1
|
Gomaa B, Abdelhamed H, Banes M, Zinnurine S, Pinchuk L, Lawrence ML. Innate and adaptive immunity gene expression profiles induced by virulent Aeromonas hydrophila infection in the immune-related organs of channel catfish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 162:105276. [PMID: 39341476 DOI: 10.1016/j.dci.2024.105276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 09/25/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
Aeromonas hydrophila causes motile Aeromonas septicemia (MAS) in freshwater fish. In recent years, MAS outbreaks due to virulent Aeromonas hydrophila (vAh) have been responsible for large-scale losses within commercial catfish farms in Mississippi and Alabama. The aim of this study was to evaluate immune gene expression in catfish immune-competent tissues during infection with vAh strain ML09-119. Specific pathogen-free catfish fingerlings were intraperitoneally infected with vAh strain ML09-119, and relative expression of thirteen immune-related genes was evaluated from head kidney, spleen, and liver. Our results revealed that vAh was detected 2 h post-infection (hpi) in the head kidney, liver, and spleen. The highest concentration of vAh was detected at 12 hpi, from which point concentrations decreased until clearance at 5 days post-infection (dpi). Gene expression analysis revealed upregulation of pro-inflammatory cytokines and innate immune response (TLR 4 and 5) in the first 24 hpi. Adaptive immune-related genes were upregulated at 7 dpi in the spleen and 14 dpi in the head kidney. Furthermore, immunoglobulin M showed significant upregulation at 14 dpi in the head kidney and 21 dpi in the spleen. In summary, vAh ML09-119 infection induced a strong inflammatory response involving multiple innate immunity genes, proinflammatory cytokines, and chemokines. Surviving catfish were able to clear the infection and produce antibodies and memory cells. Assessment of the immunological response to vAh infection is critical for understanding the pathogen's mechanisms of pathogenesis and developing means for MAS control, including vaccine development and improved treatments.
Collapse
Affiliation(s)
- Basant Gomaa
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, MS, 39762, USA
| | - Hossam Abdelhamed
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, MS, 39762, USA
| | - Michelle Banes
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, MS, 39762, USA
| | - Saida Zinnurine
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, MS, 39762, USA
| | - Lesya Pinchuk
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, MS, 39762, USA
| | - Mark L Lawrence
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, MS, 39762, USA.
| |
Collapse
|
2
|
El-Mansi AA, Rady AM, Ibrahim EH, ElBealy E. Cellular patterning and cyto-architectural organization of the skin of electric catfish (Malapterurus electricus, Siluriformes) with a particular emphasis on its ampullary electroreceptor. ZOOLOGY 2024; 163:126159. [PMID: 38471427 DOI: 10.1016/j.zool.2024.126159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 02/04/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024]
Abstract
The functional morphology of the skin of Malapteruridae is presumably evolved to cope with a diversified range of ambient physiological, environmental, and behavioral conditions. Herein, we firstly characterized the microstructures and intriguing patterning of the skin of twelve adult electric catfish (Malapterurus electricus, Malapteruridae) using histological, histochemical, immunofluorescent, and ELISA standard methodology. The skin comprises three sequentially-oriented layers: the epidermis, dermis, and hypodermis with a significantly increased thickness of the former. The epidermis contains four types of cells: the surface epithelial cells, mucous cells, granular cells, and club cells. We defined distinctive ampullary electroreceptors in the outer epidermis that possess flask-shaped sensory crypt containing electroreceptor cells together with vertical collagen rods. Dermis and hypodermis are composed of connective tissue; however, the former is much more coarse and dense with comparable reactivity for Masson-Goldner trichrome (MT). Placing our data in the context of the limited body of previous work, we showed subtle changes in the expression of mucin subunits together with cytoskeletal fractions of collagens, myosin, F-actin, keratins, and tubulins. Taken as a whole, our results convincingly showed that the skin of M. electricus shares some structural similarities to other Siluriformes, however, it has some functional modifications that are implicated in protection, defense, and foraging behavior.
Collapse
Affiliation(s)
- Ahmed A El-Mansi
- Biology Dept., Faculty of Science, King Khalid University, Abha, 61421, Saudi Arabia.
| | - Ahmed M Rady
- Biology Dept., Faculty of Science, King Saud University, Riyadh, Saudi Arabia
| | - Esam H Ibrahim
- Biology Dept., Faculty of Science, King Khalid University, Abha, 61421, Saudi Arabia
| | - Eman ElBealy
- Biology Dept., Faculty of Science, King Khalid University, Abha, 61421, Saudi Arabia
| |
Collapse
|
3
|
Zhang D, Zhou G, Thongda W, Li C, Ye Z, Zhao H, Beck BH, Mohammed H, Peatman E. Early divergent responses to virulent and attenuated vaccine isolates of Flavobacterium covae sp. nov. In channel catfish, Ictalurus punctatus. FISH & SHELLFISH IMMUNOLOGY 2024; 144:109248. [PMID: 38030028 DOI: 10.1016/j.fsi.2023.109248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/14/2023] [Accepted: 11/23/2023] [Indexed: 12/01/2023]
Abstract
Columnaris disease continues to inflict substantial losses among freshwater cultured species since its first description one hundred years ago. The experimental and anecdotal evidence suggests an expanded range and rising virulence of columnaris worldwide due to the warming global climate. The channel catfish (Ictalurus punctatus) are particularly vulnerable to columnaris. A recently developed live attenuated vaccine (17-23) for Flavobacterium columnare (now Flavobacterium covae sp. nov.) demonstrated superior protection for vaccinated catfish against genetically diverse columnaris isolates. In this study, we aimed to elucidate the molecular mechanisms and patterns of immune evasion and host manipulation linked to virulence by comparing gene expression changes in the host after the challenge with a virulent (BGSF-27) or live attenuated F. covae sp. nov. vaccine (17-23). Thirty-day-old fry were accordingly challenged with either virulent or vaccine isolates. Gill tissues were collected at 0 h (control), 1 h, and 2 h post-infection, which are two critical time points in early host-pathogen interactions. Transcriptome profiling of the gill tissues revealed a larger number (518) of differentially expressed genes (DEGs) in vaccine-exposed fish than those exposed to the virulent pathogen (321). Pathway analyses suggested potent suppression of early host immune responses by the virulent isolate through a higher expression of nuclear receptor corepressors (NCoR) responsible for antagonizing macrophage and T-cell signaling. Conversely, in vaccinated fry, we observed induction of Ca2+/calmodulin-dependent protein kinase II (CAMKII), responsible for clearing NCoR, and commensurate up-regulation of transcription factor AP-1 subunits, c-Fos, and c-Jun. As in mammalian systems, AP-1 expression was connected with a broad immune activation in vaccinated fry, including induction of CC chemokines, proteinases, iNOS, and IL-12b. Relatedly, divergent expression patterns of Src tyrosine kinase Lck, CD44, and CD28 indicated a delay or suppression of T-cell adhesion and activation in fry exposed to the virulent isolate. Broader implications of these findings will be discussed. The transcriptomic differences between virulent and attenuated bacteria may offer insights into how the host responds to the vaccination or infection and provide valuable knowledge to understand the early immune mechanisms of columnaris disease in aquaculture.
Collapse
Affiliation(s)
- Dongdong Zhang
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, School of Marine Bilology and Fisheries, Hainan University, Haikou, 570228, PR China; School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA; College of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, PR China
| | - Gengfu Zhou
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, School of Marine Bilology and Fisheries, Hainan University, Haikou, 570228, PR China
| | - Wilawan Thongda
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (CENTEX Shrimp), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand; National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Chao Li
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Zhi Ye
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Honggang Zhao
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Benjamin H Beck
- United States Department of Agriculture, Agricultural Research Service, Aquatic Animal Health Research Unit, Auburn, AL, 36832, USA
| | - Haitham Mohammed
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Eric Peatman
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA.
| |
Collapse
|
4
|
Mengkrog Holen M, Tuveng TR, Kent MP, Vaaje‐Kolstad G. The gastric mucosa of Atlantic salmon (Salmo salar) is abundant in highly active chitinases. FEBS Open Bio 2024; 14:23-36. [PMID: 37581908 PMCID: PMC10761930 DOI: 10.1002/2211-5463.13694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/19/2023] [Accepted: 08/14/2023] [Indexed: 08/16/2023] Open
Abstract
Atlantic salmon (Salmo salar) possesses a genome containing 10 genes encoding chitinases, yet their functional roles remain poorly understood. In other fish species, chitinases have been primarily linked to digestion, but also to other functions, as chitinase-encoding genes are transcribed in a variety of non-digestive organs. In this study, we investigated the properties of two chitinases belonging to the family 18 glycoside hydrolase group, namely Chia.3 and Chia.4, both isolated from the stomach mucosa. Chia.3 and Chia.4, exhibiting 95% sequence identity, proved inseparable using conventional chromatographic methods, necessitating their purification as a chitinase pair. Biochemical analysis revealed sustained chitinolytic activity against β-chitin for up to 24 h, spanning a pH range of 2 to 6. Moreover, subsequent in vitro investigations established that this chitinase pair efficiently degrades diverse chitin-containing substrates into chitobiose, highlighting the potential of Atlantic salmon to utilize novel chitin-containing feed sources. Analysis of the gastric matrix proteome demonstrates that the chitinases are secreted and rank among the most abundant proteins in the gastric matrix. This finding correlates well with the previously observed high transcription of the corresponding chitinase genes in Atlantic salmon stomach tissue. By shedding light on the secreted chitinases in the Atlantic salmon's stomach mucosa and elucidating their functional characteristics, this study enhances our understanding of chitinase biology in this species. Moreover, the observed capacity to effectively degrade chitin-containing materials implies the potential utilization of alternative feed sources rich in chitin, offering promising prospects for sustainable aquaculture practices.
Collapse
Affiliation(s)
- Matilde Mengkrog Holen
- Center for Integrative Genetics, Department of Animal and Aquacultural Sciences, Faculty of BiosciencesNorwegian University of Life SciencesÅsNorway
| | - Tina Rise Tuveng
- Faculty of Chemistry, Biotechnology and Food ScienceNorwegian University of Life SciencesÅsNorway
| | - Matthew Peter Kent
- Center for Integrative Genetics, Department of Animal and Aquacultural Sciences, Faculty of BiosciencesNorwegian University of Life SciencesÅsNorway
| | - Gustav Vaaje‐Kolstad
- Faculty of Chemistry, Biotechnology and Food ScienceNorwegian University of Life SciencesÅsNorway
| |
Collapse
|
5
|
Xu H, Wang W, Ouyang H, Zhang X, Miao X, Feng J, Tao Y, Li Y. Expression profiling and antibacterial analysis of cd36 in mandarin fish, Siniperca chuatsi. FISH & SHELLFISH IMMUNOLOGY 2023:108901. [PMID: 37321429 DOI: 10.1016/j.fsi.2023.108901] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/12/2023] [Accepted: 06/12/2023] [Indexed: 06/17/2023]
Abstract
Cd36 is classified as a class B scavenger receptor and has also been identified as a pattern recognition receptor. In this study, we investigated the genomic structure and molecular characteristics of cd36 in mandarin fish (Siniperca chuatsi), examined its tissue distribution, and evaluated its antibacterial activity. Genomic structure analysis showed that Sccd36 consists of 12 exons and 11 introns. Sequencing analysis confirmed that the open reading frame of Sccd36 contains 1410 bp, encoding 469 amino acids. Sccd36 is deeply conserved with other vertebrates in terms of genomic structure, gene loci and molecular evolution, and the feature of two transmembrane was observed in ScCd36 through structural prediction. Sccd36 was constitutively expressed in all tissues tested, with the strongest expression in the intestine, followed by the heart and the kidney. Dramatic changes of Sccd36 mRNA were detected in mucosal tissues, including the intestine, gill and skin, when stimulated by the microbial ligands lipopolysaccharide and lipoteichoic acid. In addition, ScCd36 was identified as having strong binding ability to microbial ligands and antibacterial activity against the gram-negative bacteria Aeromonas hydrophila and the gram-positive bacteria Streptococcus lactis. Furthermore, we verified that the genetic ablation of cd36 impaired the resistance of fish to bacterial challenge by using zebrafish cd36 knockout line. In conclusion, our findings suggest that ScCd36 plays a crucial role in the innate immune response of mandarin fish against bacterial infections. This also sets the stage for further exploration into the antibacterial function of Cd36 in lower vertebrate species.
Collapse
Affiliation(s)
- Hao Xu
- Fisheries and Aquaculture Biotechnology Laboratory, College of Fisheries, Southwest University, Chongqing, 400715, China; Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing, 400715, China
| | - Wenbo Wang
- Fisheries and Aquaculture Biotechnology Laboratory, College of Fisheries, Southwest University, Chongqing, 400715, China
| | - Huaxin Ouyang
- Fisheries and Aquaculture Biotechnology Laboratory, College of Fisheries, Southwest University, Chongqing, 400715, China
| | - Xiaoxue Zhang
- Fisheries and Aquaculture Biotechnology Laboratory, College of Fisheries, Southwest University, Chongqing, 400715, China
| | - Xiaomin Miao
- Fisheries and Aquaculture Biotechnology Laboratory, College of Fisheries, Southwest University, Chongqing, 400715, China; Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing, 400715, China
| | - Jingyun Feng
- Fisheries and Aquaculture Biotechnology Laboratory, College of Fisheries, Southwest University, Chongqing, 400715, China; Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing, 400715, China
| | - Yixi Tao
- Fisheries and Aquaculture Biotechnology Laboratory, College of Fisheries, Southwest University, Chongqing, 400715, China; Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing, 400715, China
| | - Yun Li
- Fisheries and Aquaculture Biotechnology Laboratory, College of Fisheries, Southwest University, Chongqing, 400715, China; Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
6
|
Jiang Z, Shen Y, Niu Z, Li X. Effects of cadmium and diethylhexyl phthalate on skin microbiota of Rana chinensis tadpoles. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:64285-64299. [PMID: 37067706 DOI: 10.1007/s11356-023-26853-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 04/03/2023] [Indexed: 05/11/2023]
Abstract
Skin microbiotas play a crucial role in the health, homeostasis, and immune function of amphibians. The contaminants in water could affect the structure and composition of microbial communities. The effects of coexisting pollutants on frogs cannot be adequately explained by a single exposure due to the coexistence of Cd and DEHP in the environment. Following exposure to Cd and/or DEHP, we examined the histological characteristics of Rana chensinensis tadpoles. We also used the 16S rRNA gene sequencing technique to assess the relative abundance of skin microbial communities among tadpoles from each treatment group. Our findings indicate that R. chensinensis' skin experienced some degree of injury due to exposure to Cd and DEHP, which led to the imbalance of their skin microbial community homeostasis and thus interfered with the normal trial status of the host. That may eventually lead to the decline of the amphibian population.
Collapse
Affiliation(s)
- Zhaoyang Jiang
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, People's Republic of China
| | - Yujia Shen
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, People's Republic of China
| | - Ziyi Niu
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, People's Republic of China
| | - Xinyi Li
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, People's Republic of China.
| |
Collapse
|
7
|
Sun P, Zhang D, Li N, Li XF, Ma YH, Li H, Tian Y, Wang T, Siddiquid SA, Sun WW, Zhang L, Shan XF, Wang CF, Qian AD, Zhang DX. Transcriptomic insights into the immune response of the intestine to Aeromonas veronii infection in northern snakehead (Channa argus). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 255:114825. [PMID: 36989948 DOI: 10.1016/j.ecoenv.2023.114825] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/18/2023] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
Intestinal inflammation is a protective response that is implicated in bacterial enteritis triggered by gastrointestinal infection. The immune mechanisms elicited in teleost against the infection of Aeromonas veronii are largely unknown. In this study, we performed a de novo northern snakehead (Channa argus) transcriptome assembly using Illumina sequencing platform. On this basis we performed a comparative transcriptomic analysis of northern snakehead intestine from A. veronii-challenge and phosphate buffer solution (PBS)-challenge fish, and 2076 genes were up-regulated and 1598 genes were down-regulated in the intestines infected with A. veronii. The Gene Ontology (GO) enrichment analysis indicated that the differentially expressed genes (DEGs) were enriched to 27, 21 and 20 GO terms in biological process, cellular component, and molecular function, respectively. A Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that 420 DEGs were involved in 194 pathways. Moreover, 33 DEGs were selected for quantitative real-time PCR analysis to validate the RNA-seq data. The results reflected the consistency of the expression levels between qRT-PCR and RNA-seq data. In addition, a time-course analysis of the mRNA expression of 33 immune-related genes further indicated that the intestinal inflammation to A. veronii infection simultaneously regulated gene expression alterations. The present study provides transcriptome data of the teleost intestine, allowing us to understand the mechanisms of intestinal inflammation triggered by bacterial pathogens. DATA AVAILABILITY STATEMENT: All data supporting the findings of this study are available within the article and Supplementary files. The RNA-seq raw sequence data are available in NCBI short read archive (SRA) database under accession number PRJNA615958.
Collapse
Affiliation(s)
- Peng Sun
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Di Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Na Li
- Ministry of Agriculture and Rural Affairs of Mudanjiang, Mudanjiang 157020, China
| | - Xiao-Fei Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Yi-Han Ma
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Hui Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Ye Tian
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Tao Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | | | - Wu-Wen Sun
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Lei Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Xiao-Feng Shan
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Chun-Feng Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Ai-Dong Qian
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Dong-Xing Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
8
|
Yang Q, Yang XD, Liu MQ, Zeng C, Zhao HK, Xiang KW, Hou ZS, Wen HS, Li JF. Transcriptome analysis of liver, gill and intestine in rainbow trout (Oncorhynchus mykiss) symptomatically or asymptomatically infected with Vibrio anguillarum. FISH & SHELLFISH IMMUNOLOGY 2023; 135:108643. [PMID: 36871630 DOI: 10.1016/j.fsi.2023.108643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 02/16/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Rainbow trout (Oncorhynchus mykiss), an important economic cold-water fish worldwide, is severely threatened by viruses and bacteria in the farming industry. The vibriosis outbreak has caused a significant setback to aquaculture. Vibrio anguillarum, one of the common disease-causing vibriosis associated with severe lethal vibriosis in aquaculture, infects fish mainly by adsorption and invasion of the skin, gills, lateral line and intestine. To investigate the defense mechanism of rainbow trout against the pathogen after infection with Vibrio anguillarum, trout were intraperitoneally injected by Vibrio anguillarum and divided into symptomatic group (SG) and asymptomatic group (AG) according to the phenotype. RNA-Seq technology was used to evaluate the transcriptional signatures of liver, gill and intestine of trout injected with Vibrio anguillarum (SG and AG) and corresponding control groups (CG(A) and CG(B)). The GO and KEGG enrichment analyses were used to investigate the mechanisms underlying the differences in susceptibility to Vibrio anguillarum. Results showed that in SG, immunomodulatory genes in the cytokine network were activated and tissue function-related genes were down-regulated, while apoptosis mechanisms were activated. However, AG responded to Vibrio anguillarum infection by activating complement related immune defenses, while metabolism and function related genes were up-regulated. Conclusively, a rapid and effective immune and inflammatory response can successfully defend Vibrio anguillarum infection. However, a sustained inflammatory response can lead to tissue and organ damage and cause death. Our results may provide a theoretical basis for breeding rainbow trout for disease resistance.
Collapse
Affiliation(s)
- Qian Yang
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao, China
| | - Xiao-Dong Yang
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao, China
| | - Meng-Qun Liu
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao, China
| | - Chu Zeng
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao, China
| | - Hong-Kui Zhao
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao, China
| | - Kai-Wen Xiang
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao, China
| | - Zhi-Shuai Hou
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao, China
| | - Hai-Shen Wen
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao, China
| | - Ji-Fang Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao, China.
| |
Collapse
|
9
|
SpPdp11 Administration in Diet Modified the Transcriptomic Response and Its Microbiota Associated in Mechanically Induced Wound Sparus aurata Skin. Animals (Basel) 2023; 13:ani13020193. [PMID: 36670734 PMCID: PMC9854838 DOI: 10.3390/ani13020193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/22/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
Skin lesions are a frequent fact associated with intensive conditions affecting farmed fish. Knowing that the use of probiotics can improve fish skin health, SpPdp11 dietary administration has demonstrated beneficial effects for farmed fish, so its potential on the skin needs to be studied more deeply. The wounded specimens that received the diet with SpPdp11 showed a decrease in the abundance of Enterobacteriaceae, Photobacterium and Achromobacter related to bacterial biofilm formation, as well as the overexpression of genes involved in signaling mechanisms (itpr3), cell migration and differentiation (panxa, ttbk1a, smpd3, vamp5); and repression of genes related to cell proliferation (vstm4a, areg), consistent with a more efficient skin healing processes than that observed in the wounded control group. In addition, among the groups of damaged skin with different diets, Achromobacter, f_Ruminococcaceae, p_Bacteroidetes, Fluviicola and Flavobacterium genera with significant differences showed positive correlations with genes related to cell migration and negative correlations with inflammation and cell proliferation and may be the target of future studies.
Collapse
|
10
|
Alesci A, Pergolizzi S, Savoca S, Fumia A, Mangano A, Albano M, Messina E, Aragona M, Lo Cascio P, Capillo G, Lauriano ER. Detecting Intestinal Goblet Cells of the Broadgilled Hagfish Eptatretus cirrhatus (Forster, 1801): A Confocal Microscopy Evaluation. BIOLOGY 2022; 11:biology11091366. [PMID: 36138844 PMCID: PMC9496011 DOI: 10.3390/biology11091366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 12/25/2022]
Abstract
Simple Summary The intestinal epithelium of fish, similar to mammals, consists mainly of enterocytes and goblet cells. Goblet cells play a key role in the secretion of mucus, which, in addition to promoting the digestion of nutrients, is the first protective barrier against bacteria, viruses, and pathogens. Our study aims to evaluate the presence, localization, and co-localization of 5-HT, TLR2, iNOS, and Piscidin1 in goblet cells of the intestine of Eptatretus cirrhatus. The results obtained by confocal microscopy show, for the first time, the positivity of goblet cells to the antibodies tested, suggesting the involvement of these cells in the intestinal immunity of broadgilled hagfish. Abstract The fish intestine operates as a complicated interface between the organism and the environment, providing biological and mechanical protections as a result of a viscous layer of mucus released by goblet cells, which serves as a barrier against bacteria, viruses, and other pathogens, and contributes to the functions of the immune system. Therefore, goblet cells have a role in preserving the health of the body by secreting mucus and acting as sentinels. The ancient jawless fish broadgilled hagfish (Eptatretus cirrhatus, Forster, 1801) has a very basic digestive system because it lacks a stomach. By examining the presence, localization, and co-localization of 5-HT, TLR2, iNOS, and Piscidin1, this study intends to provide insight into the potential immune system contributions arranged by the gut goblet cells of broadgilled hagfish. Our results characterize intestinal goblet cells of broadgilled hagfish, for the first time, with the former antibodies, suggesting the hypothesis of conservation of the roles played by these cells also in primitive vertebrates. Moreover, this study deepens the knowledge about the still little-known immune system of hagfish.
Collapse
Affiliation(s)
- Alessio Alesci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
- Correspondence: (A.A.); (S.P.)
| | - Simona Pergolizzi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
- Correspondence: (A.A.); (S.P.)
| | - Serena Savoca
- Department of Biomedical, Dental and Morphological and Functional Imaging, University of Messina, 98125 Messina, Italy
- Institute of Marine Biological Resources and Biotechnology, National Research Council (IRBIM, CNR), 98164 Messina, Italy
| | - Angelo Fumia
- Department of Clinical and Experimental Medicine, University of Messina, Padiglione C, A. O. U. Policlinico “G. Martino”, 98124 Messina, Italy
| | - Angelica Mangano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Marco Albano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Emmanuele Messina
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Marialuisa Aragona
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Patrizia Lo Cascio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Gioele Capillo
- Department of Biomedical, Dental and Morphological and Functional Imaging, University of Messina, 98125 Messina, Italy
- Institute of Marine Biological Resources and Biotechnology, National Research Council (IRBIM, CNR), 98164 Messina, Italy
| | - Eugenia Rita Lauriano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| |
Collapse
|
11
|
Sayed AEDH, Taher H, Soliman HAM, Salah El-Din AED. Immunological and hemato-biochemical effects on catfish (Clarias gariepinus) exposed to dexamethasone. Front Physiol 2022; 13:1018795. [PMID: 36187758 PMCID: PMC9525139 DOI: 10.3389/fphys.2022.1018795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 08/29/2022] [Indexed: 12/02/2022] Open
Abstract
Dexamethasone (glucocorticoid) was recently shown to be a life-saving drug for the treatment of SARS-CoV-2 disease. Water and sediments can be contaminated by sewage treatment plants when this product is widely used. Accordingly, we evaluated the effects of dexamethasone as pharmaceutical residue on Clarias gariepinus, following exposure and post-exposure recovery on blood biochemical, antioxidant, and cytokine markers. Three experimental groups were examined. Control, fish exposed to 0.3 mg/L of dexamethasone, and fish exposed to 3 mg/L of dexamethasone for 7 days, followed by a 15-days recovery period. Hematological indices, such as red blood cell number, hemoglobin (Hb), platelets, mean corpuscular hemoglobin concentration, and large lymphocytes, were significantly declined following the exposure to dexamethasone compared to control. In contrast, hematocrit (Ht), mean corpuscular volume, monocytes, small lymphocytes, and mean corpuscular hemoglobin increased significantly depending on the dose–concentration. Liver and kidney functions, other biochemical parameters (albumin and globulin), cortisol, and cytokine (IL-1β and IL-6) concentrations increased significantly after exposure to dexamethasone compared to control. Antioxidants and acetylcholinesterase enzymes were significantly decreased in catfish treated with dexamethasone cumulatively with doses. After a recovery period, blood biochemical, antioxidant, and cytokine markers were still elevated compared with the control group. In conclusion, dexamethasone at concentrations present in water bodies causes deleterious effects on blood biomarkers, biochemical, and antioxidant as well as immune upregulation in catfish until after depuration period.
Collapse
Affiliation(s)
- Alaa El-Din H. Sayed
- Zoology Department, Faculty of Science, Assiut University, Assiut, Egypt
- *Correspondence: Alaa El-Din H. Sayed,
| | - Hesham Taher
- Department of Water Biology, Faculty of Fish and Fisheries Technology, Aswan University, Aswan, Egypt
| | | | | |
Collapse
|
12
|
Ghotbi M, Kelting O, Blümel M, Tasdemir D. Gut and Gill-Associated Microbiota of the Flatfish European Plaice ( Pleuronectes platessa): Diversity, Metabolome and Bioactivity against Human and Aquaculture Pathogens. Mar Drugs 2022; 20:md20090573. [PMID: 36135762 PMCID: PMC9500656 DOI: 10.3390/md20090573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/29/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Similar to other marine holobionts, fish are colonized by complex microbial communities that promote their health and growth. Fish-associated microbiota is emerging as a promising source of bioactive metabolites. Pleuronectes platessa (European plaice, plaice), a flatfish with commercial importance, is common in the Baltic Sea. Here we used a culture-dependent survey followed by molecular identification to identify microbiota associated with the gills and the gastrointestinal tract (GIT) of P. platessa, then profiled their antimicrobial activity and metabolome. Altogether, 66 strains (59 bacteria and 7 fungi) were isolated, with Proteobacteria being the most abundant phylum. Gill-associated microbiota accounted for higher number of isolates and was dominated by the Proteobacteria (family Moraxellaceae) and Actinobacteria (family Nocardiaceae), whereas Gram-negative bacterial families Vibrionaceae and Shewanellaceae represented the largest group associated with the GIT. The EtOAc extracts of the solid and liquid media cultures of 21 bacteria and 2 fungi representing the diversity of cultivable plaice-associated microbiota was profiled for their antimicrobial activity against three fish pathogens, human bacterial pathogen panel (ESKAPE) and two human fungal pathogens. More than half of all tested microorganisms, particularly those originating from the GIT epithelium, exhibited antagonistic effect against fish pathogens (Lactococcus garvieae, Vibrio ichthyoenteri) and/or human pathogens (Enterococcus faecium, methicillin-resistant Staphylococcus aureus). Proteobacteria represented the most active isolates. Notably, the solid media extracts displayed higher activity against fish pathogens, while liquid culture extracts were more active against human pathogens. Untargeted metabolomics approach using feature-based molecular networking showed the high chemical diversity of the liquid extracts that contained undescribed clusters. This study highlights plaice-associated microbiota as a potential source of antimicrobials for the control of human and the aquaculture-associated infections. This is the first study reporting diversity, bioactivity and chemical profile of culture-dependent microbiota of plaice.
Collapse
Affiliation(s)
- Marjan Ghotbi
- GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Research Unit Marine Natural Product Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Am Kiel-Kanal 44, 24106 Kiel, Germany
| | - Ole Kelting
- GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Research Unit Marine Natural Product Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Am Kiel-Kanal 44, 24106 Kiel, Germany
| | - Martina Blümel
- GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Research Unit Marine Natural Product Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Am Kiel-Kanal 44, 24106 Kiel, Germany
| | - Deniz Tasdemir
- GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Research Unit Marine Natural Product Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Am Kiel-Kanal 44, 24106 Kiel, Germany
- Faculty of Mathematics and Natural Sciences, Kiel University, Christian-Albrechts-Platz 4, 24118 Kiel, Germany
- Correspondence: ; Tel.: +49-431-600-4430
| |
Collapse
|
13
|
Aeromonas hydrophila Induces Skin Disturbance through Mucosal Microbiota Dysbiosis in Striped Catfish ( Pangasianodon hypophthalmus). mSphere 2022; 7:e0019422. [PMID: 35766485 PMCID: PMC9429897 DOI: 10.1128/msphere.00194-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial pathogens are well equipped to adhere to and initiate infection in teleost fish. Fish skin mucus serves as the first barrier against environmental pathogens. The mucus harbors commensal microbes that impact host physiological and immunological responses. However, how the skin mucosal microbiota responds to the presence of pathogens remains largely unexplored. Thus, little is known about the status of skin mucus prior to infection with noticeable symptoms. In this study, we investigated the interactions between pathogens and the skin mucosal microbiota as well as the fish skin immune responses in the presence of pathogens. Striped catfish (Pangasianodon hypophthalmus) were challenged with different concentrations of the bacterial pathogen Aeromonas hydrophila (AH), and the skin immune response and the mucosal microbiota were examined by quantitative PCR (qPCR) and 16S rRNA gene sequence analysis. We determined that the pathogen concentration needed to stimulate the skin immune response was associated with significant mucosal microbiota changes, and we reconfirmed these observations using an ex vivo fish skin model. Further analysis indicated that changes in the microbiota were attributed to a significant increase in opportunistic pathogens over AH. We concluded that the presence and increase of AH result in dysbiosis of the mucosal microbiota that can stimulate skin immune responses. We believe that our work sheds light on host-pathogen-commensal microbiota interactions and therefore contributes to aquaculture fish health. IMPORTANCE The fish skin mucosal microbiota is essential in modulating the host response to the presence of pathogens. Our study provides a platform to study both the correlation and causation of the interactions among the pathogen, fish skin, and the skin mucosal microbiota. Based on these findings, we provide the first mechanistic information on how mucosal microbiota changes induced by the pathogen AH result in skin disturbance with immune stimulation in striped catfish in the natural state and a potential direction for early-infection screening. Thus, this study is highly significant in the prevention of fish disease.
Collapse
|
14
|
Anderson KC, Ghosh B, Chetty T, Walker SP, Symonds JE, Nowak BF. Transcriptomic characterisation of a common skin lesion in farmed chinook salmon. FISH & SHELLFISH IMMUNOLOGY 2022; 124:28-38. [PMID: 35367374 DOI: 10.1016/j.fsi.2022.03.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/20/2022] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
Little is known about host responses of farmed Chinook salmon with skin lesions, despite the lesions being associated with increased water temperatures and elevated mortality rates. To address this shortfall, a transcriptomic approach was used to characterise the molecular landscape of spot lesions, the most commonly reported lesion type in New Zealand Chinook salmon, versus healthy appearing skin in fish with and without spot lesions. Many biological (gene ontology) pathways were enriched in lesion adjacent tissue, relative to control skin tissue, including proteolysis, fin regeneration, calcium ion binding, mitochondrial transport, actin cytoskeleton organisation, epithelium development, and tissue development. In terms of specific transcripts of interest, pro-inflammatory cytokines (interleukin 1β and tumour necrosis factor), annexin A1, mucin 2, and calreticulin were upregulated, while cathepsin H, mucin 5AC, and perforin 1 were downregulated in lesion tissue. In some instances, changes in gene expression were consistent between lesion and healthy appearing skin from the same fish relative to lesion free fish, suggesting that host responses weren't limited to the site of the lesion. Goblet cell density in skin histological sections was not different between skin sample types. Collectively, these results provide insights into the physiological changes associated with common spot lesions in farmed Chinook salmon.
Collapse
Affiliation(s)
- Kelli C Anderson
- Institute for Marine and Antarctic Studies, University of Tasmania Newnham Campus, Private Bag 1370, Newnham, Tas, 7248, Australia.
| | - Bikramjit Ghosh
- Institute for Marine and Antarctic Studies, University of Tasmania Newnham Campus, Private Bag 1370, Newnham, Tas, 7248, Australia
| | - Thaveshini Chetty
- Institute for Marine and Antarctic Studies, University of Tasmania Newnham Campus, Private Bag 1370, Newnham, Tas, 7248, Australia
| | - Seumas P Walker
- Cawthron Institute, 98 Halifax Street East, Nelson, 7010, New Zealand
| | - Jane E Symonds
- Cawthron Institute, 98 Halifax Street East, Nelson, 7010, New Zealand
| | - Barbara F Nowak
- Institute for Marine and Antarctic Studies, University of Tasmania Newnham Campus, Private Bag 1370, Newnham, Tas, 7248, Australia.
| |
Collapse
|
15
|
Sultana S, Khan MN, Hossain MS, Dai J, Rahman MS, Salimullah M. Community Structure and Functional Annotations of the Skin Microbiome in Healthy and Diseased Catfish, Heteropneustes fossilis. Front Microbiol 2022; 13:856014. [PMID: 35295300 PMCID: PMC8918984 DOI: 10.3389/fmicb.2022.856014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 02/08/2022] [Indexed: 12/03/2022] Open
Abstract
The skin mucosa of fish serves as a primary barrier against pathogens. In lesion sites in diseased fish, the mucosal barrier is expected to be compromised, with a substantial presence of potential pathogens. An understanding of the skin microbiome and its functional repertoire would provide important insights into host-microbe interactions, which has important implications for prophylactic measures in aquaculture. This study revealed the skin microbiomes and their functional annotations from healthy and diseased stinging catfish (Heteropneustes fossilis) based on 16S rRNA metagenomics. The OTUs consisted of four major phyla, Proteobacteria, Bacteroidota, Actinobacteriota and Firmicutes. Among members of the predominant phyla, Proteobacteria were rich in healthy fishes, but Bacteroidota and Firmicutes were significantly differentiated in healthy and diseased fish. The diversified microbiome was high in the skin of healthy fishes and did not significantly differ from that of the diseased groups. At the genus level, Pseudomonas showed the highest abundance in healthy fish but was nearly absent in diseased fish, whereas Flavobacterium showed the highest abundance in diseased fish. Linear discriminant analysis identified two phyla (Bacteroidota, Firmicutes) and two genera (Flavobacterium, Allorhizobium) that were consistently identified in diseased fishes. Functional prediction analysis specified that the genes related to physiological functions such as metabolism, immune and digestive systems and environmental adaptations could be highly expressed in diseased fishes. The present study indicates that the compositions, richness and functions of the bacterial community could influence the health status of cultured stinging catfish. Aquaculture-associated pathogenic bacteria may be identified, and preventive measures can be taken for the surveillance of fish health.
Collapse
Affiliation(s)
- Shirin Sultana
- Aquatic Animal Health Group, Department of Fisheries, University of Dhaka, Dhaka, Bangladesh
- Fisheries Biotechnology Division, National Institute of Biotechnology, Dhaka, Bangladesh
| | - Md. Nasir Khan
- Fisheries Biotechnology Division, National Institute of Biotechnology, Dhaka, Bangladesh
| | | | - Jingcheng Dai
- School of Life Sciences and Technology, Wuhan Polytechnique University, Wuhan, China
| | - Mohammad Shamsur Rahman
- Aquatic Animal Health Group, Department of Fisheries, University of Dhaka, Dhaka, Bangladesh
| | - Md. Salimullah
- Molecular Biotechnology Division, National Institute of Biotechnology, Dhaka, Bangladesh
| |
Collapse
|
16
|
Cai W, Kumar S, Navaneethaiyer U, Caballero-Solares A, Carvalho LA, Whyte SK, Purcell SL, Gagne N, Hori TS, Allen M, Taylor RG, Balder R, Parrish CC, Rise ML, Fast MD. Transcriptome Analysis of Atlantic Salmon ( Salmo salar) Skin in Response to Sea Lice and Infectious Salmon Anemia Virus Co-Infection Under Different Experimental Functional Diets. Front Immunol 2022; 12:787033. [PMID: 35046944 PMCID: PMC8763012 DOI: 10.3389/fimmu.2021.787033] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/06/2021] [Indexed: 11/13/2022] Open
Abstract
Sea lice (Lepeophtheirus salmonis) are ectoparasitic copepods that cause significant economic loss in marine salmoniculture. In commercial salmon farms, infestation with sea lice can enhance susceptibility to other significant pathogens, such as the highly contagious infectious salmon anemia virus (ISAv). In this study, transcriptomic analysis was used to evaluate the impact of four experimental functional feeds (i.e. 0.3% EPA/DHA+high-ω6, 0.3% EPA/DHA+high-ω6+immunostimulant (IS), 1% EPA/DHA+high-ω6, and 1% EPA/DHA+high-ω3) on Atlantic salmon (Salmo salar) during a single infection with sea lice (L. salmonis) and a co-infection with sea lice and ISAv. The overall objectives were to compare the transcriptomic profiles of skin between lice infection alone with co-infection groups and assess differences in gene expression response among animals with different experimental diets. Atlantic salmon smolts were challenged with L. salmonis following a 28-day feeding trial. Fish were then challenged with ISAv at 18 days post-sea lice infection (dpi), and maintained on individual diets, to establish a co-infection model. Skin tissues sampled at 33 dpi were subjected to RNA-seq analysis. The co-infection’s overall survival rates were between 37%-50%, while no mortality was observed in the single infection with lice. With regard to the infection status, 756 and 1303 consensus differentially expressed genes (DEGs) among the four diets were identified in “lice infection vs. pre-infection” and “co-infection vs. pre-infection” groups, respectively, that were shared between the four experimental diets. The co-infection groups (co-infection vs. pre-infection) included up-regulated genes associated with glycolysis, the interferon pathway, complement cascade activity, and heat shock protein family, while the down-regulated genes were related to antigen presentation and processing, T-cell activation, collagen formation, and extracellular matrix. Pathway enrichment analysis conducted between infected groups (lice infection vs. co-infection) resulted in several immune-related significant GO terms and pathways unique to this group, such as “autophagosome”, “cytosolic DNA-sensing pathway” and “response to type I interferons”. Understanding how experimental functional feeds can impact the host response and the trajectory of co-infections will be an essential step in identifying efficacious intervention strategies that account for the complexities of disease in open cage culture.
Collapse
Affiliation(s)
- Wenlong Cai
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada.,Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Surendra Kumar
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | | | | | - Laura A Carvalho
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada
| | - Shona K Whyte
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada
| | - Sara L Purcell
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada
| | - Nellie Gagne
- Fisheries and Oceans Canada, Moncton, NB, Canada
| | - Tiago S Hori
- Centre for Aquaculture Technologies Canada, Souris, PE, Canada
| | - Melissa Allen
- Centre for Aquaculture Technologies Canada, Souris, PE, Canada
| | | | - Rachel Balder
- Cargill Animal Nutrition, Elk River, MN, United States
| | - Christopher C Parrish
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Matthew L Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Mark D Fast
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada
| |
Collapse
|
17
|
Jiao C, Zou J, Chen Z, Zheng F, Xu Z, Lin YH, Wang Q. Dietary Glutamine Inclusion Regulates Immune and Antioxidant System, as Well as Programmed Cell Death in Fish to Protect against Flavobacterium columnare Infection. Antioxidants (Basel) 2021; 11:44. [PMID: 35052548 PMCID: PMC8773122 DOI: 10.3390/antiox11010044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 01/07/2023] Open
Abstract
The susceptibility of animals to pathogenic infection is significantly affected by nutritional status. The present study took yellow catfish (Pelteobagrus fulvidraco) as a model to test the hypothesis that the protective roles of glutamine during bacterial infection are largely related to its regulation on the immune and antioxidant system, apoptosis and autophagy. Dietary glutamine supplementation significantly improved fish growth performance and feed utilization. After a challenge with Flavobacterium columnare, glutamine supplementation promoted il-8 and il-1β expression via NF-κB signaling in the head kidney and spleen, but inhibited the over-inflammation in the gut and gills. Additionally, dietary glutamine inclusion also enhanced the systematic antioxidant capacity. Histological analysis showed the protective role of glutamine in gill structures. Further study indicated that glutamine alleviated apoptosis during bacterial infection, along with the reduced protein levels of caspase-3 and the reduced expression of apoptosis-related genes. Moreover, glutamine also showed an inhibitory role in autophagy which was due to the increased activation of the mTOR signaling pathway. Thus, our study for the first time illustrated the regulatory roles of glutamine in the fish immune and antioxidant system, and reported its inhibitory effects on fish apoptosis and autophagy during bacterial infection.
Collapse
Affiliation(s)
- Congrui Jiao
- College of Fisheries, Huazhong Agricultural University, 1 Shizishan Street, Wuhan 430070, China; (C.J.); (J.Z.); (Z.C.); (F.Z.); (Z.X.)
| | - Jiahong Zou
- College of Fisheries, Huazhong Agricultural University, 1 Shizishan Street, Wuhan 430070, China; (C.J.); (J.Z.); (Z.C.); (F.Z.); (Z.X.)
| | - Zhenwei Chen
- College of Fisheries, Huazhong Agricultural University, 1 Shizishan Street, Wuhan 430070, China; (C.J.); (J.Z.); (Z.C.); (F.Z.); (Z.X.)
| | - Feifei Zheng
- College of Fisheries, Huazhong Agricultural University, 1 Shizishan Street, Wuhan 430070, China; (C.J.); (J.Z.); (Z.C.); (F.Z.); (Z.X.)
| | - Zhen Xu
- College of Fisheries, Huazhong Agricultural University, 1 Shizishan Street, Wuhan 430070, China; (C.J.); (J.Z.); (Z.C.); (F.Z.); (Z.X.)
| | - Yu-Hung Lin
- Department of Aquaculture, National Pingtung University of Science and Technology, 1 Shuefu Road, Neipu, Pingtung 912, Taiwan
| | - Qingchao Wang
- College of Fisheries, Huazhong Agricultural University, 1 Shizishan Street, Wuhan 430070, China; (C.J.); (J.Z.); (Z.C.); (F.Z.); (Z.X.)
| |
Collapse
|
18
|
Lange MD, Abernathy J, Farmer BD, Beck BH. Use of an immersion adjuvant with a Flavobacterium columnare recombinant protein vaccine in channel catfish. FISH & SHELLFISH IMMUNOLOGY 2021; 117:136-139. [PMID: 34339820 DOI: 10.1016/j.fsi.2021.07.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/15/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Affiliation(s)
- Miles D Lange
- United States Department of Agriculture, Agricultural Research Service, Aquatic Animal Health Research Unit, Auburn, AL, USA.
| | - Jason Abernathy
- United States Department of Agriculture, Agricultural Research Service, Harry K. Dupree Stuttgart National Aquaculture Research Center, Stuttgart, AR, USA
| | - Bradley D Farmer
- United States Department of Agriculture, Agricultural Research Service, Harry K. Dupree Stuttgart National Aquaculture Research Center, Stuttgart, AR, USA
| | - Benjamin H Beck
- United States Department of Agriculture, Agricultural Research Service, Aquatic Animal Health Research Unit, Auburn, AL, USA
| |
Collapse
|
19
|
Siao RF, Lin CH, Chen LH, Wang LC. Establishment of a striped catfish skin explant model for studying the skin response in Aeromonas hydrophila infections. Sci Rep 2021; 11:19057. [PMID: 34561532 PMCID: PMC8463585 DOI: 10.1038/s41598-021-98583-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 09/09/2021] [Indexed: 12/04/2022] Open
Abstract
Teleost fish skin serves as the first line of defense against pathogens. The interaction between pathogen and host skin determines the infection outcome. However, the mechanism(s) that modulate infection remain largely unknown. A proper tissue culture model that is easier to handle but can quantitatively and qualitatively monitor infection progress may shed some lights. Here, we use striped catfish (Pangasius hypophthalmus) to establish an ex vivo skin explant tissue culture model to explore host pathogen interactions. The skin explant model resembles in vivo skin in tissue morphology, integrity, and immune functionality. Inoculation of aquatic pathogen Aeromonas hydrophila in this model induces epidermal exfoliation along with epithelial cell dissociation and inflammation. We conclude that this ex vivo skin explant model could serve as a teleost skin infection model for monitoring pathogenesis under various infection conditions. The model can also potentially be translated into a platform to study prevention and treatment of aquatic infection on the skin in aquaculture applications.
Collapse
Affiliation(s)
- Ru-Fang Siao
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Chia-Hsuan Lin
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Li-Hsuan Chen
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Liang-Chun Wang
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, Taiwan.
| |
Collapse
|
20
|
Salinas I, Fernández-Montero Á, Ding Y, Sunyer JO. Mucosal immunoglobulins of teleost fish: A decade of advances. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 121:104079. [PMID: 33785432 PMCID: PMC8177558 DOI: 10.1016/j.dci.2021.104079] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 05/03/2023]
Abstract
Immunoglobulins (Igs) are complex glycoproteins that play critical functions in innate and adaptive immunity of all jawed vertebrates. Given the unique characteristics of mucosal barriers, secretory Igs (sIgs) have specialized to maintain homeostasis and keep pathogens at bay at mucosal tissues from fish to mammals. In teleost fish, the three main IgH isotypes, IgM, IgD and IgT/Z can be found in different proportions at the mucosal secretions of the skin, gills, gut, nasal, buccal, and pharyngeal mucosae. Similar to the role of mammalian IgA, IgT plays a predominant role in fish mucosal immunity. Recent studies in IgT have illuminated the primordial role of sIgs in both microbiota homeostasis and pathogen control at mucosal sites. Ten years ago, IgT was discovered to be an immunoglobulin class specialized in mucosal immunity. Aiming at this 10-year anniversary, the goal of this review is to summarize the current status of the field of fish Igs since that discovery, while identifying knowledge gaps and future avenues that will move the field forward in both basic and applied science areas.
Collapse
Affiliation(s)
- Irene Salinas
- Center for Evolutionary and Theoretical Immunology (CETI), Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA.
| | - Álvaro Fernández-Montero
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yang Ding
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - J Oriol Sunyer
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
21
|
Ali MFZ, Kameda K, Kondo F, Iwai T, Kurniawan RA, Ohta T, Ido A, Takahashi T, Miura C, Miura T. Effects of dietary silkrose of Antheraea yamamai on gene expression profiling and disease resistance to Edwardsiella tarda in Japanese medaka (Oryzias latipes). FISH & SHELLFISH IMMUNOLOGY 2021; 114:207-217. [PMID: 33965522 DOI: 10.1016/j.fsi.2021.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/21/2021] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
Abstract
We previously identified a novel acidic polysaccharide, silkrose-AY, from the Japanese oak silkmoth (Antheraea yamamai), which can activate an innate immune response in mouse macrophage cells. However, innate immune responses stimulated by silkrose-AY in teleosts remain unclear. Here, we show the influence of dietary silkrose-AY in medaka (Oryzias latipes), a teleost model, in response to Edwardsiella tarda infection. Dietary silkrose-AY significantly improved the survival of fish and decreased the number of bacteria in their kidneys after the fish were artificially infected with E. tarda by immersion. We also performed a microarray analysis of the intestine, which serves as a primary barrier against microbial infection, to understand the profiles of differentially expressed genes (DEGs) evoked by silkrose-AY. The dietary silkrose-AY group showed differential expression of 2930 genes when compared with the control group prior to E. tarda infection. Gene ontology and pathway analysis of the DEGs highlighted several putative genes involved in pathogen attachment/recognition, the complement and coagulation cascade, antimicrobial peptides/enzymes, opsonization/phagocytosis, and epithelial junctional modification. Our findings thus provide fundamental information to help understand the molecular mechanism of bacterial protection offered by insect-derived immunostimulatory polysaccharides in teleosts.
Collapse
Affiliation(s)
- Muhammad Fariz Zahir Ali
- Graduate School of Agriculture, Ehime University, 3-5-7, Tarumi, Matsuyama, Ehime, 790-8566, Japan
| | - Kenta Kameda
- Graduate School of Agriculture, Ehime University, 3-5-7, Tarumi, Matsuyama, Ehime, 790-8566, Japan
| | - Fumitaka Kondo
- Graduate School of Agriculture, Ehime University, 3-5-7, Tarumi, Matsuyama, Ehime, 790-8566, Japan
| | - Toshiharu Iwai
- Graduate School of Agriculture, Ehime University, 3-5-7, Tarumi, Matsuyama, Ehime, 790-8566, Japan
| | - Rio Aditya Kurniawan
- Graduate School of Agriculture, Ehime University, 3-5-7, Tarumi, Matsuyama, Ehime, 790-8566, Japan
| | - Takashi Ohta
- South Ehime Fisheries Research Center, Ehime University, 1289-1, Funakoshi, Ainan, Ehime, 798-4292, Japan
| | - Atsushi Ido
- Graduate School of Agriculture, Ehime University, 3-5-7, Tarumi, Matsuyama, Ehime, 790-8566, Japan
| | - Takayuki Takahashi
- Graduate School of Agriculture, Ehime University, 3-5-7, Tarumi, Matsuyama, Ehime, 790-8566, Japan
| | - Chiemi Miura
- Graduate School of Agriculture, Ehime University, 3-5-7, Tarumi, Matsuyama, Ehime, 790-8566, Japan; Department of Global Environment Studies, Faculty of Environmental Studies, Hiroshima Institute of Technology, 2-1-1 Miyake, Saeki-ku, Hiroshima, 731-5193, Japan
| | - Takeshi Miura
- Graduate School of Agriculture, Ehime University, 3-5-7, Tarumi, Matsuyama, Ehime, 790-8566, Japan.
| |
Collapse
|
22
|
Torrecillas S, Terova G, Makol A, Serradell A, Valdenegro-Vega V, Izquierdo M, Acosta F, Montero D. Dietary Phytogenics and Galactomannan Oligosaccharides in Low Fish Meal and Fish Oil-Based Diets for European Sea Bass ( Dicentrarchus labrax) Juveniles: Effects on Gill Structure and Health and Implications on Oxidative Stress Status. Front Immunol 2021; 12:663106. [PMID: 34054829 PMCID: PMC8149968 DOI: 10.3389/fimmu.2021.663106] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/15/2021] [Indexed: 12/03/2022] Open
Abstract
An effective replacement for fish meal (FM) and fish oil (FO) based on plant-based raw materials in the feed of marine fish species is necessary for the sustainability of the aquaculture sector. However, the use of plant-based raw materials to replace FM and FO has been associated with several negative health effects, some of which are related to oxidative stress processes that can induce functional and morphological alterations in mucosal tissues. This study aimed to evaluate the effects of dietary oligosaccharides of plant origin (5,000 ppm; galactomannan oligosaccharides, GMOS) and a phytogenic feed additive (200 ppm; garlic oil and labiatae plant extract mixture, PHYTO) on the oxidative stress status and mucosal health of the gills of juvenile European sea bass (Dicentrarchus labrax). The experimental diets, low FM and FO diets (10%FM/6%FO) were supplemented with GMOS from plant origin and PHYTO for 63 days. GMOS and PHYTO did not significantly affect feed utilization, fish growth, and survival. GMOS and PHYTO downregulated the expression of β-act, sod, gpx, cat, and gr in the gills of the fish compared with that in fish fed the control diet. The expression of hsp70 and ocln was upregulated and downregulated, respectively, in the GMOS group compared with that in the control group, whereas the expression of zo-1 was downregulated in the PHYTO group compared with that in the GMOS group. The morphological, histopathological, immunohistochemical, and biochemical parameters of the fish gills were mostly unaffected by GMOS and PHYTO. However, the PHYTO group had lower incidence of lamellar fusion than did the control group after 63 days. Although the tissular distribution of goblet cells was unaffected by GMOS and PHYTO, goblet cell size showed a decreasing trend (−11%) in the GMOS group. GMOS and PHYTO significantly reduced the concentration of PCNA+ in the epithelium of the gills. The above findings indicated that GMOS and PHYTO in low FM/FO-based diets protected the gill epithelia of D. labrax from oxidative stress by modulating the expression of oxidative enzyme-related genes and reducing the density of PCNA+ cells in the gills of the fish.
Collapse
Affiliation(s)
- Silvia Torrecillas
- Grupo de Investigación en Acuicultura (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain
| | - Genciana Terova
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Alex Makol
- Delacon Biotechnik GmbH, Global Solution Aquaculture Unit, Engerwitzdorf, Austria
| | - Antonio Serradell
- Grupo de Investigación en Acuicultura (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain
| | | | - Marisol Izquierdo
- Grupo de Investigación en Acuicultura (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain
| | - Felix Acosta
- Grupo de Investigación en Acuicultura (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain
| | - Daniel Montero
- Grupo de Investigación en Acuicultura (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain
| |
Collapse
|
23
|
Terova G, Gini E, Gasco L, Moroni F, Antonini M, Rimoldi S. Effects of full replacement of dietary fishmeal with insect meal from Tenebrio molitor on rainbow trout gut and skin microbiota. J Anim Sci Biotechnol 2021; 12:30. [PMID: 33536078 PMCID: PMC7860006 DOI: 10.1186/s40104-021-00551-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 01/05/2021] [Indexed: 12/12/2022] Open
Abstract
Background Aquaculture must continue to reduce dependence on fishmeal (FM) and fishoil in feeds to ensure sustainable sector growth. Therefore, the use of novel aquaculture feed ingredients is growing. In this regard, insects can represent a new world of sustainable and protein-rich ingredients for farmed fish feeds. Accordingly, we investigated the effects of full replacement of FM with Tenebrio molitor (TM) larvae meal in the diet of rainbow trout (Oncorhynchus mykiss) on fish gut and skin microbiota. Methods A feeding trial was conducted with 126 trout of about 80 g mean initial weight that were fed for 22 weeks with two isonitrogenous, isolipidic, and isoenergetic extruded experimental diets. Partially defatted TM meal was included in one of the diets to replace 100% (TM 100) of FM, whereas the other diet (TM 0) was without TM. To analyse the microbial communities, the Illumina MiSeq platform for sequencing of 16S rRNA gene and Qiime pipeline were used to identify bacteria in the gut and skin mucosa, and in the diets. Results The data showed no major effects of full FM substitution with TM meal on bacterial species richness and diversity in both, gut mucosa- and skin mucus-associated microbiome. Skin microbiome was dominated by phylum Proteobacteria and especially by Gammaproteobacteria class that constituted approximately half of the bacterial taxa found. The two dietary fish groups did not display distinctive features, except for a decrease in the relative abundance of Deefgea genus (family Neisseriaceae) in trout fed with insect meal. The metagenomic analysis of the gut mucosa indicated that Tenericutes was the most abundant phylum, regardless of the diet. Specifically, within this phylum, the Mollicutes, mainly represented by Mycoplasmataceae family, were the dominant class. However, we observed only a weak dietary modulation of intestinal bacterial communities. The only changes due to full FM replacement with TM meal were a decreased number of Proteobacteria and a reduced number of taxa assigned to Ruminococcaceae and Neisseriaceae families. Conclusions The data demonstrated that TM larvae meal is a valid alternative animal protein to replace FM in the aquafeeds. Only slight gut and skin microbiota changes occurred in rainbow trout after total FM replacement with insect meal. The mapping of the trout skin microbiota represents a novel contribution of the present study. Indeed, in contrast to the increasing knowledge on gut microbiota, the skin microbiota of major farmed fish species remains largely unmapped but it deserves thorough consideration.
Collapse
Affiliation(s)
- Genciana Terova
- Department of Biotechnology and Life Sciences, University of Insubria, Via J.H. Dunant, 3, 21100, Varese, Italy.
| | - Elisabetta Gini
- Department of Biotechnology and Life Sciences, University of Insubria, Via J.H. Dunant, 3, 21100, Varese, Italy
| | - Laura Gasco
- Department of Agricultural, Forest and Food Sciences, University of Turin, Largo P. Braccini 2- 10095 Grugliasco, Torino, Italy
| | - Federico Moroni
- Department of Biotechnology and Life Sciences, University of Insubria, Via J.H. Dunant, 3, 21100, Varese, Italy
| | - Micaela Antonini
- Department of Biotechnology and Life Sciences, University of Insubria, Via J.H. Dunant, 3, 21100, Varese, Italy
| | - Simona Rimoldi
- Department of Biotechnology and Life Sciences, University of Insubria, Via J.H. Dunant, 3, 21100, Varese, Italy
| |
Collapse
|
24
|
Barger PC, Liles MR, Beck BH, Newton JC. Differential production and secretion of potentially toxigenic extracellular proteins from hypervirulent Aeromonas hydrophila under biofilm and planktonic culture. BMC Microbiol 2021; 21:8. [PMID: 33407117 PMCID: PMC7788984 DOI: 10.1186/s12866-020-02065-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/07/2020] [Indexed: 12/17/2022] Open
Abstract
Background Hypervirulent Aeromonas hydrophila (vAh) is an emerging pathogen in freshwater aquaculture that results in the loss of over 3 million pounds of marketable channel catfish, Ictalurus punctatus, and channel catfish hybrids (I. punctatus, ♀ x blue catfish, I. furcatus, ♂) each year from freshwater catfish production systems in Alabama, U.S.A. vAh isolates are clonal in nature and are genetically unique from, and significantly more virulent than, traditional A. hydrophila isolates from fish. Even with the increased virulence, natural infections cannot be reproduced in aquaria challenges making it difficult to determine modes of infection and the pathophysiology behind the devastating mortalities that are commonly observed. Despite the intimate connection between environmental adaptation and plastic response, the role of environmental adaption on vAh pathogenicity and virulence has not been previously explored. In this study, secreted proteins of vAh cultured as free-living planktonic cells and within a biofilm were compared to elucidate the role of biofilm growth on virulence. Results Functional proteolytic assays found significantly increased degradative activity in biofilm secretomes; in contrast, planktonic secretomes had significantly increased hemolytic activity, suggesting higher toxigenic potential. Intramuscular injection challenges in a channel catfish model showed that in vitro degradative activity translated into in vivo tissue destruction. Identification of secreted proteins by HPLC-MS/MS revealed the presence of many putative virulence proteins under both growth conditions. Biofilm grown vAh produced higher levels of proteolytic enzymes and adhesins, whereas planktonically grown cells secreted higher levels of toxins, porins, and fimbrial proteins. Conclusions This study is the first comparison of the secreted proteomes of vAh when grown in two distinct ecological niches. These data on the adaptive physiological response of vAh based on growth condition increase our understanding of how environmental niche partitioning could affect vAh pathogenicity and virulence. Increased secretion of colonization factors and degradative enzymes during biofilm growth and residency may increase bacterial attachment and host invasiveness, while increased secretion of hemolysins, porins, and other potential toxins under planktonic growth (or after host invasion) could result in increased host mortality. The results of this research underscore the need to use culture methods that more closely mimic natural ecological habitat growth to improve our understanding of vAh pathogenesis. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-020-02065-2.
Collapse
Affiliation(s)
- Priscilla C Barger
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA. .,Biological Sciences, College of Sciences and Math, Auburn University, Auburn, AL, USA.
| | - Mark R Liles
- Biological Sciences, College of Sciences and Math, Auburn University, Auburn, AL, USA
| | - Benjamin H Beck
- USDA ARS Aquatic Animal Health Research Unit, Auburn, AL, USA
| | - Joseph C Newton
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA.
| |
Collapse
|
25
|
Ruiz-Rodríguez M, Scheifler M, Sanchez-Brosseau S, Magnanou E, West N, Suzuki M, Duperron S, Desdevises Y. Host Species and Body Site Explain the Variation in the Microbiota Associated to Wild Sympatric Mediterranean Teleost Fishes. MICROBIAL ECOLOGY 2020; 80:212-222. [PMID: 31932881 DOI: 10.1007/s00248-020-01484-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 01/06/2020] [Indexed: 05/10/2023]
Abstract
Microorganisms are an important component in shaping the evolution of hosts and as such, the study of bacterial communities with molecular techniques is shedding light on the complexity of symbioses between bacteria and vertebrates. Teleost fish are a heterogeneous group that live in a wide variety of habitats, and thus a good model group to investigate symbiotic interactions and their influence on host biology and ecology. Here we describe the microbiota of thirteen teleostean species sharing the same environment in the Mediterranean Sea and compare bacterial communities among different species and body sites (external mucus, skin, gills, and intestine). Our results show that Proteobacteria is the dominant phylum present in fish and water. However, the prevalence of other bacterial taxa differs between fish and the surrounding water. Significant differences in bacterial diversity are observed among fish species and body sites, with higher diversity found in the external mucus. No effect of sampling time nor species individual was found. The identification of indicator bacterial taxa further supports that each body site harbors its own characteristic bacterial community. These results improve current knowledge and understanding of symbiotic relationships among bacteria and their fish hosts in the wild since the majority of previous studies focused on captive individuals.
Collapse
Affiliation(s)
- M Ruiz-Rodríguez
- Biologie Intégrative des Organismes Marins, BIOM, Sorbonne Université, CNRS, Observatoire Océanologique de Banyuls-sur-Mer. Avenue Pierre Fabre., F-66650, Banyuls/Mer, France.
| | - M Scheifler
- Biologie Intégrative des Organismes Marins, BIOM, Sorbonne Université, CNRS, Observatoire Océanologique de Banyuls-sur-Mer. Avenue Pierre Fabre., F-66650, Banyuls/Mer, France
| | - S Sanchez-Brosseau
- Biologie Intégrative des Organismes Marins, BIOM, Sorbonne Université, CNRS, Observatoire Océanologique de Banyuls-sur-Mer. Avenue Pierre Fabre., F-66650, Banyuls/Mer, France
| | - E Magnanou
- Biologie Intégrative des Organismes Marins, BIOM, Sorbonne Université, CNRS, Observatoire Océanologique de Banyuls-sur-Mer. Avenue Pierre Fabre., F-66650, Banyuls/Mer, France
| | - N West
- FR3724, Sorbonne Université, CNRS, Observatoire Océanologique de Banyuls-sur-Mer. Avenue Pierre Fabre., F-66650, Banyuls/Mer, France
| | - M Suzuki
- FR3724, Sorbonne Université, CNRS, Observatoire Océanologique de Banyuls-sur-Mer. Avenue Pierre Fabre., F-66650, Banyuls/Mer, France
| | - S Duperron
- Molécules de Communication et Adaptation des Micro-organismes, MCAM, Muséum National d'Histoire Naturelle, CNRS, 12 rue Buffon, Paris, France
| | - Y Desdevises
- Biologie Intégrative des Organismes Marins, BIOM, Sorbonne Université, CNRS, Observatoire Océanologique de Banyuls-sur-Mer. Avenue Pierre Fabre., F-66650, Banyuls/Mer, France
| |
Collapse
|
26
|
Yancheva V, Georgieva E, Stoyanova S, Velcheva I, Somogyi D, Nyeste K, Antal L. A histopathological study on the Caucasian dwarf goby from an anthropogenically loaded site in Hungary using multiple tissues analyses. ACTA ZOOL-STOCKHOLM 2020. [DOI: 10.1111/azo.12310] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
| | | | | | | | - Dóra Somogyi
- Department of Hydrobiology University of Debrecen Debrecen Hungary
| | - Krisztián Nyeste
- Department of Hydrobiology University of Debrecen Debrecen Hungary
| | - László Antal
- Department of Hydrobiology University of Debrecen Debrecen Hungary
| |
Collapse
|
27
|
Tian M, Cao M, Zhang L, Fu Q, Yang N, Tan F, Song L, Su B, Li C. Characterization and initial functional analysis of cathepsin K in turbot (Scophthalmus maximus L.). FISH & SHELLFISH IMMUNOLOGY 2019; 93:153-160. [PMID: 31319206 DOI: 10.1016/j.fsi.2019.07.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 07/09/2019] [Accepted: 07/13/2019] [Indexed: 06/10/2023]
Abstract
Cathepsins are the best-known group of proteases in lysosomes, playing a significant role in immune responses. Cathepsin K (CTSK) is abundantly and selectively expressed in osteoclasts, dendritic cells and monocyte-derived macrophages, where it is involved in ECM degradation and bone remodeling. A growing body of evidences have indicated the vital roles of cathepsin K in innate immune responses. Here, one CTSK gene was captured in turbot (SmCTSK) with a 993 bp open reading frame (ORF). The genomic structure analysis showed that SmCTSK had 7 exons similar to other vertebrate species. The syntenic analysis revealed that CTSK had the same neighboring genes across all the selected species, which suggested the synteny encompassing CTSK region was conserved during vertebrate evolution. Subsequently, SmCTSK was widely expressed in all the examined tissues, with the highest expression level in spleen and the lowest expression level in liver. In addition, SmCTSK was significantly down-regulated in intestine following Gram-negative bacteria Vibrio anguillarum immersion challenge, but up-regulated in three tissues (gill, skin and intestine) following Gram-positive bacteria Streptococcus iniae immersion challenge. Finally, the rSmCTSK showed strong binding ability to all the examined microbial ligands. Taken together, our results suggested SmCTSK played vital roles in fish innate immune responses against infection. However, the knowledge of SmCTSK is still limited in teleost species, further studies should be carried out to better characterize its comprehensive roles in teleost mucosal immunity.
Collapse
Affiliation(s)
- Mengyu Tian
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Min Cao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Lu Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Qiang Fu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Ning Yang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Fenghua Tan
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Lin Song
- College of Marine Science and Biological Engineering, Qingdao University of Science & Technology, Qingdao, 266011, China
| | - Baofeng Su
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA.
| | - Chao Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
28
|
Li C, Tian M, Zhang L, Fu Q, Song L, Chen F, Yang N. The characterization and initial immune functional analysis of SCARA5 in turbot (Scophthalmus maximus L.). FISH & SHELLFISH IMMUNOLOGY 2018; 81:242-249. [PMID: 30006044 DOI: 10.1016/j.fsi.2018.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/29/2018] [Accepted: 07/09/2018] [Indexed: 06/08/2023]
Abstract
Scavenger receptors (SRs) are a group of membrane-bound receptors that could bind to a variety of ligands including endogenous proteins and pathogens. SRs have been recognized to play vital roles in innate immune response against pathogen infection in both vertebrates and invertebrates. In this regard, one SmSCARA5 gene was captured in turbot (Scophthalmus maximus). The full-length SmSCARA5 transcript contains an open reading frame (ORF) of 1494 bp. SmSCARA55 showed both the highest identity and similarity to half-smooth tongue sole (Cynoglossus semilaevis), and a high degree of conservation of genomic structure to the teleost species. In addition, the phylogenetic tree analysis showed SmSCARA5 had the closest relationship to half-smooth tongue sole, the syntenic analysis revealed a relatively conserved synteny pattern of SmSCARA5 to other species. Moreover, SmSCARA5 was ubiquitously expressed in all the examined tissues, with the highest expression level in brain and the lowest expression level in blood. And it was significantly down-regulated in intestine following Gram-negative bacteria Vibrio anguillarum, and Gram-positive bacteria Streptococcus iniae challenge. Finally, the recombinant SmSCARA5 showed the highest affinity to lipopolysaccharide (LPS), followed by peptidoglycan (PGN) and lipoteichoic acid (LTA), as well as the strong inhibition effect on the growth of V. anguillarum. Taken together, our results suggested SmSCARA5 plays vital roles in innate immune response in teleost, further studies should be carried out to better understand its regulatory mechanism for innate inflammation response in teleost.
Collapse
Affiliation(s)
- Chao Li
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Mengyu Tian
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Lu Zhang
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Qiang Fu
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Lin Song
- College of Marine Science and Biological Engineering, Qingdao University of Science & Technology, Qingdao, 266011, People's Republic of China
| | - Fei Chen
- Weifang Animal Health Supervision Institute, Weifang, 261031, People's Republic of China
| | - Ning Yang
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China.
| |
Collapse
|
29
|
Fu Q, Yang N, Gao C, Tian M, Zhou S, Mu X, Sun F, Li C. Characterization, expression signatures and microbial binding analysis of cathepsin A in turbot, Scophthalmus maximus L.(SmCTSA). FISH & SHELLFISH IMMUNOLOGY 2018; 81:21-28. [PMID: 29981472 DOI: 10.1016/j.fsi.2018.07.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/28/2018] [Accepted: 07/03/2018] [Indexed: 06/08/2023]
Abstract
Mucosal immune system is one of the most vital components in the innate immunity and constitutes the first line of host defense against bacterial infections, especially for the teleost, which live in the pathogen-rich aquatic environment. Cathepsins, a superfamily of hydrolytic enzymes produced and enclosed within lysosomes, play multiple roles at physiological and pathological states. In this regard, we sought here to identify Cathepsin A in turbot (SmCTSA), characterize its mucosal expression patterns following Vibrio anguillarum and Streptococcus iniae infections in mucosal tissues, and explore its binding ability with three microbial ligands for the first time. The SmCTSA was 2631 bp long containing a 1422 bp open reading frame (ORF) that encoded 473 amino acids. Phylogenetic analysis revealed that SmCTSA showed the closest relationship to half-smooth tongue sole (Cynoglossus semilaevis). In addition, SmCTSA was ubiquitously expressed in all examined healthy tissues, with high expression levels in head kidney (HK) and intestine, while the lowest expression level in blood. Moreover, SmCTSA was significantly differentially expressed at least two timepoints in each mucosal tissue, suggesting its potential important roles in innate immune responses of turbot. Finally, in vitro assays showed that recombinant SmCTSA bound Lipopolysaccharide (LPS) with high affinity, and lipoteichoic acid (LTA) and peptidoglycan (PGN) with relatively low affinity. This study provides valuable data for understanding the roles of ctsa in the host defense against bacterial infections.
Collapse
Affiliation(s)
- Qiang Fu
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Ning Yang
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chengbin Gao
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Mengyu Tian
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Shun Zhou
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xingjiang Mu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Fanyue Sun
- Center for Regenerative Medicine and Skeletal Development, Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Chao Li
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
30
|
Li C, Tian M, Zhang L, Fu Q, Song L, Yang N. Expression profiling and functional characterization of CD36 in turbot (Scophthalmus maximus L.). FISH & SHELLFISH IMMUNOLOGY 2018; 81:485-492. [PMID: 30064021 DOI: 10.1016/j.fsi.2018.07.056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/21/2018] [Accepted: 07/28/2018] [Indexed: 06/08/2023]
Abstract
CD36 is a scavenger receptor, a type of membrane-bound receptors that characterized by recognizing a variety of ligands including endogenous proteins and pathogens. Here, we characterized CD36 gene in turbot, and its expression patterns in mucosal barriers following different bacterial infection, as well as microbial ligand binding ability and bacteriostatic activities. In current study, one SmCD36 gene was captured with a 1407 bp open reading frame (ORF). In multiple species comparison, SmCD36 showed the highest similarity and identity to Cynoglossus semilaevis. In the phylogenetic analysis, SmCD36 showed the closest relationship to C. semilaevis, followed by Takifugu rubripes. The genomic structure analysis showed that CD36 had 12 exons with almost the same length in vertebrate species, indicating the conservation of CD36 during evolution. The syntenic analysis revealed that CD36 located between GNAI1 and SEMA3C genes across all the selected species, which suggested the synteny encompassing CD36 region during vertebrate evolution. Subsequently, SmCD36 was expressed in all the examined turbot tissues, with the highest expression level in intestine. In addition, SmCD36 was significantly up-regulated in intestine following both Gram-negative bacteria Vibrio anguillarum, and Gram-positive bacteria Streptococcus iniae immersion challenge. Finally, the rSmCD36 showed strong binding ability to all the examined microbial ligands and significant inhibition effect on Staphylococcus aureusrequires. Taken together, our results suggested SmCD36 involved in fish innate immune responses to bacterial infection. However, the knowledge of CD36 are still limited in teleost species, further studies should be carried out to better characterize its detailed roles in teleost mucosal immunity.
Collapse
Affiliation(s)
- Chao Li
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Mengyu Tian
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Lu Zhang
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Qiang Fu
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Lin Song
- College of Marine Science and Biological Engineering, Qingdao University of Science & Technology, Qingdao, 266011, People's Republic of China
| | - Ning Yang
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China.
| |
Collapse
|
31
|
Wang S, Li X, Li T, Wang H, Zhang X, Lou J, Xing Q, Hu X, Bao Z. The GRP94 gene of Yesso scallop (Patinopecten yessoensis): Characterization and expression regulation in response to thermal and bacterial stresses. FISH & SHELLFISH IMMUNOLOGY 2018; 80:443-451. [PMID: 29894740 DOI: 10.1016/j.fsi.2018.06.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/09/2018] [Indexed: 06/08/2023]
Abstract
The 94-kDa glucose-regulated protein (GRP94) belonging to the HSP90 family is an endoplasmic reticulum (ER) chaperone. It plays critical roles in ER quality control, and has been implicated as a specialized immune chaperone to regulate both innate and adaptive immunity. In this study, we identified and characterized a GRP94 gene (PyGRP94) from Yesso scallop (Patinopecten yessoensis). The protein sequence of PyGRP94 is highly conserved with its homologs in vertebrates, with a signal sequence in N-terminal, an ER retrieval signal sequence in C-terminal and a HATPase_c domain. Expression analysis suggests that PyGRP94 transcripts in early embryos are maternally derived and the zygotic expression is started from D-shaped larvae. This gene is also expressed in almost all the adult tissues examined except smooth muscle, with the highest expression level in hemocytes. Besides, PyGRP94 was demonstrated to be induced by heat shock and both Gram-positive (Micrococcus luteus) and Gram-negative (Vibrio anguillarum) bacterial infection, with much more dramatic changes being observed after V. anguillarum challenge. Our results suggest the involvement of PyGRP94 in response to thermal stress, and that it might play an important role in the innate immune defense of scallop.
Collapse
Affiliation(s)
- Shuyue Wang
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao 266003, China
| | - Xu Li
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao 266003, China
| | - Tingting Li
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao 266003, China
| | - Huizhen Wang
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao 266003, China
| | - Xiangchao Zhang
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao 266003, China
| | - Jiarun Lou
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao 266003, China
| | - Qiang Xing
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao 266003, China
| | - Xiaoli Hu
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| | - Zhenmin Bao
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
32
|
Shi H, Zhou T, Wang X, Yang Y, Wu C, Liu S, Bao L, Li N, Yuan Z, Jin Y, Tan S, Wang W, Zhong X, Qin G, Geng X, Gao D, Dunham R, Liu Z. Genome-wide association analysis of intra-specific QTL associated with the resistance for enteric septicemia of catfish. Mol Genet Genomics 2018; 293:1365-1378. [PMID: 29967962 DOI: 10.1007/s00438-018-1463-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 06/19/2018] [Indexed: 02/07/2023]
Abstract
Disease resistance is one of the most important traits for aquaculture industry. For catfish industry, enteric septicemia of catfish (ESC), caused by the bacterial pathogen Edwardsiella ictaluri, is the most severe disease, causing enormous economic losses every year. In this study, we used three channel catfish families with 900 individuals (300 fish per family) and the 690K catfish SNP array, and conducted a genome-wide association study to detect the quantitative trait loci (QTL) associated with ESC resistance. Three significant QTL, with two of located on LG1 and one on LG26, and three suggestive QTL located on LG1, LG3, and LG21, respectively, were identified to be associated with ESC resistance. With a well-assembled- and -annotated reference genome sequence, genes around the involved QTL regions were identified. Among these genes, 37 genes had known functions in immunity, which may be involved in ESC resistance. Notably, nlrc3 and nlrp12 identified here were also found in QTL regions of ESC resistance in the channel catfish × blue catfish interspecific hybrid system, suggesting this QTL was operating within both intra-specific channel catfish populations and interspecific hybrid backcross populations. Many of the genes of the Class I MHC pathway, for mediated antigen processing and presentation, were found in the QTL regions. The positional correlation found in this study and the expressional correlation found in previous studies indicated that Class I MHC pathway was significantly associated with ESC resistance. This study validated one QTL previously identified using the second and fourth generation of the interspecific hybrid backcross progenies, and identified five additional QTL among channel catfish families. Taken together, it appears that there are only a few major QTL for ESC disease resistance, making marker-assisted selection an effective approach for genetic improvements of ESC resistance.
Collapse
Affiliation(s)
- Huitong Shi
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Tao Zhou
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Xiaozhu Wang
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Yujia Yang
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Chenglong Wu
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Shikai Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Lisui Bao
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Ning Li
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Zihao Yuan
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Yulin Jin
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Suxu Tan
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Wenwen Wang
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Xiaoxiao Zhong
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Guyu Qin
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Xin Geng
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Dongya Gao
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Rex Dunham
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Zhanjiang Liu
- Department of Biology, College of Art and Sciences, Syracuse University, Syracuse, NY, 13244, USA.
| |
Collapse
|
33
|
Legrand TPRA, Catalano SR, Wos-Oxley ML, Stephens F, Landos M, Bansemer MS, Stone DAJ, Qin JG, Oxley APA. The Inner Workings of the Outer Surface: Skin and Gill Microbiota as Indicators of Changing Gut Health in Yellowtail Kingfish. Front Microbiol 2018; 8:2664. [PMID: 29379473 PMCID: PMC5775239 DOI: 10.3389/fmicb.2017.02664] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 12/21/2017] [Indexed: 11/13/2022] Open
Abstract
The mucosal surfaces and associated microbiota of fish are an important primary barrier and provide the first line of defense against potential pathogens. An understanding of the skin and gill microbial assemblages and the factors which drive their composition may provide useful insights into the broad dynamics of fish host–microbial relationships, and may reveal underlying changes in health status. This is particularly pertinent to cultivated systems whereby various stressors may led to conditions (like enteritis) which impinge on productivity. As an economically important species, we assessed whether the outer-surface bacterial communities reflect a change in gut health status of cultivated Yellowtail Kingfish (Seriola lalandi). Active bacterial assemblages were surveyed from RNA extracts from swabs of the skin and gills by constructing Illumina 16S rRNA gene amplicon libraries. Proteobacteria and Bacteroidetes were predominant in both the skin and gills, with enrichment of key β-proteobacteria in the gills (Nitrosomonadales and Ferrovales). Fish exhibiting early stage chronic lymphocytic enteritis comprised markedly different global bacterial assemblages compared to those deemed healthy and exhibiting late stages of the disease. This corresponded to an overall loss of diversity and enrichment of Proteobacteria and Actinobacteria, particularly in the gills. In contrast, bacterial assemblages of fish with late stage enteritis were generally similar to those of healthy individuals, though with some distinct taxa. In conclusion, gut health status is an important factor which defines the skin and gill bacterial assemblages of fish and likely reflects changes in immune states and barrier systems during the early onset of conditions like enteritis. This study represents the first to investigate the microbiota of the outer mucosal surfaces of fish in response to underlying chronic gut enteritis, revealing potential biomarkers for assessing fish health in commercial aquaculture systems.
Collapse
Affiliation(s)
- Thibault P R A Legrand
- Aquatic Sciences Centre, South Australian Research and Development Institute, West Beach, SA, Australia.,School of Biological Sciences, Flinders University, Adelaide, SA, Australia
| | - Sarah R Catalano
- Aquatic Sciences Centre, South Australian Research and Development Institute, West Beach, SA, Australia
| | - Melissa L Wos-Oxley
- Research Group Microbial Interactions and Processes, Helmholtz Centre for Infection Research, Braunschweig, Germany.,South Australian Museum, Adelaide, SA, Australia
| | | | - Matt Landos
- Future Fisheries Veterinary Service Pty Ltd., East Ballina, NSW, Australia
| | - Matthew S Bansemer
- Aquatic Sciences Centre, South Australian Research and Development Institute, West Beach, SA, Australia
| | - David A J Stone
- Aquatic Sciences Centre, South Australian Research and Development Institute, West Beach, SA, Australia.,School of Biological Sciences, Flinders University, Adelaide, SA, Australia
| | - Jian G Qin
- School of Biological Sciences, Flinders University, Adelaide, SA, Australia
| | - Andrew P A Oxley
- Aquatic Sciences Centre, South Australian Research and Development Institute, West Beach, SA, Australia
| |
Collapse
|
34
|
Kostić J, Kolarević S, Kračun-Kolarević M, Aborgiba M, Gačić Z, Paunović M, Višnjić-Jeftić Ž, Rašković B, Poleksić V, Lenhardt M, Vuković-Gačić B. The impact of multiple stressors on the biomarkers response in gills and liver of freshwater breams during different seasons. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 601-602:1670-1681. [PMID: 28618658 DOI: 10.1016/j.scitotenv.2017.05.273] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/13/2017] [Accepted: 05/30/2017] [Indexed: 06/07/2023]
Abstract
Biomarkers attract increasing attention in environmental studies, as a tool for detection of exposure and effects of pollution, from both natural and anthropogenic sources. This study aims to assess the impact of multiple stressors during distinctive seasons, covering also extreme hydrological events (extensive flooding in the mid May 2014), on different levels of biological organization in the liver and gills of three closely related freshwater breams. Our previous study on DNA damage in blood cells of these specimens showed increased DNA damage in June 2014, one month after the flooding event. As a continuation of that research, the present study was conducted. As a biomarker of exposure DNA damage was measured by applying the alkaline comet assay, while histopathological alterations were monitored as a biomarker of effect. Additionally, concentrations of metals and metalloids in gills, liver and muscle were assessed. Sampling of fish tissues was performed in 2014, during winter (January and February), spring (March and early June) and summer (late June, July and August). Significant seasonal difference in DNA damage was observed for both tissues. During spring and summer the level of DNA damage in gills was significantly higher when compared to the liver. Histopathological analyses showed higher frequency of alterations in gills during spring, and in liver during summer, but without a significant seasonal difference. Gills had the highest concentration of metals and metalloids during the spring and summer, and liver during winter. Muscle was the least affected tissue during all three seasons. This study highlighted the importance of the multiple biomarker approach and the use of different fish tissues in assessment of surface water pollution.
Collapse
Affiliation(s)
- Jovana Kostić
- University of Belgrade-Faculty of Biology, Chair of Microbiology, Center for Genotoxicology and Ecogenotoxicology, Studentski trg 16, 11000 Belgrade, Serbia; University of Belgrade-Institute for Multidisciplinary Research, Department of Natural Resources and Environmental Sciences, Kneza Višeslava 1, 11030 Belgrade, Serbia.
| | - Stoimir Kolarević
- University of Belgrade-Faculty of Biology, Chair of Microbiology, Center for Genotoxicology and Ecogenotoxicology, Studentski trg 16, 11000 Belgrade, Serbia.
| | - Margareta Kračun-Kolarević
- University of Belgrade-Institute for Biological Research "Siniša Stanković", Hydrobiology and Water Protection, Bulevar despota Stefana 142, 11060 Belgrade, Serbia.
| | - Mustafa Aborgiba
- University of Belgrade-Faculty of Biology, Chair of Microbiology, Center for Genotoxicology and Ecogenotoxicology, Studentski trg 16, 11000 Belgrade, Serbia
| | - Zoran Gačić
- University of Belgrade-Institute for Multidisciplinary Research, Department of Natural Resources and Environmental Sciences, Kneza Višeslava 1, 11030 Belgrade, Serbia.
| | - Momir Paunović
- University of Belgrade-Institute for Biological Research "Siniša Stanković", Hydrobiology and Water Protection, Bulevar despota Stefana 142, 11060 Belgrade, Serbia.
| | - Željka Višnjić-Jeftić
- University of Belgrade-Institute for Multidisciplinary Research, Department of Natural Resources and Environmental Sciences, Kneza Višeslava 1, 11030 Belgrade, Serbia.
| | - Božidar Rašković
- University of Belgrade-Faculty of Agriculture, Institute of Animal Science, Nemanjina 6, Zemun, 11080 Belgrade, Serbia.
| | - Vesna Poleksić
- University of Belgrade-Faculty of Agriculture, Institute of Animal Science, Nemanjina 6, Zemun, 11080 Belgrade, Serbia.
| | - Mirjana Lenhardt
- University of Belgrade-Institute for Multidisciplinary Research, Department of Natural Resources and Environmental Sciences, Kneza Višeslava 1, 11030 Belgrade, Serbia; University of Belgrade-Institute for Biological Research "Siniša Stanković", Hydrobiology and Water Protection, Bulevar despota Stefana 142, 11060 Belgrade, Serbia.
| | - Branka Vuković-Gačić
- University of Belgrade-Faculty of Biology, Chair of Microbiology, Center for Genotoxicology and Ecogenotoxicology, Studentski trg 16, 11000 Belgrade, Serbia.
| |
Collapse
|
35
|
Zhang D, Thongda W, Li C, Zhao H, Beck BH, Mohammed H, Arias CR, Peatman E. More than just antibodies: Protective mechanisms of a mucosal vaccine against fish pathogen Flavobacterium columnare. FISH & SHELLFISH IMMUNOLOGY 2017; 71:160-170. [PMID: 28989091 DOI: 10.1016/j.fsi.2017.10.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/05/2017] [Accepted: 10/02/2017] [Indexed: 05/20/2023]
Abstract
A recently developed attenuated vaccine for Flavobacterium columnare has been demonstrated to provide superior protection for channel catfish, Ictalurus punctatus, against genetically diverse columnaris isolates. We were interested in examining the mechanisms of this protection by comparing transcriptional responses to F. columnare challenge in vaccinated and unvaccinated juvenile catfish. Accordingly, 58 day old fingerling catfish (28 days post-vaccination or unvaccinated control) were challenged with a highly virulent F. columnare isolate (BGSF-27) and gill tissues collected pre-challenge (0 h), and 1 h and 2 h post infection, time points previously demonstrated to be critical in early host-pathogen interactions. Following RNA-sequencing and transcriptome assembly, differential expression (DE) analysis within and between treatments revealed several patterns and pathways potentially underlying improved survival of vaccinated fish. Most striking was a pattern of dramatically higher basal expression of an array of neuropeptides (e.g. somatostatin), hormones, complement factors, and proteases at 0 h in vaccinated fish. Previous studies indicate these are likely the preformed mediators of neuroendocrine cells and/or eosinophilic granular (mast-like) cells within the fish gill. Following challenge, these elements fell to almost undetectable levels (>100-fold downregulated) by 1 h in vaccinated fish, suggesting their rapid release and/or cessation of synthesis following degranulation. Concomitantly, levels of pro-inflammatory cytokines (IL-1b, IL-8, IL-17) were induced in unvaccinated fish. In contrast, in vaccinated catfish, we observed widespread induction of genes needed for collagen deposition and tissue remodeling. Taken together, our results indicate an important component of vaccine protection in fish mucosal tissues may be the sensitization, proliferation and arming of resident secretory cells in the period between primary and secondary challenge.
Collapse
Affiliation(s)
- Dongdong Zhang
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Wilawan Thongda
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Chao Li
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, China
| | - Honggang Zhao
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Benjamin H Beck
- United States Department of Agriculture, Agricultural Research Service, Aquatic Animal Health Research Unit, Auburn, AL 36832, USA
| | - Haitham Mohammed
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA; Department of Animal Medicine, Faculty of Veterinary Medicine, Assiut University, Assiut 71526, Egypt
| | - Covadonga R Arias
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Eric Peatman
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA.
| |
Collapse
|
36
|
Lange MD, Webster CD. The effect of temperature on the mucosal IgM antibody response to DNP-KLH in channel catfish (Ictalurus punctatus). FISH & SHELLFISH IMMUNOLOGY 2017; 70:493-497. [PMID: 28899776 DOI: 10.1016/j.fsi.2017.09.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/07/2017] [Accepted: 09/09/2017] [Indexed: 06/07/2023]
Abstract
Bath immersion remains a practical route for immunizing against disease in channel catfish; however research efforts in this area have revealed variable results when activating mucosal Ab responses with different antigens. This is likely due to a number of factors including the individual species, age of the fish, preparation of the immunogens, and differences in the overall dosage and the duration of exposure to vaccines. The current study sought to evaluate the effect of water temperature on the in vivo mucosal adaptive immune response in channel catfish to a protein-hapten antigen, DNP-KLH. Fish were bath immersed at different water temperatures and periodically evaluated over an eighteen week period for the development of serum and mucosal IgM antibodies to DNP-KLH using an indirect enzyme-linked immunosorbent assay. None of the temperature groups produced a serum antibody response; however there were detectable DNP-KLH specific IgM antibodies in the mucus starting at week eight. The extent of the mucosal antibody response and duration differed between the treatments. Our results show that there are intrinsic differences in the capacity to generate in vivo mucosal Ab responses in the skin at different water temperatures and the implications of these findings to channel catfish farming will be discussed.
Collapse
Affiliation(s)
- Miles D Lange
- U.S. Department of Agriculture, Agricultural Research Service, Harry K. Dupree Stuttgart National Aquaculture Research Center, Stuttgart, AR, USA.
| | - Carl D Webster
- U.S. Department of Agriculture, Agricultural Research Service, Harry K. Dupree Stuttgart National Aquaculture Research Center, Stuttgart, AR, USA
| |
Collapse
|
37
|
Lange MD, Farmer BD, Declercq AM, Peatman E, Decostere A, Beck BH. Sickeningly Sweet: L-rhamnose stimulates Flavobacterium columnare biofilm formation and virulence. JOURNAL OF FISH DISEASES 2017; 40:1613-1624. [PMID: 28581211 DOI: 10.1111/jfd.12629] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/07/2017] [Accepted: 02/09/2017] [Indexed: 06/07/2023]
Abstract
Flavobacterium columnare, the causative agent of columnaris disease, causes substantial mortality worldwide in numerous freshwater finfish species. Due to its global significance and impact on the aquaculture industry continual efforts to better understand basic mechanisms that contribute to disease are urgently needed. The current work sought to evaluate the effect of L-rhamnose on the growth characteristics of F. columnare. While we initially did not observe any key changes during the total growth of F. columnare isolates tested when treated with L-rhamnose, it soon became apparent that the difference lies in the ability of this carbohydrate to facilitate the formation of biofilms. The addition of different concentrations of L-rhamnose consistently promoted the development of biofilms among different F. columnare isolates; however, it does not appear to be sufficient as a sole carbon source for biofilm growth. Our data also suggest that iron acquisition machinery is required for biofilm development. Finally, the addition of different concentrations of L-rhamnose to F. columnare prior to a laboratory challenge increased mortality rates in channel catfish (Ictalurus punctatus) as compared to controls. These results provide further evidence that biofilm formation is an integral virulence factor in the initiation of disease in fish.
Collapse
Affiliation(s)
- M D Lange
- Harry K. Dupree Stuttgart National Aquaculture Research Center, U.S. Department of Agriculture, Agricultural Research Service, Stuttgart, AR, USA
| | - B D Farmer
- Harry K. Dupree Stuttgart National Aquaculture Research Center, U.S. Department of Agriculture, Agricultural Research Service, Stuttgart, AR, USA
| | - A M Declercq
- Department of Pathology, Bacteriology and Poultry Diseases, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
- Stress Physiology Research Group, Department of Bio-analysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - E Peatman
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL, USA
| | - A Decostere
- Department of Pathology, Bacteriology and Poultry Diseases, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - B H Beck
- Aquatic Animal Health Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Auburn, AL, USA
| |
Collapse
|
38
|
Dickerson HW, Findly RC. Vertebrate Adaptive Immunity-Comparative Insights from a Teleost Model. Front Immunol 2017; 8:1379. [PMID: 29123524 PMCID: PMC5662878 DOI: 10.3389/fimmu.2017.01379] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 10/06/2017] [Indexed: 11/13/2022] Open
Abstract
The channel catfish (Ictalurus punctatus) and the ciliated protozoan parasite Ichthyophthirius multifiliis are used to study pathogen-specific protective immunity. In this review, we briefly describe this host–parasite system and discuss the comparative insights it provides on the adaptive immune response of vertebrates. We include studies related to cutaneous mucosal immunity, B cell memory responses, and analyses of αβ T cell receptor (TCR) repertoires. This host–parasite model has played an important role in elucidating host protective responses to parasite invasion and for comparative studies of vertebrate immunity. Recent findings from bioinformatics analyses of TCR β repertoires suggest that channel catfish preferentially expand specific clonotypes that are stably integrated in the genome. This finding could have broad implications related to diversity in lymphocyte receptors of early vertebrates.
Collapse
Affiliation(s)
- Harry W Dickerson
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Robert Craig Findly
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| |
Collapse
|
39
|
Liu F, Su B, Fu Q, Shang M, Gao C, Tan F, Li C. Identification, characterization and expression analysis of TLR5 in the mucosal tissues of turbot (Scophthalmus maximus L.) following bacterial challenge. FISH & SHELLFISH IMMUNOLOGY 2017; 68:272-279. [PMID: 28705722 DOI: 10.1016/j.fsi.2017.07.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 07/01/2017] [Accepted: 07/08/2017] [Indexed: 06/07/2023]
Abstract
TLRs (Toll-like receptors) are very important pathogen pattern recognition receptors, which control the host immune responses against pathogens through recognition of molecular patterns specific to microorganisms. In this regard, investigation of the turbot TLRs could help to understand the immune responses for pathogen recognition. Here, transcripts of two TLR5 (TLR5a and TLR5b) were captured, and their protein structures were also predicted. Meanwhile, we characterized their expression patterns with emphasis on mucosal barriers following different bacterial infection. The phylogenetic analysis revealed the turbot TLR5 genes showed the closest relationship to Paralichthys olivaceus. These two TLR5 genes were ubiquitously expressed in healthy tissues although expression levels varied among the tested tissues. In addition, the two copies of turbot TLR5 showed different expression patterns after bacterial infections. After Vibrio anguillarum infection, TLR5a was generally up-regulated in intestine and skin while down-regulated in gill, while TLR5b showed a general down-regulation in mucosal tissues. After Streptococcus iniae infection, the TLR5a was down-regulated at 2 h while generally up-regulated after 4 h in mucosal tissues. Interestingly, the TLR5b was up-regulated in intestine while down-regulated in skin and gill after Streptococcus iniae infection. These findings suggested a possible irreplaceable role of TLR5 in the immune responses to the infections of a broad range of pathogens that include Gram-negative and Gram-positive bacteria. Future studies should apply the bacteriological and immune-histochemical techniques to study the main sites on the mucosal tissue for bacteria entry and identify the ligand specificity of the turbot TLRs after challenge.
Collapse
Affiliation(s)
- Fengqiao Liu
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, China
| | - Baofeng Su
- National and Local Joint Engineering Laboratory of Freshwater Fish Breeding, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China; Ministry of Agriculture Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China
| | - Qiang Fu
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, China
| | - Mei Shang
- National and Local Joint Engineering Laboratory of Freshwater Fish Breeding, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China; Ministry of Agriculture Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China
| | - Chengbin Gao
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, China
| | - Fenghua Tan
- School of International Education and Exchange, Qingdao Agricultural University, Qingdao 266109, China
| | - Chao Li
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
40
|
Gao C, Fu Q, Su B, Song H, Zhou S, Tan F, Li C. The involvement of cathepsin F gene (CTSF) in turbot (Scophthalmus maximus L.) mucosal immunity. FISH & SHELLFISH IMMUNOLOGY 2017; 66:270-279. [PMID: 28501446 DOI: 10.1016/j.fsi.2017.05.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/05/2017] [Accepted: 05/09/2017] [Indexed: 06/07/2023]
Abstract
Cathepsin F (CTSF) is a recently described papain-like cysteine protease and unique among cathepsins due to an elongated N-terminal pro-region, which contains a cystatin domain. CTSF likely plays a regulatory role in processing the invariant chain which is associated with the major histocompatibility complex (MHC) class II. In this regard, we identified the CTSF gene of turbot as well as its protein structure, phylogenetic relationships, and expression patterns in mucosal tissues following Vibrio anguillarum and Streptococcus iniae challenge. We also determined the expression patterns of CTSF in mucosal tissues after vaccinated with the formalin-inactivated V. vulnificus whole-cell vaccine. Briefly, turbot CTSF gene showed the closest relationship with that of Paralichthys olivaceus in phylogenetic analysis. And CTSF was ubiquitously expressed in all tested tissues with the highest expression level in gill. In addition, CTSF gene showed different expression patterns following different bacterial challenge. The significant quick regulation of CTSF in mucosal surfaces against infection indicated its roles in mucosal immunity. Functional studies should further characterize avail utilization of CTSF function to increase the disease resistance of turbot in maintaining the integrity of the mucosal barriers against infection and to facilitate selection of the disease resistant family/strain in turbot.
Collapse
Affiliation(s)
- Chengbin Gao
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, China
| | - Qiang Fu
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, China; State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China
| | - Baofeng Su
- National and Local Joint Engineering Laboratory of Freshwater Fish Breeding, Heilongjiang Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China; Ministry of Agriculture Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Heilongjiang Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China
| | - Huanhuan Song
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, China
| | - Shun Zhou
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, China
| | - Fenghua Tan
- School of International Education and Exchange, Qingdao Agricultural University, Qingdao 266109, China
| | - Chao Li
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
41
|
Hou Z, Ye Z, Zhang D, Gao C, Su B, Song L, Tan F, Song H, Wang Y, Li C. Characterization and expression profiling of NOD-like receptor C3 (NLRC3) in mucosal tissues of turbot (Scophthalmus maximus L.) following bacterial challenge. FISH & SHELLFISH IMMUNOLOGY 2017; 66:231-239. [PMID: 28478262 DOI: 10.1016/j.fsi.2017.05.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 04/30/2017] [Accepted: 05/02/2017] [Indexed: 06/07/2023]
Abstract
The mucosal surfaces are important for teleost as they are directly and continuously exposed to pathogen-rich aquatic environments. Scrutinization and recognition of the attached pathogens is the first crucial step of mucosal immunity initiation. Nucleotide oligomerization domain (NOD)-like receptors (NLRs) are a large group of intracellular pathogen recognition receptors (PRRs) which play key roles in pathogen recognition and subsequent immune signaling pathways activation. In this study, we identified two NLRC3 genes (NLRC3a and NLRC3b), a subfamily of NLRs from turbot, and profiled their expression patterns in mucosal tissues following bacterial challenge. NLRC3a transcript contains an open reading frame (ORF) of 3405 bp that encodes a putative peptide of 1134 amino acids. While NLRC3b has an ORF of 3114 bp encoding 1037 amino acids. A caspase recruitment domain (CARD) at N-terminus characterized turbot NLRC3a, while NLRC3b seems to be unique to teleost, containing a fish specific NACHT associated (FISNA) domain and an extra B30.2 (PRY/SPRY) domain at C-terminus. In addition, NLRC3a and NLRC3b were detected in all the examined tissues, with the highest expression levels in kidney and blood, respectively. After bacteria challenge, expression levels of turbot NLRC3 genes were strongly induced in intestine rather than in skin and gill, while NLRC3a had relatively higher expression level than that of NLRC3b. Taken together, NLRC3 genes found in this study were the first NLR members identified in turbot. The different expression signatures of NLRC3a and NLRC3b in mucosal tissues following two bacterial infections indicated they probably have important roles in early response to bacterial infection in the first line of host defense system.
Collapse
Affiliation(s)
- Zhumei Hou
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, China
| | - Zhi Ye
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Dongdong Zhang
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Chengbin Gao
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, China
| | - Baofeng Su
- National and Local Joint Engineering Laboratory of Freshwater Fish Breeding, Heilongjiang Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China; Ministry of Agriculture Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Heilongjiang Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China
| | - Lin Song
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, China
| | - Fenghua Tan
- School of International Education and Exchange, Qingdao Agricultural University, Qingdao 266109, China
| | - Huanhuan Song
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, China
| | - Yu Wang
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, China
| | - Chao Li
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
42
|
Gao C, Cai X, Zhang Y, Su B, Song H, Wenqi W, Li C. Characterization and expression analysis of chitinase genes (CHIT1, CHIT2 and CHIT3) in turbot (Scophthalmus maximus L.) following bacterial challenge. FISH & SHELLFISH IMMUNOLOGY 2017; 64:357-366. [PMID: 28286313 DOI: 10.1016/j.fsi.2017.03.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 03/05/2017] [Accepted: 03/07/2017] [Indexed: 06/06/2023]
Abstract
Chitinases are hydrolytic enzymes which have been employed to breakdown chitin coats of pathogenic microorganisms, thereby weaken the defense system of several pathogens and insects. In this regard, we identified the chitinase genes of turbot and characterized their expression patterns in mucosal tissues following Vibrio anguillarum and Streptococcus iniae challenge. In present study, transcripts of three chitinase genes (CHIT1, CHIT2 and CHIT3) were captured, as well as their protein structures and expression patterns following different bacterial infection were also characterized. The chitinases were widely expressed in all tested tissues with the highest expression levels of CHIT1 and CHIT2 in intestine, and CHIT3 in skin. Finally, these three genes showed different expression patterns following bacterial challenge. The significant quick induction of chitinases in mucosal surfaces against infection indicated their key roles to prevent pathogen attachment and entry in mucosal immunity. Functional studies should further characterize the chitinases and avail utilization of their function to increase the disease resistance in maintaining the integrity of the mucosal barriers against infection and facilitating the disease resistant family/strain selection in turbot.
Collapse
Affiliation(s)
- Chengbin Gao
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, China
| | - Xin Cai
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, China
| | - Yu Zhang
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity, Department of Marine Biology, Ocean University of China, Qingdao 266003, China
| | - Baofeng Su
- National and Local Joint Engineering Laboratory of Freshwater Fish Breeding, Heilongjiang Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China; Ministry of Agriculture Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Heilongjiang Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China
| | - Huanhuan Song
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, China
| | - Wang Wenqi
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, China
| | - Chao Li
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
43
|
De novo assembly of the sea trout (Salmo trutta m. trutta) skin transcriptome to identify putative genes involved in the immune response and epidermal mucus secretion. PLoS One 2017; 12:e0172282. [PMID: 28212382 PMCID: PMC5315281 DOI: 10.1371/journal.pone.0172282] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 02/02/2017] [Indexed: 01/02/2023] Open
Abstract
In fish, the skin is a multifunctional organ and the first barrier against pathogens. Salmonids differ in their susceptibility to microorganisms due to varied skin morphology and gene expression patterns. The brown trout is a salmonid species with important commercial and ecological value in Europe. However, there is a lack of knowledge regarding the genes involved in the immune response and mucus secretion in the skin of this fish. Thus, we characterized the skin transcriptome of anadromous brown trout using next-generation sequencing (NGS). A total of 1,348,306 filtered reads were obtained and assembled into 75,970 contigs. Of these contigs 48.57% were identified using BLAST tool searches against four public databases. KEGG pathway and Gene Ontology analyses revealed that 13.40% and 34.57% of the annotated transcripts, respectively, represent a variety of biological processes and functions. Among the identified KEGG Orthology categories, the best represented were signal transduction (23.28%) and immune system (8.82%), with a variety of genes involved in immune pathways, implying the differentiation of immune responses in the trout skin. We also identified and transcriptionally characterized 8 types of mucin proteins–the main structural components of the mucosal layer. Moreover, 140 genes involved in mucin synthesis were identified, and 1,119 potential simple sequence repeats (SSRs) were detected in 3,134 transcripts.
Collapse
|
44
|
Development of a 690 K SNP array in catfish and its application for genetic mapping and validation of the reference genome sequence. Sci Rep 2017; 7:40347. [PMID: 28079141 PMCID: PMC5228154 DOI: 10.1038/srep40347] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 12/05/2016] [Indexed: 02/02/2023] Open
Abstract
Single nucleotide polymorphisms (SNPs) are capable of providing the highest level of genome coverage for genomic and genetic analysis because of their abundance and relatively even distribution in the genome. Such a capacity, however, cannot be achieved without an efficient genotyping platform such as SNP arrays. In this work, we developed a high-density SNP array with 690,662 unique SNPs (herein 690 K array) that were relatively evenly distributed across the entire genome, and covered 98.6% of the reference genome sequence. Here we also report linkage mapping using the 690 K array, which allowed mapping of over 250,000 SNPs on the linkage map, the highest marker density among all the constructed linkage maps. These markers were mapped to 29 linkage groups (LGs) with 30,591 unique marker positions. This linkage map anchored 1,602 scaffolds of the reference genome sequence to LGs, accounting for over 97% of the total genome assembly. A total of 1,007 previously unmapped scaffolds were placed to LGs, allowing validation and in few instances correction of the reference genome sequence assembly. This linkage map should serve as a valuable resource for various genetic and genomic analyses, especially for GWAS and QTL mapping for genes associated with economically important traits.
Collapse
|
45
|
Dong X, Fu Q, Liu S, Gao C, Su B, Tan F, Li C. The expression signatures of neuronal nitric oxide synthase (NOS1) in turbot (Scophthalmus maximus L.) mucosal surfaces against bacterial challenge. FISH & SHELLFISH IMMUNOLOGY 2016; 59:406-413. [PMID: 27825948 DOI: 10.1016/j.fsi.2016.11.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 11/02/2016] [Accepted: 11/03/2016] [Indexed: 06/06/2023]
Abstract
The mucosal surfaces constitute the first immune barrier of host defense and also serve as the dynamic interfaces that simultaneously mediate a diverse array of critical physiological processes. It has been long hypothesized that observed difference of disease resistance among different fish strains and species are strongly correlated to the activities of the immune actors in mucosal surfaces. Particularly, neuronal NOS (nNOS or NOS1) is a constitutively expressed gene that catalyzes the oxidation of l-arginine and water to nitric oxide (NO), which is known as a potent host defence effector in immune system with antimicrobial activity. Moreover, NOS1 was detected to be expressed in fish mucosal surfaces, but its activities in mucosal immune responses were always overlooked. In this regard, we identified the NOS1 of turbot and characterized its expression patterns in mucosal tissues following Vibrio anguillarum and Streptococcus iniae challenge. The results showed that the NOS1 gene had a 4389 bp open reading frame (ORF) that encoded 1462 amino acids. Phylogenetic analysis showed the turbot NOS1 had the strongest relationship to Larimichthys crocea. And the syntenic analysis revealed the similar neighboring genes associated with turbot NOS1, compared with other teleost and mammals. In addition, NOS1 was widely expressed in all examined tissues with the highest expression level in brain, followed by intestine and gill. Finally, the NOS1 showed a general trend of up-regulation in mucosal tissues following both bacterial challenge, with the highest up-regulation in intestine. The significant quick induction of NOS1 in mucosal surfaces against infection indicated its key roles to prevent pathogen attachment and entry in mucosal immunity. More functional studies are needed to conduct in teleost to better understand the roles of NOS1 in maintaining the integrity of the mucosal barriers against infection.
Collapse
Affiliation(s)
- Xiaoyu Dong
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, China
| | - Qiang Fu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China
| | - Song Liu
- Functional Zone Coordinating Office of Huangdao District (West Coast New Area), Qingdao 266555, China
| | - Chengbin Gao
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, China
| | - Baofeng Su
- National and Local Joint Engineering Laboratory of Freshwater Fish Breeding, Heilongjiang Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China; Ministry of Agriculture Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Heilongjiang Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China
| | - Fenghua Tan
- School of International Education and Exchange, Qingdao Agricultural University, Qingdao 266109, China
| | - Chao Li
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
46
|
GWAS analysis of QTL for enteric septicemia of catfish and their involved genes suggest evolutionary conservation of a molecular mechanism of disease resistance. Mol Genet Genomics 2016; 292:231-242. [DOI: 10.1007/s00438-016-1269-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 11/01/2016] [Indexed: 10/20/2022]
|
47
|
Parra D, Korytář T, Takizawa F, Sunyer JO. B cells and their role in the teleost gut. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 64:150-66. [PMID: 26995768 PMCID: PMC5125549 DOI: 10.1016/j.dci.2016.03.013] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 03/11/2016] [Accepted: 03/13/2016] [Indexed: 05/03/2023]
Abstract
Mucosal surfaces are the main route of entry for pathogens in all living organisms. In the case of teleost fish, mucosal surfaces cover the vast majority of the animal. As these surfaces are in constant contact with the environment, fish are perpetually exposed to a vast number of pathogens. Despite the potential prevalence and variety of pathogens, mucosal surfaces are primarily populated by commensal non-pathogenic bacteria. Indeed, a fine balance between these two populations of microorganisms is crucial for animal survival. This equilibrium, controlled by the mucosal immune system, maintains homeostasis at mucosal tissues. Teleost fish possess a diffuse mucosa-associated immune system in the intestine, with B cells being one of the main responders. Immunoglobulins produced by these lymphocytes are a critical line of defense against pathogens and also prevent the entrance of commensal bacteria into the epithelium. In this review we will summarize recent literature regarding the role of B-lymphocytes and immunoglobulins in gut immunity in teleost fish, with specific focus on immunoglobulin isotypes and the microorganisms, pathogenic and non-pathogenic that interact with the immune system.
Collapse
Affiliation(s)
- David Parra
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Tomáš Korytář
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Fumio Takizawa
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - J Oriol Sunyer
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
48
|
Liu F, Su B, Gao C, Zhou S, Song L, Tan F, Dong X, Ren Y, Li C. Identification and expression analysis of TLR2 in mucosal tissues of turbot (Scophthalmus maximus L.) following bacterial challenge. FISH & SHELLFISH IMMUNOLOGY 2016; 55:654-661. [PMID: 27368539 DOI: 10.1016/j.fsi.2016.06.047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 06/21/2016] [Accepted: 06/27/2016] [Indexed: 06/06/2023]
Abstract
The pathogen recognition receptors (PRRs), which can recognize the conserved pathogen-associated molecular patterns (PAMPs) of the bacteria, play key roles in the mucosal surfaces for pathogen recognition and activation of immune signaling pathways. However, our understanding of the PRRs and their activities in mucosal surfaces in the critical early time points during pathogen infection is still limited. Towards to this end, here, we sought to identify the Toll-like receptor 2 (TLR2) in turbot as well as its expression profiles in mucosal barriers following bacterial infection in the early time points. The full-length TLR2 transcript consists of open reading frame (ORF) of 2451 bp encoding the putative peptide of 816 amino acids. The phylogenetic analysis revealed the turbot TLR2 showed the closest relationship to Paralichthys olivaceus. The TLR2 mRNA expression could be detected in all examined tissues, with the most abundant expression level in liver, and the lowest expression level in skin. In addition, TLR2 showed different expression patterns following Vibrio anguillarum and Streptococcus iniae infection, but was up-regulated following both challenge, especially post S. iniae challenge. Characterization of TLR2 will probably contribute to understanding of a number of infectious diseases and broaden the knowledge of interactions between host and pathogen, which will eventually help in the development of novel intervention strategies for farming turbot.
Collapse
Affiliation(s)
- Fengqiao Liu
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Baofeng Su
- Ministry of Agriculture Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Heilongjiang Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, 150070, China; National and Local Joint Engineering Laboratory of Freshwater Fish Breeding, Heilongjiang Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, 150070, China
| | - Chengbin Gao
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Shun Zhou
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Lin Song
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Fenghua Tan
- School of International Education and Exchange, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xiaoyu Dong
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yichao Ren
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chao Li
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
49
|
Gao C, Fu Q, Zhou S, Song L, Ren Y, Dong X, Su B, Li C. The mucosal expression signatures of g-type lysozyme in turbot (Scophthalmus maximus) following bacterial challenge. FISH & SHELLFISH IMMUNOLOGY 2016; 54:612-619. [PMID: 27189917 DOI: 10.1016/j.fsi.2016.05.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 05/12/2016] [Accepted: 05/13/2016] [Indexed: 06/05/2023]
Abstract
The mucosal surfaces constitute the first line of host defense against infection, and also serve as the dynamic interfaces that simultaneously mediate a diverse array of critical physiological processes, while in constantly contact with a wide range of pathogens. The lysozymes are considered as key components for innate immune response to pathogen infection with their strong antibacterial activities. But their activities in mucosal immune responses were always overlooked, especially for g-type lysozymes, whose expression patterns in mucosal tissues following bacterial challenge are still limited. Towards to this end, here, we characterized the g-type lysozymes, Lyg1 and Lyg2 in turbot, and determined their expression patterns in mucosal barriers following different bacterial infection. The phylogenetic analysis revealed the turbot g-type lysozyme genes showed the closest relationship to Cynoglossus semilaevis. The two lysozyme genes showed different expression patterns following challenge. Lyg2 was significantly up-regulated in mucosal tissues following Vibrio anguillarum and Streptococcus iniae challenge, while Lyg1 showed a general trend of down-regulation. The significant mucosal expression signatures of g-type lysozyme genes indicated their key roles to prevent pathogen attachment and entry in the first line of host defense system. Further functional studies should be carried out to better characterize the availability of utilization of g-type lysozyme to increase the disease resistance in the mucosal surfaces and facilitate the disease resistant breeding selection.
Collapse
Affiliation(s)
- Chengbin Gao
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, China
| | - Qiang Fu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China
| | - Shun Zhou
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, China
| | - Lin Song
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, China
| | - Yichao Ren
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiaoyu Dong
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, China
| | - Baofeng Su
- Ministry of Agriculture Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Heilongjiang Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China
| | - Chao Li
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|