral centre for MND in Utrecht, The Netherlands. Procedures were performed in accordance with the Standards for Reporting of Diagnostic Accuracy. In addition to the standard diagnostic workup, an electrophysiological protocol of compound muscle action potential (CMAP) scans and nerve excitability tests was performed on patients' thenar muscles. The combined diagnostic yield of nerve excitability and CMAP scan based motor unit number estimation was compared to the Awaji and Gold Coast criteria and their added value was determined. RESULTS In all, 153 ALS or progressive muscular atrophy patients, 63 disease controls and 43 healthy controls were included. Our electrophysiological protocol had high diagnostic accuracy (area under the curve [AUC] 0.85, 95% confidence interval [95% CI] 0.80-0.90), even in muscles with undetectable axon loss (AUC 0.78, 95% CI 0.70-0.85) and in bulbar-onset patients (AUC 0.85, 95% CI 0.73-0.95). Twenty-four of 33 (73%) ALS patients who could not be diagnosed during the same visit were correctly identified, as well as 8/13 (62%) ALS patients not meeting the Gold Coast criteria and 49/59 (83%) ALS patients not meeting the Awaji criteria during this first visit. CONCLUSIONS Our practical and non-invasive electrophysiological protocol may improve early diagnosis in clinically challenging patients with suspected ALS. Routine incorporation may boost early diagnosis, enhance patient selection and generate baseline measures for clinical trials.
Collapse
Affiliation(s)
- D J L Stikvoort García
- Department of Neurology, Brain Center Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands
| | - B T H M Sleutjes
- Department of Neurology, Brain Center Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands
| | - L J van Schelven
- Department of Medical Technology and Clinical Physics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - H S Goedee
- Department of Neurology, Brain Center Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands
| | - L H van den Berg
- Department of Neurology, Brain Center Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
13
|
Nunez Y, Balalian A, Parks RM, He MZ, Hansen J, Raaschou-Nielsen O, Ketzel M, Khan J, Brandt J, Vermeulen R, Peters S, Weisskopf MG, Re DB, Goldsmith J, Kioumourtzoglou MA. Exploring Relevant Time Windows in the Association Between PM2.5 Exposure and Amyotrophic Lateral Sclerosis: A Case-Control Study in Denmark. Am J Epidemiol 2023; 192:1499-1508. [PMID: 37092253 PMCID: PMC10666968 DOI: 10.1093/aje/kwad099] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 10/08/2022] [Accepted: 04/17/2023] [Indexed: 04/25/2023] Open
Abstract
Studies suggest a link between particulate matter less than or equal to 2.5 μm in diameter (PM2.5) and amyotrophic lateral sclerosis (ALS), but to our knowledge critical exposure windows have not been examined. We performed a case-control study in the Danish population spanning the years 1989-2013. Cases were selected from the Danish National Patient Registry based on International Classification of Diseases codes. Five controls were randomly selected from the Danish Civil Registry and matched to a case on vital status, age, and sex. PM2.5 concentration at residential addresses was assigned using monthly predictions from a dispersion model. We used conditional logistic regression to estimate odds ratios (ORs) and 95% confidence intervals (CIs), adjusting for confounding. We evaluated exposure to averaged PM2.5 concentrations 12-24 months, 2-6 years, and 2-11 years pre-ALS diagnosis; annual lagged exposures up to 11 years prediagnosis; and cumulative associations for exposure in lags 1-5 years and 1-10 years prediagnosis, allowing for varying association estimates by year. We identified 3,983 cases and 19,915 controls. Cumulative exposure to PM2.5 in the period 2-6 years prediagnosis was associated with ALS (OR = 1.06, 95% CI: 0.99, 1.13). Exposures in the second, third, and fourth years prediagnosis were individually associated with higher odds of ALS (e.g., for lag 1, OR = 1.04, 95% CI: 1.00, 1.08). Exposure to PM2.5 within 6 years before diagnosis may represent a critical exposure window for ALS.
Collapse
Affiliation(s)
- Yanelli Nunez
- Correspondence to Dr. Yanelli Nunez, Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722 W. 168th Street, New York, NY 10032 (e-mail: )
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Bede P, Pradat PF. Editorial: The gap between academic advances and therapy development in motor neuron disease. Curr Opin Neurol 2023; 36:335-337. [PMID: 37462047 DOI: 10.1097/wco.0000000000001179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Affiliation(s)
- Peter Bede
- Computational Neuroimaging Group, School of Medicine, Trinity College
- Department of Neurology, St James's Hospital, Dublin, Ireland
- Department of Neurology, Pitié-Salpêtrière University Hospital
| | - Pierre-Francois Pradat
- Department of Neurology, Pitié-Salpêtrière University Hospital
- Laboratoire d'Imagerie Biomédicale, Sorbonne University, CNRS, INSERM, Paris, France
| |
Collapse
|
15
|
Bagyinszky E, Hulme J, An SSA. Studies of Genetic and Proteomic Risk Factors of Amyotrophic Lateral Sclerosis Inspire Biomarker Development and Gene Therapy. Cells 2023; 12:1948. [PMID: 37566027 PMCID: PMC10417729 DOI: 10.3390/cells12151948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/12/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is an incurable neurodegenerative disease affecting the upper and lower motor neurons, leading to muscle weakness, motor impairments, disabilities and death. Approximately 5-10% of ALS cases are associated with positive family history (familial ALS or fALS), whilst the remainder are sporadic (sporadic ALS, sALS). At least 50 genes have been identified as causative or risk factors for ALS. Established pathogenic variants include superoxide dismutase type 1 (SOD1), chromosome 9 open reading frame 72 (c9orf72), TAR DNA Binding Protein (TARDBP), and Fused In Sarcoma (FUS); additional ALS-related genes including Charged Multivesicular Body Protein 2B (CHMP2B), Senataxin (SETX), Sequestosome 1 (SQSTM1), TANK Binding Kinase 1 (TBK1) and NIMA Related Kinase 1 (NEK1), have been identified. Mutations in these genes could impair different mechanisms, including vesicle transport, autophagy, and cytoskeletal or mitochondrial functions. So far, there is no effective therapy against ALS. Thus, early diagnosis and disease risk predictions remain one of the best options against ALS symptomologies. Proteomic biomarkers, microRNAs, and extracellular vehicles (EVs) serve as promising tools for disease diagnosis or progression assessment. These markers are relatively easy to obtain from blood or cerebrospinal fluids and can be used to identify potential genetic causative and risk factors even in the preclinical stage before symptoms appear. In addition, antisense oligonucleotides and RNA gene therapies have successfully been employed against other diseases, such as childhood-onset spinal muscular atrophy (SMA), which could also give hope to ALS patients. Therefore, an effective gene and biomarker panel should be generated for potentially "at risk" individuals to provide timely interventions and better treatment outcomes for ALS patients as soon as possible.
Collapse
Affiliation(s)
- Eva Bagyinszky
- Graduate School of Environment Department of Industrial and Environmental Engineering, Gachon University, Seongnam-si 13120, Republic of Korea;
| | - John Hulme
- Graduate School of Environment Department of Industrial and Environmental Engineering, Gachon University, Seongnam-si 13120, Republic of Korea;
| | - Seong Soo A. An
- Department of Bionano Technology, Gachon University, Seongnam-si 13120, Republic of Korea
| |
Collapse
|
16
|
Pardo-Moreno T, Mohamed-Mohamed H, Suleiman-Martos S, Ramos-Rodriguez JJ, Rivas-Dominguez A, Melguizo-Rodríguez L, Gómez-Urquiza JL, Bermudez-Pulgarin B, Garcia-Morales V. Amyotrophic Lateral Sclerosis and Serum Lipid Level Association: A Systematic Review and Meta-Analytic Study. Int J Mol Sci 2023; 24:ijms24108675. [PMID: 37240018 DOI: 10.3390/ijms24108675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/16/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with unknown etiology. Many metabolic alterations occur during ALS progress and can be used as a method of pre-diagnostic and early diagnosis. Dyslipidemia is one of the physiological changes observed in numerous ALS patients. The aim of this study is to analyze the possible relationship between the rate of disease progression (functional rating scale (ALS-FRS)) and the plasma lipid levels at the early stage of ALS. A systematic review was carried out in July 2022. The search equation was "Triglycerides AND amyotrophic lateral sclerosis" and its variants. Four meta-analyses were performed. Four studies were included in the meta-analysis. No significant differences were observed between the lipid levels (total cholesterol, triglycerides, HDL cholesterol, and LDL cholesterol) and the ALS-FRS score at the onset of the disease. Although the number of studies included in this research was low, the results of this meta-analytic study suggest that there is no clear relationship between the symptoms observed in ALS patients and the plasma lipid levels. An increase in research, as well as an expansion of the geographical area, would be of interest.
Collapse
Affiliation(s)
- Teresa Pardo-Moreno
- Department of Physiology, Faculty of Health Sciences-Ceuta, University of Granada, 51001 Ceuta, Spain
| | - Himan Mohamed-Mohamed
- Department of Physiology, Faculty of Health Sciences-Ceuta, University of Granada, 51001 Ceuta, Spain
| | | | - Juan José Ramos-Rodriguez
- Department of Physiology, Faculty of Health Sciences-Ceuta, University of Granada, 51001 Ceuta, Spain
| | | | - Lucía Melguizo-Rodríguez
- Department of Nursery, Faculty of Health Sciences-Ceuta, University of Granada, 51001 Ceuta, Spain
| | - José L Gómez-Urquiza
- Department of Nursery, Faculty of Health Sciences-Ceuta, University of Granada, 51001 Ceuta, Spain
| | | | - Victoria Garcia-Morales
- Physiology Area, Department of Biomedicine, Biotechnology and Public Health, Faculty of Medicine, University of Cádiz, 11003 Cádiz, Spain
| |
Collapse
|
17
|
Goutman SA, Boss J, Iyer G, Habra H, Savelieff MG, Karnovsky A, Mukherjee B, Feldman EL. Body mass index associates with amyotrophic lateral sclerosis survival and metabolomic profiles. Muscle Nerve 2023; 67:208-216. [PMID: 36321729 PMCID: PMC9957813 DOI: 10.1002/mus.27744] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 10/25/2022] [Accepted: 10/29/2022] [Indexed: 11/07/2022]
Abstract
INTRODUCTION/AIMS Body mass index (BMI) is linked to amyotrophic lateral sclerosis (ALS) risk and prognosis, but additional research is needed. The aim of this study was to identify whether and when historical changes in BMI occurred in ALS participants, how these longer term trajectories associated with survival, and whether metabolomic profiles provided insight into potential mechanisms. METHODS ALS and control participants self-reported body height and weight 10 (reference) and 5 years earlier, and at study entry (diagnosis for ALS participants). Generalized estimating equations evaluated differences in BMI trajectories between cases and controls. ALS survival was evaluated by BMI trajectory group using accelerated failure time models. BMI trajectories and survival associations were explored using published metabolomic profiling and correlation networks. RESULTS Ten-year BMI trends differed between ALS and controls, with BMI loss in the 5 years before diagnosis despite BMI gains 10 to 5 years beforehand in both groups. An overall 10-year drop in BMI associated with a 27.1% decrease in ALS survival (P = .010). Metabolomic networks in ALS participants showed dysregulation in sphingomyelin, bile acid, and plasmalogen subpathways. DISCUSSION ALS participants lost weight in the 5-year period before enrollment. BMI trajectories had three distinct groups and the group with significant weight loss in the past 10 years had the worst survival. Participants with a high BMI and increase in weight in the 10 years before symptom onset also had shorter survival. Certain metabolomics profiles were associated with the BMI trajectories. Replicating these findings in prospective cohorts is warranted.
Collapse
Affiliation(s)
- Stephen A Goutman
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, Michigan, USA
| | - Jonathan Boss
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA
| | - Gayatri Iyer
- Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Hani Habra
- Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Masha G Savelieff
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, Michigan, USA
| | - Alla Karnovsky
- Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Bhramar Mukherjee
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA
| | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
18
|
Vidovic M, Müschen LH, Brakemeier S, Machetanz G, Naumann M, Castro-Gomez S. Current State and Future Directions in the Diagnosis of Amyotrophic Lateral Sclerosis. Cells 2023; 12:736. [PMID: 36899872 PMCID: PMC10000757 DOI: 10.3390/cells12050736] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by loss of upper and lower motor neurons, resulting in progressive weakness of all voluntary muscles and eventual respiratory failure. Non-motor symptoms, such as cognitive and behavioral changes, frequently occur over the course of the disease. Considering its poor prognosis with a median survival time of 2 to 4 years and limited causal treatment options, an early diagnosis of ALS plays an essential role. In the past, diagnosis has primarily been determined by clinical findings supported by electrophysiological and laboratory measurements. To increase diagnostic accuracy, reduce diagnostic delay, optimize stratification in clinical trials and provide quantitative monitoring of disease progression and treatment responsivity, research on disease-specific and feasible fluid biomarkers, such as neurofilaments, has been intensely pursued. Advances in imaging techniques have additionally yielded diagnostic benefits. Growing perception and greater availability of genetic testing facilitate early identification of pathogenic ALS-related gene mutations, predictive testing and access to novel therapeutic agents in clinical trials addressing disease-modified therapies before the advent of the first clinical symptoms. Lately, personalized survival prediction models have been proposed to offer a more detailed disclosure of the prognosis for the patient. In this review, the established procedures and future directions in the diagnostics of ALS are summarized to serve as a practical guideline and to improve the diagnostic pathway of this burdensome disease.
Collapse
Affiliation(s)
- Maximilian Vidovic
- Department of Neurology, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | | | - Svenja Brakemeier
- Department of Neurology and Center for Translational Neuro and Behavioral Sciences (C-TNBS), University Hospital Essen, 45147 Essen, Germany
| | - Gerrit Machetanz
- Department of Neurology, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Marcel Naumann
- Translational Neurodegeneration Section “Albrecht Kossel”, Department of Neurology, University Medical Center, University of Rostock, 18147 Rostock, Germany
| | - Sergio Castro-Gomez
- Department of Neurodegenerative Disease and Geriatric Psychiatry/Neurology, University Hospital Bonn, 53127 Bonn, Germany
- Institute of Physiology II, University Hospital Bonn, 53115 Bonn, Germany
- Department of Neuroimmunology, Institute of Innate Immunity, University Hospital Bonn, 53127 Bonn, Germany
| |
Collapse
|
19
|
Young CA, Ealing J, McDermott CJ, Williams TL, Al-Chalabi A, Majeed T, Talbot K, Harrower T, Faull C, Malaspina A, Annadale J, Mills RJ, Tennant A. Measuring disability in amyotrophic lateral sclerosis/motor neuron disease: the WHODAS 2.0-36, WHODAS 2.0-32, and WHODAS 2.0-12. Amyotroph Lateral Scler Frontotemporal Degener 2023; 24:63-70. [PMID: 35876069 DOI: 10.1080/21678421.2022.2102926] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/05/2022] [Accepted: 07/12/2022] [Indexed: 01/26/2023]
Abstract
Aim: To investigate whether the World Health Organization Disability Assessment Schedule 2.0 (WHODAS) can provide interval level measurement of disability in Amyotrophic Lateral Sclerosis (ALS), allowing parametric analyses. Methods: Data on the WHODAS 12, 32, and 36-item versions, from 1120 patients studied at one or more time points, were fit to the Rasch model and comparisons made against ALSFRS-R, King's staging, and mortality. Trajectory modeling was undertaken for a newly diagnosed (≤6 months) cohort of 454 individuals. Results: Total scores for WHODAS 32 and 36-item versions can be converted to interval level measurement suitable for individual clinical use, and the 12-item WHODAS total for group use. The 36-item version is shown to be equivalent to the 32-item version. Expected correlations were seen with King's staging, ALSFRS-R, and EQ-5D-5L. Trajectory analysis of disability (WHODAS 2.0) showed three clearly demarcated groups with differences in King's staging, depressive symptomatology and mortality, but not age. Conclusions: The WHODAS 2.0 is a brief patient reported outcome measure which can be used to measure disability in ALS. Provided the patient answers all 36 (32 if not working) items, the conversion table produces an interval level estimate for parametric analyses. The different trajectories demonstrated from diagnosis support the concept of a prodromal period, and suggest the WHODAS 2.0 could be used for surveillance of at risk populations, such as those with genetic predisposition.
Collapse
Affiliation(s)
- Carolyn A Young
- Walton Centre NHS Foundation Trust, Lower Lane, Liverpool, UK
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - John Ealing
- Department of Neurology, Greater Manchester Centre for Clinical Neurosciences, Salford, UK
| | | | - Tim L Williams
- Department of Neurology, Royal Victoria Infirmary, Newcastle upon Tyne, UK
| | - Ammar Al-Chalabi
- Department of Basic and Clinical Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, UK
- Department of Neurology, King's College Hospital, London, UK
| | - Tahir Majeed
- Department of Neurology, Lancashire Teaching Hospital, Preston, UK
| | - Kevin Talbot
- Department of Neurology, University of Oxford, Oxford, UK
| | | | | | | | - Joe Annadale
- Hywel Dda University Health Board, Wales, UK, and
| | - Roger J Mills
- Walton Centre NHS Foundation Trust, Lower Lane, Liverpool, UK
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Alan Tennant
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| |
Collapse
|
20
|
Steinruecke M, Lonergan RM, Selvaraj BT, Chandran S, Diaz-Castro B, Stavrou M. Blood-CNS barrier dysfunction in amyotrophic lateral sclerosis: Proposed mechanisms and clinical implications. J Cereb Blood Flow Metab 2023; 43:642-654. [PMID: 36704819 PMCID: PMC10108188 DOI: 10.1177/0271678x231153281] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
There is strong evidence for blood-brain and blood-spinal cord barrier dysfunction at the early stages of many neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). Since impairment of the blood-central nervous system barrier (BCNSB) occurs during the pre-symptomatic stages of ALS, the mechanisms underlying this pathology are likely also involved in the ALS disease process. In this review, we explore how drivers of ALS disease, particularly mitochondrial dysfunction, astrocyte pathology and neuroinflammation, may contribute to BCNSB impairment. Mitochondria are highly abundant in BCNSB tissue and mitochondrial dysfunction in ALS contributes to motor neuron death. Likewise, astrocytes adopt key physical, transport and metabolic functions at the barrier, many of which are impaired in ALS. Astrocytes also show raised expression of inflammatory markers in ALS and ablating ALS-causing transgenes in astrocytes slows disease progression. In addition, key drivers of neuroinflammation, including TAR DNA-binding protein 43 (TDP-43) pathology, matrix metalloproteinase activation and systemic inflammation, affect BCNSB integrity in ALS. Finally, we discuss the translational implications of BCNSB dysfunction in ALS, including the development of biomarkers for disease onset and progression, approaches aimed at restoring BCNSB integrity and in vitro modelling of the neurogliovascular system.
Collapse
Affiliation(s)
- Moritz Steinruecke
- Edinburgh Medical School, The University of Edinburgh, Edinburgh, UK.,University of Cambridge School of Clinical Medicine, Cambridge, UK
| | | | - Bhuvaneish T Selvaraj
- Euan MacDonald Centre for MND Research, The University of Edinburgh, Edinburgh, UK.,Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK.,Dementia Research Institute at The University of Edinburgh, Edinburgh, UK
| | - Siddharthan Chandran
- Euan MacDonald Centre for MND Research, The University of Edinburgh, Edinburgh, UK.,Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK.,Dementia Research Institute at The University of Edinburgh, Edinburgh, UK
| | - Blanca Diaz-Castro
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK.,Dementia Research Institute at The University of Edinburgh, Edinburgh, UK
| | - Maria Stavrou
- Euan MacDonald Centre for MND Research, The University of Edinburgh, Edinburgh, UK.,Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK.,Dementia Research Institute at The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
21
|
Yildiz O, Schroth J, Tree T, Turner MR, Shaw PJ, Henson SM, Malaspina A. Senescent-like Blood Lymphocytes and Disease Progression in Amyotrophic Lateral Sclerosis. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2023; 10:e200042. [PMID: 36323511 PMCID: PMC9673751 DOI: 10.1212/nxi.0000000000200042] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 08/22/2022] [Indexed: 03/11/2023]
Abstract
BACKGROUND AND OBJECTIVES Aging is known to exacerbate neuroinflammation, and in the neurodegenerative disorder amyotrophic lateral sclerosis (ALS), an older age is associated with a worse prognosis. We have previously shown the activation of cell senescence pathways in the proteome of peripheral blood mononuclear cells and the increase of proinflammatory cytokines in blood from individuals living with ALS. In this single-center, retrospective study, we investigated the expression of senescent-like blood mononuclear cells in ALS. METHODS We first applied multidimensional cytometry by time-of-flight (CyTOF) to study the senescent immunophenotype of blood mononuclear cells from 21 patients with ALS and 10 healthy controls (HCs). We then used targeted flow cytometry (FC) to investigate frequencies of senescent blood lymphocytes in 40 patients with ALS and 20 HCs. Longitudinal analysis included 2 additional time points in 17 patients with ALS. Frequencies of senescent-like lymphocytes were analyzed in relation to survival. RESULTS Unsupervised clustering of CyTOF data showed higher frequencies of senescent CD4+CD27-CD57+ T cells in patients with ALS compared with those in HCs (p = 0.0017, false discovery (FDR)-adjusted p = 0.029). Moderate to strong negative correlations were identified between CD4 T central memory-cell frequencies and survival (R = -061, p = 0.01; FDR-adjusted p < 0.1) and between CD95 CD8 cells and ALS functional rating scale revised at baseline (R = -0.72, p = 0.001; FDR-adjusted p < 0.1).Targeted FC analysis showed higher memory T regulatory cells (p = 0.0052) and memory CD8+ T cell (M-Tc; p = 0.0006) in bulbar ALS (A-B) compared with those in limb ALS (A-L), while late memory B cells (LM-B) were also elevated in A-B and fast-progressing ALS (p = 0.0059). Higher M-Tc levels separated A-B from A-L (AUC: 0.887; p < 0.0001). A linear regression model with prespecified clinical independent variables and neurofilament light chain plasma concentration showed that higher frequencies of LM-B predicted a shorter survival (hazard ratio: 1.094, CI: 1.026-1.167; p = 0.006). DISCUSSION Our data suggest that a systemic elevation of senescent and late memory T and B lymphocytes is a feature of faster progressing ALS and of ALS individuals with bulbar involvement. Lymphocyte senescence and their memory state may be central to the immune dysregulation known to drive disease progression in ALS and a target for biomarkers and therapeutics discovery.
Collapse
Affiliation(s)
- Ozlem Yildiz
- From the Neuroscience and Trauma Centre (O.Y., A.M.), Blizard Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London; Queen Square Motor Neuron Disease Centre (A.M.), Neuromuscular Department, Institute of Neurology, University College London; Translational Medicine and Therapeutics (J.S., S.M.H.), William Harvey Research Institute, Barts and the London, Queen Mary University of London; Department of Immunobiology (T.T.), School of Immunology & Microbial Sciences, King's College London; Nuffield Department of Clinical Neurosciences (M.R.T.), University of Oxford; and Sheffield Institute for Translational Neuroscience (P.J.S.), University of Sheffield, UK
| | - Johannes Schroth
- From the Neuroscience and Trauma Centre (O.Y., A.M.), Blizard Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London; Queen Square Motor Neuron Disease Centre (A.M.), Neuromuscular Department, Institute of Neurology, University College London; Translational Medicine and Therapeutics (J.S., S.M.H.), William Harvey Research Institute, Barts and the London, Queen Mary University of London; Department of Immunobiology (T.T.), School of Immunology & Microbial Sciences, King's College London; Nuffield Department of Clinical Neurosciences (M.R.T.), University of Oxford; and Sheffield Institute for Translational Neuroscience (P.J.S.), University of Sheffield, UK
| | - Timothy Tree
- From the Neuroscience and Trauma Centre (O.Y., A.M.), Blizard Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London; Queen Square Motor Neuron Disease Centre (A.M.), Neuromuscular Department, Institute of Neurology, University College London; Translational Medicine and Therapeutics (J.S., S.M.H.), William Harvey Research Institute, Barts and the London, Queen Mary University of London; Department of Immunobiology (T.T.), School of Immunology & Microbial Sciences, King's College London; Nuffield Department of Clinical Neurosciences (M.R.T.), University of Oxford; and Sheffield Institute for Translational Neuroscience (P.J.S.), University of Sheffield, UK
| | - Martin R Turner
- From the Neuroscience and Trauma Centre (O.Y., A.M.), Blizard Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London; Queen Square Motor Neuron Disease Centre (A.M.), Neuromuscular Department, Institute of Neurology, University College London; Translational Medicine and Therapeutics (J.S., S.M.H.), William Harvey Research Institute, Barts and the London, Queen Mary University of London; Department of Immunobiology (T.T.), School of Immunology & Microbial Sciences, King's College London; Nuffield Department of Clinical Neurosciences (M.R.T.), University of Oxford; and Sheffield Institute for Translational Neuroscience (P.J.S.), University of Sheffield, UK
| | - Pamela J Shaw
- From the Neuroscience and Trauma Centre (O.Y., A.M.), Blizard Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London; Queen Square Motor Neuron Disease Centre (A.M.), Neuromuscular Department, Institute of Neurology, University College London; Translational Medicine and Therapeutics (J.S., S.M.H.), William Harvey Research Institute, Barts and the London, Queen Mary University of London; Department of Immunobiology (T.T.), School of Immunology & Microbial Sciences, King's College London; Nuffield Department of Clinical Neurosciences (M.R.T.), University of Oxford; and Sheffield Institute for Translational Neuroscience (P.J.S.), University of Sheffield, UK
| | - Sian M Henson
- From the Neuroscience and Trauma Centre (O.Y., A.M.), Blizard Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London; Queen Square Motor Neuron Disease Centre (A.M.), Neuromuscular Department, Institute of Neurology, University College London; Translational Medicine and Therapeutics (J.S., S.M.H.), William Harvey Research Institute, Barts and the London, Queen Mary University of London; Department of Immunobiology (T.T.), School of Immunology & Microbial Sciences, King's College London; Nuffield Department of Clinical Neurosciences (M.R.T.), University of Oxford; and Sheffield Institute for Translational Neuroscience (P.J.S.), University of Sheffield, UK
| | - Andrea Malaspina
- From the Neuroscience and Trauma Centre (O.Y., A.M.), Blizard Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London; Queen Square Motor Neuron Disease Centre (A.M.), Neuromuscular Department, Institute of Neurology, University College London; Translational Medicine and Therapeutics (J.S., S.M.H.), William Harvey Research Institute, Barts and the London, Queen Mary University of London; Department of Immunobiology (T.T.), School of Immunology & Microbial Sciences, King's College London; Nuffield Department of Clinical Neurosciences (M.R.T.), University of Oxford; and Sheffield Institute for Translational Neuroscience (P.J.S.), University of Sheffield, UK.
| |
Collapse
|
22
|
Pellecchia A, Kritikos M, Guralnik J, Ahuvia I, Santiago-Michels S, Carr M, Kotov R, Bromet EJ, Clouston SAP, Luft BJ. Physical Functional Impairment and the Risk of Incident Mild Cognitive Impairment in an Observational Study of World Trade Center Responders. Neurol Clin Pract 2022; 12:e162-e171. [PMID: 36540142 PMCID: PMC9757114 DOI: 10.1212/cpj.0000000000200089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/24/2022] [Indexed: 11/15/2022]
Abstract
Background and Objectives Posttraumatic stress disorder (PTSD) has been linked to increased risk of cognitive dysfunction and physical functional impairment (PFI). The objective of this prospective cohort study was to examine whether PFI was associated with increased risk of incident mild cognitive impairment (MCI) among World Trade Center (WTC) responders with PTSD. We hypothesized that responders with PTSD would have an elevated risk of incident MCI and that PFI would mediate this increase. Methods We examined responder participants in the WTC Aging Study whose baseline physical assessments were completed by May 2016-April 2017 and were followed up at least once before December 2019. Those without complete demographic, medical, or behavioral data were excluded. PFI was assessed using measures of upper body strength (maximal handgrip strength [HGS]) and lower extremity physical functioning (Short Physical Performance Battery). PTSD was rated using a diagnostic interview and symptom checklist; MCI and dementia were assessed using the Montreal Cognitive Assessment and diagnosed using the National Institute on Aging-Alzheimer's Association criteria. Group differences and longitudinal comparisons were examined. Cox proportional hazards models were evaluated from time to incident MCI and conversion to dementia. A mediation analysis examined whether PFI mediated associations between PTSD and MCI. Results Within the sample of 2,687 WTC responders, 324 (12.06%, 95% CI = [10.83-13.29]) had lower extremity PFI. Responders with lower extremity PFI were older, had lower education and higher body mass, and were at a higher risk of pulmonary embolisms and PTSD. Responders with lower extremity PFI demonstrated lower baseline cognition and had increased hazards of MCI (multivariable-adjusted hazards ratio [aHR] = 1.55 [95% CI 1.21-1.98]); those with MCI converted to dementia more rapidly than those without PFI (2.73 [1.38-5.39] p = 0.004). In addition, each standard deviation decrease in HGS was associated with increased hazards of developing MCI (aHR = 1.35 [95% CI 1.10-1.66]). A mediation model suggested PFI played an intermediary role in the relationship between PTSD and MCI. Discussion WTC responders with PFI demonstrated worse cognitive and behavioral outcomes, and PFI played an intermediary role in the relationship between PTSD and incident MCI, suggesting that PFI may be an early indicator of MCI in responders with PTSD. Regular monitoring of PFI should be considered among PTSD populations.
Collapse
Affiliation(s)
- Alison Pellecchia
- Stony Brook World Trade Center Wellness Program (AP, SS-M, MC, SAPC, BJL), Renaissance School of Medicine at Stony Brook University, NY; Program in Public Health and Department of Family (MK, SAPC), Population, and Preventive Medicine, Renaissance School of Medicine at Stony Brook University, NY; Department of Epidemiology and Public Health (JG), University of Maryland School of Medicine, Baltimore; Department of Psychology (IA), Stony Brook University, NY; Department of Psychiatry (RK, EJB), Stony Brook University, NY; and Department of Medicine (BJL), Renaissance School of Medicine at Stony Brook University, NY
| | - Minos Kritikos
- Stony Brook World Trade Center Wellness Program (AP, SS-M, MC, SAPC, BJL), Renaissance School of Medicine at Stony Brook University, NY; Program in Public Health and Department of Family (MK, SAPC), Population, and Preventive Medicine, Renaissance School of Medicine at Stony Brook University, NY; Department of Epidemiology and Public Health (JG), University of Maryland School of Medicine, Baltimore; Department of Psychology (IA), Stony Brook University, NY; Department of Psychiatry (RK, EJB), Stony Brook University, NY; and Department of Medicine (BJL), Renaissance School of Medicine at Stony Brook University, NY
| | - Jack Guralnik
- Stony Brook World Trade Center Wellness Program (AP, SS-M, MC, SAPC, BJL), Renaissance School of Medicine at Stony Brook University, NY; Program in Public Health and Department of Family (MK, SAPC), Population, and Preventive Medicine, Renaissance School of Medicine at Stony Brook University, NY; Department of Epidemiology and Public Health (JG), University of Maryland School of Medicine, Baltimore; Department of Psychology (IA), Stony Brook University, NY; Department of Psychiatry (RK, EJB), Stony Brook University, NY; and Department of Medicine (BJL), Renaissance School of Medicine at Stony Brook University, NY
| | - Isaac Ahuvia
- Stony Brook World Trade Center Wellness Program (AP, SS-M, MC, SAPC, BJL), Renaissance School of Medicine at Stony Brook University, NY; Program in Public Health and Department of Family (MK, SAPC), Population, and Preventive Medicine, Renaissance School of Medicine at Stony Brook University, NY; Department of Epidemiology and Public Health (JG), University of Maryland School of Medicine, Baltimore; Department of Psychology (IA), Stony Brook University, NY; Department of Psychiatry (RK, EJB), Stony Brook University, NY; and Department of Medicine (BJL), Renaissance School of Medicine at Stony Brook University, NY
| | - Stephanie Santiago-Michels
- Stony Brook World Trade Center Wellness Program (AP, SS-M, MC, SAPC, BJL), Renaissance School of Medicine at Stony Brook University, NY; Program in Public Health and Department of Family (MK, SAPC), Population, and Preventive Medicine, Renaissance School of Medicine at Stony Brook University, NY; Department of Epidemiology and Public Health (JG), University of Maryland School of Medicine, Baltimore; Department of Psychology (IA), Stony Brook University, NY; Department of Psychiatry (RK, EJB), Stony Brook University, NY; and Department of Medicine (BJL), Renaissance School of Medicine at Stony Brook University, NY
| | - Melissa Carr
- Stony Brook World Trade Center Wellness Program (AP, SS-M, MC, SAPC, BJL), Renaissance School of Medicine at Stony Brook University, NY; Program in Public Health and Department of Family (MK, SAPC), Population, and Preventive Medicine, Renaissance School of Medicine at Stony Brook University, NY; Department of Epidemiology and Public Health (JG), University of Maryland School of Medicine, Baltimore; Department of Psychology (IA), Stony Brook University, NY; Department of Psychiatry (RK, EJB), Stony Brook University, NY; and Department of Medicine (BJL), Renaissance School of Medicine at Stony Brook University, NY
| | - Roman Kotov
- Stony Brook World Trade Center Wellness Program (AP, SS-M, MC, SAPC, BJL), Renaissance School of Medicine at Stony Brook University, NY; Program in Public Health and Department of Family (MK, SAPC), Population, and Preventive Medicine, Renaissance School of Medicine at Stony Brook University, NY; Department of Epidemiology and Public Health (JG), University of Maryland School of Medicine, Baltimore; Department of Psychology (IA), Stony Brook University, NY; Department of Psychiatry (RK, EJB), Stony Brook University, NY; and Department of Medicine (BJL), Renaissance School of Medicine at Stony Brook University, NY
| | - Evelyn J Bromet
- Stony Brook World Trade Center Wellness Program (AP, SS-M, MC, SAPC, BJL), Renaissance School of Medicine at Stony Brook University, NY; Program in Public Health and Department of Family (MK, SAPC), Population, and Preventive Medicine, Renaissance School of Medicine at Stony Brook University, NY; Department of Epidemiology and Public Health (JG), University of Maryland School of Medicine, Baltimore; Department of Psychology (IA), Stony Brook University, NY; Department of Psychiatry (RK, EJB), Stony Brook University, NY; and Department of Medicine (BJL), Renaissance School of Medicine at Stony Brook University, NY
| | - Sean A P Clouston
- Stony Brook World Trade Center Wellness Program (AP, SS-M, MC, SAPC, BJL), Renaissance School of Medicine at Stony Brook University, NY; Program in Public Health and Department of Family (MK, SAPC), Population, and Preventive Medicine, Renaissance School of Medicine at Stony Brook University, NY; Department of Epidemiology and Public Health (JG), University of Maryland School of Medicine, Baltimore; Department of Psychology (IA), Stony Brook University, NY; Department of Psychiatry (RK, EJB), Stony Brook University, NY; and Department of Medicine (BJL), Renaissance School of Medicine at Stony Brook University, NY
| | - Benjamin J Luft
- Stony Brook World Trade Center Wellness Program (AP, SS-M, MC, SAPC, BJL), Renaissance School of Medicine at Stony Brook University, NY; Program in Public Health and Department of Family (MK, SAPC), Population, and Preventive Medicine, Renaissance School of Medicine at Stony Brook University, NY; Department of Epidemiology and Public Health (JG), University of Maryland School of Medicine, Baltimore; Department of Psychology (IA), Stony Brook University, NY; Department of Psychiatry (RK, EJB), Stony Brook University, NY; and Department of Medicine (BJL), Renaissance School of Medicine at Stony Brook University, NY
| |
Collapse
|
23
|
Parks RM, Nunez Y, Balalian AA, Gibson EA, Hansen J, Raaschou-Nielsen O, Ketzel M, Khan J, Brandt J, Vermeulen R, Peters S, Goldsmith J, Re DB, Weisskopf MG, Kioumourtzoglou MA. Long-term Traffic-related Air Pollutant Exposure and Amyotrophic Lateral Sclerosis Diagnosis in Denmark: A Bayesian Hierarchical Analysis. Epidemiology 2022; 33:757-766. [PMID: 35944145 PMCID: PMC9560992 DOI: 10.1097/ede.0000000000001536] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease. Limited evidence suggests ALS diagnosis may be associated with air pollution exposure and specifically traffic-related pollutants. METHODS In this population-based case-control study, we used 3,937 ALS cases from the Danish National Patient Register diagnosed during 1989-2013 and matched on age, sex, year of birth, and vital status to 19,333 population-based controls free of ALS at index date. We used validated predictions of elemental carbon (EC), nitrogen oxides (NO x ), carbon monoxide (CO), and fine particles (PM 2.5 ) to assign 1-, 5-, and 10-year average exposures pre-ALS diagnosis at study participants' present and historical residential addresses. We used an adjusted Bayesian hierarchical conditional logistic model to estimate individual pollutant associations and joint and average associations for traffic-related pollutants (EC, NO x , CO). RESULTS For a standard deviation (SD) increase in 5-year average concentrations, EC (SD = 0.42 µg/m 3 ) had a high probability of individual association with increased odds of ALS (11.5%; 95% credible interval [CrI] = -1.0%, 25.6%; 96.3% posterior probability of positive association), with negative associations for NO x (SD = 20 µg/m 3 ) (-4.6%; 95% CrI = 18.1%, 8.9%; 27.8% posterior probability of positive association), CO (SD = 106 µg/m 3 ) (-3.2%; 95% CrI = 14.4%, 10.0%; 26.7% posterior probability of positive association), and a null association for nonelemental carbon fine particles (non-EC PM 2.5 ) (SD = 2.37 µg/m 3 ) (0.7%; 95% CrI = 9.2%, 12.4%). We found no association between ALS and joint or average traffic pollution concentrations. CONCLUSIONS This study found high probability of a positive association between ALS diagnosis and EC concentration. Further work is needed to understand the role of traffic-related air pollution in ALS pathogenesis.
Collapse
Affiliation(s)
- Robbie M Parks
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, USA
- The Earth Institute, Columbia University, New York, New York, USA
| | - Yanelli Nunez
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Arin A Balalian
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Elizabeth A Gibson
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, USA
- Department of Biostatistics, Harvard TH Chan School of Public Health, Boston, Massachusetts, USA
| | - Johnni Hansen
- Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Ole Raaschou-Nielsen
- Danish Cancer Society Research Center, Copenhagen, Denmark
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Matthias Ketzel
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
- Global Centre for Clean Air Research (GCARE), University of Surrey, Guildford, United Kingdom
| | - Jibran Khan
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Jørgen Brandt
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
- iClimate – interdisciplinary Center for Climate Change, Aarhus University, Denmark
| | - Roel Vermeulen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Susan Peters
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Jeff Goldsmith
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Diane B. Re
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Marc G. Weisskopf
- Departments of Environmental Health and Epidemiology, T. H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
| | - Marianthi-Anna Kioumourtzoglou
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, USA
| |
Collapse
|
24
|
Benatar M, Granit V, Andersen PM, Grignon AL, McHutchison C, Cosentino S, Malaspina A, Wuu J. Mild motor impairment as prodromal state in amyotrophic lateral sclerosis: a new diagnostic entity. Brain 2022; 145:3500-3508. [PMID: 35594156 PMCID: PMC9586537 DOI: 10.1093/brain/awac185] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/15/2022] [Accepted: 05/11/2022] [Indexed: 11/14/2022] Open
Abstract
Amyotrophic lateral sclerosis, when viewed as a biological entity rather than a clinical syndrome, probably evolves along a continuum, with the initial clinically silent phase eventually evolving into clinically manifest amyotrophic lateral sclerosis. Since motor neuron degeneration is incremental and cumulative over time, it stands to reason that the clinical syndrome of amyotrophic lateral sclerosis is probably preceded by a prodromal state characterized by minor motor abnormalities that are initially insufficient to permit a diagnosis of amyotrophic lateral sclerosis. This prodromal period, however, is usually missed, given the invariably long delays between symptom onset and diagnostic evaluation. The Pre-Symptomatic Familial ALS Study, a cohort study of pre-symptomatic gene mutation carriers, offers a unique opportunity to observe what is typically unseen. Here we describe the clinical characterization of 20 pre-symptomatic mutation carriers (in SOD1, FUS and C9orf72) whose phenoconversion to clinically manifest disease has been prospectively studied. In so doing, we observed a prodromal phase of mild motor impairment in 11 of 20 phenoconverters. Among the n = 12 SOD1 A4V mutation carriers, phenoconversion was characterized by abrupt onset of weakness, with a short (1-3.5 months) prodromal period observable in a small minority (n = 3); the observable prodrome invariably involved the lower motor neuron axis. By contrast, in all n = 3 SOD1 I113T mutation carriers, diffuse lower motor neuron and upper motor neuron signs evolved insidiously during a prodromal period that extended over a period of many years; prodromal manifestations eventually coalesced into a clinical syndrome that is recognizable as amyotrophic lateral sclerosis. Similarly, in all n = 3 C9orf72 hexanucleotide repeat expansion mutation carriers, focal or multifocal manifestations of disease evolved gradually over a prodromal period of 1-2 years. Clinically manifest ALS also emerged following a prodromal period of mild motor impairment, lasting >4 years and ∼9 months, respectively, in n = 2 with other gene mutations (SOD1 L106V and FUS c.521del6). On the basis of this empirical evidence, we conclude that mild motor impairment is an observable state that precedes clinically manifest disease in three of the most common genetic forms of amyotrophic lateral sclerosis (SOD1, FUS, C9orf72), and perhaps in all genetic amyotrophic lateral sclerosis; we also propose that this might be true of non-genetic amyotrophic lateral sclerosis. As a diagnostic label, mild motor impairment provides the language to describe the indeterminate (and sometimes intermediate) transition between the unaffected state and clinically manifest amyotrophic lateral sclerosis. Recognizing mild motor impairment as a distinct clinical entity should generate fresh urgency for developing biomarkers reflecting the earliest events in the degenerative cascade, with potential to reduce the diagnostic delay and to permit earlier therapeutic intervention.
Collapse
Affiliation(s)
- Michael Benatar
- Department of Neurology, University of Miami, Miami, FL, USA
| | - Volkan Granit
- Department of Neurology, University of Miami, Miami, FL, USA
| | - Peter M Andersen
- Department of Clinical Science, Neurosciences, Umeå University, Umeå, Sweden
| | | | - Caroline McHutchison
- Department of Psychology, University of Edinburgh, Edinburgh, UK
- Euan MacDonald Center for MND Research, University of Edinburgh, Edinburgh, UK
| | | | | | - Joanne Wuu
- Department of Neurology, University of Miami, Miami, FL, USA
| |
Collapse
|
25
|
Synucleinopathy in Amyotrophic Lateral Sclerosis: A Potential Avenue for Antisense Therapeutics? Int J Mol Sci 2022; 23:ijms23169364. [PMID: 36012622 PMCID: PMC9409035 DOI: 10.3390/ijms23169364] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 01/02/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common adult-onset motor neuron disease classified as both a neurodegenerative and neuromuscular disorder. With a complex aetiology and no current cure for ALS, broadening the understanding of disease pathology and therapeutic avenues is required to progress with patient care. Alpha-synuclein (αSyn) is a hallmark for disease in neurodegenerative disorders, such as Parkinson's disease, Lewy body dementia, and multiple system atrophy. A growing body of evidence now suggests that αSyn may also play a pathological role in ALS, with αSyn-positive Lewy bodies co-aggregating alongside known ALS pathogenic proteins, such as SOD1 and TDP-43. This review endeavours to capture the scope of literature regarding the aetiology and development of ALS and its commonalities with "synucleinopathy disorders". We will discuss the involvement of αSyn in ALS and motor neuron disease pathology, and the current theories and strategies for therapeutics in ALS treatment, as well as those targeting αSyn for synucleinopathies, with a core focus on small molecule RNA technologies.
Collapse
|
26
|
Juengling FD, Wuest F, Kalra S, Agosta F, Schirrmacher R, Thiel A, Thaiss W, Müller HP, Kassubek J. Simultaneous PET/MRI: The future gold standard for characterizing motor neuron disease-A clinico-radiological and neuroscientific perspective. Front Neurol 2022; 13:890425. [PMID: 36061999 PMCID: PMC9428135 DOI: 10.3389/fneur.2022.890425] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 07/20/2022] [Indexed: 01/18/2023] Open
Abstract
Neuroimaging assessment of motor neuron disease has turned into a cornerstone of its clinical workup. Amyotrophic lateral sclerosis (ALS), as a paradigmatic motor neuron disease, has been extensively studied by advanced neuroimaging methods, including molecular imaging by MRI and PET, furthering finer and more specific details of the cascade of ALS neurodegeneration and symptoms, facilitated by multicentric studies implementing novel methodologies. With an increase in multimodal neuroimaging data on ALS and an exponential improvement in neuroimaging technology, the need for harmonization of protocols and integration of their respective findings into a consistent model becomes mandatory. Integration of multimodal data into a model of a continuing cascade of functional loss also calls for the best attempt to correlate the different molecular imaging measurements as performed at the shortest inter-modality time intervals possible. As outlined in this perspective article, simultaneous PET/MRI, nowadays available at many neuroimaging research sites, offers the perspective of a one-stop shop for reproducible imaging biomarkers on neuronal damage and has the potential to become the new gold standard for characterizing motor neuron disease from the clinico-radiological and neuroscientific perspectives.
Collapse
Affiliation(s)
- Freimut D. Juengling
- Division of Oncologic Imaging, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
- Faculty of Medicine, University Bern, Bern, Switzerland
| | - Frank Wuest
- Division of Oncologic Imaging, University of Alberta, Edmonton, AB, Canada
| | - Sanjay Kalra
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
- Department of Neurology, University of Alberta, Edmonton, AB, Canada
| | - Federica Agosta
- Division of Neuroscience, San Raffaele Scientific Institute, University Vita Salute San Raffaele, Milan, Italy
| | - Ralf Schirrmacher
- Division of Oncologic Imaging, University of Alberta, Edmonton, AB, Canada
- Medical Isotope and Cyclotron Facility, University of Alberta, Edmonton, AB, Canada
| | - Alexander Thiel
- Lady Davis Institute for Medical Research, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Wolfgang Thaiss
- Department of Nuclear Medicine, University of Ulm Medical Center, Ulm, Germany
- Department of Diagnostic and Interventional Radiology, University of Ulm Medical Center, Ulm, Germany
| | - Hans-Peter Müller
- Department of Neurology, Ulm University Medical Center, Ulm, Germany
| | - Jan Kassubek
- Department of Neurology, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
27
|
McKenna MC, Lope J, Tan EL, Bede P. Pre-symptomatic radiological changes in frontotemporal dementia: propagation characteristics, predictive value and implications for clinical trials. Brain Imaging Behav 2022; 16:2755-2767. [PMID: 35920960 DOI: 10.1007/s11682-022-00711-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2022] [Indexed: 11/25/2022]
Abstract
Computational imaging and quantitative biomarkers offer invaluable insights in the pre-symptomatic phase of neurodegenerative conditions several years before clinical manifestation. In recent years, there has been a focused effort to characterize pre-symptomatic cerebral changes in familial frontotemporal dementias using computational imaging. Accordingly, a systematic literature review was conducted of original articles investigating pre-symptomatic imaging changes in frontotemporal dementia focusing on study design, imaging modalities, data interpretation, control cohorts and key findings. The review is limited to the most common genotypes: chromosome 9 open reading frame 72 (C9orf72), progranulin (GRN), or microtubule-associated protein tau (MAPT) genotypes. Sixty-eight studies were identified with a median sample size of 15 (3-141) per genotype. Only a minority of studies were longitudinal (28%; 19/68) with a median follow-up of 2 (1-8) years. MRI (97%; 66/68) was the most common imaging modality, and primarily grey matter analyses were conducted (75%; 19/68). Some studies used multimodal analyses 44% (30/68). Genotype-associated imaging signatures are presented, innovative study designs are highlighted, common methodological shortcomings are discussed and lessons for future studies are outlined. Emerging academic observations have potential clinical implications for expediting the diagnosis, tracking disease progression and optimising the timing of pharmaceutical trials.
Collapse
Affiliation(s)
- Mary Clare McKenna
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Room 5.43, Pearse Street, Dublin 2, Ireland.,Department of Neurology, St James's Hospital, Dublin, Ireland
| | - Jasmin Lope
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Room 5.43, Pearse Street, Dublin 2, Ireland
| | - Ee Ling Tan
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Room 5.43, Pearse Street, Dublin 2, Ireland
| | - Peter Bede
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Room 5.43, Pearse Street, Dublin 2, Ireland. .,Department of Neurology, St James's Hospital, Dublin, Ireland.
| |
Collapse
|
28
|
Benatar M, Wuu J, Andersen PM, Bucelli RC, Andrews JA, Otto M, Farahany NA, Harrington EA, Chen W, Mitchell AA, Ferguson T, Chew S, Gedney L, Oakley S, Heo J, Chary S, Fanning L, Graham D, Sun P, Liu Y, Wong J, Fradette S. Design of a Randomized, Placebo-Controlled, Phase 3 Trial of Tofersen Initiated in Clinically Presymptomatic SOD1 Variant Carriers: the ATLAS Study. Neurotherapeutics 2022; 19:1248-1258. [PMID: 35585374 PMCID: PMC9587202 DOI: 10.1007/s13311-022-01237-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2022] [Indexed: 12/13/2022] Open
Abstract
Despite extensive research, amyotrophic lateral sclerosis (ALS) remains a progressive and invariably fatal neurodegenerative disease. Limited knowledge of the underlying causes of ALS has made it difficult to target upstream biological mechanisms of disease, and therapeutic interventions are usually administered relatively late in the course of disease. Genetic forms of ALS offer a unique opportunity for therapeutic development, as genetic associations may reveal potential insights into disease etiology. Genetic ALS may also be amenable to investigating earlier intervention given the possibility of identifying clinically presymptomatic, at-risk individuals with causative genetic variants. There is increasing evidence for a presymptomatic phase of ALS, with biomarker data from the Pre-Symptomatic Familial ALS (Pre-fALS) study showing that an elevation in blood neurofilament light chain (NfL) precedes phenoconversion to clinically manifest disease. Tofersen is an investigational antisense oligonucleotide designed to reduce synthesis of superoxide dismutase 1 (SOD1) protein through degradation of SOD1 mRNA. Informed by Pre-fALS and the tofersen clinical development program, the ATLAS study (NCT04856982) is designed to evaluate the impact of initiating tofersen in presymptomatic carriers of SOD1 variants associated with high or complete penetrance and rapid disease progression who also have biomarker evidence of disease activity (elevated plasma NfL). The ATLAS study will investigate whether tofersen can delay the emergence of clinically manifest ALS. To our knowledge, ATLAS is the first interventional trial in presymptomatic ALS and has the potential to yield important insights into the design and conduct of presymptomatic trials, identification, and monitoring of at-risk individuals, and future treatment paradigms in ALS.
Collapse
Affiliation(s)
- Michael Benatar
- Department of Neurology, University of Miami, 1120 NW 14th Street, Clinical Research Building, Miami, FL, 33136, USA.
| | - Joanne Wuu
- Department of Neurology, University of Miami, 1120 NW 14th Street, Clinical Research Building, Miami, FL, 33136, USA
| | - Peter M Andersen
- Department of Clinical Science, Neurosciences, Umeå University, Umeå, Sweden
| | | | - Jinsy A Andrews
- The Neurological Institute, Columbia University Irving Medical Center, New York, NY, USA
| | - Markus Otto
- Department of Neurology, Martin Luther University, Halle-Wittenberg, Halle (Saale), Germany
| | | | | | - Weiping Chen
- Biogen, 225 Binney Street, Cambridge, MA, 02142, USA
| | | | - Toby Ferguson
- Biogen, 225 Binney Street, Cambridge, MA, 02142, USA
| | - Sheena Chew
- Biogen, 225 Binney Street, Cambridge, MA, 02142, USA
| | - Liz Gedney
- Biogen, 225 Binney Street, Cambridge, MA, 02142, USA
| | - Sue Oakley
- Biogen, 225 Binney Street, Cambridge, MA, 02142, USA
| | - Jeong Heo
- Biogen, 225 Binney Street, Cambridge, MA, 02142, USA
| | - Sowmya Chary
- Biogen, 225 Binney Street, Cambridge, MA, 02142, USA
| | - Laura Fanning
- Biogen, 225 Binney Street, Cambridge, MA, 02142, USA
| | | | - Peng Sun
- Biogen, 225 Binney Street, Cambridge, MA, 02142, USA
| | - Yingying Liu
- Biogen, 225 Binney Street, Cambridge, MA, 02142, USA
| | - Janice Wong
- Biogen, 225 Binney Street, Cambridge, MA, 02142, USA
| | | |
Collapse
|
29
|
Amyotrophic Lateral Sclerosis as an Adverse Drug Reaction: A Disproportionality Analysis of the Food and Drug Administration Adverse Event Reporting System. Drug Saf 2022; 45:663-673. [PMID: 35610460 DOI: 10.1007/s40264-022-01184-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2022] [Indexed: 11/03/2022]
Abstract
INTRODUCTION Amyotrophic lateral sclerosis is a fatal progressive disease with a still unclear multi-factorial etiology. This study focused on the potential relationship between drug exposure and the development of amyotrophic lateral sclerosis by performing a detailed analysis of events reported in the FDA Adverse Event Reporting System database. METHODS The FDA Adverse Event Reporting System quarterly data (January 2004-June 2020) were downloaded and deduplicated. The reporting odds ratios and their 95% confidence intervals were calculated as a disproportionality measure. The robustness of the disproportion was assessed accounting for major confounders (i.e., using a broader query, restricting to suspect drugs, and excluding reports with amyotrophic lateral sclerosis as an indication). Disproportionality signals were prioritized based on their consistency across analyses (reporting odds ratio stability). RESULTS We retained 1188 amyotrophic lateral sclerosis cases. Sixty-two drugs showed significant disproportionality for amyotrophic lateral sclerosis onset in at least one analysis, and 31 had consistent reporting odds ratio stability, including tumor necrosis factor-alpha inhibitors and statins. Disproportionality signals from ustekinumab, an immunomodulator against interleukins 12-23 used in autoimmune diseases, and the anti-IgE omalizumab were consistent among analyses and unexpected. CONCLUSIONS For each drug emerging as possibly associated with amyotrophic lateral sclerosis onset, biological plausibility, underlying disease, and reverse causality could be argued. Our findings strengthened the plausibility of a precipitating role of drugs primarily through immunomodulation (e.g., tumor necrosis factor-alpha, ustekinumab, and omalizumab), but also by impacting metabolism and the musculoskeletal integrity (e.g., statins and bisphosphonates). Complement and NF-kB dysregulation could represent interesting topics for planning translational mechanistic studies on amyotrophic lateral sclerosis as an adverse drug effect.
Collapse
|
30
|
Goutman SA, Hardiman O, Al-Chalabi A, Chió A, Savelieff MG, Kiernan MC, Feldman EL. Recent advances in the diagnosis and prognosis of amyotrophic lateral sclerosis. Lancet Neurol 2022; 21:480-493. [PMID: 35334233 PMCID: PMC9513753 DOI: 10.1016/s1474-4422(21)00465-8] [Citation(s) in RCA: 204] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/24/2021] [Accepted: 12/16/2021] [Indexed: 12/14/2022]
Abstract
The diagnosis of amyotrophic lateral sclerosis can be challenging due to its heterogeneity in clinical presentation and overlap with other neurological disorders. Diagnosis early in the disease course can improve outcomes as timely interventions can slow disease progression. An evolving awareness of disease genotypes and phenotypes and new diagnostic criteria, such as the recent Gold Coast criteria, could expedite diagnosis. Improved prognosis, such as that achieved with the survival model from the European Network for the Cure of ALS, could inform the patient and their family about disease course and improve end-of-life planning. Novel staging and scoring systems can help monitor disease progression and might potentially serve as clinical trial outcomes. Lastly, new tools, such as fluid biomarkers, imaging modalities, and neuromuscular electrophysiological measurements, might increase diagnostic and prognostic accuracy.
Collapse
Affiliation(s)
| | - Orla Hardiman
- Academic Unit of Neurology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Ammar Al-Chalabi
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, and Department of Neurology, King's College London, London, UK
| | - Adriano Chió
- Rita Levi Montalcini Department of Neurosciences, University of Turin, Turin, Italy
| | | | - Matthew C Kiernan
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia; Department of Neurology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
31
|
Benatar M, Wuu J, McHutchison C, Postuma RB, Boeve BF, Petersen R, Ross CA, Rosen H, Arias JJ, Fradette S, McDermott MP, Shefner J, Stanislaw C, Abrahams S, Cosentino S, Andersen PM, Finkel RS, Granit V, Grignon AL, Rohrer JD, McMillan CT, Grossman M, Al-Chalabi A, Turner MR. Preventing amyotrophic lateral sclerosis: insights from pre-symptomatic neurodegenerative diseases. Brain 2022; 145:27-44. [PMID: 34677606 PMCID: PMC8967095 DOI: 10.1093/brain/awab404] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/16/2021] [Accepted: 10/08/2021] [Indexed: 11/12/2022] Open
Abstract
Significant progress has been made in understanding the pre-symptomatic phase of amyotrophic lateral sclerosis. While much is still unknown, advances in other neurodegenerative diseases offer valuable insights. Indeed, it is increasingly clear that the well-recognized clinical syndromes of Alzheimer's disease, Parkinson's disease, Huntington's disease, spinal muscular atrophy and frontotemporal dementia are also each preceded by a pre-symptomatic or prodromal period of varying duration, during which the underlying disease process unfolds, with associated compensatory changes and loss of inherent system redundancy. Key insights from these diseases highlight opportunities for discovery in amyotrophic lateral sclerosis. The development of biomarkers reflecting amyloid and tau has led to a shift in defining Alzheimer's disease based on inferred underlying histopathology. Parkinson's disease is unique among neurodegenerative diseases in the number and diversity of non-genetic biomarkers of pre-symptomatic disease, most notably REM sleep behaviour disorder. Huntington's disease benefits from an ability to predict the likely timing of clinically manifest disease based on age and CAG-repeat length alongside reliable neuroimaging markers of atrophy. Spinal muscular atrophy clinical trials have highlighted the transformational value of early therapeutic intervention, and studies in frontotemporal dementia illustrate the differential role of biomarkers based on genotype. Similar advances in amyotrophic lateral sclerosis would transform our understanding of key events in pathogenesis, thereby dramatically accelerating progress towards disease prevention. Deciphering the biology of pre-symptomatic amyotrophic lateral sclerosis relies on a clear conceptual framework for defining the earliest stages of disease. Clinically manifest amyotrophic lateral sclerosis may emerge abruptly, especially among those who harbour genetic mutations associated with rapidly progressive amyotrophic lateral sclerosis. However, the disease may also evolve more gradually, revealing a prodromal period of mild motor impairment preceding phenoconversion to clinically manifest disease. Similarly, cognitive and behavioural impairment, when present, may emerge gradually, evolving through a prodromal period of mild cognitive impairment or mild behavioural impairment before progression to amyotrophic lateral sclerosis. Biomarkers are critically important to studying pre-symptomatic amyotrophic lateral sclerosis and essential to efforts to intervene therapeutically before clinically manifest disease emerges. The use of non-genetic biomarkers, however, presents challenges related to counselling, informed consent, communication of results and limited protections afforded by existing legislation. Experiences from pre-symptomatic genetic testing and counselling, and the legal protections against discrimination based on genetic data, may serve as a guide. Building on what we have learned-more broadly from other pre-symptomatic neurodegenerative diseases and specifically from amyotrophic lateral sclerosis gene mutation carriers-we present a road map to early intervention, and perhaps even disease prevention, for all forms of amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Michael Benatar
- Department of Neurology, University of Miami, Miami, FL, USA
| | - Joanne Wuu
- Department of Neurology, University of Miami, Miami, FL, USA
| | - Caroline McHutchison
- Human Cognitive Neuroscience, Department of Psychology, University of Edinburgh, Edinburgh, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, UK
| | - Ronald B Postuma
- Department of Neurology, Montreal Neurological Institute, McGill University, Montreal, Canada
| | | | | | - Christopher A Ross
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Howard Rosen
- Department of Neurology, University of California San Francisco, CA, USA
| | - Jalayne J Arias
- Department of Neurology, University of California San Francisco, CA, USA
| | | | - Michael P McDermott
- Department of Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
- Department of Neurology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Jeremy Shefner
- Department of Neurology, Barrow Neurological Institute, Phoenix, AZ, USA
| | | | - Sharon Abrahams
- Human Cognitive Neuroscience, Department of Psychology, University of Edinburgh, Edinburgh, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, UK
| | | | - Peter M Andersen
- Department of Clinical Science, Neurosciences, Umeå University, Sweden
| | - Richard S Finkel
- Department of Pediatric Medicine, Center for Experimental Neurotherapeutics, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Volkan Granit
- Department of Neurology, University of Miami, Miami, FL, USA
| | | | - Jonathan D Rohrer
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, Queen Square, London, UK
| | - Corey T McMillan
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Murray Grossman
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Ammar Al-Chalabi
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King’s College London, London, UK
- Department of Neurology, King's College Hospital, London, UK
| | - Martin R Turner
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
32
|
Xia K, Zhang L, Tang L, Huang T, Fan D. Assessing the role of blood pressure in amyotrophic lateral sclerosis: a Mendelian randomization study. Orphanet J Rare Dis 2022; 17:56. [PMID: 35172853 PMCID: PMC8848798 DOI: 10.1186/s13023-022-02212-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 02/06/2022] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Observational studies have suggested a close but controversial relationship between blood pressure (BP) and amyotrophic lateral sclerosis (ALS). It remains unclear whether this association is causal. The authors employed a bidirectional two-sample Mendelian randomization (MR) approach to evaluate the causal relationship between BP and ALS. Genetic proxies for systolic blood pressure (SBP), diastolic blood pressure (DBP), antihypertensive drugs (AHDs), ALS, and their corresponding genome-wide association study (GWAS) summary datasets were obtained from the most recent studies with the largest sample sizes. The inverse variance weighted (IVW) method was adopted as the main approach to examine the effect of BP on ALS and four other MR methods were used for sensitivity analyses. To exclude the interference between SBP and DBP, a multivariable MR approach was used. RESULTS We found that genetically determined increased DBP was a protective factor for ALS (OR = 0.978, 95% CI 0.960-0.996, P = 0.017) and that increased SBP was an independent risk factor for ALS (OR = 1.014, 95% CI 1.003-1.025, P = 0.015), which is supported by sensitivity analyses. The use of calcium channel blocker (CCB) showed a causal relationship with ALS (OR = 0.985, 95% CI 0.971-1.000, P = 0.049). No evidence was revealed that ALS caused changes in BP. CONCLUSIONS This study provides genetic support for a causal effect of BP and ALS that increased DBP has a protective effect on ALS, and increased SBP is a risk factor for ALS, which may be related to sympathetic excitability. Blood pressure management is essential in ALS, and CCB may be a promising candidate.
Collapse
Affiliation(s)
- Kailin Xia
- Department of Neurology, Peking University Third Hospital, Garden North Road No. 49, Beijing, 100191, China.,Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
| | - Linjing Zhang
- Department of Neurology, Peking University Third Hospital, Garden North Road No. 49, Beijing, 100191, China.,Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
| | - Lu Tang
- Department of Neurology, Peking University Third Hospital, Garden North Road No. 49, Beijing, 100191, China.,Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
| | - Tao Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China. .,Key Laboratory of Molecular Cardiovascular Sciences (Peking University), Ministry of Education, Beijing, China.
| | - Dongsheng Fan
- Department of Neurology, Peking University Third Hospital, Garden North Road No. 49, Beijing, 100191, China. .,Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China. .,Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China.
| |
Collapse
|
33
|
Staats KA, Borchelt DR, Tansey MG, Wymer J. Blood-based biomarkers of inflammation in amyotrophic lateral sclerosis. Mol Neurodegener 2022; 17:11. [PMID: 35073950 PMCID: PMC8785449 DOI: 10.1186/s13024-022-00515-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 12/30/2021] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a devastating neurodegenerative disease in which many processes are detected including (neuro)inflammation. Many drugs have been tested for ALS in clinical trials but most have failed to reach their primary endpoints. The development and inclusion of different types of biomarkers in diagnosis and clinical trials can assist in determining target engagement of a drug, in distinguishing between ALS and other diseases, and in predicting disease progression rate, drug responsiveness, or an adverse event. Ideally, among other characteristics, a biomarker in ALS correlates highly with a disease process in the central nervous system or with disease progression and is conveniently obtained in a peripheral tissue. Here, we describe the state of biomarkers of inflammation in ALS by focusing on peripherally detectable and cellular responses from blood cells, and provide new (combinatorial) directions for exploration that are now feasible due to technological advancements.
Collapse
Affiliation(s)
- Kim A. Staats
- Staats Life Sciences Consulting, LLC, Los Angeles, CA USA
| | - David R. Borchelt
- Department of Neuroscience, University of Florida College of Medicine, McKnight Brain Institute, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, Florida USA
| | - Malú Gámez Tansey
- Department of Neuroscience and Center for Translational Research in Neurodegenerative Disease at The University of Florida College of Medicine, Gainesville, Florida USA
| | - James Wymer
- Department of Neurology, University of Florida College of Medicine, Gainesville, Florida USA
| |
Collapse
|
34
|
Savelieff MG, Noureldein MH, Feldman EL. Systems Biology to Address Unmet Medical Needs in Neurological Disorders. Methods Mol Biol 2022; 2486:247-276. [PMID: 35437727 PMCID: PMC9446424 DOI: 10.1007/978-1-0716-2265-0_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Neurological diseases are highly prevalent and constitute a significant cause of mortality and disability. Neurological disorders encompass a heterogeneous group of neurodegenerative conditions, broadly characterized by injury to the peripheral and/or central nervous system. Although the etiology of neurological diseases varies greatly, they share several characteristics, such as heterogeneity of clinical presentation, non-cell autonomous nature, and diversity of cellular, subcellular, and molecular pathways. Systems biology has emerged as a valuable platform for addressing the challenges of studying heterogeneous neurological diseases. Systems biology has manifold applications to address unmet medical needs for neurological illness, including integrating and correlating different large datasets covering the transcriptome, epigenome, proteome, and metabolome associated with a specific condition. This is particularly useful for disentangling the heterogeneity and complexity of neurological conditions. Hence, systems biology can help in uncovering pathophysiology to develop novel therapeutic targets and assessing the impact of known treatments on disease progression. Additionally, systems biology can identify early diagnostic biomarkers, to help diagnose neurological disease preceded by a long subclinical phase, as well as define the exposome, the collection of environmental toxicants that increase risk of certain neurological diseases. In addition to these current applications, there are numerous potential emergent uses, such as precision medicine.
Collapse
Affiliation(s)
- Masha G Savelieff
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, USA
| | - Mohamed H Noureldein
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, USA
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Eva L Feldman
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, USA.
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
35
|
Introna A, Milella G, Morea A, Ucci M, Fraddosio A, Zoccolella S, D'Errico E, Simone IL. King's college progression rate at first clinical evaluation: A new measure of disease progression in amyotrophic lateral sclerosis. J Neurol Sci 2021; 431:120041. [PMID: 34736124 DOI: 10.1016/j.jns.2021.120041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND To estimate King's college clinical stage progression rate (ΔKC) at first clinical evaluation in order to define its predictive and prognostic role on survival in a large cohort of Amyotrophic Lateral Sclerosis (ALS) patients. METHODS The ΔKC was calculated with the following formula: 0 - KC clinical stage at first clinical evaluation/disease duration from onset to first evaluation, and each result was reported as absolute value. All the evaluations were performed in two cohorts: one from our tertiary centre for motor neuron disease and the other one from a pooled resource open-access ALS clinical trials (PRO-ACT) database. C-statistic was used to evaluate the model discrimination of survival at different time points (1-3 years). Cox proportional hazard model was used to identify factors associated with survival. RESULTS ΔKC predicted survival at three years in our centre and in the PRO-ACT cohort (C-statistic 0.83, 95% CI 0.8-0.86, p < 0.0001; 0.7, 95% CI 0.68-0.73, p < 0.0001, respectively). At multivariate analysis, ΔKC was independently associated with survival both in our cohort (HR 3.62 95% CI 2.71-4.83 p = 0.001) and in the PRO-ACT cohort (HR 2.75 95% CI 2.1-3.6 p = 0.001). CONCLUSIONS Based on our results, ΔKC could be used as a novel measure of disease progression, hence as an accurate predictor of survival in ALS patients. Indeed, greater values of ΔKC were associated with a 3.5-fold higher risk to experience the event, confirming its robust prognostic value.
Collapse
Affiliation(s)
- Alessandro Introna
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", piazza Giulio Cesare 11, 70100 Bari, Italy
| | - Giammarco Milella
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", piazza Giulio Cesare 11, 70100 Bari, Italy
| | - Antonella Morea
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", piazza Giulio Cesare 11, 70100 Bari, Italy
| | - Maria Ucci
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", piazza Giulio Cesare 11, 70100 Bari, Italy
| | - Angela Fraddosio
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", piazza Giulio Cesare 11, 70100 Bari, Italy
| | | | - Eustachio D'Errico
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", piazza Giulio Cesare 11, 70100 Bari, Italy
| | - Isabella Laura Simone
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", piazza Giulio Cesare 11, 70100 Bari, Italy.
| |
Collapse
|
36
|
Yogakanthi S, Wools C, Mathers S. Unilateral vocal cord adductor weakness: an atypical manifestation of motor neurone disease. BMJ Neurol Open 2021; 3:e000205. [PMID: 34693290 PMCID: PMC8506844 DOI: 10.1136/bmjno-2021-000205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2021] [Indexed: 11/04/2022] Open
Abstract
Background Bulbar involvement is a recognised feature of motor neuron disease/amyotrophic lateral sclerosis (MND/ALS), both as a presenting complaint and as a consequence of advancing disease. Hoarseness and dysphonia have been associated with vocal cord abductor weakness. This is usually bilateral and has also been reported as the presenting clinical feature in a handful of patients with superoxide dismutase 1 (SOD1) gene mutations. Presentation with an isolated, unilateral vocal cord adductor weakness, however, is atypical and rare. Case In this report, we detail the case of a 38-year-old woman with dysphonia and a family history of an SOD1 mutation. Neurological features remained confined to the territory of the left vagus nerve for the next 12 months, before a more rapid rate of disease dissemination and progression. Conclusions This case highlights the importance of recognition of vocal cord palsy as an early manifestation of MND/ALS and the critical need for monitoring to recognise potential disease progression.
Collapse
Affiliation(s)
- Saiumaeswar Yogakanthi
- State-Wide Progressive Neurological Diseases Service, Calvary Health Care Bethlehem, Parkdale, Victoria, Australia.,Department of Medicine, Alfred Health, Melbourne, Victoria, Australia
| | - Christine Wools
- State-Wide Progressive Neurological Diseases Service, Calvary Health Care Bethlehem, Parkdale, Victoria, Australia.,Department of Neurology, The Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Susan Mathers
- State-Wide Progressive Neurological Diseases Service, Calvary Health Care Bethlehem, Parkdale, Victoria, Australia.,School of Clinical Sciences, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
37
|
Canna A, Trojsi F, Di Nardo F, Caiazzo G, Tedeschi G, Cirillo M, Esposito F. Combining structural and metabolic markers in a quantitative MRI study of motor neuron diseases. Ann Clin Transl Neurol 2021; 8:1774-1785. [PMID: 34342169 PMCID: PMC8419394 DOI: 10.1002/acn3.51418] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/13/2021] [Accepted: 06/18/2021] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE To assess the performance of a combination of three quantitative MRI markers (iron deposition, basal neuronal metabolism, and regional atrophy) for differential diagnosis between amyotrophic lateral sclerosis (ALS) and primary lateral sclerosis (PLS). METHODS In total, 33 ALS, 12 PLS, and 28 healthy control (HC) subjects underwent a 3T MRI study including single- and multi-echo sequences for gray matter (GM) volumetry and quantitative susceptibility mapping (QSM) and a pseudo-continuous arterial spin labeling (ASL) sequence for cerebral blood flow (CBF) measurement. Mean values of QSM, CBF, and GM volumes were extracted in the motor cortex, basal ganglia, thalamus, amygdala, and hippocampus. A generalized linear model was applied to the three measures to binary discriminate between groups. The diagnostic performances were evaluated via receiver operating characteristic analyses. RESULTS A significant discrimination was obtained: between ALS and HCs in the left and right motor cortex, where QSM increases were respectively associated with disability scores and disease duration; between PLS and ALS in the left motor cortex, where PLS patients resulted significantly more atrophic; between ALS and HC in the right motor cortex, where GM volumes were associated with upper motor neuron scores. Significant discrimination between ALS and HC was achieved in subcortical structures only combining all three parameters. INTERPRETATION While increased QSM values in the motor cortex of ALS patients is a consolidated finding, combining QSM, CBF, and GM volumetry shows higher diagnostic potential for differentiating ALS patients from HC subjects and, in the motor cortex, between ALS and PLS.
Collapse
Affiliation(s)
- Antonietta Canna
- Department of Advanced Medical and Surgical SciencesUniversity of Campania "Luigi Vanvitelli”NaplesItaly
| | - Francesca Trojsi
- Department of Advanced Medical and Surgical SciencesUniversity of Campania "Luigi Vanvitelli”NaplesItaly
| | - Federica Di Nardo
- Department of Advanced Medical and Surgical SciencesUniversity of Campania "Luigi Vanvitelli”NaplesItaly
| | - Giuseppina Caiazzo
- Department of Advanced Medical and Surgical SciencesUniversity of Campania "Luigi Vanvitelli”NaplesItaly
| | - Gioacchino Tedeschi
- Department of Advanced Medical and Surgical SciencesUniversity of Campania "Luigi Vanvitelli”NaplesItaly
| | - Mario Cirillo
- Department of Advanced Medical and Surgical SciencesUniversity of Campania "Luigi Vanvitelli”NaplesItaly
| | - Fabrizio Esposito
- Department of Advanced Medical and Surgical SciencesUniversity of Campania "Luigi Vanvitelli”NaplesItaly
| |
Collapse
|
38
|
CSF Diagnostics: A Potentially Valuable Tool in Neurodegenerative and Inflammatory Disorders Involving Motor Neurons: A Review. Diagnostics (Basel) 2021; 11:diagnostics11091522. [PMID: 34573864 PMCID: PMC8470638 DOI: 10.3390/diagnostics11091522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/10/2021] [Accepted: 08/19/2021] [Indexed: 11/16/2022] Open
Abstract
Cerebrospinal fluid (CSF) diagnostics has emerged as a valid tool for a variety of neurological diseases. However, CSF diagnostics has been playing a subordinate role in the diagnosis of many neurological conditions. Thus, in the multitude of neuromuscular diseases in which motor neurons are affected, a CSF sample is rarely taken routinely. However, CSF diagnostics has the potential to specify the diagnosis and monitor the treatment of neuromuscular disorders. In this review, we therefore focused on a variety of neuromuscular diseases, among them amyotrophic lateral sclerosis (ALS), peripheral neuropathies, and spinal muscular atrophy (SMA), for which CSF diagnostics has emerged as a promising option for determining the disease itself and its progression. We focus on potentially valuable biomarkers among different disorders, such as neurofilaments, cytokines, other proteins, and lipids to determine their suitability, differentiating between different neurological disorders and their potential to determine early disease onset, disease progression, and treatment outcome. We further recommend novel approaches, e.g., the use of mass spectrometry as a promising alternative techniques to standard ELISA assays, potentially enhancing biomarker significance in clinical applications.
Collapse
|
39
|
Escal J, Fourier A, Formaglio M, Zimmer L, Bernard E, Mollion H, Bost M, Herrmann M, Ollagnon-Roman E, Quadrio I, Dorey JM. Comparative diagnosis interest of NfL and pNfH in CSF and plasma in a context of FTD-ALS spectrum. J Neurol 2021; 269:1522-1529. [PMID: 34313819 DOI: 10.1007/s00415-021-10714-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/09/2021] [Accepted: 07/11/2021] [Indexed: 11/24/2022]
Abstract
OBJECTIVE The 'Frontotemporal dementia-Amyotrophic lateral sclerosis Spectrum' (FAS) encompasses different phenotypes, including cognitive disorders (frontotemporal dementia, FTD) and/or motor impairments (amyotrophic lateral sclerosis, ALS). The aim of this study was to apprehend the specific uses of neurofilaments light chain (NfL) and phosphorylated neurofilaments heavy chain (pNfH) in a context of FAS. METHODS First, NfL and pNfH were measured in 39 paired cerebrospinal fluid (CSF) and plasma samples of FAS and primary psychiatric disorders (PPD) patients, considered as controls. Secondly, additional plasma samples were included to examine a larger cohort of 81 samples composed of symptomatic FAS and PPD patients, presymptomatic and non-carrier relatives individuals. The measures were performed using Simoa technology. RESULTS There was a positive correlation between CSF and plasma values for NfL (p < 0.0001) and for pNfH (p = 0.0036). NfL values were higher for all phenotypes of symptomatic FAS patients compared to PPD patients (p = 0.0016 in CSF; p = 0.0003 in plasma). On the contrary, pNfH values were solely increased in FAS patients exhibiting motor impairment. Unlike symptomatic FAS patients, presymptomatic cases had comparable concentrations with non-carrier individuals. CONCLUSION NfL, but not pNfH, appeared to be useful in a context of differential diagnosis between FTD and psychiatric patients. Nevertheless, pNfH seem more specific for the diagnosis and follow-up of motor impairments. In each specific indication, measures in CSF and plasma will provide identical interpretations.
Collapse
Affiliation(s)
- Jean Escal
- Laboratory of Neurobiology and Neurogenetics, Department of Biochemistry and Molecular Biology, Lyon University Hospital, Bron, France.,BIORAN Team, Lyon Neuroscience Research Center, CNRS UMR 5292, INSERM U1028, Lyon 1 University, Bron, France
| | - Anthony Fourier
- Laboratory of Neurobiology and Neurogenetics, Department of Biochemistry and Molecular Biology, Lyon University Hospital, Bron, France. .,BIORAN Team, Lyon Neuroscience Research Center, CNRS UMR 5292, INSERM U1028, Lyon 1 University, Bron, France.
| | - Maité Formaglio
- Neurocognition and Neuro-Ophthalmology Department, Lyon University Hospital, Bron, France.,Center for Memory Resources and Research, Lyon University Hospital, Lyon 1 University, Villeurbanne, France
| | - Luc Zimmer
- BIORAN Team, Lyon Neuroscience Research Center, CNRS UMR 5292, INSERM U1028, Lyon 1 University, Bron, France
| | - Emilien Bernard
- Reference Center of ALS of Lyon, Lyon University Hospital, Lyon 1 University, Bron, France.,NeuroMyoGène Institute, CNRS UMR 5310, INSERM U1217, Lyon 1 University, Lyon, France
| | - Hélène Mollion
- Neurocognition and Neuro-Ophthalmology Department, Lyon University Hospital, Bron, France.,Center for Memory Resources and Research, Lyon University Hospital, Lyon 1 University, Villeurbanne, France
| | - Muriel Bost
- Laboratory of Neurobiology and Neurogenetics, Department of Biochemistry and Molecular Biology, Lyon University Hospital, Bron, France
| | - Mathieu Herrmann
- Department of Aging Psychiatry, Hospital Le Vinatier, Bron, France
| | - Elisabeth Ollagnon-Roman
- Department of Predictive Medicine of Neurological and Neurodegenerative Diseases, Lyon University Hospital, Lyon, France
| | - Isabelle Quadrio
- Laboratory of Neurobiology and Neurogenetics, Department of Biochemistry and Molecular Biology, Lyon University Hospital, Bron, France.,BIORAN Team, Lyon Neuroscience Research Center, CNRS UMR 5292, INSERM U1028, Lyon 1 University, Bron, France.,Center for Memory Resources and Research, Lyon University Hospital, Lyon 1 University, Villeurbanne, France
| | - Jean-Michel Dorey
- Department of Aging Psychiatry, Hospital Le Vinatier, Bron, France.,Brain Dynamics and Cognition Team, Lyon Neuroscience Research Center, CNRS UMR 5292, INSERM U1028, Lyon, France
| |
Collapse
|
40
|
Puentes F, Lombardi V, Lu CH, Yildiz O, Fratta P, Isaacs A, Bobeva Y, Wuu J, Benatar M, Malaspina A. Humoral response to neurofilaments and dipeptide repeats in ALS progression. Ann Clin Transl Neurol 2021; 8:1831-1844. [PMID: 34318620 PMCID: PMC8419401 DOI: 10.1002/acn3.51428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 12/16/2022] Open
Abstract
Objective To appraise the utility as biomarkers of blood antibodies and immune complexes to neurofilaments and dipeptide repeat proteins, the products of translation of the most common genetic mutation in amyotrophic lateral sclerosis (ALS). Methods Antibodies and immune complexes against neurofilament light, medium, heavy chains as well as poly‐(GP)‐(GR) dipeptide repeats were measured in blood samples from the ALS Biomarkers (n = 107) and the phenotype–genotype biomarker (n = 129) studies and in 140 healthy controls. Target analyte levels were studied longitudinally in 37 ALS cases. Participants were stratified according to the rate of disease progression estimated before and after baseline and C9orf72 genetic status. Survival and longitudinal analyses were undertaken with reference to matched neurofilament protein expression. Results Compared to healthy controls, total neurofilament proteins and antibodies, neurofilament light immune complexes (p < 0.0001), and neurofilament heavy antibodies (p = 0.0061) were significantly elevated in ALS, patients with faster progressing disease (p < 0.0001) and in ALS cases with a C9orf72 mutation (p < 0.0003). Blood neurofilament light protein discriminated better ALS from healthy controls (AUC: 0.92; p < 0.0001) and faster from slower progressing ALS (AUC: 0.86; p < 0.0001) compared to heavy‐chain antibodies and light‐chain immune complexes (AUC: 0.79; p < 0.0001 and AUC: 0.74; p < 0.0001). Lower neurofilament heavy antibodies were associated with longer survival (Log‐rank Chi‐square: 7.39; p = 0.0065). Increasing levels of antibodies and immune complexes between time points were observed in faster progressing ALS. Conclusions We report a distinctive humoral response characterized by raising antibodies against neurofilaments and dipeptide repeats in faster progressing and C9orf72 genetic mutation carriers ALS patients. We confirm the significance of plasma neurofilament proteins in the clinical stratification of ALS.
Collapse
Affiliation(s)
- Fabiola Puentes
- Neurodegeneration Group, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, United Kingdom.,Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, United Kingdom
| | - Vittoria Lombardi
- Neurodegeneration Group, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, United Kingdom.,Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, United Kingdom
| | - Ching-Hua Lu
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, United Kingdom.,School of Medicine, China Medical University, 91 Xueshi Road, North District, Taichung City, 404, Taiwan
| | - Ozlem Yildiz
- Neurodegeneration Group, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, United Kingdom.,Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, United Kingdom
| | - Pietro Fratta
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, United Kingdom
| | - Adrian Isaacs
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, United Kingdom
| | - Yoana Bobeva
- Neurodegeneration Group, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, United Kingdom.,Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, United Kingdom
| | - Joanne Wuu
- Department of Neurology, University of Miami, Miami, Florida, USA
| | -
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, United Kingdom
| | -
- Department of Neurology, University of Miami, Miami, Florida, USA
| | - Michael Benatar
- Department of Neurology, University of Miami, Miami, Florida, USA
| | - Andrea Malaspina
- Neurodegeneration Group, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, United Kingdom.,Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, United Kingdom
| |
Collapse
|
41
|
Miller C, Apple S, Paige JS, Grabowsky T, Shukla O, Agnese W, Merrill C. Current and Future Projections of Amyotrophic Lateral Sclerosis in the United States Using Administrative Claims Data. Neuroepidemiology 2021; 55:275-285. [PMID: 34153964 DOI: 10.1159/000515203] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 02/08/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Various methodologies have been reported to assess the real-world epidemiology of amyotrophic lateral sclerosis (ALS) in the United States. The aim of this study was to estimate the prevalence, incidence, and geographical distribution of ALS using administrative claims data and to model future trends in ALS epidemiology. METHODS We performed a retrospective analysis of deidentified administrative claims data for >100 million patients, using 2 separate databases (IBM MarketScan Research Databases and Symphony Health Integrated DataVerse [IDV]), to identify patients with ALS. We evaluated disease prevalence, annual incidence, age- and population-controlled geographical distribution, and expected future trends. RESULTS From 2013 to 2017, we identified 7,316 and 35,208 ALS patients from the MarketScan databases and IDV, respectively. Average annual incidence estimates were 1.48 and 1.37 per 100,000 and point prevalence estimates were 6.85 and 5.16 per 100,000 and in the United States for the MarketScan databases and IDV, respectively. Predictive modeling estimates are reported out to the year 2060 and demonstrate an increasing trend in both incident and prevalent cases. CONCLUSIONS This study provides incidence and prevalence estimates as well as geographical distribution for what the authors believe to be the largest ALS population studied to date. By using 2 separate administrative claims data sets, confidence in our estimates is increased. Future projections based on either database demonstrate an increase in ALS cases, which has also been seen in other large-scale ALS studies. These results can be used to help improve the allocation of healthcare resources in the future.
Collapse
Affiliation(s)
- Chris Miller
- HVH Precision Analytics LL, Wayne, Pennsylvania, USA
| | - Stephen Apple
- Mitsubishi Tanabe Pharma America, Inc., Jersey City, New Jersey, USA
| | | | | | - Oodaye Shukla
- HVH Precision Analytics LL, Wayne, Pennsylvania, USA
| | - Wendy Agnese
- Formerly Employed by Mitsubishi Tanabe Pharma America, Inc., Jersey City, New Jersey, USA
| | - Charlotte Merrill
- Formerly Employed by Mitsubishi Tanabe Pharma America, Inc., Jersey City, New Jersey, USA
| |
Collapse
|
42
|
De Vocht J, Blommaert J, Devrome M, Radwan A, Van Weehaeghe D, De Schaepdryver M, Ceccarini J, Rezaei A, Schramm G, van Aalst J, Chiò A, Pagani M, Stam D, Van Esch H, Lamaire N, Verhaegen M, Mertens N, Poesen K, van den Berg LH, van Es MA, Vandenberghe R, Vandenbulcke M, Van den Stock J, Koole M, Dupont P, Van Laere K, Van Damme P. Use of Multimodal Imaging and Clinical Biomarkers in Presymptomatic Carriers of C9orf72 Repeat Expansion. JAMA Neurol 2021; 77:1008-1017. [PMID: 32421156 PMCID: PMC7417970 DOI: 10.1001/jamaneurol.2020.1087] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Question Can metabolic brain changes be detected in presymptomatic individuals who are carriers of a hexanucleotide repeat expansion in the C9orf72 gene (preSxC9) using time-of-flight fluorine 18–labeled fluorodeoxyglucose positron emission tomographic imaging and magnetic resonance imaging, and what is the association between the mutation and clinical and fluid biomarkers of amyotrophic lateral sclerosis and frontotemporal dementia? Findings In a case-control study including 17 preSxC9 participants and 25 healthy controls, fluorine 18–labeled fluorodeoxyglucose positron emission tomographic imaging noted significant clusters of relative hypometabolism in frontotemporal regions, the insular cortices, basal ganglia, and thalami in the preSxC9 participants. Use of this strategy allowed detection of changes at an individual level. Meaning Glucose metabolic changes appear to occur early in the sequence of events leading to manifest amyotrophic lateral sclerosis and frontotemporal dementia. Fluorine 18–labeled fluorodeoxyglucose positron emission tomographic imaging may provide a sensitive biomarker of a presymptomatic phase of disease. Importance During a time with the potential for novel treatment strategies, early detection of disease manifestations at an individual level in presymptomatic carriers of a hexanucleotide repeat expansion in the C9orf72 gene (preSxC9) is becoming increasingly relevant. Objectives To evaluate changes in glucose metabolism before symptom onset of amyotrophic lateral sclerosis or frontotemporal dementia in preSxC9 using simultaneous fluorine 18–labeled fluorodeoxyglucose ([18F]FDG positron emission tomographic (PET) and magnetic resonance imaging as well as the mutation’s association with clinical and fluid biomarkers. Design, Setting, and Participants A prospective, case-control study enrolled 46 participants from November 30, 2015, until December 11, 2018. The study was conducted at the neuromuscular reference center of the University Hospitals Leuven, Leuven, Belgium. Main Outcomes and Measures Neuroimaging data were spatially normalized and analyzed at the voxel level at a height threshold of P < .001, cluster-level familywise error–corrected threshold of P < .05, and statistical significance was set at P < .05 for the volume-of-interest level analysis, using Benjamini-Hochberg correction for multiple correction. W-score maps were computed using the individuals serving as controls as a reference to quantify the degree of [18F]FDG PET abnormality. The threshold for abnormality on the W-score maps was designated as an absolute W-score greater than or equal to 1.96. Neurofilament levels and performance on cognitive and neurologic examinations were determined. All hypothesis tests were 1-sided. Results Of the 42 included participants, there were 17 with the preSxC9 mutation (12 women [71%]; mean [SD] age, 51 [9] years) and 25 healthy controls (12 women [48%]; mean [SD] age, 47 [10] years). Compared with control participants, significant clusters of relative hypometabolism were found in frontotemporal regions, basal ganglia, and thalami of preSxC9 participants and relative hypermetabolism in the peri-Rolandic region, superior frontal gyrus, and precuneus cortex. W-score frequency maps revealed reduced glucose metabolism with local maxima in the insular cortices, central opercular cortex, and thalami in up to 82% of preSxC9 participants and increased glucose metabolism in the precentral gyrus and precuneus cortex in up to 71% of preSxC9 participants. Other findings in the preSxC9 group were upper motor neuron involvement in 10 participants (59%), cognitive abnormalities in 5 participants (29%), and elevated neurofilament levels in 3 of 16 individuals (19%) who underwent lumbar puncture. Conclusions and Relevance The results suggest that [18F]FDG PET can identify glucose metabolic changes in preSxC9 at an individual level, preceding significantly elevated neurofilament levels and onset of symptoms.
Collapse
Affiliation(s)
- Joke De Vocht
- KU Leuven, Department of Neurosciences, Experimental Neurology, B-3000 Leuven, Belgium.,KU Leuven, University Hospitals Leuven, University Psychiatric Center, Adult Psychiatry, B-3000 Leuven, Belgium.,University Hospitals Leuven, Department of Neurology, B-3000 Leuven, Belgium.,VIB - Center of Brain & Disease Research, Laboratory of Neurobiology, B-3000 Leuven, Belgium
| | | | - Martijn Devrome
- KU Leuven, University Hospitals Leuven, Department of Imaging and Pathology, Division of Nuclear Medicine, B-3000 Leuven, Belgium
| | - Ahmed Radwan
- KU Leuven, Department of Imaging and Pathology, Translational MRI, B-3000 Leuven, Belgium
| | - Donatienne Van Weehaeghe
- KU Leuven, University Hospitals Leuven, Department of Imaging and Pathology, Division of Nuclear Medicine, B-3000 Leuven, Belgium
| | - Maxim De Schaepdryver
- KU Leuven, Department of Neurosciences, Laboratory for Molecular Neurobiomarker Research, B-3000 Leuven, Belgium
| | - Jenny Ceccarini
- KU Leuven, University Hospitals Leuven, Department of Imaging and Pathology, Division of Nuclear Medicine, B-3000 Leuven, Belgium
| | - Ahmadreza Rezaei
- KU Leuven, University Hospitals Leuven, Department of Imaging and Pathology, Division of Nuclear Medicine, B-3000 Leuven, Belgium
| | - Georg Schramm
- KU Leuven, University Hospitals Leuven, Department of Imaging and Pathology, Division of Nuclear Medicine, B-3000 Leuven, Belgium
| | - June van Aalst
- KU Leuven, University Hospitals Leuven, Department of Imaging and Pathology, Division of Nuclear Medicine, B-3000 Leuven, Belgium
| | - Adriano Chiò
- ALS Center, Rita Levi Montalcini Department of Neuroscience, University of Turin, Turin, Italy
| | - Marco Pagani
- Institute of Cognitive Sciences and Technologies, CNR, Rome, Italy.,Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Daphne Stam
- KU Leuven, Leuven Brain Institute, Laboratory for Translational Neuropsychiatry, B-3000 Leuven, Belgium
| | - Hilde Van Esch
- University Hospitals Leuven, Center for Human Genetics, B-3000 Leuven, Belgium
| | - Nikita Lamaire
- University Hospitals Leuven, Department of Neurology, B-3000 Leuven, Belgium
| | - Marianne Verhaegen
- KU Leuven, University Hospitals Leuven, University Psychiatric Center, Adult Psychiatry, B-3000 Leuven, Belgium
| | - Nathalie Mertens
- KU Leuven, University Hospitals Leuven, Department of Imaging and Pathology, Division of Nuclear Medicine, B-3000 Leuven, Belgium
| | - Koen Poesen
- KU Leuven, Department of Neurosciences, Laboratory for Molecular Neurobiomarker Research, B-3000 Leuven, Belgium
| | - Leonard H van den Berg
- Brain Center Rudolf Magnus, Department of Neurology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Michael A van Es
- Brain Center Rudolf Magnus, Department of Neurology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Rik Vandenberghe
- University Hospitals Leuven, Department of Neurology, B-3000 Leuven, Belgium.,KU Leuven, Department of Neurosciences, Laboratory for Cognitive Neurology, B-3000 Leuven, Belgium
| | - Mathieu Vandenbulcke
- KU Leuven, Leuven Brain Institute, Laboratory for Translational Neuropsychiatry, B-3000 Leuven, Belgium.,KU Leuven, University Psychiatric Center, Geriatric Psychiatry, B-3000 Leuven, Belgium
| | - Jan Van den Stock
- KU Leuven, Leuven Brain Institute, Laboratory for Translational Neuropsychiatry, B-3000 Leuven, Belgium.,KU Leuven, University Psychiatric Center, Geriatric Psychiatry, B-3000 Leuven, Belgium
| | - Michel Koole
- KU Leuven, University Hospitals Leuven, Department of Imaging and Pathology, Division of Nuclear Medicine, B-3000 Leuven, Belgium
| | - Patrick Dupont
- KU Leuven, Department of Neurosciences, Laboratory for Cognitive Neurology, B-3000 Leuven, Belgium
| | - Koen Van Laere
- KU Leuven, University Hospitals Leuven, Department of Imaging and Pathology, Division of Nuclear Medicine, B-3000 Leuven, Belgium
| | - Philip Van Damme
- KU Leuven, Department of Neurosciences, Experimental Neurology, B-3000 Leuven, Belgium.,University Hospitals Leuven, Department of Neurology, B-3000 Leuven, Belgium.,VIB - Center of Brain & Disease Research, Laboratory of Neurobiology, B-3000 Leuven, Belgium
| |
Collapse
|
43
|
Cognitive dysfunction in amyotrophic lateral sclerosis: can we predict it? Neurol Sci 2021; 42:2211-2222. [PMID: 33772353 PMCID: PMC8159827 DOI: 10.1007/s10072-021-05188-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/15/2021] [Indexed: 01/26/2023]
Abstract
Background and aim Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder characterized by the degeneration of both upper and lower motoneurons in the brain and spinal cord leading to motor and extra-motor symptoms. Although traditionally considered a pure motor disease, recent evidences suggest that ALS is a multisystem disorder. Neuropsychological alterations, in fact, are observed in more than 50% of patients: while executive dysfunctions have been firstly identified, alterations in verbal fluency, behavior, and pragmatic and social cognition have also been described. Detecting and monitoring ALS cognitive and behavioral impairment even at early disease stages is likely to have staging and prognostic implications, and it may impact the enrollment in future clinical trials. During the last 10 years, humoral, radiological, neurophysiological, and genetic biomarkers have been reported in ALS, and some of them seem to potentially correlate to cognitive and behavioral impairment of patients. In this review, we sought to give an up-to-date state of the art of neuropsychological alterations in ALS: we will describe tests used to detect cognitive and behavioral impairment, and we will focus on promising non-invasive biomarkers to detect pre-clinical cognitive decline. Conclusions To date, the research on humoral, radiological, neurophysiological, and genetic correlates of neuropsychological alterations is at the early stage, and no conclusive longitudinal data have been published. Further and longitudinal studies on easily accessible and quantifiable biomarkers are needed to clarify the time course and the evolution of cognitive and behavioral impairments of ALS patients.
Collapse
|
44
|
Waugh RE, Danielian LE, Shoukry RFS, Floeter MK. Longitudinal changes in network homogeneity in presymptomatic C9orf72 mutation carriers. Neurobiol Aging 2021; 99:1-10. [PMID: 33421737 PMCID: PMC11428095 DOI: 10.1016/j.neurobiolaging.2020.11.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/04/2020] [Accepted: 11/22/2020] [Indexed: 12/11/2022]
Abstract
The risk for carriers of repeat expansion mutations in C9orf72 to develop amyotrophic lateral sclerosis and frontotemporal dementia increases with age. Functional magnetic resonance imaging studies have shown reduced connectivity in symptomatic carriers, but it is not known whether connectivity declines throughout life as an acceleration of the normal aging pattern. In this study, we examined intra-network homogeneity (NeHo) in 5 functional networks in 15 presymptomatic C9+ carriers over an 18-month period and compared to repeated scans in 34 healthy controls and 27 symptomatic C9+ carriers. The longitudinal trajectory of NeHo in the somatomotor, dorsal attention, and default mode networks in presymptomatic carriers differed from aging controls and symptomatic carriers. In somatomotor networks, NeHo increased over time in regions adjacent to regions where symptomatic carriers had reduced NeHo. In the default network, the posterior cingulate exhibited age-dependent increases in NeHo. These findings are evidence against the proposal that the decline in functional connectivity seen in symptomatic carriers represents a lifelong acceleration of the healthy aging process.
Collapse
Affiliation(s)
- Rebecca E Waugh
- Motor Neuron Disorders Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Laura E Danielian
- Motor Neuron Disorders Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Rachel F Smallwood Shoukry
- Motor Neuron Disorders Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Mary Kay Floeter
- Motor Neuron Disorders Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
45
|
Warman-Chardon J, Jasmin BJ, Kothary R, Parks RJ. Report on the 5th Ottawa International Conference on Neuromuscular Disease & Biology -October 17-19, 2019, Ottawa, Canada. J Neuromuscul Dis 2021; 8:323-334. [PMID: 33492242 DOI: 10.3233/jnd-219001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Jodi Warman-Chardon
- Department of Medicine, The Ottawa Hospital and University of Ottawa, Canada.,Department of Genetics, Children's Hospital of Eastern Ontario, Canada.,Neuroscience Program, Ottawa Hospital Research Institute, Canada.,Centre for Neuromuscular Disease, University of Ottawa, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Canada
| | - Bernard J Jasmin
- Centre for Neuromuscular Disease, University of Ottawa, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Canada
| | - Rashmi Kothary
- Department of Medicine, The Ottawa Hospital and University of Ottawa, Canada.,Centre for Neuromuscular Disease, University of Ottawa, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Canada.,Regenerative Medicine Program, Ottawa Hospital Research Institute, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Canada
| | - Robin J Parks
- Department of Medicine, The Ottawa Hospital and University of Ottawa, Canada.,Centre for Neuromuscular Disease, University of Ottawa, Canada.,Regenerative Medicine Program, Ottawa Hospital Research Institute, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Canada
| |
Collapse
|
46
|
Chipika RH, Siah WF, McKenna MC, Li Hi Shing S, Hardiman O, Bede P. The presymptomatic phase of amyotrophic lateral sclerosis: are we merely scratching the surface? J Neurol 2020; 268:4607-4629. [PMID: 33130950 DOI: 10.1007/s00415-020-10289-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/18/2020] [Accepted: 10/20/2020] [Indexed: 02/06/2023]
Abstract
Presymptomatic studies in ALS have consistently captured considerable disease burden long before symptom manifestation and contributed important academic insights. With the emergence of genotype-specific therapies, however, there is a pressing need to address practical objectives such as the estimation of age of symptom onset, phenotypic prediction, informing the optimal timing of pharmacological intervention, and identifying a core panel of biomarkers which may detect response to therapy. Existing presymptomatic studies in ALS have adopted striking different study designs, relied on a variety of control groups, used divergent imaging and electrophysiology methods, and focused on different genotypes and demographic groups. We have performed a systematic review of existing presymptomatic studies in ALS to identify common themes, stereotyped shortcomings, and key learning points for future studies. Existing presymptomatic studies in ALS often suffer from sample size limitations, lack of disease controls and rarely follow their cohort until symptom manifestation. As the characterisation of presymptomatic processes in ALS serves a multitude of academic and clinical purposes, the careful review of existing studies offers important lessons for future initiatives.
Collapse
Affiliation(s)
- Rangariroyashe H Chipika
- Computational Neuroimaging Group (CNG), Biomedical Sciences Institute, Trinity College Dublin, Pearse Street, Dublin, Ireland
| | - We Fong Siah
- Computational Neuroimaging Group (CNG), Biomedical Sciences Institute, Trinity College Dublin, Pearse Street, Dublin, Ireland
| | - Mary Clare McKenna
- Computational Neuroimaging Group (CNG), Biomedical Sciences Institute, Trinity College Dublin, Pearse Street, Dublin, Ireland
| | - Stacey Li Hi Shing
- Computational Neuroimaging Group (CNG), Biomedical Sciences Institute, Trinity College Dublin, Pearse Street, Dublin, Ireland
| | - Orla Hardiman
- Computational Neuroimaging Group (CNG), Biomedical Sciences Institute, Trinity College Dublin, Pearse Street, Dublin, Ireland
| | - Peter Bede
- Computational Neuroimaging Group (CNG), Biomedical Sciences Institute, Trinity College Dublin, Pearse Street, Dublin, Ireland.
| |
Collapse
|
47
|
Zucchi E, Bonetto V, Sorarù G, Martinelli I, Parchi P, Liguori R, Mandrioli J. Neurofilaments in motor neuron disorders: towards promising diagnostic and prognostic biomarkers. Mol Neurodegener 2020; 15:58. [PMID: 33059698 PMCID: PMC7559190 DOI: 10.1186/s13024-020-00406-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 09/18/2020] [Indexed: 12/11/2022] Open
Abstract
Motor neuron diseases (MNDs) are etiologically and biologically heterogeneous diseases. The pathobiology of motor neuron degeneration is still largely unknown, and no effective therapy is available. Heterogeneity and lack of specific disease biomarkers have been appointed as leading reasons for past clinical trial failure, and biomarker discovery is pivotal in today's MND research agenda.In the last decade, neurofilaments (NFs) have emerged as promising biomarkers for the clinical assessment of neurodegeneration. NFs are scaffolding proteins with predominant structural functions contributing to the axonal cytoskeleton of myelinated axons. NFs are released in CSF and peripheral blood as a consequence of axonal degeneration, irrespective of the primary causal event. Due to the current availability of highly-sensitive automated technologies capable of precisely quantify proteins in biofluids in the femtomolar range, it is now possible to reliably measure NFs not only in CSF but also in blood.In this review, we will discuss how NFs are impacting research and clinical management in ALS and other MNDs. Besides contributing to the diagnosis at early stages by differentiating between MNDs with different clinical evolution and severity, NFs may provide a useful tool for the early enrolment of patients in clinical trials. Due to their stability across the disease, NFs convey prognostic information and, on a larger scale, help to stratify patients in homogenous groups. Shortcomings of NFs assessment in biofluids will also be discussed according to the available literature in the attempt to predict the most appropriate use of the biomarker in the MND clinic.
Collapse
Affiliation(s)
- Elisabetta Zucchi
- Department of Biomedical, Metabolic and Neural Science, University of Modena and Reggio Emilia, Modena, Italy
| | - Valentina Bonetto
- Department of Biochemistry and Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Gianni Sorarù
- Neuromuscular Center, Department of Neurosciences, University of Padova, Padua, Italy.,Clinica Neurologica, Azienda Ospedaliera di Padova, Padua, Italy
| | - Ilaria Martinelli
- Department of Neurosciences, Azienda Ospedaliero Universitaria Modena, Modena, Italy
| | - Piero Parchi
- IRCCS Istituto delle Scienze Neurologiche, Ospedale Bellaria, Bologna, Italy.,Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Rocco Liguori
- IRCCS Istituto delle Scienze Neurologiche, Ospedale Bellaria, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Jessica Mandrioli
- Department of Neurosciences, Azienda Ospedaliero Universitaria Modena, Modena, Italy.
| |
Collapse
|
48
|
Tamborska A, Bashford J, Wickham A, Iniesta R, Masood U, Cabassi C, Planinc D, Hodson-Tole E, Drakakis E, Boutelle M, Mills K, Shaw C. Non-invasive measurement of fasciculation frequency demonstrates diagnostic accuracy in amyotrophic lateral sclerosis. Brain Commun 2020; 2:fcaa141. [PMID: 33543131 PMCID: PMC7850269 DOI: 10.1093/braincomms/fcaa141] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/21/2020] [Accepted: 07/29/2020] [Indexed: 12/11/2022] Open
Abstract
Delayed diagnosis of amyotrophic lateral sclerosis prevents early entry into clinical trials at a time when neuroprotective therapies would be most effective. Fasciculations are an early hallmark of amyotrophic lateral sclerosis, preceding muscle weakness and atrophy. To assess the potential diagnostic utility of fasciculations measured by high-density surface electromyography, we carried out 30-min biceps brachii recordings in 39 patients with amyotrophic lateral sclerosis, 7 patients with benign fasciculation syndrome, 1 patient with multifocal motor neuropathy and 17 healthy individuals. We employed the surface potential quantification engine to compute fasciculation frequency, fasciculation amplitude and inter-fasciculation interval. Inter-group comparison was assessed by Welch’s analysis of variance. Logistic regression, receiver operating characteristic curves and decision trees discerned the diagnostic performance of these measures. Fasciculation frequency, median fasciculation amplitude and proportion of inter-fasciculation intervals <100 ms showed significant differences between the groups. In the best-fit regression model, increasing fasciculation frequency and median fasciculation amplitude were independently associated with the diagnosis of amyotrophic lateral sclerosis. Fasciculation frequency was the single best measure predictive of the disease, with an area under the curve of 0.89 (95% confidence interval 0.81–0.98). The cut-off of more than 14 fasciculation potentials per minute achieved 80% sensitivity (95% confidence interval 63–90%) and 96% specificity (95% confidence interval 78–100%). In conclusion, non-invasive measurement of fasciculation frequency at a single time-point reliably distinguished amyotrophic lateral sclerosis from its mimicking conditions and healthy individuals, warranting further research into its diagnostic applications.
Collapse
Affiliation(s)
- Arina Tamborska
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK
| | - James Bashford
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK
| | - Aidan Wickham
- Department of Bioengineering, Imperial College London, London, UK
| | - Raquel Iniesta
- Department of Biostatistics and Health Informatics, King's College London, London, UK
| | - Urooba Masood
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK
| | - Cristina Cabassi
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK
| | - Domen Planinc
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK
| | - Emma Hodson-Tole
- Department of Life Sciences, Musculoskeletal Sciences and Sports Medicine Research Centre, Manchester Metropolitan University, Manchester, UK
| | | | - Martyn Boutelle
- Department of Bioengineering, Imperial College London, London, UK
| | - Kerry Mills
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK
| | - Chris Shaw
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK
| |
Collapse
|
49
|
Shoukry RS, Waugh R, Bartlett D, Raitcheva D, Floeter MK. Longitudinal changes in resting state networks in early presymptomatic carriers of C9orf72 expansions. NEUROIMAGE-CLINICAL 2020; 28:102354. [PMID: 32769055 PMCID: PMC7406915 DOI: 10.1016/j.nicl.2020.102354] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/26/2020] [Accepted: 07/16/2020] [Indexed: 01/10/2023]
Abstract
Previous cross-sectional imaging studies found differences in brain structure and in resting state networks between presymptomatic carriers of mutations in C9orf72 (C9+) and healthy controls. We carried out a prospective longitudinal study of clinical and resting state functional imaging in a cohort of 15 presymptomatic C9+ carriers to determine whether differences in resting state connectivity prior to developing symptoms reflect static developmental differences or ongoing low-grade degenerative changes. Presymptomatic C9+ carriers were scanned at baseline with follow-up scanning at 6- and 18-months and compared to a cohort of 14 healthy controls scanned longitudinally. Resting state networks associated with manifest disease were visualized by comparing 27 symptomatic C9+ carriers to 34 healthy controls. Motor, salience, thalamic, and speech production networks were visualized using a seed-based analysis. Neurofilament light chain was measured in serum obtained at the time of the scans. Neither clinical measures of motor, cognitive, and behavioral function nor neurofilament levels changed over follow-up in presymptomatic C9+ carriers. In thalamic networks, there was a reduction in connectivity in presymptomatic carriers at all timepoints with a constant difference compared to healthy controls. In contrast, precuneus/posterior cingulate regions exhibited declining functional connectivity compared to controls over the 18-month follow-up, particularly in motor networks. These were regions that also exhibited reduced functional connectivity in symptomatic C9+ carriers. Reduced connectivity over time also occurred in small regions of frontal and temporal cortex within salience and thalamic networks in presymptomatic C9+ carriers. A few areas of increased connectivity occurred, including cortex near the motor seed and within the speech production network. Overall, changes in functional connectivity over time favor the explanation of ongoing low-grade alterations in presymptomatic C9+ carriers in most networks, with the exception of thalamic networks where functional connectivity reductions were stable over time. The loss of connectivity to parietal cortex regions in several different networks may be a distinct feature of C9orf72-related degeneration. Longitudinal studies of carriers who phenoconvert will be important to determine the prognostic significance of presymptomatic functional connectivity alterations.
Collapse
Affiliation(s)
- Rachel Smallwood Shoukry
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 10 Center Drive, 20892-1140, USA
| | - Rebecca Waugh
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 10 Center Drive, 20892-1140, USA.
| | - Dan Bartlett
- Biogen, 225 Binney Street, Cambridge, MA 02142, USA.
| | | | - Mary Kay Floeter
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 10 Center Drive, 20892-1140, USA.
| |
Collapse
|
50
|
Gray E, Thompson AG, Wuu J, Pelt J, Talbot K, Benatar M, Turner MR. CSF chitinases before and after symptom onset in amyotrophic lateral sclerosis. Ann Clin Transl Neurol 2020; 7:1296-1306. [PMID: 32666680 PMCID: PMC7448184 DOI: 10.1002/acn3.51114] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 06/04/2020] [Indexed: 12/12/2022] Open
Abstract
Objective To evaluate the CSF levels of chitinase proteins during the presymptomatic and early symptomatic phases of amyotrophic lateral sclerosis (ALS). Methods CSF samples were obtained from 16 controls, 55 individuals at‐risk for ALS (including 18 carrying a mutation in C9ORF72, 33 in SOD1), 12 ALS patients, and 7 phenoconverters (individuals diagnosed with ALS during follow‐up). At‐risk individuals and phenoconverters were enrolled through the Pre‐fALS study, which includes individuals carrying an ALS‐associated gene mutation without disease manifestations at initial assessment. Longitudinal CSF collections, where possible, took place every 3‐12 months for ALS patients and every 1‐2 years for others. CSF levels of chitotriosidase 1 (CHIT1), chitinase‐3‐like protein 1 (CHI3L1, YKL‐40) and chitinase‐3‐like protein 2 (CHI3L2, YKL‐39) were measured by ELISA, along with CHIT1 activity. Longitudinal changes in at‐risk individuals and phenoconverters were fitted to linear mixed effects models. Results Slowly rising levels of CHIT1 were observed over time in the at‐risk individuals (slope 0.059 log10[CHIT1] per year, P < 0.001). Among phenoconverters, CHIT1 levels and activity rose more sharply (0.403 log10[CHIT1] per year, P = 0.005; 0.260 log10[CHIT1 activity] per year, P = 0.007). Individual levels of both CHI3L1 and CHI3L2 remained relatively stable over time in all participant groups. Interpretation The CHIT1 neuroinflammatory response is a feature of the late presymptomatic to early symptomatic phases of ALS. This study does not suggest a long prodrome of upregulated glial activity in ALS pathogenesis, but strengthens the place of CHIT1 as part of a panel of biomarkers to objectively assess the impact of immune‐modulatory therapeutic interventions in ALS.
Collapse
Affiliation(s)
- Elizabeth Gray
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | | | - Joanne Wuu
- Department of Neurology, University of Miami, Miami, Florida
| | - Joe Pelt
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Kevin Talbot
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Michael Benatar
- Department of Neurology, University of Miami, Miami, Florida
| | - Martin R Turner
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|